
ANIMATION OF HUMAN MOTION
WITH INVERSE KINEMATICS

USING NONLINEAR
PROGRAMMING

a thesis

submitted to the department of computer

engineering

and the institute of engineering and science

of bi̇lkent university

in partial fulfillment of the requirements

for the degree of

master of science

by

A. Sezgin Abalı

September, 2001

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Uğur Güdükbay (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Bülent Özgüç

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Özgür Ulusoy

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Science

ii

ABSTRACT

ANIMATION OF HUMAN MOTION WITH INVERSE

KINEMATICS USING NONLINEAR PROGRAMMING

A. Sezgin Abalı

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Uğur Güdükbay

September, 2001

Animation of articulated figures has always been an interesting subject of com-

puter graphics due to a wide range of applications, like military, ergonomic de-

sign etc. An articulated figure is usually modelled as a set of segments linked

with joints. Changing the joint angles brings the articulated figure to a new

posture. An animator can define the joint angles for a new posture (forward

kinematics). However, it is difficult to estimate the exact joint angles needed

to place the articulated figure to a predefined position. Instead of this, an

animator can specify the desired position for an end-effector, and then an algo-

rithm computes the joint angles needed (inverse kinematics). In this thesis, we

present the implementation of an inverse kinematics algorithm using nonlinear

optimization methods. This algorithm computes a potential function value be-

tween the end-effector and the desired posture of the end-effector called goal.

Then, it tries to minimize the value of the function. If the goal cannot be

reached due to constraints then an optimum solution is found and applied by

the algorithm. The user may assign priority to the joint angles by scaling ini-

tial values estimated by the algorithm. In this way, the joint angles change

according to the animator’s priority.

Keywords: animation, human motion, inverse kinematics, nonlinear program-

ming, optimization.

iii

ÖZET

DOĞRUSAL OLMAYAN PROGRAMLAMA
KULLANAN TERS KİNEMATİK YÖNTEMİYLE

İNSAN MODELLERİNİN ANİMASYONU

A. Sezgin Abalı

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Uğur Güdükbay

Eylül, 2001

Askeri uygulamalar, ergonomik tasarım gibi geniş uygulama alanları olan in-

san modellerinin animasyonu bilgisayar grafiğinin en önemli konularından biri

olmuştur. Bir eklemli vücut genellikle eklemlerle bağlanmış segmanlar seti

olarak modellenir. Eklem açılarındaki değişim, vücuda yeni bir duruş verir.

Bir animatör, yeni bir duruş için eklem açılarını belirleyebilir (ileri kinematik).

Fakat, vücudu bir pozisyona yerleştirmek için gerekli kesin eklem açılarını tah-

min etmek zordur. Bunun yerine bir animatör vücuttaki uç bir nokta için is-

tenen bir pozisyonu tanımlayabilir ve sonra ters kinematik algoritması vücudu

yerleştirmek için gerekli eklem açılarını hesaplar. Bu tezde, insan modellerinin

animasyonu için doğrusal olmayan optimizasyon ile ters kinematik yönteminin

gerçekleştirilmesi anlatılmaktadır. Bu yöntem, son-etkileyici ve hedef olarak

adlandırılan son etkileyicinin istenen pozisyonu için bir potansiyel fonksiyon

tanımlar. Doğrusal olmayan optimizasyon algoritması bu fonksiyonun değerini

küçültmeye çalışır. Eklem açılarının üst ve alt limitleri olduğundan dolayı

fonksiyon değeri sıfırlanamayabilir. Bu durumda algoritma en iyi çözümde

durur (lokal optimum). Kullanıcı, eklem açılarına, algoritma tarafından tah-

min edilmiş ilk değerlerinin ağırlıklarını değiştirerek öncelik verebilir. Böylece,

eklem açılarının animatörün önceliğine göre değişmesi sağlanmaktadır.

Anahtar sözcükler: animasyon, insan hareketi, ters kinematik, doğrusal ol-

mayan programlama, optimizasyon.

iv

Türk Silahlı Kuvvetleri’ne

ve

Aileme.

v

ACKNOWLEDGEMENTS

I am very grateful to my supervisor, Assist. Prof. Dr. Uğur Güdükbay, for

his invaluable support, guidance and motivation.

I also would like to thank my thesis committee members Prof. Dr. Bülent

Özgüç and Assoc. Prof. Dr. Özgür Ulusoy for their valuable comments to

improve this thesis.

I would like to mention some people who helped me during this study

in different ways. I would like to thank Captain Gültekin Arabacı for his

invaluable support who shares some parts of this research with me. I would

also like to thank Captain Türker Yılmaz for his invaluable help on OpenGL

libraries.

Finally, I cannot forget my love and my wife, Berrin Abalı. I would like to

thank her for invaluable moral support and love.

Contents

1 Introduction 1

1.1 Organization of The Thesis . 2

2 Modelling of Articulated Bodies 3

2.1 Representing Articulated Figures 3

2.1.1 Mathematical Notation 3

2.1.2 Representation of Articulated Figures in Our Implemen-

tation . 4

2.2 Data Structures . 6

2.3 Geometric Body Modelling . 10

2.3.1 Geometric Body Modelling Techniques 10

2.3.2 Surface Scheme with Triangular Polygons 11

3 Human Animation Techniques 13

3.1 Kinematic Methods . 13

3.1.1 Forward Kinematics . 14

3.1.2 Inverse Kinematics . 15

vii

3.2 Dynamic Methods . 16

3.2.1 Forward Dynamics . 16

3.2.2 Inverse Dynamics . 17

3.3 Motion Capture . 18

4 Inverse Kinematics 20

4.1 Numerical Methods . 20

4.1.1 Linearized solutions . 20

4.1.2 Nonlinear Optimization 22

4.2 A Combination of Analytic and Numerical Methods 23

5 Implementation Details 25

5.1 Function Generator Module . 25

5.1.1 Potential Function Calculation 29

5.1.2 Jacobian Generation . 31

5.1.3 Gradient Function Calculation 32

5.1.4 Constraint Matrix Construction 33

5.2 Nonlinear Programming Module 34

6 The Nonlinear Optimization Algorithm 35

6.1 Determining an Initial Feasible Point 35

6.2 Active Constraints . 36

6.3 Linearly Constrained Nonlinear Optimization Algorithm 37

viii

6.4 Discussion . 39

7 Results 41

7.1 Performance Experiments . 43

8 Conclusion and Future Work 46

Bibliography 48

Appendix 52

A The User Interface 52

A.1 Overview . 52

A.2 Viewing Area . 52

A.3 Menu Area . 54

A.3.1 Navigation Block . 54

A.3.2 Selecting Goal Type . 55

A.3.3 Assigning Scalar Multiplier to the Joint Angles 55

A.3.4 Visual Properties Block 56

A.4 Keyboard and Mouse Usage for GUI 56

ix

List of Figures

2.1 Articulated figure representation. 5

2.2 Placement of joints on the articulated figure. 6

2.3 Tree-structured hierarchy of human figure. 7

2.4 Segment data structure . 7

2.5 Site data structure . 8

2.6 Joint data structure . 9

2.7 DOF data structure . 9

2.8 Joint group data structure . 10

2.9 An example file showing the 3D coordinates of points. 12

2.10 An example file that stores the polygon (face) information. . . . 12

2.11 An example shape read from files. 12

3.1 Given goal, more than one solution. 15

4.1 Iteration steps towards the desired goal. 21

5.1 The overall structure of the animation system. 26

x

5.2 Joint parameter values for the initial configuration of a three-

joint articulated structure. 28

7.1 Examples of unrealistic and realistic postures. 42

7.2 Examples of reachable and unreachable goals. 43

7.3 Example figures with and without scaling factors. 44

7.4 Example postures. 45

A.1 Graphical user interface of the system. 53

xi

List of Tables

7.1 Average frame rates for animations 43

xii

List of Symbols and Abbreviations

DOF : Degrees of Freedom

fps : Frames per Second

CSG : Constructive Solid Geometry

SVD : Singular Value Decomposition

DFP : Davidon-Fletcher-Powell algorithm

BFGS : Broyden-Fletcher-Goldfarb-Shanno algorithm

θi : ith joint angle

H : Hessian matrix

A : n-by-m constraint matrix where n denotes the

number of joint angles in joint group and m

denotes the sum of all active and inactive constraints

q : The number of active constraints

aj : jth column vector of the constraint matrix

g : Gradient of the objective function as a vector

d : Search direction

G(θ) : Objective function

GUI : Graphical User Interface

xiii

Chapter 1

Introduction

Animation of articulated figures has always been an interesting subject of com-

puter graphics due to a wide range of applications. In film industry, animators

spend much time in order to fill the key-frames between two adjacent different

positions of a figure. The usage of articulated figures in simulated environments

helps the accomplishment of educational purposes and ergonomic designs. Dur-

ing a presentation, an animated figure increases the understandability and the

imagination of the audiences. One of the goals of computer graphics commu-

nity is to model articulated figures, and to animate their actions realistically.

The level of automation in motion control of a human figure has a tradeoff

between the user and the computer. On one side, the user is supposed to

define all control factors for the movements of individual body parts during

each time instance. In order to achieve realistic motions, the user must be

highly experienced. On the other side, the user only gives a goal or a list of

goals for the motion of the figure and the computer computes the parameters

needed to reach the goals defined. However, the result may not be the same as

what the user expects precisely.

Two basic approaches to motion control were developed. In one approach,

the geometric properties of the articulated bodies are used for motion control.

Positions and orientation of body segments, rotations and translations around

1

CHAPTER 1. INTRODUCTION 2

local and global coordinate frames are basic parameters of the approach. In-

terpolations, computing the Jacobian and the gradients, optimization, etc. are

helpful mathematical tools for the methods of the approach. Neglecting the

physical behaviors of the objects in motion is the basic weakness of the ap-

proach causing a serious loss of realism. The other approach simulates the

physical behavior of the objects. Newton’s laws are the fundamental princi-

ple of the approach. The forces and torques for rotations are linked to the

resulting motion with Newton’s equations. The approach generates realistic

motions. However, the added complexity makes real time animation difficult.

One of the important issues in motion control of articulated figures is to

handle the constraints. Constraints are the result of body segment limits.

For example, head cannot turn back with an angle of 180-degree. While the

animator gives a motion to a figure, constraints cannot be violated. Different

methods have been used to handle the constraints. None of these methods is

trivial.

The motivation behind this thesis is to implement an algorithm that reduces

user’s job during an animation. In order to prevent undesired motions, user

can also interfere with some control factors. The user will not need to take

care of constraints of body parts while moving the figure reach a goal. In order

to handle constraints, a constraint-based nonlinear optimization algorithm is

implemented.

1.1 Organization of The Thesis

Chapter 2 explains how human figure is modelled and is represented. Chap-

ter 3 reviews computer animation techniques in general, and discusses their

applicability to the concept of articulated figure animation. In Chapter 4, the

inverse kinematics problem is discussed and common approaches to solving

the problem are reviewed. In Chapters 5 and 6, an implementation of inverse

kinematics using constraint-based nonlinear optimization is presented. Results

of the implementation are presented in Chapter 7. Chapter 8 gives conclusion

and future work. In Appendix A, the user interface of the system is described.

Chapter 2

Modelling of Articulated Bodies

In this chapter, some common mathematical notations on articulated body

modelling and geometric body modelling techniques are introduced. Further-

more, articulated figure representation and data structures of our implementa-

tion are discussed.

2.1 Representing Articulated Figures

2.1.1 Mathematical Notation

In order to represent an articulated figure, a mathematical notation is neces-

sary. Two common notations are Denavit-Hartenberg (DH) notation [10] and

axis-position (AP) joint representation [29].

The most common kinematic representation in robotics is the notation of

Denevit and Hartenberg [10]. The notation defines four parameters that con-

struct the transformation matrix between two consecutive links:

• the angle of rotation for a rotational joint or distance of translation for

a prismatic joint,

• the length of the link, or the distance between the axes at each end of a

3

CHAPTER 2. MODELLING OF ARTICULATED BODIES 4

link along the common normal,

• the lateral offset of the link, or the distance along the length of the axis

between subsequent common normals, and

• the twist of the link, or the angle between neighboring axes.

First problem with this notation is that it only allows one DOF per joint.

Joints with more than one DOF are represented with more than one joint at

the same position, each of which has one DOF. The other problem is that it

is suitable for chain type of links, however, it cannot incorporate branching

joints.

Sims and Zeltzer [29] introduce axis-position (AP) joint representation

which stores:

• the position of the joint,

• the orientation of the axis of the joint, and

• pointers to the link(s) that each joint is attached to.

AP joint representation uses more parameters (three for position, three for

axis orientation and one for joint angle) than those of DH notation and is more

convenient for articulated figures.

In our implementation, AP joint representation is adopted with some mod-

ifications. Transformation matrix of a joint with respect to the root joint is

stored for the sake of easy implementation. The details of this representation

are explained in Subsection 2.1.2.

2.1.2 Representation of Articulated Figures in Our Im-

plementation

Some common terms are helpful to represent an articulated figure. An articu-

lated figure is constructed by segments that might be thought as body parts.

CHAPTER 2. MODELLING OF ARTICULATED BODIES 5

Each segment has at least two sites and one of them is rootsite of the seg-

ment (see Figure 2.1.a). A site is an attachment point on a segment. A joint

connects the site of a segment to the site of another segment (see Figure 2.1.b).

The location of the axes of the joints defines the placement of the segments.

This provides flexibility on the length and the shape of the segments. All

transformations are provided by the joints.

siterootsite

y

x

z Segment A

(a)

y

x

z Segment A

Segment B

z

y
x

(b)

Figure 2.1: (a) segment representation; (b) two segments connected with a joint.

Each joint can have six DOFs (three for rotational and three for trans-

lational). The number of DOFs of an articulated structure is the number of

independent position variables necessary to specify the state of a structure [33].

Articulated figures have only rotational DOFs. A rotation with a correspond-

ing angle around the axis of the DOF forms a transformation and the product

of transformation matrices of the DOFs belonging to the same joint defines the

location of the site and the segment. A DOF includes the rotation axis, current

joint angle and the upper and lower limits of the joint angle (see Figure 2.7).

In order to use this segment and joint representation in the construction

of an articulated figure, it is convenient to use a tree-structured hierarchy. A

site is selected as root site of this hierarchical structure. Normally, the joints

represent the edges and the segments represent the nodes in the tree struc-

ture (see Figure 2.3). Each joint has a local coordinate frame that describes

the transformation of the segment with respect to its parent segment and has

a global coordinate frame that describes the transformation of the segment

with respect to the root segment. This hierarchical structure provides that

the transformation at the parent node affects the displacements of child nodes.

CHAPTER 2. MODELLING OF ARTICULATED BODIES 6

Figure 2.2: Placement of joints on the articulated figure.

In Figure 2.2, joints are represented with circles. Circles at the end of the limbs

are end-effectors.

Each branch of the tree is defined as a joint group. Joint group provides

a way to handle relevant joints as a whole. A joint group consists of not only

joints but also a linear constraint matrix (see Figure 2.8). Linear constraint

matrix is constructed by the upper and lower limits of the joint angles. Its use

will be explained in detail in Chapter 5.

2.2 Data Structures

Each segment has an unique name (see Figure 2.4). The rootsite field is

helpful to determine the displacement of segment. All sites belonging to a

segment are stored in a linked list. The color of the segment is defined in

color field. Since the other fields are related with the geometric model of a

body (figure), they will be explained in Section 2.3.

The site is defined with name. The segment field indicates the segment to

which the site belongs. The rootjoint field gives the joint that connects the

site to the site of neighbor segment. If this site is the root site of the segment

CHAPTER 2. MODELLING OF ARTICULATED BODIES 7

right
pelvis

left
clavicle

left

left

left

right
clavicle

right

right

right

right

right

right

left

left

left

rootsite

left
pelvis

l_pelvis r_pelvis

l_hip

l_knee r_knee

l_ankle

l_clavicle r_clavicle

r_shoulder

r_elbow

r_wrist

l_shoulder

l_elbow

l_wrist

r_hip

neck

sacrum

waist

neck

skullbase

thigh

calf

foot

low torso

up torso

skullupperarm

forearm

hand

upperarm

forearm

hand

thigh

calf

foot

r_ankle

Figure 2.3: Tree-structured hierarchy of human figure.

struct segment {

char *name;

Figure *figure;

Site *rootsite;

List sites;

char *filenamev;

char *filenamef;

float vertices[1000][3];

int faces[2000][3];

float normal[1000][3];

float color[3];

int nedges;

int nnodes;

}

Figure 2.4: Segment data structure

CHAPTER 2. MODELLING OF ARTICULATED BODIES 8

struct site {

char *name;

Segment *segment;

Joint *rootjoint;

List joints;

Matrix *global;

}

Figure 2.5: Site data structure

then the neighbor segment is the parent segment of the segment to which the

site belongs. The site can be connected to more than one joint. These joints

are stored in a linked list. global field stores the transformation of the site

with respect to the root segment (see Figure 2.5).

Since all computations are done using the fields of the joints, the joint has

a key role in the data structure. The site1 and site2 fields indicate the sites

which are connected by the joint. The rootjoint field indicates the parent

of the joint in tree-structured hierarchy. Joint’s DOFs are stored as a linked

list in the dofs field and the ndofs field stores the number of the DOFs of

the joint. The displacement field is a vector that gives the translation of the

joint with respect to the parent joint. global is a transformation matrix that

gives the position and orientation of the joint with respect to the root segment.

The joint group it belongs field defines the joint group of the joint. Index

of the joint in the joint group is stored in the index of joint in JointGroup

field (see Figure 2.6).

The type field in dof structure defines that it is either rotational (‘r’) or

translational (‘t’). Since the joints in articulated figures have no translational

DOF, this field currently has no usage. The axis of the DOF is set once and it

never changes. The angle changes if a motion occurs on DOF. The llimit and

ulimit fields give the lower and upper limits of DOF respectively. The pointer

to the next DOF of the same joint is stored in next field (see Figure 2.7).

The Joint groups are numbered. Number of DOFs, linear constraints and

CHAPTER 2. MODELLING OF ARTICULATED BODIES 9

struct joint

{

char *name;

Site *site1, *site2;

Joint *rootjoint;

DOF *dofs;

int ndofs;

Vector displacement;

Matrix global;

JointGroup *joint_group_it_belongs;

int index_of_joint_in_JointGroup;

}

Figure 2.6: Joint data structure

struct dof {

char type;

float axis[3];

float angle;

float llimit, ulimit;

dof *next;

}

Figure 2.7: DOF data structure

CHAPTER 2. MODELLING OF ARTICULATED BODIES 10

struct group_member {

Joint *joint;

}

struct joint_group {

int group_number;

int number_of_dofs;

float group_angles[20];

int number_of_linear_constraints;

float linear_constraints_matrix[25][25];

int number_of_members;

GroupMember member[20];

}

Figure 2.8: Joint group data structure

members in the group are stored. Group angles are obtained from DOF angles

of the joints in the group (see Figure 2.8).

2.3 Geometric Body Modelling

In order to animate a human figure, the geometry of the body must be mod-

elled. This encapsulates constructing a surface or a volume geometry for the

human body shape.

2.3.1 Geometric Body Modelling Techniques

In this subsection, current geometric modelling schemes are briefly reviewed.

Geometric models can be classified into three categories:

Stick models: Segments are defined as lines. Joints link these segments. Figure

looks like a skeleton. Since it is not realistic, usage of it is not common.

CHAPTER 2. MODELLING OF ARTICULATED BODIES 11

Surface models: Surface models can be grouped as polygons and curved sur-

faces.

The polygonal models are defined as networks of polygons forming 3D

polyhedra. Each polygon consists of some connected vertex, edge, and

face structure [2].

Mathematical formulations are used for constructing true curved sur-

faces called patches. There are many formulations of curved surfaces,

including: Bezier, Hermite, bi-cubic, B-spline, Beta-spline, and rational

polynomial [5, 11].

Volume models: Volume models can be grouped as Voxel models and CSG.

In Voxel models, space is completely filled by a tessellation of cubes

called voxels (volume elements). In CSG, there is no requirement to

tessellate the entire space. Also, the primitive objects are not limited to

cubes. There are many number of simple primitives such as cube, sphere,

cylinder, cone, half-space, etc. Each primitive is transformed or deformed

and positioned in space.

2.3.2 Surface Scheme with Triangular Polygons

In our application, a polygonal representation is used to model the geometry.

Each segment has a physical shape constructed by triangular polygons.

Two files are read for each segment (see Figure 2.4). One of the files consists of

point coordinates with respect to the rootsite local coordinate frame (see Fig-

ure 2.9). These coordinates are written to a 2D array, vertices (see Fig-

ure 2.4). The other file stores the polygon (face) information where triangles

are used as polygons (see Figure 2.10). These connections are written to an-

other 2D array, faces (see Figure 2.4). The normals of the faces are stored in

normal field of the segment structure.

The resulting shape for the vertex and face lists presented in Figures 2.9

and 2.10 can be seen in Figure 2.11.

CHAPTER 2. MODELLING OF ARTICULATED BODIES 12

v 0.0 0.0 0.0

v 1.0 0.0 0.0

v 0.0 1.0 0.0

v 0.0 0.0 1.0

Figure 2.9: An example file showing the 3D coordinates of points.

f 0 1 2

f 1 2 3

f 0 1 3

f 0 2 3

Figure 2.10: An example file that stores the polygon (face) information.

x

z

y

(0,0,0) (1,0,0)

(0,1,0)

(0,0,1)

point 0
point 1

point 2

point 3

Figure 2.11: An example shape read from files.

Chapter 3

Human Animation Techniques

In this chapter, we give an overview of the previous work that has been pro-

duced in this area.

In computer graphics, a variety of human animation techniques have been

produced. These techniques can be classified into three main categories:

• kinematics,

• dynamics, and

• motion capture.

3.1 Kinematic Methods

Kinematics studies the geometric properties of the motion of the objects inde-

pendent from the underlying forces that cause the motion.

13

CHAPTER 3. HUMAN ANIMATION TECHNIQUES 14

3.1.1 Forward Kinematics

Forward kinematics explicitly defines the state vector of an articulated figure

at a specific time. The state vector is

Θ = (θ1, ..., θn), (3.1)

where Θ is the set of joint angles including independent parameters defining

the positions and orientations of all joints belonging to the figure.

A set of joints linked to each other hierarchically, forms a chain (i.e. a

branch of tree at Figure 2.3). The most distal end of this chain is called the

end-effector. With a given Θ, the cascaded transformations of joints in the

chain affect the displacement of end-effector (Equation 3.2).

X = f(Θ). (3.2)

This specification is done with the manual input of a small set of poses (key-

framing) by animator explicitly. In order to generate intermediate poses (in-

betweens), interpolation techniques are used.

The choice of an adequate interpolation technique is a problem. The in-

terpolated values for a single DOF between two key-frames form a trajectory

curve. Most of the studies are concentrated on to form a proper shape for this

trajectory and to control the variations of the speed along the trajectory in or-

der to obtain a realistic motion [4, 20, 22, 30]. Linear interpolation technique,

piecewise splines and double-interpolant methods with some modifications have

been used to generate the intermediate poses.

Forcing the user to specify values for parameters is often inconvenient, es-

pecially for tasks with too many DOFs. Too many parameters to control, drive

the animator to make errors. In addition to this, combined effects of trans-

formations from root to end-effector make it difficult to control the positional

constraints while creating a key-frame. During interpolation, obtaining the

true trajectory for realistic motion is also hard job to achieve.

Forward kinematics is successful for animating simple objects, but it is not

really a good choice for animating highly articulated figures.

CHAPTER 3. HUMAN ANIMATION TECHNIQUES 15

3.1.2 Inverse Kinematics

In inverse kinematics, the desired position and orientation of the end-effector

are given by the user. Inverse kinematics computes all joint angles in the chain

that orient the end-effector to the desired posture. In order to derive Θ with a

given X, the inverse of Equation 3.2 is required (Equation 3.3).

Θ = f−1(X) (3.3)

Solving the Equation 3.3 is quite difficult. Since the function in Equation 3.3

is nonlinear, there may be more than one solution set of Θ for a given X

(Figure 3.1). In one approach, as the nonlinear property of function makes

goal(x,y)

endeffector(x,y)

solution 1

solutio
n 2

solution 3

Figure 3.1: Given goal, more than one solution.

the solution difficult, the problem can be made linear by localizing around

the current operating position [34]. Girard’s PODA animation system is an

example using this approach [15].

Another numeric approach is nonlinear optimization technique. This ap-

proach tries to minimize a function of relation between the end-effector’s po-

sition and the user defined goal. It applies iterative non-linear optimization

techniques to obtain the minimum. Jack1 animation system developed at the

University of Pennsylvania uses this approach [1, 38].

Tolani et al. [32] also offer a combination of analytic and numerical methods

1Jack is a registered trademark of Transom Inc.

CHAPTER 3. HUMAN ANIMATION TECHNIQUES 16

to solve inverse kinematics problems. These approaches will be discussed at

Chapter 4 in detail.

3.2 Dynamic Methods

In kinematic approaches, articulated figures are animated with geometric com-

putations. However, laws of physics have an important effect on the motion

of articulated figure in reality. In computer animation, simulating the physical

behavior of objects can produce more realistic motions.

The fundamental principle of dynamics is Newton’s law which can be for-

mulated as;

F = ma, (3.4)

where F represents the force applied to an object, m represents mass of the

object and a represents its acceleration, which is the second derivative with

respect to time of the position vector. The force is linked to the resulting

motion (Equation 3.4). The same equation can also be formulated as follows:

T = iθ̈, (3.5)

where T represents the torque, i represents the inertia matrix, and θ̈ represents

the angular acceleration. Torque is linked to rotation (Equation 3.5).

3.2.1 Forward Dynamics

Forward dynamics applies Equations 3.4 and 3.5 in order to calculate the mo-

tion with a given force. Equations 3.4 and 3.5 are only for a rigid body. A

hierarchy of rigid parts linked by joints is constructed in order to apply them

to an articulated figure.

Animator applies external forces to rigid bodies. The motion is calculated

step by step in time. At each step, acceleration is computed with respect to

the applied forces. Computed acceleration is twice integrated to the position

of the rigid body. The fundamentals of forward dynamics can be found in [35].

CHAPTER 3. HUMAN ANIMATION TECHNIQUES 17

It is harder to solve the equation for an articulated structure than for a

single rigid body. There is one equation for each DOF and the obtained accel-

eration from the equation affects the forces applied to adjacent segments. High

computation cost of forward dynamic approaches prevents them to be used in

real time applications.

3.2.2 Inverse Dynamics

Inverse dynamics applies Equations 3.4 and 3.5 in order to calculate the forces

with a given motion. Some of the notable research using inverse dynamics can

be found in [3, 6, 18, 36].

Witkin, Fleischer, and Barr [36] uses “energy” constraints to assemble 3D

models, for changing the shape of parametrically-defined primitive objects.

Constraints are expressed as energy functions, and the energy gradient followed

through the model’s parameter space. The constraints are satisfied if and only

if the energy function is zero.

Isaacs and Cohen [18] does physical simulation of rigid bodies, for the spe-

cial case of linked systems without closed kinematic loops. They embedded the

key-frame animation system within a dynamic analysis by the help of kinematic

constraints. Joint limit constraints are also handled through kinematic con-

straints. This provides to escape to define additional forces. Instead, kinematic

constraints remove constrained DOFs of joints, and inverse dynamic handles

unconstrained DOFs.

Barzel and Barr [6] build objects by specifying geometric constraints. They

classified these constraints as point-to-nail that fixes a point on a body to a

user-specified location in space, point-to-point that forms a joint between two

bodies, etc. Each rigid body is independently simulated at each time step. A

rigid body is subjected to external forces and constraint forces. These forces

act until all the constraints are satisfied. Constraint forces are solved from a

set of dynamic differential equations.

In addition to these, Witkin and Kass [37] propose a new formulation called

CHAPTER 3. HUMAN ANIMATION TECHNIQUES 18

spacetime constraints. The main idea is to compute the figure motion and the

time varying muscular forces on the whole animation sequence instead of doing

it sequentially in time. The discrete values of forces, velocities and position

over time are put in a large vector of unknowns. A set of constraints between

these unknowns is specified. The vector of unknowns is computed with a

constrained optimization. A cost function is specified for minimization. This

function consists of the sum of squared muscular forces over time.

As it has been emphasized in forward dynamics, approaches based on dy-

namic simulation suffer from high computational cost compared with the kine-

matic approaches. However, the motion of the figure in dynamic approaches is

more realistic than that in kinematic approaches.

3.3 Motion Capture

Since each individual has his own motion style, kinematics and dynamics stay

insufficient to detect this competence. Moreover, for many different motions,

it cannot be possible to obtain them realistically. In recent years, progress in

motion capture techniques make it possible to use human motion data directly.

Magnetic and optical technologies make it possible to obtain and to store

positions and orientations of points on the human body. However, the stored

data are raw and need to be processed. Mostly, the synthetic skeleton does

not match with the real one. In [7, 24], the synthetic skeleton is adapted to

another one by recovering angular trajectories. They used an inverse kinematic

optimization algorithm to obtain the correct angular trajectories. It is also

possible to have some errors during capturing because of calibration error,

electronic noise etc. These techniques also take care of this problem.

In recent years, two new techniques have been introduced in order to arrange

interaction between synthetic actors: motion blending and motion warping.

Motion blending technique constructs a database of characteristic motions and

produces new motions by interpolating between parameters of this defined

motions. Motion warping obtains well-known trajectories and changes the

CHAPTER 3. HUMAN ANIMATION TECHNIQUES 19

motion by modifying these trajectories.

Animation techniques based on motion data produce realistic motions.

However, this realism depends on the modifications done by the animator and

capturing the correct motion data.

Chapter 4

Inverse Kinematics

This chapter discusses the solution methods for the inverse kinematics ap-

proach. These methods are classified into three categories:

• analytical methods,

• numerical methods, and

• a combination of analytic and numerical methods.

Analytical methods can only be used for very simple articulations, like a two-

link arm. For more complex articulations, no analytical solutions exist.

4.1 Numerical Methods

4.1.1 Linearized solutions

Inverse kinematics problem is nonlinear since the joint transformations involve

rotations. This method tries to solve the nonlinear inverse kinematics problem

with linear solution. As a first step, Equation 3.2 is differentiated with respect

to Θ,

dX = J(Θ)dΘ, (4.1)

20

CHAPTER 4. INVERSE KINEMATICS 21

f(θ)

f(θ)+d

f(θ

θ

goal)

X

dX

X+dX

Xgoal

Figure 4.1: Iteration steps towards the desired goal.

where X is the end-effector position and orientation and Θ is the vector of joint

angles from the root of the hierarchy to the end-effector and Jacobian J is a

matrix of partial derivatives relating differential changes of Θ to differential

changes in X

J =
∂f

∂θ
. (4.2)

If we invert Equation 4.1 and iterate towards a final goal position with incre-

mental steps, inverse kinematics problem can be solved linearly (Figure 4.1).

dΘ = J−1(dX). (4.3)

Usually, it is not possible to take the inverse of Jacobian matrix. Because in

order to invert Jacobian matrix, it is supposed to be square and nonsingular.

However, it is commonly rectangular, because the dimension of Θ is usually

larger than that of X. In this situation, pseudoinversion techniques are brought

into play [15, 19]. Instead of J−1, pseudoinverse of Jacobian written as J+, is

used and it is defined as follows:

J+ = JT (JJT)−1. (4.4)

Then, Equation 4.3 becomes,

dΘ = J+(dX). (4.5)

Pseudoinverse solutions have the following problem. The rectangular structure

of the Jacobian causes redundancy. A manipulator is considered kinematically

CHAPTER 4. INVERSE KINEMATICS 22

redundant when it possesses more DOFs than needed to specify a goal (Fig-

ure 3.1). It is often useful to consider exploiting the redundancy in an attempt

to satisfy some secondary condition. This can be accomplished by adding a

new term to Equation 4.5,

dΘ = J+(dX) + (I − J+J)dZ, (4.6)

where I is the identity matrix, (I − J+J) is a projection operator on the null

space of the linear transformation J , and is called the homogeneous part of the

solution. dZ describes a secondary task in the joint variation space. Whatever

the secondary task is, the second term does not affect the achievement of the

main task. In addition to prevent the redundancy, the secondary task is used

to account for joint angular limits [15] and to avoid kinematic singularities [27].

Another problem is the singularity of the Jacobian. Even though the pseu-

doinverse can be used when the Jacobian is singular, as the articulation moves,

there may be sudden discontinuities in the elements of the computed pseu-

doinverse due to the changes in the rank of the Jacobian. Physically, the

singularities usually occur when the articulation is fully extended or when the

axes of separate links align themselves [33].

With singular value decomposition (SVD), it is possible to analyze whether

Jacobian matrix is singular. The details of SVD approach can be found in [25].

Generally, the approaches to prevent the singularity track this situation and

when it occurs, they try to avoid from singularity. However, the analysis of

the Jacobian for singularity condition brings extra processing cost.

4.1.2 Nonlinear Optimization

Optimization based methods approach the problem as a minimization problem.

Let e(θ) be the positional and orientational definition of end-effector depending

on joint angles and g be the positional and orientational definition of desired

goal,

P (e(θ)) = (g − e(θ))2, (4.7)

where P (e(θ)) is a potential function that gives the distance (positional and

orientational) between the end-effector and the goal. If the value of potential

CHAPTER 4. INVERSE KINEMATICS 23

function is zero, then the goal is reached. If the goal is not reachable because of

the joint limits, the potential function value is tried to be minimized sufficiently.

The optimization problem can be formulated as follows [14]:

Minimize P (e(θ)),

subject to li ≤ θ ≤ ui for i = 1, . . . , n. (4.8)

Here, li and ui are the lower and upper limits of the joint angles, respectively.

There are solvers, for example in MATLAB package [31], in order to handle

constraint-based nonlinear optimization problems. They can be used as a black

box and be integrated to an animation package. However, it is obvious that

this integration would increase the computation cost drastically. Therefore,

we choose to embed an optimization algorithm into our implementation. The

details of the nonlinear optimization method will be explained in the next

chapters.

4.2 A Combination of Analytic and Numerical

Methods

Tolani et al. [32] offer a combination of analytic and numerical methods to

solve generalized inverse kinematics problems including position, orientation

and aiming constraints. They develop a set of algorithms for arm or leg.

They approach the problem with transformation and rotation matrices. A

seven DOF limb is defined that has 3 joints. Each of first and last joints has

three DOF and joint at the middle has one DOF rotating around y axis. Let

us call the joints as J1, J2 and J3, respectively. The equation that has to be

solved in order to reach the defined goal for the limb is

T1ATyBT2 = G, (4.9)

where T1 and T2 denote the rotation matrices of J1 and J3 as functions of three

DOFs belonging to the related joint. Ty is the rotation matrix of J2 defined as

a function of one revolutionary DOF. A and B are the constant transformation

CHAPTER 4. INVERSE KINEMATICS 24

matrices from J1 to J2 and J2 to J3, respectively. Finally, G is the matrix of

the desired goal.

In order to solve Equation 4.9 analytically, trigonometric equations are gen-

erated from it. These analytic equations are enough for positional goals, and

positional and orientational goals. However, for aiming goals, and positional

and partial orientational goals, a combination of analytic and numeric meth-

ods is used. Seven variables are reduced to two variables with trigonometric

equations, The details of this method can be found in [21]. An unconstrained

optimization algorithm is applied to solve for these two variables.

Analytical methods offer high performance for arm or leg limb in computer

animation but may require special kinematic structure for the entire body be-

cause of the huge trigonometric computations needed. Tolani et al. [32] offers

an approach in which an inverse kinematics problem is broken into subprob-

lems [39] that can be solved with the analytical method.

Chapter 5

Implementation Details

The animation system consists of two main parts:

• the Function Generator Module, and

• the Nonlinear Programming Module.

Figure 5.1 gives an overall structure of the animation sytem.

5.1 Function Generator Module

First of all, the human figure is placed to an initial configuration according

to the joint parameters entered by the user. The following parameters are

entered by the user for each joint to specify the initial configuration of the

human figure:

• the angle θ that rotates around an arbitrary vector (x, y, z),

• displacement vector with respect to the parent joint, and

• the parent joint of the joint.

25

CHAPTER 5. IMPLEMENTATION DETAILS 26

type,
Chain, goal

Θ

Jacobian
Matrix

Chain,

initial
Θ

Chain,

Potential
function
calculator

Jacobian
generator

Gradient
function
calculator

value of
function

Scalar

Jacobian
Matrix

Gradient

an array
function as

Matrix
Constraint

Gradient,

etc.
Θ, λ,

Line
search
algorithm

Gradient,
potential,
γ

input

input

input

input

output

output

output

output

input

output

Function Generator Module Nonlinear Programming Module

Constraint
matrix
constructor

Chain

Figure 5.1: The overall structure of the animation system.

A transformation matrix M is constructed for each joint,

MJi = TJi(tx, ty, tz)RJi(θ, rotation axis), (5.1)

where TJi(tx, ty, tz) is four by four translation matrix with respect to the parent

joint, RJi(θ, rotation axis) is four by four rotational matrix that gives the

rotation around the axis of the DOF. If we concatenate the individual rotation

and translation matrices, then the matrix MJi will be a four by four matrix

that has the following form:

MJi =




0

RJi 0

0

tx ty tz 1




. (5.2)

If the joint has more than one DOF then the general transformation matrix

for the joint is obtained by cascaded multiplication of the rotation matrices for

each of the principal axes (Equation 5.3), and then by concatenation of the

translation and rotation matrices (Equation 5.4).

RJi = Rz
Ji(θz, z axis).Ry

Ji(θy, y axis).Rx
Ji(θx, x axis), (5.3)

CHAPTER 5. IMPLEMENTATION DETAILS 27

MJi = TJi(tx, ty, tz)RJi. (5.4)

The implementation of the system can be explained through a simple example.

Consider a three-joint articulated structure. Joint parameters of the initial

configuration is given in (Figure 5.2). If we write Equation 5.1 for joint J2 in

our example, then we obtain

TJ2 =




1 0 0 0

0 1 0 0

0 0 1 0

0 5 0 1




, and RJ2 =




0.707 0.707 0 0

−0.707 0.707 0 0

0 0 1 0

0 0 0 1




,

MJ2 = TJ2(0, 5, 0).Rz
J2(45, z axis),

MJ2 =




0.707 0.707 0 0

−0.707 0.707 0 0

0 0 1 0

0 5 0 1




.

MJi only gives the transformation of ith joint with respect to (i−1)th joint.

In order to calculate transformation of jth joint with respect to ith joint, we

should do cascaded multiplications:

MJij = MJi.MJi+1...MJj−1.MJj. (5.5)

If the ith joint is the root joint, then MJij gives the global position and orien-

tation of jth joint with respect to the root. If we apply Equation 5.5 to our

example then we obtain

MJ12 = MJ1.MJ2,

MJ13 = MJ1.MJ2.MJ3,

MJ1 =




0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1




, MJ2 =




0.707 0.707 0 0

−0.707 0.707 0 0

0 0 1 0

0 5 0 1




, and

CHAPTER 5. IMPLEMENTATION DETAILS 28

Joint 1(root)

{

name: J1

rootjoint: J1

displacement: {0,0,0}

number of dofs: 1

axis of dof: {0,0,1}

angle of dof: 90 degree

}

Joint 2

{

name: J2

rootjoint: J1

displacement: {0,5,0}

number of dofs: 1

axis of dof: {0,0,1}

angle of dof: 45 degree

}

Joint 3 (end-effector)

{

name: J3

rootjoint: J2

displacement: {-4,4,0}

number of dofs: 1

axis of dof: {0,0,1}

angle of dof: 0 degree

}

Figure 5.2: Joint parameter values for the initial configuration of a three-joint
articulated structure.

CHAPTER 5. IMPLEMENTATION DETAILS 29

MJ3 =




1 0 0 0

0 1 0 0

0 0 1 0

−4 4 0 1




.

MJ12 =




−0.707 0.707 0 0

−0.707 −0.707 0 0

0 0 1 0

0 5 0 1




, and MJ13 =




−0.707 0.707 0 0

−0.707 −0.707 0 0

0 0 1 0

−4 9 0 1




.

These cascaded matrix multiplications give the global position and orienta-

tion of related joint with respect to the root joint. After the initial configuration

of the figure, new DOF axes of each joint are determined and set from obtained

global matrix of the joint. These DOF axes are never changed again. When a

motion is detected, only angles are changed and new position and orientation of

each joint is constructed. In our example, if the joint J3 has one DOF around

x axis then, the axis of the DOF will be set to (−0.707, 0.707, 0). During a

motion, any angle set for the DOF will rotate around (−0.707, 0.707, 0).

5.1.1 Potential Function Calculation

Potential function P (e(θ)) is a function of the difference between the end-

effector and the goal positions and orientations. It should be a nonnegative

real number. The motivation behind the nonlinear optimization is to decrease

this difference by trying to obtain a value for the potential function as close

to zero as possible. In order to measure this difference, first of all we have

to define the end-effector. Defined as the most distal joint in the chain, the

end-effector can be thought as a 9D vector on the distal segment. First three

components define the position of it as a positional vector. Second and third

triples are the unit vectors specifying the orientation. The angle between these

two unit vectors should be 90 degrees so that they can specify the orientation.

It is obvious that the end-effector is a function (e(θ)) of the state vector

that is defined as in Equation 3.1. An instance of the joint angles θ of all the

CHAPTER 5. IMPLEMENTATION DETAILS 30

joints in the chain determines e(θ).

For each joint in the chain, we have a rotation matrix for rotation an-

gle θ around the joint axis, and cascaded multiplication of rotation matrices,

corresponding to as many as the number of DOFs of the joint, construct a

transformation matrix with respect to the parent joint. Cascaded multiplica-

tion of these transformation matrices from the root joint to the related joint

gives the transformation matrix of related joint with respect to the root joint.

Multiplication of the global matrix, which is constructed at initial position,

with the transformation matrix gives the new position and orientation of the

related joint. If this related joint is end-effector, we can obtain position vector

and the two unit vectors of the end-effector from all these matrix multipli-

cations. For example, the joint angles belonging to the chain of joints from

sacrum to the left wrist changes the position and orientation of joints in the

chain. Finally, the position and orientation of the left hand e(θ) are obtained.

Since the goal is definite constant and the end-effector position and orien-

tation change with the joint angles, we can write the potential function as a

function of the end-effector P (e(θ)). Usually, all components of the end-effector

are not used in order to compute the potential function because of different

types of goal.

In order to calculate the potential function P (e(θ)), we have to define the

goal types. Although more types of goal are defined in [38], we defined two

types of goal in our implementation because of time restrictions:

• positional goals, and

• positional and orientational goals.

A positional goal is defined as a 3D point vector in space. Therefore,

only the positional vector of end-effector is used in order to compute potential

function for a positional goal. If we define the positional goal as rg and the

position vector of end-effector as re then the potential function becomes,

P (re) = (rg − re)
2. (5.6)

CHAPTER 5. IMPLEMENTATION DETAILS 31

Since the value of potential function is supposed to be a nonnegative scalar

value, it is computed as the square of the difference.

Even though it is possible to define the orientational goal separately, we

implemented the combination of positional and orientational goals. In addition

to the coordinates of the goal rg in space, orientation of the goal is defined by

two orthonormal vectors xg and yg. Two orthonormal unit vectors of end-

effector xe and ye are used together with positional vector re. The potential

function becomes

P (re, xe, ye) = wp(rg − re)
2 + wo((xg − xe)

2 + (yg − ye)
2). (5.7)

where wp and wo are weights of position and orientation, respectively. The

priorities of position and orientation are adjusted by the weights and the sum

of wp and wo is equal to one.

The problem with equation 5.7 is that the values generated by the orienta-

tion part are too small according to the values generated by the position part.

In order to reach to one unit difference at position part, one radian difference

is needed at orientation part. To arrange this, the term corresponding to the

orientation part is multiplied with a scalar value k = 360/(2πd), compensates

one length unit to d degrees. Then, for positional and orientational goals,

potential function becomes

P (re, xe, ye) = wp(rg − re)
2 + wok

2
(
(xg − xe)

2 + (yg − ye)
2
)
. (5.8)

5.1.2 Jacobian Generation

Chosen constraint based nonlinear optimization algorithm needs the derivatives

of e(θ) with respect to the joint angles, Θ = (θ1, θ2, . . . , θn),

∂e

∂θ
=

(
∂e

∂θ1

∂e

∂θ2

. . .
∂e

∂θn

)
. (5.9)

∂e
∂θ

is called the Jacobian matrix. As we know from the Section 5.1.1, re is

the point vector of end-effector, xe and ye are the unit vectors of end-effector

e(θ). And they are computed with cascaded multiplications of four by four

homogeneous matrices. Let the rotation axis (axis of DOF) of ith joint angle

CHAPTER 5. IMPLEMENTATION DETAILS 32

θi in the chain be unit vector u. Then, the derivatives of e(θ) with respect to

θi become
∂re

∂θi

= u× (re − ri), (5.10)

∂xe

∂θi

= u× xe, (5.11)

∂ye

∂θi

= u× ye. (5.12)

Each of Equations 5.10, 5.11, and 5.12 is a vector equation. For a joint group

with n joint angles, the dimension of the Jacobian matrix is 9× n.

5.1.3 Gradient Function Calculation

The gradient of the potential function is necessary for the nonlinear optimiza-

tion algorithm implemented. Gradient of the potential function P (re, xe, ye) is

a 9 × 1 column vector formed by partial derivatives of the potential function

with respect to the re, xe and ye:

∇e(θ) =




∂P
∂re

∂P
∂xe

∂P
∂ye


 =




∇rP (re)

∇xP (xe)

∇yP (ye)


 . (5.13)

Each of partial derivatives ∂P/∂re, ∂P/∂xe, ∂P/∂ye is a 3× 1 column vector.

For positional goals, the values of ∂/∂xe and ∂/∂ye are set to zero.

For positional goals, gradient of Equation 5.6 is

∇rP (re) = 2(re − rg). (5.14)

For positional and orientational goals, gradient of Equation 5.6 is formed by

the following equations:

∇rP (re) = 2(re − rg), (5.15)

∇xP (xe) = 2k2(xe − xg), (5.16)

∇yP (ye) = 2k2(ye − yg). (5.17)

CHAPTER 5. IMPLEMENTATION DETAILS 33

5.1.4 Constraint Matrix Construction

Let us equalize P (e(θ)) to a function of joint angles

G(θ) = P (e(θ)). (5.18)

As it is explained before if we decrease the value of G(θ) to zero then we reach

the goal. However, it is not always possible because of the joint angle limits.

For this reason, G(θ) is minimized:

Minimize G(θ),

subject to li ≤ θi ≤ ui for i = 1, . . . , n. (5.19)

Here li and ui are lower and upper joint limits, respectively. In order to use the

joint limits in our nonlinear optimization algorithm, they have to be rearranged

as linear equality and inequality constraints:

aT
i θ = bi for i = 1, 2, . . . , l (5.20)

aT
i θ ≤ bi for i = l + 1, l + 2, . . . , k

where ais are n×1 column vectors and the total number of them is k. The total

number of θs is n. l of ais represent equality constraints. Inequality constraint

representation is in the form of −θi ≤ −li, and θi ≤ ui.

In order to clarify, let us support formation of constraints with an example:

θ1 = π,

π/4 ≤ θ2 ≤ π/2 ⇒ −θ2 ≤ −π/4, θ2 ≤ π/2,

−π/4 ≤ θ3 ≤ π/4 ⇒ −θ3 ≤ π/4, θ3 ≤ π/4,

Then AT Θ ≤ B,




1 0 0

0 −1 0

0 1 0

0 0 −1

0 0 1




×




θ1

θ2

θ3


 ≤




π

−π/4

π/2

π/4

π/4




.

CHAPTER 5. IMPLEMENTATION DETAILS 34

5.2 Nonlinear Programming Module

There are two major families of algorithms for multidimensional nonlinear mini-

mization with calculation of first derivatives. Both families require a line search

sub-algorithm. The first family goes under the name conjugate gradient meth-

ods. The second family goes under the names quasi-Newton or variable metric

methods. Since both of the methods are for unconstrained nonlinear equations

and there is no superiority to each other, we used to a modification of variable

metric method which is more common than conjugate gradient method.

Variable metric methods come in two main flavors. One is the Davidon-

Fletcher-Powell (DFP) algorithm. The other goes by the name Broyden-

Fletcher-Goldfarb-Shanno (BFGS). The BFGS and DFP are used together in

our implementation.

Algorithm can be briefly defined in five steps:

1. Guess an initial feasible Θ.

2. Form an approximation to Hessian matrix H updated with constraints.

3. Compute a search direction d = −Hg(θ).

4. Find θ = θold + λd using a line search to insure sufficient decrease.

5. Check the result whether the function is at the minimum (Kuhn-Tucker

point), then stop else go to step 2.

g(θ) at step 3 is the gradient of objective function G(θ),

g(θ) = ∇θG ⇒ g(θ) =

(
∂e

∂θ

)T

∇eP (e(θ)), (5.21)

where the Jacobian matrix ∂e/∂θ is computed by the Jacobian Generator Mod-

ule and ∇eP (e(θ)) is computed by the Gradient Function Calculator Module.

In fact, the computation of g(θ) belongs to the Gradient Function Calculator

Module. At each iteration, the Nonlinear Programming Module requests the

objective function and its gradient from the Function Generator Module.

At each iteration, the value of objective function G(θ) decreases monoton-

ically, and stops at a minimum value.

Chapter 6

The Nonlinear Optimization

Algorithm

6.1 Determining an Initial Feasible Point

In nonlinear optimization, the key to stability and rapid convergence is an ini-

tial guess of joint angle set not too far from the final result. Initially, we assign

zero to each joint angle and select the goal next to end-effector. However, the

important condition is that zero value will satisfy the equality and inequality

constraints, else the value near zero is selected. If the selected goal is too far

away from end-effector, we divide the goal into subgoals and run the algorithm

more than once for in-between goals until reaching the desired goal. The joint

angles found for an in-between goal become the initial feasible joint angle set

for the next in-between goal. If the motion is changed to another direction

by the user, the zero values are assigned to the joint angle set again and the

optimization process continues. An initially selected joint angle is feasible if it

satisfies equality and inequality constraints.

Another property of the algorithm is that the user interacts with initial joint

angles by assigning a scalar multiplier to them, meanwhile the implementation

takes care of joint limits. Nonlinear algorithm gives higher priority to the

variables that have greater partial derivatives. When the multiplier scales the

35

CHAPTER 6. THE NONLINEAR OPTIMIZATION ALGORITHM 36

joint angle, it also scales the derivative as well. The user can arrange the

priority of joint angles with this method. This provides the user to escape

creating unrealistic motions.

6.2 Active Constraints

If a constraint is an equality constraint or in an inequality constraint, given θi

satisfies the equality in border, then this constraint is active. For example, at an

inequality constraint θi ≤ ui, if with a given θi, θi = ui equality is satisfied then

constraint becomes active. Nonlinear optimization algorithm that we choose

handles the active constraint. This situation affects our constraint matrix and

needs a modification on constraint matrix. Let us examine the example given

in Subsection 5.1.4:

θ1 = π (constraint 1),

−θ2 ≤ −π/4 (constraint 2),

θ2 ≤ π/2 (constraint 3),

−θ3 ≤ π/4 (constraint 4), and

θ3 ≤ π/4 (constraint 5).

Let initial Θ vector be specified as θ1 = π, θ2 = π/3, and θ3 = −π/4. Then,




1 0 0

0 −1 0

0 1 0

0 0 −1

0 0 1




×




π

π/3

−π/4


 ≤




π

−π/4

π/2

π/4

π/4




.

Constraint 1 is an active constraint, because it is an equality constraint.

Constraint 4 is an active constraint because it is at the border. Then, we have

one active equality constraint, one active inequality constraint and three inac-

tive inequality constraints. In order to bring the constraint matrix convenient

CHAPTER 6. THE NONLINEAR OPTIMIZATION ALGORITHM 37

for operations in the algorithm, we have to swap and shift the rows of matrix in

a way that first q (i.e. 2) rows of k (i.e. 5) row matrix will be active constraints:




1 0 0

0 0 −1

0 −1 0

0 1 0

0 0 1




×




π

π/3

−π/4


 ≤




π

π/4

−π/4

π/2

π/4




.

6.3 Linearly Constrained Nonlinear Optimiza-

tion Algorithm

Variable Metric Method has been introduced by Davidon [9] for the uncon-

strained problem as described by Fletcher and Powell [13] (hereafter called

the DFP algorithm). The DFP algorithm has been improved and the BFGS

algorithm has been introduced [8, 12, 17, 28]. In his original paper, Davidon

envisaged the extension of his algorithm for unconstrained minimization to the

case of linear equality constraints. Goldfarb [16] extended the DFP algorithm

to the problem of linear inequality constraints by utilizing the techniques de-

scribed by Rosen [26] in association with his projected-gradient method by

which the search direction determined from the corresponding unconstrained

problem is orthogonally projected to the subspace defined by those constraints

on variables. At each iteration, a number of the constraints are regarded as

being active and on that set of constraints, an equality problem is solved. The

algorithm we presented here is taken from [38]. It is a combination of the

BFGS algorithm and Rosen’s projected-gradient method.

An iterative algorithm calculates the least value of objective function G(θ)

of n variables subject to equality and inequality constraints as in Equation 5.19.

Because the algorithm is iterative, it requires an initial estimate of the solution

θ0 and then for i = 0, 1, 2, . . . the ith iteration replaces θi by θi+1, which should

be a better estimate of the solution. All the calculated angles θi are forced

to satisfy the constraints. The termination condition of algorithm is Kuhn-

Tucker point. For detailed explanation about the Kuhn-Tucker point, readers

CHAPTER 6. THE NONLINEAR OPTIMIZATION ALGORITHM 38

are referred to [14]. The steps of algorithm are presented as follows [38]:

1. θ0 is an initial feasible n size joint angle set, and H0
0 is an initially chosen

n-by-n positive definite symmetric matrix which is identity matrix in our

application. A is n-by-m constraint matrix where m denotes the sum of

all active and inactive constraints and q of them are active at point θ0.

Aq is composed of q column vector ai of A, and the first l columns of Aq

are equality constraints ai : i = 1, 2, . . . , l. H0
q is computed by applying

Equation 6.3 q times; g0 = g(θ0).

2. Given θi, gi, and H i
q, compute H i

qg
i and

α = (AT
q Aq)

−1AT
q gi

If HT
q gi = 0 and αj ≤ 0, j = l + l, l + 2, . . . , q, then stop. θi is a Kuhn-

Tucker point.

3. If the algorithm did not terminate at Step 2, either

‖H i
qg

i‖ > max{0, 1/2αqa
−1/2
qq } or ‖H i

qg
i‖ ≤ 1/2αqa

−1/2
qq , where it is as-

sumed that αqa
1/2
qq ≥ αia

−1/2
ii , i = l + 1, . . . , q − 1, and aii is the ith

diagonal element of (AT
q Aq)

−1. They are all positive [16]. If the first

inequality holds, go to Step 4, Else drop the qth constraint from Aq, and

obtain H i
q−1 , from

H i
q−1 = H i

q +
Pq−1aiqa

T
iqPq−1

aT
iqPq−1aiq

(6.1)

where Pq− 1 = IAq−1(A
T
q−1Aq−1)

−1AT
q−1 is a projection matrix; aiq is the

qth column of Aq; and Aq−1 is the n-by-(q1) matrix obtained by taking

off the qth column from Aq.

Assign q − 1 to q,and go to Step 2.

4. Compute the search direction di = −H i
qg

i for line search sub-algorithm,

and compute

λj =
bj − aT

j θi

aT
j di

, j = q + 1, q + 2, . . . , k

λi = min{λj > 0}

CHAPTER 6. THE NONLINEAR OPTIMIZATION ALGORITHM 39

We used and modified the routine lnsrch from [25] for line search to obtain

the biggest possible γi such that 0 < γi ≤ min{1, λi}, and




P (θi + γdi) ≤ P (θi) + δ1γ
i(gi)T di

g(θi + γdi)T di ≤ δ2(g
i)T di

(6.2)

where δ1 and δ2 are positive numbers such that 0 < δ1 < δ2 < 1 and

δ1 < 0.5. Let θi+1 = θi + γidi and gi+1 = g(θi+1). If (gi)T di > 0 which

means the function value would not be decreased, then recompute the

search direction as di = −gi and run the step 4 again.

5. If γi = λi, add to Aq the aj corresponding to min{λj} in Step 4 (by

swapping aj with aq+1). Then compute

H i+1
q+1 = H i

q −
H i

qaja
T
j H i

q

aT
j H i

qaj

(6.3)

Assign q + 1 to q and i + 1 to i, and go to Step 2.

6. Else, set σi = γidi and yi = gi+1 − gi, and update H i
q as follows:

If (σi)T yi ≥ (yi)T H i
qy

i then use the BFGS formula:

H i+1
q = H i

q +

((
1 +

(yi)T Hi
qyi

(σi)T yi

)
σi(σi)T − σi(yi)T H i

q −H i
qy

i(σi)T

)

(σi)T yi
(6.4)

Else use the DFP formula:

H i+1
q = H i

q +
σi(σi)T

(σi)T yi
− H i

qy
i(yi)T H i

q

(yi)T H i
qy

i
(6.5)

Assign i + 1 to i, and go to Step 2.

6.4 Discussion

We obtained the best result with δ1 = 0.0001 and δ2 = 0.5. In the optimiza-

tion algorithm, choosing the initial values that decrease the function value

sufficiently, is crucial. Else the algorithm can be failure. Especially, while we

are changing the direction of a limb to an opposite site, initial values obtained

from the previous computation may cause the algorithm to be failure. In ad-

dition, since there are usually more than one solution, initial guess affects the

CHAPTER 6. THE NONLINEAR OPTIMIZATION ALGORITHM 40

generated solution. This situation takes control away from the user. As it is

explained in Section 6.1, we tried to obtain solution that is desired by the user,

by multiplying the initial values with scalars.

The algorithm searches for a local minimum along a direction d in line

search sub-algorithm. Sometimes, (gi)T di > 0 is occurred which means that it

cannot find local minimum. Therefore, we modified the algorithm as in step 4

and we changed the search direction.

Chapter 7

Results

Our human figure consists of 20 segments, 26 joints and 31 DOFs. Four of the

joints were defined as the end effectors. These are right and left hands, and

right and left feet. Four joint groups were defined. The left upper joint group

includes the joints from pelvis to left hand with 9 DOFs. The right upper joint

group includes the joints from pelvis to right hand with 9 DOFs. The left lower

joint group includes the joints from pelvis to left foot with 8 DOFs. The right

lower joint group includes the joints from pelvis to right foot with 8 DOFs.

The left and right joint groups have three common DOFs on torso. If

any motion is applied to one of these joint groups, an unrealistic appearance

at the segments of the other joint group may occur, since the segments are

separated (see Figure 7.1.a). However, tree-structured hierarchy of the human

figure enables us to pass the motion on to the other joint group since any change

at the position of the parent segment effects all of the child segments (see Fig-

ure 7.1.b).

The algorithm only works for one goal instead of multiple goals at each

time. Figure 7.2.a is an example of a reachable goal and Figure 7.2.b shows an

unreachable goal.

As it is explained in Section 6.1, a scalar multiplier can be assigned to

the joint angles. In Figure 7.3.a, an undesirable posture comes out without

assigning a scalar multiplier. While the joint angles rotating around the x axis

41

CHAPTER 7. RESULTS 42

(a) (b)

Figure 7.1: (a) unrealistic posture; (b) realistic posture.

is sufficient to reach the goal, the joint angles rotating around y and z axes,

have initial values that effect the direction of the line search. In order to reach

the defined goal in Figure 7.3.b, the joint angles, except the angles rotating

around the x axis, are multiplied with 0.1. The priority of the joint angles

rotating around the x axis is increased with this way. The algorithm handles

them first.

Figure 7.4 gives some example postures produced by the implementation.

CHAPTER 7. RESULTS 43

(a) (b)

Figure 7.2: (a) reachable goal; (b) unreachable goal.

7.1 Performance Experiments

Totally, 899 vertices have been used to draw the segments. Average fps results

during motion have been presented at Table 7.1 for the situations that are lights

on/off and wireframe/mesh. The results were obtained on a personal computer

with Intel Pentium1 III – 550 Mhz CPU and 192 MB of main memory with 32

MB of graphics memory.

Table 7.1: Average frame rates for animations

Wireframe/Mesh Shading Average FPS
Wireframe Shaded 13.90
Wireframe Not shaded 26.65
Mesh Shaded 14.05
Mesh Not shaded 29.05

1Pentium is a registered trademark of Intel Corporation.

CHAPTER 7. RESULTS 44

(a) (b)

Figure 7.3: (a) without scaling factor; (b) with scaling factor.

While the lights are off, the human figure is animated in real time. However,

the human figure is animated near real time while the lights are on.

CHAPTER 7. RESULTS 45

(a) (b) (c)

(d) (e) (f)

Figure 7.4: Example postures.

Chapter 8

Conclusion and Future Work

We implemented an algorithm for human animation with inverse kinematics

using nonlinear programming. Usually, the selected end effector completed

its motion towards the desired goal. However, the user has to try the same

motion for multiple times with different options in order to reach the desired

goal realistically. Even the nonlinear optimization algorithm can cause the

undesirable motion in some situations. Since the initial angle set that comes

from the previous motion, may not be the feasible angle set for the next motion.

This situation prevents the line search algorithm to find a minimum value for

the function. Constructing a new strategy for finding an initial feasible point

for each motion is a necessity as a future work.

Besides, more other goal types such as aiming goal, line goal and plane goal

etc. can be defined and be implemented. When the goal is too far away from

the end effector, we partitioned the goal into subgoals. However, it may be a

better approach to define the paths in order to reach the far goals.

A single goal is inadequate to define a posture. For example, while the hand

reaches the goal, wrist may be at an undesirable position. In such a situation,

another goal for the wrist has to be defined. For more complex postures such

as sitting, multiple goal definition is necessary. Multiple goals can be handled

as a future work. Badler et al [1] explained how to handle multiple constraints

(goals) in detail.

46

CHAPTER 8. CONCLUSION AND FUTURE WORK 47

The human shoulder is a complex structure, which is composed of the three

body segments, the clavicle, the scapula and the arm. The shoulder complex

has to be handled as a special structure to obtain more realistic motion. Maurel

and Thalmann give an example to the human shoulder modelling in [23].

Body awareness is not handled in our implementation. For example, while

left hand is moving, it can enter the inside of the torso segment. Body aware-

ness can be handled as a future work.

Analytic solutions proposed in [32] offer high performance for arm and leg

limbs with seven DOFs. An analytical solution for the whole body structure

can be implemented and the results of the two implementations could be com-

pared.

Bibliography

[1] N. Badler, K. Manoochehri, and G. Walters. Articulated figure position-

ing by multiple constraints. IEEE Computer Graphics and Applications,

Vol. 7, No. 6, pp. 28–38, 1987.

[2] N.I. Badler, C.B. Phillips, and B.L. Webber. Simulating Humans: Com-

puter Graphics, Animation, and Control. Oxford University Press, Oxford,

1999.

[3] D. Baraff. Linear-time dynamics using lagrange multipliers. In Proc. of

SIGGRAPH’96, pp. 137–146, 1996.

[4] R. Bartels and I. Hardtke. Speed adjustment for keyframe interpolation.

In Proc. of Graphics Interface’89, pp. 14–19, 1989.

[5] R.H. Bartels, J.C. Beatty, and B.A. Barsky. An Introduction to Splines for

Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann,

Los Alamos, CA, 1987.

[6] R. Barzel and A.H. Barr. A modeling system based on dynamic con-

straints. In Proc. of SIGGRAPH’88, pp. 179–188, 1988.

[7] B. Bodenheimer, C. Rose, S. Rosenthal, and J. Pella. The process of

motion capture: dealing with the data. In Proc. of Eurographics Workshop

on Computer Animation and Simulation, pp. 3–18, 1997.

[8] C.G. Broyden. The convergence of a class of double-rank minimization al-

gorithms, 2. the new algorithm. Journal of the Institution for Mathematics

and Applications, Vol. 6, pp. 222–231, 1970.

48

BIBLIOGRAPHY 49

[9] W. Davidon. Variable metric methods for minimization. AEC Research

and Development Report. ANL–5990, Argonne National Laboratory., Ar-

gonne, IL, 1959.

[10] J. Denavit and R. Hartenberg. A kinematic notation for lower pair mech-

anisms based on matrices. ASME Journal of Applied Mechanics, Vol. 22,

No. 6, pp. 215–221, 1955.

[11] G. Farin. Curves and Surfaces for Computer Aided Geometric Design.

Academic Press, San Diego, CA, 1988.

[12] R. Fletcher. A new approach to variable metric algorithms. The Computer

Journal, Vol. 13, No. 3, pp. 317–322, 1970.

[13] R. Fletcher and M.J.D. Powell. A rapidly convergent descent method for

minimization. The Computer Journal, Vol. 6, No. 2, pp. 163–168, 1963.

[14] P.E. Gill and W. Murray. Numerical methods for constrained optimization.

Academic Press Inc., New York, Second Edition, 1978.

[15] M. Girard and A. Maciejevski. Computational modeling for the computer

animation of legged figures. In Proc. of SIGGRAPH’85, pp. 263–270,

1985.

[16] D. Goldfarb. Extension of davidon’s variable metric method to maximiza-

tion under linear inequality and equality constraints. SIAM Journal on

Applied Mathematics, Vol. 17, No. 4, pp. 739–764, 1969.

[17] D. Goldfarb. A family of variable metric methods derived by variational

means. Mathematics of Computation, Vol. 24, No. 109, pp. 23–26, 1970.

[18] P.M. Isaacs and M.F. Cohen. Controlling dynamic simulation with kine-

matic constraints, behavior functions and inverse dynamics. In Proc. of

SIGGRAPH’87, pp. 215–224, 1988.

[19] C. Klein and C.H. Huang. Review of pseudoinverse control for use with

kinematically redundant manipulators. IEEE Transactions on Systems,

Man and Cybernetics, Vol. 13, No. 2, pp. 245–250, 1983.

[20] D. Kochanek and R. Bartels. Interpolating splines with local tension,

continuity, and bias control. In Proc. of SIGGRAPH’84, pp. 33–41, 1984.

BIBLIOGRAPHY 50

[21] J. Korein. A Geometric Investigation of Reach. Ph.D. Thesis, University

of Pennsylvania, Department of Computer and Information Science, 1985.

[22] S. K. Mahmud. Animation of human motion: An interactive tool.

MS. Thesis, Bilkent University, Department of Computer Engineering and

Information Science, 1991.

[23] W. Maurel and D. Thalmann. Human shoulder modeling including

scapulo-thoracic constraint and joint sinus cones. Computers and Graph-

ics, Vol. 24, No. 2, pp. 203–218, 2000.

[24] T. Molet, R. Boulic, and D. Thalmann. A real time anatomical converter

for human motion capture. In Proc. of Eurographics Workshop on Com-

puter Animation and Simulation, pp. 79–94, 1996.

[25] W. Press, P. Elannery, T. Tevkolsky, and W. Vetterling. Numeri-

cal Recipes in C: The Art of Scientific Computing. Second Edition,

http://www.nr.com, Cambridge University Press, Cambridge, 1992.

[26] J.B. Rosen. The gradient projection method for non-linear programming.

part I: linear constraints. SIAM Journal on Applied Mathematics, Vol. 8,

No. 1, pp. 181–217, 1960.

[27] L. Sciavicco and B. Siciliano. A dynamic solution to the inverse kinematic

problem of redundant manipulators. In Proc. of the IEEE International

Conference on Robotics and Automation, pp. 1081–1086, 1987.

[28] D.F. Shanno. Conditioning of quasi-newton methods for function mini-

mization. Mathematics of Computation, Vol. 24, No. 111, pp. 647–664,

1970.

[29] K. Sims and D. Zeltzer. A figure editor and gait controller for task level

animation. In SIGGRAPH Course Notes, Course Number. 4, pp. 164–181,

1988.

[30] S.N. Steketee and N.I. Badler. Parametric keyframe interpolation incor-

porating kinematic adjustment and phrasing control. In Proc. of SIG-

GRAPH’85, pp. 255–262, 1985.

BIBLIOGRAPHY 51

[31] The MathWorks, Inc. MATLAB package. http://www.matworks.com,

2001.

[32] D. Tolani, A. Goswami, and N. Badler. Real-time inverse kinematics

techniques for anthropomorphic limbs. Graphical Models, Vol. 62, No. 5,

pp. 353–388, 2000.

[33] A. Watt and M. Watt. Advanced Animation and Rendering Techniques.

Addison-Wesley Press, New York, 1992.

[34] D. Whitney. Resolved motion rate control of manipulators and human

prostheses. IEEE Transactions on Man-Machine Systems, Vol. 10, No. 2,

pp. 47–63, 1969.

[35] J. Wilhelms. Dynamic Experiences. In N. Badler, B. Barsky, and

D. Zeltzer, editors, Making Them Move: Mechanics, Control and Anima-

tion of Articulated Figures, Chapter 13, pp. 265–280. Morgan Kaufmann

Publishers, San Mateo, CA, 1991.

[36] A. Witkin, K. Fleischer, and A. Barr. Energy constraints on parameterized

models. In Proc. of SIGGRAPH’87, pp. 225–232, 1987.

[37] A. Witkin and M. Kass. Spacetime constraints. In Proc. of SIG-

GRAPH’88, pp. 159–168, Atlanta, GA, 1988.

[38] J. Zhao and N. Badler. Inverse kinematics positioning using nonlinear pro-

gramming for highly articulated figures. ACM Transactions on Computer

Graphics, Vol. 13, No. 4, pp. 313–336, 1994.

[39] X. Zhao. Kinematic Control of Human Postures for Task Simulation.

Ph.D. thesis, University of Pensylvania, Department of Computer and

Information Science, 1996.

Appendix A

The User Interface

In this appendix we give information about the user interface implemented for

the human animation with inverse kinematics using nonlinear programming.

A.1 Overview

In the GUI of the implementation, it is intended to give many options to the

user in order to control the human figure. The graphical user interface of the
implementation is given in Figure A.1. The user interface is developed to give

the user the ability to navigate around the figure and the ability to control the

motion of the figure. Both the navigation and motion control can be achieved

by the helps of menu on the screen, keyboard and mouse.

The user interface is a combination of two parts on the screen. One of them

is the viewing area for the figure. The other is the menu section.

A.2 Viewing Area

To use cursor key navigation and function keys, it is needed to click the viewing

area with mouse. Likewise in order to use menu section, menu area has to be

clicked.

52

APPENDIX A. THE USER INTERFACE 53

Figure A.1: Graphical user interface of the system.

Viewing area contains information about some parameters. Those param-

eters are

• frames per second,

• frame drawing time,

• mouse coordinates,

• wire-frame/mesh (F2 function key),

• lights on/off (F3 function key), and

• goal type (positional/positional and orientational) (F1 function key).

APPENDIX A. THE USER INTERFACE 54

A.3 Menu Area

The menu area is a combination of collapsible/expandable menu blocks. The

user may turn a block on by pressing its name button on the menu section.

This makes menu area flexible.

A.3.1 Navigation Block

In the navigation block, there are two parts:

• location control part, and

• looking direction part (a rotating ball and a reset button).

Location control part is used to bring the user to a specific location and

direction. There are four spinner-buttons that enable the user to achieve this

purpose. These are

• Direction: Used to change the direction of the viewer. As the value

increases the user turns to the right.

• Altitude: Used to increase or decrease the altitude of the user. The value

shows the altitude of the viewer from the average elevation of the figure.

• Z axis: Used to change the view point of the user along z axis.

• X axis: Used to change the view point of the user along x axis.

Rotating ball makes it available for the user to move the figure in any

direction. This is very useful to visualize the figure in any angle when the user

comes to a point. Reset Look button is used to initialize the ball to its original

position.

APPENDIX A. THE USER INTERFACE 55

A.3.2 Selecting Goal Type

Four end-effector is specified in order to move the figure. These are:

• Left Arm: Left arm is the end-effector of joint group from pelvis to left

arm.

• Right Arm: Right arm is the end-effector of joint group from pelvis to

right arm.

• Left Foot: Left foot is the end-effector of joint group from pelvis to left

foot.

• Right Foot: Right foot is the end-effector of joint group from pelvis to

right foot.

An end-effector can be defined by the user selecting radio buttons in goal type

menu.

The user has two options to move the joint group defined by an end-effector.

One of them is to push the left mouse button on the end-effector and drag the

mouse, consequently the end-effector to the desired goal slowly. When the end-

effector reaches the goal, the user releases the left mouse button. The other

option is to define a far goal by checking far goal check box in goal type menu.

When the user pushes the left mouse button for the desired goal on view area,

selected joint group moves and the end-effector tries to reach the goal.

The user also can define goal type by checking position and orientation

check box. If it is checked, goal is positional and orientational goal, else goal

is only positional goal.

A.3.3 Assigning Scalar Multiplier to the Joint Angles

As it is explained in Chapter 6, the user may scale the joint angles by assigning

scalar multipliers. For each of the four joint group, there are names of joint

angles in list boxes in angles menu. First, user assigns a value between 0.1 and

APPENDIX A. THE USER INTERFACE 56

2.5 to multiplier by the help of the spinner in angles menu. And select the

angle which will be scaled with the multiplier.

A.3.4 Visual Properties Block

There are two check boxes in visual properties block. One of them turns the

lights on when checked and off when unchecked. The other check box shows

the figure as wire-frame when checked and as mesh when unchecked.

Reset button at the end brings the figure to initial posture if body segments

have been transformed. The exit button enables the user to terminate the

program.

A.4 Keyboard and Mouse Usage for GUI

Functions of keyboard buttons are given as follows:

• Left cursor key: Turns the figure around the user from left.

• Right cursor key: Turns the figure around the user from right.

• Up cursor key: Enables the user come closer to the figure along z axis.

• Down cursor key: Takes away the user from figure along z axis.

• ‘-’ key: Decreases the altitude of user.

• ‘+’ key: Increases the altitude of user.

• PageUp key: Increases z value of mouse by 1.

• PageDown key: Decreases z value of mouse by 1.

• F1 function key: Provides switch between positional and

positional and orientational goal.

• F2 function key: Provides switch between mesh and wireframe view of

figure.

APPENDIX A. THE USER INTERFACE 57

• F3 function key: Provides switch between lights on and off.

For positional goal, only the left mouse button is used. If far goal check box

is checked, clicking the left mouse button at anywhere on view area defines the

x and y coordinates of goal. Else if the user presses the left mouse button on

any end-effector and drags the mouse, x and y coordinates of goal is defined

by the x and y values of the mouse until left button is unpressed.

For positional and orientational goal, pushing left button of mouse provides

rotation around x axis, pushing right button of mouse provides rotation around

z axis and pushing both left and right button of mouse provides rotation around

y axis. Besides, x and y coordinates of mouse while it is pressed, gives the x

and y position of goal.

