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Abstract

This paper presents an improved version of a componentwise bounding algorithm for
the state probability vector of nearly completely decomposable Markov chains, and on an
application it provides the first numerical results with the type of algorithm discussed.
The given two-level algorithm uses aggregation and stochastic comparison with the strong
stochastic (st) order. In order to improve accuracy, it employs reordering of states and a
better componentwise probability bounding algorithm given st upper- and lower-bounding
probability vectors. A thorough analysis of the two-level algorithm from the point of view
of irreducibility is provided. Results in sparse storage show that there are cases in which
the given algorithm proves to be useful.
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1 Introduction

Nearly completely decomposable (NCD) Markov chains (MCs) [2], [12], [18] are irreducible

stochastic matrices that can be symmetrically permuted [4] to the block form

[(Pii Py - PN\ m
P2,1 P2,2 tee P2,N ny

Pn)(n - . . . . . (1)
Pyvi Pn2 - Pyn/ nn

in which nonzero elements of the off-diagonal blocks are small compared with those of the
diagonal blocks [18, p. 286]. Let P = diag(P11, Pa2,..., Pnn) + F. The diagonal blocks
P,; are square, of order n;, with n = ¥ n;. The quantity ||F||. is referred to as the
degree of coupling and is taken to be a measure of the decomposability of P. When the
chain is NCD, it has eigenvalues close to 1, and the poor separation of the unit eigenvalue
implies a slow rate of convergence for standard matrix iterative methods [7, p. 290]. Hence,
NCD Markov chains are said to be ill-conditioned [12, p. 258]. On the other hand, if P were
reducible, we would decompose the chain into its irreducible (i.e., isolated) and transient
subclasses of states as in equation (1.20) of [18, p. 26] and continue our analysis on the
irreducible subclasses.

Such matrices arise in queuing network analysis, large-scale economic modeling, and
computer systems performance evaluation. The measures of interest for these systems may
be obtained either from the long-run distribution of state probabilities by solving a homo-
geneous system of linear equations with a singular coefficient matrix under a normalization
constraint (i.e., steady state analysis), or from the state probability distribution at a par-
ticular time instant by solving a set of first order ordinary differential equations using an
initial state probability distribution (i.e., transient analysis).

To each NCD MC corresponds an irreducible coupling matrix [12], C, whose (7, j)th
element is given by

Uy

17l

Here e represents a column vector of all ones and the steady state probability (row) vector

Pme \V/i,je {1,2,,N} (2)

Cij =

7 is partitioned conformally with P in equation (1) such that 7 = (7, 72,...,7x), where
each m; is a row vector having n; elements. The coupling matrix shows the evolution of
the system when each NCD partition is treated as a single aggregated state. In other
words, C' describes the coupling among NCD partitions, and its steady state vector gives
the steady state probability of being in each NCD partition. Note that one needs to know
7 to compute C exactly.

For the partitioning in equation (1), the stochastic complement [12] of P;; for
i€ {1,2,...,N} is given by

Pii=P,;+P.(I-P)'P,,

where P;. is the n; x (n — n;) matrix composed of the ¢th row of blocks of P with P;;
removed, P.; is the (n — n;) X n; matrix composed of the ¢th column of blocks of P with
P, ; removed, and P; is the (n — n;) X (n — n;) principal submatrix of P with ¢th row and
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1th column of blocks removed. The ¢th stochastic complement is the stochastic transition
probability matrix of an irreducible MC of order n; obtained by observing the original
process in the :th NCD partition. The conditional steady state probability vector of the
ith NCD partition is m;/||7i][1, and it may be computed by solving for the steady state
vector of P;; (see [12] for details). However, each stochastic complement has an embedded
matrix inversion which may require excessive computation.

Stochastic comparison is a technique by which both transient and steady state perfor-
mance measures of a MC may be bounded. There are several applications of this technique
in different areas of applied probability [16] and in practical problems of engineering [13],
[14], [9]. The stochastic comparison of MCs is discussed in detail in [10], [19], [11]. The
comparison of two MCs may be established by the comparison of their transient probabil-
ity vectors at each time instant. Obviously, if steady states exist, stochastic comparison
between their steady state probability vectors is also possible.

Sufficient conditions for the existence of stochastic comparison of two time-homogeneous
MCs are given by the stochastic monotonicity and bounding properties of their one step
transition probability matrices [10], [11]. In [20], this idea is used to devise an algorithm that
constructs an optimal st-monotone upper-bounding MC. Later, this algorithm is used to
compute stochastic bounds on performance measures that are defined on a totally ordered
and reduced state space [1]. Performance measures may be defined as reward functions
of the underlying MC. In [1], states having the same reward are aggregated, so the state
space size of the bounding MC is considerably reduced. However, the given algorithm may
provide loose bounds in the general case. If the state space reduction (i.e., aggregation)
procedure takes into account the dynamics of the underlying system, it is possible to provide
tight stochastic bounds. Another way to provide tight bounds is to consider specific matrix
structures which are suitable to aggregation procedures.

In [21], a componentwise bounding algorithm for the state probability vector of NCD
MCs is given. The two-level algorithm of Truffet in [21] uses aggregation and stochastic
comparison with the strong stochastic (st) order. The algorithm is different from the
bounded aggregation method discussed in [3], [15] in that a smaller number of linear systems
of about the same order as those in [3] are solved at the cost of lower accuracy. The
algorithm of Courtois and Semal in [3] uses polyhedra theory to compute the best possible
bounds for a given NCD MC. To the best of our knowledge, the algorithm of Truffet has not
been implemented and tested on any applications yet. Furthermore, its theoretical analysis
lacks essential components. In this paper, we present an improved and coherent version of
the algorithm, and remedy the situation regarding analysis and implementation. We remark
that even though the presentation of the algorithm in this paper is for computing the steady
state probability vector of an NCD MC, it can also be used to carry out transient analysis
with some modification. The bounding techniques in [3] and [21] both have tradeoffs.
This work is not intended to be a comparative study between them, but it rather aims to
develop a better understanding of stochastic comparison as a useful tool in performance
analysis. We also remark that a continuous-time MC (CTMC) can be transformed through
uniformization [18, p. 24] to a discrete-time MC. Hence, the algorithm presented in this
paper may be used to compute bounds on the state probability vector of a CTMC.

In section 2, we provide background on stochastic comparison. In section 3, we introduce
the improved algorithm and demonstrate the effect of the improvements on a small NCD
MC. A thorough analysis of the new algorithm from the point of view of irreducibility
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appears in section 4. In section 5, we provide numerical results in sparse storage on a
current application in mobile communications. Therein, we also discuss an application
from the same research area which does not favor the algorithm. In section 6, we conclude.

2 Background on stochastic comparison

There are different stochastic ordering relations and the most well known is the strong
stochastic ordering (i.e., <y). Intuitively speaking, two random variables X and Y which
take values on a totally ordered space being comparable in the strong stochastic sense (i.e.,
X <4 Y) means that it is less probable for X to take larger values than Y (see [16], [19]).

First we give the definition of st-ordering used in this paper. For further information
on the stochastic comparison method, we refer the reader to [19].

Definition 1 Let X and Y be random variables taking values on a totally ordered space.
Then X is said to be less than Y in the strong stochastic sense, that is, X <4Y ff

E[f(X)] < E[f(Y)]

for all nondecreasing functions f whenever the expectations exist.

Definition 2 Let X and Y be random variables taking values on the finite state space
{1,2,...,n}. Let p and q be probability vectors such that

pi = Prob(X =1) and ¢ = Prob(Y =14) for 1€ {1,2,...,n}.

Then X is said to be less than Y in the strong stochastic sense, that is, X <4Y ff

Zpi SZ%’ for j=nn—-1,...,1
1=j =3

The comparison of MCs has been largely studied in [10], [19], [11]. We use the following
definition (Definition 4.1.2 of [19, p. 59]) to compare MCs.

Definition 3 Let {X(t), t € T} and {Y(t), t € T} be two time-homogeneous MCs. Then
{X(t), t € T} is said to be less than {Y (t), t € T} in the strong stochastic sense, that is,
(X(0) <a (Y(0)) if

X(t) < Y(1) VteT.

It is shown in Theorem 3.4 of [11, p. 355] that monotonicity and comparability of the
probability transition matrices of time-homogeneous MCs yield sufficient conditions for
their stochastic comparison, which is summarized in:

Theorem 1 Let P and P be stochastic matrices respectively characterizing time-homoge-

neous MCs X(t) and Y(t). Then {X(t), t €T} <a{Y(t), t€T} if
o X(0) <, Y(0),
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o st-monotonicity of at least one of the probability transition matrices holds, that is,

either P, <y Pj. or P.<y4P,. Vi,7 suchthat ¢ <y,

o st-comparability of the transition matrices holds, that s,

Pi,* Sst Pi,* \V/Z

Here P; . refers to row ¢ of P.

3 Componentwise bounding algorithm

The componentwise bounding algorithm for the steady state vector of NCD MCs we present
(see Algorithm 1) is based on the two-level algorithm in [21] that uses aggregation and

stochastic comparison with the st-order.

3.1 The improved algorithm

Algorithm 1 Componentwise bounding algorithm for the steady state vector of NCD

MCs:

0. Find a (balanced) NCD partitioning of P and symmetrically permute it to the form

in equation (1). Let {S1,8,...,8n} be the resulting state space partition.

1. fore =1,2,..., N,

a.

Choose a state from &;, say f;, make it the last state and find the ordering of the
remaining states in §; with respect to f; by the heuristic algorithm in Step 3.a
of [5, p. 241]. Symmetrically permute P;; according to the resulting ordering.

Compute the two stochastic matrices S; and S; of order n; corresponding to P,
by Algorithms 2 and 3, respectively (see Remark 1).

. Compute the st-monotone upper-bounding matrix Q; of order n; corresponding

to S; by Algorithm 5 and the st-monotone lower-bounding matrix @, of order
n; corresponding to S; by Algorithm 6.

Extract the irreducible submatrices of @; and ¢, and solve the corresponding

systems of equations for their steady state vectors 75" and x5, respectively. Place
zero steady state probabilities for transient states in each vector.

Compute the componentwise bounding vectors 7*” and 7¢"™/ on the conditional
steady state probability vector corresponding to S; from 75" and xf* by Algorithm
7.

. Compute U and L of order N using 7" and 7./, i € {1,2,..., N}, by Algo-

rithms 8 and 9, respectively.

Compute the two stochastic matrices S and S of order N corresponding to L
and U by Algorithms 2 and 3, respectively.
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c. Compute the st-monotone upper-bounding matrix ) of order N corresponding
to S by Algorithm 5 and the st-monotone lower-bounding matrix ¢ of order N
corresponding to S by Algorithm 6.

d. Extract the irreducible submatrices of @ and @ and solve the corresponding
systems of equations for their steady state vectors E“ and §5t, respectively. Place

zero steady state probabilities for transient states in each vector.

e. Compute the componentwise bounding vectors £**7 and £/ on the steady state
probability vector corresponding to €' from fSt and §5t by Algorithm 7.

3. Compute the componentwise steady state probability upper- and lower-bounding
vectors for S; respectively as £? xS and €™ 7" i e {1,2,...,N}.

13

Remark 1 When Algorithms 2 and 3 are invoked for the substochastic matrices P;;,
L=P,andU =L+ A, whered=e—Le and A=1[dd --- d].

Algorithm 2 Construction of stochastic matrix S corresponding to L and U of order m:

A=U-1L;
fore =1,2,...,m,
& =1— %, s
fore =1,2,...,m,
fory=m,m—1,...,1,

8ij = Lij + min(é; 5, (€™,

(m=j+1) _ (m—y) .
€ = ¢ — 04,53

Algorithm 3 Construction of stochastic matrix S corresponding to L and U of order m:

A=U-1L;
fore =1,2,...,m,

0 m

e =1->"0 b
fore =1,2,...,m,

for y =1,2,...,m, 4
855 = Lij + min(6;, (V7))
: T
) — =) 8iii

i = ¢

Algorithm 4 Construction of matrix B (to be used in Algorithms 5 and 6) corresponding
to stochastic matrix S of order m:

fore =1,2,...,m,
bi,m = Si,ms
fory=m—-1m-—2,...,1,
bij = bij+1 + si;
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Algorithm 5 Construction of st-monotone upper-bounding matrix @ corresponding to
stochastic matrix S of order m:

Compute B by Algorithm 4 for S of order m.

ql,m = blvm;

fore=2,3,...,m,

qi,m = max(bi7m7qi—1,m);
forl=m—-1,m-—2,...,1,

G1,0 = b1y — b1 iga;
fore=2,3,...,m,

Giy = max(bi 1, X7 ooy ) — 2T @

Algorithm 6 Construction of st-monotone lower-bounding matrix @ corresponding to
stochastic matrix S of order m:

Compute B by Algorithm 4 for S of order m.
forl=1,2,...,m—1,
ng - bm,l - bm,l—l—l;

fore=m-—1,m—-—2,...,1,
q;, = max(l = bips1, 3501 ¢, ) — XiTh 4
gmm = Om,m;
fore=m-—-1,m—2,...,1,
4, =1-205"

Algorithm 7 Computation of componentwise probability bounding vectors v**? and v*/
given st upper- and lower-bounding probability vectors v* and v* of length m:

sup __ 73st.
Um = VU
vznf — vfrtu

fory=m—-1m-2,...,1,
sup _ —t t.
v, —Zk =V 1 Zk ]+1v27
inf —st
v] - (Zk ] Zk =j+1 S)+7

Algorithm 8 Computation of componentwise upper-bounding matrix U for C of order
N using P and 7" 1 € {1,2,...,N}:
fore =1,2,..., N,
for y=1,2,..., N,

Wi ;= mm( ;PP je,max(P; je));

Algorithm 9 Computation of componentwise lower-bounding matrix L for C' of order N
using P and " i € {1,2,...,N}:
fore =1,2,..., N,
fory =1,2,... N,
l; ; = max(m; fP”e,mm(P €));
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The preprocessing done in Step 0 of Algorithm 1 is self-descriptive. As suggested in
Section 1, it is possible to use the algorithm in [4] to find NCD partitionings of P given
a user specified decomposability parameter. By a balanced partitioning, we mean one in
which the n;, ¢ € {1,2,..., N}, in equation (1) do not differ significantly from each other.
We argue why it is important to use balanced NCD partitionings after we analyze the
complexity of Algorithm 1.

The ordering (i.e., numbering) of states in a MC affects the quality of bounds that
may be obtained by the stochastic comparison approach [5] due to the conditions of st-
monotonicity and st-comparability in Theorem 1. In order to obtain tighter probability
bounds, Step 1.a of Algorithm 1 permutes one of the states within each NCD partition to
be the last and orders the remaining states in the same partition using the heuristic given
in [5, pp. 241-242]. The state to be permuted to the end of each NCD block is chosen as the
state which has the largest self-transition probability among the states in the same NCD
partition followed by a simple tie-breaking rule if needed. We do not reorder (aggregated)
states in Step 2 of Algorithm 1 since the resulting matrices are highly diagonally dominant
due to the NCD structure implying a small gain (if at all). Reordering of states is the first
improvement over the algorithm in [21].

At the first level of Algorithm 1 (see Step 1), componentwise upper- and lower-bounds
on the conditional steady state probability vector of each NCD partition are computed for
the partitioning of P in equation (1). This is achieved in Steps 1.b and 1.c (see Algorithms
2-6) by computing st-monotone upper- and lower-bounding matrices for each stochastic
complement. In Step 1.b, two stochastic matrices corresponding to the particular NCD
block are obtained using Algorithms 2 and 3. The former (latter) of these matrices is
computed by adding the off-diagonal block probability mass to the incoming transitions
of the last (first) state in the NCD partition thereby ensuring that the resulting stochas-
tic matrix satisfies the st-comparability relation greater (less) than or equal to with the
stochastic complement (see Section 1) of the NCD block. The two stochastic matrices
obtained in this way for each NCD partition are input to Step l.c. In Step 1.c, we use the
st-monotone upper-bounding matrix construction algorithm in [1] as in [21] (see Algorithm
5), but devise and use a new st-monotone lower-bounding matrix construction algorithm
(see Algorithm 6) whose optimality is proved in Section 4. In [21], the st lower-bounding
vector on the steady state distribution of a MC is computed by reversing the order of its
states and running Algorithm 5 on the permuted MC. See [21, p. 847] for details. The new
st-monotone lower-bounding matrix construction algorithm we present eliminates the need
for a permutation vector to order the states of the input stochastic matrix in reverse.

Neither of the two st-monotone bounding matrices computed for each stochastic comple-
ment may be irreducible [1]. However, as we prove in the next section, both of these matrices
have one irreducible subset of states. This is also true for the st-monotone bounding ma-
trices computed for the coupling matrix, C' (see Section 1), in Step 2. After identifying the
transient states and removing them from each of the two st-monotone bounding matrices,
the resulting irreducible stochastic matrices are solved for their steady state vectors in Step
1.d. This gives st upper- and lower-bounds on the conditional steady state probabilities
of the particular NCD partition. In Step 1l.e, componentwise bounds on the conditional
steady state probability vector of the NCD partition are obtained from the st upper- and
lower-bounding vectors using Algorithm 7. In Section 4, Algorithm 7 is shown to be better
than Algorithm 10 used in [21]. This is the second improvement over the algorithm in [21].
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At the second level (see Step 2), st-monotone upper- and lower-bounding matrices for C
corresponding to the partitioning of P in equation (1) are computed using Algorithms 26,
8, and 9 in Steps 2.a—c. This is achieved by using the conditional steady state probability
bounding vectors obtained for each NCD partition at the first level. Note that in Step 2.a,
Algorithms 8 and 9 compute the matrices U and L which are respectively componentwise
upper- and lower-bounding matrices for C'. In Step 2.b, two stochastic matrices correspond-
ing to C are obtained by Algorithms 2 and 3 using U and L. The former (latter) of these
stochastic matrices is computed so as to satisfy the st-comparability relation greater (less)
than or equal to with C'. In Step 2.c, st-monotone bounding matrices corresponding to
these two stochastic matrices are obtained. From the two st-monotone bounding matrices,
two stochastic matrices corresponding to the irreducible subsets of states are extracted,
and they are solved for their steady state vectors in Step 2.d. This gives st upper- and
lower-bounds on the steady state probabilities of C'. In Step 2.e, the st-bounding vectors
obtained in the previous step are used by Algorithm 7 to compute componentwise bounds
on the steady state probabilities of C'.

Finally, in Step 3 of Algorithm 1, the componentwise upper-bounding (lower-bounding)
vector on the conditional steady state distribution of each NCD partition is unconditioned
by the corresponding upper-bound (lower-bound) on the steady state probability of C.
Hence, we obtain componentwise bounds on the global steady state distribution, .

We remark that Steps 1.d and 2.d should omit the removal of transient states and
replace the steady solution process with a transient solution procedure when performing
transient analysis.

The theoretical analysis of the algorithm in [21] lacks essential components. There is no
mention of the existence of a single irreducible subset of states in the st-monotone upper-
bounding matrix computed by Algorithm 5. The possibility of computing a reducible
st-monotone bounding matrix for a given irreducible Markov chain is stated in [1]. For
the proposed methodology, the existence of a single irreducible subset of states must be
proved for the matrices obtained by Algorithms 5 and 6 at both levels. Furthermore, the
componentwise bounding algorithm that takes in st upper- and lower-bounding probability
vectors (see Algorithm 7) is superior to its counterpart:

Algorithm 10 Computation of componentwise probability bounding vectors w**? and
w'™ as in [21] given st upper- and lower-bounding probability vectors o*¢ and v*! of length
m:

forj=m—-1,m-2,...,1, '
wi = min(1, (S, 53 — S wp)*);
wi" = min(1, (TiL; off — it wi™)h);

We address these theoretical issues in Section 4. Now we proceed with the complexity
analysis of Algorithm 1.
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3.2 Complexity analysis

We assume that P has nz nonzero elements distributed uniformly across the matrix.
Note that nz is considered to be O(n) for sparse matrices. Hence, there will be roughly
k = nz/n nonzero elements per row/column of P and k; = nz x n;/n* nonzero elements per
row/column of P;;. The uniform assumption is neither an optimistic nor a pessimistic one.
Now, assuming that Algorithm 1 is implemented in sparse storage and a direct method
is employed in solving the linear systems in Steps 1.d and 2.d, its space complexity other
than the storage set aside for P is max {O(nz), max; {O(n?),O(N?)}} reals and integers
from Steps 0, 1.b, 1.c, 2.b, and 2.c. Other steps contribute as lower order terms. As for
the time complexity of the algorithm, we should account for floating-point comparisons
and floating-point arithmetic operations separately. From Steps 0, 1l.a-d, 2.a, and 2.d,
we have max {O(nk?), =N, max {O(n?), O(n;k?)}, O(Nn), O(N®)} floating-point compar-
isons. From Steps 1.d, 2.a, and 2.d, we have max {3~ O(n?),O(nz), O(Nn),O(N®)}
floating-point arithmetic operations. Other steps contribute as lower order terms. Now it
is evident why one should opt for balanced NCD partitionings (cf. Step 0).

Now, let us compare the time complexity of Algorithm 1 with that of iterative
aggregation-disaggregation (IAD), a method devised to compute the steady state vector of
NCD MCs using successive approximations [18, Ch. 6]. In order to make a fair comparison,
let us assume that both methods use the same NCD partitioning and that there is space
to factorize its diagonal blocks at the outset [6]. We make the same assumption regarding
sparsity as in Algorithm 1 and conclude that there are roughly SN n;(k — k;) nonzero
elements in the off-diagonal blocks of P. Fach iteration of TAD consists of two steps. In
the aggregation step, an approximate coupling matrix is formed and solved for its steady
state vector. In order to expedite the computation of this matrix, row sums of each block
in the NCD partitioning are computed and stored at the outset. In the disaggregation
step, a block Gauss-Seidel (BGS) iteration is performed. This requires the solution of N
nonsingular linear systems whose coefficient matrices are the diagonal blocks factorized
at the outset and whose right hand sides are computed using the nonzero elements in the
off-diagonal blocks, the steady state vector of the approximate coupling matrix, and the pre-
vious steady state approximation. Hence, there are max {37, O(n?), O(nz)} floating-point
arithmetic operations at the outset. The aggregation and disaggregation steps respectively
cost max {O(N?),O(Nn)} and max {O(XN, ni(k — k), "N, O(n?)} floating-point arith-
metic operations per TAD iteration. The number of iterations taken by IAD to converge to
a tolerance of € is O(log ¢/ log || F||«) since each iteration of IAD reduces the error in the
approximate solution by a factor of degree of coupling (see Theorem 6.6 in [18, p. 340]).
It is clear that Algorithm 1 runs faster than IAD as long as the coefficient matrix is dense
and the degree of coupling is not exceedingly small.

Now we show how Algorithm 1 executes on a small example.

3.3 An example

Consider the 8 x 8 Courtois matrix [2]
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1 0.85 0 0.149 0.0009 0 0.00005 O 0.00005
2 0.1 0.65 0.249 0 0.0009 | 0.00005 O 0.00005
3 0.1 0.8 0.0996 | 0.0003 O 0 0.0001 0

p_ 4 0 0.0004 0 0.7 0.2995 |0 0.0001 0
) U.Uuvuo U U.uuv4 U.s9Y U.0 U.0uulL U U
6 0 0.00005 0 0 0.00005 | 0.6 0.2499 0.15
7 0.00003 O 0.00003 | 0.00004 O 0.1 0.8 0.0999
8 0 0.00005 0 0 0.00005 | 0.1999  0.25 0.55

whose steady state vector is given by
7 = [0.089283,0.092758,0.040488,0.158533,0.118938,0.120385, 0.277795,0.101819].

In Step 0, we choose a degree of decomposability [4] of 0.001 and obtain the state space
partitioning {S1,S,,S3}, where &1 = {1,2,3}, S; = {4,5} and S3 = {6,7,8}. This is an
NCD partitioning with || F'||s = 0.001. The NCD blocks are

0.85 0 0.149 0.6 0.2499 0.15
. 2
Pl,l( 0.1 0.65 0.249 ) ,sz( 0.7 0.2995 ) ,P373( 0.1 0.8 0.0999 ) .

0.1 0.8 0.0996 0.399 0.6 0.1999 0.25 0.55

In Step 1.a, states 1, 4, and 7 are chosen as the last states in their corresponding NCD
blocks. Given these last states, the heuristic algorithm in [5] returns the orderings (3,2,1),
(5,4), and (6,8,7) for NCD blocks 1, 2, and 3, respectively. When the P;; for ¢ € {1,2,3}

are symmetrically permuted with respect to these orderings, they become

3 /0.099%6 08 0.1
Pa=2] 0249 065 01 |, Ppy= i (8.3995 8.399 )
1\ 0149 0 085 : :

6 0.6 0.15 0.2499
Ps3= 8 0.1999 0.55 0.25
7 0.1 0.0999 0.8

Step 1.b computes two stochastic matrices for each of the (permuted) NCD blocks which
are given by

0.0996 0.8 0.1004 0.1 08 0.1
Sy=1| 0249 0.65 0.101 , 57 =1 025 065 0.1 ,
0.149 0 0.851 0.15 0 0.85
- 0.6 0.4 0.601 0.399
Sy = ’ ﬁz = ’
0.2995 0.7005 0.3 0.7
0.6 0.15 0.25 0.6001 0.15 0.2499

S =1 0.1999 0.55 0.2501 |, S3=| 0.2 0.55 0.25
0.1 0.0999 0.8001 0.1001 0.0999 0.8
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Using these stochastic matrices, Step 1.c computes st-monotone upper- and lower-
bounding matrices for each NCD partition which are given by

0.0996 0.8 0.1004 025 0.65 0.1
Q, = 0.0996 07994 0101 |, Q =[ 02 065 01 |,

0.0996 0.0494 0.851 0.15 0  0.85
g,— (06 04 o — 0601 0399
27102995 07005 )° <2~ \ 03 07 )’

0.6 0.15 0.25 0.6001 0.15 0.2499
Qs = ( 0.1999 0.55 0.2501 ) , Q= ( 0.2 0.55 0.25 ) .
0.1 0.0999 0.8001 0.1001 0.0999 0.8
We remark that both st-monotone bounding matrices corresponding to each NCD partition
in the Courtois example turn out to be irreducible. In other words, they do not have any
transient states.

Step 1.d solves the st-monotone bounding matrices for their steady state vectors, which
are given by

7, = [0.099600, 0.496639, 0.403761], =5* = [0.210000, 0.390000, 0.400000],

75 = [0.428163,0.571837], x5 = [0.429185,0.570815],
75t = [0.240679, 0.203597, 0.555724], x5 = [0.240882,0.203616, 0.555502)].

Using these vectors, Step 1.e computes componentwise bounds on the conditional steady
state probabilities of each NCD partition as

72U = [0.210000, 0.500400, 0.403761], 7"/ = [0.099600, 0.386239, 0.400000],

7P = [0.429185,0.571837], =i = [0.428163,0.570815],
75" = [0.240882,0.203819, 0.555724], 75" = [0.240679,0.203393, 0.555502].

Since Step 1 of Algorithm 1 is over, Step 2 starts executing. In Step 2.a, the matrices
P and 7, i€ {1,2,3}, as

7

U and L of order 3 are computed using 7;*

0.000615 0.999500 0.000100 0.000614 0.999000 0.000100

0.999600 0.000877 0.000100 0.999000 0.000737  0.000100
U= L= .
0.000056  0.000044  0.999900 0.000056  0.000044  0.999900

In Step 2.b, the stochastic matrices S and S corresponding to L and U are computed
as

0.000614 0.999286 0.000100 0.000615 0.999285 0.000100

0.999023 0.000877 0.000100 0.999163 0.000737 0.000100
S = , 8= :
0.000056  0.000044 0.999900 0.000056  0.000044 0.999900

In Step 2.c, st-monotone upper- and lower-bounding matrices for C' are computed as

0.999023 0.000877 0.000100 0.999163 0.000737 0.000100
Q= | 0.000614 0.999286 0.000100 |, Q= [ 0.000615 0.999285 0.000100 | .
0.000056  0.000044 0.999900 0.000056  0.000044  0.999900
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These two bounding matrices are also irreducible.
In Step 2.d, the st-monotone bounding matrices are solved for their steady state vectors,
which are given by

£ = [0.210388,0.289612,0.500000], £* = [0.230836,0.269164, 0.500000].

Using these vectors, in Step 2.e componentwise bounds on the steady state probabilities
of C' are computed as

€47 = [0.230836, 0.289612, 0.500000], £/ = [0.210388,0.269164, 0.500000].

In Step 3, componentwise bounds on the steady state probabilities of each NCD partition
are computed as

&P ri" =10.048476,0.115510, 0.093203], nf gind = = [0.020955,0.081260, 0.084155],

£8P s = [0.124297,0.165611], € i = 1[0.115246,0.153643],
suP U — [0.120441,0.101910, 0.277862], £ i = [0.120339,0.101697, 0.277751].

Finally, the componentwise bounding vectors are permuted back to their original order-
ings, and we obtain componentwise upper- and lower-bounding vectors on =:

77 =[0.093203,0.115510,0.048476,0.165611,0.124297,0.120441,0.277862,0.101910],

7" =10.084155,0.081260, 0.020955,0.153643,0.115246, 0.120339, 0.277751,0.101697].

Compare the result of the improved algorithm with those of the following three cases:

(i) First improvement turned off (i.e., no reorderings used):
77 =[0.093817,0.116272,0.048795,0.166606, 0.125044, 0.166694, 0.309165, 0.125083]
rinf = [0.083459,0.080588,0.020781,0.152774,0.114594, 0.100000, 0.208222, 0.090835]
(ii) Second improvement turned off (i.e., Algorithm 10 used instead of Algorithm 7):
7P =[0.093277,0.115602,0.049383,0.165698, 0.124363,0.120552, 0.277862,0.101910]
il = [0.084094,0.081201,0.020149,0.153538,0.115168,0.120228,0.277751,0.101697]
(iii) Both improvements turned off (i.e., basic algorithm):
7P = [0.128242,0.124810,0.052378,0.168326, 0.126335, 0.200943, 0.309165, 0.125083]
il = [0.059553,0.079426,0.020482,0.143034,0.107289, 0.065751, 0.208222, 0.090835]

After assessing the quality of the bounds, we conclude that the performance of Al-
gorithm 1 on the Courtois example is extremely good, and it is superior to each of the
three cases. However, the Courtois problem is small, and to have a better understanding of
Algorithm 1, we must apply it to larger examples. Section 5 is dedicated to such a problem.
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4 Analysis

In this section, we state various definitions, lemmas, and theorems showing why Algorithm
1 works. The discussion assumes matrices of order 2 or more. First, we introduce two types
of stochastic matrices.

Definition 4 A stochastic matriz A of order m that satisfies:
(t) 35 € {2,3,...,m} such that a;; > 0,
(i) Fe € {1,2,...,m — 1} such that a;, > 0,

(1)) Ve e {1,2,...,m —1} 3k <1 and 35 > ¢ such that a; >0

is called a type-1 stochastic matriz.

Definition 5 A stochastic matriz A of order m that satisfies:
(1) 35 € {1,2,...,m — 1} such that a,, ; > 0,
(1) Fe € {2,3,...,m} such that a;; > 0,

(1)) Ve € {2,3,...,m} Ik > ¢ and 35 < i such that aj; > 0

is called a type-2 stochastic matriz.

Lemma 1 Let S; be the stochastic matriz computed by Algorithm 2 for the submatriz P;;
of order n; in Algorithm 1. Then S; is a type-1 stochastic matriz.

Lemma 2 Let S; be the stochastic matriz computed by Algorithm 3 for the submatriz P;;
of order n; in Algorithm 1. Then S; is a type-2 stochastic matriz.

Proof. Let us prove Lemma 1. The proof of Lemma 2 is similar. The proof consists of
showing that parts (), (¢2), and (z47) of Definition 4 hold for S;. Note that S; (alternatively,
S;) is P,; with its last (alternatively, first) column perturbed. See Remark 1 and consider
its implications on Algorithms 2 and 3. For ease of understanding, let us denote P;; by Y,

S: by A, and n; by m.

(i) There are two cases. If 3-7°, y1; = 1, then Y. = A; . implying 35 € {2,3,...,m}
such that a; ; > 0, otherwise state 1 would be absorbing contradicting the fact that
P is irreducible. Tf 3770, y1 ; < 1, then by Algorithm 2 we have 650) >0 and 61,,, > 0
implying a1, > 0. Hence, 35 € {2,3,...,m} such that a; ; > 0.

(ii) In Y, it is not possible to have y;,, = 0 and 7, y;; = 1 Vi € {1,2,...,m —
1}, otherwise P would be reducible. There are two cases. Suppose for a row i €
{1,2,...,m—1}, we have y; ,, > 0. Then a;,,, > 0. On the other hand, suppose for a
row ¢ € {1,2,...,m — 1}, we have 37, y;; < 1. Then by Algorithm 2, 650) > 0 and
8im > 0 implying a; ,,, > 0. Hence, 31 € {1,2,...,m — 1} such that a;,, > 0.
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(iii) Let [ be the smallest row index among ¢ € {1,2,...,m — 1} for which a;,, > 0. From
part (i), there exists such an [. By considering the particular values k = [ and j = m,
for each i € {[,{+1,...,m — 1} 3k <7 and 3y > 7 such that a; > 0. Since for each
i€ 4{1,2,...,0 =1}, ¥im = 0 and Y72, y; ; = 1, the irreducibility of P implies that for
each ¢ € {1,2,..., — 1} 3k <7 and 3j > ¢ such that a;; > 0. O

Lemma 3 Let S be the stochastic matriz computed by Algorithm 2 for the componentwise
upper- and lower-bounding coupling matrices U and L of order N in Algorithm 1. Then S
is a type-1 stochastic matrizx.

Lemma 4 Let S be the stochastic matriz computed by Algorithm 3 for the componentwise
upper- and lower-bounding coupling matrices U and L of order N in Algorithm 1. Then S
is a type-2 stochastic matriz.

Proof. Let us prove Lemma 3. The proof of Lemma 4 is similar. The proof consists of
showing that parts (z), (i), and (4i7) of Definition 4 hold for S. Note that, if C' is the
coupling matrix given by equation (2), then L < C < U by construction (see Algorithms 8
and 9).

(i) Since C is irreducible, there is at least one column j € {2,3,..., N} such that ¢; ; > 0.

Now, there are two cases. When /4 ; = 0, we have 650) > 0 and 6;; > 0 (since L < C)
implying 3k > j 31 > 0. When [; ; > 0, we have 3y ; > 0. Hence, 35 € {2,3,..., N}
such that 53 ; > 0.

(ii) Since C' is irreducible, there is at least one row ¢ € {1,2,..., N—1} such that ¢; y > 0.
Now, there are two cases. When [; y = 0, we have 0 > 0 and é; y > 0 (since L < ()

7

implying $; ;v > 0. When [; y > 0, we have 5, y > 0. Hence, 3 € {1,2,...,N — 1}
such that 5; 5 > 0.

(iii) Since C is irreducible, for each row ¢ € {1,2,..., N —1}, 3k <7 and 35 > ¢ such that
¢k,; > 0. Again there are two cases. For row ¢, [ ; = 0 implies 620) > 0 and 6;; > 0
(since L < C'). Then 31 > j 3, > 0. For row ¢, I ; > 0 implies 3 ; > 0. Hence, for
each row ¢ € {1,2,..., N — 1}, 3k < i and 35 > ¢ such that 55 ; > 0. O

Lemma 5 If the input matriz S to Algorithm 5 is a type-1 stochastic matriz of order
m, then there is a path from each state 1 € {1,2,....,m — 1} to state m in the output
st-monotone upper-bounding matriz ().

Lemma 6 If the input matriz S to Algorithm 6 is a type-2 stochastic matriz of order m,
then there is a path from each state i € {2,3,...,m} to state 1 in the output st-monotone
lower-bounding matriz Q).

Proof. Let us prove Lemma 5. The proof of Lemma 6 is similar. Let [ be the state with the
smallest index in S such that 3;,, > 0. Since S is a type-1 stochastic matrix, the existence
of such an [ is guaranteed by part (¢2) of Definition 4. From Algorithm 5, g, ,, > 0 as well.
From the st-monotonicity of Q, for each 7 € {I,{+1,...,m —1} we have G;m > 0 implying
a path of length one from each state e € {[,[+1,...,m—1} to state m in . What remains
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to be done is to show that there is a path from each state e € {1,2,...,l — 1} to state m
in Q.

Now, let /1 be the state with the largest index such that s;;, > 0. The existence
of such an [; is guaranteed by part (¢) of Definition 4. From Algorithm 5, g, > 0
since the first rows of S and ) are identical. From the st-monotonicity of @, for each
i €{2,3,...,m} Jj > [ it must be that g; ; > 0. Hence, there are two cases depending
on the value of /.

When [; > [, for each state e € {2,3,...,] — 1} there is a direct transition to a state
7(> 1)) and a transition from state j to state m in Q. When [; < I, consider part (z77)
of Definition 4 and notice that 3¢ < [y and 3k > [; such that 5;; > 0. Since Q is
an st-monotone upper-bounding matrix, this implies 3l > k > [; such that ¢, > 0.
Now, let 7; be the state with the smallest index among (< [4) corresponding to the state
with the largest index ly; then g, ;,, > 0. From the st-monotonicity of Q, for each i €
{1,210 +1,...,m} Ty > Iy it must be that g; ; > 0. Again, there are two cases.

When e > iy, there is a direct transition from state e to a state /(> Iy > [4) in Q.
When e < ¢y, there is a direct transition from state e to a state j(> l1). Since iy <@ <y,
we have j > ¢; implying the existence of direct transitions from state e to a state j and
from state j to a state ¢/. Then we must observe the value of [,. If [; > [, we are at the
very first case. If [; < [, we must continue the recursive analysis as above until /; becomes
larger than [. Note that [, > [} and [y will eventually exceed [. O

Theorem 2 If the input matriz S to Algorithm 5 is a type-1 stochastic matriz of order
m, then there is a single irreducible (sub)set of states that includes state m in the given
ordering of states in the output st-monotone upper-bounding matriz Q.

Theorem 3 I[f the input matriz S to Algorithm 6 is a type-2 stochastic matrixz of order m,
then there is a single irreducible (sub)set of states that includes state 1 in the given ordering
of states in the output st-monotone lower-bounding matriz ().

Proof. Let us prove Theorem 2. The proof of Theorem 3 is similar. Since  is not
necessarily irreducible, it may have several classes of states (see [18, p. 26]). Let us denote
these classes by C; and the class which contains state m as ;. Now, if (; is an irreducible
class, then from each class C;, 7 # [, there must be a path to C;. This follows from Lemma
5 and the fact that the classes C; form an exact partition of the state space. Furthermore,
if C 1s an irreducible class, it is not possible to leave C;. Suppose (j is transient and there
is path from C; to C; for some j # [. Then C; and C; are equivalent, which contradicts
the fact that C; and C; are distinct classes. Hence, C; must be irreducible. Note that C)
cannot be an irreducible class since there is a path to Cj. O

The optimality of the st-monotone upper-bounding matrix computed by Algorithm 5
is proved in [1, pp. 12-14]. Here we give the proof for the st-monotone lower-bounding
matrix computed by Algorithm 6.

Theorem 4 Let () be the st-monotone lower-bounding matriz computed by Algorithm 6 for
the stochastic matriz S of order m. Let R be another st-monotone lower-bounding matrix
for S. Then @ is optimal in the sense that R < ().

Proof. The proof is by induction. By construction, row m in ) and S are identical (see
Algorithm 6). Since R is another st-monotone lower-bounding matrix for S, it must be that
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R, . <& =Sy, Thisforms the basis step. Now, let us assume that R;, <y Q.
for ¢ € {l, l—l— 1,...,m — 1}. This forms the induction hypothesis. We must show that
El—l,* Sst Ql_17*‘

Since R is st-monotone, R, ;. <, R;,. Since it is an st-monotone lower-bound for
S, we have R;, <, S;.. Then from the induction hypothesis, B, ;. <y R;. <y Ql*
Observe that the inequality B;_;, <s @, , . to be proven is equivalent to

k
Zﬂ—m ZZgl_lj Vk e {1,2,...,m}.

Now, we analyze Algorithm 6 to see how the elements of () are computed. In the
algorithm,

k
Zg_ ,—maxl—bllkH,qu Vke {1,2,....,m—1}

(when k = m, all row sums are 1). We remark that

k
1 —bi_1 k41 = Zﬁz_m
—

from Algorithm 4; therefore, the (1 — b;_1 x4+1) argument of max is due to comparison with
matrix S for a lower-bound. The second argument of max is due to comparison with row
[ of @ for st-monotonicity. Hence, there are two cases for each k € {1,2,...,m —1}. We
either have

k k k k
Zz ;=2 8oy mplying Y r ;> g
i=1 i=1 7=1

since R < S, or we have

k k k k
Zgl_m = ng again implying Zﬂl—m > Zﬂl_m
j =1 j=1

J=1 Jj= J=1

since Ri_1 . <s Q1. Combining the two cases, we obtain

k k
Zﬂl—l,j > Zgl_m Vk e {1,2,...,m}
Jj=1 j=1

implying By, <st Ql—l,*' H

Lemma 7 Algorithm 7 computes better componentwise probability bounds than the Algo-
rithm 10 used in [21].

Proof. The proof is by induction. We must show that v < w™P and vmf > wf. By
construction (see Algorithms 7 and 10), v2*? = w?* = ! and v'™ = w™/ = v*'. This is the
basis step. Now, let us assume that v;* < w3 and vmf > wmf for j € {l, l—l—l, coo,m—1}

This forms the induction hypothesis. We must show that o < w™ and v}f{ > w;f{
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From Algorithms 7 and 10, we respectively have

sup __  sup —st st sup __  sup —st inf
Vi =t Yy and  wily=w AU —w

P

From the induction hypothesis, we have v;*” < w; and v;nf > w?nf. Observing that

vt > v;nf from Algorithm 7, we obtain v} < w™.
Similarly, from Algorithms 7 and 10, we respectively have

inf _ inf st —st inf _ inf st
vy =Y Y Y and  wy =w, Ul —w

Observing that 7" < v/*” and using the induction hypothesis, we obtain v}f{ > w;f{
a

5 Numerical results

The implementation of the algorithms in Section 3 is done in compact sparse row (CSR)
Harwell-Boeing format which requires for each coefficient matrix of order m one real and
one integer array of size nz, (i.e., number of nonzero elements in the coeflicient matrix),
one integer array of size (m + 1), and temporary workspace to accommodate fill-in during
factorization. All code is written in Fortran/C and compiled in double precision with
g77/gcc on a SUN UltraSparcstation 10 with 128 MBytes of RAM running Solaris 2.6.
The numerical experiments are timed using a C function that reports CPU time. Since
the resulting NCD MCs are of moderate order (i.e., thousands of states) and sparsity (i.e.,
tens of nonzeros per row), we consider the direct solution method of Grassmann—Taksar—
Heyman (GTH) [8] at each level of Algorithm 1. This method is a more robust version of
Gaussian elimination (GE) in which arithmetic with only positive numbers is performed
[7].

We compare the run-time of Algorithm 1 with that of GTH and IAD [18] which are
both geared towards NCD MCs. In order to make a fair comparison, with TAD we use the
same partitionings as in Algorithm 1. For all combinations of the integer parameters we
considered, there is sufficient space to factorize in sparse format (that is, to apply sparse
GE to) the diagonal blocks in TAD. Furthermore, we use BGS in the disaggregation step
and employ a stopping tolerance of 107'® on the infinity norm of the residual vector at
each iteration. We remark that for each problem solved, the relative backward error in
IAD turns out to be less than 107¢. See [6] for recent results on the computation of the
steady state vector of Markov chains.

The application that we consider arises in wireless asynchronous transfer mode (ATM)
networks. In [22], a multiservices resource allocation policy (MRAP) is developed to inte-
grate two types of service over time division multiple access (TDMA) frames in a mobile
communication environment. These are the constant bit rate (CBR) service for two types
of voice calls (i.e., handover calls from neighboring cells and new calls) and the available bit
rate (ABR) service for data transfer. A single cell and single carrier frequency is modeled.
However, the arrival process of data and the service process of calls we consider is quite
general and subsumes the model in [22].

The TDMA frame is assumed to have C' slots. Handover requests have priority over
new call arrivals and they respectively arrive with probabilities p, and p,. Each voice call
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takes up a single slot of a TDMA frame but may span multiple TDMA frames whereas each
data packet is served in a single slot of a single TDMA frame. When all the slots are full,
incoming voice calls are rejected. The number of voice calls that may terminate in a given
TDMA frame depends on the number of active calls and is modeled as a binomial process
with parameter p,. The parameters of the model are p, = C x 107%, p, = C x 5 x 1075,
and p, = C x 5 x 1076,

Data is queued in a FIFO buffer of size B and has the least priority. The arrival of
data packets is modeled as an on-off process. The process moves from the on state to
the off state with probability a and from the off state to the on state with probability
B. The load offered to the system is defined as L = /(a4 ). Assuming that the time
interval between two consecutive on periods is ¢, the burstiness of such an on-off process
is described by the square coefficient of variation, S¢ = Var(t)/[E(t)]*. In terms of L and
Sc, we have 3 =2L(1 — L)/(S¢ +1— L) and a = (1 — L)/L. When the on-off process
is in the on state, we assume that ¢ € {0,1,2,3} data packets may arrive with probability
pai- The mean arrival rate of data packets in the on state is defined as R = Zf’zli X P -
Hence, the global mean arrival rate of data packets is given by G = L x R. We set
(pdo, Pd1, Paz, pas) = (0.4,0.3,0.2,0.1) implying R = 1.0. When the buffer is full, any excess
packet is dropped. We do not consider the arrival of multiple handovers or multiple new
calls during a TDMA frame duration. Observe that there is orders of magnitude between
the average interarrival time of voice calls and the average interarrival time of data packets,
which makes this problem NCD. In fact, the smallest degree of coupling values we computed
for this problem are on the order of 107*.

The performance measures of interest are the blocking probability of voice calls and
the dropping probability of data packets. If the underlying MC is represented by a three-
component state descriptor (a, b, ¢), where a denotes the state of the data arrival process, b
denotes the number of data packets in the buffer and ¢ denotes the number of active voice
calls, then the blocking probability of voice calls is given by

1 B
Poiock = [(Pa(1—pr) + (1 = pa)pn + 20ap0) (1 — ps)° DD " mijc

=0 5=0

1 B
+2apnC(1 = p) "0 DD mijc

=0 7=0

1 B
+0apr (1 = ps) 70 mijo-al/[pe(1 — pr) 4+ (1 — pa)pr + 2pnps)]

=0 5=0

and the dropping probability of data packets is given by

c c c
Parop = [(Pa1+2paz+3pas) Z 71,8,i+(Pa2+2pas) Z T1,B—1,iTPd3 Z 71,82,/ [Pa1+2pa2+3pas]-
i=0 i=0 i=0
We remark that the above formulae is defined on the product state space having
2(B 4 1)(C + 1) states of which some are unreachable.

In Figure 1, using Algorithm 1 we present bounds on the blocking probability of voice
calls and the dropping probability of data packets in the system with B = 30, C' = 10.
We take take L € {0.1,0.2,...,0.9} and S¢ € {1,10,100}. The NCD partitionings consid-
ered for So = 1 in Figures 1.(a)—(b) all have 11 blocks with orders between 42 and 62, and a
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Sg=1,B=30, C=10, (P, Pyy: Pyp Pyg)=(0-4, 0.3, 0.2, 0.1)
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Fig. 1.(a) Blocking probabilities for S¢ = 1 when B = 30 and C = 10.

degree of coupling 6 x 107*. The NCD partitionings considered for S¢ = 10 in Figures
1.(c)—(d) all have 22 blocks with orders between 21 and 31, and degree of coupling values
between 1 x 107! (for L = 0.1) and 2 x 1072 (for L = 0.9). The NCD partitionings
considered for S¢ = 100 in Figures 1.(e)—(f) all have 22 blocks with orders between 21 and
31, and degree of coupling values between 2 x 1072 (for L = 0.1) and 2 x 1072 (for L = 0.9).
The underlying MC that has 572 states and 20,198 nonzero elements takes 0.3 seconds to
solve when S¢ =1 and 0.2 seconds to solve when S¢ € {10,100} using Algorithm 1. Steps
0 and 1.a take a total of about 0 seconds. It takes 2.6 seconds to solve the same MC by
GTH for each L. It takes at least 1.5 seconds (5 iterations) to solve when S =1 and at
least 1.8 seconds (9 iterations) to solve when S¢ € {10,100} using IAD.

In Figure 2, using Algorithm 1 we present bounds on the blocking probability of voice
calls and the dropping probability of data packets in the system with B = 60, C' = 30. We
take take L € {0.1,0.2,...,0.9} and S¢ € {1,10,100}. The NCD partitionings considered
for S¢ = 1 in Figures 2.(a)—(b) all have 31 blocks with orders between 62 and 122, and
a degree of coupling 5 x 1073. The NCD partitionings considered for S¢ = 10 in Figures
2.(c)—(d) all have 62 blocks with orders between 31 and 61, and degree of coupling values
between 2x 107! (for L = 0.1) and 2x 1072 (for L = 0.9). The NCD partitioning considered
for S¢ = 100 in Figures 2.(e)—(f) all have 62 blocks with orders between 31 and 61, and
degree of coupling values between 2 x 1072 (for L = 0.1) and 7 x 1072 (for L = 0.9). The
underlying MC that has 2,852 states and 217,778 nonzero elements takes 3.3 seconds (Step
0: 0.3 seconds; Step l.a: 0.3 seconds) to solve when S¢ = 1 and 2.5 seconds (Step 0: 0.3
seconds; Step l.a: 0.2 seconds) to solve when S¢ € {10,100} using Algorithm 1. It takes
260.0 seconds to solve the same MC by GTH for each L. It takes at least 64.2 seconds
(3 iterations) to solve when S¢ =1 and at least 75.4 seconds (4 iterations) to solve when
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Fig. 1.(b) Dropping probabilities for S¢ = 1 when B = 30 and C = 10.
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Fig. 1.(c) Blocking probabilities for S¢ = 10 when B = 30 and C = 10.
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Fig. 1.(d) Dropping probabilities for S¢ = 10 when B = 30 and C = 10.

S,=100, B=30, C=10, ( )=(0.4, 0.3, 0.2, 0.1)
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Fig. 1.(e) Blocking probabilities for S¢ = 100 when B = 30 and C = 10.
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« 107 SC=1OO, B=30, C=10, (pdo, Pyt Pyor pd3)=(0.4, 0.3,0.2,0.1)
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Fig. 1.(f) Dropping probabilities for S¢ = 100 when B = 30 and C = 10.

blocking probability
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Fig. 2.(a) Blocking probabilities for S¢ = 1 when B = 60 and C = 30.
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20 Sg=1, B=60, C=30, (Py): Py;: Py Pg)=(0-4, 0.3, 0.2, 0.1)
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Fig. 2.(b) Dropping probabilities for S¢ = 1 when B = 60 and C' = 30.
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Fig. 2.(c) Blocking probabilities for S¢ = 10 when B = 60 and C = 30.
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Fig. 2.(d) Dropping probabilities for S¢ = 10 when B = 60 and C' = 30.
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Fig. 2.(e) Blocking probabilities for S¢ = 100 when B = 60 and C' = 30.
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Fig. 2.(f) Dropping probabilities for S¢ = 100 when B = 60 and C = 30.

Sc € {10,100} using IAD.

Since voice calls have priority in service, their blocking probability is not affected by
L and S¢ (see Figures 1 and 2 parts (a),(c),(e)) whereas the dropping probability of data
packets increases with L and Sc though the increase with S¢ happens very slowly (see
Figures 1 and 2 parts (b),(d),(f)). Both probabilities decrease when we move from Figure
1 to Figure 2. A bigger C implies a smaller blocking probability for voice calls, bigger B
and C imply a smaller dropping probability for data packets.

The time spent to compute bounds using Algorithm 1 is very promising compared to
solving the NCD MCs using GTH or IAD. This is understandable since Algorithm 1 solves
multiple smaller systems (i.e., two systems corresponding to each NCD block ¢ with order
at most n;) and two aggregated systems of order at most N whereas GTH solves the global
system of order n and TAD performs a number of aggregation-disaggregation iterations.
The bounds computed on pyeer and pgro, using Algorithm 1 are highly acceptable; the
bounds on p4,., are especially tight. Furthermore, the upper-bounds on py,er computed
by Algorithm 1 are mostly better than those computed by the basic algorithm. Note that
the 4(B + 1) steady state probabilities used in computing py,ce comprise those 3(C' + 1)
used in computing pg,.,. If we remove the unreachable states from the two formulae, there
happens to be exactly 4(B + 1) — 2 steady state probabilities that contribute to pycr and
6 that contribute to pgro,. We remark that st-comparison is expected to provide better
componentwise bounds for states placed towards the end of the underlying MC. When we
compare the values of 4(B+1)—2 with N, it is clear that not all states contributing to peock
can be placed as such. This is an intuitive explanation for having tighter bounds on pgy.,
compared to those on pyer. We believe this to be also the reason behind obtaining better
bounds on pp,er with Algorithm 1 compared to the basic algorithm. Due to the reordering
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of states in Step 1.a of Algorithm 1, we expect more improvement on performance measures
computed using a large number of states than those that depend on a few states. There
are other factors that influence the quality of the computed bounds such as the NCD
partitioning employed, the ordering chosen by our heuristic within each NCD block, and
the irreducibility structure of the computed st-monotone matrices.

Regarding the time it takes to compute bounds with Algorithm 1, the most important
factor is the nonzero structure of the underlying MC. Consider, for instance, the appli-
cation in [17] which also happens to be in the area of communications. It introduces an
MMPP|E; |1| K continuous-time queueing model for a video source that is fed to an ATM
multiplexer. When the number of stages in the Erlang (E) process approximating the de-
terministic service distribution is k& = 5, the buffer size of the multiplexer is K = 74, the
Markov Modulated Poisson Process (MMPP) modeling the arrival distribution has 8 states
with a different arrival rate in each state, and the real parameters in the paper are used,
we have a CTMC with n = 8k(K + 1) = 3,000 states. The corresponding DTMC obtained
through uniformization is highly NCD with a partitioning that has 8 blocks induced by the
states of the MMPP. Each block is of order 375 and the degree of coupling is on the order
of 107°. However, in each of its rows, this NCD MC has a maximum of 10 nonzero elements
7 of which are in the off-diagonal blocks. The diagonal blocks which are in the form of
a quasi-birth-and-death (QBD) process have a maximum of 3 nonzero elements and lend
themselves to relatively sparse factorizations. Hence, IAD is able to compute the steady
state vector rapidly, and Algorithm 1, which favors relatively dense NCD MCs, cannot be
recommended in this case.

6 Conclusion

In this paper, we have given the first numerical results on an application with (an improved
version of) a componentwise bounding algorithm for the state probability vector of nearly
completely decomposable Markov chains. The given two-level algorithm uses aggregation
and stochastic comparison with the strong stochastic (st) order. In order to improve accu-
racy, it employs reordering of the states and a better componentwise probability bounding
algorithm given st upper- and lower-bounding probability vectors. A thorough analysis of
the algorithm from the point of view of irreducibility is provided. The run-time of the algo-
rithm is much better than that of GTH and iterative aggregation-disaggregation in sparse
storage, and the quality of the computed bounds on steady state probabilities are highly
acceptable for the chosen application. It is difficult to make strong generalizations, but it
is our experience that this algorithm will be useful in relatively dense nearly completely
decomposable Markov chains with highly unbalanced steady state probabilities, a small
number of states accumulating a large probability mass, and a small degree of coupling.
Future work should focus on utilizing the algorithm in computing transient performance
measures.
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