

PREDICTING NEXT PAGE ACCESS BY TIME
LENGTH REFERENCE IN THE SCOPE OF EFFECTIVE

USE OF RESOURCES

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE
���������
	����������������������
�

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

by

Berkan YALÇINKAYA

September, 2002

ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 ���������
	�������������������������� "!$#&%('*),+-�/.102�43����65

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Özgür ULUSOY

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 ��373*89���:��������	"�;�<'-=�����>?��@BA"C�)D�E#DF/GH��I

Approved for the Institute of Engineering and Science:

 Prof. Dr. Mehmet B. Baray
 Director of the Institute

iii

ABSTRACT

PREDICTING NEXT PAGE ACCESS BY TIME LENGTH

REFERENCE IN THE SCOPE OF EFFECTIVE USE OF

RESOURCES

Berkan YALÇINKAYA

M.S. in Computer Engineering

Supervisor: Prof. Dr. Halil Altay ���������
	��

September 2002

Access log file is like a box of treasure waiting to be exploited containing

valuable information for the web usage mining system. We can convert this

information hidden in the access log files into knowledge by analyzing them.

Analysis of web server access data can help understand the user behavior and

provide information on how to restructure a web site for increased effectiveness,

thereby improving the design of this collection of resources. We designed and

developed a new system in this thesis to make dynamic recommendation according

to the interest of the visitors by recognizing them through the web. The system keeps

all user information and uses this information to recognize the other user visiting the

web site. After the visitor is recognized, the system checks whether she/he has visited

the web site before or not. If the visitor has visited the web site before, it makes

recommendation according to his/her past actions. Otherwise, it makes

recommendation according to the visitors coming from the parent domain. Here,

“parent domain” identifies the domain in which the identity belongs to. For instance,

“bilkent.edu.tr” is the parent domain of the “cs.bilkent.edu.tr” . The importance of the

pages that the visitors are really interested in and the identity information forms the

skeleton of the system. The assumption that the amount of time a user spends on

iv

page correlates to whether the page should be classified as a navigation or content

page for that user. The other criterion, the identity information, is another important

point of the thesis. In case of having no recommendation according to the past

experiences of the visitor, the identity information is located into appropriate parent

domain or class to get other recommendation according to the interests of the visitors

coming from its parent domain or class because we assume that the visitors from the

same domain will have similar interests. Besides, the system is designed in such a

way that it uses the resources of the system efficiently. “Memory Management” ,

“Disk Capacity” and “Time Factor” options have been used in our system in the

scope of “Efficient Use of the Resources” concept. We have tested the system on the

web site of CS Department of Bilkent University. The results of the experiments

have shown the efficiency and applicabili ty of the system.

Keywords: access log file, personalization, identity information, recommendation.

ÖZET

�����������
	������� �����
��� �
�	�	�������	������� ����� ������������

SAYFANIN ZAMAN FAKTÖRÜNE DAYALI OLARAK
��� !"��� �$#��	�!"�%�&�

Berkan YALÇINKAYA ')(+*+,-(/.1032406587�9;:4<6=->?(@.�*+(+A-(CBCDE9;FG.H<IFKJL(@.H06=;.
 ML<6NEDPOQ=4<3RS(UT6(@.�(WVYXW5HZ-[H\Y]P5�_^`0I*+(+*-aE*bRc032Kd&egfEhji`kml

Eylül,2002

n�<3op<I5�(/q�(sr >-ZG.m240t.cuwvK<3oxF?y;*+*U06=zu+r r`0_>-<6=4T6(+*+(+A-(�(U{6(s=|,;<I5H<6F-*+(�ZQ*C06=x>-<6A;<65�*+(
o4(+*+,-(+*C<65�(E(U{_<I5H<6=~}Q<�F;<tq�[S<_>?(s*+r`<32z(&o;<IF-*U<324<6= :-06N_(s=-<w.106=->?usA-u&,-(bo4(U>?(+5�\�'�y�>-ZG.m2406*U0I5�uE06=406*+(+N
<�>-<65H<6F�(U{I(+=->-<�.106F-*+u�ozy�o-(+*s,-(+*U<65�(�F?y;*+*U06=zu+*U03o4(+*+(+5�o4(+*+,-(�:406*+(+=4<�>-O-=t9�qmR�9;51<3o-(+*s(+5�(+N-\�n<3o�<65c(/q�(+r
>-ZG.m2406*C065�u+=zu+=�06=-0I*+(+N_(UB�F?y;*+*U06=zuUT6u+=zu+=�>-03}45H06=?u@q�u+=zu&0I=?*U06rK0_>-0�};<�<3RSF-(+=z*+(+A-(�065SRSu+5�r`06F�(C{6(+=�vK<3o
.c(bRc<t.c(+=?(+=�Rc<6F-51065g>?(sN�032z=?u+=zu+=�=-0t.cu+*82 06�-u+*U0�T_06A-uj:-0IF-F-u+=->-0�o4(+*+,-(�.H0IA-*U06r`03240�24065H0I5&};<�o;O?2z*U<_T_<
F;0�2?=406F�RcZ-�-*by;*by;A?y;r�y;NIy;=�>?(+NY032z=?u+=zu�,;<6*+(@qmRS(+5�rK<�(srgF;06=?us=-0�.H06:z(+��ZQ*U0�o-(+*+(s5�(+N-\�'�y�Rc<6N�>-<
N�(b24065H<3Rc{6(s*U<65�(Ev`<�o
9;N�<65�(s=->-<�Rc06=zub24065H06F(+*+,-(s*U<65�(+=4<�,;OQ51<�OQ=4<65�r`<6*C<65H>-<�o?y;*�y;=-0_T_0IF�24<6=z(&o-(+5
.c(/.mRc<Ir >?(+N�032z=�<_>-<65H<6F�,;<I*+(/qmRS(s5H>?(+F�\��-(/.mRc<6r R�9;r F?y;*+*U06=zuUT6u�o4(+*+,-(+*C<65�(+=z(�F;ZQ5Sy;5~};<�.�(bRc<�2?(
N�(b24065H<3R�<�>-<6=�>?(sA;<65�o4(+5�F?y;*+*C06=?uUTIub2zu�Rc06=zu+r`06F�(C{6(+="o?y�o4(+*+,-(+*U<I5�(�F?y;*+*C06=?u+5�\~ L(b24065H<3Rc{6(
Rc0I=?u+=4>?u+F?Rc06=�.1ZQ=z5H0_B�.�(/.SRc<6r o?y�N_(b240651<3Rc{6(+=z(+=¡>-06:40¢OQ=4T_<_>-<6=£vK<3o�.c(bRc<t.c(+=?(�N_(�2-0I5H<3R%<_>?(s�
<�RSr`<_>?(+A-(+=z(`F;ZQ=�RS5HZQ*�<_>-<I5�\¤h�A;<65�N_(b24065H<�Rc{6(go?y¡.�(�Rc<32z(`>-0

ha önceden ziyaret ettiyse bu
F?y;*s*U06=?uCT6u+=?us=�,;<_{6rg(@q�:-0651<6F;<3RS*U<65c(+=-<¢>-032406*su�o-(+5�O-=-<65cr`<_>-<�ozy;*by;=ty;5�\gaEFG.�(�Rc0IF;>?(+5H>-<_B�ozy
F?y;*s*U06=?uCT6u+=?us=�o;06A-*+ugozy;*by;=->ty;A?y¢9�.SR�<3RSF-(`06*U0I=?u+=4>-06= ,;<6*C<6=�N_(�2-0I5H<3Rc{6(+*C<65�(+=�(+*+,-(`06*C06=?*U0I5�u+=-0
,;O-5H<�o4(+5¥OQ=4<65�r`<�>-<�o?y;*by;=�y;5�\¦'�y;5H0�>-0_B¨§Ia&Rc0�hLRSF-(jaE*U06=?us© Z�F y;*+*U06=zuUT6u+=zu+=�o;06A-*+uªZQ*C>ty;A?y
9�.SR¥<3RSF-(�06*U0I=?u+=zu�(+[S0�>-<�<_>-<I5�\j«E5�=-<6A-(s=-B�§�o-(+*sF;<6=tR¬\�<_>tyW\ RS5�©$§_T�.�\ o-(+*sF;<6=tR¬\�<_>tyW\ RS5�©p<3RSF-(L0I*U06=?us=?u+=
0�Rc0~<3RSF-(P06*U0I=?uU>?u+5�\� L(b24065H<3Rc{I(+*U<65�(s=�,;<I5H{_<6F?Rc<6=�<6=�{_Z-F�(s*+,-(¥>ty-24>ty;F-*U065�ug.1032z[S0�OQN�<I*+*+(+A-(�};<
F-(srg*+(+F�o4(+*+,-(/.c(�.�(/.SRc<6rg(+rP(+N_(+=�(/.�F;<6*C<3RS(+=?(ZQ*by�qSR�y;5�r`06F?Rc0�>?u+5�\ ')(+5
F?y;*+*U0I=?uUT6us=?u+=¡o-(+5.H032z[S0_>-0

vi

���������
	���������������������
�������������! �"#�$�%�&������'(��)�*�+�+!����'!,�'-�!������ .�������0/213�%���4�!�����5��)6�
�7�������5'�"+!���
��)
��'���'(�8+!���	�'(�5'�+������5'9��+:�;��+(���+��!	����=<?>9�(�����4)����@����
 A�����&�2)�(�9+���)CB��+���D�5�E@��������9�(�����F	��������HG3�����9+��
��"3)�@����5'��&'.@���/5)��+I�%@�����)�@���	����7<KJL�������
�%@����(�����M�������9�0/ @���,���NB���+!���5����O	�%����+('�G3�����5���P���%1�,7*@
"+�����	�'��'��	�� Q�%�&��'R�%@�)�R��+:����'���	��)�9���S����
�%@�����+:���5���CB����&�����T��+(���+!���
�C�
��U&��VW"3+:��,����'��&'9�����5�
�7@8@�������9���X	���Y	"3+!�7��'MB�*Z)�*�+�+!���&'!,�'��&'��[���S@\"+!	�*���*Z�%@��]�%@�)�^��+!����'(�	��)�M���S����
�%@�����+:���5���

ilgilerine göre önermede bulunabilmek için kimlik bi +���0���?*�&��*��6�7@����%@�)�_��+!���&'?1��7��
��'���'(�`�!�����5�0������a�����5+!��/b@����5�(+�����)�@���	��(�7<dc�*���*��e�����&'��	�� f���0�b@����)��%�&���)+:���5'O	��U��g1����5���9+��
)�*�+(+!�����,���) /
��)�(+!	� @����$���5+!�����9'0/�@�'��7< h�0��@����9���9�(��	� i7c_��+�+!��) j9G��%@��(�9��k� k�>l�0��)
m ��V����5��@����5��k 13� i7J-������� no��)�@�G3��N�k "Vp�5����"��+!���5'qi m �%�&���)+!���5'�� rL@�)��� m *�+�+!��� '��9'�k
)�"�s�$��V�@�� 	��U&��+�����	�)�*�+�+!���&'�+��9'0/�@�'��7< h�0�b@����l� ct�(+�)�����@ ul����13���v����@����5� cI��+(��0�
�%�����
w N�U����	��0�5+(����yxz�%B6����@����5�(�	�d@�����@{�%@8@��()|<o>�����%�&+!�������M�
"��*},%*~B�����T�5�D�b@����9�(��13���5���l+���+�����K1��
)�*�+(+!����'(+!�%B�(+����5+��(��������Gp�b@������9�0/b@��(�7<

Anahtar sözcükler � �����0/5���W	"p�b��� ��'!)�0/5�0�$��+�+!��/b@����5�z�� 3)�(�9+���)9B�(+���0�5�: sG���������<

vii

Acknowledgement

���������
	�������������������������� �!�#"�$&%'�(�)����*+���-,/.102�3.145.767�8��$��:91;=<7>@?BADCE,#���)�#"��

suggestions and support during this research.

 I would also like to thank to Assoc. Prof. Dr. Özgür ULUSOY and Asst. Prof. Dr.
A#F��/$&"'��HG2I1CJ*K>MLONQPSRT,#����$VUWUW�&�X�#�%'YZ�����/�V$W	�$&%�	Z�/�3[��\���]�#"'�^�5�#"������^��$&%�	_[�$&�`�a$�F��\�

comments.

 I would also like to thank to Turkish Armed Forces for giving us such an

opportunity.

 Finally, I would like to express my thanks to my wife for her love and support.

viii

Contents

1.Introduction 1

2. Background 2

 2.1 General Web Usage Mining ..11

 2.2 Business Intelligence...14

 2.3 System Improvement...16

 2.4 Site Modification...18

 2.5 Personalization..19

3. NextPage 28

 3.1 Log Analyzer ..29

 3.1.1 Data Preparation ...30

 3.1.1.1 Elimination of irrelevant items ..33

 3.1.1.2 Elimination of entries containing frame pages34

 3.1.2 Determination of Frame Pages..36

 3.1.3 Session Identification..38

 3.1.4 Classifying Identity Information ...50

 3.1.4.1 IP Addresses ...50

 3.1.4.2. Fully Qualified Domain Names..52

ix

 3.1.5 Inserting Identity Information into the tree..55

 3.1.6 Storing Session Information and Indexing ..61

 3.2 Recommendation Engine...68

 3.2.1 Discovery of the pages to be recommended ..69

4. Efficient Use of Resources 78

 4.1 Efficient use of the main memory..78

 4.2 Efficient use of the disk capacity ...80

5. Evaluation 88

6. Conclusions and Future Work 98

List of Figures

1.1 Main Architecture of Web Usage Mining .. 6

2.1 Knowledge Discovery Domains of Web Mining ... 8

2.2 Architecture of the whole system ...10

3.1 An example entry in the access log file...30

3.2 A series of entry with frame pages..35

3.3 The entry after modification ...35

3.4 An example entry with search engines in Referrer field36

3.5 The same entry after modification ..36

3.6 Algorithm Frame_Detector ..37

3.7 A sample user session ..40

3.8 Algorithm used for session identification ...42

3.9 An example illustrating the creation of a new session node..............................44

3.10 Algorithm Eliminate_Session ...47

3.11 A fragment of the sessions created..49

3.12 Domain Name Hierarchy..54

3.13 A series of identities...56

3.14 The root structure of the tree ..57

xi

3.15 Algorithm Insert_Tree..58

3.16 Classification of the IP addresses..59

3.17 Tree structure holding the identity information...62

3.18 Algorithm Construct_Tree..63

3.19 The tree constructed before the execution of the module64

3.20 Algorithm Create_Result_File ..66

3.21 PHP script embedded into an HTML page..69

3.22 Algorithm used in the FindPage ...71

3.23 A part of the tree with the example entries..72

3.24 The same part of the tree after updating the index fields73

3.25 Index_Table ...74

3.26 Algorithm Discover_Pages...74

3.27 Index_Table for the given identities ...76

4.1 Algorithm Use_Memory_Efficient ..79

4.2 Calculation of the time spent ...83

4.3 Algorithm Forget...86

5.1 Main phases of the Log Analyzer module..92

5.2 A Sample Fragment of the IndexFile ...94

5.3 A Sample Fragment of the Result_File ..95

5.4 A Sample Output of the Recommendation Engine...97

xii

List of Tables

3.1 Example entries in the Index File .. 63

3.2 Example identities with their start and end indexes.. 71

5.1 Test results of the Preprocessing Algorithm for 10-day period. Size values

 are in byte .. 89

5.2 Test results of the Session Identification Algorithm... 90

5.3 Test results of the identity information and the size of the Index and Result

 File. Size values are in byte.. 91

5.4 Test results of each phase of the Log Analyzer module. Time values are in

 seconds. ... 92

5.5 Test Results of Forgetting Algorithm. Time values are in seconds while the

sizes are in bytes. .. 96

Chapter 1

Introduction

The World Wide Web is a large, distributed hypertext repository of information,

where people navigate through links and view pages through browsers. The huge

amount of information available online has made the World Wide Web an important

area for data mining researches.

The ease and speed with which business transactions can be carried out over

the web has been a key driving force in the rapid growth of electronic commerce.

Electronic commerce is the focus of much attention today, mainly due to its huge

volume. The abili ty to track browsing behavior of the users has brought vendors and

end customers closer than ever before.

 Web personalization can be described as any action that makes the web

experience of a user personalized to the user’s taste. The experience can be

something as casual as browsing the web or as significant as trading stocks or

purchasing a car. Principal elements of web personalization include modeling of web

objects (pages, etc.) and subjects (users), categorization of objects and subjects,

matching between and across objects and/or subjects, and determination of the set of

actions to be recommended for personalization.

CHAPTER 1: INTRODUCTION 2

 Personalizing the web experience for a user is the main idea for the most web

usage based applications. Nowadays, making dynamic recommendations to the user

based on his/her past experiences has become very attractive for many applications.

The examples of this type of recommendations can be especially found in e-

commerce applications.

 Understanding the common behavioral patterns of the customers makes the e-

commerce companies gain more customers and sell more products through the web.

The design of an e-commerce site is critical since their web site is a gateway to their

customers. All identity and behavior information about their customers are kept in

the access log files as a hidden treasure. Any company that uses web usage mining

techniques to filter out the information in access log files has more chance than the

others by making their sites more attractive based on the common behavioral patterns

of the customers. Nowadays, all e-commerce companies apply data mining

techniques on access log files to get more information about their customers and to

recognize them through the web. It is a fact that e-commerce sites that have an ability

recognizing their customers, adapting their sites or making dynamic

recommendations according to the past experiences of the customers save lots of

money to the company.

Most existing tools provide mechanism for reporting user activity in the

servers and various forms of data filtering. By using these tools, determination of the

number of accesses to the server and to individual files, most popular pages, the

domain name and URL of the users who visited the site can be solved, but not

adequate for many applications. These tools do not help the Webmaster for the

analysis of data relationships among the accessed files and the directories within the

web site such as [13][14]. These tools have no ability in-depth analysis and also their

performance is not enough for huge volume of data. Researches have shown that the

log files contain critical and valuable information that must be taken out. It makes

web usage mining a popular research area for many applications in the last years.

CHAPTER 1: INTRODUCTION 3

 Another important point of the web usage mining arises in the efficient use of

resources. Because the size of the access log files increases in a high rate, the system

must handle this option in the scope of using the resources efficiently. Otherwise, if

this option could not be taken into account, the system may be off in the future. All

limitations including the memory and the resources the system have, must be taken

into consideration while an application is being developed. In this context, the

system must start a new process to make the usage of resources more efficient when

the limits exceed the threshold determined before.

In the thesis, we present a new usage mining system, called as NextPage. The

main idea is the prediction of the next page to be retrieved by recognizing the visitor

and analyzing the session information belong to the visitor. As discussed above, one

way to recognize the user is to use cookies. The main purpose of using cookies in

applications is to identify users and possibly prepare customized web pages for them.

When you enter a web site using cookies, you may be asked to fill out a form

providing such information as your name and interests. This information is packaged

into a cookie and sent to your web browser that stores it for later use. The next time

you go to the same web site, your browser will send the cookie to the web server.

The server can use this information to present you with custom web pages. So,

instead of seeing just a generic welcome page you might see a welcome page with

your name on it. For example, when you browse through an "online shopping mall"

and add items to your "shopping cart" as you browse, a list of the items you have

picked up is stored by your browser so that you can pay for all of the items at once

when you are finished shopping. It is much more efficient for each browser to keep

track of information like this than to expect the web server to have to remember who

bought what, especially if there are thousands of people using the web server at a

time.

Cookies are harmless in general and the option of turning off the "Always

confirm before setting a cookie" feature in your browser is recommended. In case of

CHAPTER 1: INTRODUCTION 4

being turned on the feature described above really makes the user annoyed. The wide

range usage of cookies compel the companies use them to have a chance to exist in

the future.

There may be certain cases when you will want to reject cookies, but these

probably do not come up that often. Let's say you are visiting a site using a browser

that is not on your own personal machine - like a public terminal, or your boss's

machine at work. In that case, you might not want a record of your shopping cart, or

the sites that you visit, to be kept around where anyone can look at them. Since the

browser saves a copy of the cookie information to your local hard drive, it leaves a

record that anyone can rifle through if they have the inclination. Another thing to

think about is the rare case when some secret or valuable piece of information is

being transferred via a cookie. Some of the more advanced web sites will actually do

login authentication through HTTP cookies. In this case, you may want to make sure

the cookies you are served encrypt your password before reflecting that information

back across the net to your personal browser. For sensitive information, use the

golden rule: If everyone can see what is being sent, then anyone can find that

information by looking at your cookie file or by filtering through the traffic in your

vicinity on the net. However, if the information is encrypted (that is, you can not

actually read your password by looking in your cookie file), then it is probably OK.

 In this regard, the disadvantage of rejecting the cookies made us to accept

another way of recognizing the visitor. The way we have chosen is to keep all

information about the visitors in the server side and use this information by online

mechanism of the system after obtaining the identity information of the visitors

through the web and recommend them the pages according to the profile of the

visitor.

 The system designed and implemented here focuses on the problem of

prediction, that is, of guessing future requests of the user for web documents based

on their previous requests. The result of the system is a list of pages as a

CHAPTER 1: INTRODUCTION 5

recommendation set at the end of the web document. The goal of making

recommendation to the user is to provide the user an easy access to the pages that

he/she may be interested in. Our starting point of the design of the system is to make

the user’s surfing easier by recommending the pages that can be only accessed after a

retrieval of a number of pages in any particular page. As a result, the visitor may

reach to the page by just clicking on its link instead of making a number of retrieval.

Another question that deserves attention is what the system recommends any

visitor who has never visited the site before. In these cases, the system parses the IP

address or FQDN of the visitor to find its parent domain. The system also keeps all

information about all parent domains reside in the World Wide Web. If the system

produces no recommendation for a new visitor, then it searches the next access pages

to be recommended in the sessions of the parent domain of the visitor. The system

repeats this process until i t has enough number of recommendation determined by

the web master.

The system developed is under the category of usage-based personalization. It

has two main modules, Log Analyzer and Recommendation Engine. Log Analyzer

module analyzes the log file kept by the server to determine the patterns and

information about the visitors. The main files formed by Log Analyzer are the file

containing the session information of the visitors (Result File) and the file containing

the indexes (Index File) of sessions belong to the visitors. The information obtained

by the Log Analyzer module is used by Recommendation Engine module to produce

recommendation set for the visitor. Recommendation Engine acquires the identity

and document information by the help of PHP script code that is embedded into the

HTML page. Then, it searches the pages to be recommended in the Result File by

using the index variables kept in Index File. After processing and producing the

recommendation, Recommendation Engine shows them to the visitor in a table at the

bottom of the document.

CHAPTER 1: INTRODUCTION 6

The general architecture of the system can be summarized as in Figure 1.2.

As shown in the figure, Log Analyzer mines the log data to produce information and

pattern about the visitors. Recommendation Engine module uses the Index and

Result File formed by the Log Analyzer module by executing a CGI program. Log

Analyzer module runs offline at specific times while Recommendation Engine

module runs online for every request for the resources keeping PHP script code in. In

the following chapters, the details of the system will be discussed in more detail.

Figure 1.1: Architecture of the system

 An overview of the previous work done related to the thesis will be given in

Chapter 2. The detailed explanation of Log Analyzer and Recommendation Engine

module will be given in Chapter 3. Chapter 4 is devoted to the efficient use of the

resources. The results of the experiments and evaluation will be discussed in Chapter

5 and we will conclude with Chapter 6.

Request for a page Page with recommendations

L O G A N A L Y Z E R

 SESSION

 INDEX

R E C O M M E N D A T I O N E N G I N E

 I N T E R N E T

Chapter 2

Background

In this chapter, we discuss related work in the literature and present the relevant

background concepts for the thesis. Web servers register a log entry for every single

access they get. A huge number of accesses (hits) are registered and collected in an

ever-growing access log file. By mining the access log files maintained by the web

servers we may enhance server performance, improve web site navigation, improve

system design of web applications.

Data mining and World Wide Web are two important and active areas of

current researches. A natural combination of the two areas, sometimes referred to as

Web Mining, has been the focus of several recent research projects and papers. Web

mining can be described as the discovery and analysis of useful information from the

World Wide Web [1]. Main goal of web mining is the extraction of interesting and

useful patterns and information from activities related to the World Wide Web. This

means the automatic search of information resources available online. The search

may be either in Web Content Mining or in Web Usage Mining. Web Mining can be

roughly classified into three knowledge discovery domains as shown in Figure 2.1:

Web Content Mining, Web Structure Mining and Web Usage Mining

CHAPTER 2:BACKGROUND 8

Web content mining, is described as the process of information or resource

discovery from millions of sources across the World Wide Web. Web Content

Mining studies can be divided into two main approaches, namely agent-based

approach and database approach [1].

Figure 2.1: Knowledge Discovery Domains of Web Mining

Generally, agent-based web mining systems can be placed into three

categories. Intelligent Search Agents uses domain characteristics and user profiles to

organize and interpret the discovered information such as Harvest[2], Parasite[3] and

Shop-Boot[4]. Information Filtering/Categorization uses various information

retrieval techniques[5] and characteristics of open web documents to automatically

retrieve, filter and categorize them. Personalized Web Agents learn user preferences

and discover web information sources based on these preferences and those of other

individuals with similar interests such as WebWatcher[6], Sykill & Webert[7].

 The aim of database approaches to web mining is to organize semi-structured

web pages into more structured collections of resources. Then known database

querying systems and data mining techniques are applied on these databases created

Web Mining

Web Content
Mining

Web Structure
Mining

Web Usage
Mining

Agent-Based Database Approach

Inteligent Search
Engines

Information
Filtering/Categorization

 Personalized Web
 Agents

CHAPTER 2:BACKGROUND 9

to analyze them. Database approach is divided into two classes. Multilevel Databases

store all semi-structured hypertext documents at the lowest level of the databases and

uses them for higher levels to have Meta data and generalizations. On the other hand,

Web Query Systems make the analysis of the data created easier. They use standard

database query languages such as SQL for the queries that are used in WWW such as

W3QL[8].

Web structure mining is the application of data mining techniques for the data

describing the organization of the content. Design of a web site centers around

organizing the information on each page and the hypertext links between the pages in

a way that seems most natural to the site users in order to facilitate their browsing

and perhaps purchasing. In this context, Intra-page structure information includes the

arrangement of various HTML or XML tags within a given page. The principal kind

of inter-page structure information is hyperlinks connecting one page to another page

in a web site. In other words, it is focused on the structure of the hyperlinks within

the web itself. Most research on the web structure mining can be thought of a

mixture of content and structure mining and add content information to the link

structures such as Clever System[10] and Google[11].

Web Usage Mining focuses on techniques that could predict user behavior

while the user interacts through the web. We define the mined data in this category

as the secondary data since they are all the result of interactions. We could classify

them into the usage data that reside in the web clients, proxy servers and web

servers[9]. The web usage mining process could be classified into two commonly

used approaches[12]. The former approach maps the usage data into relational tables,

whereas the latter approach uses the log data directly by utilizing special

preprocessing techniques. Web usage mining can also be defined as the application

of data mining techniques to discover user web navigation patterns from web access

log data[9]. Log files provide a list of the page requests made to a given web server

in which a request is characterized by, at least, the IP address of the machine placing

CHAPTER 2:BACKGROUND 10

the request, the date and time of the request and the URL of the page requested.

From this information, it is possible to derive the user navigation sessions within the

web site where a session consists of a sequence of web pages viewed by a user in a

given time window. Any technique to identify patterns in a collection of user

sessions is useful for the web site designer since it may enhance the understanding of

user behavior when visiting the web site and therefore providing tips for improving

the design of the site.

Web usage mining has mainly three phases: preprocessing, pattern discovery

and pattern analysis. Preprocessing consists of converting the usage, structure and

content information contained in the various available data sources into the data

abstractions necessary for pattern discovery. Pattern discovery can be divided into

the categories, statistical analysis, association rules, clustering, classification,

sequential patterns and dependency modeling[9]. Pattern analysis is the last step of

web usage mining that aims to filter out interesting rules or patterns from the set

found in the pattern discovery phase. The most common way of pattern analysis is a

query mechanism such as SQL.

The main application areas of web usage mining can be depicted in Figure 2.2

Figure 2.2: Main Application Areas of Web Usage Mining

Web Usage Mining

Business
Intelligence

System
Improvement

Site
Modification Personalization General

CHAPTER 2: BACKGROUND 11

As shown in the figure, usage patterns extracted from web data have been

applied to a wide range of research areas. Projects such as WebSIFT [9], WUM [10],

SpeedTracer [30] have focused on web usage mining in general.

2.1 General Web Usage Mining

The aim of a general web usage mining system is to discover general behavior and

patterns from the log files by adapting well-known data mining techniques or new

approaches proposed. Most of the researches aim to discover user navigation paths or

common behavior from access log files whereas some of the studies focus on

clustering to find the similar interest groups among visitors.

 One of the studies, Hypertext Probabilistic Grammars [12], focuses on mining

access patterns of visitors. In this study, user navigation session is defined as a

sequence of page requests such that no consecutive requests are separated by more

than a specific time period. These user navigation sessions derived from log files are

then modeled as a hypertext probabilistic grammar (HPG). There are two states, S

and F, which represent the start and finish states of the navigation sessions. The set

of strings, which are generated with higher probability, correspond to the navigation

trails preferred by the user. Moreover, the concept of an N-grammar is used to

determine the assumed memory when navigating within the site. For a given N it is

assumed that only N previously visited pages influence the link the user will choose

to follow next. After the construction of the HPG the paths are discovered by using

Depth-First search algorithm. Before mining process, support and confidence

thresholds must be specified. Support threshold ensures that the path is frequently

visited while confidence threshold ensures that the derivation probability of the

corresponding string is high enough. The support value is obtained by the probability

of the derivation of the first state of the path from the start state while confidence

CHAPTER 2: BACKGROUND 12

threshold is obtained from the derivation probabilities of other pages on the path. The

value of support and confidence threshold affects the quality of the paths discovered.

An approach similar to association rule mining, called Maximal Forward

(MF) Reference, is proposed in [34]. A Maximal Forward Reference is defined as a

sequence of pages that are visited consecutively by the visitor in which each page is

seen only once. The algorithm derived, MF, converts the original log data into a set

of traversal subsequences. This process also filters out the effect of backward

references that are mainly made for ease of traveling. As an example, assume the

path traversed by any user is as follows <A, B, C, D, C, B, E, F, E, G> would be

broken into three transactions of <A, B, C, D>, <A, B, E, F> and <A, B, E, G> At

the end of processing MF algorithm, we get all Maximal Forward Reference

sequences and these sequences are stored in a database. Two main algorithms, Full

Scan (FS) and Selective Scan (SC) are derived to determine the frequent traversal

patterns, termed large reference sequences from the Maximal Forward References

obtained by the algorithm MF, where a large reference sequence is a reference

sequence that appeared in a sufficient number of times in the database. Algorithm FS

is required to scan the transaction database in each pass and utilizes key ideas to the

Direct Hashing with Pruning (DHP). In contrast, by properly utilizing the candidate

reference sequences, the second algorithm devised, Selective Scan, is able to avoid

database scans in some passes so as to reduce the disk I/O cost. Maximal reference

sequences are the subset of large reference sequences so that no maximal reference

sequence is contained in the other one. If the large reference sequences are AB, AE,

AGH, ABD then maximal reference sequences become AE, AGH, and ABD.

WebSift [9] project is one of the global architectures to handle the web usage

mining. WebSift establishes a framework for web usage mining. The system has

three main phases. Preprocessing, Pattern Discovery and Pattern Analysis.

Preprocessing phase is for converting the usage information contained in web server

log files into data abstractions necessary for pattern discovery. The preprocessing

CHAPTER 2: BACKGROUND 13

algorithm includes identifying users, server sessions and inferring cached page

references through the use of the Referrer field. In the second phase, well known data

mining techniques are applied such as association rule mining, sequential pattern

mining or clustering on the data abstraction obtained in the preprocessing phase. At

the last step, the results of the various knowledge discovery tools analyzed through a

simple knowledge query mechanism, a visualization tool (association rule map with

confidence and support weighted edges). An information filter based on domain

knowledge and the web site structure is applied to the mined patterns in search for

the interesting patterns. Links between pages and the similarity between contents of

pages provide evidence that pages are related. This information is used to identify

interesting patterns, for example, item sets that contain pages not directly connected

are declared interesting.

WUM [18] is one of the tools used for mining user navigation patterns from

access log files. It employs an innovative technique for the discovery of navigation

patterns over an aggregated materialized view of the access log file. This technique

offers a mining language as interface to the expert, so that the generic characteristics

can be given, which make a pattern interesting to the specific person. The system has

two main modules. The Aggregation Service prepares the access log file for mining

and the Query-Processor does the mining. In WUM, individual navigation paths

called trails are combined into an aggregated tree structure. Queries can be answered

by mapping them into the intermediate nodes of the tree structure. The aggregate tree

is formed by merging trails with the same prefix. Each node in the tree contains a

URL and these nodes is annotated with the number of visitors having reached the

node across the same trail prefix, that is, the support of the node. Query processor is

the module responsible for the mining on the aggregate tree formed by the

Aggregation Service. Queries can be answered by mapping them into the

intermediate nodes of the tree structure.

CHAPTER 2: BACKGROUND 14

SpeedTracer [30], SpeedTracer is a web usage mining and analysis tool

which tracks user browsing patterns, generating reports to help Webmaster to refine

web site structure and navigation. SpeedTracer makes use of Referrer and Agent

information in the preprocessing routines to identify users and server sessions in the

absence of additional client side information. The application uses innovative

inference algorithms to reconstruct user traversal paths and identify user sessions.

Advanced mining algorithms uncover users' movement through a web site. The end

result is collections of valuable browsing patterns that help Webmaster better

understand user behavior. SpeedTracer generates three types of statistics: user-based,

path-based and group-based. User-based statistics point reference counts by user and

durations of access. Path-based statistics identify frequent traversal paths in web

presentations. Group-based statistics provide information on groups of web site

pages most frequently visited.

In [39], the authors propose a novel data structure and a new algorithm to

mine web access patterns from log data. The web access sequences are stored in a

tree like data structure, the WAP-tree, which is more compact than the initial access

in the tree. However, the tree inferred from the data is not incremental since it

includes only the frequent access sequences. Moreover, although the algorithm is

efficient, the performance analysis should take into account the time needed to build

the tree, since the input data for the tree construction is in the form used by the

algorithm against which the proposed method is compared.

2.2 Business Intelligence

The information on how customers are using a web site is critical for especially e-

commerce applications. Buchner and Mulvenna present a knowledge discovery

process in order to discover marketing intelli gence from web data [35]. They define a

web access log data hypercube that consolidates web usage data along with

CHAPTER 2: BACKGROUND 15

marketing data for e-commerce applications. Four distinct steps are identified in

customer relationship life cycle that can be supported by their knowledge discovery

techniques: customer attractions, customer retention, cross sales and customer

departure.

There are more than 30 commercially available applications. But many of

them are slow and make assumptions to reduce the size of the log file to be analyzed.

These applications are all useful for generating reports about the site such as

– Summary report of hits and bytes transferred

– List of top requested URLs

– List of top referrers

– List of most common browsers

– Hits per hour/day/week/month reports

– Hits per Internet domain

– Error report

– Directory tree report, etc.

One of these tools described above, WebTrends [31], provides the most

powerful e-business intelli gence reporting available, enabling customers to track,

manage and optimize e-business strategies. WebTrends Log Analyzer reports on all

aspects of a web site’s activity including how many people have visited a web site,

where they come from, and what pages interest them most. But it is a fact that these

tools are limited in their performance, comprehensiveness, and depth of analysis.

 In [40], web server logs have been loaded into a data cube structure in order

to perform data mining as well as Online Analytical Processing (OLAP) activities

such as roll-up and drill -down of the data. In the WebLogMiner project, the data

collected in the access log files goes through four stages. In the first stage, the data is

filtered to remove irrelevant information and a relational database is created

containing the meaningful remaining data. This database facili tates information

extraction and data summarization based on individual attributes like user, resource,

CHAPTER 2: BACKGROUND 16

user's locality, day, etc. In the second stage, a data cube is constructed using the

available dimensions. OLAP is used in the third stage to drill -down, roll-up, slice and

dice in the web access log data cube. Finally, in the fourth stage, data mining

techniques are put to use with the data cube to predict, classify, and discover

interesting correlations.

2.3 System Improvement

The problem of modeling and predicting of a user’s access on a web site has attracted

a lot of research interest. One of the aims of predicting the next page request is

improving the web performance through pre-fetching. The objective of pre-fetching

is the reduction of the user perceived latency. Potential sources of latency are the

web servers’ heavy load, network congestion, low bandwidth, bandwidth

underutili zation and propagation delay. There seem some obvious solutions to reduce

the effects of the reasons described above. One of them may be increasing the

bandwidth, but it does not seem a viable solution since the structure of the web

cannot be easily changed without significant economic cost. Another solution is to

cache the documents on the client’s machine or on proxies. But caching solution is

limited when web resources tend to change very frequently.

Performance and other service quality attributes are crucial to user

satisfaction from services such as databases, networks etc. Similar qualities are

expected from the users of web services. Web usage mining provides the key to

understand web traffic behavior, which can in turn be used for developing policies

for web caching.

Some prediction approaches utili zes path and point profiles generated from

the analysis of web server access logs to predict HTTP requests as described in [27].

They used these predictions to explore latency reductions through the pre-

CHAPTER 2: BACKGROUND 17

computation of dynamic web pages. The profiles are generated from user session.

During a single session, a user interacting with web traverses some sequences, of

URLs. From that single sequence, the set of all possible subsequences is extracted as

paths. A method is proposed for predicting the next move of the visitor based on

matching the visitor’s current surfing sequence against the paths in the path profile.

The ranking of matches is determined by a kind of specificity heuristic: the maximal

prefixes of each path (the first N-1 elements of an N-length path) are compared

element-wise against the same length suffixes of the user path (i.e. a size N-1 prefix

is matched against the last N-1 elements of the user path) and the paths in the profile

with the highest number of element-wise matches are returned. Partial matches are

disallowed. In other words, if a visitor’s path were <A, B, C>, indicating the visitor

visited URL A, then URL B, then URL C, the path would be better matched by a

path in the profile of <A, B, C, D> than <B, C, E>. For the paths in the profile that

match, the one with the highest observed frequency is selected and used to make

prediction. Using our example, if <A, B, C, D> were the best match and most

frequently observed path in the profile, then it would be used to predict that the user

who just visited <A, B, C> would next visit URL D.

 A first order Markov model is proposed in [37] to implement a pre-fetching

service aimed at reducing server load. The model is built from past usage

information and the transition probabili ties between pages are proportional to the

number of times both pages were accessed in a predefined time window. We note

that the use of a time window results in having transitions with probabili ty greater

than zero between pages that were never accessed consecutively. The results of the

conducted experiments show that the method is effective in reducing the server load

and the service time. A similar method is proposed in [38] wherein a dependency

graph is inferred and dynamically updated as the server receives requests. There is a

node for every requested page and an arc between two nodes exists if the target node

was requested within n accesses after the source node; the weight of an arc is

CHAPTER 2: BACKGROUND 18

proportional to the number of such requests. The simulations performed with log data

show that a reduction in the retrieval latency can be achieved.

2.4 Site Modification

The attractiveness of a web site, in terms of both content and structure, is the main

idea of many applications, especially for a product catalog for e-commerce

applications. The structure and the attractiveness of the web site is crucial because

web sites are the only way between the company and their visitors. Web Usage

Mining provides detailed feedback on user behavior, providing the web site designer

with information on which to base redesign decisions. Web usage data provides an

opportunity to turn every site into an ongoing usability test. While the information is

not as complete as the information that can be gathered form a formal usability

analysis with videos and trained observers. Web usage data are cheap and plentiful.

Designing a good web site is not a simple task because hypertext structure

can easily expand in a chaotic manner as the number of pages increases. Thus many

techniques to improve the effectiveness of user navigation have been proposed.

Discovering the gap between the expectations of the web site designer and the

behavior of the users helps to improve the restructure of the web site [22]. The

expectation of the web site designer is assessed by measuring the inter-page

conceptual relevance. Measurement of conceptual relevance is done by a vector

space model. All web documents are analyzed by the system to construct the vector.

All HTML tags and stop words are discarded to obtain content words. Then the

frequency of content words for each page is calculated. Finally the inter-page

conceptual relevance (SimC) for each page pair pi and pj using the cosine similarity

formula is measured. If the number of content words that appear in both pages is 0,

the value of SimC is also 0. The measurement of access co-occurrence is done by

modifying the vector space model. The number of accesses for each page is

CHAPTER 2: BACKGROUND 19

measured by counting the IP addresses in the access log file. Then, the inter-page

access co-occurrence (SimA) for each page pair, pi and pj, is measured. After SimC

and SimA are calculated, the correlation coefficient that is the degree of linear

relationship between two variables (SimC and SimA) is measured. The technique

finds page pairs that should be improved. It finally shows page clusters meaning

clues for web designer to improve the web site and to understand the design problem.

The major main goals of the approach proposed in [24], Adaptive Web Sites,

are avoiding additional work for visitors and protecting the original design of the site

from destructive changes. The system is to apply only nondestructive transformations

meaning that some links can be added on the pages but cannot be removed or some

index pages can be created but none of the pages can be removed. The aim is to

create an index page containing collections of links to related but currently unlinked

pages. An algorithm, PageGather, is proposed to find collections of pages that tend to

co-occur in visits. The PageGather algorithm uses cluster mining to find collections

of related pages at a web site relying on the visit-coherence assumption. The

algorithm process the access log into visits and compute the co-occurrence

frequencies between pages and create a similarity matrix. Then a graph

corresponding to the matrix is created and cliques are found on that graph. At the end

of the algorithm, for each cluster found, a web page consisting of links to the

documents in the cluster is formed and recommended to the user.

2.5 Personalization

Web Personalization is the task of making web-based information system adaptive to

the needs and interests of individual users or groups of users. Typically, a

personalized web site recognizes its users, collects information about their

preferences and adapts its services, in order to match the needs of the users. One way

CHAPTER 2: BACKGROUND 20

to expand the personalization of the web is to automate some of the processes taking

place in the adaptation of a web-based system to its users.

SiteHelper [36] is a local agent that acts as the housekeeper of a web server,

in order to help a user to locate relevant information within the site. The agent makes

use of the access log data to identify the pages viewed by a given user in previous

visits to the site. The keywords characterizing the contents of such pages are

incorporated into the user profile. When that user returns to the site, the agent is able,

for example, to show the changes that took place in pages that are known to be

interest and also to recommend any new pages.

WebWatcher [6], acts like a web tour guide assistant, it guides the user along

an appropriate path through the collection based on the past experiences of the

visitor. It accompanies users from page to page, suggests appropriate hyperlinks and

learns from experience to improve its advice-giving skill s. The user fill s a form

stating what information he is looking for and, as the user navigates the web, the

agent uses the knowledge learned from previous users to recommend links to be

followed; the links thought to be relevant are highlighted. At the end of the

navigation the user indicates whether or not the search was successful, and the model

is updated automatically.

Letizia [16] is similar to WebWatcher in the sense that the system

accompanies the user while browsing. It is a user interface agent that assists a user

browsing the World Wide Web. As the user operates a conventional web browser

such as Netscape, the agent tracks user behavior and attempts to anticipate items of

interest by exploring of links from the current position of the user. The difference

from WebWatcher is that the system serves only one particular user. Letizia is

located on the users’ machine and learns his/her current interest. The knowledge

about the user is automatically acquired and does not require any user input. By

doing look ahead search, Letizia can recommend pages in the neighborhood of where

the user is currently browsing.

CHAPTER 2: BACKGROUND 21

Syskill & Webert [7] is designed to help users distinguish interesting web

pages on a particular topic from uninteresting ones. It offers a more restricted way of

browsing than the others. Starting from a manually constructed index page fro a

particular topic, the user can rate hyperlinks off this page. The system uses the

ratings to learn a user specific topic profile that can be used to suggest unexplored

hyperlinks on the page. Also, the system can also use search engines like LYCOS to

retrieve pages by turning the topic profile into a query.

WebPersonalizer [19] system is divided into two components, offline and

online component like the system we designed in the thesis. The offline module is

responsible for data preparation tasks resulting in a user transaction file. It performs

specific usage mining tasks to form clusters from user transactions and URL clusters

from the transaction cluster. The other component, online component, provides

dynamic recommendations to users. When the server accepts a request, the

recommendation engine matches the active session with the URL clusters to compute

a set of recommended hyperlinks. The system recommends pages from clusters that

match most closely to the current session. Pages that have not been viewed and are

not directly linked from the current page are recommended to the user. The

recommendation set is added to the requested page as a set of links before the page is

sent to the client browser.

 The system proposed in [21] is based on the two main user profiles depending

on the navigation strategy. The user can either return to the same objects over and

over or always visit a new object. The first user, called as “net surfer” , is more

interested in exploring the cyberspace than to explore what the document can offer

him while the other user, called as “conservative”, is more concerned with exploring

the contents of the objects in a certain site. Because user profiles perform an

important role in the effectiveness of pre-fetching, two empirical user models were

constructed. Random Walk User Model captures the long-term trend. The second

model, Digital Signal Processing (DSP) User Model, applies to the short-term

CHAPTER 2: BACKGROUND 22

behavior. Both models are able to track user’s behaviors. The algorithm devised has

two main parts. Preparation phase computes the user’s profile curve. Prediction

phase initially determines in the last accesses how conservative the user was. Then

the prediction is made based on the user profile detected.

WebTool, an integrated system [23], is developed for mining either

association rules or sequential patterns on web usage mining to provide an efficient

navigation to the visitor, the organization of the server can be customized and

navigational links can be dynamically added. The system has a 2-phase process. The

preprocessing phase removes irrelevant data and performs a clustering of entries

driven by time considerations. In the second phase, data mining techniques are

applied to extract useful patterns or relationships and a visual query language is

provided in order to improve the mining process. A generator of dynamic links in

web pages uses the rules generated from sequential patterns or association rules. The

generator is intended for recognizing a visitor according to his navigation through the

pages of a server. When the navigation matches a rule, the hypertext organization of

the document requested is dynamically modified. The hyperlinks of the page are

dynamically updated according to the rule matched.

Another approach [25] has the idea of matching an active user’s pattern with

one or more of the user categories discovered from the log files. It seems under the

category of user-based web personalization system. The system has two main

module, Offline and Online module. In the offline module, the preprocessor extracts

information from web server log files to generate records of users sessions. For every

session in the log file, one record is generated. The records generated are then

clustered into categories, with similar sessions put into the same category. A user

session is represented by n-dimensional vector (assuming n interest items in the site)

in the preprocessing phase. Each interest page in the vector has a weight depending

on the number of times the page is accessed or the amount of time the user spends on

the page. Such an n-dimensional vector forms a user session record mentioned

CHAPTER 2: BACKGROUND 23

above. After all sessions are represented in a vector format, LEADER algorithm

which is also a clustering algorithm is applied on these vectors formed to discover

clusters of session vectors that are similar. After finding of the clusters, the median

of each cluster is computed as a representative of the clusters. The other module of

the approach is responsible to make dynamic recommendations to the user. The

module temporarily buffers the user access log in main memory to detect the pages

the user retrieved before. The active session information is maintained the same type

of vectors as in the preprocessing phase. For every page request of the user, the

vector is updated automatically. The system tries to match the active session vector

to the existing clusters formed by the offline module. Then the pages in the vector

that the user has not accessed so far and are not accessible from the URL just

requested are suggested to the user at the top of the page she/he requested.

Another prediction system called WhatNext [26] is focused on path-based

prediction model inspired by n-gram prediction models commonly used in speech-

processing communities. The algorithm build is n-gram prediction model based on

the occurrence frequency. Each sub-string of length n is an n-gram. The algorithm

scans through all sub-strings exactly once, recording occurrence frequencies of the

next click immediately after the sub-string in all sessions. The maximum occurred

request is used as the prediction for the sub-string.

In [28], the authors proposed to use Markov chains to dynamically model the

URL access patterns that are observed in navigation logs based on the previous state.

Markov chain model can be defined by the tuple <S, A, Π> where A corresponds to

the state space; A is the matrix representing transition probabili ties from one state to

another. Π is the initial probabili ty distribution of the states in S. If there are n states

in the Markov chain, then the matrix of transition probabili ties A is of size n x n.

Markov chain models can be estimated statistically, adaptively and are generative.

The probabili stic Link Prediction System described has five major components. In

the “Markov Chain Model” component, a (sparse) matrix of state transition

CHAPTER 2: BACKGROUND 24

probabili ties is constructed. In the “Client Path Buffer” , a buffer is assigned in the

main memory to hold client requests and all the sequence of client requests stored in

that buffer. In the “Adaptation Module” the matrix created is updated with the user

path trace information. The “Tour Generator” outputs a sequence of states for the

given start URL. The last module “Path Analysis and Clustering” clusters the states

into similar groups to reduce the dimensionality of the transition matrix. The system

proposed is used in HTTP request prediction, in adaptive web navigation, in tour

generators, in personalized hub/authority.

In [29], the authors describe a tool named WebMate, a proxy agent that

monitors the user web navigation while building his profile. Each time the user finds

an interesting page he points the page to the agent. The agent analyses the contents of

the page and classifies it into one of a predefined set of classes. In this way, the user

profile is inferred from a set of positive training examples. In off peak hours the

agent browses a set of URLs the user wants to have monitored in search for new

relevant pages. If the user does not specify URLs to be monitored the agent uses a set

of chosen keywords to query popular search engines and assess the relevance of the

returned pages.

The WebMiner system [1][32], divides the web usage mining process into

three main phases. In the first phase, called as preprocessing phase, includes the

domain dependent tasks of data cleaning, user identification, session identification

and path completion. In the second phase, called as the knowledge discovery phase,

especially association rule and sequential pattern generation algorithms applied on

the data obtained in the first phase. The discovered information is then fed into

various pattern analysis tools. The site filter is used to identify interesting rules and

patterns by comparing the discovered knowledge with the web site designer’s view

of how the site should be used. At the same time, the site filter can be applied to the

data mining algorithms in order to reduce the computation time or the discovered

rules and patterns.

CHAPTER 2: BACKGROUND 25

Another prediction system proposed in [15] is based on the assumption of

mining longest repeating subsequences o predict www surfing. In this approach, a

longest prediction subsequence is defined as a sequence of items where subsequence

means a set of consecutive items, repeated means the item occurs more than some

threshold T and longest means that although a subsequence may be part of another

repeated subsequence, there is at least once occurrence of this subsequence where

this is the longest repeating.

 Another usage based personalization system, which is slightly different than

the others, is proposed in [17]. It is capable of guessing the web pages and showing

these web pages that have the highest scores as a recommendation set to the visitor.

The system is based on two criteria, the path followed by the visitors and the identity

information. It has two major modules like many applications based on usage-based

and prediction system, Offline and Online module. The off-line module mines the

access log files for determining the behavioral patterns of the previous visitors of the

web site considered. It has also two sub modules called as PathInfoProcesor and

HostIdentityProcessor. The aim of the former is to find user navigation paths hidden

in the access log file and store them in a form to be utilized by the online module

whereas the aim of the latter, is to discover the relations between the identity

information and navigation patterns of visitors and store the results that has been

discovered. All paths discovered are maintained in a path tree and this path tree is

updated with the new path information of the current day. The path tree created is

then stored in such a file that the online module will spent minimum amount of time

on creating and accessing it. The other major module of the system, Online Module,

is triggered by a java applet embedded into the HTML page. The java applet is used

for the connection between the client and the server. The java applet triggers a PERL

script to acquire the identity information of the visitor and then the identity

information acquired is sent to a CGI program, which is the main part of the online

module. The CGI program finds two separate sets of recommendation according to

the path and the identity information. The module searches the path tree whether the

CHAPTER 2: BACKGROUND 26

path of the visitor exists or not. Then a score for each page coming after the page that

includes the java applet on that path tree is evaluated based on the frequencies of the

pages. Another set of recommendation is found for the identity information. The

recent paths followed by the same identity are checked to find the pages to be

recommended. At the end of the recommendation phase, these two sets of pages are

merged to form a single set and recommended to the visitor.

The approach presented in [20] focuses on the use of the resources efficiently.

The starting point of the approach is the learning and the memorization. When an

object is observed or the solution to a problem is found, it is stored in memory for

future use. In the light of this observation, memory can be thought of as a look up

table. When a new problem is encountered, memory is searched to find if the same

problem has been solved before. If an exact match for the search is required, learning

is slow and consumes very large amounts of memory. However, approximate

matching allows a degree of generalization that both speeds learning and saves

memory. Three experiments were conducted to understand the issues better involved

in learning prototypes. IBL learns to classify objects by being shown examples of

objects, described by an attribute/value list, along with the class to which each

example belongs. In the first experiment (IB1), to learn a concept simply required the

program to store every example. When an unclassified object was presented for

classification by the program, it used a simple Euclidean distance measure to

determine the nearest neighbor of the object and the class given to it was the class of

the neighbor. This simple scheme works well, and is tolerant to some noise in the

data. Its major disadvantage is that it requires a large amount of storage capacity. The

second experiment (IB2) attempted to improve the space performance of IB1. In this

case, when new instances of classes were presented to the program, the program

attempted to classify them. Instances that were correctly classified were ignored and

only incorrectly classified instances were stored to become part of the concept. While

this scheme reduced storage dramatically, it was less noise-tolerant than the first. The

third experiment (IB3) used a more sophisticated method for evaluating instances to

CHAPTER 2: BACKGROUND 27

decide if they should be kept or not. IB3 is similar to IB2 with the following

additions. IB3 maintains a record of the number of correct and incorrect

classification attempts for each saved instance. This record summarized an instance's

classification performance. IB3 uses a significance test to determine which instances

are good classifiers and which ones are believed to be noisy. The latter are discarded

from the concept description. This method strengthens noise tolerance, while keeping

the storage requirements down.

Chapter 3

NextPage

As described above, one of the common properties of the applications developed on

web usage mining, especially under the category of personalization, is the prediction

of the next pages to be accessed. This property makes the web site, especially for e-

commerce companies, more attractive for the visitors. The aim of the system

presented is to predict next access pages to help visitors while navigating the web

site by analyzing the access log files. The system developed is designed to recognize

the user visiting the site and recommend the pages based on her/his past experiences.

If the system does not have any information about the visitor, that is, a new visitor

for the system, then it finds the parent domain of the visitor by parsing its identity

information and recommends the pages according to the interests of the visitors from

the parent domain. The process continues until the number of recommendation

derived satisfies the number determined by the web master.

NextPage consists of two independent modules shown as in Figure 1.2. Log

Analyzer and Recommendation Engine. Log Analyzer is the main part of the system

that produces the Result File containing the session information and the Index File

containing the index variables of the identities used by the Recommendation Engine.

These files contain the relation between the identity information and the navigation

patterns of the visitors.

CHAPTER 3: NEXTPAGE 29

3.1 Log Analyzer

Log Analyzer module analyzes the access log file maintained by the web server to

determine the identity information and session identification. It has mainly four

phases, Data Preparation, Session and User Identification, Indexing / Storing and

Forgetting (when necessary) phases. In the following sections, detail of each phase of

the Log Analyzer will be explained.

Our usage mining system is designed to run on predetermined times of the

day automatically to process the newly added entries of the access log file. To

achieve this process, Log Analyzer module has two contingencies. One of them is the

probability of being the same log file one day before whereas the other is that of

being a new log file. If the log file is the same as the log file one day before, then it

finds the last entry it processed and begins to process the entries from that entry.

Otherwise if it is a new one, then it begins to process from the first entry of the log

file. The module keeps the first entry and the size of the access log file in a file called

as LogDeterminer. By comparing the entry in the LogDeterminer file and the first

entry of the access log file, it determines whether the log file is the same as the log

file one day before or not. If comparison is positive, that is, the same log file, then

the file pointer is positioned to the entry just after the last entry processed by using

the sizeoflog variable kept in LogDeterminer file. By storing the size of the log file

processed one day before, the module avoids itself to run again on the same entries.

If the size of the access log file is greater than the sizeoflog variable meaning that

there exists newly added entries in the access log file, Log Analyzer module directly

begins to process these newly added entries by skipping the entries that have been

processed in prior days. The module terminates without doing anything if the first

entry and the size of the access log file is the same as the ones kept in the

LogDeterminer file meaning that the same log file is being tried to be processed

again. The module updates the LogDeterminer file by rewriting the first entry and the

size of the log file to the file at every execution of the module.

CHAPTER 3: NEXTPAGE 30

3.1.1 Data Preparation

The main source of the data preparation phase is the access log file maintained by the

web server. An access log file is a text file in which every page request made to the

web server is recorded. The format of the log files is related to the configuration file

of the web server. Generally, there are two main log formats used. One of them

Common Log Format and the other is Combined Log Format. The difference

between them is that the former does not store Referrer and Agent information of the

requests. The format of the log file kept by the Computer Engineering of Bilkent

University web server is NCSA Combined Log Format. A single example entry of

the log file is shown in Figure 3.1. An entry is stored as one long line of ASCII text,

separated by tabs and spaces.

labb30640.bcc.bilkent.edu.tr - - [01/Nov/2001:21:56:52 +0200] "GET
/~guvenir/courses/HTTP/1.1" 200 1749
"http://www.cs.bilkent.edu.tr/guvenir" "Mozilla/4.0 (compatible;
MSIE 5.5; Windows 95)"

Figure 3.1: An example entry in the access log file

The details of the fields in the entry are given in the following section.

Address or DNS :

labb30640.bcc.bilkent.edu.tr

This is the address of the computer making the HTTP request. The server

records the IP and then, if configured, will lookup the Domain Name Server (DNS)

for its FQDN.

RFC931 (Or Identification) :

-

Rarely used, the field was designed to identify the requestor. If this

information is not recorded, a hyphen (-) holds the column in the log.

CHAPTER 3: NEXTPAGE 31

Authuser :

-

List the authenticated user, if required for access. This authentication is sent

via clear text, so it is not really intended for security. This field is usually filled by a

hyphen -.

Time Stamp :

[01/Nov/2001:21:56:52 +0200]

 The date, time, and offset from Greenwich Mean Time (GMT x 100) are

recorded for each hit. The date and time format is: DD/Mon/YYYY HH:MM:SS.

The example above shows that the transaction was recorded at 21:56:52 on Nov 1,

2001 at a location 2 hours forward GMT. By comparing time stamps between entries,

we can also determine how long a visitor spent on a given page that is also used as a

heuristic in our system.

Target :

"GET /~guvenir/courses/HTTP/1.1"

One of three types of HTTP requests is recorded in the log. GET is the

standard request for a document or program. POST tells the server that data is

following. HEAD is used by link checking programs, not browsers, and downloads

just the information in the HEAD tag information. The specific level of HTTP

protocol is also recorded.

Status Code :

200

CHAPTER 3: NEXTPAGE 32

There are four classes of codes

1. Success (200 series)

2. Redirect (300 series)

3. Failure (400 series)

4. Server Error (500 series)

A status code of 200 means the transaction was successful. Common 300-

series codes are 302, for a redirect from http://www.mydomain.com to

http://www.mydomain.com/, and 304 for a conditional GET. This occurs when the

server checks if the version of the file or graphic already in cache is still the current

version and directs the browser to use the cached version. The most common failure

codes are 401 (failed authentication), 403 (forbidden request to a restricted

subdirectory), and the dreaded 404 (file not found) messages. Sever errors are red

flags for the server administrator.

Transfer Volume :

1749

For GET HTTP transactions, the last field is the number of bytes transferred.

For other commands this field will be a hyphen (-) or a zero (0).

The transfer volume statistic marks the end of the common log file. The

remaining fields make up the referrer and agent logs, added to the common log

format to create the “extended” log file format. Let’s look at these fields.

Referrer URL :

http://www.cs.bilkent.edu.tr/guvenir

The referrer URL indicates the page where the visitor was located when

making the next request.

CHAPTER 3: NEXTPAGE 33

User Agent :

Mozill a/4.0 (compatible; MSIE 5.5; Windows 95)

The user agent stores information about the browser, version, and operating

system of the reader. The general format is: Browser name/ version (operating

system)

3.1.1.1 Elimination of irrelevant items

Two terms will be described which are mostly used in web usage mining before

going into detail. “Valid File Request” describes any type of data including graphics,

scripts or HTML pages requested from the web server whereas “Valid Page Request”

describes any successfully answered request for one of the actual web pages taking

place in the web site in process. Different objects are embedded into the HTML

pages such as text, pictures, sounds etc. Therefore, a user’s request to view a

particular page often results in several log entries since graphics and sounds are

downloaded in addition to the HTML file. The discovered associations or statistics

are only useful if the data represented in the log files gives an accurate picture of the

user accesses to the web site. In most web usage applications, only the log entries of

the HTML pages are considered as relevant and the others are considered as

irrelevant. This is because, in general, a user does not explicitly request all of the

graphics that are on a web page, they are automatically downloaded due to HTML

tags.

Also, especially index pages usually redirect all visitors automatically to a

script; e.g., count.cgi, to count the number of visitors. As a result, for each

redirection from these index files to the script, an entry is put into the log file. So, a

technique must be applied onto the access log file to eliminate these irrelevant items

for any type of analysis.

CHAPTER 3: NEXTPAGE 34

Elimination of these items considered as irrelevant can be reasonably

accomplished by checking the suffix of the URL name in the “Target” field of the

entry. For instance, all log entries with file extension jpg, gif, wav, class, au, cgi are

removed for the accurate determination of the user and session identification.

Besides, we have one more factor to be taken into consideration. Sometimes,

in case of having a problem, the web server cannot be able to give successful respond

to the requests. The web server records these actions in the access log file by putting

an error code into the “Status Code” field of the entry. As a result, these unsuccessful

requests must be eliminated from the log file before mining. These entries can be

determined only by checking the status code of the entry. For example, status code

“400” or ”404” means that the page could not be found on the site by the server due

to the deletion of the pages and so, in general, the entries with the status code “400”

or “404” are eliminated.

3.1.1.2 Elimination of entries containing frame pages

Another data preparation process done in this phase is the detection and if necessary

the elimination or modification of the entries that contain frame pages. After

eliminating the irrelevant entries from access log file, the Log Analyzer module

analyze each web page in the web site whether it has frame pages or not. The more

detailed information about the determination of frame pages will be given in 3.1.3.

Such an entry has been given as an example in Figure 3.2

As shown in Figure 3.2, the web page “/~canf/CS351/” consists of two

frames, frame1.htm and frame2.htm. When a request is made for the page mentioned

above, three entries are put into the access log file automatically, one entry for the

page itself (Entry 1), two entries for the frame pages (Entry 2 and 3) that form the

page.

CHAPTER 3: NEXTPAGE 35

[1] labb30640.bcc.bilkent.edu.tr - - [01/Nov/2001:22:07:13 +0200]

"GET /~canf/CS351/ HTTP/1.1" 200 669

"http://www.cs.bilkent.edu.tr/~endemir/courses/cs35101/cs35101.html"

 "Mozilla/4.0 (compatible; MSIE 5.5; Windows 95)"

[2] labb30640.bcc.bilkent.edu.tr - - [01/Nov/2001:22:07:13 +0200]
"GET /~canf/CS351/frame1.htm HTTP/1.1" 200 2778
"http://www.cs.bilkent.edu.tr/~canf/CS351/" "Mozilla/4.0
(compatible; MSIE 5.5; Windows 95)"

[3] labb30640.bcc.bilkent.edu.tr - - [01/Nov/2001:22:07:13 +0200]
"GET /~canf/CS351/frame2.htm HTTP/1.1" 200 13306
"http://www.cs.bilkent.edu.tr/~canf/CS351/" "Mozilla/4.0
(compatible; MSIE 5.5; Windows 95)"

[4] labb30640.bcc.bilkent.edu.tr - - [01/Nov/2001:22:07:23 +0200]
"GET /~canf/CS351/CS351LectureNotes/index.html HTTP/1.1" 200
1230 "http://www.cs.bilkent.edu.tr/~canf/CS351/frame1.htm"
"Mozilla/4.0 (compatible; MSIE 5.5; Windows 95)"

Figure 3.2: A series of entry with frame pages

 Entries containing the frame pages were irrelevant items such as images or

sounds embedded into the page and must be eliminated or modified before the user

and session identification. At the same time, when a user requests a page from any

page consisting frame pages, then the “Referrer” field of the active log entry seems

as shown in the fourth entry of the figure. So, the module exchanges the “Referrer”

field with the name of the main page. After modification, the fourth entry becomes

like

labb30640.bcc.bilkent.edu.tr - - [01/Nov/2001:22:07:23 +0200] "GET
/~canf/CS351/CS351LectureNotes/index.html HTTP/1.1" 200 1230
"http://www.cs.bilkent.edu.tr/~canf/CS351" "Mozilla/4.0 (compatible;
MSIE 5.5; Windows 95)"

Figure 3.3: The entry after modification

In addition, “Referrer” field of some entries should be modified. If a visitor

begins her/his visit to the site by the help of a search engine, an entry is put into the

log file as shown in Figure 3.4. The Referrer field of this entry must be modified

since we are not interested with the query search words coming from different search

CHAPTER 3: NEXTPAGE 36

engines. In these situations, we assume that the user begins her/his visit from the

page written in the “Target” field of the entry and we exchange “Referrer” field with

“-“ sign meaning that the full path of the page requested has been typed directly in

the address field of the browsers. After modification, the entry becomes as shown in

Figure 3.5.

client-209-158-171-2.jerseycity.k12.nj.us - - [01/Nov/2001:21:47:10
+0200] "GET /~david/derya/activities1/activity70.htm HTTP/1.0"
200 82389 http://google.yahoo.com/bin/query?p=puffy+aand+r&hc=0&hs="
"Mozilla/4.0 (compatible; MSIE 5.0; Windows 95; DigExt)"

Figure 3.4: An example entry with search engines in Referrer field

client-209-158-171-2.jerseycity.k12.nj.us - - [01/Nov/2001:21:47:10
+0200] "GET /~david/derya/activities1/activity70.htm HTTP/1.0" 200
82389 "-" "Mozilla/4.0 (compatible; MSIE 5.0; Windows 95; DigExt)"

Figure 3.5: The same entry after modification

3.1.2 Determination of Frame Pages

It is a common way to create an HTML page with frame pages to make more

attractive and more helpful for the users visiting the page. A web page may be

constructed with three frames, top frame for general site navigation, left frame for

more specific navigation and a main frame with some content. After eliminating the

irrelevant items such as embedded pictures or sounds from the log file, the next aim

of the module is to analyze all valid page requests to discover whether it contains

frame pages or not. This is the most time consuming process of the preprocessing

module. If we do not store these information gathered by the “Frame_Detector”

algorithm shown in Figure 3.6, the module must go to all pages of the web site at

every execution. So, it is acceptable to store these information gathered in a file

called as “Frame File” to avoid from analyzing every pages at every execution. The

module opens the Frame File updated one day before at every execution; it loads all

frame page structures in the file into the main memory as a list to be used for

CHAPTER 3: NEXTPAGE 37

eliminating the entries containing frame pages from the log file. When the module

executes, it checks whether the web page is in the list or not. If it exists in the list, it

means that this web page was analyzed before by the module, so the module do not

analyze this page again and continues with the next page and so on. At the first runs

of the module, the time spent for Frame Detection is quite long, but after every

execution of the module in the following days, Frame File is updated with new pages

and contains more information, so the time spent for this process in later runs

decreases.

[1] Open web page requested
[2] For each line in the file Do
[3] If line contains "<frameset" tag
[4] While (entry contains "</frameset" tag)
[5] If line contains "src=” tag
[6] Store the name of frame page written after the “src” argument
 into the list
[7] End If
[8] End While
[9] End If
[10] End For

Figure 3.6: Algorithm Frame_Detector

It can be easily detected whether an HTML page has any frame page or not

only by checking the content of the file. The frame pages are inserted between

“<frameset>” and “</frameset>” tags in an HTML page. (Lines 3-4) The path and

full name of these frame pages comes after “src=” argument. (Lines 5-7) The

algorithm opens the HTML file that is represented as a valid page request for the web

server and checks all li nes until the end of the file. If the algorithm encounters

“<frameset>” tag, it stores all frame pages coming just after “src=” tag to the list

until the line containing </frameset>” tag or the end of the file.

Assuming that the web master may sometimes decide to make a change on

the pages in the site, we decided to delete all information in the Frame File on the

first day of the month. So the changes that have been made on the pages in the

present month will be detected at the execution of the module on the first day of the

CHAPTER 3: NEXTPAGE 38

next month. It means that the module analyzes all pages again in the site every month

to detect the changes in the page.

3.1.3 Session Identification

A user session is a sequence of all of the page references made by a user during a

single visit to a site. A transaction differs from a user session in that the size of a

transaction can range from a single page reference to all of the page references in a

user session. The raw server access log can be thought of in two ways; either as a

single transaction of many page references or as set of many transactions each

consisting of a single page reference. The goal of session and transaction

identification is to create meaningful clusters of references for each user. Therefore,

we divide all of the log file transaction into smaller ones and then merge them into

fewer larger ones for each identity.

Definition 1: Log File, L is defined as the collection of log entries where each log

entry l ∈ L has the following attributes.

• l.ident is either the IP address or FQDN

• l.time is the time of the request

• l.target is the requested URL

• l.referrer is the referrer page used for accessing the target page

• l.agent is the browser name used by the user

 This information can be used to reconstruct the user navigation sessions

within the site that the log data originates. In an ideal scenario, each user is allocated

a unique IP address whenever (s) he accesses a given web site. Moreover, it is

expected that a user visit the site more than once, each time possibly with a different

goal in mind. Therefore, a user session is usually defined as a sequence of requests

from the same IP address such that no two consecutive requests are separated by

CHAPTER 3: NEXTPAGE 39

more than X minutes where X is a given parameter. In [41], the authors report an

experiment conducted with a web browser that was modified in order to record,

among other things, the time interval between user actions on the browser’s

interface. One interesting result of the study revealed that 25.5 minutes corresponded

to 1.5 standard deviation of the average time between user actions, meaning that the

probabili ty of a user staying more than 25.5 minutes without placing any page

request is very low. As a result of the study, many authors and also we have adopted

the value of 30 minutes for the time limit between requests within a session, i.e.

X=30 minutes. In the light of this observation, a user session can be defined as

shown in Definition 2.

Definition 2: User session S is defined as S=< identS, PRS > where

• PRS = { (RS
1.referrer, RS

1.target), (RS
2.referrer, RS

2.target)… (RS
m.referrer,

RS
m.target)}

• RS
k ∈ L and RS

k.ident = S.ident for 0 < k < = m

• RS
m.time – RS

m-1.time < 30

 Another relevant aspect to take into account when using log data is the

widespread use of cache and proxy servers on the web. As a result, not all page

requests made to a server are recorded in the log file. In fact, if the browser finds a

copy of a document being requested by the user in its cache, the request is not made

to the server and the stored copy of the document is displayed. Therefore, although

the user views the page, the request is not recorded in the server log file. A similar

thing can occur at proxy level. A proxy server can be configured in such way that, a

copy of a requested page is not available in the local memory, the page is requested

by the proxy to the content provider on behalf of the user. In addition, the use of

proxy servers that will be discussed later raises difficulties in the identification of the

requests made by a given computer. A sample session can be seen in Figure 3.7.

CHAPTER 3: NEXTPAGE 40

Target : Referrer :

1. /~gudukbay/home.html --

2. /~gudukbay/cs565/index.html /~gudukbay/home.html

3. /~gudukbay/cs565/project_list/project.html /~gudukbay/cs565/index.html

4. /cs466/index.html /~gudukbay/home.html

Figure 3.7: A sample user session

As shown in the figure, the user begins the session just by typing the exact

path of the page “/~gudukbay/home.html” directly in the address line of the browser

since the Referrer field is represented as “-“ Then he goes to the page

“gudukbay/cs565/index.html, and then “/~gudukbay/cs565/project_list/project.htm”

consecutively. Each of these two pages is retrieved by following the links on the

previously retrieved pages. We draw this conclusion just by looking at the Referrer

field of the corresponding accesses. But the Referrer field of the fourth request made

by the user shows us that the user has clicked two times on BACK button of the

browser and returned back to the page “/~gudukbay/home.html” . Then the user

retrieves the page “/cs466/index.html” . So the navigation of the user through the web

site by clicking the BACK button could not be detected by the server and recorded in

the server access log. Also, we may encounter with the common problems below due

to the proxy servers.

• Single IP address/Multiple Server Sessions: Internet Service Providers (ISPs)

typically have a pool of proxy servers that users access the web through. A

single proxy server may have several users accessing a web site, potentially

over the same time period.

• Multiple IP address/Single Server Session: Some ISPs or privacy tools

randomly assign each request from a user to one of several IP addresses. In this

case, a single server session has multiple IP addresses.

CHAPTER 3: NEXTPAGE 41

• Multiple IP address/Single User: A user that accesses the web from different

machines will have a different IP addresses from session to session. This makes

tracking repeat visits from the same user diff icult.

• Multiple Agent/Single User: Again, a user that uses more than one browser,

even on the same machine, will appear as multiple users.

In such cases, the IP address recorded in the log file corresponds to the proxy

and not to the user. Note that more than one user can be using the same proxy to

browse the same site at the same time. So, the unique users must be determined

before applying data mining techniques. There are some techniques available used

for determining the unique users. One of these techniques is the use of cookies to

track an individual user within a site. If cookies are enabled, when a new user

requests a document, the response includes a unique user identifier, which the

browser stores in the user’s hard disk. All subsequent requests made by the browser

to that same site will i nclude the cookie information and therefore, allow the service

provider to recognize the user. However, the use of cookies is only possible with the

user’s consent and its use has raised privacy concerns.

Another way to identify the unique users and also be used in our web usage

mining system is to use “Agent” field of the entry. Even if the IP address is the same,

if the Agent field of the entry shows a change in browser software or operating

system, a reasonable assumption to make is that each different agent type for an IP

address represents a different user.

By taking all criterions discussed above into account, we derived an

algorithm shown in Figure 3.8 to determine the sessions embedded in the log file. A

linked list model is used to hold all user sessions in the given log file. For the first

session in the access log file, a root node is created and all remaining sessions are

added to the list.

CHAPTER 3: NEXTPAGE 42

[1] For each entry in the given log file
[2] If the entry is valid
[3] Assign Identity, Target, Referrer, Time and Agent information
[4] For each Identity and Agent pair do
[5] Search “Session List” for the given “Identity and Agent” pair
[6] If an open session belonging to the given “Identity and Agent” pair is

not found
[7] Create a new open session
[8] Owner of the session � (Identity and Agent)
[9] Starting time of the session � Time
[10] First access of the session� (Referrer and Target)
[11] End If
[12] Else
[13] If Referrer is “-“
[14] Close the open session
[15] Create a new open session and load all data to the new session
[16] End If
[17] Else
[18] If Referrer is in the Page List of the session
[19] If (Time- Starting Time of the Session) > 30
[20] Close the open session
[21] Create a new open session and load all data to

the new session
[22] End If
[23] Else
[24] Add Target into List Page of the session
[25] num_of_pages ++;
[26] End Else
[27] End If
[28] Else
[29] Close the open session
[30] Create a new open session and load all data to the new

session
[31] End Else
[32] End For
[33] End If
[34] End For

Figure 3.8: Algorithm used for session identification

Each node in the list generally consists of four fields which are the owner of

the session (Identity and Agent fields), the number of the pages in the session

(number_of_pages), the pages accessed in the session (Page_List) and a flag

representing whether the session is open or not. Also an extra field for each page in

CHAPTER 3: NEXTPAGE 43

the session (time_spent) which is especially used by Recommendation Engine is

kept.

Firstly, the entry is processed to obtain whether it consists of irrelevant items

(Line 2) or not. It is eliminated if it is not a valid page request; otherwise it is used as

an input to the algorithm.

Since the users can be uniquely identified by using the “Agent” field of the

entry, the owner of the session is indicated with “Identity and Agent” pair for each

node in the list. The process of session identification begins with the searching

“Identity and Agent” pair in the available session list whether there is an open

session or not belonging to the mentioned “Identity and Agent” pair. The most

important factor here is to find an open session belonging to the visitor. Here, open

session means that it has not been finished yet and still continues. While the session

list is updated with the new entries, there may be some sessions belonging to the

same visitor that have been finished. If an open session belonging to the “Identity

and Agent” pair is not found, then a new session node is created and linked to the last

node (Lines 6-11). An example is given with a fragment of session list as depicted in

Figure 3.9 to make understanding easier. The first box of the session nodes shown in

the figure represents the owner of the session while the second one is for “flag”

which is used for determining whether the session is open or not; “0” for open

sessions, “1” for closed sessions. Assuming that a page whose owner is “A” will be

inserted into session list, firstly session list is searched for a node whose owner is

“A” with flag “0” . The session list has two nodes belonging to “A” , but their flag is

“1” meaning that they have been finished before. In that case, a new node belonging

to “A” is created and linked just after the last node whose owner is “A” .

CHAPTER 3: NEXTPAGE 44

Figure 3.9: An example illustrating the creation of a new session node

At this point, there are two contingencies related to the number of pages that

must be added to the Page List of the session. The Referrer field used for accessing

to any page in the site may be empty or has any page. As discussed above, if the

Referrer field is empty, it means that the visitor types the full path of the page

directly into the address box of the browser and it is also acceptable in every step of

the algorithm to finish an open session and create a new open session. In these cases,

a new session node is created and the Target Page is added into the Page List of the

session and the number_of_pages, is set to 1. As a result, the session node has its

owner, one page in the Page List and the number_of_pages, is equal to the 1.

Otherwise, if the Target Page is accessed by using the cache copy of the page

in the Referrer field at any time, a new session is created. He firstly requests the page

in the Referrer field, but after retrieving a number of pages, he comes back to the

page in the Referrer field. Because the pages used to get back exist in the cache, the

web server cannot be aware of these requests, so this transactions do not include in

the log file. This situation must be taken into consideration to eliminate the

disadvantage of using cache pages, so we put the page in the Referrer field as the

starting page and then the page in Target field is added into the Page List. Because

we have now two pages in the Page List in the session, then the number_of_pages is

set to 2.

A 1 A 1 B 1 B 0 C 1

A 0

CHAPTER 3: NEXTPAGE 45

Because our main idea is to recommend the pages, which have been spent

more time than the others to the user, we also load the time information of the page

requests into the session node. The time spent on the page is calculated by just

subtracting the access time of the active page from that of the page one before and

put it into the “time_spent” field of the page requested.

If any open session belonging to the “Identity and Agent” pair is found in the

Session list, then the first step is to check the Referrer field of the entry whether it

has any page or empty (Lines 13-16). As explained above, if the Referrer field is

empty, we assume that a new user session begins. In these situations, the session

found is closed by changing the flag to “1” and a new session node is created for the

visitor and added to the node closed just before. After creating the new session, all

work explained in case of having no open session in the session list for any visitor is

done for the active session node. If the Referrer field of the entry is not empty and

contains a page, then we check the page in the Referrer field whether it exists in the

Page List of the session or not (Lines 23-26). That the page in the Referrer field is

the same as the last page in the Page List of the session means that no backtracking is

made and the page in the Target field is added to the Page List. After adding the page

to Page List of the session, the time_spent of the previous page in the Page List is

calculated and the number_of_ pages is incremented by 1. If the page in the Referrer

field is not the same as the last page in the Page List of the session, which means that

the visitor did not follow a link placed on the previously retrieved page, the

algorithm takes the necessary actions to handle backtracking. At this point, what is

known is the page in the Referrer field for the current access. So, the action should

be taken is to perform a backward search in the Page List of the session. Whenever a

page is found, the search operation terminates. We have discussed that the time

threshold for a session is approximately 30 minutes. If the difference between the

time of the first page of the Page List and the time of the active page is more than 30

minutes, then that open session is closed and a new session node is created (Lines

19-22).

CHAPTER 3: NEXTPAGE 46

 The last contingency in the session identification is that the page in the

Referrer field is not in the Page List of the session. At this point, the session found is

closed and a new session node is created (Lines 28-31).

 At the end of processing all entries in the given log file by Log Analyzer

module, an adjustment must be made on the sessions created before storing the

session information into the Result File. One of the reasons for this adjustment is that

the time spent value of the last pages in the Page List of the sessions can not be

calculated because the session terminates in that page (the visitor exits the site in that

page) and we can not have any chance to know how much time the visitor spent on

that page before leaving the site. One assumption may be that the user has found

what she/he wants on the last page and then left the site. But the other assumption

may be that the visitor has tried to find what she/he wants, but he could not have

achieved to reach her/his goal and he may have accepted to leave the site at the last

page of the session. So, by taking into the consideration the latter assumption and

because we also have no idea about the time spent on the last page, we decided to

discard the last page accesses from the sessions before storing.

Another reason is that some sessions may not hold enough information about

the user navigation. Some sessions sometimes hold at most one page in their Page

List meaning that the user starts surfing in a particular page and leaves the site

without going further pages.

The other reason is that the difference between the starting time of some open

sessions and the time of the last entry in the log file processed may exceed the time

threshold assigned for the session. So at the end of the execution of the session

identification module, the open sessions exceeding the threshold must be closed by

the adjustment procedure before storing and indexing. The elimination of the

sessions is done by the Eliminate_Session algorithm shown in Figure 3.10

CHAPTER 3: NEXTPAGE 47

[1] For each session in the Session List
[2] If Flag=1
[3] If num_of_pages=1
[4] control � TRUE
[5] Discard the page in the Page List
[6] End If
[7] If num_of_pages=2
[8] control � TRUE
[9] Discard both pages in the Page List
[10] End If
[11] If num_of_pages > 2
[12] Discard the last page in the Page List
[13] Decrement the num_of_pages by 1
[14] End If
[15] End If
[16] Else (If Flag=0)
[17] If time threshold is exceeded
[18] Process the Lines (3-10) for each session that satisfies the IF

condition
[19] If num_of_pages >2
[20] Discard the last page in the Page List
[21] Decrement the num_of_pages by 1
[22] Flag � 1
[23] End If
[24] End If
[25] If control=TRUE
[26] Delete the session node
[27] End If
[28] End For

Figure 3.10: Algorithm Eliminate_Session

 In this algorithm, all session nodes in the session list are passed one by one to

control whether it satisfies all conditions necessary for session identification or not.

We have discussed that if the flag of a session node is 0 then it means that the session

is still open. If the flag of the session node processed is 1 (closed session), we check

the number of pages in the Page List .If the number of pages is less than two (Lines

3-10), we discard these pages from the Page List and we assign TRUE to the variable

“control” which will be used for deleting the session node if necessary. If the number

CHAPTER 3: NEXTPAGE 48

of pages is more than two pages (Lines 11-14), we discard the last page from the

Page List and decrement the value of num_of_pages by 1.

 If the session checked is still open, we control whether it exceeds the time

threshold or not. In the case of exceeding the time threshold, we apply the process in

the lines (3-10) for the session node. But if the number of pages in the Page List is

more than two pages, we just discard the last page in the Page List of the session,

decrement the value of num_of_pages by 1 and then we close the session by

changing flag variable to 1. At the end of the algorithm if “control” variable of the

session node is assigned to TRUE, we delete that session node from the session list

because it does not anymore hold enough information for the session identification.

There is an important point that must be discussed here. Some sessions still

continue however we have processed all entries of the given log file. We open access

log file to be processed for a while to read the entries until the end of the file, but the

web server still continues to put entries into the log file due to the requests. We are

not aware of these requests during the execution of the module and this request

information may be related to the sessions that are not completed. So we must take

this fact into account. We store all finished sessions into the Result file at the end of

the session identification. The remaining unfinished sessions show us that they are

not completed and must be kept in somewhere to load them into the session list just

before processing the entries of the access log file of the next day.

So, Log Analyzer module is designed to keep all unfinished sessions in a file

called as Session File. After storing all terminated session information into the Result

file, we store the remaining unfinished sessions into the file with all information

about the sessions, the owner of the session, the number of pages in the session and

the pages in the session. If Session File contains one or more unfinished session

information belong to one day before, then these sessions are loaded into the session

list just before the processing of the entries in the log file at every execution of the

Log Analyzer module.

CHAPTER 3: NEXTPAGE 49

Figure 3.11: A fragment of the sessions created

Identity Agent Flag num_of_pages

16.132.fl1.ip.foni.net Mozilla/4.0 (compatible; Windows 98) 1 4

Page : Time_Spent
/~guvenir/CATT 134
/~guvenir/CATT/TalkingPictures 11
/~guvenir/CATT/TalkingPictures/ev.html 54
/~guvenir/CATT/TalkingPictures/evTest.html 59

Identity Agent Flag num_of_pages

12.107.64.131 Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0) 0 3

Page : Time_Spent
/~david/derya/caution.htm 5
/~david/derya/sstories.htm 10
/~david/derya/sstorys1/story6468.htm 42

Identity Agent Flag num_of_pages

12.23.54.10 Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0) 1 5

Page : Time_Spent
/~david/derya/ywc.html 41
/~david/derya/members/main.html 8
/~david/derya/members/newappl.html 172
/~david/derya/storybks.htm 9
/~david/derya/stories.htm 1

Identity Agent Flag num_of_pages

12.107.64.131 Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0) 1 3

Page : Time_Spent
/~david/derya/storys5/story6254.htm 3
/~david/derya/stories.htm 5
/~david/derya/storys6/story6526.htm 158

CHAPTER 3: NEXTPAGE 50

The flag variable of the sessions loaded from the Session File is set to 0

meaning they are still open. In other words, the unfinished sessions are stored into

the Session File at the end of every execution of the Log Analyzer module and the

unfinished sessions generated by the module one day before are loaded at every start

of execution of the module into the session list. A small fragment of sessions

generated by the module is shown in Figure 3.11.

3.1.4 Classifying Identity Information

As described above, the first field of the entry of the access log file is either an IP

address or a FQDN of the visitor who requests a page from the web server. The

details of the identity information will be discussed in the next section.

3.1.4.1 IP Addresses

In an IP network, each computer is allocated a unique IP address. In the current

version of IP protocol, IP version 4, an IP address is 4 bytes. The addresses are

usually written as x1.x2.x3.x4, with x1, x2, x3 and x4 each describing one byte of the

address. For example, address 16843009 (hex 1010101) is written as 1.1.1.1, since

each byte of this address has a value of 1.

Since an address is 4 bytes, the total number of available addresses is 232 =

4,294,967,296. This represents the TOTAL theoretical number of computers that can

be directly connected to the Internet. In practice, the real limit is much smaller for

several reasons.

Each physical network has to have a unique Network Number, comprising

some of the bits of the IP address. The rest of the bits are used as a Host Number to

uniquely identify each computer on that network. The number of unique Network

Numbers that can be assigned in the Internet is therefore much smaller than 4 billion,

CHAPTER 3: NEXTPAGE 51

and it is very unlikely that all of the possible Host Numbers in each Network Number

are fully assigned.

An address is divided into two parts: a network number and a host number.

The idea is that all computers on one physical network will have the same network

number - a bit like the street name, the rest of the address defines an individual

computer - a bit like house numbers within a street. The size of the network and host

parts depends on the class of the address, and is determined by address' network

mask. The network mask is a binary mask with 1s in the network part of the address,

and 0 in the host part.

To allow for a range from big networks, with a lot of computers, to small

networks, with a few hosts, the IP address space is divided into 4 classes, called class

A, B, C and D. The first byte of the address determines which class an address

belongs to:

• Network addresses with first byte between 1 and 126 are class A, and can

have about 17 milli on hosts each.

• Network addresses with first byte between 128 and 191 are class B, and can

have about 65000 hosts each.

• Network addresses with first byte between 192 and 223 are class C, and can

have 256 hosts.

• All other networks are class D, used for special functions or class E that is

reserved.

Most class A and B addresses have already been allocated, leaving only class

C available. This means that total number of available addresses on the Internet is

2,147,483,774. Each major world region has an authority that is given a share of the

addresses and is responsible for allocating them to Internet Service Providers (ISPs)

CHAPTER 3: NEXTPAGE 52

and other large customers. Because of routing requirements, a whole class C network

(256 addresses) has to be assigned to a client at a time; the clients (e.g.. ISPs) are

then responsible for distributing these addresses to their customers.

While the number of available addresses seems large, the Internet is growing

at such a pace that it will soon be exhausted. While the next generation IP protocol,

IP version 6, allows for larger addresses, it will take years before the existing

network infrastructure migrates to the new protocol.

Because IP addresses are a scarce resource, most Internet Service Providers

(ISPs) will only allocate one address to a single customer. In majority of cases this

address is assigned dynamically, so every time a client connects to the ISP a different

address will be provided dynamically. Big companies can buy more addresses, but

for small businesses and home users the cost of doing so is prohibitive. Because such

users are given only one IP address, they can have only one computer connected to

the Internet at one time. With a Network Address Translator (NAT) gateway running

on this single computer, it is possible to share that single address between multiple

local computers and connect them all at the same time. The outside world is unaware

of this division and thinks that only one computer is connected.

3.1.4.2. Fully Qualified Domain Names

A FQDN is that portion of an Internet Uniform Resource Locator (URL) that fully

identifies the server program that an Internet request is addressed to. The FQDN

includes the second-level domain name (such as "cs.bilkent.edu.tr") and any other

levels (for example, "www.cs.bilkent.edu.tr" or "www.bilkent.edu.tr"). The prefix

"http://" added to the Fully Qualified Domain Name completes the URL.

DNS (Domain Name Server) is an Internet service that translates the name

into the corresponding IP address. For example, the domain name

CHAPTER 3: NEXTPAGE 53

“ patara.cs.bilkent.edu.tr” might be translated to 139.179.21.122. The DNS system

is, in fact, its own network.

When a page is requested from web server, web server asks the DNS server

belong to the network whether it has information about the client’s IP address. If

DNS has information about the IP address, it translates the IP address to its FQDN

and returns it to the server. If the DNS server does not know how to translate a

particular domain name, it asks it to the upper DNS, until the correct IP address is

returned. The web server puts the FQDN returned from DNS to the “Address or

DNS” field of the entry. If any information returns from the DNS servers belong to

the network, then the web server puts just its IP address to the entry.

FQDNs should have at least two fields. Different from IP addresses, the fields

are composed of sequence of characters where each character is either a digit

between “0” and “9” or a letter between “a” and “z”. In that case, each computer is

associated with a domain name according to the predefined hierarchy built on the

domain names called as Domain Name Hierarchy.

Topmost level of the Domain Name Hierarchy is the root domain and the

nodes below the root contain the top-level domains, which are listed below. All

computers connected to the Internet belongs one of these top-level domains.

• com: companies (http://www.amazon.com)

• edu: universities (http://bilkent.edu.tr)

• mil: military organizations (http://www.tsk.mil.tr)

• gov: government organizations (http://www.turkey.gov.tr)

• net: Internet Service Providers (http://www.php.net)

• org: nonprofit organizations (http://www.apache.org)

• also an extra field is used to differentiate the countries such as tr, au,

uk, de etc.

CHAPTER 3: NEXTPAGE 54

Each top-level domain in the Domain Name Hierarchy has lower domains.

Domain Name Hierarchy can also be represented by a hierarchical tree structure

where each node of the tree represents a domain name. The nodes except the leaves

of the tree contain the name of general domain. All computers connected to the

Internet reside at the leaves in that tree structure. The FQDN can be acquired by

following the path belong to the computer from bottom to top and by concatenating

the values of the nodes on the path. The number of computers connected to a general

domain is more than the number of the computers connected to the lower domain of

itself. A small portion of this tree structure can be depicted in Figure 3.12.

Figure 3.12: Domain Name Hierarchy

The top-level domains are assigned by the Internet Corporation for Assigned

Names and Numbers (ICANN). Their administrators manage the domains below the

top-level.

 Root

 org com tr mil edu

apache amazo
n

 gov mil edu

bilkent tcmb metu tsk

 cs dorm

 pcmil1 pcmil2

 com

CHAPTER 3: NEXTPAGE 55

That the lowest domain containing the values “pcmil1” or “pcmil2” seems at

the first domain identifier of the FQDN (pcmil2.cs.bilkent.edu.tr) is important for our

system and will be used as an indicator of determining the parent domain.

3.1.5 Inserting Identity Information into the tree

One of the aim of the thesis is to recognize the visitor by using its IP address or its

FQDN and recommend them the pages they are really interested based on their past

experiences. We always want to get the identity information of the visitors in FQDN

to classify them more specifically, but it is nearly impossible to get the identity

information always in their FQDN

A tree structure is constructed to hold the information about the visitors. The

aim of holding the identity information on a tree structure is to make indexing and

create an index file which will be used by the Recommendation-Engine to find the

start and the end position of the sessions belong to the visitor in the Result file. At

the same time, if the system has no idea about the visitor, then tree structure finds the

parent domain of the visitor to make appropriate recommendations without doing any

extra process. Some identities either in IP addresses or in FQDN are given in Figure

3.13, to be used as an example to show how the tree is constructed.

����������	�
������	�����������	������ ��!"��#�����#$�%������	����&�'��	(��	��)��*,+�!"��!-��!-.�/�+�� �1032547698:���&� ��+'�

the others (b, c, d, e, f, j, k, l) are IP addresses. Each part of the identity will be

represented by “domain identifier” . For example, when the identity “12.151.162.61”

is parsed, four domain identifiers are generated such as 12, 151, 162 and 61. Because

IP addresses are formed by four octets, they always have four domain identifiers.

Domain identifier “12” is in the first domain level and also will be used for

determining the class of the identity, domain identifier “151” is in the second level,

CHAPTER 3: NEXTPAGE 56

domain identifier “162” is in the third domain level and domain identifier “61” is in

the fourth domain level.

a. gregory.excite.com b. 12.151.162.61

c. 217.131.128.73 d. 217.131.133.71

e. 190.175.140.228 f. 190.175.136.238

g. b204d3.dorm.bilkent.edu.tr h. j3016.inktomi.com

i. labb30640.bcc.bilkent.edu.tr j. 190.178.112.51

k. 217.131.143.21 l. 12.151.162.91

Figure 3.13 A series of identities

The first octet of the identity with IP addresses represents the topmost

domain, but the topmost domain is the last domain identifier of the FQDNs. The

insertion of the domain identifiers into the tree is made from the topmost domain to

lowest level domain. So, the parsing of FQDNs is done backward. The most

important factor affecting the height of the tree is the number of domain identifiers in

FQDNs. For instance, when the identity “gregory.excite.com” is parsed, three

domain identifiers are generated such as com, excite and gregory respectively. But,

when the identity “b204d3.dorm.bilkent.edu.tr” is parsed, five domain identifiers are

generated such as “b204d3”, “dorm”, “bilkent” , “edu” and “tr” respectively. As

discussed above, the topmost domain of the first example is “com” whereas that of

the other is “tr” .

Firstly, the root and five nodes linked to the root node are created as shown in

Figure 3.14. As described in 3.1.4.1, IP addresses can be categorized as Class A,

Class B, Class C, Class D, Class E. Since Class E is assigned for future use, we

eliminated Class E. To avoid a conflict in future, we designed our system to classify

the computers belong to Class E into Class D. We used four nodes (Node 1, Node 2,

Node 3, and Node 4) for identities in IP addresses and one node for the identities in

FQDN (Node 5).

CHAPTER 3: NEXTPAGE 57

Figure 3.14 The root structure of the tree

All of the nodes in the tree have five fields.

Field 1: for the address of the node containing the next domain identifier of the
identity

Field 2: for the address of the node containing the domain identifier of the other
identities in the same level.

Field 3: to hold the start index that is an indicator of the beginning of sessions
belong to computer/computers in the node.

Field 4: to hold the end index that is an indicator of the end of sessions belong to
computer/computers in the node.

Field 5: the value of the domain identifier generated by parsing of the identity.

The algorithm, Insert_Tree, which is used to insert these identities into the

tree, is shown in Figure 3.15. The first step is to determine whether the identity is an

IP address (Line 2) or not. It can easily be detected only by checking each character

in the identity information. IP addresses are composed of sequence of characters

where each character is a digit between “0” and “9” whereas FQDNs may be

composed of sequence of characters where each character is either a digit between

“0” and “9” or a letter between “a” and “z”. If identity information has at least one

alphabetic character, we understand that the identity information is a FQDN.

For the identities in IP

addresses

 Root

 Node 2 Node 5 Node 3 Node 4

For the identities in

FQDN

 Class A Class D and E

 Node 1

 Class B Class C

CHAPTER 3: NEXTPAGE 58

[1] For each unique identity in the given log file
[2] Determine the identity whether it is FQDN or IP address
[3] If identity is IP address
[4] Parse the IP address forward to get domain identifiers
[5] Determine the class of the identity by checking the first domain

identifier of the IP address
[6] Find the node at the root assigned for the class of the identity and

make this node active
[7] End If
[8] Else
[9] Parse the FQDN backward to get domain identifiers
[10] Find the node at the root assigned for the identities with FQDN, that

is, Node 5
[11] End Else
[12] For each domain identifier of the identity
[13] Search domain identifier at the nodes attached to the active node
[14] If node is not found
[15] Create a new node for the domain identifier
[16] Put the node in appropriate place satisfies the decreasing order

of node values and make it active node
[17] End If
[18] Else
[19] Make it active node
[20] End Else
[21] End For
[22] End For

Figure 3.15: Algorithm Insert_Tree

Then, we parse the identity information. The difference between the parsing

IP address and FQDN is the order of the domain identifiers. As discussed above, the

topmost general domain of the IP addresses seems at the first octet of the identity

information whereas it seems at the last domain identifier of the FQDN. An extra

work is not done for the IP addresses, but we reverse the identity information with

FQDN before parsing and inserting them into the tree. For instance, identity

information “190.175.140.228” is inserted into the tree as 190� 175� 140� 228,

but the identity information “b204d3.dorm.bilkent.edu.tr” is inserted into the tree as

tr � edu � bilkent � dorm � b204d3, respectively. The domain identifiers found

are then inserted to an array to be used in the insertion of the identifiers into the tree

CHAPTER 3: NEXTPAGE 59

If identity information is an IP address, the class it belongs is found by

checking the value of first octet as shown in Figure 3.16. After detecting the class of

the identity, the node where the domain identifiers of the identity will be inserted is

found. If the identity information as a FQDN, then Node 5 is searched because Node

5 is assigned for the identities with FQDN.

Value = First octet Class Node to be searched

1 <= value <= 127 Class A Node 1

128 < value <= 191 Class B Node 2

192 < value <= 223 Class C Node 3

224 < value <= 255 Class D Node 4

Figure 3.16: Classification of the IP addresses

After the class node of the identity is found, then each domain identifier in

the array is inserted into the tree. The value of first domain identifier is searched in

the first level of the sub tree linked to one of the class node. If class node has no

node, a new node is created by assigning the value of domain identifier to the node

and is linked to the class node. Then the node created is assigned as “active”. If there

exists some nodes, a search operation is made on these nodes to obtain whether the

value of the domain identifier exists or not. If search operation is negative, then a

new node is created by assigning the value of domain identifier to the node and is

linked to appropriate node that satisfies the increasing order of the domain identifiers

in the same level. Then the node created is made active. If search operation is

positive, the node found is made active. The insertion of the remaining domain

identifier is made by searching the value of domain identifier in the nodes linked to

the active node respectively.

Insertion of each domain identifier into the tree is made in such a way that the

search is completed in the least time. For the IP addresses, since each domain

CHAPTER 3: NEXTPAGE 60

identifier of the IP addresses is between 0-255, each node at the levels has 255 lower

nodes connected, so the search operation on a level is made on 255 nodes. Insertion

of all domain identifiers of the identity into the tree is done at most 4 (searching to

find the Class Node) + 255 (searching to find the place in the first Level) + 255

(searching to find the place in the second Level) + 255 (searching to find the place in

the third Level) + 255 (searching to find the place in the fourth Level) = 1024 in the

worst case.

The number of nodes on each level changes dynamically due to the number of

domain identifiers of the identities found at the end of parsing the identity. One of

the identities in FQDN may have 3 domain identifiers as in “gregory.excite.com” or

may have 5 domain identifiers in “b204d3.dorm.bilkent.edu.tr” . Generally, the time

spent for the insertion of domain identifiers into the tree increases from top to bottom

of the tree because the number of the domain identifiers at upper levels is less than

the number of the domain identifiers at lower levels. As shown in Figure 3.11, the

upper level of the sub tree assigned for identities with FQDN consist of the topmost

domain values such as com, edu, gov etc.

A small portion of the tree constructed after the insertion of all identity

information given in Figure 3.13 into the tree is shown in Figure 3.17.All we

explained above can be seen in the figure. Node 1, Node2, Node 3, and Node 4 has

each four level whereas the Node 5 has five levels. The depth of from the nodes

belonging to the IP addresses is static, 4; the depth may be less or more than that

from the node 5. It is fact that the depth of the whole tree depends on any identity

information with FQDN having the maximum number of domain identifier.

CHAPTER 3: NEXTPAGE 61

3.1.6 Storing Session Information and Indexing

The next phase of Log Analyzer module is the process of storing the generated

sessions and the tree structure holding the identity information in such a way to make

the runtime of Recommendation Engine as fast as possible to find the pages which

will be recommended to the user. Because our aim is to find the pages to be

recommended in the least time without increasing the time of loading page into the

client’s machine. At the end of determination of the sessions and constructing the

tree, we have two main structure used for storing and indexing. One of them is tree

structure as shown in Figure 3.17, and the other is session list as shown in Figure

3.11.

There comes an important issue related to creating the Result File and

updating the tree. We always have a Result File containing the sessions and an Index

File containing the start and end index of the sessions in the Result File belonging to

the visitors that have been created one day before. At every execution of the module,

the tree is constructed just before the processing of the new entries in the access log

file to have an abili ty to know the start and end positions of the sessions in the Result

File belonging to the identities.

Because an identity may have no session in the day of the last execution of

the module, but all sessions of the identity belonging to prior days in the Result file

must be rewritten to the Result file. If the tree is not constructed each time, then

some sessions belonging to an identity that has some sessions before but not on the

day of the execution of the module may be loosed. We constructed the tree by the

help of the Index File created one day before. The algorithm, Construct_Tree, used

for this process is shown in Figure 3.18.

CHAPTER 3: NEXTPAGE 62

Figure 3.17: Tree structure holding the identity information

Root

 2 3 4 1 5

 12

 151

162

 61 91

 190

175

 112

 51

 178

136

 228 238

140

217

131

128

 73

 133

 71

 143

 21

 com

gregory

excite inktomi

J3016

 tr

bilkent

 edu

labb30640

 bcc

b204d3

dorm

Top Most Level

 First Level

 Second Level

 Third Level

 Fourth Level

 Fifth Level

CHAPTER 3: NEXTPAGE 63

[1] Open Index File

[2] FOR each entry (line) of the file DO

[3] Parse the entry to obtain identity, start and end index

[4] Apply the algorithm in Figure 3.15 for the identity obtained

[5] Put the start and end index variables into the node holding the last domain
identifier of the identity.

[6] End FOR

Figure 3.18: Algorithm Construct_Tree

Firstly, Index File created one day before is opened for constructing the tree

with the identities in the file. Each line of the file is processed to obtain the identity,

the start index and the end index. After processing the entry, the identity is loaded

into the tree as described in 3.1.5. For instance, assume that the first three lines of the

file is as the same as in Table 3.1

Identity Start Index End Index

64.221.22.123 0 123321

66.223.142.27 123321 125623

66.21.22.121 125623 201237

Table 3.1: Example entries in the Index file

As shown in the table, the first entries in the file belong to the Class A that is

assigned for the identities with the IP addresses due to the result of creating the index

file, which will be explained later. After executing of the algorithm described above

just for the first three entries in the file, the tree shown in Figure 3.19 is constructed.

As shown in the figure, the start and end index values of the identities

representing the position of the sessions in the Result File belonging to the identity

are placed in the start and end index field of the nodes holding the last domain

identifiers of the identities which are also the leaf nodes of the tree.

CHAPTER 3: NEXTPAGE 64

Figure 3.19: The tree constructed before the execution of the module

The “start index” and “end index” field of the intermediate nodes will be used

by the Recommendation Engine of the system to find the start and end index values

of the parent domain of the identity in the case of having no pages to recommend

related to the past experiences of the visitor, so at that point the value of the start and

end index fields is set to 0.

At the end of the execution of the algorithm, Construct_Tree, a tree is formed

before analyzing of the access log file. The other identity information that comes

across during the processing of the entries in the log file is loaded into the tree

constructed and the tree is updated with these newly added identities.

After the determination of the sessions embedded in the access log file, the

sessions belonging to each unique identity in the session list is stored in a file called

as Result File. Also, at the same time, the process of updating the tree constructed

before the execution of the module is done while storing the sessions into the Result

file. The algorithm, Create_Result_File, shown in Figure 3.20 is derived to store all

Root

Node 1

 0 64 0

 0 221 0

 0 22 0

 0 123 12332

 0 66 0

 0 223 0

 0 142 0

123321 27 125623

 0 21 0

 0 22 0

125623 121 201237

CHAPTER 3: NEXTPAGE 65

information in the main memory to a permanent storage at the end of the execution

of the module.

 Before storing the sessions into the file, we firstly pass the session list once to

determine the unique identities and update the tree constructed by the help of

algorithm shown in Figure 3.14 (Lines 1-3). If the identity information is found on

the tree meaning that it has some session information belonging to prior days, no

update operation is required on the tree. Otherwise, if the user visits the web site for

the first time that means she/he is new for the system, then the tree is updated with

the new identity information. The important point here is that the start and index

fields of the node holding the last domain identifier is set to 0. This property will be

used in the process of storing the sessions to differentiate whether the identity is

newly added or not.

After updating of the tree with the identities in the session list, the sessions

both in the session list and in the Result file are stored in a temporary file and the

contents of Result file are deleted. At the end, the temporary file created is then

renamed as Result File and is used for the execution of the modules in the following

days.

Traversing of all nodes in the tree is essential for the creating of Result File

and the Index File. (Lines 4-11) The traversing of all nodes in the tree can be

associated with the property of preorder traverse of the binary tree. Each sub tree

below the class nodes is taken as a tree for the traversing of all nodes, that is, firstly

the sessions belong to the identities under Class A category is stored and then Class

B, Class C, Class D and at last FQDN Category, respectively.

As we discussed before, the domain identifiers of the identity with IP

addresses are inserted to the tree from top to bottom. As shown in Figure 3.16 and

Figure 3.18, the first domain identifier resides at the first level and the last domain

identifier resides at the fourth level which is also the level holding the leave nodes.

CHAPTER 3: NEXTPAGE 66

[1] FOR each unique identity
[2] Update the tree constructed
[3] End FOR
[4] FOR each class node in the tree DO
[5] If the class node is between 1-4
[6] Determine the identity by concatenating the domain identifiers from

top to bottom
[7] End If
[8] Else If the class node is 5
[9] Determine the identity by concatenating the domain identifiers from

top to bottom
[10] Reverse the identity variable acquired
[11] End Else
[12] FOR each identity in the tree Do
[13] NEW_start_index � start point of the temporary file
[14] If the node holding the last domain identifier of the identity has a start and

 end index value different than 0
[15] Print all sessions between the start and end index in the Result file into

a temporary file
[16] End If
[17] Search the session list belonging to the identity
[18] If any session exists
[19] Print the sessions just after the sessions written into the same

 temporary file
[20] Delete session nodes belonging to the identity
[21] End If
[22] ELSE if the node holding the last domain identifier of the identity has a

 start and end index value with the value of 0
[23] Print the sessions in the session list belong to the identity
[24] End ELSE
[25] NEW_end_index � end of the temporary file
[26] Update the start and end index variables in the node holding the last domain

 identifier with the NEW_start_index and NEW_end_index
[27] Print identity, the start and end index values to the Index File
[28] End FOR

Figure 3.20: Algorithm Create_Result_File

The identities below the Node 1,2,3,4 are acquired by concatenating the

domain identifiers from top to bottom. But, the identities acquired by the same way

below the Node 5 meaning that the identities are in FQDN are then reversed because

the domain identifiers of the identities with FQDN are inserted into the tree after

reversing the identity information.

CHAPTER 3: NEXTPAGE 67

After acquiring a unique identity, the start and end index field of the node

holding the last domain identifier of the identity is checked whether they have 0 or a

value different from 0. 0 in the index field means that the identity is newly added to

the tree, so it has no session belong to the prior days. Otherwise, it has some sessions

in the Result File and these sessions must be rewritten to the file before storing the

new session information to the file.

The NEW_start_index variable is set to the start position of the sessions in

the temporary file belong to the identity. It is 0 for the first identity to be processed

whereas it is the end position of the sessions belong to the antecedent identity

processed (Line 13). Each session is written to the file with the owner of the session,

the number of the pages in the session and the pages accessed in the session. If the

variable in the start and end index fields of the nodes holding the last domain

identifier of the identity has a value different from 0, then the sessions in the Result

file between the start and end index values are written to the temporary file. (Lines

14-16) After writing the sessions to the temporary file, the session list is searched

whether the identity has new session or not. If the identity has new sessions, then

these sessions are added to the file just after the last session belong to the same

identity. The session nodes written to the temporary file in the session list are then

deleted to make the next searches in a smaller session list. (Lines 17-21)

If the variable in the start and end index fields of the nodes holding the last

domain identifier of the identity is “0” meaning the identity is a new visitor for the

system and has no session information in the Result file, so only the sessions in the

session list is written to the temporary file. (Lines 22-24) After all sessions belong to

the identity are written to the temporary file, the NEW_end_index variable is set to

the end position of the sessions in the temporary file.

At the end of the line 24 of the algorithm we have the new start and end

positions of the sessions belong to the each unique identity. We store these new

variables into the fields of the node holding the last domain identifier of the identities

CHAPTER 3: NEXTPAGE 68

by exchanging them with the new indexes. Then, we write these index information

into the Index File to be used by Recommendation Engine.

3.2 Recommendation Engine

 In this section, we present the Recommendation Engine designed and

implemented. Main goal of Recommendation Engine is to recommend next access

pages to the visitor based on their past experiences as fast as possible as a list that

can be reached by just clicking on the link. In the case of having no pages to

recommend to the visitor based on her/his past experiences meaning that he/she visits

the web site for the first time and the system has no session information in the Result

file, pages that have been visited and spent more time by the identities belong to the

parent domain of the visitor are recommended because the behavior of visitors in the

same parent domain may also show the same trends with the visitor. As a result, the

success of the pages recommended depends on the level that the pages are

discovered. In other words, the success of the recommendation is high if the visitor

has some session information in the system.

 The Recommendation Engine works together with two parts. One of them is a

code written in PHP scripting language and the other one is a CGI program running

at the background. PHP is a scripting language similar to java script or visual basic

script language. The important difference is that the code written in PHP is processed

by the server, not by the client. The code is embedded into an HTML page and the

web server processes this code before sending the page to the client’s machine. The

aim of PHP code embedded into the files is to get the IP address or FQDN of the

visitor, its agent and the name of the page which will be used by the online module to

produce appropriate recommendation to the visitor.

 The code written in PHP scripting language embedded in the HTML page

acquires the IP address or FQDN of the visitor and agent who made the request for

the given page by parsing the environment variables of the connection between the

CHAPTER 3: NEXTPAGE 69

client and the web server. The other information acquired by the PHP code is the

name and path of the HTML page. The name and path of the document requested is

important because the system is designed for general usage. If this input were a static

variable used in the program, there should have been a unique CGI program for each

web page having the mentioned PHP code. Assuming that it is impossible and not

acceptable in data mining concept, the name and the path of the page is given to the

program dynamically by the help of the PHP code. An example of HTML page with

PHP code is shown in Figure 3.21

<html>
<body>
{ the other text and embedded objects are written here}
<? $filename = getenv (“PATH_INFO”);
 $computer=getenv (“REMOTE_USER”);
 $agent = getenv (“BROWSER”);
 passthru (cgi.exe $filename $computer $agent)
? >
</html>
</body>

Figure 3.21: PHP script embedded into an HTML page

Client related information is assigned to three variables in the HTML page

and are then sent to the CGI program called as FindPage running in the server as an

input. FindPage runs after getting a signal from PHP code and produces the

recommendation set. At the end of the execution of the FindPage, the pages to be

recommended to the visitor are placed at the end of the page in a table with a link to

the physical position of the pages.

3.2.1 Discovery of the pages to be recommended

 The main goal of the FindPage which is triggered by PHP code embedded in

the HTML page is to find the pages that the visitors have been spent the most time

CHAPTER 3: NEXTPAGE 70

just after the page requested. This process is performed by searching the sessions in

the Result File by the help of the start and end indexes kept in the Index File.

 The number of the pages to be recommended to the visitor can also be

determined by the web master. The number of recommendation may be 1 or more

according to the web master’s decision. After FindPage is triggered, the program

produces the same amount of pages with the number of pages determined by the web

master. The FindPage implemented uses Index and Result File produced by the Log

Analyzer module. The algorithm is shown in Figure 3.22.

The input variables of the FindPage are the identity information either in IP

Address or in FQDN, the Agent and the name of the document requested by the

visitor that were sent by PHP code in the HTML page. FindPage is triggered at every

access to the page having PHP code.

[1] Construct the tree
[2] Update the start and index fields of the intermediate nodes
[3] Search the identity whether it exists in the tree or not and load the Index_Table

[4] FOR each index existing in the Index_Table

[5] Find the pages in the Result File based on the page requested

[6] Store them in Recommendation_Table

[7] Sort the pages by time_spent

[8] If the num_of_found_pages > num_of_recommendation break;

[9] End FOR

[10] I f (num_of_found_pages < num_of_recommendation)

[11] Recommend the most time spent pages to the visitor to complement the
 number of pages to be recommend

[12] End If

Figure 3.22: Algorithm used in FindPage

First task done in FindPage is to construct the tree because all information

about the identity is stored on that tree. We have discussed that the Log Analyzer

module outputs two main files, Index and Result File. FindPage uses the Index File

to create the tree and the Result File to discover the pages to be recommended. The

CHAPTER 3: NEXTPAGE 71

algorithm Construct_Tree shown in Figure 3.17, constructs the tree. The important

point at this step is that the start and end index values of the identities are loaded into

the nodes holding the last domain identifier of the identities. The start and end index

fields of the intermediate nodes are set to 0 as shown in Figure 3.19. Then the start

and index fields of intermediate nodes are updated according to the start and end

index values of the nodes at one low level connected to the node.

Identity Start index End Index

pcmil1.cs.bilkent.edu.tr 45321 56784

pcmil2.cs.bilkent.edu.tr 56784 63298

pc501b.cs.bilkent.edu.tr 63298 75192

ppp140.bcc.bilkent.edu.tr 75192 84567

ppp145.bcc.bilkent.edu.tr 84567 92133

tahir.ef.bilkent.edu.tr 92133 98739

403a.ef.bilkent.edu.tr 98739 99657

Table 3.2: Example identities with their start and end indexes

We will clarify this issue with an example by using the identity information

shown in Table 3.2. After inserting of these example entries into the tree, they will be

placed at somewhere in the tree shown in Figure 3.23. (Line 1)

As shown in the figure, all start and end index values are placed at the leaf

nodes. For instance, the sessions between the position 45321 and 56784 of the Result

File belong to the identity “pcmil1.cs.bilkent.edu.tr” whereas the sessions between

the position 92133 and 98734 of the Result File belong to the identity

“tahir.ef.bilkent.edu.tr” . Then, the value of the start index field of any intermediate

node is set to the start index value of the first node connected to the mentioned node.

At the same time, the value of the end index field is set to the end index value of the

last node connected to the mentioned node.

CHAPTER 3: NEXTPAGE 72

“

Figure 3.23: A part of the tree with the example entries

After updating the indexes, the tree looks like in the Figure 3.24. As shown in the

figure, the start and end index fields of all nodes in the tree has a value minimum 0 or

maximum the size of the Result File due to the start and end index values of the child

nodes connected to the parent nodes. We can draw some conclusion by using the tree

above. For instance, the sessions of the users belong to “cs.bilkent.edu.tr” in the

Result file exist between the position of indexes 45321 and 75192 whereas the

sessions of the users belong to “ef.bilkent.edu.tr” exist between the position of

indexes 92133 and 99657.

After constructing the whole tree, the identity is searched on the tree (Line 3).

But before the search operation, a table with two fields in each row, one field for

start index and one field for end index value, is allocated and the size of the table

allocated is dependent to the number of domain identifier of the identity. The search

operation on the tree is made from top to bottom.

 0 tr 0

 0 edu 0

 0 bilkent 0

 0 cs 0 0 bcc 0 0 ef 0

75192 ppp140 84567 84567 ppp145 92133

92133 tahir 98739

45321 pcmil1 56784 56784 pcmil2 63298 63298 pc501b 75192

98739 403a 99657

CHAPTER 3: NEXTPAGE 73

Figure 3.24: The same part of the tree after updating the index fields

If the identity is IP address, then the class node of the identity is found by

checking the first octet of the identity as described before. Otherwise, if it is a

FQDN, the class of the identity is clear, that is, Node 5. After determining of the

class node, the identity is searched in the nodes connected to the class node of the

identity. The start and end index values of the nodes on the path until last domain

identifier of the identity is found are loaded into the allocated Index_Table to be used

in case of having no pages to recommended to the visitor based on his/her past

experience. If the identity making the request is “pc501b.cs.bilkent.edu.tr” , the

search operation is made on the path tr � edu � bilkent � cs � pc501b and the

start and end index values of these nodes is loaded into the Index_Table like in

Figure 3.25

 45321 tr 99657

 45321 edu 99567

 45321 bilkent 99567

45321 cs 75192 75192 bcc 92133 92133 ef 99657

75192 ppp140 84567 84567 ppp145 92133

92133 tahir 98739

45321 pcmil1 56784 56784 pcmil2 63298 63298 pc501b 75192

98739 403a 99657

CHAPTER 3: NEXTPAGE 74

Node “tr” �

Node “edu” �

Node “bilkent” �

Node “cs” �

Node “pc501b” �

Figure 3.25: Index_Table

 The search operation in the Result File begins from indexes in the last row to

the indexes in the first row of the table. The start index with the value of 63298 and

the end index with value of 75192 shows the position of sessions belong to the

identity “pc501b.cs.bilkent.edu.tr” and the first aim is to find the probable pages to

be recommended in the sessions between these indexes. If no page is found to

recommend for the page requested, then the probable pages are searched between the

position of 45321 and the position of 75192 holding the sessions belong to the

identities connected to “cs.bilkent.tedu.tr” with discarding the section searched

before.

[1] Open Result File
[2] Position the cursor to the start position of the sessions
[3] While the end position of the sessions
[4] Read the entry and parse it

[5] If the entry represent a new session
[6] Read the line and parse it to obtain the name of page and the time

[7] If the page is the same as the page requested

[8] While the end of the active session

[9] Load the page information into Recommendation Table

[10] End While

[11] End If

[12] End While

Figure 3.26: Algorithm Discover_Pages

45321 99657

45321 99657

45321 99657

45321 75192

63298 75192

CHAPTER 3: NEXTPAGE 75

 This process continues until the number of the pages found satisfies the

number of recommendation determined by the web master. The search operation in

the Result File is done by the algorithm shown in Figure 3.26.

After the start and end index values are determined, the Result File is opened

and the cursor is positioned at the start index value. (Lines 1-2) Then each entry until

the end index is read and checked whether it has an indicator flag representing a new

session or not because the Result File is stored in such a way that each session is

separated with an indicator flag. (Line 5) If the entry contains that flag, all entries

between the entry containing the flag and the beginning of the next session are read

and parsed to obtain the name of the page (Line 6) to compare the page name of the

entry with the page requested. If comparison is positive then all pages and their

time_spent values until the beginning of the next session are stored in the

Recommendation Table (Lines 7-10).

 Recommendation Table is designed as a linked list because the number of

pages found cannot be determined before. A memory allocation is made for every

page found and a new node is added to the list. These nodes hold the name of the

page, the number_of_hits and the time_spent value. If any page found for

recommendation exists in Recommendation Table meaning that it occurs twice or

more, the number_of_hits of the node holding the mentioned page is incremented by

1 and the time spent value is updated by calculating the average. The pages in the

Recommendation Table is sorted by their time_spent variable increasingly because

we are interested in the time spent of the pages for the recommendation,

 If the number of the pages in Recommendation Table does not satisfies the

number of recommendation determined by the web master, then the search operation

continues for the indexes in the one upper row of the Index_Table. But before going

into this process, the pages in the Recommendation Table are stored in another list

that is used as a result set by FindPage and the pages in Recommendation Table are

deleted. Assuming that the number of pages to be recommended in the result set is 5

CHAPTER 3: NEXTPAGE 76

and the number of recommendation determined by webmaster is 10, we need extra 5

pages. These five pages will be acquired by the process of the indexes belonging to

the parent domain of the identity. Of course, there may be found more than five

pages for the parent domain of the identity, but after sorting the pages found, we take

the first five pages in the Recommendation Table and add them to the result set to

complete the necessary number of pages for the recommendation. If the number of

pages found for the identity is adequate for recommendation, we do not do any work

for the indexes of the parent domain of the identity.

 It is clear that the algorithm executes in the least time if the number of pages

satisfies the number of recommendation determined by the Webmaster at the first

iteration of the algorithm shown in Figure 3.22. In case of having not enough pages

for recommendation, the same process will continue for the parent domain. Because

the indexes of the parent domain will cover wider segment of the Result File than the

segment of the identity, the process time of the algorithm increases.

Node “tr” � Node “tr” �

Node “edu” � Node “edu” �

Node “bilkent” � Node “bilkent” �

Node “cs” � Node “fen” �

Node “pc503” � Node“dorm3042” �

 (a) (b)

Figure 3.27: Index_Table of the given identities

If an identity is not available on the tree meaning that the system has no

session information about her/him, the rows assigned for the domain identifiers that

45321 99657

45321 99657

45321 99657

45321 99657

 0 0

45321 99657

45321 99657

45321 99657

 0 0

 0 0

CHAPTER 3: NEXTPAGE 77

could not be found in Index_Table are set to 0. For instance, for the identity

“pc503.cs.bilkent.edu.tr” , the Index_Table will be as in Figure 3.27(a) and for the

identity “dorm3042.fen.bilkent.edu.tr” , the Index_Table will be as in Figure 3.27(b).

The search operation is done only for the indexes having a value different

from 0. For the identity “pc503.cs.bilkent.edu.tr” , the first search is done for the

parent domain of the identity (cs.bilkent.edu.tr) whereas for the identity

“dorm3042.fen.bilkent.edu.tr” , the first search is done for the domain of the identity

(bilkent.edu.tr). In the first case, the sessions belong to the identities in

“cs.bilkent.edu.tr” domain, which is at one-level up, are searched for the probable

pages to be recommended. In the second case, the sessions belong to the

“bilkent.edu.tr” domain, which is at two-level up, are searched for the probable pages

to be recommended.

Chapter 4

Efficient Use of Resources

The most important task in all system is to use resources efficiently because there is

no resource that is not scarce. If the limit of the resources could not be taken into

account, the system designed becomes unusable in one day in future. So, all

resources to be used by the system must be considered as the most important factor

for the existence of the system

 The system must use some resources efficiently such as the main memory,

the disk capacity and the time. As we discussed earlier, the size of log files grows in

an enormous rate. Sometimes the number of entries added to the access log file of the

web site becomes two or more times more than a normal day, especially on the days

the web site has an announcement for the visitors of the web site, for instance, the

announcement of the grades in a university.

4.1 Efficient use of the main memory

The efficient use of resources concept is related to Log Analyzer module of the

system because the most and dense work is done in that module. The Log Analyzer

module is generally designed to execute everyday to update the session information

kept in the Result File. The module can hold all information in the main memory for

CHAPTER 4: EFFICIENT USE OF RESOURCES 79

the entries belonging to one day. Assuming the system has been designed for general

usage, the module is configured to process all entries even in case of having more

entries that cannot be processed in one hop. The main steps of the use of main

memory can be depicted as in Figure 4.1.

[1] For each entry in access log file Do

[2] Check whether it is a valid request or not

[3] TOTAL_MEMORY_OCCUPATION = 0 and MEMORY_LIMIT =XX

[4] If the entry is valid

[5] Insert the information to be used into the main memory

[6] TOTAL_MEMORY_OCCUPATION �
TOTAL_MEMORY_OCCUPATION + the size of the objects inserted
into the main memory

[7] If (TOTAL_MEMORY_OCCUPATION > MEMORY_LIMIT)

[8] Position � the position of the access log file

[9] Eliminate_Session_List

[10] Update the Result File with the new finished sessions

[11] Delete the stored session nodes

[12] Update the Index file

[13] End If

[14] If there exists remaining entries in the access log file

[15] Process the entries after the Position variable by going on from
Line 2

[16] End If

[17] Else

[18] Delete all objects in the main memory

[19] Exit the program

[20] End Else

[21] End If

[22] End For

Figure 4.1: Algorithm Use_Memory_Efficient

The space requirement in the memory for the objects used in our system can

be calculated by summing the object sizes at each allocation because most of them

such as a session object are created by dynamic memory allocation. So,

TOTAL_MEMORY_OCCUPATION is assigned for calculating the memory

CHAPTER 4: EFFICIENT USE OF RESOURCES 80

occupation. (Line 3) The variable assigned is set to 0 at the beginning of the module

and for every object that is loaded into the main memory during the execution of the

module; it is incremented by the size of the object. (Line 6) The system operator

assigns an upper limit to another variable, MEMORY_LIMIT. The module

configures itself in the case of exceeding the MEMORY_LIMIT. This configuration

is made by transferring the objects loaded in the main memory to the permanent

storage and release the occupied space of the main memory. (Lines 7-12) The

module knows where it has stopped and finds the position of the access log file

where the last entry processed. If there still exists remaining entries, the module

processes them as if it starts for the first time.

4.2 Efficient use of the disk capacity

Because Log Analyzer module executes and filters all session information everyday

from the new entries in the access log file and updates the session information kept in

Result File, the size of the Result File grows everyday. If this fact is not taken into

consideration, the size of the Result file may reach an unacceptable size that cannot

be hold in the permanent storage. The other important factor that must be taken into

account to limit the size of the Result File is the speed of the execution of the

Recommendation Engine. This effects the loading time of a page to the client’s

machine because the search operation for the pages to be recommended is mainly

done in Result File. In other words, the speed of Recommendation Engine decreases

while the size of the Result File increases.

The loading time of a page requested to the client’s browser is very important

for all dynamic web applications. If the loading time increases due to the speed of the

dynamic content in the HTML pages, the visitor may be bored while the page is

being loaded and may leave the page before the page is loaded into the browser. So,

the system operator must choose the speed of the dynamic applications embedded in

the HTML pages reasonable. There exist two important factors affecting the speed of

CHAPTER 4: EFFICIENT USE OF RESOURCES 81

the Recommendation Engine designed. The possible cases of having no pages to

recommend to the visitor based on her/his past experience and the size of the Result

File. The former factor cannot be controlled, but the latter can be controlled by the

system operator.

We have discussed the first factor affecting the speed of the Recommendation

Engine above. If an identity requesting a page from the web server is new for the

system meaning the system has no session information about the identity, the system

tries to find the pages that are accessed by the visitors coming from the parent

domain of the visitor and recommends the pages found to the visitor. For instance,

assuming that the identity “pcmil234.cs.bilkent.edu.tr” requests a page from the

server and is a new for the system, the Recommendation Engine will find the pages

which are accessed by the visitors belonging to its parent domain, which are in

“cs.bilkent.edu.tr” domain to make a recommendation to the visitor by searching the

session section in the Result File belonging “cs.bilkent.edu.tr” domain. It is fact that

the size of the session section belonging to the domain “cs.bilkent.edu.tr” is greater

than that belonging to the identity “pcmil234.cs.bilkent.edu.tr” , so the time spent to

find the pages in the sessions belonging to the visitors coming from the parent

domain is more than that belonging to the visitor itself. The system encounters with

these circumstances frequently because there will be always new identities for the

system.

When the size of the Result file reaches an unacceptable size, there come

some questions that must be answered such as how the size of the file can be

reduced. Another question may be “Do we delete whole session information or some

pages from the session information to reduce the size of the file?” It was discussed

that the main aspect of the thesis is to recommend the pages that the visitors have

been spent the most time to the visitor. For instance, after retrieving the page A, if

the visitor spends 24 seconds on page B in one session and spends 45 seconds on

page C in another session, we firstly recommend the page C first and then the page B

CHAPTER 4: EFFICIENT USE OF RESOURCES 82

to the visitor. We can draw the answer of the questions above from our main goal as

far as we discussed. The least interesting thing in the Result File is the page that has

been accessed by the visitor for a very small time period.

The main problem in this phase is to detect how many and which pages

should be eliminated from the sessions. So, there must be a component in the system

to hold some information about all pages in the web site in case of “ forgetting” the

pages. The word “ forgetting” means the elimination of some input which has no

effect on the access of the system or have become useless for the system.

So, the system is designed in such a way that it has an abili ty to configure

itself and to start the process of the elimination of the pages in the sessions

automatically that are discovered by the forgetting algorithm in the case of exceeding

the threshold predetermined for the size of the Result File. The forgetting is done by

the elimination of the pages, but there are two circumstances that should be

lightened. Only two pages may form some sessions in the Result File. That is, the

visitor may have been requested a page and another page after retrieving the first

page .At that time, she/he may have been decided to exit. So, only two pages

retrieved by the visitor form the session. Assuming that one of the pages in that

session is the same as one of the pages discovered by the forgetting algorithm and

must be eliminated to reduce the size of the Result File, the number of pages in that

session is decremented by 1 and becomes 1 after eliminating that page. The sessions

having only one page cannot be accepted as a session anymore and must also be

eliminated. Sometimes, the visitor who has such a session explained above may have

not have one more session information in the Result File. After eliminating the

session of the visitor, there is no available information about her/his surfing in the

Result File anymore meaning that the index information about the visitor must also

be eliminated. In other words, the elimination may begin with a single page, but it

may cause the elimination of the session it belongs and even the index information of

the visitor.

CHAPTER 4: EFFICIENT USE OF RESOURCES 83

The system operator determines an upper and lower bound for the size of the

Result File by taking some factors into account. When the size of the Result file

updated by the Log Analyzer module exceeds the upper bound, the forgetting process

takes into effect to reduce the size of the Result file to the lower bound. These

bounds are generally determined parallel to the speed of the Recommendation

Engine. The upper bound must be an acceptable limit that the speed of the

Recommendation Engine that uses the Result File to discover the pages to be

recommended to the visitor is as fast as possible. If that bound is determined too

small, the speed of Recommendation Engine may be fast because it searches on a

small file to find the pages to be recommended but the success of the pages

recommended decreases because less session information can be kept in such a small

size file. The determination of the lower bound is related to the frequency of the

execution of the forgetting algorithm. If the lower bound is set to very close to the

upper bound, the probability of execution of the forgetting algorithm increases

because the gap between the lower and upper bound may be filled in a few days. Of

course, the elimination of the pages or sessions is not a desirable action because the

elimination of them is the deletion of some information about the visitor. So the

lower bound must be determined small enough to hold enough information about the

visitors and big enough which makes the speed of the Recommendation Engine

reasonable.

A Page_Information_List is maintained to hold the information about the

pages in the web site in the execution of Log Analyzer module that will be used by

the Forgetting Algorithm. The name of the page, the number of hits and the time

spent on that page are dynamically stored into this list. The name of the pages in the

list is unique. The changing variables are the number of hits and the time spent .

There is an important point here to be clarified. However we are interested in

the time spent on the pages, some of the pages may be visited for a short period of

time which are really important for the users. For instance, a page containing a grade

CHAPTER 4: EFFICIENT USE OF RESOURCES 84

list for the students of a university may be commonly visited for a short period of

time. They visit that page just for looking at their grades and then leave it. According

to the assumption used in the thesis, that page must be classified as a navigational

page. But, that page is more important for the students than the other pages

especially on the days after an exam or homework. So, there comes a problem with

that page about making it a content page.

In the light of these circumstances, the calculation of the spent time value of

such pages must be correlated with the number of hits on these pages. For instance,

assume that the page A containing a story has been visited just for once and the time

spent for that page is 50 seconds whereas the page B containing a grade list for the

students has been visited four times and the time spent for that page is 15 seconds for

each visit. It seems as that the content page must be page A, not page B. But, page B

is more important than page A for the students because it has been visited much more

than page A on the special days. As a result, by making the calculation of spent time

value of the pages as shown in Figure 4.2, the viewing time of such pages is

increased due to the number of hits and as a result, its class changes from

navigational to content.

Number of hits (i) Duration Time Spent

1 10 0+10 =10

2 20 10+20=30

3 15 30+15=45

4 55 45+55=100

Figure 4.2: Calculation of the time spent

Page_Information_List is stored permanently in a separate file at every end of

the execution of the Log Analyzer module and loaded into main memory at every

beginning of the execution of the module. Besides, the list is updated with the next

new entry information in the access log file.

CHAPTER 4: EFFICIENT USE OF RESOURCES 85

The “ forgetting” process is done by the algorithm shown in Figure 4.3. The

first work done by the algorithm is to check the size of the Result File whether it

exceeds the threshold determined. If it is positive, the algorithm starts the forgetting

process (Lines 1-2). The next step is to detect the pages to be forgotten and eliminate

them from the Result File to reduce the size of the file to lower bound. The page

information list is constructed and sorted by the time spent field decreasing because

we try to forget the pages that the visitors have spent the least time. We have also the

number of the occurrence of the pages in the Result File. (Lines 3-5) We start with

the first page in the list to determine the difference value, which is used to reduce the

size of the Result File. (Lines 6-10) So, by multiplying the number of occurrence

with the length of the name of the page, a difference value is calculated. If this

difference value is enough to reduce the size of the Result File to the lower bound of

the Result File, the process of forgetting is started. In the case of having not enough

difference value, then the difference value is calculated again by incrementing with

the next page’s difference value in the list until the enough difference value is

acquired to reduce the size of the Result File to the predetermined lower bound. As a

result, we have a list of pages that have been visited for less time than that of the

other pages in the site.

After determining the pages to be forgotten, the process of elimination of

these pages from the Result File starts. Main components of this process are the list

of pages to be eliminated and the Result File. This process is done for all unique

identity in the Result File. Because the new session information must be stored in the

Result File after forgetting the pages from the sessions belong to a unique identity

that means the index variables must be updated for each unique identity. Besides,

sometimes we may have not enough session information about the identity after

forgetting which have been discussed in the elimination of the session section. In

these cases, the index entry for that identity must also be eliminated from the Index

File because it has no session information in the Result File.

CHAPTER 4: EFFICIENT USE OF RESOURCES 86

[1] Filesize � size of the Result File
[2] If Filesize > Upper Limit
[3] Load the page information into the memory
[4] Sort the Page Information List by time_spent decreasingly
[5] diff � 0
[6] For each page in the page list
[7] diff � diff + (num_of_hit *strlen (page))
[8] Add the page to the Forget list.
[9] If (Filesize – diff) <= Lower Limit break
[10] End For
[11] Open Result File
[12] For each unique identity in the file
[13] Load Session information into session list
[14] For Each Page in the Forget List
[15] If it exists in session, delete from the session
[16] End For
[17] Store the new session information and make a new indexing
[18] End For
[19] End If

Figure 4.3: Algorithm Forget

The important thing here is that the tree holding the identity and index

information is reconstructed and updated after each forgetting process. So, the root of

the tree is constructed before the beginning of the forgetting process and the tree is

updated with the identities that have enough session information after forgetting

process.

The Result file is opened after constructing the Forget List. (Lines 11-18) By

starting the first identities in the file, the session information belong to the identity is

loaded into the session list in the memory. So, we have session information in the

session list just for a unique identity, not for all identities. The session list may have

one or more sessions belong to the identity. After constructing the session list for the

identity, we check all pages in the sessions whether it exists in Forget List or not.

That the page checked exists in Forget List means that the page must be eliminated

from the session. This process is done for every unique identity in the Result file

until the end of the file.

CHAPTER 4: EFFICIENT USE OF RESOURCES 87

After eliminating of the pages from the sessions, the identity information is

stored in the tree and the session information is stored in a new Result file. The

indexing process is done according to the new Result File created after forgetting

process. The size of the Result file automatically reduces to the lower limit

determined by the system operator at the end of the forgetting algorithm terminates.

After the forgetting process is terminated, note that all pages found to be

forgotten have been deleted from the Result File. As a result, the occurrence of the

pages and the time_spent variable in the Forget List are set to 0 and the file holding

the information about the pages in the web site is updated with these changed values.

Chapter 5

Evaluation

In this chapter, the results of the experiments conducted for determining the

applicability of the system will be demonstrated. Although, the system will work on

the web site of the CS department of Bilkent University, we close to run experiments

on a standalone computer because of the changing load of the UNIX systems to

obtain more accurate results.

The first experiment has been done to determine the effect of the

preprocessing phase. Remember that if a web page consisting of three images is

requested, the web server puts four separate entry into the access log file, one for the

page itself and the others for the images containing it. The system focuses only on

the entries containing HTML pages. So, as discussed before, a preprocessing

algorithm is applied onto the access log file before session identification to eliminate

these entries containing images.

 We performed our experiments by using the access log file maintained by the

web server of the CS Department at Bilkent University. We had an opportunity to

evaluate the success of the results of the experiments by using real data, not

generated data. We have chosen a 10-day period fragment of the access log file as

the resource for our experiments.

CHAPTER 5: EVALUATION 89

Day Size of Log File Total Number of the Entries Number of the Relevant Entry
1 1873976 9229 3769
2 5206384 26100 10929
3 4717906 24600 13255
4 3421910 16324 6525
5 5063804 26319 13547
6 5330442 24501 11802
7 5112256 23721 12821
8 3557033 17038 7247
9 4246646 20212 8136

10 4038749 19503 8139

Table 5.1 Test results of the Preprocessing Algorithm for 10-day period. Size

values are in byte.

 Log Analyzer module runs automatically everyday at a predetermined time.

(especially when the load of the system is the minimum). At every execution, the last

entry processed is obtained and the module processes the newly added entries.

 Table 5.1 shows the results for the execution of the preprocessing algorithm.

In this table, the second column shows the size of the access log files belong to days

shown in the first column meaning that the number in the second column of the ith

row contains the size of the data added into the log file in the i th day. Third column

gives the total number of the entries in the access log files while the fourth one gives

the number of entries that are relevant for mining process.

 It can be said that at least the half of the total entries contain irrelevant items

(e.g. pictures, sounds etc.) and sometimes this number may reach to 2/3 of the access

log file. Some of the existing web servers have an ability to eliminate irrelevant

entries before recording them in the access log file. For instance, the web server can

be configured as not to put entries including images or sounds or whatever. But,

unless such a configuration is available, a preprocessing algorithm like the one used

in our system must be applied to eliminate these irrelevant items.

CHAPTER 5: EVALUATION 90

 The second experiment is conducted to determine the properties of the

sessions created. Table 5.2 shows the results of the experiment conducted for Session

Identification Algorithm. As discussed in 3.1.3, an elimination process is applied

onto the sessions created at the end of the execution of the Log Analyzer module just

before the storing the session information into the file.

 We have discussed that the last access of the sessions are eliminated because

we cannot calculate the time spent on the last page. After discarding the last page

from the sessions, some sessions may not have enough information about the visitor

and must be eliminated.

Day Total Session Eliminated Finished Unfinished
1 1103 791 225 87
2 2775 2004 633 138
3 2290 1717 394 179
4 2205 1603 367 235
5 2663 1951 408 304
6 2740 1978 407 355
7 2817 1975 420 422
8 2792 1939 386 467
9 2847 1869 456 522
10 2829 1806 472 551

Table 5.2 Test results of the Session Identification Algorithm

The second column represents the number of total sessions created at the end

of the execution of the Algorithm Session_Identification. The number of the

eliminated sessions is shown in the third column of the table. The reason that the

number of eliminated sessions is high is that we are not interested in the path

completion or the number of pages on that path. It means that a session consisting of

only two pages may be important for a system based on the path completion, but it

must be eliminated for our system. In real life, most of the visitors begin surfing a

web site with a page in the site and then retrieves another page and at last they leave

the web site. So the sessions belonging to these kinds of visitors have only two pages

and do not have enough information for our system. Besides, some of the users begin

CHAPTER 5: EVALUATION 91

to visit the site in a page and leave the site without going any further pages. We do

not accept the sessions consisting only one page as a valid session, so these kinds of

sessions are eliminated. By taking this fact into account, it can be said that the high

number of the eliminated sessions can be accepted as reasonable.

Also, we have discussed that some sessions still continue at the end of the

execution of the module and these sessions are kept in the Session File and then

loaded into the memory as “open” sessions just before the execution of the module

on the next day. These unfinished sessions are updated with the new entries and then

closed. The unfinished sessions in the ith row of the table are loaded into the memory

on the (i+1) th day and can be thought that they are included in the number of finished

sessions on the (i+1) th row if and only if all of them are accepted as closed or not

eliminated sessions.

Because the identity information is the most important factor for the

presented model, an experiment is conducted to clarify the user identification

process. The results of the experiment are given in Table 5.3.

Day Num of identities Size of IndexFile Size of Result_File
1 147 5300 49630
2 512 19724 186316
3 739 28659 278560
4 944 37445 375926
5 1159 46043 485616
6 1376 54510 583341
7 1600 63415 680885
8 1807 71647 776893
9 2004 79536 913301
10 2224 88848 1024632

Table 5.3 Test results of the identity information and the size of the Index and
Result_File. Size values are in byte.

The number in the (i+1)th row of the second column of the table represents the

total number of unique identities on the ith day meaning that the total number of

unique identity at the end of the 10th day is 2224. The third column represents the

CHAPTER 5: EVALUATION 92

size of the IndexFile consisting of the identity information and their start and end

indexes indicating the position of the sessions in the Result_File. And the last

column represents the size of the Result_File consisting of all sessions belong to the

identities. The size of the Index and the Result_File are important for

Recommendation Engine because it uses these two files to generate a

recommendation set based on the session information of the visitors. The size of the

Result_File is more important than that of the IndexFile, so the size of the

Result_File must be chosen reasonable by the web master as discussed in Chapter 4.

The main phases of Log Analyzer module can be divided into four main steps

as shown in Figure 5.1

Step 1: Preprocessing Phase

Step 2: Constructing the tree at every beginning of the execution of the module

Step 3: Creating the sessions

Step 4: Storing the identity and session information

Figure 5.1 Main Phases of the Log Analyzer Module

Day Step 1 Step2 Step3 Step4
1 0,66 0 0,21 0,05
2 1,61 0,005 1,45 0,55

3 1,43 0,011 1,87 0,94
4 0,97 0,017 0,69 1,43
5 1,64 0,019 1,92 2,41

6 2,05 0,028 1,31 2,31
7 1,68 0,031 1,42 3,95
8 1,22 0,043 1,12 4,25

9 1,81 0,045 1,43 5,17
10 0,98 0,048 1,44 5,22

Table 5.4 Test results of each phase of the Log Analyzer module. Time
values are in seconds

CHAPTER 5: EVALUATION 93

The second column of the table shows the running time needed to perform to

determine whether the entries are valid or not as shown in the third and the fourth

column of the Table 5.1. By comparing the number of the “Total Entry” column in

Table 5.1 to the running time of preprocessing of these entries, it is clear that the

running times of the entries are proportional to the number of total entry.

The third column of the table represents the time needed for constructing the

tree at every beginning of the execution of the Log Analyzer module. As discussed

above, the identity information is kept in a file called as IndexFile and this identity

information is loaded into main memory at every execution of the module just before

the processing the newly added entries. In the first day, the time is 0 because no

identity information is available for the previous days. As shown in Table 5.3, the

module processed the entries for 147 identities and stored this information in the

IndexFile with a size of 5300 bytes. The value in the third column of the second row,

0.05 sec, gives us the time needed to construct the tree with these 147 identities. The

time needed for constructing the tree with the identity information gathered in one

day before increases because the total number of the identities discovered increases

everyday. The time values for preprocessing are proportional to the size of the

IndexFile and the number of the identities in the IndexFile.

The fourth column of the table represents the time needed for creating the

sessions. The sessions are created with the entries in the access log file after

eliminating the irrelevant items as shown in the fourth column in Table 5.1. The time

values are proportional to the number of the relevant entries in the access log file in

the same day.

The results indicate that the most significant time consumption occurs during

the execution of the fourth step. In the fourth step, all sessions created into the

Result_File and the time needed for this operation is given in the last column of the

table. As discussed in 3.1.6, before storing the identity and session information into

the file on the ith day belong to the identity X, all session information belong to the

CHAPTER 5: EVALUATION 94

same identity in the Result_File created on prior days is firstly rewritten in the

Result_File and then the sessions created on the ith day are added to the session

information. So, excessive numbers of I/O operations performed in this step make

the time needed for storing the identity and session information higher.

A sample fragment of IndexFile is given in Figure 5.2. A single entry in the

file represents the identity information, start index value and end index value. As

discussed in Section 3.1.6, IndexFile is created by searching all nodes of the tree.

Firstly, the start and end index values of the identities belonging to Class A are

written to the IndexFile, and then Class B and at last FQDNs. At the end of the

updating of IndexFile, the first section of the IndexFile is for the identities belonging

to Class A whereas the last section is for the identities belonging to the FQDNs. The

identities shown in the sample fragment belongs to the Class A residing at the first

section of the IndexFile.

.

.

62.60.74.123 22049 22225
62.85.56.131 22225 22886
62.98.243.73 22886 24062
62.108.64.1 24062 24561
62.114.36.165 24561 24706
62.140.2.8 24706 25052
62.235.20.22 25052 25492
62.248.0.161 25492 26140
62.248.17.152 26140 26390
62.248.17.194 26390 26484
62.248.25.2 26484 26642
62.248.105.102 26642 27293
62.251.172.26 27293 27421
63.69.85.2 27421 27674
63.70.129.194 27674 27804
63.83.144.159 27804 27987
63.88.160.101 27987 28462
63.97.144.96 28462 28772
63.115.16.66 28772 28977

.

.

Figure 5.2 A fragment of IndexFile

CHAPTER 5: EVALUATION 95

 The session information belonging to some identities (written in italic) in

Figure 5.2 is given in Figure 5.3. The first entry of the sessions indicates the Identity

Information/Agent pair and the number of the pages in the session. The remaining

entries in the sessions indicate the pages in the sessions and the spent time value of

the page.

*62.248.105.102 "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98; Win 9x 4.90)" 18
/ 4
/courses.html 3
/~guvenir/courses/CS315 8
/~guvenir/courses/CS315/p1.html 15
/~guvenir/courses/CS315/p2.html 4
/~guvenir/courses/CS315/hw1.html 8
/~guvenir/courses/CS315/hw2.html 7
/~guvenir/courses/CS315/hw3.html 7
/~guvenir/courses/CS315/quizzes.html 79
/~ugur/teaching/cs319 15
/~ugur/teaching/cs319/outline.html 6
/~ugur/teaching/cs319/assignment.html 29
/~endemir/courses/cs35101/cs35101.html 21
/~endemir/courses/cs35101/hw1.html 13
/~endemir/courses/cs35101/hw2.html 9
/~endemir/courses/cs35101/hw3.html 14
/~endemir/courses/cs35101/grades.html 23
/CS299 14
*62.251.172.26 "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" 2
/~erayo/wml/cv.html 141
/~erayo/wml/personal-data.html 7
*63.69.85.2 "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)" 5
/~akman/jour-papers/air/air.html 7
/~akman/jour-papers/air/node1.html 10
/~akman/jour-papers/air/node2.html 4
/~akman/jour-papers/air/node3.html 16
/~akman/jour-papers/air/node4.html 4
*63.70.129.194 "Mozilla/4.77 [en] (Win98; U)" 3
/~david/derya/ywc.html 127
/~david/tywc/games/wgame2 14
/~david/derya/about.htm 21
*63.83.144.159 "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; isp1057; Q312461)3
/~david/derya/ywc.html 187
/~david/derya/keypals.htm 7
/~david/derya/members/newappl.html 331

Figure 5.3 A Fragment of Result_File

Another experiment is conducted to determine the effect of the Forgetting

algorithm. Forgetting in our system has been described as to eliminate the pages that

were visited for a short time period in the case of exceeding the threshold value

predetermined for the size of the Result_File to use disk capacity efficiently. Test

results are shown in Table 5.5.

CHAPTER 5: EVALUATION 96

Size of Log
Upper
Limit

Lower
Limit

Time
Size of the
Result_File

Size of the
IndexFile

Number of
Identity

42569943 1200000 1000000 647 1024632 88848 2218
42569943 1000000 800000 651 721949 74464 1857
42569943 1000000 600000 656 492366 54238 1345

Table 5.5 Test Results of Forgetting Algorithm. Time values are in seconds
while the sizes are in bytes.

We have decided to utilize a larger log file for this experiment, so we have

chosen the same 10-day period access log file as a whole that has been also used in

other experiments. The size of the access log file is quite huge because it contains all

requests in a long time period. The first row of the table shows the results without

exceeding the threshold shown in the second column. The reader is reminded that the

Forgetting Algorithm starts if and only if the size of the Result_File exceeds the

threshold predetermined. Because the size of the Result_File does not exceed the

threshold in the experiment shown in the first row, the module did not start the

Forgetting algorithm. In this experiment, 2218 unique identity information is stored

in the IndexFile meaning that the Result_File holds all session information belonging

to these 2218 identities.

Then, the Upper Limit has been lowered to make Forgetting Algorithm run

and it is set to the value shown in the second column of the third row. Two separate

experiments were conducted to see the effect of the algorithm by setting the Lower

Limit to different values. The difference between the time needed to process all

entries in the access log file without exceeding the threshold and that in case of

exceeding of the threshold is used to eliminate the pages discovered by the

Forgetting Algorithm from the Result_File.

Another important point here to be clarified is the decreasing number of the

identities. As discussed in section 4.2, if an identity has no more session information

after eliminating the pages that are found by the Forgetting Algorithm to reduce the

size of the Result_File from the sessions belong to the identity considered, then this

CHAPTER 5: EVALUATION 97

identity is also discarded from the IndexFile. So the number of the identities in the

IndexFile decreases due to the threshold determined for the Lower Limit. This

situation also affects the size of the Result_File after processing the Forgetting

Algorithm.

A sample output of the Recommendation Engine is given in Figure 5.4. As

shown in the figure, the Recommendation Engine has been executed for the page

“/~guvenir” for the identity “pcmil2.cs.bilkent.edu.tr” making the page request. The

recommended pages have been found according to their spent time values. Also, the

sample output shows the effect of BACK button. For instance, assuming that the

page “/~guvenir” has been reached after the page “/csfaculty” , the visitor has decided

to go to the page “/~aykanat” by clicking BACK button to return the page

“/csfaculty” and then clicking on the link of the page “/~aykanat”

Figure 5.4 A Sample Output of the Recommendation Engine

Chapter 6

Conclusions and Future Work

In this thesis, we have presented a new usage based personalization system. The

system developed has two main modules, Log Analyzer and Recommendation

Engine. Log Analyzer runs off-line to mine the access log file to determine the the

user and session information. The other module, Recommendation Engine, uses the

Result and IndexFile updated everyday by the Log Analyzer module to make

dynamic recommendation to the visitor by getting its identity information by the help

of the PHP scripting language and sending this information to a CGI program.

 The main idea of the system is to guess the next access page of the visitors

based on their past experiences and recommend these pages dynamically to the

visitor. In static web sites, the visitors are limited to access to the pages they are

interested in only by retrieving a number of pages consecutively. But, recommending

of these pages to the visitor dynamically makes retrieving of the desired information

easier by just clicking on the recommended link. Assuming that each visitor has

different interests, the system processes the identity information of the visitor before

recommendation. So, the recommendation set is found according to the past

experiences of the user visiting the site.

 One of the properties of the system is the ability to hold all session and

identity information in a manageable way. Increasing the amount of the session

CHAPTER 6: CONCLUSION AND FUTURE WORK 99

 information belonging to the identities can increase the success of the recommended

pages. But, the solution is not easy because the time needed for the execution of the

Recommendation Engine to find the pages to be recommended to the visitor is

critical. The size of the Result_File holding the session information must be chosen

reasonable so that the Recommendation Engine produces the set of recommendations

in the least time without boring the visitor. Because, most of the visitors behave

impatiently that they are dissatisfied with too much loading time of the page into the

client’s machine. But, as the number of the visitors gets larger, it makes keeping all

session information in such a limited size of file more difficult. In other words, we

have to minimize the amount of session information without decreasing the success

of the recommendations.

 One of the problems we encountered is to determine the unique users. As

discussed in 3.1.3, especially proxy servers which can be thought as a gateway to

World Wide Web for many users make the determination of unique users more

difficult even sometimes impossible. All visitors coming from the same proxy server

are seen as if they all have the same identity information. To reduce the effect of this

problem, we have used the “Agent” field of the entries. So, the identity information

has been accepted as a pair of “IP Address and Agent” . As a result, we had an abili ty

to distinguish unique users who use the same proxy server with different browsers.

 The other problem was the behavior of the visitors who visit the site without

any goal. These visitors retrieve the pages in the site randomly without any idea in

their mind. As a result, the session information of these kinds of visitors reduces the

success of the recommendation. This problem is also related to a given coffee break.

That is, the visitor gives himself/herself a coffee break while surfing the web site at

the time looking at a page that may not be interesting for her/him. Because our main

idea is to recommend the pages that have been spent much more time than the others

to the visitor, that given coffee break increases the score of that page however it may

not a content page and consists of any related information.

CHAPTER 6: CONCLUSION AND FUTURE WORK 100

 The experiments conducted indicate that the most time consumption occurs in

the execution of the Log Analyzer module. But this drawback may not be considered

as a big problem because the Log Analyzer module runs off-line and does not have

any influence on the success of the Recommendation Engine. The factor affecting the

success of the Recommendation Engine is the size of the Result_File created by the

Log Analyzer module. But, the size of the Result_File is under the control of the

Forgetting Algorithm. It checks the size of the Result_File at every end of the

execution of the Log Analyzer module and if the size of the Result_File exceeds the

threshold that has been chosen reasonable for the success of the online module, the

Forgetting Algorithm starts and eliminates the pages which the visitors retrieved

them for a short time period. At every end of execution of the Forgetting Algorithm,

the size of the Result_File is reduced to a reasonable limit determined by the web

master.

We foresee that if a particular visitor shows some trends on his/her

navigational behavior, the visitors belong to the parent domain of the visitor will also

be inclined to show the same trends. So, the system firstly tries to guess the behavior

of the visitor by looking at the sessions belonging to the visitor considered. But, if

the visitor is new for the system, then the identity information of the visitor is parsed

to obtain its parent domain and the pages to be recommended are searched in the

sessions belonging to its parent domain. It is clear that the success of the

recommendation based on the past experiences of a particular visitor is higher than

that of the parent domain of the visitor considered.

 The experiments conducted show that the success of the pages recommended

to the visitors is satisfactory. But it is nearly impossible to say that the success is

100% in the real life. But, observing the number of times in which the visitors utilize

our recommendation can measure the success of the recommendation. If the

recommended pages are really interesting for the visitors, they will follow the

recommended links instead of the static links on the page.

CHAPTER 6: CONCLUSION AND FUTURE WORK 101

 The experiments also showed the importance of preprocessing of the entries

before inserting them to the session information. As shown in Table 5.1,

approximately the half of the total entries in the access log file seems as irrelevant

items that cannot be an input to the Log Analyzer module. All i rrelevant entries

(including image, sound etc) are detected by the Log Analyzer module and

eliminated just before the session identification phase. In the future, if the

configuration of the web server permits, the web server can be configured in such a

way that it does not record the entries including irrelevant items in the access log file.

In that case, approximately all entries in the access log file will be relevant items, so

the cost of the preprocessing phase can be automatically reduced.

 In the future, the system may be extended by the concept of “Information

Retrieval System”. In the thesis, we have assumed that a page in which the visitors

spent much more time than the others is a content page, otherwise a navigational

page. We think that the success of the recommendation will be higher if a procedure,

that analyzes the content of a web page and produces a score for each page to

categorize it as a content page or navigational page by evaluating the frequencies of

the terms in the page, is added to the module, In that case, Recommendation Engine

will show the pages in which the visitors spent much more time than the others and

also be categorized as content page by the procedure that analyze the content of the

page. We believe that the success of the recommendation set will i ncrease after such

a procedure is added to the module.

 Also, assuming that the same module detects all static links on the pages

while analyzing the content of the page, we have an abili ty to understand the link

structure of the site. By using the link structure of the web site, Recommendation

Engine shows a recommended page if the active page has no static link to the

recommended page. Otherwise, if a link exists on the page to the recommended page,

existing link may be lightened to attract attention to the importance of the page.

CHAPTER 6: CONCLUSION AND FUTURE WORK 102

 At the same time, the system may be modified in such a way that it may use

an extra index structure formed for the pages in the site. In the existing system, only

one index structure is used to find the position of the sessions belonging to the

visitors. But this index structure may be extended to find the position of the active

page in the sessions. As a result, the system will have an ability to know the position

of the active page in the sessions beside the start and the end positions of the session

section belonging to the visitor. If an extra index for the active page were available,

then the Recommendation Engine does not need to find the active page in the

sessions, it automatically redirects itself to the position of the active page in the

sessions.

 As a conclusion, a system is developed as a starting point and improved due

to the interests and needs of human being. However, the success of the system we

designed and implemented is satisfactory, it is open to be improved by future works

and we believe that our system will inspire the people who are desirable to develop

applications on web usage mining.

Bibliography

[1] R. Cooley, B. Mobasher and J. Srivastava. Web Mining: Information and
Pattern Discovery on the World Wide Web. In Proceedings of the 9th IEEE
International Conference on Tools with Artificial Intelli gence (ICTAI’ 97),
1997

[2] C. M. Brown, P. B. Danzig, D. R. Hardy, U. Manber and M. F. Schwartz. The
Harvest Information Discovery and Access System. In the 2nd International
WWW Conference, (Chicago, IL, 1994), 763-771

[3] E. Spertus. Parasite: Mining Structural Information on the Web. In Computer
Networks and ISDN Systems, 29: 1205-1215,1997

[4] R. B. Doorenbos, O. Etzioni and D. S. Weld. A scalable comparison shopping
agent for the World Wide Web. In Proceedings of the 1st International
Conference on Autonomous Agents, pp 39-48. New York, NY.1997, ACM
Press

[5] W. B. Fakes and R. Baeza-Yates. Information Retrieval Data Structures and
Algorithms. In Prentice Hall Englewood Cli ffs, NJ, 1992

[6] T. Joachims, D. Freitag and T. Mitchell. WebWatcher: A Tour Guide for the
World Wide Web. In Proceedings of 15th International Joint Conference on
Artificial Intelli gence, pages 770-775. Morgan Kaufmann, Aug.1997.

[7] M. Pazzani, J. Muramatsu and D. Billsus. Syskill&Webert: Identifying
interesting web sites. In Proceedings of the 13th National Conference on
Artificial Intelli gence, Portland, OR, 1996

[8] D. Konopnicki and O. Shmueli. W3QS: A Query system for the World Wide
Web. In Proceedings of the 21st International Conference on Avery Large
Databases, pages 54-65,1995

BIBLIOGRAPHY 104

[9] J. Srivasta, R. Cooley, M. Deshpande and P. Tan. Web Usage Mining:
Discovery and Applications of Usage Patterns from Web Data. In SIGKKD
Explorations, (1) 2, 2000

[10] S. Chakrabarti, B. Dom and P. Indyk. Enhanced hypertext categorization using
hyperlinks. In SIGMOD Conference, ACM, 1998

[11] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. In the 7th International WWW Conference, (WWW7), pp. 107-117,
Brisbane, Australia

[12] J. Borges and M. Levene. Data Mining of User Navigation Patterns. In Web
Analysis and User Profili ng, Volume 1836, pages 92-111. Lecture Notes in
Computer Science, 1999

[13] Web Site Traffic Analysis Tool. Online at http://www.softseek.com/Internet/

[14] Web Statistics Software. Online at http://www.openwebscope.com/

[15] J. Pitkow and P. Pirolli . Mining Longest Repeating Subsequences to predict
World Wide Web Surfing. In Proceedings of the 1999 USENIX Technical
Conference, April 1999

[16] H. Lieberman. Letizia: An Agent That Assists Web Browsing. In Proceedings
of the 1995 Joint Conference on Artificial Intelli gence, Montreal, Canada,
1995.

[17] ���������	��
������������������������� �!��"#�%$'&(&)"*�+�!,-�.
/
0"#���1�2�#��3 4�3�"#�5
��
/674���8����9:��
�;�<�>=?���<9
Web Logs For Effective Personalization. Master of Science Thesis submitted to
Bilkent University, September 2001.

[18] M.Spili opoulou, L.C.Faultich. WUM: A Web Utilization Miner. In
Proceedings of EDBT Workshop WebDB98, Valencia, LNCS 1590, Springer
Verlag, 1999

[19] B. Mobasher. WebPersonalizer : A Server Side Recommender System Based
on Web Usage Mining. In Technical Report TR-01-004, March 1991.

[20] D. Aha and D.Kibler. Instance-Based Learning Algorithms. Machine Learning,
6, 37-66,1991

[21] C. R. Cunha, C. F. B. Jaccoud. Determining WWW User’s Next Access and Its
Application to Pre-fetching. In Proceedings of the International Symposium on
Computers and Communications’97, Alexandria, Egypt, July 1997.

BIBLIOGRAPHY 105

[22] T. Nakayama, H. Kato and Y. Yamane. Discovering the Gap Between Web
Site Designers’ Expectations and Users’ Behavior. In the 9th International
WWW Conference, Amsterdam, May 2000.

[23] F. Masseglia, P. Poncelet and M. Teisseire. Using Data Mining Techniques on
Web Access Logs to Dynamically Improve Hypertext Structure. In ACM
SigWeb Letters, 8(3): 13-19, October 1999.

[24] M. Perkowitz, O. Etzioni. Adaptive Web Sites: Automatically Synthesizing
Web Pages. In Communications of the ACM, 43(8): 152-158, 2000

[25] T. W. Yan, M. Jacobsen, H. Garcia-Molina, U. Dayal. From User Access
Patterns to Dynamic Hypertext Linking. In Computer Networks, 28(7): 1007-
1014, May, 1996

[26] Z. Su, Q. Yang, H. Zhang. WhatNext: A Prediction System for Web Requests
using N-Gram Sequence Models. In First International Conference on Web
Information Systems and Engineering Conference. Hong Kong, June 2000.

[27] S. Schechter, M. Krishnan, M. D. Smith. Using path profiles to predict HTTP
requests. In Proceedings of the 7th International WWW Conference, 1998

[28] R. R. Sarukkai. Link Prediction and Path Analysis Using Markov Chains. In
the 9th International WWW Conference, 2000.

[29] L. Chen, K. Syraca. WebMate: A Personal Agent for Browsing and Searching.
In Proceedings of the 2nd International Conference on Autonomous Agents,
132-139.

[30] K. Wu, P. S. Yu and A. Ballman. SpeedTracer: A Web Usage Mining and
Analysis Tool. Internet Computing, 37(1): 89, 1997.

[31] WebTrends Log Analyzer. Online at http://www.webtrends.com

[32] R. Cooley, B. Mobasher, J. Srivastava. Data Preparation for Mining World
Wide Web Browsing Patterns. In Knowledge and Information Systems, 1(1): 5-
32,1999

[33] Y. Fu, K. Sandhu and M. Shih.Clustering of web users based on access
patterns. In Proceedings of the 1999 KDD Workshop on Web Mining, 1999

[34] M. S. Chen, J. S. Park and P. S. Yu. Efficient Data Mining for Path Traversal
Patterns. In Knowledge and Data Engineering, 10(2): 209-221,1998

BIBLIOGRAPHY 106

[35] A.G. Büchner and M. D. Mulvenna. Discovering Internet Marketing
Intelligence through Online Analytical Web Usage Mining. In ACM SIGMOD
Record, 27(4): 54-61, 1998

[36] D. S. W. Ngu and X. Wu. SiteHelper: A Localized Agent that Helps
Incremental Exploration of the World Wide Web. In the International Journal
of Computer and Telecommunications Networking, 30, 1997

[37] A. Bestavros. Using Speculation to Reduce Server Load and Service Time on
the WWW. In Technical Report TR-95-006, Computer Science Department,
Boston University, page 15, February 1995.

[38] V. N. Padmanabhan and J. C. Mogul. Using Predictive Prefetching to Improve
World Wide Web Latency. In Proceedings of ACM SIGComm, 1996, pp 22-36,
1996.

[39] J. Pei, J.Han, H. Zhu and B. Mortazavi-asl. Mining Access Patterns Efficiently
from Web Logs. In Proceedings of Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD’00), pages 396-407, Kyoto, Japan, April
2000.

[40] O. R. Zaiane, M. Xin and J. Han. Discovering Web Access Patterns and Trends
by Applying OLAP and Data Mining Technology on Web Logs. In Advances
in Digital Libraries, pages 19-29, April, 1998

[41] L. D. Catledge, J. E. Pitkow. Characterizing Browsing Strategies in the WWW.
In Proceedings of the International Conference on the WWW, Darmstadt 1995

