EFFICIENT PARALLEL FREQUENCY
MINING BASED ON A NOVEL TOP-DOWN
PARTITIONING SCHEME FOR
TRANSACTIONAL DATA

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Eray Ozkural
January, 2002

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Cevdet Aykanat(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Attila Giirsoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Ugur Giidiikbay

il

Approved for the Institute of Engineering and Science:

Mehmet Baray
Director of the Institute

il

ABSTRACT

EFFICIENT PARALLEL FREQUENCY MINING
BASED ON A NOVEL TOP-DOWN PARTITIONING
SCHEME FOR TRANSACTIONAL DATA

Eray Ozkural
M.S. in Computer Engineering
Supervisor: Prof. Cevdet Aykanat
January, 2002

In recent years, large quantities of data have been amassed with advances
in data acquisition capabilities. Automated detection of useful information is
required for vast data obtained from scientific and business domains. Data Mining
is the application of efficient algorithmic solutions on a variety of immense data
for such knowledge discovery.

Frequency mining discovers all frequent patterns in a transaction or relational
database and it comprises the core of several data mining algorithms such as
association rule mining and sequence mining. Frequent pattern discovery has
become a challenge for parallel programming since it is a highly complex operation
on huge datasets demanding efficient and scalable algorithms.

In this thesis, we propose a new family of parallel frequency mining algo-
rithms. We introduce a novel transaction set partitioning scheme that can be
used to divide the frequency mining task in a top-down fashion. The method op-
erates on the graph of frequent patterns with length two (Gp,) from which a graph
partitioning by vertex separator (GPVS) is mapped to a two-way partitioning on
the transaction set. The two parts obtained can be mined independently and
therefore can be utilized for concurrency. In order for this property to hold, there
is an amount of replication dictated by the separator in G'r, which is minimized
by the GPVS algorithm. A k-way partitioning is derived from recursive applica-
tion of 2-way partitioning scheme which is used in the design of a generic parallel
frequency mining algorithm. First we compute G, in parallel, succeeding that
we designate a k-way partitioning of the database for k£ processors with a parallel

v

recursive procedure. The database is redistributed such that each processor is as-
signed one part. Subsequent mining proceeds simultaneously and independently
at each processor with a given serial mining algorithm. A complete implemen-
tation in which we employ FP-GROWTH as the sequential algorithm has been
achieved. The performance study of the algorithm on a Beowulf system demon-
strates favorable performance for synthetic databases. For hard instances of the
problem, we have gained approximately twice the speedup of a state-of-the-art
algorithm.

We also present a correction and optimization to FP-GROWTH algorithm.

Keywords: Parallel Data Mining, Frequency Mining.

OZET

YENI BIR ISLEM VERISI PARCALAMA SEMASI
TABANLI ETKIN PARALEL FREKANS TARAMA

Eray Ozkural
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Yoneticisi: Prof. Cevdet Aykanat
Ocak, 2002

Son yillarda, gelisen veri toplama yetenekleriyle birlikte biiyiik miktarlarda
veri toplanmigtir. Bilimsel ve ig alanlarindan elde edilen cok genis veriler icin
yararh bilgilerin otomatik olarak bulunmasi gerekmektedir. Veri tarama bu tarz
bilgi kesfi icin etkin algoritmik c¢oziimlerin degisik biiyiik veriler tizerinde uygu-

lanmasidar.

Frekans tarama bir islem ya da iligkisel veri tabanindaki biuitiin sik desenleri
kesfeder ve iligki kurali tarama ve dizi kurali tarama gibi bir ¢ok veri tarama
algoritmalarinin 6ziinii olugturur. Sik desen kesfi paralel programlama icin dev
veriler lizerinde karmasik bir islem olmasi itibariyle énemli bir problem haline

gelmistir.

Bu tezde, yeni bir sinif paralel frekans tarama algoritmasi 6neriyoruz. Frekans
tarama igini tepeden agag1 bolmek icin kullanilabilecek bir iglem verisi parcalama
semasi takdim ediyoruz. Yontemimiz iki uzunlugundaki sik desenlerin ¢izgesi
(G p,) iizerinde galigmakta olup, bu ¢izgenin koge ayraciyla parcalanmasi (GPVS)
islem kiimesi tizerinde iki-yollu bir parcalamaya eslenmektedir. Elde edilen iki
parca bagimsiz olarak taranabilir ve bu sayede es zamanlilik i¢in kullanilabilir.
Bu 6zelligin tutmasi icin G'r,’deki ayrag tarafindan belirlenen ve GPVS tarafindan
minimize edilen bir yineleme bulunmaktadir. Genel bir paralel frekans taramasi
algoritmasinda kullanilan bir k-yollu parcalama iki-yollu parcalama semasindan
tiiretilmektedir. Ik olarak Gr,’yi paralel olarak hesaplariz ve ertesinde veri
tabaninin k-yollu bir parcalamasi k£ islemci icin paralel kendini cagiran bir
yontemle belirlenir. Veri tabani her islemciye bir parca diisecek sekilde yeniden

dagitilir. Izleyen tarama her iglemcide verilen seri bir tarama algoritmasiyla eg

vi

Vil

zamanl bicimde devam eder. FP-GROWTH u seri algoritma olarak kullandigimiz
tam bir program gerceklestirilmistir. Bir Beowulf sistemi iizerinde yapilan per-
formans calismas: sentetik veritabanlari icin iyi hizlanma kaydettigimizi goster-
mektedir. Problemin zor orneklerinde gelismig bir algoritmanin yaklagik iki

kat1 hizlanma kazanmis bulunmaktayiz.

Ayrica FP-GROWTH i¢in bir diizeltme ve hizlandirma sunuyoruz.

Anahtar sézcikler: Paralel Veri Tarama, Frekans Tarama.

viii

To My Family and Friends,

Acknowledgements

I am grateful to my advisor Cevdet Aykanat for his guidance and motivation
throughout our research. Theoretical and algorithmic portions of this thesis owe
much to his insightful comments and our long discussions. Working with him has

been fruitful and joyous.

I would like to thank Bora Ucar for the original idea that led to the develop-
ment of this thesis. His valuable suggestions and co-operation were essential to
our findings. I appreciate Cevdet Aykanat, Bora Ucar and Ugur Giidiikbay for

taking their time to review the draft copy.

I would like to also thank to colleagues and my friends for their moral and
intellectual support during my studies. I could not have endured without Arda,
Atacan, Barla, Biilent, Engin, Mehmet, Mercan, Mustafa, Selim, Sengor, Murat,
Umut and others whose names I have not written. Many thanks especially to my
old friend Atacan. I feel much priviliged for having the opportunity to talk to

you of those subjects that so few can.

I would like to thank to my family whose persistent support and understanding

were the most vital ingredients in my studies.

X

Contents

1 Introduction 1
1.1 Outline. 2
1.2 Problem Statement 0oL 2

2 Background 6
2.1 Data Mining and Knowledge Discovery 7
2.2 Frequency Mining oo 11

2.2.1 Association Rules 12
2.2.2 Search Space 13
2.2.3 Mining Algorithms 15
2.3 Parallel Frequency Mining 22
2.3.1 Overview of Parallel Mining Algorithms 24
2.3.2 Apriori Based Parallel Algorithms 24
2.3.3 Parallel algorithms based on Eclat and Clique 25
2.3.4 Other Studies and Remarks 27

CONTENTS

2.4 Graph Partitioning Lo

24.1

24.2

24.3

Application Domains
Graph Partitioning Methods

Problem Description, ..

3 Transaction Set Partitioning

3.1 Objective

3.2 Transaction Set Partitioning

3.3 Two-way Partitioning of Transaction Database

3.4 k-way Partitioning of Transaction Database

4 A Parallel Algorithm for Frequency Mining

4.1 OVerview

4.2 Computation of Fand Gp,

4.3 Partitioning Lo

4.3.1

4.3.2

4.3.3

4.3.4

Using GPVS to find a partition
Load Balancing
Redistribution of Transaction Set

Computing Vertex Induced Subgraph

4.4 Optimizations

4.4.1

4.4.2

Using An F, Matrix of Rank [F|

Redistributing Transaction Set In A Single Pass

xi

28

28

29

30

32

32

33

35

38

42

CONTENTS

4.5

4.4.3 Distributed Graph for G'p, and Local Pruning
4.4.4 Compact Structures and Buffering for Communication

Concurrent Mining of Partitions
4.5.1 An Improved Version of FP-Growth
4.5.2 A Correction To FP-Growth Algorithm

4.5.3 Eliminating Conditional Pattern Base Construction

5 Implementation

6

5.1

5.2

5.3

0.4

2.5

2.6

Computing Fland G, oo
Partitioningo

FP-Growth Implementation

Performance Study

6.1

6.2

6.3

6.4

xii

23

o4

o4

95

95

26

60

60

61

62

62

62

63

63

64

66

CONTENTS

6.5 Interpretation

6.6 Comparison with Parallel Eclat

7 Conclusions

A Detailed Performance Results

B Proof and Algorithm

xiii

75

85

87

100

105

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

5.1

6.1

Search space of frequency mining problem
Classification of sequential association rule mining algorithms. . .

An FP-Tree Structure.

G, graph of transaction set in Table 1.1

A synthetic data set with 1000 transactions and 1000 items con-

taining 32 patterns Lo
G, graph of dataset in Table 1.2 with a support threshold of 4

GPVS of G, graph in Figure 3.3. Dashed lines enclose parts A,B

and separator S.
G, graph of dataset in Figure 3.2 with a support threshold of 5%

GPVS of G, graph in Figure 3.5. Dashed lines enclose parts A,B

and separator S.

Two-way partitioning of transaction set in Figure 3.2.

C++ code to sort transactions in a unique decreasing order

Running time for support threshold 0.75%

X1v

16

20

33

34

36

37

39

39

41

65

69

LIST OF FIGURES XV

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

Al

A2

A3

A4

Running time for support threshold 0.45% 70
Running time for support threshold 0.40% 71
Running time for support threshold 0.35% 72
Running time for support threshold 0.30% 73
Running time for support threshold 0.25% 74
Speedup for support threshold 0.75% 76
Speedup for support threshold 0.45% 7
Speedup for support threshold 0.40% 78
Speedup for support threshold 0.35% 79
Speedup for support threshold 0.30% 80
Speedup for support threshold 0.25% 81
Speedup vs. support on 16 processors. 82

Comparative performance of three load estimate functions for sup-

port threshold of 0.25% 83
Running time for T10.16.800K and T10.16.1600K 101
Running time for T10.14.1024K and T15.14.367K 102
Speedup for T10.16.800K and T10.16.1600K 103

Speedup for T10.14.1024K and T15.14.367K 104

List of Tables

1.1

1.2

2.1

2.2

3.1

4.1

6.1

6.2

A Transaction Set T' with I = {a,b,c,d,e, f,g}. 3
A Transaction Set T' with I = {a,b,c,d,e, f} 4
Sequential association rule mining algorithms. 15
A sample Transaction Set 19
rs(T) = (T1,T3) of transaction set in Table 1.2 38
A Transaction Set T' with I = {a,b,¢,d,e, f,g,h,i} 56
Dataset parameters oL 67
Synthetic data sets 67

XVi

List of Algorithms

© 00 ~I O Ul A W N

NN N N N = e e e e e
= W N = O© ©O© 00 1 O Ot i W NN+~ O

APRIORI(T,€) o o oo 18
MAKE-FP-TREE(DB,€)o 22
INSERT-TRIE([p|P],T)« o o 22
FP-GROWTH(Tree,cr) oo oo i oo i 23
PAR-FREQ(T}, ¢, MINE-FREQ) 43
COMPUTE-F-Gp,(Ti,€) o oo 44
COUNT-1-ITEMS(T5,€) . . o o o o v 44
CouNT-2-ITEMS(T5, 6, F) . . . o oo oo oo 45
K-WAY-PARTITION(T;, €, G,, Processors) 47
2-WAY-PARTITION(T;, ¢, F, G,, Processors) 47
PARTITION-PROCESSORS(Py, Po) « « o v v v oo oo oo oo 49
REDISTRIBUTE-DB(P, P,, Processorsy, Processorss) 50
CYCLE(d,P). o 50
VERTEX-INDUCED-SUBGRAPH(G, A) 51
K-WAY-PARTITION" (T)pcai, €, G, Processors) 52
REDISTRIBUTE-DB*(Tjpeqr, Parts) 53
FP-GROWTH" (Tree,cr) o v i 56
CoONs-CONDITIONAL-FP-TREE(Tree,s) 57
COUNT-PREFIX-PATH(node, count) 58
GET-PATTERN(node) 58
INSERT-PATTERN(T'ree, pattern) 59
PAR-FP-GROWTH(Tj,€) o 60
FP-MINE(T}, €, Gry) « « « « o o o e 60
CouNT-2-ITEMS™ (T3, 6, F) o o 106

xvii

Chapter 1

Introduction

Frequency mining is the discovery of all frequent patterns in a transaction or
relational database. Frequent pattern discovery comprises the core of several data
mining algorithms such as association rule mining and sequence mining [35], and
it dominates the running time of these algorithms. It has been shown to have
an exponential worst case running time in the number of items', therefore much

research has been devoted to increasing the efficiency of this task.

Since both the data size and the computational costs are large, parallel algo-
rithms have been studied extensively. Scalable data mining can only be provided
by a parallel system in the face of massive I/O and computation. Frequency min-
ing has become a challenge for parallel programming since it is a highly complex

operation on huge datasets requiring efficient and scalable algorithms.

In this thesis, we build upon the work of Agrawal [5], Zaki [82], and Jiawei
Han [35] investigating a new family of algorithms using a novel top-down data
partitioning scheme to achieve parallelism. We present complete implementation

of a proposed algorithm and demonstrate its parallel performance.

'In the more common database terminology, the number of attributes.

CHAPTER 1. INTRODUCTION 2

1.1 Outline

The organization of this thesis progresses from the theoretical to the more prac-
tical. Chapter 2 surveys the frequency mining problem as a prominent task in
data mining. Chapter 3 consists of our theoretical observations from which we
construct the parallel frequency mining algorithm of Chapter 4. Succeeding that,
Chapter 5 conveys the implementation details of our system. An extensive per-
formance study of our system is presented in Chapter 6, before Chapter 7 in
which we summarize our findings. Readers who are acquainted with parallel data

mining and frequency mining may skip Chapter 2.

In the following section, we present the frequency mining problem in a formal

manner.

1.2 Problem Statement

Frequency mining involves a transaction database T which consists of a set of
transactions each of which are drawn from a set I of items. The mining algorithm
finds all patterns that occur with a frequency satisfying a given absolute support
threshold e.?

Definition 1. A transaction set is a collection of transactions drawn from a
set of items I.
For a transaction set 17" and a set of items I,
T={X|XCI} (1.1)
Equation 1.1 gives us the formal definition of a transaction database.> In

practice, the number of items |I| is in the order of magnitude of 10 and more.

The number of transactions is much larger, at least 10°.

2Support thresholds in all definitions are absolute values rather than relative.
3The collection can contain multiple instances of the same transaction.

CHAPTER 1. INTRODUCTION 3

In Table 1.1 an example transaction set with an item set I = {a,b,c,d, e, f, g}
is exhibited. Each row in the table below the legend corresponds to a transaction
X € T, and each member of a transaction is marked with x. In this sample
transaction set there are |I| = 7 items and |T| = 5 transactions. Table 1.2

illustrates another transaction set with |/| =6 and |T'| = 9.

|Transaction ||a|b|c|d|e|f|g|
t, ={b,c,e,g} X | x X X
to ={a,d, f,g} X X X | x
ts = {a,b,d,e, g} X | X x | x X
ty ={b,c,e, [} X | x X | X
ts = {a,d,e, g} X X | x X

Table 1.1: A Transaction Set T with I = {a,b,c,d,e, f, g}

Definition 2. The occurrence function o : 2! x I — {0,1} detects whether an

item 1s present in a given transaction.

1 ifi C X,
o(X,i) = (1.2)

0 otherwise

We have defined a utility function for computing frequency of items. For trans-
action t; = {a, c} in Table 1.1, o(t1,b) = 0 while o(t1,¢) = 1.

Definition 3. The frequency function f : 22 x [— N computes the number of

times a given item 1 € I occurs in the transaction set T'.

F(T,i) =) o(X,i) (1.3)

XeT

For transaction set T in Table 1.1, f(T,c) = 2 since ¢ occurs only 2 times.?

Definition 4. A pattern is X C I, a subset of I. The set of all patterns in a
transaction set T is P(T) = 27, which is the power set of I.

4In this and following definitions and lemmas, please assume that all sets are multi-sets in
which duplicates are permitted.

CHAPTER 1. INTRODUCTION 4

|Transacti0n ‘|a‘b‘c|d|e‘f‘
t1 ={a,b,c, f} X | X | % X
to = {b,c} X | X

ts = {a,d,e, f} X X | x| %
ty =A{b,d,e, f} X X | X | x
ts ={a,c,d, e} X X | X | %

te = {a,b,d, e} X | X x | x

tr ={b,c,e, [} X | X X | X
ts = {a,b,c,d, e} X | X | x| x|x

to = {b,c, f} X | X X

Table 1.2: A Transaction Set T with I = {a,b,c,d, e, f}

The frequency function is extended to f : 22" % 2! +» N for computing the
frequency of a given pattern. The frequency of a given pattern X is the number
of items it has occured in the transaction set. We define an extended occurrence

function for computing the frequency of a pattern.

1 ifY CX,
o(X,Y) = (1.4)
0 otherwise

FT,Y) = o(X,Y) (1.5)

XeT
where X is a transaction as in Equation 1.2, and Y is a pattern. For a pattern

{b,d} in transaction set 7" of Table 1.2, f(T,{b,d}) = 3.

Definition 5. Frequency mining is the discovery of all frequent patterns in a
transaction set with a frequency of support threshold € and more. The set of all

frequent patterns F in a given transaction set T is defined as:

F(T,e) ={X|X € 2! A f(T, X) > ¢} (1.6)

The set of all frequent patterns in transaction set 7" of Table 1.1 for a support
threshold of 3 is F(T,3) = {{a,d}, {b,e},{a,d},{g,a},{g,d},{a, g, d},{g,e}}

There are definitions of frequency mining more suitably recognized as subsets
of the total mining problem such as discovery of maximal frequent patterns [79]

and closed frequent patterns [77].

CHAPTER 1. INTRODUCTION)

In the algorithms we will describe two additional sets require special consid-
eration. F'is the set of frequent items, and F5 is the set of frequent patterns with

length 2. More formally stated,

F={zel| f(T,X)>e (1.7)
B={XeF||X|=2) (1.8)

We also state a significant property of frequency mining which was introduced

in [7]. We provide a proof in Appendix B.

Lemma 1. (Downward Closure) If X € F(T,¢) then VY C X,Y € F(T,e¢).

The rest of this thesis is devoted to computation of F. Computing F for large
T and I has enormous time and space requirements. Many serial and parallel
algorithms have been designed to tackle this problem. In the next chapter we

will survey previous such work.

Chapter 2

Background

In recent years, large quantities of data have been amassed with advances in data
acquisition capabilities [16]. The domain of this data ranges from retail trans-
actions [4], world wide web [20] and telecommunications[72] to astrophysics [61],
stock-market [39], biological databases [19, 62], weather, geological, environmen-
tal [24] and several others. There are virtually no limits to the kind of data that
can be collected, yet without the means to analyze them they are of little value.
It has been long conjectured that this enormous landscape of data contains within
interesting new facts about these domains. However, comprehending such data is
beyond the capacity of human processing [59]. Automated methods are required,
hence Data Mining has emerged combining the works in Artificial Intelligence
and Database Systems. Due to the scale and complexity of knowledge discov-
ery and data mining, traditional analysis and algorithms cannot be maintained.
Data Mining carries out Machine Learning in these vast databases for deeper
understanding of what lies beneath. The field thus has proliferated gathering
attention from many researchers from various fields as we need new algorithms

and approaches for accomplishing this task.

CHAPTER 2. BACKGROUND 7

2.1 Data Mining and Knowledge Discovery

Data Mining is an important step in Knowledge Discovery in Databases (KDD)
Process which consists of selection, pre-processing, transformation, data mining,
interpretation/evaluation [25]. Data Mining may be described as “a process of
nontrivial extraction of implicit, previously unknown and potentially useful in-
formation from data in databases” [16]. Fayyad et al. define data mining as “a
step in the KDD process that consists of applying data analysis and discovery
algorithms that, under acceptable computational efficiency limitations, produce
a particular enumeration of patterns (or models) over the data” [27]. KDD itself
is referred to as overall process of discovering useful knowledge from data [26].
However, it might not be accurate to view data mining as a toolkit without a
specific aim on its own. Indeed, data mining, as implied by the definition of
Fayyad [26], is the most algorithmic and technical of the steps in KDD. However,
it is not without deliberate design of the qualitative aspects of input and output
that we should conduct research in data mining. For instance, data clustering
strives to discover conceptual structure implicit in data. The I/O and processing
of such a task depends strictly on cognitive aspects of concept acquisition and
interpretation of such data by humans as well as the sort of data being worked
on. The boundary between KDD and data mining is not clear cut. Therefore
the definition we maintain for data mining is: “Application of efficient algorith-
mic solutions on a variety of immense data for knowledge discovery”. That is
distinct from other steps in KDD, in that it is comprised fully of autonomous
processes, and that it solves the problems of KDD with algorithmic means oper-
ating on large databases; in many cases with novel algorithms.! In that respect,
computing the variance of a numerical attribute may be part of KDD?, but it
is not necessarily data mining. Likewise, the algorithmic details and efficiency
considerations are vital in data mining research whereas KDD is interested in the

outcome and applicability of those algorithms.

KDD and data mining present new challenges to researchers; Fayyad, Shapiro

!However, interactivity is not excluded in data mining. See for instance the work on online
association rule mining [41].
2In preprocessing for instance.

CHAPTER 2. BACKGROUND 8

and Smyth [28, 26] enumerate massive databases and high dimensionality, in-
teraction and comprehensibility, overfitting and assessing statistical significance,
missing data, data in flux, integration and multi-source multi-type data as chal-
lenges of KDD. According to Chen et al. [16], the requirements and challenges
of data mining are handling of different types of data, efficiency and scalability,
usefulness of results, presentation and interactivity, distributed data sources, and

privacy / security issues.

Among common data mining functions are summarization, clustering, classi-

fication, regression, deviation detection and dependency modelling [28]:

Summarization Discovery of a compact and meaningful description for a subset
of data has found several applications. This operation usually finds patterns
in the data and derives higher level knowledge from them. Among these
are association rule mining which finds rules that correlate the presence of
one set of items with that of another set of items[9] and sequence mining
which finds interesting sequential relations in event data. For instance, as-
sociation rule mining can discover which items are sold together in a store.
This knowledge can be used to shelve or advertise products closer to one
another [9]. Application of association rule mining includes discovery of web
content and usage rules [20], phrase association rules from text [38], reduc-
ing telecommunication order failures and detecting redundant medical tests
[10], recurrent images in medical image databases [76], co-citation in scien-
tific papers [55], automatic classification of e-mail messages [43]. There are
variants of association rule mining such as implication rules which can help
find rules like “heads of households do not have personal care limitations”
from U.S Census data [14]. We will revisit association rules once again
since it is interesting to us as the chief application of frequency mining.
Sequence rule mining is an extension of association mining which considers
the timestamps of transaction events [8]. Applied to a retail transaction
database, sequence mining can find which items a customer is likely to pur-
chase in the near future [9]. Sequence mining has important applications
such as telecommunications alarm management [56], stock market predic-

tion [52, 39], and predicting plan failures [80]. Other interesting branches of

CHAPTER 2. BACKGROUND 9

work that summarizes data is data cubes and Online Analytical Processing
(OLAP) [37, 2] which consider systems that are interactive and can provide
automated reports on the data. Closely related is work on high-dimensional

multivariate data visualization [73, 15].

Clustering is a prominent problem in data mining which aims identifying con-
ceptual distinctions in large high dimensional volumes of data [3, 45, 46,
63, 31]. A program scans the whole dataset, possibly in multiple passes,
and classifies the data points into clusters of points with no prior train-
ing. Data clustering is indeed equivalent to the unsupervised conceptual
learning in Machine Learning, and has been extensively studied before [70].
Typically, a data clustering algorithm tries to maximize intra-cluster sim-
ilarity while minimizing inter-cluster similarity. The clusters found aid us
in characterization of data. For instance a clustering of text documents
may discover documents with similar subjects. Applications of clustering
include characterization of different customer groups from purchasing pat-
terns, categorization of documents on the World Wide Web, grouping of
genes with similar functionality and grouping of spatial locations prone to
earth quakes from seismological data [46]. Other applications being worked

on include automatic categorization of objects in the sky [25].

Classification corresponds to supervised learning while clustering corresponds
to unsupervised learning. In classification algorithms, the categories or
classes of objects are given to the system and the system learns to classify
new objects according to this training set. The classifier system develops
an internal model of concepts using features in the training set [16]. The
model’s performance is tested upon a test set which the trained model
classifies. Most classification algorithms are based on decision trees [57, 67,
11, 44, 64]. Decision tree is a flowchart like tree in which internal nodes are
tests and leaf nodes are classes. A decision tree is constructed and refined in
the training phase. For a specific datum, tests are conducted starting from
the root node, a path of tests lead to the class of object [44]. Applications
of classification includes credit approval, product marketing and medical

diagnosis [44], classification of trends in financial markets[27]. For instance

CHAPTER 2. BACKGROUND 10

in credit approval one could categorize applicants’ credit ratings as good or
poor based on their income and debt [27, 9]. Classification also has several
successful scientific applications such as categorization of objects in the sky

and finding volcanos on Venus [25].

Regression is similar to classification, in that it learns a wvalue from a train-
ing set, the value here being a real-valued prediction variable instead of a
class?. It also discovers functional relationships between variables [28]. Al-
ternatively known as predictive modelling [17] regression has applications
such as prognostic models in medicince [1], modelling customer retention in
banks [23], predicting the duration of an automobile trip [36] and estimating

when a stock will change the direction of its slope [75].

Dependency Modelling finds significant dependencies between models . The
dependency information is conveyed at two levels: structural and quan-
titative. The applications of dependency mining range from probabilistic
medical expert systems to information retrieval and human genome. An in-
teresting study that concerns structure is subgraph discovery [22, 50]. Often
structural data is not taken into account in mining, however substructure
discovery can lead to interesting knowledge such as discovering similar sub-
structures in molecular biology data [19]. In [21], substructure discovery
with an approach taking advantage of frequency mining as in [50] is used

to find frequent substructures in chemical compounds.

Deviation Detection is concerned with the detection of outliers by finding
those data points that differ significantly from the majority of data points
[9]. Medical diagnosis and credit card fraud detection [9] are among the

applications of this method.

The scope of data mining is not confined to those we have described. There
are several variants of those subfields we have outlined as well as many hybrid or
combined methods, for instance one may cluster frequent item sets found when

mining association rules [34].

3Which is a set rather than a number.

CHAPTER 2. BACKGROUND 11

Efficiency and scalability of algorithms is a prime requirement in data mining
research [16]. Today’s experimental databases of mere gigabytes will exceed ter-
abytes in the future. The immense magnitude of scientific data such as in space
sciences made available by NASA [61] will require great milestones in both the
content and methods of Knowledge Discovery research.* In particular, the sort
of scalability is available to only parallel computing systems which can store and
process enormous volumes of data. Therefore we believe that there is a need for

novel parallel algorithms.

We refer the reader to Fayyad et al. [27, 28, 26, 71] for an overview of KDD
and data mining. For an overview from the database perspective, see Chen’s
survey [16]. In another introductory article Mannila discusses the field and open
problems [55]. For association rule mining, an excellent survey is due to Zaki [78]
which covers both sequential and parallel algorithms and discusses open problems
in parallel association mining. Hipp et al. [42] study sequential algorithms and

benchmark some of them.

In following sections we expound on previous work in literature related to
the subject of this thesis. Frequency mining is a core operation in several data
mining algorithms for determining the relevant patterns in data. It is the subject
of the next section in which we explain the design of serial frequency mining
algorithms. In the following section, we deem the parallel algorithms for solving

the same problem.

2.2 Frequency Mining

Frequency mining problem presented in Section 1.2 comprises the core of a myr-
iad of data mining algorithms [35]. Many mining algorithms append a phase
to frequency mining to extract useful knowledge from the frequent patterns, for
instance in association rule [4], sequence [8] mining and their derivatives: corre-

lation [13], dependence rule [68], episode [56] mining.

4Only NASA Earth Observing System will deliver close to a terabyte of remote sensor data
per day[9].

CHAPTER 2. BACKGROUND 12

2.2.1 Association Rules

Most noteworthy of those is the association rule mining which has spawned the
entire field of data mining with Agrawal’s seminal paper [4]. In this paper the
interesting idea was to take advantage of a theoretical observation for an algorithm
that could compute what was introduced as association rules in market-basket
data with relatively few database scans. It effectively extended a method in
a similar vein to machine learning for databases that would not fit into main
memory. Association rule mining presented an automated means to discover
useful knowledge from a large database with a novel algorithm. This kind of

approach has been the recurring theme of data mining since then.

An association rule is an expression X = Y where X and Y are frequent
patterns and X N'Y = (). Intuitively, it means that whenever a transaction t;
contains X it is likely to also contain Y. The support of the rule is f(X UY)
the frequency of X UY, whereas the confidence of the rule is f(X UY)/f(X)
[4]. The confidence of the rule may also be understood as the conditional prob-
ability p(Y C T|X C T) [42]. In the prototypical application of data mining on
market-basket data, an association rule {z1, 22} = {x3} means “A customer who
purchases x; and x5 is likely to purchase x3.”. Discovery of association rules had
immediate practical value and with a simple yet effective algorithm it had much

impact.

In order to study the efficiency of the algorithm, we need a better under-
standing of the problem’s nature. The problem is first decomposed into two

subproblems [4]:

1. Computing all frequent item sets F with a given support threshold e.

2. Discovering rules X = Y that satisfy a given confidence with disjoint sets
X and Y chosen from F.

The second phase is computationally easier to solve, therefore almost all algo-

rithms have focused on efficiently computing phase 1, which is the subject of

CHAPTER 2. BACKGROUND 13

this thesis. The goal of phase 1 is to discover frequent itemsets among 2/l sub-
sets of I determining the frequencies of patterns from the complete database.®
We will explain some of the leading frequency mining algorithms in more detail.
Before doing so however, we give an alternate view of the problem for better

understanding of the similarities and differences between algorithms.

2.2.2 Search Space

It is profitable to view the frequency mining problem as a search problem [65].
The state space consists of the following. The set of all states is 2/, the powerset
of I. The initial state is {}. The set of actions is adding an item to a set or
removing an item from a set. The goal of the search is to discover all members of
F.% Figure 2.1 depicts the search space of item set {1,2, 3,4} which is also named
the lattice of the problem[42]. The dashed line separates the set of frequent item
sets from infrequent ones in the lower region for an imaginary transaction set. As

evidenced by Lemma 1, there is such a border for all transaction sets and e [42].

Besides being intuitive, this view of the problem allows us to reason about
the operation and efficiency of an algorithm.” Any algorithm will have to deter-
mine all X € F and the actions we are giving for an item set demonstrate the
application of Lemma 1. However, it may also deceive us in that it gives the
illusion of a traditional search problem while it is not. One cannot simply deploy
a traditional uninformed search algorithm to discover F. A general algorithm
cannot complete in a viable running time without taking into account the most
important distinction of this problem: the frequency of each itemset can be com-
puted only by considering the whole transaction database. As typical of search
problems, the state space does not fit into memory. Neither does the transaction
set fit into memory. Therefore we follow a generate and test approach in the
design of our algorithms and we should additionally contrive means to efficiently

compute the frequency function f.

5In this thesis, we do not consider sampling approaches which give approximate results.

5Which is rather unconventional for a traditional search problem.

"Another view of the problem is presented in [32] in which the relation to hypergraph
transversal problem and learning theory is examined.

CHAPTER 2. BACKGROUND

{1,2,3,4}

Figure 2.1: Search space of frequency mining problem

14

CHAPTER 2. BACKGROUND 15

Frequency mining problem can be solved by an algorithm that traverses the
state space and enumerates all X € F efficiently. Nevertheless, it turns out that
efficient computation of F presents challenges for algorithm design. Let us review
some of the forthcoming algorithms which systematically enumerate all frequent

item sets.

2.2.3 Mining Algorithms

Algorithm Search Structure Scans Layout
APRIORI BF'S Hash Tree k Horizontal
DHP BFS Hash Tree k Horizontal
PARTITION BFS Array 2 Vertical
SEAR BF'S Trie k Horizontal
SPEAR BFS Trie 2 Horizontal
DIC BFS Trie <k Horizontal
EcLAT DFS Array >3 Vertical
CLIQUE DFS&BFS Array >3 Vertical
Fp-GrowTH Multi-Constraint FP-Tree 2 Horizontal

Table 2.1: Sequential association rule mining algorithms.

With so many algorithms available, a classification is mandatory. In [78] se-
quential mining algorithms are classified according to their database layout, data
structure, search strategy, enumeration, optimizations and number of database
scans while [42] classifies them according to search strategy and frequency compu-
tation. We take Zaki’s classification scheme without enumeration and optimiza-
tions. By enumeration Zaki means whether all or maximal item sets are output.

In this section, we consider only those algorithms that determine all item sets.

In Table 2.1 and Figure 2.2 we present a classification of sequential algorithms
based on [78] and [42]. We extend Zaki’s classification by considering the type
of frequency computation and we exclude optimizations. We also add the FP-
GROWTH algorithm which is not available in Zaki’s classification. The properties

of algorithms are sorted in order of decreasing distinctive significance.

CHAPTER 2. BACKGROUND 16

Serial ARM Algorithms
/’\\
BFS DFS DFS&BFS Multi—Constraint

N i Eclat i i Clique i i Fp—Grow‘[hi
Hash Tree Trie Array
Apriori SEAR Partition
DHP Spear \—‘

DIC

Figure 2.2: Classification of sequential association rule mining algorithms.

Following are the properties in our taxonomy.

Search: The search strategy used. In uninformed search, two well known strate-
gies are Breadth First Search (BFS) and Depth First Search (DFS) [65].
BFS is the most common strategy employed by frequency mining problems
as it may be said to be tracking the frequency information more manage-

able. In more recent algorithms other search strategies have been adapted.

Structure: The data structure used for storing candidate patterns and frequency
information. The efficiency of a frequency mining algorithm is much depen-
dent on the data structure used. The data structures typically facilitate a
fast set (of sets) implementation with a way to determine counts of patterns

in an efficient manner.

Scans: The number of database scans the algorithm must perform. &k denotes
the length of maximum length frequent pattern in transaction set. When
there are long frequent patterns algorithms that require k£ scans may not

be feasible since the databases are very large.

Layout: The database layout assumed by the algorithm. Two common formats

CHAPTER 2. BACKGROUND 17

are horizontal in which each transaction’s transaction’s tid is stored along-
side items of the transaction and vertical in which a list of all tids is stored
for each item [78]. Algorithms that use horizontal layout use complex inter-
mediate structures to count occurrences while in vertical layout they store

only tidlist arrays and compute their intersections [78].

We will next summarize the APRIORI algorithm which is responsible for much
of the interest in association rule and frequency mining. Subsequently, we will
investigate algorithms which use summary structures for representing relevant
information and then we will focus on the leading frequency mining algorithm

FP-GROWTH [35] which uses compressed structures.

The reader is referred to [78] and [42] for more information on sequential

frequency mining algorithms.

2.2.3.1 Apriori Algorithm

ARIORI (Algorithm 1) [7] employs BFS and uses a hash tree structure to count
candidate item sets efficiently. The algorithm generates candidate item sets (pat-
terns) of length k from k£ — 1 length item sets. Then, the patterns which have
an infrequent sub pattern are pruned. According to Lemma 1, the generated
candidate set contains all frequent & length item sets. Following that, the whole
transaction database is scanned to determine frequent item sets among the can-
didates [78]. For determining frequent items in a fast manner, the algorithm uses

a hash tree to store candidate itemsets.®

2.2.3.2 Compact Structures

Compact data structures have been used for efficient storage and query /update of
candidate item sets in frequency mining algorithms. As illustrated in Table 2.1,
SEAR [60], SPEAR [60], and DIC[14] use tries? while FP-GROWTH [35] uses

8A hash tree has item sets at the leaves and hash tables at internal nodes [78].
9Also known as prefix trees.

CHAPTER 2. BACKGROUND 18

Algorithm 1 APRIORI(T €)

1: Ly < {large 1-itemsets}

2: k <+ 2

3: while L;_; # () do

4: Oy < GENERATE(Lj — 1)

5. for all transactions ¢t € T' do
6: Cy < SUBSET(Cy, t)

7: for all candidates ¢ € C; do
8: count|c| < count[c] + 1
9: end for

10: end for

11: Ly < {c € Ci| count|c] > €}
122 k<« k+1

13: end while

14: return | J, Ly

FP-Tree which is an enhanced trie structure.

Using concise structures can reduce both running time and size requirements
of an algorithm. Tries are well known structures that are widely used for storing
strings and have decent query/update performance. The algorithms mentioned
exploit this property of the data structure for better performance. Tries are also
efficient in storage. A large number of strings can be stored in this dictionary
type which would not otherwise fit into main memory. For frequency mining al-
gorithms both properties are critical as our goal is to achieve efficient and scalable
algorithms. In particular, the scalability of these structures are unmatched [35]
as they allow an algorithm to track the frequency information of the candidate
patterns for very large databases. The FP-Tree structure in FP-GROWTH allows
the algorithm to maintain all frequency information in the main memory ob-
tained from two database passes. Using the FP-Tree structure has also resulted

in novel search strategies.

A notable work on compact structures is [74] in which a binary-trie based
summary structure for representing transaction sets is proposed. The trie is
further compressed using Patricia tries. Although significant savings in storage
and improvements in query time are reported, the effectiveness of the scheme in

a frequency mining algorithm remains to be seen.

CHAPTER 2. BACKGROUND 19

In this thesis, the FP-GROWTH algorithm is utilized as the sequential mining

algorithm of choice. A closer analysis of FP-GROWTH is in order.

2.2.3.3 FP-Growth Algorithm

The FP-GROWTH algorithm uses the frequent pattern tree (FP-Tree) structure.
FP-Tree is an improved trie structure such that each itemset is stored as a string
in the trie along with its frequency. At each node of the trie, item, count and
next fields are stored. The items of the path from the root of the trie to a node
constitute the item set stored at the node and the count is the frequency of
this item set. The node link next is a pointer to the next node with the same
item in the FP-Tree. Field parent holds a pointer to the parent node, null for
root. Additionally, we maintain a header table which stores heads of node links
accessing the linked list that spans all same items. FP-Tree stores only frequent
items. At the root of the trie is a null item, and strings are inserted in the trie

by sorting item sets in a unique!® decreasing frequency order [35].

Table 2.2 shows a sample transaction set and frequent items in descending
frequency order. Figure 2.3 illustrates the FP-Tree of sample transaction set in
Table 2.2. As shown in [35], FP-Tree carries complete information required for
frequency mining and in a compact manner; the height of the tree is bounded
by maximal number of frequent items in a transaction. MAKE-FP-TREE (Al-
gorithm 2) constructs an FP-Tree from a given transaction set T and support

threshold e as described.

| Transaction | Ordered Frequent Items “
tlz{f7a7cadvgai7m7p} {f,c,a,m,p}
tQZ{a,b,C,f,l,m,O} {f,c,a,b,m}
t3:{b7f7h7j70} {f?b}

ty = {b7 C, k: Sap} {Ca b7p}
t5:{a,f,c,e,l,p,m,n} {f,c,a,m,p}

Table 2.2: A sample Transaction Set

10A]] strings must be inserted in the same order; the order of items with the same frequency
must be the same.

CHAPTER 2. BACKGROUND 20

Figure 2.3: An FP-Tree Structure.

In Algorithm 4 we describe FP-GROWTH which has innovative features such

as:

1. Novel search strategy
2. Effective use of a summary structure

3. Two database passes

FP-GROWTH turns the frequency k length pattern mining problem into “a se-
quence of k frequent 1-item set mining problems via a set of conditional pattern
bases” [35]. It is claimed that with FP-GROWTH there is “no need to generate
any combinations of candidate sets in the entire mining process”!'. With an FP-
Tree Tree given as input the algorithm generates all frequent patterns. There
are two points in the algorithm that should be explained: the single path case
and conditional pattern bases. If an FP-Tree has only a single path, then an

optimization is to consider all combinations of items in the path.'? Otherwise,

I This is not an accurate picture as we will examine.
12Gingle path case is the basis of recursion in FP-GROWTH.

CHAPTER 2. BACKGROUND 21

the algorithm constructs for each item a; in the header table a conditional pattern
base and an FP-Tree T'reeg based on this structure for recursive frequency min-
ing. Conditional pattern base is simply a compact representation of a derivative
database in which only a; and its prefix paths in the original Tree occur. Consider
path < f:4,¢:3,a:3,m:2,p:2 > in Tree. For mining patterns including m
in this path, we need to consider only the prefix path of m since the nodes after m
will be mined elsewhere.!3 Considering the prefix path < f :4,¢:3,a: 3 > any
pattern including m can have frequency equal to the frequency of m, therefore
we may adjust the frequencies in the prefix path as < f: 2,¢: 2,a : 2 > which
is called a transformed prefiz path [35]. The set of transformed prefix paths of
a; forms a small database of patterns which co-occur with a; and thus contains
complete information required for mining patterns including a;. Therefore, recur-
sively mining conditional pattern bases for all a; in T'ree is equivalent to mining

Tree.* Treeg is simply the FP-Tree of the conditional pattern base.

FP-GROWTH is indeed remarkable with its unique divide and conquer ap-
proach. Nevertheless, it does generate candidates contrary to the title of
“ .. Without Candidate Generation” [35]. The conditional pattern base is clearly
a set of candidates among which only some of them turn out to be frequent.
The main innovation however remains intact: FP-GROWTH takes advantage of
a tailored data structure to solve the frequency mining problem with a divide-
and-conquer method and with demonstrated efficiency and scalability. Besides,
the conditional pattern base is guaranteed to be smaller than the original tree,
which is a desirable property. An important distinction of this algorithm is that,
when examined within our taxonomy of algorithms, it employs a unique search
strategy. When the item sets tested are considered, it is seen that this algorithm
is neither DF'S nor BFS. The classification for FP-GROWTH in Figure 3 of [42]
may be misleading. As Hipp later writes in the same paper, “FP-Growth does
not follow the nodes of the tree ..., but directly descends to some part of the
itemsets in the search space”. In fact, the part is so well defined that it would be
unjust to classify FP-GROWTH as conducting a DF'S. It does not even start with

item sets of small length and proceed to longer item sets. Rather, it considers a

13In this case only p.
“Which is equivalent to mining the complete DB.

CHAPTER 2. BACKGROUND 22

set of patterns at the same time by taking advantage of the data structure. This
search strategy may be called Multi-Constraint, however it is hard to classify

FP-GROWTH in the context of traditional uninformed search algorithms.

Algorithm 2 MAKE-FP-TREE(DB, ¢)

Compute F' and f(z) where z € F

Sort F'in frequency decreasing order as L

Create root of an FP-Tree T" with label “null”

for all transaction ¢t; € T do
Sort frequent items in ¢; according to L. Let sorted list be [p|P] where p is
the head of the list and P the rest.

. INSERT-TRIE([p|P])

7: end for

Algorithm 3 INSERT-TRIE([p|P],T)

if T has a child N such that item[N] = item|[p] then
count[N] < count[N] + 1
else
Create new node N with count = 1, parent linked to T" and node-link
linked to nodes with the same item via next
end if
if P # () then
INSERT-TRIE(P, N)
end if

2.3 Parallel Frequency Mining

As the transaction sets are large in both the number of items and transactions,
frequency mining algorithms have a strict requirement for scalability. High per-
formance computing has become an essential element of data mining as very large
data is becoming available in both scientific and business applications. As the
sensor data and simulation results accumulate, scientists need better means to

analyze them for discovering new knowledge [53, 25].

We must depend on parallel systems to analyze the massive volumes of data in
frequency mining problem [5, 78]. Zaki points out to the challenges for obtaining

good performance: communication minimization, load balancing, suitable data

CHAPTER 2. BACKGROUND 23

Algorithm 4 FP-GROWTH(T'ree, «)
1: if Tree contains a single path P then

2: for all combination 3 of the nodes in path P do

3: generate pattern U a with support minimum support of nodes in 3

4: end for

5: else

6: for all a; in header table of Tree do

7: generate pattern [<— a; U o with support = support|a;]

8: construct ’s conditional pattern base and then 5’s conditional FP-Tree
Treeg

9: if Trees # () then

10: FP-GrowTH(Treeg,)

11: end if

12: end for

13: end if

representation and decomposition and disk I/O minimization. In addition to the
requirements of a typical parallel algorithm, a parallel mining algorithm must
consider parallelism in disk operations. Zaki identifies three design dimensions:
parallel architecture, type of parallelism and load balancing strategy. Following

is a brief discussion of design options:

Architecture: Although programming for SM P systems is easier, only NUM A
systems can liberate the algorithm from the bus bottleneck. This thesis is
concerned exclusively with shared-nothing type of architectures in which
compute nodes with local CPU, RAM and disk communicate over an inter-

connection network.

Type of Parallelism: Task and data parallelism are the forthcoming paradigms
in parallel algorithm design. In frequency mining problem, data parallelism
corresponds to distributing the data among p processors and discovering
frequent patterns collectively. Task parallelism is the division of work, with
a suitable definition of atomic task, among the processors. Each processor
has access to all data or the part of data required for completion of the task
which can be accomplished by selective replication or explicit communica-

tion of local portions [78]. Hybrid strategies are also possible.

CHAPTER 2. BACKGROUND 24

Load Balancing Strategy: Static load balancing uses a heuristic cost function
to partition data/tasks among processor and does no further movement,
while dynamic load balancing seeks to migrate load off heavily loaded pro-

CeSSors.

2.3.1 Overview of Parallel Mining Algorithms

For designing a new algorithm, it is necessary to understand the design of the
algorithms proposed previously. We will embark on the significant contributions
to parallel frequency mining. The algorithms all start with equal disjoint portions
of the transaction set at each processor. We will consider APRIORI based parallel
algorithms and Zaki’s parallel algorithms PAR-ECLAT and PAR-CLIQUE which

are arguably the most advanced parallel mining algorithms proposed.

Upon the success of APRIORI several parallelizations of it were made. These
algorithms logically work in the same way as Apriori does, that is with a BFS,
frequency counting and candidate pruning, however using differing parallel meth-

ods.

2.3.2 Apriori Based Parallel Algorithms

In [5], the designers of APRIORI suggest 3 parallelizations of it. COUNT-
DISTRIBUTION minimizes communication and DATA-DISTRIBUTION tries to
make use of collective system memory while CANDIDATE-DISTRIBUTION reduces
communication costs by taking into account the task-data dependencies and re-
distributing data. Each algorithm parallelizes the iteration which is comprised of

a concurrent computation phase and a collective communication phase.'®

In COUNT-DISTRIBUTION, each processor computes all Cj at the beginning
of the iteration and makes a local passes determining local counts. Then, the

global counts are computed with a global sum-reduction to all processors. Each

15Except in the largely asynchronous phase of CANDIDATE-DISTRIBUTION.

CHAPTER 2. BACKGROUND 25

processor computes all Ly from global counts.

The objective of DATA-DISTRIBUTION is to exploit total system memory
better. Each processor generates |Ck|/p of candidates. The algorithm is
communication-happy as each processor must scan the entire database to deter-
mine counts of the candidate sets it owns. As the authors indicate, this algorithm

requires machines with very fast communication.

CANDIDATE-DISTRIBUTION is the most sophisticated of three algorithms as it
partitions both data and candidate sets permitting independent mining of parts.
This was designed due to the fact that no load balancing is done in Count and
Data Distribution, a processor has to wait for all other processors at each it-
eration’s synchronization step. Up to an intermediate iteration [either of the
previous algorithms is used. At iteration [, the algorithm partitions the item set
into p parts such that each processor can compute global counts of assigned item
sets independently while attaining load balance. At the end of the iteration the
database is redistributed according to item set partitioning. The partitioning
algorithm considers a lexicographical ordering of L, and L;_;. The item sets X
in Ly, with the same k£ — 1 length prefixes as item sets Y in L are sufficient to
compute the candidates and results of Y [6]. The load balanced partition of item
sets is achieved by distributing the connected components in a weighted depen-
dency graph which represents candidate generation dependencies among k — 1
length prefixes of L. After iteration [, each processor proceeds independently

only using pruning information from other processors as it becomes available [78].

Among three algorithms COUNT-DISTRIBUTION performs best, in a rather
unexpected way since CANDIDATE-DISTRIBUTION is the most advanced algo-

rithm.

2.3.3 Parallel algorithms based on Eclat and Clique

Parallel versions of ECLAT and CLIQUE have achieved tremendous success. Zaki

employs two improved item set partitioning schemes for task parallelism in the

CHAPTER 2. BACKGROUND 26

design of these algorithms [78].

Equivalence class clustering uses the same idea as the partitioning
CANDIDATE-DISTRIBUTION described in the previous section. Here we
shall dwell on this scheme with an example from [6]. Ly in this
scheme have their item sets represented as lexicographically ordered strings.
Let Ly = {ABC,ABD,ABE,ACD,ACE,BCD,BCE,BDE,CDE}, L, =
{ABCD,ABCDE,ABDE, ACDE,BCDE}, Ls = {ABCDE}. Consider a
part in Ly o = {ABC, ABD, ABE} with the common prefix AB. Computation
of candidates ABCD, ABCDE,ABDFE, ABCDE with the same prefix depend
only on items in a. Depending on this property, each set of items with the same
k — 1 length prefix in Ly is identified as a cluster. In the example of [78], let
L, = {12,13,14,15,16,17,18, 23, 25,27, 28, 34, 35, 36, 45, 46, 56, 58, 68, 78}. One
of the clusters, with the prefix 2 would be ay = {23, 25,27, 28}.

Maximal uniform hypergraph clique clustering obtains a more accurate par-
titioning by making use of a graph theoretical observation. Let us interpret Ly
as a k-uniform hypergraph in which vertices are items and edges are item sets.
In this hypergraph the set of maximal cliques C' contains all maximal frequent
itemsets [78]. In other words, C' gives us a good estimate of maximal frequent
itemsets, containing all maximal frequent item sets and infrequent ones and |C/|
gives us an upper bound on the number of maximal frequent patterns. Clusters
are derived in the same way as in equivalence clustering, for each unique k — 1
length prefix in Li. In the example Lo, the cluster for prefix 2 is identified as
maximal cliques {235, 258, 278}.

The clustering schemes obtain k clusters where &k > p. The £ clusters must be
assigned to processors so as to maintain load balance and minimal communica-
tion. For this purpose, each cluster’s load must be weighed. A cluster «; is given
weight ('O;il) which estimates the computational load of frequency mining within

the cluster. The clusters are binned to processors with a greedy heuristic.

It is assumed that L, has been computed and tidlists are partitioned in a
preprocessing step. Parallel algorithms in Zaki’s work are comprised of three

phases:

CHAPTER 2. BACKGROUND 27

1. Ttem set clustering and scheduling of clusters among processors
2. Redistribution of vertical database according to schedule

3. Independent computation of frequent patterns

In all algorithms L, is used for partitioning so that redistribution can be made
as soon as possible. Independent mining is performed by either a BE'S or hybrid
DFS/BFS search strategy.

Zaki shows as the advantages of his algorithms its distribution of data, de-
coupling of the processors in the beginning, vertical database layout and fast
intersections avoiding structure overhead. In the experiments, it is seen that the
more advanced maximal clique clustering does in fact improve upon equivalence
class clustering by providing more exact load balancing information. The most
important contribution of the work in question is the novel item set partitioning

scheme.

2.3.4 Other Studies and Remarks

In an interesting benchmark study [12], it is noted that the results confirmed on
artificial sets do not carry over to real-world data sets. In particular it is said that
the choice of algorithm does not seem to matter for a feasible number of rules.
Evaluating performance on real world applications is certainly valuable for any
data mining algorithm and we should expect the availability of large real-world

data sets for evaluating the effectiveness of parallel mining algorithms.

A tight upper bound on the number of maximal candidate patterns given Ly
is presented in [29]. The bound is derived from a combinatorial result by Kruskal
and Katona. It is also shown experimentally that the estimates are fairly accurate
in mining of artificial data sets. It is suggested that the results may be used in
optimization of mining algorithms. In the author’s opinion, this theoretical work

may be useful for improving load balance in parallel mining algorithms.

CHAPTER 2. BACKGROUND 28

In [58], a parallel implementation of FP-GROWTH is presented. The authors
report favorable speedups on a distributed shared-memory SGI Origin machine.
Note that Zaki’s experiments have been conducted on a shared-nothing DEC

Alpha cluster with DEC Memory Channel which is also a custom fast network.

Zaki’s survey of association rule mining algorithms not only classifies sequen-
tial and parallel mining algorithms according to their design choices but also gives
a list of open problems in parallel frequency mining: high dimensionality, large
size, data location, data skew, rule discovery, parallel system software, and gen-
eralizations of rules [78]. In [54], Maniatty and Zaki analyze the hardware and
software requirements of parallel data mining, especially databases, file systems

and parallel 1/O techniques.

2.4 Graph Partitioning

Graph partitioning is a cardinal problem that has extensive applications in various
areas. The problem is concerned with splitting a graph into &k parts which are
approximately equivalent in size. The partition is separated by a set of either
edges or vertices. There are many parameters and criterion for the quality of
the partition. For instance, a specific application may require that a two way
partition is separated by a minimum number of edges. As Liu [51] notes, the
fundamental importance of the problem is due to its strong connection to the
divide-and-conquer paradigm. Many search problems with detailed structure and
global goals lend themselves to graceful modeling with the partitioning problem

such as task scheduling, VLSI design, and scientific computing.

2.4.1 Application Domains

Not surprisingly, the first problems that were recognized to be effectively mod-
eled by graph partitioning come from the realm of computers and engineering.

Kernighan and Lin describe the problems of placement of electronic components,

CHAPTER 2. BACKGROUND 29

and optimizing paging properties of programs as immediate examples [49]. Since
then, graph partitioning has proven to be a versatile tool in VLSI design and
many software problems. Following are examples to common applications of

graph partitioning.

e The problem of task scheduling for parallel computing suits beautifully to
graph partitioning problem. Since one would wish to reduce the expensive
communication between tasks, she can model the tasks as vertices and the
communication volumes as edges of an ordinary graph. A partition of the
graph into the number of processors which minimize the total communica-

tion volume would then give an exact solution to her needs.

e The solution of sparse symmetric matrices, for instance in linear program-
ming, is best described as a graph partitioning problem in which the n
vertices of the graph correspond to the n columns of the matrix and the
edges represent the non-zero elements of the matrix [40]. Although there
are algorithms which operate directly on matrices, the graph partitioning

based algorithms have been shown to be more powerful [33].'

2.4.2 Graph Partitioning Methods

Because of its spectacular generality, several methods to solve the partitioning
problem have been developed for more than three decades. Since the problem is
known to be NP-complete, any solution has to be based on heuristics. Currently,
there are various heuristic methods which give partitions of high quality within

reasonable time-space bounds [33].

One of the first breakthroughs in graph partitioning problem is due to
Kernighan and Lin [49] in their now classical paper. To date, heuristic proce-
dures usually employ a form of their approach. In that paper, they rule a number

of false heuristics out.'”

6Note that such a matrix and a graph are numerically identical structures, however the
graph theoretic approach yields more elegant and effective results.
"They give a measure of how big the search space is, they state that for a 32x32 matrix the

CHAPTER 2. BACKGROUND 30

We should first distinguish between two families of algorithms:

Single-Level Algorithms These algorithms operate on the graph as a whole.
That is they do not derive an equivalent structure instead of the graph
(or matrix). The terms in their formulation usually correspond to sets or
elements of vertices (edges) of the graph. They work by finding an initial

partition and then improving it according to a heuristic.

Multi-Level Algorithms Multilevel algorithms first reduce the size of the
graph by collapsing vertices (and edges as accordingly), and then partition
this condense representation of the fine graph. The next step is to project
the partition of the coarse graph to the original one. The more effective of
these algorithms refine the partition at each level while projecting using a
heuristic. All three steps mentioned can be performed in differing manners,
thus making the overall algorithms distinct. A survey and evaluation of

multilevel methods is available in [48].

The reader is referred to [48, 40] for a survey of partitioning algorithms.

2.4.3 Problem Description

Definition 6. K-way Graph Partitioning Problem: Let a graph G = (V, E)
where |V| = n be partitioned into subsets Vi, Vs, ..., Vi such that for all 1 <
i < j <k VinV;=0and |V;| 2 n/k and |J,Vi =V where edge cut E, =
{(u,v)[(u,v) € EANT,j(i # jAu € ViANv € V;)} and |E,| is minimal. The
partitioning is denoted as Hgpps(G) = V1, Vo, Vs, ..., Vi,

The formal definition also introduces E. the edge cut. Indeed, we can de-
fine graph partitioning by edge separator. In other words, removal of the edge
separator F, partitions the connected graph G into k£ roughly equal connected

components.

chance of a random trial to hit the optimal peak is about 10~7.

CHAPTER 2. BACKGROUND 31

As previously stated, partitioning of a graph by edge separator is distinct from

partitioning of a graph by vertex separator.

Definition 7. K-way Graph Partitioning by Vertex Separator Problem:
The k-way partition of a connected graph by vertex separator is defined as follows.
Let a connected graph G = (V,E) where |V| = n be partitioned into subsets
Vi, Va, .., Vi and V, such that for all1 <i < j <k, V;nV; = 0 and |V;| = "=l
and | J, Vi =V = Vs and Vu,v(u € V;Av € V}) = (u,v) ¢ E |Vy| is minimal. The
partitioning is denoted as Hgpys(G) = ({V1, Va, Vs, ..., Vi1, 9).

We will denote V with S in the rest of the thesis and in 2-way graph parti-
tioning problem by vertex separator, which is also known as graph bisection by
vertex separator problem, Vi and V5, will be denoted with A and B respectively.
This special case will be denoted as Ilgpys(G) = ({4, B}, S).

An immediate extension to these problems is the addition of vertex and edge
weights. We will denote vertex weights by w(z) and edge weights by w(u,v).
In general, if there are no weights in the graph these quantities may be safely
assumed to be 1 for all existent vertices and edges. Note that addition of the

weight notion changes the problem description in that:
e In the edge separator problem we minimize , 5 w(u,v) and consider
the total vertex weight of partitions for the balance constraint.

e In the vertex separator problem we minimize), o w(u) and consider the

total vertex weight of partitions for the balance constraint.

Chapter 3

Transaction Set Partitioning

In this chapter, we describe our theoretical contributions which will be developed
into a parallel algorithm in Chapter 4. We introduce a graph based partitioning
scheme that can be used to divide the frequency mining task in a top-down fash-
ion. The method used operates on the G'r, graph from which a graph partitioning
by vertex separator (GPVS) is mapped to a two-way partitioning on the transac-
tion set. The two parts obtained can be mined independently and therefore can
be utilized for concurrency. In order for this property to hold, there is an amount
of replication dictated by the separator in G, which is minimized by the graph

partitioning algorithm.

In the following sections, we first present the objective of transaction set parti-
tioning. Then, we expound on the theoretical content of two-way transaction set

partitioning. The last section extends 2-way partitioning to k-way partitioning.

3.1 Objective

The objective of transaction set partitioning is to divide a transaction set such
that each part can be mined independently while not inflating the data pro-

hibitively. Once such a partitioning is obtained, an algorithm such as [82] can

32

CHAPTER 3. TRANSACTION SET PARTITIONING 33

be designed which consists of a redistribution phase and a following local mining

phase as described in Section 2.3.

In general, a parallel algorithm can be said to exploit data parallelism or
task parallelism. Our method investigates a partitioning on the data since the
databases involved are usually large, i.e. on the order of 100MB and more. There-
fore, communication becomes an important obstacle to the scalability of parallel
algorithm as size increases. An approach which replicates a big portion of the
database would not yield a practical algorithm, especially on clusters without

custom network hardware.!

We show that a graph partitioning by vertex separator is sufficient to des-
ignate such a partition on the transaction set. Our work assumes that the Gp,
graph is sparse, since graph partitioning may not be feasible on graphs with large

connectivity.

3.2 Transaction Set Partitioning

Definition 8. G, = (F, F3) is an undirected graph in which each node u € F' is

a frequent item and each edge {u,v} € Fy is a frequent pattern.

The G, graph of sample transaction set of Table 1.1 is illustrated in Fig-

ure 3.1.

NG
Figure 3.1: G, graph of transaction set in Table 1.1

This graph is relatively easy to compute with respect to the complexity of

the whole mining task, and it tends to efficient parallel algorithms. G, contains

ISuch as the Beowulf class supercomputer on which we have made our experimental studies.

CHAPTER 3. TRANSACTION SET PARTITIONING 34

valuable information which can be used to predict certain properties of complete
frequency mining. The maximal cliques in G'r, give us the potentially maximal

patterns, which in turn can be used to achieve task parallelism.

Our method, on the other hand, does not require finding maximal cliques.
Instead, we perform a graph partitioning on Gz, which allows us to define inde-
pendent parts on the transaction set. The partitioning identifies lack of cliques

among two sets of items rather than enumerating all cliques.

In Figure 3.2, a synthetic data set generated with the procedure described
in [7] is plotted. The parameters are 1000 transactions, 1000 items, average

transaction length of 8, 32 patterns, and an average pattern length of 3.

200

400

600

Transaction ID

800

1000

800 1000

ltem

Figure 3.2: A synthetic data set with 1000 transactions and 1000 items containing
32 patterns

CHAPTER 3. TRANSACTION SET PARTITIONING 35

3.3 Two-way Partitioning of Transaction Database

Definition 9. A transaction database projected from T over a set of items A is

maT)={XNA|XeT)}.

Definition 10. We determine two-way transaction set partitioning pg(T) =
(Tl,TQ) fmm HGPVS(GFZ) = ({A,B},S) where,

Ty = maus(T) (3.1)
Ty = mpus(T) (3.2)

The partitioning is achieved by projecting each transaction in transaction set
T into two parts. Intuitively, we project the intersection of transactions with
AU S into T} since there can be patterns contained in only A, or contained in
A and S. Likewise for B U S and T,. The database has been divided into two,
replicating those items in S to facilitate independent mining of parts. In the
following text, we show that mining two partition databases result in complete

frequency mining of the original transaction set 7T'.

Figure 3.3 depicts the G, graph of transaction set in Table 1.2. Ilgpy g of this
graph is drawn in Figure 3.4 and the transaction set partition [Ig corresponding
to this GPVS is illustrated in Table 3.1.

Lemma 2. If there is a frequent pattern P in T, then there is a corresponding

clique in G, with vertices labeled as items in P.

Proof. Due to the downward closure property, a pattern P can be frequent if and
only if all subsets of the pattern are frequent patterns. A frequent pattern P C F'
contains ('I;') subsets (sub patterns) with cardinality 2. Then, Yu,v € P, {u,v} is
a frequent pattern. By definition of G,, each frequent pattern with cardinality
2 is an edge in Gp,; hence Yu,v € P,(u,v) € F,. If there is an edge between
every two vertices among a subset of vertices in a graph, it is called a clique K.
Therefore, if there is a frequent pattern P, then there is a clique in G'r, whose

vertices are P. O

CHAPTER 3. TRANSACTION SET PARTITIONING 36

Lemma 3. There is no clique in G, with vertices in both A and B of GPVS
(A, B, S) of Gp,.

Proof. Assume that there is a clique with a vertex v in A and a vertex v in B.
This contradicts the fact that there are no edges between parts A and B in GPVS,

thus there can be no such clique. O

Lemma 4. There is no frequent pattern with items in both A and B of GPVS
(AaBy‘S) OfGFQ'

Proof. Since there can be no clique in G, that contains items in both A and B,

there can be no such frequent pattern. O
/ﬁ m RS
b e — d

Figure 3.3: G, graph of dataset in Table 1.2 with a support threshold of 4

Lemma 5. A frequent pattern can be a subset of either A, B, AUS, BUS or S.

Proof. A clique K in G, can have vertices in
1. Within either of A, B and S in GPVS of G, since there can be arbitrary
edges within parts and the separator S.

2. In AU S and B U S since there can be arbitrary edges between a part and
the separator S.

3. There can be no clique with edges in both A and B.

Therefore, there can be frequent patterns drawn from A, B, AUS, BU S or
S. O

CHAPTER 3. TRANSACTION SET PARTITIONING 37

Lemma 6. Independent discovery of frequent patterns in parts T and Ty result

in discovery of all frequent patterns in T'.

Proof. V frequent pattern P in T,

1. If PC Aor PC AUS, then P € pattern set of T;.
2. f PC Bor PC BUJS, then P € pattern set of T5.

3. If PC S, then P € pattern set of T} and P € pattern set of T5.

Therefore, every pattern is found in either part or both parts. O

In Figure 3.5 is the G, of transaction set in Figure 3.2 with ¢ = 0.05%
(of number of transactions). GPVS of the same graph is given in Figure 3.6.
The two-way transaction set partitioning corresponding to the vertex separator

is illustrated in Figure 3.7.

Figure 3.4: GPVS of G, graph in Figure 3.3. Dashed lines enclose parts A,B
and separator S.

Data replication in partition IIpg = (71,73) on T is determined by vertex
separator S. By definition of two-way partitioning, for every transaction X € T,
X NS is projected in both T} and T5.

We shall now show the amount of data replication.

CHAPTER 3. TRANSACTION SET PARTITIONING 38

Lemma 7. The amount of data replication is Y ..o f(u).

Proof. The frequency function f gives us how many times a given item occurs.
Summation of f(z) over a set of items yields how many transaction data exist in
the projection of transaction set with respect to a given item set. Since S exists
in both parts of the bipartition, the amount of data replication is the number of

transaction data projected over S. (I

Lemma 8. GPVS of G, with item frequencies as vertex weights minimizes the

amount of replication.

Proof. Graph bisection by vertex separator (of a weighted graph) will minimize
the total weight of the separator as its objective. The graph partitioning mini-
mizes data replication since the total weight of the separator is equal to amount

of data replication.? O

la]bfcld]e|f] [alblc]d]|e]/]]

X | X X X
X | X
X | X X X | X

X X | X X | X

X X X X | X
X X X X | X
X | X X | X X
X | X X X X | X
X | X X

Table 3.1: Ilyps(T) = (11, T3) of transaction set in Table 1.2

3.4 k-way Partitioning of Transaction Database

In this section, we describe means to extend 2-way partitioning to a k-way parti-

tioning. We show that by plain recursion, it is possible to obtain as many parts

2Using an unweighted graph will not minimize data replication, but will result in substantial
reduction in any event.

CHAPTER 3. TRANSACTION SET PARTITIONING 39

Figure 3.6: GPVS of G, graph in Figure 3.5. Dashed lines enclose parts A,B
and separator S.

CHAPTER 3. TRANSACTION SET PARTITIONING 40

as necessary.

Two-way transaction partitioning can be applied recursively to divide the two
projected databases. Since the resulting projected databases of transaction set
partitioning are transaction sets themselves, we can apply the same method to
divide them further. It is a choice of algorithm to decide how many levels of

recursion is needed to actually obtain such a k-way partition.

In order to partition the derived datasets, one must obtain the G, of the two
parts. This can be accomplished by simply running the same algorithm for the
output transaction set, however this can be costly. There is no need to recompute

F and G, since they are already known.

Lemma 9. F of a part ws(T) in lps(T) is A and Gg, of mao(T) is subgraph of
G, of T induced by vertex set A.

Proof. By definition of 74(T") and F, frequent patterns in 74 (7") part are identical
to those patterns in {X € F(T)|X C A}. GF, graph’s vertices are frequent items
and its edges are frequent patterns with length 2, therefore the vertex induced
subgraph of G, by A is identical to G, of ms(T). O

CHAPTER 3. TRANSACTION SET PARTITIONING

T T I T
200 | 3
o i
c : i ‘
S 400 | i
(&) : !
4] :
(2] !
o
(@] H i
—I i i
800 -
1000 ' ! ' '

200

1000

Local Transaction ID

800

1000

200

400 |

600 |

200

400 600 800
ltem

1000

Figure 3.7: Two-way partitioning of transaction set in Figure 3.2.

41

Chapter 4

A Parallel Algorithm for
Frequency Mining

In this chapter we present a parallel algorithm based on our theoretical obser-
vations of Chapter 3. PAR-FREQ algorithm computes a k-way partitioning in
parallel and redistributes transaction database. Subsequently, mining proceeds
at each processor with a local mining algorithm. The algorithm is independent
of the serial frequency mining algorithm, although we employ a particular serial

algorithm, namely FP-GROWTH, for use with PAR-FREQ.

In the following section, we give an overview of the algorithm. The remaining
sections deal with each important step of the algorithm which are the computation

of the G, graph, k-way partitioning, optimizations and the serial algorithm used.

4.1 Overview

In the parallel algorithms of this thesis, p is the number of processors and pid is

the running processor’s identifier.

The algorithm takes as input a local transaction set T; at processor ¢, a support

threshold €, and a serial mining procedure MINE-FREQ. We assume that the

42

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 43

transaction database has been partitioned transaction-wise prior to execution
of the mining algorithm. Each local transaction set 7; is disjoint and contains
approximately |T|/p transactions from the global transaction set 7. However, we
do not assume any specific form of partitioning; the partitioning may be random.
It is sufficient that the local database sizes are approximately equal. Support
threshold € is the absolute threshold as in Equation 1.6. MINE-FREQ is any
serial frequency mining algorithm that computes all frequent patterns, and their

frequencies from a given transaction set.

PAR-FREQ computes both the set of all frequent patterns F and the frequency
function f for the global transaction set 7. Algorithm 5 conveys the top level al-
gorithm. First F' and G'p, are computed which is the prerequisite for partitioning
algorithm. k-way partitioning procedure KWAY-PARTITION computes a p-way
partition recursively. The partitioning algorithm generates a local transaction
set Tpqr at each processor which may be mined independently. In the last step of
the algorithm, the serial mining algorithm MINE-FREQ is executed on T},,; with
support threshold e. We additionally give G, which the serial algorithm may

utilize.

Algorithm 5 PAR-FREQ(T;, ¢, MINE-FREQ)

1: G, + COMPUTE-F-Gg,(T;, €)
2: Thart < KWAY-PARTITION(T}, €, G,, Processors)
3: MINE-FREQ(Tport, €, G R,)

4.2 Computation of I’ and Gp,

We require the computation of F' and G, graph prior to partitioning. We com-
pute F' and Gp, in parallel, using a simple algorithm similar to early parallel
mining algorithms. To compute G, in parallel, we first determine F' in Algo-
rithm 6.

Algorithm 7 computes F' in parallel. We use an array C; to hold the local

counts. We count concurrently how many times each item occurs in 7;, in lines

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 44

Algorithm 6 CoOMPUTE-F-Gp, (T}, €)
F < Count-1-ITEMS(T;, €)
G, < COUNT-2-ITEMS(T}, ¢, F)
return Gp,

Algorithm 7 COUNT-1-ITEMS(T}, €)

1: > () is an array to hold local counts
2: zero ()

3 F 10

4: for all X €7, do
5. for all v e X do
6 C’l[u] — C’l[u] +1

7. end for

8: end for

9: > At this stage, Ci[i] = f(T;,1)

10: Reduce sum C) to C' at all processors > C'is the global count array
11: for u <+ 0to |I| —1 do

12: if Cfu] > € then

13: F <« FU{u}
14: end if
15: end for

16: return F

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 45

4-8. After counting we have obtained the local frequency function for 1-items;
Cili] = f(T;,i). Then we reduce the sums of local counts to each processor in
order to compute the global counts for 1-items. Between lines 11-15 we perform
the same operation at all processors to compute the set of items F' which contains

all items with a support of at least e.

Algorithm 8 COUNT-2-ITEMS(T}, €, F)

> A is an upper triangular matrix to hold local counts
A < MAKE-UT-MATRIX(|I|)
A0
for all X €7, do
for all {u,v} C XNF do
if u > v then
swap u and v
end if
Aup S Gy + 1
end for
: end for
: C' < MAKE-UT-MATRIX(|]])

—_
N = O

13: Reduce sum A to C at processor 0 > C is the global UT count matrix
14: if pid = 0 then

15 V(Gp) « F

16: for u<«0to |I|—1do

17: forv+u+1to|I|—1do
18: if ¢,, > € then

19: E(Gg,) + E(Gg,) U (u,v)
20: w(u, v) < Cyuy

21: end if

22: end for

23: end for

24: end if

25: return Gp,

In Algorithm 8, we apply the method of Algorithm 7 for computing the fre-
quency of item sets with length 2. Instead of an array we use an upper triangular
matrix A to hold all 2-combinations of item set /. In this matrix, a;; stores the
local frequency function’s value f(T;, {i,j}). For each transaction X, we consider
its intersection with F', X N F', since non-frequent items cannot form frequent
patterns of length 2. We increment the counts of all 2-length subsets of X N F'.

Following that, we reduce adding the local counts in A to a global count matrix C

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 46

at root processor. From elements of C' frequent 2 length item sets are determined

and G, graph is constructed.

4.3 Partitioning

Actual partitioning is achieved in Algorithm 9. This algorithm employs the k-way
partitioning scheme outlined in Chapter 3 to compute p partitions. The algorithm
first computes a 2-way partitioning. It divides the current set of processors in
two parts using the transaction set partition. Consequently, the whole database
is redistributed such that assigned processor sets obtain the parts determined in
2-way transaction set partitioning. We then compute which of the two partitions

the running processor lies in.

In the recursive step, we call K-WAY-PARTITION recursively until each proces-
sor has been assigned a partition. Algorithm checks if it has reached the basis,
whether it’s processor group has only a single processor. Otherwise, it proceeds
with recursion. Since only the root processor (the processor with least numbered
pid) has G, first we broadcast G, to all processors in group Processors. Then,
we project items from given F' and G, as described in Chapter 3 computing the
vertex induced subgraph of G, by vertex set P;. We call K-WAY-PARTITION
recursively at this stage on the present local transaction set partition 7,4, with
the same absolute support threshold e, its item set P, comprised of the items
assigned to this part, the vertex induced subgraph G’ of the graph G, induced

by P;, and the new processor group Processors;.

4.3.1 Using GPVS to find a partition

In Algorithm 10, we determine the replicating partition over the items that will be
used to redistribute transaction set. In lines 1-3 we compute a two-way GPVS of

G, graph.! In this algorithm, we use a serial GPVS algorithm however for better

1 Also called a bisection by vertex separator

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 47

Algorithm 9 K-wAY-PARTITION(T;, €, Gp,, Processors)

1: (P, Py) < 2-WAY-PARTITION(G,)

2: (Processorsy, Processorsy) < PARTITION-PROCESSORS (P, Py, Processors)
3: Tpart < REDISTRIBUTE-DB(Py, P, Processorsy, Processorss)
4: Determine 7 such that pid € Processor;

5. if |Processors;] =1 then

6: return T,

7: else

8: Broadcast Gp, from min(Processors) to Processors

9: 7, < VERTEX-INDUCED-SUBGRAPH(Gp,, F)

10: return K-WAY-PARTITION(T oy, €, Gy, , Processors;)

11: end if

scalability a parallel GPVS algorithm might be preferable. We do not specify
which GPVS algorithm is used. There are several efficient serial algorithms that
could be used in this step such as [48]. For using a parallel GPVS algorithm, the
graph structure should also be distributed. In the algorithms we give, the graph

is stored only in the root processor of every processor group.

After the partition is computed, the item sets PP, and P, of two parts T} and

T, respectively are determined by set union as described in Chapter 3.

Algorithm 10 2-wAY-PARTITION(T}, €, F, Gf,, Processors)

1: if pid = min(Processors) then

2. (A, B,S) + GPVS(Gg,)

3: end if

4: Broadcast (A, B, S) from min(Processors) to Processors
5 P+ AUS

6: P+ BU S

7: return (P1, P2)

4.3.2 Load Balancing

The algorithm estimates computational load of each partition with respect to
frequency mining for achieving load balance. Estimating the load is non-trivial,
since we cannot know in advance how many patterns are present in the data.

However, we can reason about the potential number of nodes in the search space

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 48

that the algorithm will need to traverse. Although every algorithm follows a
different strategy for determining frequent patterns, a measure of the portion of
the search space containing potentially frequent patterns gives us a good estimate
as in [5, 82]. In this algorithm however, computing the maximal cliques in Gp,
graph like in [82] will incur additional and undesirable overhead since we are
already performing GPV S which is an expensive operation. Therefore we use a

simpler function for load estimation.

For load(X) function in Algorithm 10, we can use the datum size within the

given item set in a manner resembling to [5].
load,(X) = Buex f(u) (4.1)

Nevertheless, this approach is simplistic. Equation 4.1 is not irrelevant, how-
ever it does not take into account the actual complexity of the task. A better
approximation which is inexpensive can be found in again [82]. The equation

loads(X) = Sucx <d(2“)> (4.2)

is based on Zaki’s itemset clustering where d(u) is the degree of vertex u in G,
graph. This estimate approximates the number of potential frequent patterns of
length 3 by calculating how many 2 combinations of patterns of length 2 exist. In
practice, it may be preferable to employ a more empirical load estimate function.
We have designed such a function for FP-GROWTH:

Yuexd(u)log(d(u))
RY

loads(X) = maxyex f(u). (4.3)

Equation 4.3 models an algorithm that has superlinear running time complexity
in the number of patterns of length 2 an item participates in, assumed constant for
each transaction. While max,cx f(u) is an estimate of number of transactions in
the part (actually lower bound), the second term is the average of d(u)log(d(u))
for items in X. This gives us a superlinear, but subquadratic function of the
degree of an item in G, for estimating the running time. Equation 4.3 is purely
hypothetical, however it elicits the best load balancing performance we have
observed. It is in fact a combination of certain aspects of the previous two load

estimate functions.

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 49

Algorithm 11 PARTITION-PROCESSORS(Py, P»)

1: if pid = min(Processors) then

2: loady < load(Py)

3: loady < load(Py)

4: end if

5: Broadcast load; and loads from min(Processors) to Processors
6: loadiye < load; + loads

7: procsy < |Processors|.load; [loada

8: procss < |Processors|.loads/loadga

9: if procs, < procss then

10: SWap Procsi <» procss

11: end if

12: Processors; < |procs;| processors from Processors
13: Processorsy < Processors — Processors;

14: return (Processorsy, Processorss)

4.3.3 Redistribution of Transaction Set

Algorithm 12 rearranges the local transaction sets T; such that processor group
Processors, stores mp, (T;) and Processorss stores mp,(1;). di and ds keep track
of which processor will be targeted for sending the next scanned transaction
in part 1 and 2 respectively. D(i,7) is an array of message buffers that hold
transaction sets to send from processor ¢ to processor j. The local transaction set
is scanned once to split the transactions to the two parts. For each transaction
in local transaction set X € T;, we split X into intersections with P, and P,
and add it to the send buffer with the destination processor attaining cyclic
distribution of transactions per group. Having constructed the message buffers
in this manner, we execute a collective all-to-all personalized communication for
exchanging messages in D(i,j). After this step, all processors construct their

local part T},,; from the message buffers and REDISTRIBUTE-DB returns T),4¢.

4.3.4 Computing Vertex Induced Subgraph

Computation of a vertex induced subgraph has a straightforward algorithm. Al-

gorithm 14 traverses all adjacency lists of A, and adds those edges whose both

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 50

Algorithm 12 REDISTRIBUTE-DB(Py, P, Processorsy, Processorss)

1: dy < min(Processorsi)
2: dy < min(Processorss)
3: for all X € T; do
4: Xi+— XN~k
if | X;| > 2 then
dy < CYCLE(dy, Processorsy)
end if
Xo+— XNP
10: if |X3| > 2 then
11: D(pld, d2) — D(pld, dQ) U X,
12: dy < CYCLE(dy, Processorss)
13: end if
14: end for
15: AAPC D(i,j) holds messages from processor i to processor j
16: Tpore < 0
17: for all i+ € Processors do
18: Tpart < Tpare U D(i, pid)
19: end for
20: return 7},

—_

Algorithm 13 CyCLE(d, P)

1:d<—d+1

2: if d > maz(P) then
30 d <+ min(P)

4: end if

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 51

vertices are in A to newly constructed graph G'.

Algorithm 14 VERTEX-INDUCED-SUBGRAPH(G, A)

1: G' < MAKE-GRAPH()

2: V(GI) «— A

3: for all w € A do

4: for all v € Adj(G,u) do
5: E(G") + E(G") U (u,v)
6 end for

7: end for

8: return G’

4.4 Optimizations

4.4.1 Using An F, Matrix of Rank |F|

Although the matrix sizes can be optimized to a rank of |F'| rather than ||, the
given algorithm does not incorporate it for clarity. We present such an optimiza-
tion in Algorithm 24. Using the optimized version may be desirable since the
original version will require O(|I|?) storage and communication bandwidth in-
stead of O(|F|?). The optimized version uses two arrays to map indices between

the count matrices and real item numbers.

4.4.2 Redistributing Transaction Set In A Single Pass

K-wAY-PARTITION (Algorithm 9) redistributes the transaction set every time a
2-way partition is computed. Nevertheless, it is possible to compute the k-way
transaction set partition with a single redistribution of the database as implied
by Lemma 9. The redundant redistributions can be prevented by a more sophis-
ticated algorithm that computes the item set partition for each processor and a
redistribution algorithm that can split the transactions into k parts rather than

2. The given algorithm is structured the way it has been for clarity?, however

2In that it is a direct recursive application of 2-way partitioning.

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 52

this optimization is significant. The optimized versions of the original algorithms

are given in Algorithm 15 and Algorithm 16.

K-WAY-PARTITION® delays the redistribution to the basis of recursion, and
broadcasts all partitioning information to all processors for redistribution. The
new redistribution algorithm REDISTRIBUTE-DB* generalizes the two way redis-

tribution to k-way case.

Besides being faster, the optimized algorithms express the logic more clearly.
We first compute a partitioning of item sets, and successively redistribute the
database according to the item set partitioning. When the current part has only
a single processor in K-wWAY-PARTITION®, we will have found the item set P;
for part i. Each processor broadcasts P; to every other processor stored in an
array Parts. After the collective communication, Parts[i] holds the item set for
part ¢ of the partitioning. This information is utilized to compute the projection
for each part of Ilyg in REDISTRIBUTE-DB*. Note that we map Partsli] to
processor i for we have determined the processor groups according to the load

estimate function in parallel recursive computation of item set partition.

Algorithm 15 K-WAY-PARTITION™ (T}pcqt, €, G ,, Processors)

: (P, Py) < 2-WAY-PARTITION(G)
(Processorsy, Processorss) < PARTITION-PROCESSORS(Py, P, Processors)
Determine ¢ such that pid € Processor;
if |Processors;] =1 then
All-to-all broadcast P; to Parts > Parts is an array of sets
Tpart < REDISTRIBUTE-DB*(T}ycqi, Parts)
return 71,
else
Broadcast G, from min(Processors) to Processors
G', + VERTEX-INDUCED-SUBGRAPH(GF,, P;)
return K-WAY-PARTITION(Tpcar, €, G, , Processors;)
: end if

e T
N = O

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 53

Algorithm 16 REDISTRIBUTE-DB*(T}ycqr, Parts)

1: for all X € T},..; do
for all : € Processors do
P; < Partsli]
Xi+— XNP
if |Xz| > 2 then
D(pid, i) < D(pid,i) U X;
end if
end for
end for
AAPC D(i,7) holds messages from processor i to processor j
: Tpart A @
: for all ¢ € Processors do
Toart < Tpare U D(i, pid)
: end for
: return T4,

el e e e

4.4.3 Distributed Graph for Gr, and Local Pruning

Local pruning which is proposed in [18] can reduce the number of candidate pat-
terns and communication volume dramatically in CANDIDATE-DISTRIBUTION
based parallel frequency mining algorithms. It has been used in the FDM al-
gorithm for designing an algorithm suitable for a distributed system. The main
observation in local pruning may be stated as follows. If a pattern is frequent it
will have to be locally frequent at a processor, assuming that the local databases
have equal number of transactions. In local pruning each processor discards lo-
cally infrequent candidate item sets. The union of all locally frequent candidate
patterns will provide the correct set of frequent candidate patterns. For approx-
imately equal initial partitioning a tolerance margin may be introduced to the

pruning test.

In PAR-FREQ we can apply local pruning to optimize the computation of
G, graph. We use an upper triangular matrix and accumulate local counts in
CouNT-2-ITEMS (Algorithm 8) with a global reduction operation. This is sub-
optimal because both the memory requirement and the communication volume
becomes O(|I]?) size which limits the scalability of the algorithm in the number

of items. When local pruning is employed, the algorithm will have effectively

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 54

constructed a local G, graph at each node which will bear sparsity like the global
Gp,. Therefore, a reduction of the local G, graphs with a graph unification

operation will compute the global G, graph.

This approach has several other advantages. With the distributed G'r, graph,
there is no need to broadcast the graph in K-WAY-PARTITION and its optimized
version since this may be achieved with a multinode accumulation in COUNT-
2-ITEMS. Moreover, we may consider a parallel GPVS algorithm in 2-wAy-
PARTITION and a parallel algorithm for computing the vertex induced subgraph

thus eliminating the need for reduction altogether.

4.4.4 Compact Structures and Buffering for Communica-

tion

In the communication routines, it would be assumed that flat message buffers are
used for communication of the sets in question. This, however, places a limit on
the scalability in number of transactions. In order to remove this restriction, we
can take advantage of trie structures. For doing this, the database redistribution

algorithm can encode the transaction sets as compressed structures.

More importantly, buffering and asynchronous communication as in [82]
should be employed to make it possible to redistribute very large datasets for
which the representation of local databases may not fit into main memory, and

for enabling communication/database reading overlap.

4.5 Concurrent Mining of Partitions

In the last step of PAR-FREQ, a given serial algorithm is used for local mining
at each processor. Since the partitions can be mined independently, there is no

need for any communication during the mining process.

In the following text, we present our version of a serial mining algorithm we

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 55

have chosen for its novel search strategy and appropriate use of data structures
resulting in efficient and scalable mining. The modifications we make include a
correction to pattern output and an optimization which improves both running

time and storage requirements of the algorithm.

4.5.1 An Improved Version of FP-Growth

We propose FP-GrROwWTH® (Algorithm 17) which is an enhancement of
FP-GRrROWTH featuring a correction, an optimization and minor improvements.
The correction fixes an assumption which prevents correct output in many cases.
An important optimization eliminates the need for intermediate conditional pat-

tern bases.

A minor improvement comes from not outputting all combinations of the
single path in the basis of recursion. Instead, we output a representation of this
task since subsequent algorithms can take advantage of a compact representation
for generating association rules and so forth. Another improvement is pruning the
infrequent nodes of the single path and only outputting a compact “all patterns”

representation when the pruned single path is non-empty.

In the following subsections, the remaining changes are discussed.

4.5.2 A Correction To FP-Growth Algorithm

There is a missing condition in FP-GROWTH. Consider the transaction set in
Table 4.1. The algorithm must discover F = {{b,i,c},{h,i,c}} with ¢ = 2.
However, FP-GROWTH can not find the support of {c,i, h} because there is no
way to determine the support of a pattern if the algorithm has hit the single path
condition. The mistake is as follows: if the minimum support in 3 is sufficient to
pass support threshold, there is no problem since the minimum support cannot
be larger than o’s support. However, there is no way to know the support of «

alone. In this case o can only be generated together with 3, which is insufficient

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 56

Algorithm 17 FP-GROWTH" (T'ree, «)
1: if Tree contains a single path P then

2: prune infrequent nodes of P

3: if |[P| > 0 then

4: output “all patterns in 27 and o”

5. end if

6: else

7. for all a; in header table of Tree do

8: Trees <— CONS-CONDITIONAL-FP-TREE(Tree, a;)
9: output pattern 8 < a; U a with count = f(a;) > f(x) of Tree
10: if Trees # () then

11: FP-GrowTH(Treeg,)

12: end if

13: end for

14: end if

to pass support threshold. Our proposed solution is to determine 3’s count from
f(a;) rather than count|a;] for the frequency of pattern § is the total frequency
of nodes labeled a;. In line 9, f(a;) is the f(x) that belongs to Tree.

|Transaction ‘|a‘b‘c|d‘e|f‘g‘h‘i|
ty = {h,b,i,c} X | x X | x
to = {b,1,c} X | X X
ts = {h,i,c} X | %

Table 4.1: A Transaction Set T with I = {a,b,c,d,e, f, g, h,i}

4.5.3 Eliminating Conditional Pattern Base Construction

The conditional tree Treeg can be constructed directly from T'ree without an
intermediate conditional pattern base. The conditional pattern base in FP-
GROWTH can be implemented as a set of patterns. A pattern in FP-GROWTH
consists of a set of symbols and an associated count. With a counting algorithm
and retrieval /insertion of patterns directly into the FP-Tree structure, we can
eliminate the need for such a pattern base. Algorithm 18 constructs a condi-
tional FP-Tree from a given Tree and a symbol s for which the transformed

prefix paths are computed.

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 57

Algorithm 18 CoNs-CONDITIONAL-FP-TREE(Tree, s)

table < itemtable[Tree]
list < table[symbol]
Tree' < MAKE-FP-TREE
> Count symbols without generating an intermediate structure
node < list
while node # null do
CoUNT-PREFIX-PATH(node, count[Tree])
node < next[node]
end while
for all sym € range[count| do
if count[sym] > € then
F[Tree] < F[Tree'| U sym
end if
: end for
: > Insert conditional patterns to Treegs
: node < list
: while node # null do
pattern <— GET-PATTERN(node)
INSERT-PATTERN(T'ree, pattern)
node < next[node]
: end while
: return Tree

[N R T e e e e e e T
e S B T S i el e

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 58

The improved procedure first counts the symbols in the conditional tree with-
out generating an intermediate structure and constructs the set of frequent items.
Then, each transformed prefix path is computed as patterns retrieved from T'ree

and are inserted in T'reeg.

CoUNT-PREFIX-PATH presented in Algorithm 19 scans the prefix paths of a
given node. Since the pattern corresponding to the transformed prefix path has
the count of the node, it simply adds the count to the count of all symbols in
the prefix path. This step is required for construction of a conditional FP-Tree
directly since an FP-Tree is based on the decreasing frequency order of F'. This
small algorithm allows us to compute the counts of the symbols in the conditional
tree in an efficient way, and was the key observation in making the optimization

possible.

Algorithm 19 CouNT-PREFIX-PATH(node, count)

prefizcount < countnode]

node < parent[node]

while parent[node] # null do
count[symbol[node]] < count[symbol[node]] + prefixcount
node < parent[node]

end while

Algorithm 20 GET-PATTERN(node)

1: pattern <— MAKE-PATTERN
2: if parent[node| # null then

3: countlpattern] <— count[node]

4: currnode < parent[node]

5. while parent[node] # null do

6: symbols[pattern] < symbols[pattern] U symbol|currnode]
7: currnode < parent|currnode]

8 end while

9: else

10: count[pattern] <— 0

11: end if

12: return pattern

Algorithm 20 retrieves a transformed prefix path for a given node excluding

node itself and Algorithm 21 inserts a pattern into the FP-Tree. GET-PATTERN

CHAPTER 4. A PARALLEL ALGORITHM FOR FREQUENCY MINING 59

computes the transformed prefix path as described in [35]. INSERT-PATTERN

3 and sorts the

prunes the items not present in the frequent item set F' of Tree
pattern in decreasing frequency order to maintain FP-Tree properties and adds
the obtained string to the FP-Tree structure. The addition is similar to insertion
of a single string, with the difference that insertion of a pattern is equivalent to

insertion of the symbol string of the pattern count[pattern] times.

Algorithm 21 INSERT-PATTERN(T'ree, pattern)

1: pattern < pattern N F[Tree]
2: Sort pattern in a predetermined frequency decreasing order
3: Add the pattern to the structure

The optimization in Algorithm 18 makes FP-GROWTH more efficient and scal-
able by avoiding additional iterations and cutting down storage requirements. An
implementation that uses an intermediate conditional pattern base structure will
scan the tree once, constructing a linked list with transformed prefix paths in
it. Then, it will construct the frequent item set from the linked list, and in a
second iteration insert all transformed prefix paths with a procedure similar to
INSERT-PATTERN. Such an implementation would have to copy the transformed
prefix paths twice, and iterate over all prefix paths three times, once in the tree,
and twice in the conditional pattern list. In contrast, our optimized procedure
does not execute any expensive copying operations and it needs to scan the pat-
tern bases only twice in the tree. Besides efficiency, the elimination of extra
storage requirement is significant because it allows FP-GROWTH to mine more

complicated data sets with the same amount of memory.

3Which does not have to be identical to the F' of calling procedure.

Chapter 5

Implementation

Our implementation is a straightforward translation of PAR-FREQ and FP-
GROWTH of Chapter 4 except the parallel optimizations suggested. Algorithm 22
conveys use of PAR-FREQ with FP-GROWTH.

Algorithm 22 PAR-FP-GROWTH(T}, €)
1: PAR-FREQ(T;, ¢, FP-MINE)

Algorithm 23 FP-MINE(T;, ¢, G,)
1: (F, FQ) — GF2
2: Tree + MAKE-FP-TREE(T}, ¢, F)
3: FP-GROWTH"(T'ree,)

In the following sections, we will first give an overview of our parallel system

and then discuss the low level implementation details not addressed in Chapter 4.

5.1 System Hardware and Software

The program was tested on a Beowulf class supercomputer [69] comprised of 32
compute nodes, an interconnection network and an interface node. Each node
has a 400Mhz Pentium-II processor, 128MB memory and a 6GB local disk. The

60

CHAPTER 5. IMPLEMENTATION 61

interface node is a 500Mhz Pentium-II with 512MB memory and over 60GB
disk space. The interconnection network is comprised of a 3COM SuperStack 11
3900 managed switch connected to Intel Ethernet Pro 100 Fast Ethernet network
interface cards at each node and a Gigabit Ethernet uplink connected to the

interface node.

The system runs Linux kernel 2.4.14 and Debian GNU /Linux 3.0 distribution.

For message passing software we primarily use LAM/MPI implementation.

5.2 Code

The implementation language was C++ on GNU g4+ compiler version 2.95.4.
LAM/MPI 6.5.6 was used for message passing library [30]. Association rule gen-
erator [7] was used for synthetic data generation. ONMETIS in METIS parti-
tioning package [47] was used for the serial graph bisection by vertex separator
algorithm used in 2-wAY-PARTITION (Algorithm 10). We have employed the
unweighted GPVS routine of ONMETIS for graph partitioning which is inexact.
The GPVS should take into account the vertex weights of G'p, for minimization
of data replication. Our ongoing research includes efforts on an efficient weighted

GPVS implementation.

PAR-FREQ (Algorithm 5) using optimized K-wAy-PARTITION™ (Algo-
rithm 15) and REDISTRIBUTE-DB* (Algorithm 16) and the improved FP-
GRrROwWTH* (Algorithm 17) was implemented. Remaining parallel optimiza-
tions for PAR-FREQ were omitted. We have realized PAR-FP-GrowTH (Al-

gorithm 22) for the performance study.

In the current implementation there are 8305 lines of C++ code and several
auxiliary scripts the development of which has taken approximately 6 months
including a test/performance suite, utilities, libraries, graphs and changed ideas.
Initially we had implemented a three-way partitioning scheme which performed
poorly. Upon a more rigorous analysis, the two-way scheme was seen to be

superior.

CHAPTER 5. IMPLEMENTATION 62

5.2.1 Communication Routines

All communication routines are wrapped for more convenient access in the pro-
gram. In particular, we maintain a global MPI communicator for handling pro-
cessor groups and provide routines for initialization/finalization, parallel logging,

diagnostics.

The communication routines sometimes provide new functionality as we shall

see shortly, otherwise we will refer to MPI names.

5.2.2 Data Structures

For variable length arrays, we use vector<T> in standard library. For storing
transactions, patterns and other structures representable as strings we use efficient
variable length arrays. We also use set<int> to store the set of frequent item
sets in certain places where it would be fast to do so, otherwise we use sorted
arrays to implement sets. The graph data structure implements adjacency list
representation which stores adjacency lists as efficient growable arrays. The graph
data structure also implements a means to encode/decode graphs to message
buffers. Transaction sets in memory are represented as a linked list of transactions

using 1ist<T>.

In the code, mostly an object based design was followed so related data was
encapsulated in the same class. For instance, all transaction set counting in-
formation is stored in TS_Counter class and all information related to 2-way

partitioning is stored in Twoway_Partition.

5.3 Initial Distribution

The initial partitioning is accomplished with a simple program that reads each
transaction set and writes it in a database file which is distributed in a cylic way,

i.e. to split the database in 4 it opens 4 files to which transactions are written in

CHAPTER 5. IMPLEMENTATION 63

cycling order as they are read. The files are then copied to the working directory

on compute nodes.

We have not analyzed the effects of differing initial distributions on the perfor-
mance of our algorithm. The partitioning scheme we have developed is indifferent
to initial distribution. However, the communication volume may change slightly.
We do not predict a significant effect on performance at any rate as such a change

would only effect the redistribution algorithm.

5.4 Computing F' and Gp,

In both count COUNT-1-ITEMS and COUNT-2-ITEMS the database file is read
sequentially to compute the counts. This is necessary as we cannot assume that
the local database partition may fit in memory; it is not possible to cache the
database in the first pass. However, system level optimizations may be facilitated.
We have used standard I/O routines for all data access. A better implementation
would be to use an efficient database system such as Berkeley DB which imple-
ments memory-mapped regions and possibly other system level optimizations.
The alternative is to use POSIX mmap directly or to use low level asynchronous

I/O routines to overlap computation and disk reads.

The sum reduction to all processors in COUNT-1-ITEMS is implemented with
a call to MPI::Allreduce. Likewise, the sum reduction in COUNT-2-ITEMS is

done with a single MPI: :Reduce.

5.5 Partitioning

In the vertex bisection routine an overhead is due to a necessary conversion
of G, to METIS graph data structure. We also have to translate the results
back. Unfortunately, a work around is not possible since we need flexible graph

structures in the implementation which is binary incompatible with METIS.

CHAPTER 5. IMPLEMENTATION 64

For load balancing, all three load estimate functions have been implemented.
The default estimate function is Equation 4.3 which we have used for our exper-

iments.

The message buffers in REDISTRIBUTE-DB is implemented as a matrix of
variable length arrays. We do not write directly to message buffers, but first
write to a matrix of transaction sets which are encoded into the message buffers.
Consequently, the messages are exchanged with an all-to-all personalized commu-
nication. We have written a personal communication routine here which first com-
municates the length of message buffers and then the messages themselves using
MPI non-blocking send/receive commands.! A similar routine has been written

for broadcasting the sets P; to Parts in K-wAY-PARTITION* (Algorithm 15).

For tracking processor groups, we use MPI::Split to identify which proces-
sors are continuing parallel recursion and to divide the processor groups in two.
Broadcasting the graph can be managed with a plain MPI: :Bcast since we can

decode/encode the graph from/to flat buffers.

5.6 FP-Growth Implementation

Not much to say about FP-GROWTH is left from the detailed algorithms of
Chapter 4. The development of the algorithm proceeded from a regular Trie
structure to a multi-Trie structure to eventually the FP-Tree structure and the
top level algorithm. One thing we have noticed about this algorithm is that it
does not seem to be as memory efficient as implied in [35]. Even if the number of
nodes is kept small, we store many fields per node and the algorithm consumes a

lot of memory in practice.

The algorithm has one detail which required a special code: sorting the fre-

quent items in a transaction according to an order L, in line 2 of Algorithm 2 and

Tn a way similar to LAM’s all-to-all communication implementation.
2MPI::Split is a collective operation designed exactly for this purpose. See the MPI standard
for further information.

CHAPTER 5. IMPLEMENTATION

line 2 of Algorithm 21. For preserving FP-Tree properties all transactions must
be inserted in the very same order.® Figure 5.1 shows the top level C++ code
that generates such a unique frequency decreasing order making use of indices

when there are items with the same frequency. Using this procedure, we are not

obliged to maintain an L.

void FP_Tree::sort_decreasing_freq(vector<int>& A)

{

// sort in order of decreasing frequency
count_quiksort(A, 0, A.size()-1);

// scan for blocks with same count

int 1 = 0;

int n = A.size()-1;

while (i < n) {

int x = A[i];

int j =1 ;

// find the last element with same count as x
do {

Jjt+;
} while (j<=n && count[A[jl] == count[x]);
J=s
if (§>1)
quiksort(A,i,j); // order in increasing indices
i++;

Figure 5.1: C++ code to sort transactions in a unique decreasing order

3For patterns also in our implementation.

Chapter 6

Performance Study

In this chapter we report on our experiments demonstrating the performance of

PAR-FP-GROWTH (Algorithm 22) under various parameter changes.

We have measured the performance of Algorithm 22 on a 32-node Beowulf
cluster described in Section 5.1. PAR-FP-GROWTH was run on four synthetic

databases with varying number of processors and support threshold.

We describe the data sets used for our experiments in the next section. Fol-
lowing that, we present our performance experiments. In Section 6.5 we interpret
the results, and the last section briefly compares the performance of PAR-FP-

GROWTH to PAR-ECLAT.

6.1 Data

We have used the association rule generator described in [7] for constructing
all experiment data. Synthetic databases in our evaluation have been selected
from [82] and [81] for comparison of our results to the performance of parallel
EcrLAT. These databases have been derived from previous studies [7, 66, 5.
Table 6.1 explains the symbols we use for denoting the parameters of Association

Rule Generator tool. The experimental databases are depicted in Table 6.2.

66

CHAPTER 6. PERFORMANCE STUDY 67

In all experiments, the number of items is 1000, and the number of maximal
potentially frequent patterns is 2000. T15.14.367K was reduced in transaction
size from 1471 in T15.14.D1471K used in [82] for a more comparable run time
to other experiments. Remaining experiments are intact. Our serial algorithm
could not compress T20.16.D1137 in the physical memory even when number of
transactions was decreased, therefore it was not included in the experiment set

as we are interested in observing the speedup.

|T| Number of transactions in transaction set
|t]avg Average size of a transaction t;
| fmlavg | Average length of maximal pattern fy,

Table 6.1: Dataset parameters

Name IT| | |tlavg | |fmlavg Size
T10.16.800K & x 10° 10 6| 38.7MB
T10.16.1600K 1.6 x 106 10 6 | 77.4MB
T10.14.1024K | 1.024 x 10° 10 4 | 50.5MB
T15.14.367K 3.67 x 10° 15 4 | 25.1MB

Table 6.2: Synthetic data sets

6.2 Running Time

The algorithm has been run on differing number of processors ranging from a
single processor up to 28 processors.! For single processor runs, we have used the
interface node of our Beowulf system which has a 500Mhz Pentium-II processor,
512MB memory and a more capable disk? as the sequential trials require more

physical memory than 128 MB. The running times on 500Mhz interface node have

11,2,4,8,12, 16,20, 24, 28 processors to be exact, with exceptions in cases when low number
of processors was not possible.
27200 RPM Quantum disk instead of 5400 RPM Seagate disks at nodes.

CHAPTER 6. PERFORMANCE STUDY 68

been scaled by 5/4 to reflect the performance difference of processors.® Each ex-
periment has been repeated with varying support thresholds within the range
0.75% to 0.25%. For lower thresholds we have not been able to conduct meaning-
ful experiments as the memory requirements of FP-Growth exceeded all physical
RAM. Running time results have been plotted in Figure 6.1, Figure 6.2, Fig-
ure 6.3, Figure 6.4, Figure 6.5, and Figure 6.6. We have plotted linear speedup
function with respect to the running time on a single processor for comparison
to the ideal case in these figures. Alternatively, running time surfaces for the
experiment data sets are plotted in Figure A.1 and Figure A.2 of Appendix A.
These plots feature contours at the base of Processors and Support axises. Similar

performance patterns are easily spotted in the running time contours.

3In our experience, this scaling has been quite accurate when compared to instances of the
serial program that could run on nodes.

CHAPTER 6. PERFORMANCE STUDY

Running time for T10.16.800K

— E—
0 i s
0 4 8 12 16 20 24 28
Processors
Running time for T10.16.1600K
400 T T T
Running time —t
350 Linear speedup -------
300 .
— 250
[
Q
£
o 200 .
E
F 150 .
100
50 o
e
0 1 1
0 4 8 12 16 20 24 28
Processors
Running time for T10.14.1024K
250 T T — T
Running time —t
Linear speedup ~ -------
200 1
o 150 _
Q
£
(o)
£
= 100 .y
50 .
0 | \ ————— I . Wi——
0 4 8 12 16 20 24 28
Processors
Running time for T15.14.367K
900 T T —T T
Running time —t
800 T Linear speedup ------- .
700
600 [.
o i
& 500 - | .
[\
E 400 | .
= \
300 N _
200 |- i
100 - R .
0 H B Wittt
0 4 8 12 16 20 24 28
Processors

Figure 6.1: Running time for support threshold 0.75%

69

CHAPTER 6. PERFORMANCE STUDY

Running time for T10.16.800K

300 T T — T
Running time —t
Linear speedup ~ -------
250 E
200 : g -
S
Q
£
o 150 : —
£
[i=
100 -
50 —
0
0 4 8 12 16 20 24 28
Processors
Running time for T10.16.1600K
800 T T — T
Running time —t
700 Linear speedup ~ -------
600 —
—~ 500
[
Q
£
o 400 g
E
F 300 e
200
100 S
0 ey e S S e =
0 4 8 12 16 20 24 28
Processors
Running time for T10.14.1024K
300 T T — T
Running time —t
Linear speedup ~ -------
250 E
200 —
S
Q
£
o 150 —
E
[i=
100 -
50 —
0 i "’;IE """" ‘F TS A ———
0 4 8 12 16 20 24 28
Processors
Running time for T15.14.367K
1400 T T T T
Running time —t
+ Linear speedup ~ -------
1200 \
1000 \
2 800 [}
&
g
i 600 E
400 E
200 |- 4
— e
0 1 I I
0 4 8 12 16 20 24 28
Processors

Figure 6.2: Running time for support threshold 0.45%

70

CHAPTER 6. PERFORMANCE STUDY

300

250

200

150

Time (sec)

100

50

Running time for T10.16.800K

0 4 8 12 16 20 24 28

Processors

Running time for T10.16.1600K

Ilqunning tilme —
Linear speedup ~ ------- u

0 4 8 12 16 20 24 28

350

300

250

200

Time (sec)

150

100

50

Processors

Running time for T10.14.1024K

0 4 8 12 16 20 24 28

1400

1200

1000

800

Time (sec)

600

Figure 6.3: Running time for support threshold 0.40%

Processors

Running time for T15.14.367K

Fiunning ti;ne I_._
T Linear speedup ~ -------

0 4 8 12 16 20 24 28
Processors

71

CHAPTER 6. PERFORMANCE STUDY

Running time for T10.16.800K

300 T T — T
Running time —t
Linear speedup ~ -------
250 E
200 —
S
Q
£
o 150 —
£
[i=
100 E
50 —
0 1
0 4 8 12 16 20 24 28
Processors
Running time for T10.16.1600K
900 T T T
Running time —t
800 Linear speedup ~ ------- u
700
600 —
S
ﬁ 500
(o)
E 400 —
[i=
300 -
200 —
100 P
i ittt o=
0 1 1 I
0 4 8 12 16 20 24 28
Processors
Running time for T10.14.1024K
350 T T — T
Running time —t
Linear speedup ~ -------
300
250
3 200
£
g
= 150 —
100 —
50 - —
0 1 — |V ; """"
0 4 8 12 16 20 24 28
Processors
Running time for T15.14.367K
1400 T T T T
! Running time —t
i Linear speedup ~ -------
1200 |4 \
1000 |4 \
2 800 [
& \
2
i 600 \‘\ E
400 - * :
200 - 8
0 . B —
0 4 8 12 16 20 24 28

Processors

Figure 6.4: Running time for support threshold 0.35%

Time (sec)

Time (sec)

Time (sec

Figure 6.5: Running time for support threshold 0.30%

CHAPTER 6. PERFORMANCE STUDY

Running time for T10.16.800K

300 T T T
Running time —t
Linear speedu ettt
250 E
200 —
150 —
100 -
50 —
0 | »—l —————————— [——
0 4 8 12 16 20 24 28
Processors
Running time for T10.16.1600K
1000 T T T T
Running time —t
900 Linear speedu el
800 T
700
600
500
400 -
300
200
100 - _
0 1 1
0 4 8 12 16 20 24 28
Processors
Running time for T10.14.1024K
350 T T T
Running time —t
Linear speedup ~ -------
300
250
200
150 - —
100 - —
\
ol . ___\ i
0 | “—I >>>>>>>>>> [—
0 4 8 12 16 20 24 28
Processors
Running time for T15.14.367K
1600 T T T T
Running time —t
1400 Linear speedup -------
1200 .
1000 E
800 E
600 B
400 g
200 e e
0 . B M

12

Processors

73

CHAPTER 6. PERFORMANCE STUDY

Running time for T10.16.800K
350 : —— T
) Running time —
\ ‘M@LJ
300
AN
250 |4
3 200 [
&L \
2
= 150 \‘\ .
100 - \\\\ \]
N —_ |
\\\ — |
50 - e -
0 i T S S
0 4 8 12 16 20 24 28
Processors
Running time for T10.16.1600K
1100 T T T T
Running time
1000 ‘\ Linear speedup ------- B
900 i : : 8
800 -
700 b | i
8 |
8 600 [i
g 500
300
200 P oo
e —_
100 R S
0 I I T
0 4 8 12 16 20 24 28
Processors
Running time for T10.14.1024K
400 : —— T
Running time —t
350 BN Linear speedup -------
300 F1]
250 |
S \
o \
kZ) \
o 200 _
E |
= 150 | \\ \ .
100 N E S ~]
50 R
0 i B s s
0 4 8 12 16 20 24 28
Processors
Running time for T15.14.367K
1600 T T T T
Running time —t
1400 *,'\ Linear speedup -------
1200 -4 .
. 1000 [1
[\
[
3 \
o 800 F .
£
600 .
400 | g
-
200 F i
0 R I>>——>‘~—>-~_>‘—7—>7T 777777777
0 4 8 12 16 20 24 28
Processors

Figure 6.6: Running time for support threshold 0.25%

CHAPTER 6. PERFORMANCE STUDY 75

6.3 Speedup

The speedups are calculated with respect to the running time on a single pro-
cessor. The plots in Figure 6.7 to Figure 6.12 convey the speedup results for the

experiments presented in the previous section.
Figure 6.13 pictures the variation of speedup versus support for 16 processors.

The renderings in Figure A.3, and Figure A.4 depict speedup surfaces for illus-
trating the patterns in variation of number of processors and support threshold.
The three dimensional plots have useful contours drawn at the base like running

time plots.

6.4 Load Balancing

Figure 6.14 compares the performances of load estimate functions load; (Equa-
tion 4.1), loady (Equation 4.2) and loads (Equation 4.3) for two databases at
0.25% support threshold. It is seen that Equation 4.3 performs slightly more

consistent and better than Equation 4.1.

6.5 Interpretation

Our experiments demonstrate that PAR-FP-GROWTH performs quite efficiently
despite important optimizations omitted from the implementation. For all exper-
iment data, the running time follows a decreasing trend as more processors are
utilized. The most significant reduction in run time is seen in 2 and 4 processor
cases indicating that our partitioning scheme is most effective when there is lit-
tle overhead from re-distributing the data. Decreasing the support amplifies the
number of frequent patterns found, however the savings are in general as well as
in higher thresholds, and better for smaller number of processors. The disconti-

nuities in running time plots suggest that the simple load estimation function we

CHAPTER 6. PERFORMANCE STUDY

Speedup for T10.16.800K

16
14 -
12 -
Q
=]
B 10 .
& P
8 I / .
6| / i
4
0 4 8 12 16 20 24 28
Processors
Speedup for T10.16.1600K
40
35+ 1
o 30 F -
=]
o
[
[0
Q
n 25 \ i
20 | d
15
4 8 12 16 20 24 28
Processors
Speedup for T10.14.1024K
30
25 - \ ,
o 20 -
=]
o
[
[0
Q
n 15 | 4
P
10 / .
4»——/
5
0 4 8 12 16 20 24 28
Processors
Speedup for T15.14.367K
140 T T T
120 A\
100 /
o
E 80 \V4
(]
g
& 60 i .
40 .
20 : 3 : -
0 1 1 1
0 4 8 12 16 20 24 28
Processors

Figure 6.7: Speedup for support threshold 0.75%

76

CHAPTER 6. PERFORMANCE STUDY

Speedup for T10.16.800K
35

ot A :

25 .

20 - .

o /\ P

Speedup

0 4 8 12 16 20 24 28
Processors

Speedup for T10.16.1600K

gg L e .
99

/]

Speedup
N
o
T
1

4 8 12 16 20 24 28
Processors

Speedup for T10.14.1024K

Speedup

0 4 8 12 16 20 24 28
Processors

Speedup for T15.14.367K

30

25 —

20 -

Speedup

0 4 8 12 16 20 24 28
Processors

Figure 6.8: Speedup for support threshold 0.45%

CHAPTER 6. PERFORMANCE STUDY

35

30

25

20

Speedup

55
50
45
40
35
30

Speedup

25
20

30

25

20

Speedup
@

Speedup

Figure 6.9: Speedup for support threshold 0.40%

Speedup for T10.16.800K

——
/ g
0 4 12 16 20 24 28
Processors
Speedup for T10.16.1600K
e
4 12 16 20 24 28
Processors
Speedup for T10.14.1024K
L S i
0 4 12 16 20 24 28
Processors
Speedup for T15.14.367K
¥
0 4 12 16 20 24 28
Processors

78

CHAPTER 6. PERFORMANCE STUDY

Speedup for T10.16.800K

Speedup
o
T
1

10 /\\ E

0 4 8 12 16 20 24 28
Processors

Speedup for T10.16.1600K

I

/ |

n
(&}
T

Speedup

4 8 12 16 20 24 28
Processors

Speedup for T10.14.1024K

18 / -
16 | .

Speedup
)
T
1

0 4 8 12 16 20 24 28
Processors

Speedup for T15.14.367K

0 4 8 12 16 20 24 28
Processors

Figure 6.10: Speedup for support threshold 0.35%

79

CHAPTER 6. PERFORMANCE STUDY

Speedup for T10.16.800K

-

10 A
9 r 4
8| —]
1 /]
=]
8 6 .
[
Q
@» 5} _
4 + 4
3k / i
2+ / _
1
0 4 8 12 16 20 24 28
Processors
Speedup for T10.16.1600K
22
20 .
18 4
16 -
o 141 .
=]
B 12 / _
[
Q
n 10 |+ 4
8 I .
6 4
4+ 4
2
4 8 12 16 20 24 28
Processors
Speedup for T10.14.1024K
11
10 | .
9 r 4
8 r 4
a 7F — .
=]
8 6 .
Q
Q
@» 5} _
4k . 4
°r / b
2+ / i
1
0 4 8 12 16 20 24 28
Processors
Speedup for T15.14.367K
1"
10
9r 4
8 r 4
o
=)
® 7t -
[
&
6 4
5 -
4 4
3
4 8 12 16 20 24 28

Processors

Figure 6.11: Speedup for support threshold 0.30%

80

CHAPTER 6. PERFORMANCE STUDY

Speedup for T10.16.800K

45

35 |

Speedup

25

1.5

' e

/\/ i

4 8 12 16 20 24 28
Processors

Speedup for T10.16.1600K

7.5

. . ———

6.5

55

Speedup

3.5

12 16 20 24 28
Processors

Speedup for T10.14.1024K

Speedup

12 16 20 24 28
Processors

Speedup for T15.14.367K

pa—

6.5

5.5

Speedup

45

35

Figure 6.12:

12 16 20 24 28
Processors

Speedup for support threshold 0.25%

81

CHAPTER 6. PERFORMANCE STUDY

Variation of Speedup for T10.16.800K
14 T T T T T T T T

Q
=]
O
[
[
Q
%)
Support (%)
Variation of Speedup for T10.16.1600K
T T T T
o
=)
o
54 _
[
Q
%)
0 Il 1 1 1 Il 1 1 1

025 03 035 04 045 05 055 06 065 0.7 0.75
Support (%)
Variation of Speedup for T10.14.1024K
30 T T T T T T T T

Speedup

0 1 I i I 1 I i I
025 03 035 04 045 05 055 06 065 0.7 0.75

Support (%)
Variation of Speedup for T15.14.367K
140 T T T T T T

120

100

80

Speedup

60

40

20

0
025 03 035 04 045 05 055 06 0.65 0.7 075
Support (%)

Figure 6.13: Speedup vs. support on 16 processors.

CHAPTER 6. PERFORMANCE STUDY 83

Effect of Load Estimate Function for T10.16.800K

6.5
oad; —+—
load; —-x--| b
6 Moad,
Koo e
5.5 a
5 <
4.5
S 4
3
®
2
& 85 -
3
25
2
15 -
1
0 4 8 12 16 20 24 28
Processors
Effect of Load Estimate Function for T10.16.1600K
o
s
3
1
]
3
%)
Processors
Effect of Load Estimate Function for T10.14.1024K
55 .
oad; —+—
load; --x--
load, Sk
5 7
e
J
45 - /
J/
J/
/
/
g / ’
3 e *
1
1
a
@»
5 1 1 1
8 12 16 20 24 28
Processors
Effect of Load Estimate Function for T15.14.367K
a
S
=1
1
@
a
@»
3 I
8 12 16 20 24 28
Processors

Figure 6.14: Comparative performance of three load estimate functions for sup-
port threshold of 0.25%

CHAPTER 6. PERFORMANCE STUDY 84

employ does not yield a precise load balance among processors. Another factor
that contributes to the load imbalance is the recursive partitioning scheme used
by our k-way partitioning algorithm. Recursive item set partitioning is not very
accurate for small number of processors. It is also seen that the running time

decreases dramatically as support and number of processors are increased.

The speedup plots reveal that we attain super linear speedup towards 0.75%
support although load balance is perturbed in large number of processors. This
superlinear behavior may be expected in any successful partitioning scheme due
to the fact that the problem has an exponential running time tendency in the
number of items. The size of the state space will decrease dramatically if item
set partitioning can separate the item set I into small sets of items. We observe
a more consistent speedup behavior at 0.40%. As the support is lowered to
0.25%, the speedup falls below linearity. Nevertheless, it follows an increasing
trend as we grow the number of processors and lower the support, except in a
few cases where there is slight decrement in the speedup. Also note that the
communication volume will increase as the number of processors is increased,
limiting total speedup. We observe this behavior especially in the harder instances
of the problem where there are more frequent items enlarging the communication

volume.

The databases T10.16.800K and T10.16.1600K differ only in the number of
transactions, therefore they may help us to reason about the scalability of the
algorithm. Although we have not conducted this specific set of experiments to
measure scalability in the number of transactions and items, it is seen in the
speedup graphs that our algorithm yields larger speedup for the latter database.
The serial algorithm takes almost thrice the running time of T10.16.800K on
T10.16.1600K at support 0.25% indicating that the mining algorithm will have
to consider many more patterns; the difference in running time cannot be solely
caused by greater number of transactions. This shows that the algorithm is
inclined towards better savings with increasing number of transactions. An im-
plementation that incorporates scalability optimizations should provide favorable

scalability in both parameters.

CHAPTER 6. PERFORMANCE STUDY 85

We observe a remarkable speedup of 128.15 on T15.16.376K database with
a support threshold of 0.75% and 16 processors. This speedup supports our
reasoning that it is possible to obtain superlinear speedup in frequency mining

due to the nature of the problem, in some cases.

The variation of speedup versus support in Figure 6.13 shows that speedup
has a decreasing behavior as support is lowered at 16 processors. An interesting
feature of this cross-section is that it shows a peak in speedup at around 0.4%
support in first three databases, which shows that for lower support values, there

may be a load imbalance preventing further speedup.

Three dimensional plots of the running time and speedup results are provided

in Appendix A for inspecting performance patterns.

6.6 Comparison with Parallel Eclat

We do not have access to a parallel version of ECLAT for comparing our imple-
mentation on our Beowulf system.? Nevertheless, it is still possible to make a

comparison with parallel ECLAT.

Before proceeding, we should outline the major differences between PAR-FP-
GROWTH and PAR-ECLAT with respect to performance. First, ECLAT assumes
that F3 has been computed in a preprocessing step; our algorithm starts with local
database partitions and computes every bit of information required in the run
time. In addition, the hardware platforms differ so much that any sort of running
time comparison would be be insensible. The sequential running times in [82]
show that the nodes in the DEC Alpha cluster may actually have better integer
performance and disk throughput than our system. Otherwise, the differences
in serial algorithm must be attributed to the efficacy of their algorithm for the
studied parameters. As for the interconnection network, Zaki’s experiments use

the custom DEC Memory Channel network which has 30MB/s point-to-point

4Implementing it would be difficult due to the fact that almost every component of ECLAT
is different.

CHAPTER 6. PERFORMANCE STUDY 86

bandwidth compared to a certain unknown capacity that is smaller than 10MB/s

> Moreover, this implementation is not intended to be the final

in our system.
version of our software. Certain optimizations outlined in Chapter 4 were omitted,

most notably local pruning for computing a distributed G, .

At any rate, speedup of both algorithms at the same support threshold (0.25%)
may allow us to make a comparison. The algorithms have increasing speedup
with increasing number of processors. For T10.14.2048K, PAR-ECLAT reaches
3.5 speedup on 32 processors while PAR-FP-GROWTH reaches 7.28 speedup for
T10.14.1600K on 28 processors. PAR-ECLAT achieves about 3.8 speedup for
T15.14.D1471K on 32 processors while our algorithm attains 6.81 speedup for
T15.14.367K on 28 processors. The running times for the most number of pro-
cessors are close for both algorithms. This comparison shows that, despite the
disadvantages of our current implementation and the performance of the serial al-
gorithm and the capacity of our hardware, PAR-FP-GROWTH is clearly superior
to PAR-ECLAT in terms of speedup.

5We do not have exact knowledge of the architecture and capacity of our network switch.

Chapter 7

Conclusions

We have described the frequency mining problem formally in Chapter 1 and in

Chapter 2 we have surveyed relevant work in the literature.

We have proposed a novel transaction set partitioning scheme with which we
have crafted a generic parallel frequency mining algorithm. The transaction set
partitioning method depends on theoretical observations presented in Chapter 3.
We follow from a simple theoretical observation that identifies lack of cliques
among two sets of items in G, graph to derive a scheme that makes it possible
to decompose the mining problem in two independent subproblems. Due to the
nature of the problem, any reduction in the number of items becomes significant
for efficient parallel algorithms. Another significant aspect of our method is that
it does not find a random decomposition of the problem, but finds one that min-
imizes data replication in the resulting partition while possibly maintaining load
balance.! All these desirable optimization properties arise from the application of
graph partitioning problem which has been previously used in parallelization of
problems with detailed structure. Our scheme maps a graph partitioning model
on a level of information that is easily computed (Gp,) to the frequency mining
problem and therefore is suitable for parallelization. We have shown that this

scheme can be extended to a k-way partitioning by recursive bisectioning and

1Since maintaining load balance of frequency mining is a difficult problem in itself, we cannot
claim that our scheme solves it decisively.

87

CHAPTER 7. CONCLUSIONS 88

that there is no need to compute the output transaction set partition to do so;

computing an item set partition and a G, graph is sufficient.

Based on our partitioning scheme, we have designed PAR-FREQ which is a
generic frequency mining algorithm in Chapter 4. Since our transaction set par-
titioning method does not assume a particular representation or operation in the
local mining phase we can construct an algorithm that is fairly independent of the
underlying sequential mining algorithm. In the algorithm we have presented, it
suffices for the sequential mining algorithm to accept a transaction set in horizon-
tal layout.? We describe a basic algorithm that is a straightforward translation of
our k-way partitioning scheme and optimizations that may be used for a very effi-
cient version of the same algorithm. First phase of the algorithm computes F' and
G r, which is required in our scheme. In the basic algorithm, k-way partitioning
executes two-way partitioning in a recursive parallel fashion. The algorithm starts
with the whole set of processors and in each partitioning step divides the set of
processors into two as well as the transaction set. For this task, a load estimate of
the partition is computed to distribute the computational load accordingly among
the current set of processors. The database is redistributed at the end of the step
so that each set of processors can resume parallel mining recursively. The recur-
sion lasts until each processor group has a single processor. The single processor
can then mine its local transaction set without further communication. That is
similar in spirit to CANDIDATE-DISTRIBUTION and PAR-ECLAT as each processor
can perform frequency mining independently once the database has been redis-
tributed according to the k-way partition. Optimizations address computation of
G, which is done in a way similar to COUNT-DISTRIBUTION and redistribution
phase. The most important one of them is reducing the number of, intuitively?
O(logn), redistributions to a single redistribution as in PAR-ECLAT. In the opti-
mized version, the algorithm does the partitioning with recursive bisection again,
but does not redistribute the database at the end of each two-way partitioning

step. Instead it postpones the redistribution to the basis of the algorithm when

2Most mining algorithms use the horizontal database layout. However, our algorithm can
be easily modified to work with other types of serial algorithms since the generality comes from
theory.

3In reality, the number of redistributions depend on how good the graph partitioning is.

CHAPTER 7. CONCLUSIONS 89

the item sets for all processors have been determined. The partitioning infor-
mation is broadcast to all processors, after which a single redistribution achieves

k-way transaction set partitioning.

In Section 4.5.1 we present our version of FP-GROWTH which sports multiple
improvements. The published algorithm has a bug in its pattern output which
is corrected, and a large intermediate structure required in the recursive step is

eliminated.

Chapter 5 presents certain details of our implementation that are worth docu-
menting including a sorting routine that efficiently determines a unique decreasing
frequency order for use with FP-GROWTH. We describe our implementation plat-
form and properties of the code with respect to important tasks such as counting
items and partitioning. Our implementation realizes PAR-FP-GROWTH which
consists of the basic PAR-FREQ algorithm with the improved serial FP-GROWTH.

In Chapter 6, we report the results of our performance experiments on four
sythetic databases. These databases have been used in other parallel frequency
mining benchmarks and thus constitute a point of reference for the performance
of our algorithm. Since the main goal of a parallel algorithm is performance,
we should establish the validity of our approach with proved gains. The exper-
iments demonstrate the performance of the algorithm with changing number of
processors and support threshold on the experiment data. The experiments show
that the algorithm has a similar performance behavior on all data sets. It gains
superlinear speedup in high threshold, and with increasing number of processors
the increase in speedup decreases below linearity. Due to inexact load balancing,
largely caused by the inaccuracy of load estimate function and recursive bisec-
tion scheme, we see that it cannot attain all the speedup it could have achieved.
However, it always tends to scale up successfully as number of processors is in-
creased. We have also observed that it scales well in the number of transactions.
Its performance in the largest number of processors we have run our experiments
are satisfactory, especially taking into account the fact that our implementation
omits some of the parallel optimizations of Section 4.4. On one of the databases,

we reach 128.15 speedup at 0.75% support threshold. In the hardest instances of

CHAPTER 7. CONCLUSIONS 90

the problem we have benchmarked, the algorithm attains 5.41 to 7.28 speedup
which is better than the speedup behavior of PAR-ECLAT.

For future research we consider working on the following issues.

1. Realizing the omitted optimizations in PAR-FREQ. Local pruning explained
in Section 4.4.3 will enable scalability in the number of items while com-
munication improvements of Section 4.4.4 will make the algorithm scalable
in the number of transactions. Another optimization is embedding the first

database pass of the serial algorithm inside the communication routine.*

2. Implementing other serial mining algorithms such as APRIORI for use with
PAR-FREQ. We would like to see how well other serial algorithms perform

with our generic parallel algorithm and the impact on parallel performance.

3. Using large real world transaction data in our experiments. A benchmark
study states that the algorithms overfit synthetic data [12]. It would be
thus beneficial to observe the performance characteristics of our algorithm

on real world data.

4This would speed up the current PAR-FP-GROWTH implementation.

Bibliography

1]

2]

[4]

P. L. A. Abu-Hanna. Prognostic models in medicine, Al and statistical

approaches. Methods of Information in Medicine, 40:1-5.

S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ra-
makrishnan, and S. Sarawagi. On the computation of multidimensional ag-
gregates. In Proc. 22nd Int. Conf. Very Large Databases, VLDB, pages
506-521. Morgan Kaufmann, 3-6 1996.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. SIGMOD
Record ACM Special Interest Group on Management of Data, pages 94-105,
1998.

R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules be-
tween sets of items in large databases. In P. Buneman and S. Jajodia, editors,
Proceedings of the 1993 ACM SIGMOD International Conference on Man-
agement of Data, pages 207-216, Washington, D.C., 26-28 1993.

R. Agrawal and J. C. Shafer. Parallel mining of association rules. IEEFE
Trans. On Knowledge And Data Engineering, 8:962-969, 1996.

R. Agrawal and J. C. Shafer. Parallel mining of association rules: Design,
implementation and experience. Technical report, IBM Almaden Research
Center, IBM Corp, Almaden Res Ctr, 650 Harry Rd, San Jose, Ca, 95120,
1996.

91

BIBLIOGRAPHY 92

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proc. 20th Int. Conf. Very
Large Data Bases, VLDB, pages 487-499. Morgan Kaufmann, 12-15 1994.

R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and
A. L. P. Chen, editors, Proc. 11th Int. Conf. Data Engineering, ICDE, pages
3-14. IEEE Press, 6-10 1995.

O. Albert Y. Zomaya, Tarek El-Ghazawi. Parallel and distributed computing
for data mining. IEEE Concurrency, 7(4):11-13, 1999.

K. Ali, S. Manganaris, and R. Srikant. Partial classification using association

rules. In Knowledge Discovery and Data Mining, pages 115-118, 1997.

K. Alsabti, S. Ranka, and V. Singh. CLOUDS: A decision tree classifier for
large datasets. In Knowledge Discovery and Data Mining, pages 2-8, 1998.

Z. Z. Blue. Real world performance of association rule algorithms. In KDD
2001.

S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: generalizing

association rules to correlations. pages 265276, 1997.

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting
and implication rules for market basket data. In J. Peckham, editor, SIG-
MOD 1997, Proceedings ACM SIGMOD International Conference on Man-
agement of Data, May 13-15, 1997, Tucson, Arizona, USA, pages 255-264.
ACM Press, 05 1997.

A. Buja, D. Cook, and D. Swayne. Interactive high-dimensional data visu-

alization. Journal of Computational and Graphical Statistics, 5:78-99, 1996.

M.-S. Chen, J. Han, and P. S. Yu. Data mining: an overview from a database
perspective. IEEE Trans. On Knowledge And Data Engineering, 8:866—883,
1996.

S. Cheng. Statistical approaches to predictive modeling in large databases.

Master’s thesis, Simon Fraser University, Canada, January 1998.

BIBLIOGRAPHY 93

18]

[20]

[21]

[22]

23]

[24]

[25]

[26]

D. W. Cheung, V. T. Ng, A. W. Fu, and Y. J. Fu. Efficient mining of
association rules in distributed databases. IEEE Trans. On Knowledge And
Data Engineering, 8:911-922, 1996.

D. J. Cook, L. B. Holder, S. Su, R. Maglothin, and 1. Jonyer. Structural min-
ing of molecular biology data. IEEE Engineering in Medicine and Biology,

special issue on Advances in Genomics, 2001.

R. Cooley, J. Srivastava, and B. Mobasher. Web mining: Information and
pattern discovery on the world wide web. In Proceedings of the 9th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI’97),
November 1997.

L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in
chemical compounds. In R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro,
editors, 4th International Conference on Knowledge Discovery and Data
Mining, pages 30-36. AAAI Press., 1998.

S. Djoko, D. Cook, and L. Holder. An empirical study of domain knowl-
edge and its benefits to substructure discovery. In IEEE Transactions on

Knowledge and Data Engineering, volume 9, 1997.

A. E. Eiben, T. J. Euverman, W. Kowalczyk, and F. Slisser. Modelling
customer retention with statistical techniques, rough data models and genetic
programming. In A. Skowron and S. K. Pal, editors, Fuzzy Sets, Rough Sets
and Decision Making Processes. Springer-Verlag, Berlin, 1998.

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases. In Proc. ACM SIGMOD, pages 419-429,
1994.

U. M. Fayyad, D. Haussler, and P. E. Stolorz. KDD for science data analysis:
Issues and examples. In Knowledge Discovery and Data Mining, pages 50-56,
1996.

U. M. Fayyad, D. Haussler, and P. E. Stolorz. The KDD process for extract-
ing useful knowledge from volumes of data. Communications of the ACM,
pages 27-34, November 1996.

BIBLIOGRAPHY 94

[27]

28]

[29]

[30]

[31]

[32]

33]

[34]

[35]

[36]

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery in databases. AI Magazine, 17(3):37-54, 1996.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery
and data mining: Towards a unifying framework. In Knowledge Discovery
and Data Mining, pages 82-88, 1996.

F. Geerts, B. Goethals, and J. V. den Bussche. A tight upper bound on the
number of candidate patterns. In Proceedings of the First IEEE International

Conference on Data Mining.

J. V. Greg Burns, Raja Daoud. LAM: An open cluster environment for MPI.
In J. W. Ross, editor, Proceedings of Supercomputing Symposium, pages 379—
386, 1994.

S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm
for categorical attributes. Information Systems, 25(5):345-366, 2000.

D. Gunopulos, R. Khardon, and H. M. et al. Data mining, hypergraph
transversals, and machine learning (extended abstract). In Proceedings of

the symposium on Principles of Database Systems, pages 209-215, 1997.

A. Gupta. Fast and effective algorithms for graph partitioning and sparse
matrix ordering. Technical report, IBM, 1996.

E.-H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering based
on association rule hypergraphs. In Research Issues on Data Mining and

Knowledge Discovery, 1997.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In W. Chen, J. Naughton, and P. A. Bernstein, editors, 2000
ACM SIGMOD Intl. Conference on Management of Data, pages 1-12. ACM
Press, May 2000.

S. Handley, P. Langley, and F. A. Rauscher. Learning to predict the duration
of an automobile trip. In Knowledge Discovery and Data Mining, pages 219
223, 1998.

BIBLIOGRAPHY 95

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[48]

V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes
efficiently. In Proc. ACM SIGMOD, pages 205-216, 1996.

M. Hearst. Untangling text data mining. In Proceedings of ACL’99: the 37th
Annual Meeting of the Association for Computational Linguistics, 1999.

T. Hellstrom and K. Holmstrom. Predicting the stock market. Techni-
cal report, Department of Mathematics and Physics, Malardalen University,

Sweden.

B. Hendrickson and E. Rothberg. Improving the run time and quality
of nested dissection ordering. SIAM Journal on Scientific. Computing,
20(2):468-489, 1998.

C. Hidber. Online association rule mining. In SIGMOD Conf., pages 145—
156, 1999.

J. Hipp, U. Giintzer, and G. Nakhaeizadeh. Algorithms for association rule
mining — a general survey and comparison. SIGKDD Ezplorations, 2(1):58-
64, July 2000.

J. Itskevitch. Automatic hierarchical e-mail classification using association

rules. Master’s thesis, Simon Fraser University, 2001.

M. Kamber, L. Winstone, W. Gon, and J. Han. Generalization and decision
tree induction: Efficient classification in data mining. In Proc. of 1997 Int.
Workshop Research Issues on Data Engineering (RIDE), 1997.

G. Karypis. Multilevel refinement for hierarchical clustering.

G. Karypis, E.-H. S. Han, and V. Kumar. Chameleon: Hierarchical clustering
using dynamic modeling. Computer, 32(8):68-75, 1999.

G. Karypis and V. Kumar. METIS A Software Package for Partitioning
Unstructured Graphs, Paritioning Meshes an Computing Fill-Reducing Or-

derings of Sparse Matrices.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific. Computing, 1998.

BIBLIOGRAPHY 96

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, September 1969.

M. Kuramochi and G. Karypis. Frequent subgraph discovery. In 1st IEEE
Conference on Data Mining, 2001.

J. W. H. Liu. A graph partitioning algortihm by node separators. ACM
Transactions on Mathematical Software, 15(3):198-219, September 1989.

H. Lu, J. Han, and L. Feng. Stock movement prediction and n-dimensional
inter-transaction association rules. In Proc. ACM SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discovery, pages pages 12:1—
12:7, Seattle, Washington, June 1998.

V. K. Mahesh Joshi Eui-Hong, George Karypis. Parallel algorithms in data

mining.

W. Maniatty and M. J. Zaki. A requirements analysis for parallel KDD
systems. In IPDPS Workshops, pages 358-365, 2000.

H. Mannila. Methods and problems in data mining. In Proceedings of Inter-
national Conference on Database Theory (ICDT), pages 41-55, 1997.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes
in event sequences. Data Mining and Knowledge Discovery, 1(3):259-289,
1997.

M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for
data mining. In Extending Database Technology, pages 18-32, 1996.

O. Z. Mohammad. Fast parallel association rule mining without candidacy
generation. In Proc. of the IEEE 2001 International Conference on Data
Mining (ICDM’2001), San Jose, CA, USA, November 29-December 2 2001.

A. Moore and J. Schneider. Cached sufficient statistics for automated min-
ing and discovery from massive data sources. Technical report, The Auton
Lab, Carnegie Mellon University Robotics Institute and School of Computer

Science.

BIBLIOGRAPHY 97

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

A. Mueller. Fast sequential and parallel algorithms for association rule min-
ing: A comparison. Technical Report CS-TR-3515, College Park, MD, 1995.

NASA astronomical data center home page. http://adc.gsfc.nasa.gov.

B. Olsson and K. Laurio. Discovery of diagnostic patterns from protein
sequence databases. In Principles of Data Mining and Knowledge Discovery,
pages 167-175, 1998.

M. M. Ozdal and C. Aykanat. Hypergraph models and algorithms for data-

pattern based clustering.

R. Rastogi and K. Shim. PUBLIC: A decision tree classifier that integrates
building and pruning. Data Mining and Knowledge Discovery, 4(4):315-344,
2000.

S. Russell and P. Norvig. Artificial Intelligence A Modern Approach, chapter
4 Informed Search Methods. Prentice-Hall Int., 1995.

A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient algorithm for
mining association rules in large databases. In The VLDB Journal, pages
432-444, 1995.

J. C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classi-
fier for data mining. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and
N. L. Sarda, editors, Proc. 22nd Int. Conf. Very Large Databases, VLDB,
pages 544-555. Morgan Kaufmann, 3-6 1996.

C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Gener-
alizing association rules to dependence rules. Data Mining and Knowledge
Discovery, 2(1):39-68, 1998.

T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and
C. V. Packer. BEOWULF: A parallel workstation for scientific computation.
In Proceedings of the 24th International Conference on Parallel Processing,
pages [:11-14, Oconomowoc, WI, 1995.

BIBLIOGRAPHY 98

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

R. R. Tian Zhang and M. Livny. Birch: An efficient data clustering
method for very large databases. In Proceedings of the 1996 ACM SIG-
MOD International Conference on Management of Data, pages 103-114,
Montreal,Canada, 1996.

P. S. U. Fayyad, G. Piatetsky-Shapiro and R. Uthurusamy. Advances in
Knowledge Discovery and Data Mining. MIT Press, 1996.

G. Weiss, J. Eddy, and S. Weiss. Knowledge-Based Intelligent Techniques
in Industry, chapter 8, Intelligent Telecommunication Technologies. CRC
Press., 1998.

P. C. Wong and R. D. Bergeron. 30 Years of Multidimensional Multivariate
Visualization, pages 3-33. IEEE Computer Society Press., Los Alamitos,
CA, 1997.

D.-Y. Yang, A. Johar, A. Grama, and W. Szpankowski. Summary struc-
tures for frequency queries on large transaction sets. In Data Compression
Conference, pages 420-429, 2000.

M. L. Yaron. Knowledge discovery in time series databases. IEEE Transac-

tions on Systems, Man and Cybernetics - Part B: Cybernetics, 2001.

O. R. Zaiane, J. Han, and H. Zhu. Mining recurrent items in multimedia with
progressive resolution refinement. In Mining Recurrent Items in Multimedia

with Progressive Resolution Refinement, San Diego, CA, February 2000.

M. Zaki and C. Hsiao. Charm: an efficient algorithm for closed association

rule mining. Technical report, 1999.

M. J. Zaki. Parallel and distributed association mining: A survey. IEFEE
Concurrency, 7(4):14-25, 1999.

M. J. Zaki. Scalable algorithms for association mining. Knowledge and Data
Engineering, 12(2):372-390, 2000.

M. J. Zaki, N. Lesh, and M. Ogihara. Planmine: Sequence mining for plan
failures. In Knowledge Discovery and Data Mining, pages 369-374, 1998.

BIBLIOGRAPHY 99

[81] M. J. Zaki, S. Parthasarathy, and W. Li. A localized algorithm for par-
allel association mining. In ACM Symposium on Parallel Algorithms and
Architectures, pages 321-330, 1997.

[82] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithms
for discovery of association rules. Data Mining and Knowledge Discovery,
1(4):343-373, 1997.

Appendix A

Detailed Performance Results

In this appendix, we include performance plots of running time and speedup

surfaces for observing the similar patterns in our performance experiments.

100

APPENDIX A. DETAILED PERFORMANCE RESULTS 101

Running time for T10.16.800K

Time (sec) < S w0 Sse

350 oo e
300 .
250 |-
200 |-
150
100
50
0 +
Support (%)
0
12 —~<____, /____
Processors 24 o8 02
Running time for T10.16.1600K
T10.16.1600K -
800 —-—-—-
600 ------
400 -- -- --
300 -------
200 ---- ---
150 ———
100 -----
Time (sec) 00 -
50 oo
.. 375 ———
1200 R
1000
800
600
400
200 o

0 L T Sy

Processors 28

Figure A.1: Running time for T10.16.800K and T10.16.1600K

APPENDIX A. DETAILED PERFORMANCE RESULTS 102

Running time for T10.14.1024K

Time (sec)

OOOOOOOOO

TTTTTTTT

Processors 24 28 02

Running time for T15.14.367K

T15.14.367K -~
800 ———
600 — -~ -
400 ------
300 - -
200 ---- -
150 ——

Time (sec)

NPEDOOONAD

OO0
OOOOOOOOO
ITTTTr1ImT Tl

Processors 28

Figure A.2: Running time for T10.14.1024K and T15.14.367K

APPENDIX A. DETAILED PERFORMANCE RESULTS 103

Speedup for T10.16.800K

T10.16.800K
20 -----
ﬁﬁ
Speedup 0
3B
30
25 |-
20
15
10
5 -
0 -
0.6
0
Support (%)
Processors o8 5502
Speedup for T10.16.1600K
T10.16.1600K ———
45 ————-
40 ------
Speedup R
70
60
50
40
30
20

10
0

Processors

Figure A.3: Speedup for T10.16.800K and T10.16.1600K

APPENDIX A. DETAILED PERFORMANCE RESULTS 104

Speedup for T10.14.1024K

T10.14.1024K
14 ————-
ﬁ
Speedup T
6 - —-—-
4
30 2
25
20
15
10 |
0.6
0 5
~ Support (%)
16 Y ety 0.4
Processors o8 5502
Speedup for T15.14.367K
T15.14.367K ———
45 ————-
40 ------
Speedup 36
140
120
100
80
60
40
20
0

Processors

Figure A.4: Speedup for T10.14.1024K and T15.14.367K

Appendix B

Proof and Algorithm

Following proof pertains to Lemma 1.

Proof. The proof follows easily from definition of F. Let X € F(T,¢). For all
Y C X we can ascertain Y € 2/ since Y C X CI. VY C X, o(Z,Y) > o(Z, X)
while X C ZAY C X =Y C Z. Therefore Lzcr0(Z,Y) > Y ero(Z, X), that is
f(Y) > f(T,X). For f(T,X) > ¢, it is also the case that f(T,Y) > e. Hence
Y € F(T,¢). This lemma is due to Agrawal [7], and it is known as the downward

closure property. O

COUNT-2-ITEMS™ is the optimized counting routine that uses an F, matrix

of rank |F'| as explained in Section 4.4.1.

105

APPENDIX B. PROOF AND ALGORITHM

106

Algorithm 24 CounT-2-ITEMS* (T}, €, F')

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24.
25:
26:
27:
28:
29:
30:
31:
32:

1: > A is an upper triangular matrix to hold local counts
2: A < MAKE-UT-MATRIX(|F)

3: map is an array of length |F|

4: invmap is an array of length |I|

a:
6
7
8
9

x <+ 0

: for alli € F do

map|x] < i
invmapli] < x
T x+1
end for
for all X €7, do
for all {u,v} C XNF do
u' + invmap|u]
v' < invmap|v]
if ' > v’ then
swap u' and v’
end if
Aty — Ay + 1
end for
end for
C < MAKE-UT-MATRIX(|F|)

Reduce Sum L to C' at pid 0 > C is the global UT count matrix

if pid = 0 then
for u < 0to |F|—1do
forv<u+1to|F|—1do
if ¢,, > € then
E(Gr,) + E(Gr,) U (maplu], map[v])
end if
end for
end for
end if
return Gp,

