PREDICTING NEXT PAGE ACCESSBY TIME
LENGTH REFERENCE IN THE SCOPE OF EFFECTIVE
USE OF RESOURCES

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

by
Berkan YALCINKAYA
September, 2002

| certify that | have read thisthesis and that in my opinion it is fully adequate, in
scope and in quality, as athesis for the degreeof Master of Science

Prof. Dr. Halil ALTAY GUVENIR (Advisor)

| certify that | have read thisthesis and that in my opinion it is fully adequate, in
scope and in quality, as athesis for the degreeof Master of Science

Assoc. Prof. Dr. Ozgir ULUSOY

| certify that | have read thisthesis and that in my opinion it is fully adequate, in
scope and in quality, as athesis for the degreeof Master of Science

Asst. Prof. Dr. ibrahim KORPEOGLU

Approved for the Ingtitute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Diredor of the Institute

ABSTRACT

PREDICTING NEXT PAGE ACCESSBY TIME LENGTH
REFERENCE IN THE SCOPE OF EFHECTIVE USE OF
RESOURCES

Berkan YALCINKAYA
M.S. in Computer Engineaing
Supervisor: Prof. Dr. Halil Altay GUVENIR
September 2002

Access log file is like abox of treasure waiting to be eploited containing
valuable information for the web usage mining system. We can convert this
information hidden in the acces log files into knowledge by analyzing them.
Analysis of web server access data can help understand the user behavior and
provide information on how to restructure aweb site for increased effediveness
thereby improving the design of this colledion of resources. We designed and
developed a new system in this thesis to make dynamic recommendation acarding
to the interest of the visitors by recognizing them through the web. The system kegos
all user information and uses this information to recognize the other user visiting the
web site. After the vigitor is reaognized, the system chedks whether she/he has visited
the web site before or not. If the visitor has visited the web site before, it makes
recommendation acording to hisher past adions. Otherwise, it makes
recommendation acording to the visitors coming from the parent domain. Here,
“parent domain” identifies the domain in which the identity belongs to. For instance,
“bilkent.edu.tr” is the parent domain of the “cs.bilkent.edu.tr”. The importance of the
pages that the vistors are redly interested in and the identity information forms the
skeleton of the system. The assumption that the anount of time auser spends on

page wrrelates to whether the page should be dasdfied as a navigation or content
page for that user. The other criterion, the identity information, is another important
point of the thesis. In case of having no recommendation acording to the past
experiences of the visitor, the identity information is locaed into appropriate parent
domain or classto get other recommendation acerding to the interests of the visitors
coming from its parent domain or classbecaise we asume that the visitors from the
same domain will have smilar interests. Besides, the system is designed in such a
way that it uses the resources of the system efficiently. “Memory Management”,
“Disk Capadty” and “Time Fador” options have been used in our system in the
scope of “Efficient Use of the Resources’ concept. We have tested the system on the
web site of CS Department of Bilkent University. The results of the experiments
have shown the dficiency and applicability of the system.

Keywords. accesslog file, personalization, identity information, recommendation.

OZET

KAYNAKLARIN ETKIN KULLANILARAK BiR SONRAKI
SAYFANIN ZAMAN FAKTORUNE DAYALI OLARAK
TAHMIN EDILMESI

Berkan YALCINKAYA
Bilgisayar Muhendisligi, Yiksek Lisans
Tez Yoneticisi : Prof. Dr. Halil Altay GUVENIR
Eylul,2002

Web erisim dosyast web kullamm madenciligi igin gerekli olan degerli
bilgileri igeren ve kesfedilmeyi bekleyen hazine sandigi gibidir. Bu dosyalar analiz
ederek i¢inde sakli bu bilgileri kullamlabilir bilgi haline donugtirebiliriz. Web erigim
dosyalarinin analizi, kullanicinin davranigim anlamada ve etkinligi artirmak igin web
sitesinin tekrar dizaymmn nasil yapilacagi hakkinda bilgi saglamaya yarar ve boylece
kaynak toplulugumuzun dizaymm gelistirme imkanina sahip olabiliriz. Bu tezde
ziyaretgileri web tizerinde taniyarak ilgilerine gore onermelerde bulunacak yeni bir
sistem dizayn ederek gelistirdik. Sistem tiim kullanici bilgilerini korur ve siteyi
ziyaret eden diger bir kullanictyr tanimak igin bu bilgileri kullamr. Ziyaretgi
tanindiktan sonra, sistem bu ziyaret¢inin daha Onceden web sitesini ziyaret edip
etmedigini kontrol eder. Eger ziyaret¢i bu siteyi daha Onceden ziyaret ettiyse bu
kullanicinin gegmis hareketlerine dayali bir 6nermede bulunur. Aksi takdirde, bu
kullanicinin bagli bulundugu st etki alanindan gelen ziyaretgilerin ilgi alanlarina
gore bir 6nermede bulunur. Burada, “Ata Etki Alani” o kullanicimin bagl oldugu
ust etki alanini ifade eder. Ornegin, “bilkent.edu.tr” “cs.bilkent.edu.tr” etki alanmnin
ata etki alamidir. Ziyaretgilerin gercekten en ¢ok ilgi duyduklari sayfa ozelligi ve

kimlik bilgisi sistemimizin iskeletini olusturmaktadir. Bir kullamcinin bir sayfada

gecirdigi zaman faraziyesi, o sayfanin kullanici igin, gegis veya igerik sayfasi olarak
siniflandirilmast ile ilgilidir. Diger kriter, yani kimlik bilgisi tezimizin diger 6nemli
noktasim teskil etmektedir. Ziyaret¢inin gegmis tecriibelerine dayali 6nerme mevcut
olmadiginda, aym etki alanindaki ziyaretgilerin benzer ilgilere sahip olacagim farz
ettigimizden dolayt bu kullanicinin ait oldugu ata etki alanindaki ziyaretgilerin
ilgilerine gore 6nermede bulunabilmek icin kimlik bilgisi uygun ata etki alam veya
simif igerisine yerlestirilmektedir. Bunun yaninda, sistem kaynaklart daha verimli
kullanacak sekilde tasarlanmugtir. Sistemimizde “Bellek Yonetimi”, “Disk
Kapasitesi” ve “Zaman Faktori” opsiyonlart “Kaynaklarin Etkin Kullanimi”
konsepti dahilinde kullamlmistir. ~ Sistemi Bilkent Universitesi Bilgisayar
Muhendisligi web sitesinde test ettik. Deneylerin sonucu bize sistemin verimliligi ve

kullanilabilirligini géstermistir.

Anahtar sozctikler: erisim dosyast, kisisellestirme, kimlik bilgisi, nerme.

vi

Acknowledgement

I would like to express my thanks to Prof Dr. H. Altay GUVENIR for the

suggestions and support during this reseach.

| would also like to thank to Assoc. Prof. Dr. Ozgir ULUSOY and Assg. Prof. Dr.
Ibrahim KORPEOGLU for accepting to read and review this thesis and valuable

comments.

| would also like to thank to Turkish Armed Forces for giving us such an

opportunity.

Finally, | would like to expressmy thanks to my wife for her love and support.

Vii

Contents

1.Introduction

2.

Background

2.1 General Web USage MiININGcccveeeiiiiiiiiie et
2.2 BUSINESS INEEIlIGENCE. ... eeieiiiie et
2.3 SYyStEM IMPrOVEMENL......coiiiiiiiie ettt et e e e e e e s snee e e e s enneeeeaanes
2.4 SItE€ MOTITICALION.eiiiieiieeeiee e

2.5 PErSONAIIZOIION ...t

. NextPage

T R oo N 7= 7= OSSR
3.1.1 Data Preparation..........c.cooiueeeiieeeeiiee et
3.1.1.1 Elimination of irrelevant itemS...........cccceveeiiien e

3.1.1.2 Elimination of entries containing frame pages.............cccceveveenn.

3.1.2 Determination of Frame Pages.........coovueieiiiieiiiie e
3.1.3 SesSION 1AentifiCaLION.c.ueeeieiie e
3.1.4 Classifying Identity INfOrmationccccooceeiiie e

B LA L TP AAUrESSES ...t

3.1.4.2. Fully Qualified Domain Names.........ccccevrueeriiieeiniieenieeesieeenns

viii

11

14

16

18

19

28

3.1.5 Inserting Identity Information into thetree..........ccooveiveeeee e,
3.1.6 Storing Session Information and INAEXINGc.ccoovveriiieeeniieenieee e,
3.2 Recommendation ENQINE...........coiuiiiiiiieiiie et
3.2.1 Discovery of the pages to be recommendedcccoovoeeiiiiiniiennnenn.
4. Efficient Use of Resour ces
4.1 Efficient use of the Main MEMOIYcceiiiiiriiiee e
4.2 Efficient use of the disk CaPaCItycccceeiiiiiiiiiieiee e
5. Evaluation

6. Conclusions and Future Work

78

78

80

88

98

List of Figures

1.1 Main Architecture of Web Usage Mining.........cccoveeeniieniiiee e 6
2.1 Knowledge Discovery Domains of Web Miningccoccceeeveeiiieenneensieeeseennn 8
2.2 Architecture of the Whole SyStemceeiiiiiiie e 10
3.1 Anexampleentry inthe access10g file.........ccocoriiiiiiiiiiiieee e 30
3.2 A series of entry With frame Pages........coccueeerieiiiiiieiiee e 35
3.3 Theentry after MOAIfICAIONeeiiiiiiiii e 35
3.4 Anexample entry with search engines in Referrer field...........ccooveeiviiiieeeen, 36
3.5 Thesame entry after MOdifiCAIONcocviiiiiiiiiiie e 36
3.6 AIgorithm Frame DEECLOToeiiiieiiiieeciie et 37
3.7 A SAMPIE USEN SESSIONeviieiiie ettt ettt e e e nnne e e nnneeens 40
3.8 Algorithm used for session identifiCationccccevieeeiiiee e 42
3.9 Anexample illustrating the creation of anew session node..............cccceeeeeneee. 44
3.10 Algorithm EImIiNate _SESSION........cccueiiiiieiiieeiiiee e 47
3.11 A fragment Of the SESSIONS Created...........eviiuiiiiiiiie e 49
3.12 Domain Name HI€rarChyc.ooiuiiiiiiiiiie et 54
3.13 A SErieS Of IHENTITIES.....eoeiieiee et 56

3.14 Theroot SrUCIUrE Of tNEIIEE .. .ot 57

3.15 AlgOrithm INSEIT_TIEE....coi e 58

3.16 Classification of the P addreSses..........cocveiiiiiiiiiieieeeeeeee e 59
3.17 Tree gtructure holding the identity infOrmation...........ccoccceeeieeiiie e 62
3.18 Algorithm CONSLIUCE_TTEE.....cccueeiiieieeiiie ettt 63
3.19 Thetree constructed before the execution of the module ... 64
3.20 Algorithm Create ResUIt_File.......cceooiiiiiiiieeeeee e 66
3.21 PHP script embedded into an HTML Page........cccceevieeiiieeeiiee e 69
3.22 Algorithmused inthe FINAPagecccceiiiiiiiiieeeeee e 71
3.23 A part of the tree with the example entries...........ccoocveeeieeiiee e 72
3.24 The same part of the tree after updating the index fields............cccceeveeiieens 73
3.25 INAEX_TADIE ... i 74
3.26 Algorithm DiSCOVEr _PagES......ccuueiiiiieiiiie et 74
3.27 Index_Table for the given identitieScooueiriieeiiiee e 76
4.1 Algorithm Use Memory EffiCient ... 79
4.2 Calculation of the time SPENLcooiiiie e 83
4.3 AlQOrithmM FOIGEL.......eeiiiieeciee e 86
5.1 Main phases of the Log Analyzer module...........cccovieeeiiiieiiieeiriee e 92
5.2 A Sample Fragment of the INdeXFile...........ccooiiiiiiiiine e 94
5.3 A Sample Fragment of the Result_File.........c.coooiiiiiiiiiiee 95
5.4 A Sample Output of the Recommendation Engine...........cccoooeeiiiiiiiienniienne 97

Xi

List of Tables

3.1 Example entriesinthe INdeX Flec.coo i 63
3.2 Example identities with their start and end INdexes...........cccceveeriiiiiiieiiiieeenns 71

5.1 Test results of the Preprocessing Algorithm for 10-day period. Size values
AEINDYLE .. 89

5.2 Test results of the Session Identification Algorithm.............cocceiiiiiieiieees 90

5.3 Test results of the identity information and the size of the Index and Result
File. SizevaluesS are iINDYLe.........oooviiiiiiee e 91

5.4 Test results of each phase of the Log Analyzer module. Time values arein

LSS (0] 010 SRR 92

5.5 Test Results of Forgetting Algorithm. Time values are in seconds while the

SIZES ACIN DYLES. .. 96

Xii

Chapter 1

| ntroduction

The World Wide Web is alarge, distributed hypertext repository of information,
where people navigate through links and view pages through browsers. The huge
amount of information avail able online has made the World Wide Web an important

areafor data mining reseaches.

The eae and speed with which businesstransadions can be caried out over
the web has been a key driving force in the rapid growth of eledronic commerce
Eledronic commerce is the focus of much attention today, mainly due to its huge
volume. The dility to tradk browsing behavior of the users has brought vendors and

end customers closer than ever before.

Web personalization can be described as any adion that makes the web
experience of a user persondized to the user’s taste. The eperience ca be
something as casual as browsing the web or as sgnificant as trading stocks or
purchasing a ca. Principal elements of web personalization include modeling of web
objeds (pages, etc.) and subjeds (users), caegorizaion of objeds and subjeds,
matching between and aadossobjeds and/or subjeds, and determination of the set of

aaions to be recommended for personalization.

CHAPTER 1: INTRODUCTION 2

Personalizing the web experience for a user is the main idea for the most web
usage based applications. Nowadays, making dynamic recommendations to the user
based on his’/her past experiences has become very attractive for many applications.
The examples of this type of recommendations can be especialy found in e
commerce applications.

Understanding the common behavioral patterns of the customers makes the e-
commerce companies gain more customers and sell more products through the web.
The design of an e-commerce site is critical since their web site is a gateway to their
customers. All identity and behavior information about their customers are kept in
the access log files as a hidden treasure. Any company that uses web usage mining
techniques to filter out the information in access log files has more chance than the
others by making their sites more attractive based on the common behaviora patterns
of the customers. Nowadays, al e-commerce companies apply data mining
techniques on access log files to get more information about their customers and to
recognize them through the web. It is a fact that e-commerce sites that have an ability
recognizing their customers, adapting their Stes or making dynamic
recommendations according to the past experiences of the customers save lots of
money to the company.

Most existing tools provide mechanism for reporting user activity in the
servers and various forms of data filtering. By using these tools, determination of the
number of accesses to the server and to individual files, most popular pages, the
domain name and URL of the users who visited the site can be solved, but not
adequate for many applications. These tools do not help the Webmaster for the
analysis of data relationships among the accessed files and the directories within the
web site such as [13][14]. These tools have no ability in-depth analysis and also their
performance is not enough for huge volume of data. Researches have shown that the
log files contain critical and valuable information that must be taken out. It makes

web usage mining a popular research area for many applications in the last years.

CHAPTER 1: INTRODUCTION 3

Another important point of the web usage mining arises in the efficient use of
resources. Because the size of the access log files increases in a high rate, the system
must handle this option in the scope of using the resources efficiently. Otherwise, if
this option could not be taken into account, the system may be off in the future. All
limitations including the memory and the resources the system have, must be taken
into consideration while an application is being developed. In this context, the
system must start a new process to make the usage of resources more efficient when
the limits exceed the threshold determined before.

In the thesis, we present a new usage mining system, called as NextPage. The
main idea is the prediction of the next page to be retrieved by recognizing the visitor
and analyzing the session information belong to the visitor. As discussed above, one
way to recognize the user is to use cookies. The main purpose of using cookies in
applications is to identify users and possibly prepare customized web pages for them.
When you enter a web site using cookies, you may be asked to fill out a form
providing such information as your name and interests. This information is packaged
into a cookie and sent to your web browser that storesit for later use. The next time
you go to the same web site, your browser will send the cookie to the web server.
The server can use this information to present you with custom web pages. So,
instead of seeing just a generic welcome page you might see a welcome page with
your name on it. For example, when you browse through an "online shopping mall”
and add items to your "shopping cart" as you browse, a list of the items you have
picked up is stored by your browser so that you can pay for al of the items at once
when you are finished shopping. It is much more efficient for each browser to keep
track of information like this than to expect the web server to have to remember who
bought what, especidly if there are thousands of people using the web server a a
time.

Cookies are harmless in general and the option of turning off the "Always

confirm before setting a cookie" feature in your browser is recommended. In case of

CHAPTER 1: INTRODUCTION 4

being turned on the feaure described above redly makes the user annoyed. The wide
range usage of cookies compel the mmpanies use them to have a diance to exist in
the future.

There may be cetain cases when you will want to rejed cookies, but these
probably do not come up that often. Let's sy you are visiting a Site using a browser
that is not on your own personal macdine - like a public terminal, or your bosss
madhine & work. In that case, you might not want a record of your shopping cart, or
the sites that you visit, to be kept around where anyone can look at them. Since the
browser saves a @mpy of the mokie information to your locd hard drive, it leaves a
recrd that anyone can rifle through if they have the inclination. Another thing to
think about is the rare cae when some seaet or valuable piece of information is
being transferred via a ©okie. Some of the more alvanced web sites will adually do
login authenticaion through HTTP cookies. In this case, you may want to make sure
the wokies you are served encrypt your passwvord before refleding that information
badk aaoss the net to your persona browser. For senstive information, use the
golden rule: If everyone can see what is being sent, then anyone can find that
information by looking at your cookie file or by filtering through the traffic in your
vicinity on the net. However, if the information is encrypted (that is, you can not
adually read your passvord by looking in your cookie file), then it is probably OK.

In this regard, the disadvantage of rgeding the mokies made us to accept
another way of reaognizing the visitor. The way we have dosen is to kee al
information about the visitors in the server side and use this information by online
medianism of the system after obtaining the identity information of the visitors
through the web and recommend them the pages acwrding to the profile of the

visitor.

The system designed and implemented here focuses on the problem of
prediction, that is, of guessng future requests of the user for web documents based

on their previous requests. The result of the system is a list of pages as a

CHAPTER 1: INTRODUCTION 5

recommendation set at the end of the web document. The goa of making
recommendation to the user is to provide the user an easy accessto the pages that
he/she may be interested in. Our starting point of the design of the system is to make
the user’s surfing easier by recommending the pages that can be only accessed after a
retrieval of a number of pages in any particular page. As a result, the visitor may
read to the page by just clicking on itslink instead of making a number of retrieval.

Another question that deserves attention is what the system recommends any
visitor who has never visited the site before. In these caes, the system parses the IP
address or FQDN of the visitor to find its parent domain. The system also keeps all
information about all parent domains reside in the World Wide Web. If the system
produces no recommendation for a new visitor, then it seaches the next accesspages
to be recommended in the sesgons of the parent domain of the visitor. The system
repeds this process until it has enough number of recommendation determined by
the web master.

The system developed is under the cdegory of usage-based persondlizaion. It
has two main modules, Log Analyzer and Recommendation Engine. Log Analyzer
module analyzes the log file kept by the server to determine the patterns and
information about the visitors. The main files formed by Log Analyzer are the file
containing the sesson information of the visitors (Result File) and the file containing
the indexes (Index File) of sessons belong to the visitors. The information obtained
by the Log Analyzer module is used by Recommendation Engine module to produce
recommendation set for the visitor. Recommendation Engine aquires the identity
and document information by the help of PHP script code that is embedded into the
HTML page. Then, it seaches the pages to be recommended in the Result File by
using the index variables kept in Index File. After processng and producing the
recommendation, Recommendation Engine shows them to the vigitor in atable & the
bottom of the document.

CHAPTER 1: INTRODUCTION 6

The general architecture of the system can be summarized as in Figure 1.2.
As shown in the figure, Log Analyzer mines the log data to produce information and
pattern about the visitors. Recommendation Engine module uses the Index and
Result File formed by the Log Analyzer module by executing a CGI program. Log
Anayzer module runs offline a specific times while Recommendation Engine
module runs online for every request for the resources keeping PHP script code in. In
the following chapters, the details of the system will be discussed in more detail.

LOG ANALYZER

RECOMMENDATION ENGINE

Page with recommendations Request for a page

Figure 1.1: Architecture of the system

An overview of the previous work done related to the thesis will be given in
Chapter 2. The detailed explanation of Log Analyzer and Recommendation Engine
module will be given in Chapter 3. Chapter 4 is devoted to the efficient use of the
resources. The results of the experiments and evaluation will be discussed in Chapter
5 and we will conclude with Chapter 6.

Chapter 2

Background

In this chapter, we discuss related work in the literature and present the relevant
background concepts for the thesis. Web servers register a log entry for every single
access they get. A huge number of accesses (hits) are registered and collected in an
ever-growing access log file. By mining the access log files maintained by the web
servers we may enhance server performance, improve web site navigation, improve

system design of web applications.

Data mining and World Wide Web are two important and active areas of
current researches. A natural combination of the two areas, sometimes referred to as
Web Mining, has been the focus of severa recent research projects and papers. Web
mining can be described as the discovery and analysis of useful information from the
World Wide Web [1]. Main goa of web mining is the extraction of interesting and
useful patterns and information from activities related to the World Wide Web. This
means the automatic search of information resources available online. The search
may be either in Web Content Mining or in Web Usage Mining. Web Mining can be
roughly classified into three knowledge discovery domains as shown in Figure 2.1

Web Content Mining, Web Structure Mining and Web Usage Mining

CHAPTER 2:BACKGROUND 8

Web content mining, is described as the process of information or resource
discovery from millions of sources across the World Wide Web. Web Content
Mining studies can be divided into two main approaches, namely agent-based

Web Mining
Web Content Web Structure Web Usage
Mining Mining Mining
Agent-Based Database Approach
Inteligent Search Information Personalized Web
Engines Filtering/Categorization Agents

approach and database approach [1].

Figure 2.1: Knowledge Discovery Domains of Web Mining

Generally, agent-based web mining systems can be placed into three
categories. Intelligent Search Agents uses domain characteristics and user profiles to
organize and interpret the discovered information such as Harvest[2], Parasite[3] and
Shop-Boot[4]. Information Filtering/Categorization uses various information
retrieval techniqueq 5] and characteristics of open web documents to automatically
retrieve, filter and categorize them. Personalized Web Agents learn user preferences
and discover web information sources based on these preferences and those of other
individuals with similar interests such as WebWatcher[6], Sykill & Webert[7].

The aim of database approaches to web mining is to organize semi-structured
web pages into more structured collections of resources. Then known database
guerying systems and data mining techniques are applied on these databases created

CHAPTER 2:BACKGROUND 9

to analyze them. Database approach is divided into two classes. Multilevel Databases
store all semi-structured hypertext documents at the lowest level of the databases and
uses them for higher levels to have Meta data and generalizations. On the other hand,
Web Query Systems make the analysis of the data created easier. They use standard
database query languages such as SQL for the queries that are used in WWW such as
W3QL[8].

Web structure mining is the application of data mining techniques for the data
describing the organization of the content. Design of a web site centers around
organizing the information on each page and the hypertext links between the pages in
a way that seems most natural to the site users in order to facilitate their browsing
and perhaps purchasing. In this context, Intra-page structure information includes the
arrangement of various HTML or XML tags within a given page. The principal kind
of inter-page structure information is hyperlinks connecting one page to another page
in aweb site. In other words, it is focused on the structure of the hyperlinks within
the web itself. Most research on the web structure mining can be thought of a
mixture of content and structure mining and add content information to the link
structures such as Clever System[10] and Google[11].

Web Usage Mining focuses on techniques that could predict user behavior
while the user interacts through the web. We define the mined data in this category
as the secondary data since they are al the result of interactions. We could classify
them into the usage data that reside in the web clients, proxy servers and web
serverg9]. The web usage mining process could be classfied into two commonly
used approacheq[12]. The former approach maps the usage data into relational tables,
whereas the latter approach uses the log data directly by utilizing specia
preprocessing techniques. Web usage mining can aso be defined as the application
of data mining techniques to discover user web navigation patterns from web access
log data[9]. Log files provide a list of the page requests made to a given web server
in which a request is characterized by, at least, the IP address of the machine placing

CHAPTER 2:BACKGROUND 10

the request, the date and time of the request and the URL of the page requested.
From this information, it is possible to derive the user navigation sessions within the
web site where a session consists of a sequence of web pages viewed by a user in a
given time window. Any technique to identify patterns in a collection of user
sessions is useful for the web site designer since it may enhance the understanding of
user behavior when visiting the web site and therefore providing tips for improving

the design of the site.

Web usage mining has mainly three phases. preprocessing, pattern discovery
and pattern analysis. Preprocessing consists of converting the usage, structure and
content information contained in the various available data sources into the data
abstractions necessary for pattern discovery. Pattern discovery can be divided into
the categories, statistical analysis, association rules, clustering, classification,
sequentia patterns and dependency modeling[9]. Pattern analysis is the last step of
web usage mining that aims to filter out interesting rules or patterns from the set
found in the pattern discovery phase. The most common way of pattern analysis is a

query mechanism such as SQL.

The main application areas of web usage mining can be depicted in Figure 2.2

Web Usage Mining

Business System Site

Intelligence Improvement M odification Personalization

General

Figure 2.2: Main Application Areas of Web Usage Mining

CHAPTER 2: BACKGROUND 11

As shown in the figure, usage patterns extracted from web data have been
applied to awide range of research areas. Projects such as WebSIFT [9], WUM [10],
SpeedTracer [30] have focused on web usage mining in general.

2.1 General Web Usage Mining

The am of a general web usage mining system is to discover general behavior and
patterns from the log files by adapting well-known data mining techniques or new
approaches proposed. Most of the researches aim to discover user navigation paths or
common behavior from access log files whereas some of the studies focus on
clustering to find the similar interest groups among visitors.

One of the studies, Hypertext Probabilistic Grammars [12], focuses on mining
access patterns of visitors. In this study, user navigation session is defined as a
sequence of page requests such that no consecutive requests are separated by more
than a specific time period. These user navigation sessions derived from log files are
then modeled as a hypertext probabilistic grammar (HPG). There are two states, S
and F, which represent the start and finish states of the navigation sessions. The set
of strings, which are generated with higher probability, correspond to the navigation
trails preferred by the user. Moreover, the concept of an N-grammar is used to
determine the assumed memory when navigating within the site. For a given N it is
assumed that only N previously visited pages influence the link the user will choose
to follow next. After the construction of the HPG the paths are discovered by using
Depth-First search agorithm. Before mining process, support and confidence
thresholds must be specified. Support threshold ensures that the path is frequently
visted while confidence threshold ensures that the derivation probability of the
corresponding string is high enough. The support value is obtained by the probability
of the derivation of the first state of the path from the start state while confidence

CHAPTER 2: BACKGROUND 12

threshold is obtained from the derivation probabilities of other pages on the path. The
value of support and confidence threshold affects the quality of the paths discovered.

An approach similar to association rule mining, called Maxima Forward
(MF) Reference, is proposed in [34]. A Maxima Forward Reference is defined as a
sequence of pages that are visited consecutively by the visitor in which each page is
seen only once. The algorithm derived, MF, converts the original log data into a set
of traversal subsequences. This process aso filters out the effect of backward
references that are mainly made for ease of traveling. As an example, assume the
path traversed by any user is as follows <A, B, C, D, C, B, E, F, E, G> would be
broken into three transactions of <A, B, C, D>, <A, B, E, F> and <A, B, E, G> At
the end of processng MF algorithm, we get al Maxima Forward Reference
sequences and these sequences are stored in a database. Two main algorithms, Full
Scan (FS) and Selective Scan (SC) are derived to determine the frequent traversa
patterns, termed large reference sequences from the Maxima Forward References
obtained by the algorithm MF, where a large reference sequence is a reference
sequence that appeared in a sufficient number of times in the database. Algorithm FS
is required to scan the transaction database in each pass and utilizes key ideas to the
Direct Hashing with Pruning (DHP). In contrast, by properly utilizing the candidate
reference sequences, the second algorithm devised, Selective Scan, is able to avoid
database scans in some passes so as to reduce the disk 1/0 cost. Maximal reference
sequences are the subset of large reference sequences so that no maximal reference
sequence is contained in the other one. If the large reference sequences are AB, AE,
AGH, ABD then maximal reference sequences become AE, AGH, and ABD.

WebSift [9] project is one of the global architectures to handle the web usage
mining. WebSift establishes a framework for web usage mining. The system has
three main phases. Preprocessing, Pattern Discovery and Pattern Analysis.
Preprocessing phase is for converting the usage information contained in web server
log files into data abstractions necessary for pattern discovery. The preprocessing

CHAPTER 2: BACKGROUND 13

algorithm includes identifying users, server sessions and inferring cached page
references through the use of the Referrer field. In the second phase, well known data
mining techniques are applied such as association rule mining, sequential pattern
mining or clustering on the data abstraction obtained in the preprocessing phase. At
the last step, the results of the various knowledge discovery tools analyzed through a
simple knowledge query mechanism, a visualization tool (association rule map with
confidence and support weighted edges). An information filter based on domain
knowledge and the web site structure is applied to the mined patterns in search for
the interesting patterns. Links between pages and the similarity between contents of
pages provide evidence that pages are related. This information is used to identify
interesting patterns, for example, item sets that contain pages not directly connected
are declared interesting.

WUM [18] is one of the tools used for mining user navigation patterns from
access log files. It employs an innovative technique for the discovery of navigation
patterns over an aggregated meaterialized view of the access log file. This technique
offers a mining language as interface to the expert, so that the generic characteristics
can be given, which make a pattern interesting to the specific person. The system has
two main modules. The Aggregation Service prepares the access log file for mining
and the Query-Processor does the mining. In WUM, individual navigation paths
called trails are combined into an aggregated tree structure. Queries can be answered
by mapping them into the intermediate nodes of the tree structure. The aggregate tree
is formed by merging trails with the same prefix. Each node in the tree contains a
URL and these nodes is annotated with the number of visitors having reached the
node across the same trail prefix, that is, the support of the node. Query processor is
the module responsible for the mining on the aggregate tree formed by the
Aggregation Service. Queries can be answered by mapping them into the
intermediate nodes of the tree structure.

CHAPTER 2: BACKGROUND 14

SpedTrace [30], SpeedTrace is a web usage mining and analysis tool
which tradks user browsing patterns, generating reports to help Webmaster to refine
web site structure and navigation. SpeedTrace makes use of Referrer and Agent
information in the preprocessng routines to identify users and server sessons in the
absence of additional client side information. The gplicaion uses innovative
inference algorithms to recnstruct user traversal paths and identify user sessons.
Advanced mining algorithms uncover users movement through a web site. The end
result is colledions of valuable browsing petterns that help Webmaster better
understand user behavior. SpeadTrace generates threetypes of statistics: user-based,
path-based and group-based. User-based statistics point reference ounts by user and
durations of access Path-based statistics identify frequent traversal paths in web
presentations. Group-based statistics provide information on groups of web ste
pages most frequently visited.

In [39], the authors propose anovel data structure axd a new algorithm to
mine web access patterns from log data. The web access ®quences are stored in a
treelike data structure, the WAP-treg which is more compad than the initial access
in the tree However, the tree inferred from the data is not incremental since it
includes only the frequent access gquences. Moreover, athough the dgorithm is
efficient, the performance analysis $ould take into ac@unt the time needed to build
the tree since the input data for the tree @nstruction is in the form used by the
algorithm against which the proposed method is compared.

2.2 Business I ntelligence

The information on how customers are using a web site is criticd for espeaaly e
commerce @plications. Buchner and Mulvenna present a knowledge discovery
processin order to discover marketing intelli gence from web data [35]. They define a
web access log data hypercube that consolidates web usage data dong with

CHAPTER 2: BACKGROUND 15

marketing data for e-commerce gplicaions. Four distinct steps are identified in
customer relationship life gycle that can be supported by their knowledge discovery
tedhniques. customer attradions, customer retention, cross sles and customer
departure.

There ae more than 30 commercially available gplicaions. But many of
them are dow and make asumptions to reduce the size of the log file to be analyzed.
These gplicaions are dl useful for generating reports about the site such as

— Summary report of hits and bytes transferred
— List of top requested URLs

— List of top referrers

— List of most common browsers

— Hits per hour/day/week/month reports

— Hits per Internet domain

— Error report

— Diredory treereport, etc.

One of these tools described above, WebTrends [31], provides the most
powerful e-business intelligence reporting available, enabling customers to trad,
manage and optimize ebusiness s$rategies. WebTrends Log Anayzer reports on all
aspeds of a web dite’s adivity including how many people have visited a web gite,
where they come from, and what pages interest them nost. But it is afad that these
tools are limited in their performance, comprehensiveness and depth of analysis.

In [40], web server logs have been loaded into a data aube structure in order
to perform data mining as well as Online Analyticd Processng (OLAP) adivities
such as roll-up and drill-down of the data. In the WebLogMiner projed, the data
colleaed in the accsslog files goes through four stages. In the first stage, the datais
filtered to remove irrelevant information and a relational database is creaed
containing the meaningful remaining data. This database fadlitates information
extradion and data summarizaion besed on individua attributes like user, resource,

CHAPTER 2: BACKGROUND 16

user's locdity, day, etc. In the second stage, a data aibe is constructed using the
available dimensions. OLAP is used in the third stage to drill-down, roll-up, sice ad
dice in the web access log data aibe. Finaly, in the fourth stage, data mining
tedhniques are put to use with the data aibe to predict, classfy, and discover

interesting correlations.

2.3 System | mpr ovement

The problem of modeling and predicting of a user’s accesson a web site has attraded
a lot of reseach interest. One of the ams of predicting the next page request is
improving the web performance through pre-fetching. The objedive of pre-fetching
is the reduction of the user perceved latency. Potentia sources of latency are the
web servers heary load, network congestion, low bandwidth, bandwidth
underutili zation and propagation delay. There sean some obvious lutions to reduce
the dfeds of the reasons described above. One of them may be increasing the
bandwidth, but it does not seem a viable solution since the structure of the web
cannot be eaily changed without significant economic cost. Another solution is to
cade the documents on the dient’s madine or on proxies. But cading solution is
limited when web resources tend to change very frequently.

Performance ad other service quality attributes are aqucia to user
satisfadion from services such as databases, networks etc. Similar qualities are
expeded from the users of web services. Web usage mining provides the key to
understand web traffic behavior, which can in turn be used for developing policies
for web cading.

Some prediction approades utilizes path and point profiles generated from
the analysis of web server accesslogs to predict HTTP requests as described in [27].
They used these predictions to explore latency reductions through the pre-

CHAPTER 2: BACKGROUND 17

computation of dynamic web pages. The profiles are generated from user sesson.
During a single sesson, a user interading with web traverses sme sequences, of
URLSs. From that single sequence, the set of al possble subsequences is extraded as
paths. A method is proposed for predicting the next move of the visitor based on
matching the visitor’s current surfing sequence ajainst the paths in the path profile.
The ranking of matches is determined by a kind of spedficity heuristic: the maximal
prefixes of ead path (the first N-1 elements of an N-length path) are compared
element-wise ggainst the same length suffixes of the user path (i.e. a size N-1 prefix
is matched against the last N-1 elements of the user path) and the paths in the profile
with the highest number of element-wise matches are returned. Partial matches are
disallowed. In other words, if a visitor’s path were <A, B, C>, indicaing the visitor
visted URL A, then URL B, then URL C, the path would be better matched by a
path in the profile of <A, B, C, D> than <B, C, E>. For the paths in the profile that
match, the one with the highest observed frequency is ®leded and used to make
prediction. Using our example, if <A, B, C, D> were the best match and most
frequently observed path in the profile, then it would be used to predict that the user
who just visited <A, B, C> would next visit URL D.

A first order Markov model is proposed in [37] to implement a pre-fetching
service amed a reducing server load. The model is built from past usage
information and the transition probabilities between pages are proportiona to the
number of times both pages were accesed in a predefined time window. We note
that the use of a time window results in having transitions with probability greaer
than zero between pages that were never accessed conseautively. The results of the
conducted experiments sow that the method is effedive in reducing the server load
and the service time. A smilar method is proposed in [38] wherein a dependency
graph is inferred and dynamicdly updated as the server receves requests. There is a
node for every requested page and an arc between two nodes exists if the target node

was requested within n accesss after the source node; the weight of an arc is

CHAPTER 2: BACKGROUND 18

proportional to the number of such requests. The simulations performed with log data
show that areduction in the retrieval latency can be achieved.

2.4 Site M odification

The attractiveness of a web site, in terms of both content and structure, is the main
idea of many applications, especidly for a product catalog for e-commerce
applications. The structure and the attractiveness of the web site is crucial because
web sites are the only way between the company and their visitors. Web Usage
Mining provides detailed feedback on user behavior, providing the web site designer
with information on which to base redesign decisons. Web usage data provides an
opportunity to turn every site into an ongoing usability test. While the information is
not as complete as the information that can be gathered form a formal usability
analysis with videos and trained observers. Web usage data are cheap and plentiful.

Designing a good web site is not a smple task because hypertext structure
can easily expand in a chaotic manner as the number of pages increases. Thus many
techniques to improve the effectiveness of user navigation have been proposed.
Discovering the gap between the expectations of the web site designer and the
behavior of the users helps to improve the restructure of the web site [22]. The
expectation of the web dte designer is assessed by measuring the inter-page
conceptual relevance. Measurement of conceptual relevance is done by a vector
space model. All web documents are analyzed by the system to construct the vector.
All HTML tags and stop words are discarded to obtain content words. Then the
frequency of content words for each page is caculated. Finaly the inter-page
conceptua relevance (SIMC) for each page pair p; and p; using the cosine similarity
formula is measured. If the number of content words that appear in both pages is O,
the value of SImC is also 0. The measurement of access co-occurrence is done by
modifying the vector space model. The number of accesses for each page is

CHAPTER 2: BACKGROUND 19

measured by counting the IP addresses in the access log file. Then, the inter-page
access co-occurrence (SimA) for each page pair, pi and p;, is measured. After SimC
and SmA are calculated, the correlation coefficient that is the degree of linear
relationship between two variables (SImC and SimA) is measured. The technique
finds page pairs that should be improved. It finally shows page clusters meaning

clues for web designer to improve the web site and to understand the design problem.

The major main goals of the approach proposed in [24], Adaptive Web Sites,
are avoiding additional work for visitors and protecting the original design of the site
from destructive changes. The system is to apply only nondestructive transformations
meaning that some links can be added on the pages but cannot be removed or some
index pages can be created but none of the pages can be removed. The aim is to
create an index page containing collections of links to related but currently unlinked
pages. An algorithm, PageGather, is proposed to find collections of pages that tend to
co-occur in visits. The PageGather algorithm uses cluster mining to find collections
of related pages at a web dte relying on the visit-coherence assumption. The
algorithm process the access log into vists and compute the co-occurrence
frequencies between pages and create a gSmilarity matrix. Then a graph
corresponding to the matrix is created and cligues are found on that graph. At the end
of the agorithm, for each cluster found, a web page consisting of links to the

documents in the cluster is formed and recommended to the user.

2.5 Personalization

Web Personalization is the task of making web-based information system adaptive to
the needs and interests of individua users or groups of users. Typicdly, a
personalized web site recognizes its users, collects information about their

preferences and adapts its services, in order to match the needs of the users. One way

CHAPTER 2: BACKGROUND 20

to expand the personalization of the web is to automate some of the processes taking

placein the alaptation of a web-based system to its users.

SiteHelper [36] is alocd agent that ads as the housekegoer of a web server,
in order to help a user to locae relevant information within the site. The agent makes
use of the accesslog data to identify the pages viewed by a given user in previous
vidgts to the site. The keywords charaderizing the ontents of such pages are
incorporated into the user profile. When that user returns to the site, the agent is able,
for example, to show the danges that took placein pages that are known to be
interest and also to recommend any new pages.

WebWatcher [6], ads like aweb tour guide asgstant, it guides the user along
an appropriate path through the mlledion based on the past experiences of the
vigitor. It accompanies users from page to page, suggests appropriate hyperlinks and
leans from experience to improve its advice-giving skills. The user fills a form
stating what information he is looking for and, as the user navigates the web, the
agent uses the knowledge leaned from previous users to recommend links to be
followed; the links thought to be relevant are highlighted. At the end of the
navigation the user indicates whether or not the seach was siccesdul, and the model
is updated automaticaly.

Letizia [16] is smilar to WebWatcher in the sense that the system
acmmpanies the user while browsing. It is a user interface gent that asgsts a user
browsing the World Wide Web. As the user operates a @nventional web browser
such as Netscape, the agent tradks user behavior and attempts to anticipate items of
interest by exploring of links from the aurrent position of the user. The difference
from WebWatcher is that the system serves only one particular user. Letizia is
located on the users madine and leans his’her current interest. The knowledge
about the user is automaticdly aaquired and does not require awy user input. By
doing look ahead seach, Letizia can recommend pages in the neighborhood of where

the user is currently browsing.

CHAPTER 2: BACKGROUND 21

Syskill & Webert [7] is designed to help users distinguish interesting web
pages on a particular topic from uninteresting ones. It offers a more restricted way of
browsing than the others. Starting from a manually constructed index page fro a
particular topic, the user can rate hyperlinks off this page. The system uses the
ratings to lean a user spedfic topic profile that can be used to suggest unexplored
hyperlinks on the page. Also, the system can aso use seach engines like LY COS to
retrieve pages by turning the topic profile into a query.

WebPersonalizer [19] system is divided into two components, offline and
online component like the system we designed in the thesis. The offline module is
responsible for data preparation tasks resulting in a user transadion file. It performs
spedfic usage mining tasks to form clusters from user transadions and URL clusters
from the transadion cluster. The other component, online wmponent, provides
dynamic recommendations to users. When the server accets a request, the
recommendation engine matches the adive sesson with the URL clusters to compute
a set of recommended hyperlinks. The system recommends pages from clusters that
match most closely to the aurrent sesson. Pages that have not been viewed and are
not diredly linked from the arrent page ae recommended to the user. The
recommendation set is added to the requested page & a set of links before the pageis
sent to the dient browser.

The system proposed in [21] is based on the two main user profiles depending
on the navigation strategy. The user can either return to the same objeds over and
over or aways visit a new objed. The first user, cdled as “net surfer”, is more
interested in exploring the o/berspacethan to explore what the document can offer
him while the other user, cdled as “conservative”, is more concerned with exploring
the mntents of the objeds in a cetain Ste. Because user profiles perform an
important role in the dfediveness of pre-fetching, two empiricd user models were
constructed. Random Walk User Model captures the long-term trend. The second
model, Digita Signa Processng (DSP User Model, applies to the short-term

CHAPTER 2: BACKGROUND 22

behavior. Both models are ale to tradk user’s behaviors. The dgorithm devised has
two main parts. Preparation phase computes the user’s profile arrve. Prediction
phase initially determines in the last accesses how conservative the user was. Then
the prediction is made based on the user profile deteded.

WebTool, an integrated system [23], is developed for mining either
asociation rules or sequential patterns on web usage mining to provide an efficient
navigation to the visitor, the organizaion of the server can be astomized and
navigational links can be dynamicdly added. The system has a 2-phase process The
preprocessng phase removes irrelevant data and performs a dustering of entries
driven by time nsiderations. In the second phase, data mining tedniques are
applied to extrad useful patterns or relationships and a visual query language is
provided in order to improve the mining process A generator of dynamic links in
web pages uses the rules generated from sequential patterns or association rules. The
generator is intended for reagnizing a visitor ac@rding to his navigation through the
pages of a server. When the navigation matches a rule, the hypertext organization of
the document requested is dynamicdly modified. The hyperlinks of the page ae
dynamicadly updated acwrding to the rule matched.

Another approach [25] has the ideaof matching an adive user’s pattern with
one or more of the user caegories discovered from the log files. It seans under the
caegory of user-based web persondizaion system. The system has two main
module, Offline axd Online module. In the offline module, the preprocessor extrads
information from web server log files to generate records of users sssons. For every
sesson in the log file, one record is generated. The remrds generated are then
clustered into caegories, with similar sessons put into the same cdegory. A user
sesson is represented by n-dimensional vedor (assuming n interest items in the site)
in the preprocessng phase. Ead interest page in the vedor has a weight depending
on the number of times the page is accessed or the anount of time the user spends on
the page. Such an ndimensional vedor forms a user sesson record mentioned

CHAPTER 2: BACKGROUND 23

above. After all sessons are represented in a vedor format, LEADER algorithm
which is aso a dustering algorithm is applied on these vedors formed to discover
clusters of sesson vedors that are similar. After finding of the dusters, the median
of ead cluster is computed as a representative of the dusters. The other module of
the gproad is responsible to make dynamic recommendations to the user. The
module temporarily buffers the user accesslog in main memory to deted the pages
the user retrieved before. The adive sesson information is maintained the same type
of vedors as in the preprocessng phase. For every page request of the user, the
vedor is updated automaticdly. The system tries to match the adive sesson vedor
to the eisting clusters formed by the offline module. Then the pages in the vedor
that the user has not accessed so far and are not accessble from the URL just
requested are suggested to the user at the top of the page she/he requested.

Another prediction system cdled WhatNext [26] is focused on path-based
prediction model inspired by n-gram prediction models commonly used in speed-
processng communities. The dgorithm build is n-gram prediction model based on
the occurrence frequency. Each sub-string of length n is an n-gram. The dgorithm
scans through al sub-strings exadly once, rerding occurrence frequencies of the
next click immediately after the sub-string in al sessons. The maximum occurred
request is used asthe prediction for the sub-string.

In [28], the authors proposed to use Markov chains to dynamicadly model the
URL accesspatterns that are observed in navigation logs based on the previous date.
Markov chain model can be defined by the tuple <S, A, N> where A corresponds to
the state space A is the matrix representing transition probabili ties from one state to
another. I is the initial probability distribution of the states in S. If there ae n states
in the Markov chain, then the matrix of transition probabilities A is of sizen x n.
Markov chain models can be estimated statisticdly, adaptively and are generative.
The probabilistic Link Prediction System described has five major components. In
the “Markov Chain Model” component, a (sparse) matrix of dstate transition

CHAPTER 2: BACKGROUND 24

probabilities is constructed. In the “Client Path Buffer”, a buffer is assgned in the
main memory to hold client requests and all the sequence of client requests gored in
that buffer. In the “Adaptation Module” the matrix creded is updated with the user
path traceinformation. The “Tour Generator” outputs a sequence of states for the
given start URL. The last module “Path Analysis and Clustering” clusters the states
into smilar groups to reduce the dimensionality of the transition matrix. The system
proposed is used in HTTP request prediction, in adaptive web navigation, in tour
generators, in personalized hub/authority.

In [29], the authors describe atool named WebMate, a proxy agent that
monitors the user web ravigation while building his profile. Each time the user finds
an interesting page he points the page to the agent. The agent analyses the contents of
the page and classfiesit into one of a predefined set of classes. In this way, the user
profile is inferred from a set of postive training examples. In off pea hours the
agent browses a set of URLSs the user wants to have monitored in seach for new
relevant pages. If the user does not spedfy URLs to be monitored the agent uses a set
of chosen keywords to query popular seach engines and asessthe relevance of the
returned pages.

The WebMiner system [1][32], divides the web usage mining process into
three main phases. In the first phase, cdled as preprocessng phase, includes the
domain dependent tasks of data deaning, user identificaion, sesson identificaion
and path completion. In the second phase, cdled as the knowledge discovery phase,
espedaly association rule and sequential pattern generation algorithms applied on
the data obtained in the first phase. The discovered information is then fed into
various pattern analysis tools. The site filter is used to identify interesting rules and
patterns by comparing the discovered knowledge with the web site designer’s view
of how the site should be used. At the same time, the site filter can be gplied to the
data mining algorithms in order to reduce the computation time or the discovered

rules and patterns.

CHAPTER 2: BACKGROUND 25

Another prediction system proposed in [15] is based on the assumption of
mining longest repeating subsequences o predict www surfing. In this approach, a
longest prediction subsequence is defined as a sequence of items where subsequence
means a set of consecutive items, repeated means the item occurs more than some
threshold T and longest means that although a subsequence may be part of another
repeated subsequence, there is at least once occurrence of this subsequence where
thisisthe longest repeating.

Another usage based personalization system, which is dightly different than
the others, is proposed in [17]. It is capable of guessing the web pages and showing
these web pages that have the highest scores as a recommendation set to the visitor.
The system is based on two criteria, the path followed by the visitors and the identity
information. It has two magor modules like many applications based on usage-based
and prediction system, Offline and Online module. The off-line module mines the
access log files for determining the behaviora patterns of the previous visitors of the
web site considered. It has aso two sub modules caled as PathinfoProcesor and
HostldentityProcessor. The aim of the former is to find user navigation paths hidden
in the access log file and store them in a form to be utilized by the online module
whereas the aim of the latter, is to discover the relations between the identity
information and navigation patterns of visitors and store the results that has been
discovered. All paths discovered are maintained in a path tree and this path tree is
updated with the new path information of the current day. The path tree created is
then stored in such a file that the online module will spent minimum amount of time
on creating and accessing it. The other mgjor module of the system, Online Module,
is triggered by a java applet embedded into the HTML page. The java applet is used
for the connection between the client and the server. The java applet triggers a PERL
script to acquire the identity information of the visitor and then the identity
information acquired is sent to a CGI program, which is the main part of the online
module. The CGI program finds two separate sets of recommendation according to
the path and the identity information. The module searches the path tree whether the

CHAPTER 2: BACKGROUND 26

path of the visitor exists or not. Then a score for each page coming after the page that
includes the java applet on that path tree is evaluated based on the frequencies of the
pages. Another set of recommendation is found for the identity information. The
recent paths followed by the same identity are checked to find the pages to be
recommended. At the end of the recommendation phase, these two sets of pages are

merged to form a single set and recommended to the visitor.

The approach presented in [20] focuses on the use of the resources efficiently.
The starting point of the approach is the learning and the memorization. When an
object is observed or the solution to a problem is found, it is stored in memory for
future use. In the light of this observation, memory can be thought of as a look up
table. When a new problem is encountered, memory is searched to find if the same
problem has been solved before. If an exact match for the search is required, learning
is dow and consumes very large amounts of memory. However, approximate
matching alows a degree of generalization that both speeds learning and saves
memory. Three experiments were conducted to understand the issues better involved
in learning prototypes. IBL learns to classify objects by being shown examples of
objects, described by an attribute/value list, along with the class to which each
example belongs. In the first experiment (IB1), to learn a concept simply required the
program to store every example. When an unclassified object was presented for
classfication by the program, it used a smple Euclidean distance measure to
determine the nearest neighbor of the object and the class given to it was the class of
the neighbor. This simple scheme works well, and is tolerant to some noise in the
data. Its major disadvantage is that it requires alarge amount of storage capacity. The
second experiment (IB2) attempted to improve the space performance of IB1. In this
case, when new instances of classes were presented to the program, the program
attempted to classify them. Instances that were correctly classified were ignored and
only incorrectly classified instances were stored to become part of the concept. While
this scheme reduced storage dramatically, it was less noise-tolerant than the first. The
third experiment (IB3) used a more sophisticated method for evaluating instances to

CHAPTER 2: BACKGROUND 27

dedde if they should be kept or not. IB3 is smilar to 1B2 with the following
additions. IB3 maintains a reocord of the number of corred and incorred
classficaion attempts for ead saved instance This record summarized an instances
classficaion performance IB3 uses a significance test to determine which instances
are good classfiers and which ones are believed to be noisy. The latter are discarded
from the concept description. This method strengthens noise tolerance, while keeping

the storage requirements down.

Chapter 3

NextPage

As described above, one of the common properties of the applications developed on
web usage mining, especially under the category of personadlization, is the prediction
of the next pages to be accessed. This property makes the web site, especialy for e-
commerce companies, more attractive for the visitors. The am of the system
presented is to predict next access pages to help visitors while navigating the web
gite by analyzing the access log files. The system developed is designed to recognize
the user visiting the site and recommend the pages based on her/his past experiences.
If the system does not have any information about the visitor, that is, a new visitor
for the system, then it finds the parent domain of the visitor by parsing its identity
information and recommends the pages according to the interests of the visitors from
the parent domain. The process continues until the number of recommendation
derived satisfies the number determined by the web master.

NextPage consists of two independent modules shown as in Figure 1.2. Log
Anayzer and Recommendation Engine. Log Analyzer is the main part of the system
that produces the Result File containing the session information and the Index File
containing the index variables of the identities used by the Recommendation Engine.
These files contain the relation between the identity information and the navigation

patterns of the visitors.

CHAPTER 3: NEXTPAGE 29

3.1 Log Analyzer

Log Analyzer module analyzes the access log file maintained by the web server to
determine the identity information and session identification. It has mainly four
phases, Data Preparation, Session and User Identification, Indexing / Storing and
Forgetting (when necessary) phases. In the following sections, detail of each phase of
the Log Analyzer will be explained.

Our usage mining system is designed to run on predetermined times of the
day automatically to process the newly added entries of the access log file. To
achieve this process, Log Analyzer module has two contingencies. One of them is the
probability of being the same log file one day before whereas the other is that of
being a new log file. If the log file is the same as the log file one day before, then it
finds the last entry it processed and begins to process the entries from that entry.
Otherwise if it is a new one, then it begins to process from the first entry of the log
file. The module keeps the first entry and the size of the access log file in afile called
as LogDeterminer. By comparing the entry in the LogDeterminer file and the first
entry of the access log file, it determines whether the log file is the same as the log
file one day before or not. If comparison is positive, that is, the same log file, then
the file pointer is positioned to the entry just after the last entry processed by using
the sizeoflog variable kept in LogDeterminer file. By storing the size of the log file
processed one day before, the module avoids itself to run again on the same entries.
If the size of the access log file is greater than the sizeoflog variable meaning that
there exists newly added entries in the access log file, Log Analyzer module directly
begins to process these newly added entries by skipping the entries that have been
processed in prior days. The module terminates without doing anything if the first
entry and the size of the access log file is the same as the ones kept in the
LogDeterminer file meaning that the same log file is being tried to be processed
again. The module updates the LogDeterminer file by rewriting the first entry and the

size of the log file to the file at every execution of the module.

CHAPTER 3: NEXTPAGE 30

3.1.1 Data Preparation

The main source of the data preparation phase is the access log file maintained by the
web server. An access log file is a text file in which every page request made to the
web server is recorded. The format of the log files is related to the configuration file
of the web server. Generally, there are two main log formats used. One of them
Common Log Format and the other is Combined Log Format. The difference
between them is that the former does not store Referrer and Agent information of the
requests. The format of the log file kept by the Computer Engineering of Bilkent
University web server is NCSA Combined Log Format. A single example entry of
the log file is shown in Figure 3.1. An entry is stored as one long line of ASCII text,
separated by tabs and spaces.

| abb30640. bcc. bi |l kent. edu.tr - - [01/Nov/2001: 21: 56: 52 +0200] " CGET

/ ~guveni r/ courses/HTTP/ 1. 1" 200 1749

"http://ww. cs. bil kent.edu.tr/guvenir" "Mzilla/4.0 (conpati bl e;
MBI E 5.5; Wndows 95)"

Figure 3.1: An example entry in the access log file
The details of the fields in the entry are given in the following section.

Addressor DNS

|abb30640.bcc.bilkent.edu.tr

This is the address of the computer making the HTTP request. The server
records the IP and then, if configured, will lookup the Domain Name Server (DNS)
for its FQDN.

RFC931 (Or Identification)

Rarely used, the field was designed to identify the requestor. If this
information is not recorded, a hyphen (-) holds the column in the log.

CHAPTER 3: NEXTPAGE 31

Authuser

List the authenticated user, if required for access. This authentication is sent
via clear text, so it is not really intended for security. This field is usually filled by a
hyphen -.

Time Stamp

[02/Nov/2001:21:56:52 +0200]

The date, time, and offset from Greenwich Mean Time (GMT x 100) are
recorded for each hit. The date and time format is: DD/Mon/YYYY HH:MM:SS.
The example above shows that the transaction was recorded at 21:56:52 on Nov 1,
2001 at alocation 2 hours forward GMT. By comparing time stamps between entries,
we can aso determine how long a visitor spent on a given page that is also used as a
heuristic in our system.

Target

"GET /~guvenir/courseHTTP/1.1"

One of three types of HTTP requests is recorded in the log. GET is the
standard request for a document or program. POST tells the server that data is
following. HEAD is used by link checking programs, not browsers, and downloads
just the information in the HEAD tag information. The specific level of HTTP
protocol is also recorded.

Status Code

200

CHAPTER 3: NEXTPAGE 32

There ae four classes of codes
1. Success(200series)

2. Redired (300series)

3. Fallure (400 series)

4. Server Error (500 series)

A status code of 200 means the transadion was siccesful. Common 300
series codes are 302 for a redired from http://www.mydomain.com to
http://www.mydomain.conV, and 304 for a conditional GET. This occurs when the
server chedks if the version of the file or graphic drealy in cade is gill the airrent
version and dreds the browser to use the catied version. The most common failure
codes are 401 (falled authenticaion), 403 (forbidden request to a restricted
subdiredory), and the dreaded 404 (file not found) messages. Sever errors are red
flags for the server administrator.

Transfer Volume

1749

For GET HTTP transadions, the last field is the number of bytes transferred.
For other commands this field will be ahyphen (-) or a zeo (0).

The transfer volume statistic marks the end of the common log file. The
remaining fields make up the referrer and agent logs, added to the common log
format to crede the “extended” log file format. Let’slook at these fields.

Referrer URL

http://www.cs.bil kent.edu.tr/guvenir

The referrer URL indicaes the page where the visitor was locaed when
making the next request.

CHAPTER 3: NEXTPAGE 33

User Agent

Mozill&/4.0 (compatible; MSIE 5.5; Windows 95)

The user agent stores information about the browser, version, and operating
system of the reader. The general format is. Browser name/ version (operating
system)

3.1.1.1 Elimination of irrelevant items

Two terms will be described which are mostly used in web usage mining before
going into detail. “Valid File Request” describes any type of data including graphics,
scripts or HTML pages requested from the web server whereas “Valid Page Request”
describes any succesqully answered request for one of the acual web pages taking
place in the web site in process Different objeds are anbedded into the HTML
pages such as text, pictures, sounds etc. Therefore, a user's request to view a
particular page often results in severa log entries snce graphics and sounds are
downloaded in addition to the HTML file. The discovered associations or statistics
are only useful if the data represented in the log files gives an acairrate picture of the
user accesses to the web site. In most web usage goplications, only the log entries of
the HTML pages are onsidered as relevant and the others are mnsidered as
irrelevant. This is becaise, in general, a user does not explicitly request al of the

graphics that are on a web page, they are aitomaticaly downloaded due to HTML
tags.

Also, espedally index pages usualy redired all visitors automaticdly to a
script; e.g., count.cgi, to count the number of visitors. As a result, for eat
rediredion from these index files to the script, an entry is put into the log file. So, a
tedhnique must be gplied onto the accseslog file to eliminate these irrelevant items
for any type of analysis.

CHAPTER 3: NEXTPAGE 34

Elimination of these items considered as irrelevant can be reasonably
acomplished by cheding the suffix of the URL name in the “Target” field of the
entry. For instance al log entries with file extension jpg, gif, wav, class au, cgi are
removed for the acairate determination of the user and sesson identification.

Besides, we have one more fador to be taken into consideration. Sometimes,
in case of having a problem, the web server cannot be ale to give succesdul respond
to the requests. The web server records these acions in the acceslog file by putting
an error code into the “ Status Code” field of the entry. As a result, these unsuccessul
requests must be diminated from the log file before mining. These entries can be
determined only by cheding the status code of the entry. For example, status code
“400° or 404 means that the page wuld not be found on the site by the server due
to the deletion of the pages and so, in general, the entries with the status code “400°
or “404' are diminated.

3.1.1.2 Elimination of entries containing frame pages

Another data preparation processdone in this phase is the detedion and if necessary
the dimination or modificaion of the eitries that contain frame pages. After
eliminating the irrelevant entries from access log file, the Log Analyzer module
analyze eab web page in the web site whether it has frame pages or not. The more
detailed information about the determination of frame pages will be given in 3.1.3.
Such an entry has been given as an example in Figure 3.2

As $rown in Figure 3.2, the web page “/~canf/CS351/” consists of two
frames, framel.htm and frame2.htm. When a request is made for the page mentioned
above, three atries are put into the accsslog file aitomaticdly, one entry for the
page itself (Entry 1), two entries for the frame pages (Entry 2 and 3) that form the

page.

CHAPTER 3: NEXTPAGE 35

[1] | abb30640. bcc. bil kent.edu.tr - - [01/Nov/2001: 22:07:13 +0200]

"GET / ~canf/ CS351/ HTTP/1.1" 200 669

"http://ww. cs. bil kent. edu. tr/~endem r/courses/cs35101/cs35101. htm "
"Mozillal/4.0 (conpatible; MSIE 5.5; Wndows 95)"

[2] | abb30640. bcc. bil kent.edu.tr - - [01/Nov/2001: 22:07:13 +0200]
"GET / ~canf/ CS351/framel. ht m HTTP/ 1. 1" 200 2778

"http://ww. cs. bil kent. edu.tr/~canf/CS351/" "Mzilla/4.0

(compati bl e; MBI E 5.5; Wndows 95)"

[3] |abb30640. bcc. bil kent.edu.tr - - [01/Nov/2001: 22:07:13 +0200]
"GET / ~canf/ CS351/frame2. ht m HTTP/ 1. 1" 200 13306

"http://ww. cs. bil kent. edu.tr/~canf/CS351/" "Mzilla/4.0

(compati bl e; MBI E 5.5; Wndows 95)"

[4] | abb30640. bcc. bil kent.edu.tr - - [01/Nov/2001: 22: 07: 23 +0200]
"CET / ~canf/ CS351/ CS351Lect ur eNot es/ i ndex. html HTTP/ 1. 1" 200
1230 "http://ww. cs. bil kent. edu. tr/~canf/CS351/franel. ht nf
"Mozillal4.0 (compatible; MSIE 5.5; Wndows 95)"

Figure 3.2: A series of entry with frame pages

Entries containing the frame pages were irrelevant items uch as images or
sounds embedded into the page aad must be diminated or modified before the user
and sesgon identification. At the same time, when a user requests a page from any
page mnsisting frame pages, then the “Referrer” field of the adive log entry seems
as $rown in the fourth entry of the figure. So, the module exchanges the “Referrer”
field with the name of the main page. After modification, the fourth entry beames
like
| abb30640. bcc. bi |l kent. edu.tr - - [01/Nov/2001: 22: 07: 23 +0200] " CGET
/ ~canf/ CS351/ CS351Lect ur eNot es/ i ndex. ht i HTTP/ 1. 1" 200 1230

"http://ww.cs. bil kent. edu. tr/~canf/CS351" "Mzilla/4.0 (conpati bl e;
MBI E 5.5; Wndows 95)"

Figure 3.3: The entry after modification

In addition, “Referrer” field of some entries $ould be modified. If a visitor
begins her/his visit to the site by the help of a seach engine, an entry is put into the
log file & down in Figure 3.4. The Referrer field of this entry must be modified
sincewe ae not interested with the query seach words coming from different search

CHAPTER 3: NEXTPAGE 36

engines. In these situations, we aume that the user begins her/his visit from the
page written in the “Target” field of the entry and we exchange “Referrer” field with
“-“ dgn meaning that the full path of the page requested has been typed dredly in
the aldressfield of the browsers. After modification, the entry becomes as $own in
Figure 3.5.

client-209-158-171-2.jerseycity.kl2.nj.us - - [01/Nov/2001: 21:47: 10
+0200] "CGET / ~davi d/ derya/activitiesl/activity70. htm HTTP/ 1. 0"

200 82389 http://googl e. yahoo. com bi n/ quer y?p=puf f y+aand+r &c=0&hs="
"Mozillal/4.0 (conpatible; MSIE 5.0; Wndows 95; DigExt)"

Figure 3.4: An example entry with search enginesin Referrer field

client-209-158-171-2.jerseycity.kl2.nj.us - - [01/Nov/2001: 21:47: 10
+0200] " CET /~davi d/ derya/activitiesl/activity70.htm HTTP/1.0" 200
82389 "-" "Mbzilla/4.0 (conpatible; MSIE 5.0; Wndows 95; DigExt)"

Figure 3.5: The same entry after modification

3.1.2 Deter mination of Frame Pages

It is a common way to crede an HTML page with frame pages to make more
attradive axd more helpful for the users visiting the page. A web page may be
constructed with three frames, top frame for general site navigation, left frame for
more spedfic navigation and a main frame with some ntent. After eliminating the
irrelevant items such as embedded pictures or sounds from the log file, the next am
of the module is to analyze d valid page requests to discover whether it contains
frame pages or not. This is the most time consuming process of the preprocessng
module. If we do not store these information gathered by the “Frame Detedor”
agorithm shown in Figure 3.6, the module must go to all pages of the web site &
every exeaution. So, it is acceptable to store these information gathered in a file
cdled as “Frame File” to avoid from analyzing every pages a every exeaution. The
module opens the Frame File updated one day before & every exeaution; it loads all

frame page structures in the file into the main memory as a list to be used for

CHAPTER 3: NEXTPAGE 37

eliminating the entries containing frame pages from the log file. When the module
exeautes, it chedks whether the web page isin the list or not. If it existsin the list, it
means that this web page was analyzed before by the module, so the module do not
analyze this page again and continues with the next page and so on. At the first runs
of the module, the time spent for Frame Detedion is quite long, but after every
exeaution of the module in the following days, Frame File is updated with new pages
and contains more information, so the time spent for this process in later runs
deaeases.

[1] Open web page requested

2] For eadh line in the file Do

[3] If line contains "<frameset" tag

[4] While (entry contains "</frameset"” tag)

[5] If line contains "src=" tag

[6] Store the name of frame page written after the “src” argument
into the list

[7] End If

(8] End While

[9] End If

[10] End For
Figure 3.6: Algorithm Frame_Detedor

It can be eally deteded whether an HTML page has any frame page or not
only by cheding the mntent of the file. The frame pages are inserted between
“<frameset>" and “</frameset>" tags in an HTML page. (Lines 3-4) The path and
full name of these frame pages comes after “src=" argument. (Lines 5-7) The
algorithm opens the HTML file that is represented as a valid page request for the web
server and chedks al lines until the end of the file. If the dgorithm encounters
“<frameset>" tag, it stores al frame pages coming just after “src=" tag to the list
until the line mntaining </frameset>" tag or the end of thefile.

Asauming that the web master may sometimes deade to make a dange on
the pages in the site, we dedded to delete dl information in the Frame File on the
first day of the month. So the danges that have been made on the pages in the
present month will be deteded at the exeaution of the module on the first day of the

CHAPTER 3: NEXTPAGE 38

next month. It means that the module analyzes all pages again in the site every month

to detect the changesin the page.

3.1.3 Session I dentification

A user session is a sequence of al of the page references made by a user during a
single visit to a site. A transaction differs from a user session in that the size of a
transaction can range from a single page reference to all of the page references in a
user session. The raw server access log can be thought of in two ways; either as a
single transaction of many page references or as set of many transactions each
congisting of a single page reference. The goa of session and transaction
identification is to create meaningful clusters of references for each user. Therefore,
we divide al of the log file transaction into smaller ones and then merge them into

fewer larger ones for each identity.

Definition 1: Log File, L is defined as the collection of log entries where each log
entry | [J L has the following attributes.

e l.ident iseither the IP address or FQDN

* |.timeisthetime of the request

e |.target isthe requested URL

o |l.referrer isthereferrer page used for accessing the target page

» |.agent isthe browser name used by the user

This information can be used to reconstruct the user navigation sessions

within the site that the log data originates. In an ideal scenario, each user is alocated
a unique IP address whenever (S) he accesses a given web site. Moreover, it is
expected that a user vigit the site more than once, each time possibly with a different

goa in mind. Therefore, a user session is usually defined as a sequence of requests
from the same IP address such that no two consecutive requests are separated by

CHAPTER3: NEXTPAGE 39

more than X minutes where X is a given parameter. In [41], the aiuthors report an
experiment conducted with a web browser that was modified in order to reoord,
among other things, the time interval between user adions on the browser’s
interface One interesting result of the study reveded that 25.5 minutes corresponded
to 1.5 standard deviation of the average time between user adions, meaning that the
probability of a user staying more than 255 minutes without plaang any page
request is very low. As aresult of the study, many authors and also we have alopted
the value of 30 minutes for the time limit between requests within a sesson, i.e.
X=30 minutes. In the light of this observation, a user sesson can be defined as

shown in Definition 2.
Definition 2: User sesson Sis defined as S=< idents, PRs> where

« PRs = {(R°.refarer, R.target), (R>.referer, RS.target)... (R°,.referer,
R®.target)}
« R%[OLandR%.ident = Sident foo O0<k<=m

. R, time—R,.time<30

Another relevant asped to take into acmunt when using log data is the
widespread use of cade axd proxy servers on the web. As a result, not al page
requests made to a server are recorded in the log file. In fad, if the browser finds a
copy of a document being requested by the user in its cadie, the request is not made
to the server and the stored copy of the document is displayed. Therefore, athough
the user views the page, the request is not recorded in the server log file. A smilar
thing can occur at proxy level. A proxy server can be configured in such way that, a
copy of arequested page is not available in the locd memory, the page is requested
by the proxy to the content provider on behalf of the user. In addition, the use of
proxy servers that will be discussed later raises difficulties in the identification of the

requests made by a given computer. A sample sesson can be seen in Figure 3.7.

CHAPTER 3: NEXTPAGE 40

Tar get : Ref errer

1. /~gudukbay/ hone. ht ni
2. | ~gudukbay/ cs565/ i ndex. ht m | ~gudukbay/ hone. ht ni
3. [/ ~gudukbay/ cs565/ project _|ist/project.htm /~gudukbay/cs565/i ndex. htn

4. [cs466/index. htmn | ~gudukbay/ hone. ht ni

Figure 3.7: A sample user sesson

As down in the figure, the user begins the sesson just by typing the exad
path of the page “/~gudukbay/home.html” direaly in the aldressline of the browser
gnce the Referer field is represented as “-* Then he goes to the page
“gudukbay/css65index.html, and then “/~gudukbay/cs565projed_list/projed.htm”
conseautively. Each of these two pages is retrieved by following the links on the
previoudly retrieved pages. We draw this conclusion just by looking at the Referrer
field of the corresponding accesses. But the Referrer field of the fourth request made
by the user shows us that the user has clicked two times on BACK button of the
browser and returned badk to the page “/~gudukbay/home.html”. Then the user
retrieves the page “/cs466index.html”. So the navigation of the user through the web
site by clicking the BACK button could not be deteded by the server and recorded in
the server accesslog. Also, we may encounter with the common problems below due

to the proxy servers.

. Sngle IP addressMultiple Server Sessions: Internet Service Providers (1SF)
typicdly have apool of proxy servers that users access the web through. A
single proxy server may have severa users accessng a web dite, potentially
over the same time period.

. Multiple 1P address/'Single Server Session: Some ISPs or privagy tools
randomly assgn eadt request from a user to one of several |P address. In this
case, asingle server sesson has multiple P addreses.

CHAPTER 3: NEXTPAGE 41

. Multiple IP address/Single User: A user that accesses the web from different
madines will have adifferent 1P addresses from sesson to sesson. This makes

tradking repea visits from the same user difficult.

. Multiple Agent/Sngle User: Again, a user that uses more than one browser,

even on the same madine, will appea as multiple users.

In such cases, the IP addressrearded in the log file rresponds to the proxy
and not to the user. Note that more than one user can be using the same proxy to
browse the same dite & the same time. So, the unique users must be determined
before gplying data mining tedhniques. There ae some techniques available used
for determining the unique users. One of these tedhniques is the use of cookies to
tradk an individual user within a ste. If cookies are enabled, when a new user
requests a document, the response includes a unique user identifier, which the
browser stores in the user’'s hard dsk. All subsequent requests made by the browser
to that same site will i nclude the aokie information and therefore, allow the service
provider to reagnize the user. However, the use of cookies is only possble with the
user’s consent and its use has raised privacy concerns.

Another way to identify the unique users and also be used in our web usage
mining system is to use “Agent” field of the entry. Even if the IP addressis the same,
if the Agent field of the entry shows a dange in browser software or operating
system, a reasonable aumption to make is that ead different agent type for an IP

addressrepresents a different user.

By taking al criterions discussed above into acount, we derived an
algorithm shown in Figure 3.8 to determine the sessons embedded in the log file. A
linked list model is used to hold all user sessons in the given log file. For the first
sesson in the accsslog file, a root node is creaed and al remaining sessons are
added to thelist.

CHAPTER 3: NEXTPAGE 42

[1] For each entry in the given log file

[2] If the entry isvalid

[3] Assggn ldentity, Target, Referrer, Time and Agent information
[4] For ead Identity and Agent pair do

[9] Seach “Sesgon List” for the given “Identity and Agent” pair
[6] If an open sesson belonging to the given “ldentity and Agent” pair is
not found
[7] Crede anew open sesson
[8] Owner of the sesgon < (Identity and Agent)
[9] Starting time of the sesson < Time
[10] First accessof the sesson< (Referrer and Target)
[17] End If
[12] Else
[13] If Referrer is “-*
[14] Close the open sesson
[15] Crede anew open sesgon and load all data to the new sesson
[16] End If
[17] Else
[18] If Referrer isin the Page List of the sesson
[19 If (Time- Starting Time of the Sesson) > 30
[20] Close the open sesson
[21] Crede anew open sesgon and load all data to
the new sesson
[22] End If
[23] Else
[24] Add Target into List Page of the sesson
[25] num_of pages ++;
[26] End Else
[27] End If
[28] Else
[29 Close the open sesson
[30] Crede anew open sesson and load all data to the new
sesson
[31] End Else
[32] End For
[33] EndIf

[34] End For
Figure 3.8: Algorithm used for sesson identification
Eadh node in the list generally consists of four fields which are the owner of
the sesson (ldentity and Agent fields), the number of the pages in the sesson
(number_of _pages), the pages accessd in the sesson (Page List) and a flag
representing whether the sesson is open or not. Also an extra field for eat page in

CHAPTER 3: NEXTPAGE 43

the sesson (time _spent) which is espedaly used by Recommendation Engine is

kept.

Firstly, the entry is processed to dbtain whether it consists of irrelevant items
(Line 2) or not. It is eliminated if it is not avalid page request; otherwise it is used as
an input to the dgorithm.

Since the users can be uniquely identified by using the “Agent” field of the
entry, the owner of the sesson is indicated with “ldentity and Agent” pair for eat
node in the list. The process of sesson identification begins with the seaching
“Identity and Agent” pair in the avalable sesson list whether there is an open
sesson or not belonging to the mentioned “ldentity and Agent” pair. The most
important fador here is to find an open sesson belonging to the visitor. Here, open
sesson means that it has not been finished yet and still continues. While the sesson
list is updated with the new entries, there may be some sessons belonging to the
same visitor that have been finished. If an open sesson belonging to the “ldentity
and Agent” pair is not found, then a new sesson node is creaed and linked to the last
node (Lines 6-11). An example is given with a fragment of sesson list as depicted in
Figure 3.9 to make understanding easier. The first box of the sesson nodes $rown in
the figure represents the owner of the sesson while the second one is for “flag”
which is used for determining whether the sesson is open or not; “0” for open
sessons, “1” for closed sesgons. Asauming that a page whose owner is “A” will be
inserted into sesson lig, firstly sesson list is ached for a node whose owner is
“A” with flag “0”. The sesson list has two nodes belonging to “A”, but their flag is
“1" meaning that they have been finished before. In that case, a new node belonging
to “A” iscreaed and linked just after the last node whose owner is“A”.

CHAPTER 3: NEXTPAGE 44

Figure 3.9: An example illustrating the creation of a new session node

At this point, there are two contingencies related to the number of pages that
must be added to the Page List of the session. The Referrer field used for accessing
to any page in the site may be empty or has any page. As discussed above, if the
Referrer field is empty, it means that the visitor types the full path of the page
directly into the address box of the browser and it is also acceptable in every step of
the algorithm to finish an open session and create a new open session. In these cases,
a new session node is created and the Target Page is added into the Page List of the
session and the number_of pages, is set to 1. As a result, the sesson node has its
owner, one page in the Page List and the number_of pages, is equal to the 1.

Otherwise, if the Target Page is accessed by using the cache copy of the page
in the Referrer field at any time, a new session is created. He firstly requests the page
in the Referrer field, but after retrieving a number of pages, he comes back to the
page in the Referrer field. Because the pages used to get back exist in the cache, the
web server cannot be aware of these requests, so this transactions do not include in
the log file. This stuation must be taken into consderation to eliminate the
disadvantage of using cache pages, so we put the page in the Referrer field as the
starting page and then the page in Target field is added into the Page List. Because
we have now two pages in the Page List in the session, then the number_of pagesis
Set to 2.

CHAPTER 3: NEXTPAGE 45

Becaise our main ideais to recommend the pages, which have been spent
more time than the others to the user, we dso load the time information of the page
requests into the sesson node. The time spent on the page is cdculated by just
subtrading the accestime of the adive page from that of the page one before and
put it into the “time_spent” field of the page requested.

If any open sesson belonging to the “Identity and Agent” pair is found in the
Sesgon list, then the first step is to chedk the Referrer field of the entry whether it
has any page or empty (Lines 13-16). As explained above, if the Referrer field is
empty, we asume that a new user sesson begins. In these situations, the sesson
found is closed by changing the flag to “1” and a new sesson node is creded for the
visitor and added to the node dosed just before. After creding the new sesson, all
work explained in case of having no open sesson in the sesson list for any visitor is
done for the adive sesson rode. If the Referrer field of the entry is not empty and
contains a page, then we dhed the page in the Referrer field whether it exists in the
Page List of the sesson or not (Lines 23-26). That the page in the Referrer field is
the same & the last page in the Page List of the sesson means that no badtrading is
made and the page in the Target field is added to the Page List. After adding the page
to Page List of the sesson, the time_spent of the previous page in the Page List is
cdculated and the number_of _ pages is incremented by 1. If the page in the Referrer
field is not the same & the last page in the Page List of the sesson, which means that
the visitor did not follow a link placel on the previoudy retrieved pege, the
algorithm takes the necessary adions to handle badtrading. At this point, what is
known is the page in the Referrer field for the aurrent access So, the adion should
be taken is to perform a backward seach in the Page List of the sesson. Whenever a
page is found, the seach operation terminates. We have discussed that the time
threshold for a sesson is approximately 30 minutes. If the difference between the
time of the first page of the Page List and the time of the adive page is more than 30
minutes, then that open sesson is closed and a new sesson node is creded (Lines
19-22).

CHAPTER 3: NEXTPAGE 46

The last contingency in the session identification is that the page in the
Referrer field is not in the Page List of the session. At this point, the session found is
closed and a new session node is created (Lines 28-31).

At the end of processing al entries in the given log file by Log Analyzer
module, an adjustment must be made on the sessions created before storing the
session information into the Result File. One of the reasons for this adjustment is that
the time spent value of the last pages in the Page List of the sessions can not be
calculated because the session terminates in that page (the visitor exits the site in that
page) and we can not have any chance to know how much time the visitor spent on
that page before leaving the ste. One assumption may be that the user has found
what she’he wants on the last page and then left the site. But the other assumption
may be that the visitor has tried to find what she/he wants, but he could not have
achieved to reach her/his goal and he may have accepted to leave the site at the last
page of the session. So, by taking into the consideration the latter assumption and
because we also have no idea about the time spent on the last page, we decided to
discard the last page accesses from the sessions before storing.

Another reason is that some sessions may not hold enough information about
the user navigation. Some sessions sometimes hold at most one page in their Page
List meaning that the user starts surfing in a particular page and leaves the site

without going further pages.

The other reason is that the difference between the starting time of some open
sessions and the time of the last entry in the log file processed may exceed the time
threshold assigned for the session. So at the end of the execution of the session
identification module, the open sessions exceeding the threshold must be closed by
the adjustment procedure before storing and indexing. The elimination of the
sessions is done by the Eliminate_Session algorithm shown in Figure 3.10

CHAPTER 3: NEXTPAGE 47

[1] For ead sesson in the Sesson List

[2] If Flag=1

[3] If num_of pages=1

[4] control < TRUE

[5] Discad the page in the Page List

[6] End If

[7] If num_of pages=2

(8] control < TRUE

[9] Discard both pagesin the Page List

[10] End If

[11] If num_of pages> 2

[12] Discad the last page in the Page List

[13] Deaement the num_of pagesby 1

[14] End If

[15 End If

[16] Else (If Flag=0)

[17] If time threshold is excealed

[18] Process the Lines (3-10) for ead sesson that satisfies the IF
condition

[19 If num_of _pages >2

[20] Discad the last page in the Page List

[21] Deaement the num_of pagesby 1

[22] Flag&1

[23] End If

[24] End If

[259] If control=TRUE

[26] Delete the sesson node

[27] End If

[28] End For

Figure 3.10: Algorithm Eliminate_Sesson

In this algorithm, al sesson nodes in the sesson list are passed one by one to
control whether it satisfies al conditions necessary for sesson identification or not.
We have discussed that if the flag of a sesgon node is 0 then it means that the sesson
is gill open. If the flag of the sesson node processd is 1 (closed sesgon), we dedk
the number of pages in the Page List .If the number of pagesis lessthan two (Lines
3-10), we discard these pages from the Page List and we a3gn TRUE to the variable
“control” which will be used for deleting the sesson node if necessary. If the number

CHAPTER 3: NEXTPAGE 48

of pages is more than two pages (Lines 11-14), we discad the last page from the
Page List and deaement the value of num_of pages by 1.

If the sesson chedked is gill open, we ntrol whether it exceals the time
threshold or not. In the cae of excealing the time threshold, we gply the processin
the lines (3-10) for the sesson node. But if the number of pages in the Page List is
more than two pages, we just discard the last page in the Page List of the sesson,
deaement the value of num of pages by 1 and then we dose the sesson hy
changing flag variable to 1. At the end of the dgorithm if “control” variable of the
sesson node is assgned to TRUE, we delete that sesson node from the sesgon list

becaise it does not anymore hold enough information for the sesson identification.

There is an important point that must be discussed here. Some sessons (il
continue however we have processed al entries of the given log file. We open acces
log file to be processed for a while to read the entries until the end of the file, but the
web server ill continues to put entries into the log file due to the requests. We ae
not aware of these requests during the exeaution of the module and this request
information may be related to the sessons that are not completed. So we must take
this fad into acount. We store dl finished sessons into the Result file & the end of
the sesson identification. The remaining unfinished sessons $wow us that they are
not completed and must be kept in somewhere to load them into the sesson list just
before processng the entries of the accsslog file of the next day.

S0, Log Analyzer module is designed to ke al unfinished sesgons in afile
cdled as Sesson File. After storing all terminated sesson information into the Result
file, we store the remaining unfinished sesgons into the file with al information
about the sessons, the owner of the sesgon, the number of pages in the sesson and
the pages in the sesson. If Sesson File ocontains one or more unfinished sesson
information belong to one day before, then these sessons are loaded into the sesson
list just before the processng of the entries in the log file & every exeaution of the
Log Analyzer module.

CHAPTER 3: NEXTPAGE 49
,,,,,,,,,,,,,,,,, >
m{{ Agent Flag num of pages
12.23.54.10 Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0) 1 5
Page : Time Spent
I~david/deryalywc.html 41
/~david/derya/members/main.htmi 8
—> /~david/derya/members/newappl.html 172
I~david/derya/storybks.htm 9
/~david/derya/stories.htm 1
Identity Agent Flag num of pages
12.107.64.131 Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0) 1 3
Page : Time Spent
/~david/derya/storys5/story6254.htm 3
L——Pp| /~david/deryastorieshtm 5
/~david/derya/storys6/story6526.htm 158
I dentity Agent Flag num of pages
12.107.64.131 Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0) 0 3
Page : Time Spent
/~david/derya/caution.htm 5
—} /~david/derya/sstories.htm 10
I~david/derya/sstorysl/story6468.htm 42
I dentity Agent Flag num of pages
16.132.fl1.ip.foni.net Mozilla/4.0 (compatible; Windows 98) 1 4
Page : Time Spent
I~guvenir/CATT 134
L——Pp| /~guvenir/CATT/TalkingPictures 1
I~guvenir/CATT/TalkingPictures/ev.html 54
I~guvenir/CATT/TalkingPictures/evTest.html 59
,,,,,,,,,,,,,,,,,, >

Figure 3.11: A fragment of the sessions created

CHAPTER 3: NEXTPAGE 50

The flag variable of the sessions loaded from the Session File is set to O
meaning they are still open. In other words, the unfinished sessions are stored into
the Session File at the end of every execution of the Log Anayzer module and the
unfinished sessions generated by the module one day before are loaded at every start
of execution of the module into the session list. A smal fragment of sessions
generated by the module is shown in Figure 3.11.

3.1.4 Classifying I dentity Information

As described above, the first field of the entry of the access log file is either an IP
address or a FQDN of the visitor who requests a page from the web server. The
details of the identity information will be discussed in the next section.

3.1.4.1 IP Addresses

In an IP network, each computer is alocated a unique IP address. In the current
version of IP protocol, IP version 4, an IP address is 4 bytes. The addresses are
usually written as x1.x2.x3.x4, with x1, x2, x3 and x4 each describing one byte of the
address. For example, address 16843009 (hex 1010101) is written as 1.1.1.1, since
each byte of this address has a value of 1.

Since an address is 4 bytes, the total number of available addresses is 2°2 =
4,294,967,296. This represents the TOTAL theoretical number of computers that can
be directly connected to the Internet. In practice, the rea limit is much smaller for
several reasons.

Each physical network has to have a unique Network Number, comprising
some of the bits of the IP address. The rest of the bits are used as a Host Number to
uniquely identify each computer on that network. The number of unique Network
Numbers that can be assigned in the Internet is therefore much smaller than 4 hillion,

CHAPTER 3: NEXTPAGE 51

and it is very unlikely that al of the possble Host Numbers in ead Network Number

are fully assgned.

An addressis divided into two parts: a network number and a host number.
The ideais that al computers on one physicd network will have the same network
number - a bit like the stree name, the rest of the aldress defines an individual
computer - a bit like house numbers within a stred. The size of the network and host
parts depends on the dass of the aldress and is determined by address network
mask. The network mask is a binary mask with 1sin the network part of the address
and Oin the host part.

To dlow for a range from big networks, with a lot of computers, to small
networks, with a few hogsts, the IP address paceis divided into 4 classs, cdled class
A, B, C and D. The first byte of the aldress determines which class an address
belongs to:

+ Network addresses with first byte between 1 and 126 are dass A, and can
have dout 17 million hosts ead.

+ Network addresses with first byte between 128 and 191are dassB, and can
have dout 65000hosts ead.

+ Network addresses with first byte between 192 and 223are dassC, and can
have 256 hosts.

+ All other networks are dass D, used for spedal functions or classE that is
reserved.

Most classA and B addresss have drealy been adlocated, leaving only class
C avallable. This means that total number of available aldresses on the Internet is
2,147,483 774 Each major world region hes an authority that is given a share of the
addresses and is responsible for alocaing them to Internet Service Providers (ISFs)

CHAPTER 3: NEXTPAGE 52

and other large customers. Because of routing requirements, a whole class C network
(256 addresses) has to be assigned to a client at a time; the clients (e.g.. I1SPs) are
then responsible for distributing these addresses to their customers.

While the number of available addresses seems large, the Internet is growing
at such a pace that it will soon be exhausted. While the next generation IP protocol,
IP verson 6, dlows for larger addresses, it will take years before the existing
network infrastructure migrates to the new protocol.

Because IP addresses are a scarce resource, most Internet Service Providers
(ISPs) will only allocate one address to a single customer. In mgjority of cases this
address is assigned dynamically, so every time a client connects to the ISP a different
address will be provided dynamically. Big companies can buy more addresses, but
for small businesses and home users the cost of doing so is prohibitive. Because such
users are given only one IP address, they can have only one computer connected to
the Internet at one time. With a Network Address Trandator (NAT) gateway running
on this single computer, it is possible to share that single address between multiple
local computers and connect them all at the same time. The outside world is unaware
of this division and thinks that only one computer is connected.

3.1.4.2. Fully Qualified Domain Names

A FQDN is that portion of an Internet Uniform Resource Locator (URL) that fully
identifies the server program that an Internet request is addressed to. The FQDN
includes the second-level domain name (such as "cs.hilkent.edu.tr") and any other
levels (for example, "www.cs.bilkent.edu.tr" or "www.bilkent.edu.tr"). The prefix
"http://" added to the Fully Qualified Domain Name completes the URL.

DNS (Domain Name Server) is an Internet service that trandates the name

into the corresponding IP address. For example, the domain name

CHAPTER3: NEXTPAGE 53

“ patara.cs.bilkent.edu.tr” might be trandated to 13917921.122 The DNS system

is, in fad, its own network.

When a page is requested from web server, web server asks the DNS server
belong to the network whether it has information about the dient’s IP address If
DNS has information about the IP address it trandates the IP addressto its FQDN
and returns it to the server. If the DNS server does not know how to trandate a
particular domain name, it asks it to the upper DNS, until the wrred IP addressis
returned. The web server puts the FQDN returned from DNS to the “Address or
DNS’ field of the entry. If any information returns from the DNS servers belong to
the network, then the web server putsjust its IP addressto the entry.

FQDNs sould have & least two fields. Different from | P addresses, the fields
are ommposed of sequence of charaders where eab charader is ether a digit
between “0” and “9” or a letter between “a” and “z”. In that case, ead computer is
asociated with a domain name acording to the predefined hierarchy built on the

domain names cdled as Domain Name Hierarchy.

Topmost level of the Domain Name Hierarchy is the root domain and the
nodes below the root contain the top-level domains, which are listed below. All

computers conneded to the Internet belongs one of these top-level domains.

* com: companies (http://www.amazon.com)

* edu universities (http:/bilkent.edu.tr)

* mil: military organizations (http://www.tsk.mil.tr)

* gov: government organizations (http://www.turkey.gov.tr)

e net: Internet Service Providers (http://www.php.net)

» org: nonprofit organizations (http://www.apade.org)

» aso an extra field is used to differentiate the wuntries such as tr, au,
uk, de dc.

CHAPTER 3: NEXTPAGE 54

Each top-level domain in the Domain Name Hierarchy has lower domains.
Domain Name Hierarchy can also be represented by a hierarchical tree structure
where each node of the tree represents a domain name. The nodes except the leaves
of the tree contain the name of genera domain. All computers connected to the
Internet reside at the leaves in that tree structure. The FQDN can be acquired by
following the path belong to the computer from bottom to top and by concatenating
the values of the nodes on the path. The number of computers connected to a general
domain is more than the number of the computers connected to the lower domain of
itself. A small portion of this tree structure can be depicted in Figure 3.12.

Root
org com tr mil edu
apache i\mazo gov edu mil com
— \
tcmb bilkent metu \tAsk
£
Cs dorm
/ \
pcmill pcmil2

Figure 3.12: Domain Name Hierarchy

The top-level domains are assigned by the Internet Corporation for Assigned
Names and Numbers (ICANN). Their administrators manage the domains below the
top-level.

CHAPTER 3: NEXTPAGE 55

That the lowest domain containing the values “pcmill” or “pcmil2” seems at
the first domain identifier of the FQDN (pcmil2.cs.bilkent.edu.tr) is important for our
system and will be used as an indicaor of determining the parent domain.

3.1.5 Inserting I dentity I nformation into thetree

One of the am of the thesis is to reagnize the visitor by using its IP addressor its
FQDN and recommend them the pages they are redly interested based on their past
experiences. We dways want to get the identity information of the visitors in FQDN
to classfy them more spedficdly, but it is nealy impossble to get the identity
information always in their FQDN

A treestructure is constructed to hold the information about the visitors. The
am of holding the identity information on a tree structure is to make indexing and
creae an index file which will be used by the Recommendation-Engine to find the
start and the end position of the sessons belong to the visitor in the Result file. At
the same time, if the system has no idea doout the visitor, then treestructure finds the
parent domain of the visitor to make gpropriate recommendations without doing any
extra process Some identities either in IP addresses or in FQDN are given in Figure
3.13, to be used as an example to show how the treeis constructed.

As depicted in the figure, four of the identities (a, g, h, 1) are FQDN whereas
the others (b, ¢, d, e f, j, k, |) are IP addresses. Each part of the identity will be
represented by “domain identifier”. For example, when the identity “12.15116261"
is parsed, four domain identifiers are generated such as 12, 151, 162and 61 Becaise
IP addresses are formed by four octets, they always have four domain identifiers.
Domain identifier “12’ is in the first domain level and aso will be used for

determining the dassof the identity, domain identifier “151" is in the second level,

CHAPTER 3: NEXTPAGE 56

domain identifier “162’ is in the third domain level and domain identifier “61” isin

the fourth domain levdl.

a gregory.excite.com b. 1215116261

C. 21713112873 d. 21713113371

e 190175140228 f. 190175136238
0. b204d3dorm.bilkent.edu.tr h. j3016inktomi.com
i. |labb3064Qbcc.bilkent.edu.tr j- 19017811251
K. 21713114321 l. 1215116291

Figure 3.13 A series of identities

The first octet of the identity with IP addresses represents the topmost
domain, but the topmost domain is the last domain identifier of the FQDNs. The
insertion of the domain identifiers into the treeis made from the topmost domain to
lowest level domain. So, the parsing of FQDNSs is done badkward. The most
important fador affeding the height of the treeis the number of domain identifiers in
FQDNSs. For instance when the identity “gregory.excite.com’ is parsed, three
domain identifiers are generated such as com, excite and gregory respedively. But,
when the identity “b204d3dorm.bilkent.edu.tr” is parsed, five domain identifiers are
generated such as “b204d3, “dorm’, “bilkent”, “edu’” and “tr” respedively. As
discussed above, the topmost domain of the first example is “com” whereas that of
the other is“tr”.

Firstly, the root and five nodes linked to the root node ae aeded as iownin
Figure 3.14. As described in 3.1.4.1, IP addresses can be cdegorized as Class A,
Class B, Class C, Class D, Class E. Since Class E is assgned for future use, we
eliminated ClassE. To avoid a @nflict in future, we designed our system to classfy
the computers belong to ClassE into ClassD. We used four nodes (Node 1, Node 2,
Node 3, and Node 4) for identities in IP addresses and one node for the identities in
FQDN (Node 5).

CHAPTER 3: NEXTPAGE 57

Root

Node 1 Node 4
ClassA ClassB ClassC ClassD and E
g H_J
—
For theidentitiesin IP For theidentitiesin
addresses FQDN

Figure 3.14 Theroaot structure of the tree
All of the nodes in the treehave five fields.

Field 1. for the aldress of the node @ntaining the next domain identifier of the
identity

Field 2: for the aldress of the node cntaining the domain identifier of the other
identities in the same level.

Field 3: to hold the start index that is an indicaor of the beginning of sessons
belong to computer/computersin the node.

Field 4. to hold the end index that is an indicator of the end of sessons belong to
computer/computers in the node.

Field 5: the value of the domain identifier generated by parsing of the identity.

The dgorithm, Insert_Tree which is used to insert these identities into the
treg is $rown in Figure 3.15. The first step is to determine whether the identity is an
IP address (Line 2) or not. It can easily be deteded only by chedking eat charader
in the identity information. IP addresses are composed of sequence of charaders
where eat charader is a digit between “0” and “9” wheress FQDNs may be
composed of sequence of charaders where eab charader is ether a digit between
“0" and “9” or aletter between “a” and “z”. If identity information hes at least one
aphabetic charader, we understand that the identity information isa FQDN.

CHAPTER 3: NEXTPAGE 58

[1] For ead unique identity in the given log file
[2] Determine the identity whether it isFQDN or IP address
[3] If identity is |P address

[4] Parse the IP addressforward to get domain identifiers

[5] Determine the dass of the identity by cheding the first domain
identifier of the IP address

[6] Find the node & the root assgned for the dass of the identity and
make this node adive

[7] End If

[8] Else

[9] Parse the FQDN badkward to get domain identifiers

[10] Find the node & the root assgned for the identities with FQDN, that
is, Node 5

[11] EndElse

[12] For eat domain identifier of the identity

[13] Seach domain identifier at the nodes attached to the adive node

[14] If node is not found

[15] Crede anew node for the domain identifier

[16] Put the node in appropriate placesatisfies the deaeasing order

of node values and make it adive node

[17] End If

[18] Else

[19 Make it adive node

[20] End Else

[21] End For
[22] End For

Figure 3.15: Algorithm Insert_Tree

Then, we parse the identity information. The difference between the parsing
IP addressand FQDN is the order of the domain identifiers. As discussed above, the
topmost general domain of the IP addreses sams at the first octet of the identity
information whereas it seans at the last domain identifier of the FQDN. An extra
work is not done for the IP addresses, but we reverse the identity information with
FQDN before parsing and inserting them into the tree For instance identity
information “190175140228’ is inserted into the tree & 190> 175> 140> 228
but the identity information “b204d3dorm.bilkent.edu.tr” is inserted into the tree &
tr > edu - bilkent> dorm - b204d3 respedively. The domain identifiers found
are then inserted to an array to be used in the insertion of the identifiersinto the tree

CHAPTER 3: NEXTPAGE 59

If identity information is an IP address the dass it belongs is found by
chedking the value of first octet as siown in Figure 3.16. After deteding the dassof
the identity, the node where the domain identifiers of the identity will be inserted is
found. If the identity information as a FQDN, then Node 5 is ®ached becaise Node
5isassgned for the identities with FQDN.

Value = Firgt octet Class Node to be searched
1 <=vdue <=127 ClassA Node 1
128<value <=191 ClassB Node 2
192< vaue <=223 ClassC Node 3
224< vaue <=255 ClassD Node 4

Figure 3.16: Clasgficaion of the |P addresses

After the dass node of the identity is found, then ead domain identifier in
the aray is inserted into the tree The value of first domain identifier is ached in
the first level of the sub treelinked to one of the dass node. If class node has no
node, a new node is creaed by assgning the value of domain identifier to the node
and is linked to the dassnode. Then the node aeded is assgned as “adive”. If there
exists me nodes, a seach operation is made on these nodes to obtain whether the
value of the domain identifier exists or not. If seach operation is negative, then a
new node is creaed by assgning the value of domain identifier to the node and is
linked to appropriate node that satisfies the increasing order of the domain identifiers
in the same level. Then the node aeded is made adive. If seach operation is
positive, the node found is made acive. The insertion of the remaining domain
identifier is made by seaching the value of domain identifier in the nodes linked to
the acive node respedively.

Insertion of ead domain identifier into the treeis made in such away that the

seach is completed in the least time. For the IP addresses, since eab domain

CHAPTER 3: NEXTPAGE 60

identifier of the IP addresses is between 0-255 ead node & the levels has 255 lower
nodes conneded, so the seach operation on a level is made on 255 nodes. Insertion
of all domain identifiers of the identity into the treeis done & most 4 (seaching to
find the Class Node) + 255 (seaching to find the placein the first Level) + 255
(seaching to find the placein the second Level) + 255 (seaching to find the placein
the third Level) + 255 (seaching to find the placein the fourth Level) = 1024in the

worst case.

The number of nodes on ead level changes dynamicdly due to the number of
domain identifiers of the identities found at the end of parsing the identity. One of
the identities in FQDN may have 3 domain identifiers as in “gregory.excite.com” or
may have 5 domain identifiers in “b204d3dorm.bilkent.edu.tr”. Generally, the time
spent for the insertion of domain identifiers into the treeincreases from top to bottom
of the tree becaise the number of the domain identifiers at upper levels is lessthan
the number of the domain identifiers at lower levels. As diown in Figure 3.11, the
upper level of the sub tree @sgned for identities with FQDN consist of the topmost
domain values such as com, edu, gov etc.

A smal portion of the tree onstructed after the insertion of all identity
information given in Figure 3.13 into the tree is $own in Figure 3.17.All we
explained above can be seen in the figure. Node 1, Node2, Node 3, and Node 4 has
ead four level whereas the Node 5 has five levels. The depth of from the nodes
belonging to the IP addresss is datic, 4; the depth may be less or more than that
from the node 5. It is fad that the depth of the whole tree depends on any identity
information with FQDN having the maximum number of domain identifier.

CHAPTER 3: NEXTPAGE 61

3.1.6 Storing Session Information and I ndexing

The next phase of Log Anayze module is the process of storing the generated
sessons and the tree structure holding the identity information in such away to make
the runtime of Recommendation Engine & fast as possble to find the pages which
will be recommended to the user. Becaise our am is to find the pages to be
recommended in the least time without increasing the time of loading page into the
client’s madine. At the end of determination of the sessons and constructing the
treg we have two main structure used for storing and indexing. One of them is tree
structure & sown in Figure 3.17, and the other is ssson list as gown in Figure
3.11

There @mes an important ise related to creding the Result File and
updating the tree We dways have aResult File cntaining the sessons and an Index
File containing the start and end index of the sesgons in the Result File belonging to
the visitors that have been creaed one day before. At every exeaution of the module,
the treeis constructed just before the processng of the new entries in the acceslog
file to have an ability to know the start and end positions of the sessons in the Result
File belonging to the identities.

Becaise an identity may have no sesson in the day of the last exeaution of
the module, but al sessons of the identity belonging to prior days in the Result file
must be rewritten to the Result file. If the treeis not constructed ead time, then
some sessons belonging to an identity that has sme sessons before but not on the
day of the exeaution of the module may be loosed. We mnstructed the tree by the
help of the Index File aedaed one day before. The dgorithm, Construct_Tree used
for this processis siown in Figure 3.18.

CHAPTER 3: NEXTPAGE

62

Figure 3.17: Tree structure holding the identity information

dorm

Root
1 Top Most Level 2 3 4
12 First Level 190 217 com tr
151 Second Level 175 178 131 excite [—{ inktomi edu
162 Third Level 112 |4 136 140 128 133 143 gregory J3016 bilkent
61 o1 51 | | 238 || 228 73 || 7 21 |« Fouthiew | [
<« Fithiew > |

b204d3

CHAPTER 3: NEXTPAGE 63

[1] Open Index File

[2] FOR each entry (line) of the file DO

[3] Parse the entry to obtain identity, start and end index

[4] Apply the agorithm in Figure 3.15 for the identity obtained

[9] Put the start and end index variables into the node holding the last domain
identifier of the identity.

[6] End FOR

Figure 3.18: Algorithm Construct_Tree

Firstly, Index File created one day before is opened for constructing the tree
with the identities in the file. Each line of the file is processed to obtain the identity,
the start index and the end index. After processing the entry, the identity is loaded
into the tree as described in 3.1.5. For instance, assume that the first three lines of the

fileisasthesameasin Table 3.1

I dentity Start Index End Index
64.221.22.123 0 123321
66.223.142.27 123321 125623
66.21.22.121 125623 201237

Table 3.1: Example entriesin the Index file

As shown in the table, the first entries in the file belong to the Class A that is
assigned for the identities with the I P addresses due to the result of creating the index
file, which will be explained later. After executing of the algorithm described above
just for the first three entriesin the file, the tree shown in Figure 3.19 is constructed.

As shown in the figure, the start and end index values of the identities
representing the position of the sessions in the Result File belonging to the identity
are placed in the start and end index field of the nodes holding the last domain
identifiers of the identities which are aso the leaf nodes of the tree.

CHAPTER 3: NEXTPAGE 64

Root

e

Node 1

.

L |

L |

L |

L |
0 64 0 0 66 0
0 221 0 0 223 0 0 21 0
0 22 0 0 142 0 0 22 0
0 123 (12332 123321 | 27 | 125623 125623 (121 | 201237

Figure 3.19: The tree onstructed before the exeaution of the module

The “start index” and “end index” field of the intermediate nodes will be used
by the Recommendation Engine of the system to find the start and end index values
of the parent domain of the identity in the cae of having no pages to recommend
related to the past experiences of the visitor, so at that point the value of the start and
end index fields is st to 0.

At the end of the exeaution of the dgorithm, Construct_Treg atreeis formed
before analyzing of the acces log file. The other identity information that comes
aaoss during the processng of the entries in the log file is loaded into the tree
constructed and the treeis updated with these newly added identities.

After the determination of the sessons embedded in the accsslog file, the
sessons belonging to ead unique identity in the sesson list is gored in afile cdled
as Result File. Also, at the same time, the process of updeting the tree onstructed
before the exeaution of the module is done while storing the sessons into the Result
file. The dgorithm, Crede_Result_File, shown in Figure 3.20 is derived to store dl

CHAPTER 3: NEXTPAGE 65

information in the main memory to a permanent storage at the end of the execution
of the module.

Before storing the sessions into the file, we firstly pass the session list once to
determine the unique identities and update the tree constructed by the help of
algorithm shown in Figure 3.14 (Lines 1-3). If the identity information is found on
the tree meaning that it has some session information belonging to prior days, no
update operation is required on the tree. Otherwise, if the user visits the web site for
the first time that means she/he is new for the system, then the tree is updated with
the new identity information. The important point here is that the start and index
fields of the node holding the last domain identifier is set to 0. This property will be
used in the process of storing the sessons to differentiate whether the identity is
newly added or not.

After updating of the tree with the identities in the session list, the sessions
both in the session list and in the Result file are stored in a temporary file and the
contents of Result file are deleted. At the end, the temporary file created is then
renamed as Result File and is used for the execution of the modules in the following

days.

Traversing of all nodes in the tree is essential for the creating of Result File
and the Index File. (Lines 4-11) The traversing of al nodes in the tree can be
associated with the property of preorder traverse of the binary tree. Each sub tree
below the class nodes is taken as a tree for the traversing of all nodes, that is, firstly
the sessions belong to the identities under Class A category is stored and then Class
B, ClassC, Class D and at last FQDN Category, respectively.

As we discussed before, the domain identifiers of the identity with IP
addresses are inserted to the tree from top to bottom. As shown in Figure 3.16 and
Figure 3.18, the first domain identifier resides at the first level and the last domain
identifier resides at the fourth level which is also the level holding the leave nodes.

CHAPTER 3: NEXTPAGE 66

[1] FOR each unique identity

[2]

Update the tree constructed

[3] End FOR
[4] FOR each class node in the tree DO

[S]
[6]

[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]
[18]
[19]

[20]
[21]
[22]

[23]
[24]
[25]
[26]

[27]

If the class node is between 1-4
Determine the identity by concatenating the domain identifiers from
top to bottom
End If
Else If the classnode is 5
Determine the identity by concatenating the domain identifiers from
top to bottom
Reverse the identity variable acquired
End Else
FOR each identity in the tree Do
NEW_start_index < start point of the temporary file
If the node holding the last domain identifier of the identity has a start and
end index value different than O
Print all sessions between the start and end index in the Result file into
atemporary file
End If
Search the session list belonging to the identity
If any session exists
Print the sessions just after the sessions written into the same
temporary file
Delete session nodes belonging to the identity
End If
ELSE if the node holding the last domain identifier of the identity has a
start and end index value with the value of O
Print the sessions in the session list belong to the identity
End ELSE
NEW_end_index<end of the temporary file
Update the start and end index variables in the node holding the last domain
identifier with the NEW_start_index and NEW_end_index
Print identity, the start and end index values to the Index File

[28] End FOR

Figure 3.20: Algorithm Create Result_File

The identities below the Node 1,2,3,4 are acquired by concatenating the

domain identifiers from top to bottom. But, the identities acquired by the same way
below the Node 5 meaning that the identities are in FQDN are then reversed because
the domain identifiers of the identities with FQDN are inserted into the tree after

reversing the identity information.

CHAPTER 3: NEXTPAGE 67

After aqquiring a unique identity, the start and end index field of the node
holding the last domain identifier of the identity is chedked whether they have O or a
value different from 0. O in the index field means that the identity is newly added to
the treg so it has no sesson belong to the prior days. Otherwise, it has me sessons
in the Result File and these sessons must be rewritten to the file before storing the

new sesson information to the file.

The NEW_start_index variable is %t to the start position of the sessons in
the temporary file belong to the identity. It is O for the first identity to be processed
whereas it is the end postion of the sessons belong to the aitecalent identity
processd (Line 13). Each sesgon is written to the file with the owner of the sesson,
the number of the pages in the sesson and the pages accessed in the sesson. If the
variable in the start and end index fields of the nodes holding the last domain
identifier of the identity has a value different from 0O, then the sessons in the Result
file between the start and end index values are written to the temporary file. (Lines
14-16) After writing the sessons to the temporary file, the sesson list is ached
whether the identity has new sesson or not. If the identity has new sessons, then
these sesgons are alded to the file just after the last sesson belong to the same
identity. The sesson nodes written to the temporary file in the sesson list are then
deleted to make the next seachesin a smaller sesgon list. (Lines 17-21)

If the variable in the start and end index fields of the nodes holding the last
domain identifier of the identity is “0” meaning the identity is a new visitor for the
system and has no sesgon information in the Result file, so only the sesgons in the
sesson list is written to the temporary file. (Lines 22-24) After all sessons belong to
the identity are written to the temporary file, the NEW_end_index variable is %t to

the end position of the sessons in the temporary file.

At the end of the line 24 of the dgorithm we have the new start and end
positions of the sesgons belong to the eab unique identity. We store these new
variables into the fields of the node holding the last domain identifier of the identities

CHAPTER 3: NEXTPAGE 68

by exchanging them with the new indexes. Then, we write these index information

into the Index File to be used by Recommendation Engine.

3.2 Recommendation Engine

In this sdion, we present the Recommendation Engine designed and
implemented. Main goal of Recommendation Engine is to recommend next access
pages to the visitor based on their past experiences as fast as possble & a list that
can be reated by just clicking on the link. In the cae of having no pages to
recommend to the visitor based on her/his past experiences meaning that he/she visits
the web site for the first time and the system has no sesson information in the Result
file, pages that have been visited and spent more time by the identities belong to the
parent domain of the visitor are recommended because the behavior of visitors in the
same parent domain may also show the same trends with the visitor. As a result, the
success of the pages recommended depends on the level that the pages are
discovered. In other words, the success of the recommendation is high if the visitor
has ©sme sesson information in the system.

The Recommendation Engine works together with two parts. One of them isa
code written in PHP scripting language and the other one is a CGI program running
at the badkground. PHP is a scripting language similar to java script or visual basic
script language. The important differenceis that the ade written in PHP is processed
by the server, not by the dient. The code is embedded into an HTML page and the
web server processes this code before sending the page to the dient’s machine. The
am of PHP code embedded into the files is to get the IP addressor FQDN of the
vigitor, its agent and the name of the page which will be used by the online module to

produce gpropriate recommendation to the visitor.

The de written in PHP scripting language embedded in the HTML page
aqyuires the IP addressor FQDN of the visitor and agent who made the request for
the given page by parsing the environment variables of the mnnedion between the

CHAPTER 3: NEXTPAGE 69

client and the web server. The other information acquired by the PHP code is the
name and peth of the HTML page. The name and path of the document requested is
important because the system is designed for general usage. If this input were astatic
variable used in the program, there should have been a unique CGI program for eath
web page having the mentioned PHP code. Assuming that it is impossble and not
accetable in data mining concept, the name and the path of the page is given to the
program dynamicdly by the help of the PHP code. An example of HTML page with
PHP code is sown in Figure 3.21

<html>
<body>
{the other text and embedded objects are written here}
<? $filename =getenv (“PATH_INFO");
$computer=getenv (“REMOTE_USER”);
$agent = getenv (“BROWSER”):
pesghru (cgi.exe $filename $computer $agent)
2>
</html>
</body>

Figure 3.21: PHP script embedded into an HTML page

Client related information is asdgned to three variables in the HTML page
and are then sent to the CGI program cdled as FindPage running in the server as an
input. FindPage runs after getting a signal from PHP code and produces the
recommendation set. At the end of the exeaution of the FindPage, the pages to be
recommended to the visitor are placed at the end of the page in a table with a link to
the physicd position of the pages.

3.2.1 Discovery of the pages to be recommended

The main goal of the FindPage which is triggered by PHP code embedded in
the HTML page is to find the pages that the visitors have been spent the most time

CHAPTER 3: NEXTPAGE 70

just after the page requested. This processis performed by seaching the sessons in
the Result File by the help of the start and end indexes kept in the Index File.

The number of the pages to be recommended to the visitor can aso be
determined by the web master. The number of recommendation may be 1 or more
acording to the web master's dedasion. After FindPage is triggered, the program
produces the same anount of pages with the number of pages determined by the web
master. The FindPage implemented uses Index and Result File produced by the Log
Analyzer module. The dgorithm is $rown in Figure 3.22.

The input variables of the FindPage ae the identity information either in IP
Address or in FQDN, the Agent and the name of the document requested by the
visitor that were sent by PHP code in the HTML page. FindPage is triggered at every
accessto the page having PHP code.

[1] Construct the tree
[2] Update the start and index fields of the intermediate nodes

[3] Seach the identity whether it existsin the treeor not and load the Index_Table
[4] FOR ead index existing in the Index_Table

[5] Find the pages in the Result File based on the page requested

[6] Store them in Recommendation Table

[7] Sort the pages by time_spent

[8] If the num_of_found_pages > num_of recommendation break;

[9] End FOR

[10] If (num_of found_pages < num_of recommendation)

[11] Reocmmend the most time spent pages to the visitor to complement the
number of pagesto be recommend

[12] End If

Figure 3.22: Algorithm used in FindPage

First task done in FindPage is to construct the treebecause dl information
about the identity is gored on that tree We have discussed that the Log Analyzer
module outputs two main files, Index and Result File. FindPage uses the Index File
to creaethe tree and the Result File to discover the pagesto be recommended. The

CHAPTER 3: NEXTPAGE 71

algorithm Construct_Treeshown in Figure 3.17, constructs the tree The important
point at this gep isthat the start and end index values of the identities are loaded into
the nodes holding the last domain identifier of the identities. The start and end index
fields of the intermediate nodes are set to 0 as $1own in Figure 3.19. Then the start
and index fields of intermediate nodes are updated according to the start and end

index values of the nodes at one low level conneded to the node.

| dentity Start index End I ndex
pcmil 1.cs.bil kent.edu.tr 45321 56784
pcmil 2.cs.bil kent.edu.tr 56784 63298
pc501b.csbil kent.edu.tr 63298 75192
pppL40.bec.bil kent.edu.tr 75192 84567
pppl45.bec.bilkent.edu.tr 84567 92133
tahir.ef.bil kent.edu.tr 92133 98739
403a.¢f.bil kent.edu.tr 98739 99657

Table 3.2: Example identities with their start and end indexes

We will clarify this issue with an example by using the identity information
shown in Table 3.2. After inserting of these example entries into the treg they will be
placal at somewhere in the treeshown in Figure 3.23. (Line 1)

As down in the figure, al start and end index values are placel at the led
nodes. For instance, the sessons between the position 45321and 56784of the Result
File belong to the identity “pcmill.cs.bilkent.edu.tr” whereas the sessons between
the postion 92133 and 98734 of the Result File belong to the identity
“tahir.ef.bilkent.edu.tr”. Then, the value of the start index field of any intermediate
node is %t to the start index value of the first node cnneded to the mentioned node.
At the same time, the value of the end index field is %t to the end index value of the
last node @wnneded to the mentioned node.

CHAPTER 3: NEXTPAGE 72

— O

[o [[o]
|
[0 x| 0 |
|
[o [o J{ofwm[o }{ ofa [o]
92133	tahir	98739		98739	403a	99657			
75192	DDDl40	84567	‘	84567	DDDl45	92133			
45321	pcmill	56784	{ 56784	Dcmi	2	63298 }	63298	DCSOlb	75192

Figure 3.23: A part of the treewith the example entries

After updating the indexes, the treelooks like in the Figure 3.24. As dwown in the
figure, the start and end index fields of all nodes in the tree has a value minimum O or
maximum the size of the Result File due to the start and end index values of the dild
nodes conneded to the parent nodes. We can draw some anclusion by using the tree
above. For instance the sessons of the users belong to “cs.bilkent.edu.tr” in the
Result file exist between the position of indexes 45321 and 75192 whereas the
sessons of the users belong to “ef.bilkent.edu.tr” exist between the position of
indexes 92133and 99657

After constructing the whole treg the identity is ssarched on the tree(Line 3).
But before the seach operation, a table with two fields in eat row, one field for
start index and one field for end index value, is allocated and the size of the table
alocated is dependent to the number of domain identifier of the identity. The seach
operation on the treeis made from top to bottom.

CHAPTER 3: NEXTPAGE

73

Figure 3.24: The same part of the tree dter updating the index fields

45321 | tr 09657
I
45321 | edu | 99567
I
45321 | bilkent | 99567
I
45321 cs 75192 | 75192 | bec p2133 || 92133 | ef Ia9657
I_I
92133 | tahir 98739 |.] 98739 | 403a | 99657
75192 | ppp140 | 84567 |..-| 84567 | ppp145 | 92133
45321 | pemill | 56784 |--| 56784 | pcmil2 | 63298 |--o| 63298 |pcsOlb | 75192

If the identity is IP address then the dass node of the identity is found by

cheding the first octet of the identity as described before. Otherwise, if it is a
FQDN, the dass of the identity is clea, that is, Node 5. After determining of the

class node, the identity is sached in the nodes conneded to the dassnode of the

identity. The start and end index values of the nodes on the path until last domain
identifier of the identity is found are loaded into the dlocaed Index_Table to be used

in case of having no pages to recmmended to the visitor based on hisher past

experience. If the identity making the request is “pc501b.cs.bilkent.edu.tr”, the
seach operation is made on the path tr - edu - bilkent - ¢s - pc501b and the
start and end index values of these nodes is loaded into the Index_Table like in
Figure 3.25

CHAPTER 3: NEXTPAGE 74

Node “tr” > 45321 99657
Node “edu’ > 45321 99657
Node “bilkent” —-> 45321 99657
Node “cs’ -> 45321 75192
Node “pc501b” - 63298 75192

Figure 3.25: Index_Table

The seach operation in the Result File begins from indexes in the last row to
the indexes in the first row of the table. The start index with the value of 63298and
the end index with value of 75192 shows the position of sessons belong to the
identity “pc501b.cs.bilkent.edu.tr” and the first aim is to find the probable pages to
be recmmended in the sessons between these indexes. If no page is found to
recommend for the page requested, then the probable pages are seached between the
position of 45321 and the position of 75192 holding the sessons belong to the
identities conneded to “cs.bilkent.tedu.tr” with discarding the sedion seached
before.

[1] Open Result File

[2] Position the aursor to the start position of the sessons
[3] While the end position of the sessons

[4] Rea the entry and parse it

[9] If the entry represent a new sesson

[6] Rea the line and parse it to dbtain the name of page and the time
[7] If the page is the same & the page requested

[8] While the end of the adive sesson

[9] Load the page information into Recommendation Table
[10] End While

[11] End If

[12] End While

Figure 3.26: Algorithm Discover_Pages

CHAPTER 3: NEXTPAGE 75

This process continues until the number of the pages found satisfies the
number of recommendation determined by the web master. The search operation in
the Result File is done by the algorithm shown in Figure 3.26.

After the start and end index values are determined, the Result File is opened
and the cursor is positioned at the start index value. (Lines 1-2) Then each entry until
the end index is read and checked whether it has an indicator flag representing a new
session or not because the Result File is stored in such a way that each session is
separated with an indicator flag. (Line 5) If the entry contains that flag, al entries
between the entry containing the flag and the beginning of the next session are read
and parsed to obtain the name of the page (Line 6) to compare the page name of the
entry with the page requested. If comparison is positive then all pages and their
time_spent values until the beginning of the next sesson are stored in the
Recommendation Table (Lines 7-10).

Recommendation Table is designed as a linked list because the number of
pages found cannot be determined before. A memory allocation is made for every
page found and a new node is added to the list. These nodes hold the name of the
page, the number_of hits and the time spent value. If any page found for
recommendation exists in Recommendation Table meaning that it occurs twice or
more, the number_of _hits of the node holding the mentioned page is incremented by
1 and the time spent value is updated by calculating the average. The pages in the
Recommendation Table is sorted by their time_spent variable increasingly because

we are interested in the time spent of the pages for the recommendation,

If the number of the pages in Recommendation Table does not satisfies the
number of recommendation determined by the web master, then the search operation
continues for the indexes in the one upper row of the Index_Table. But before going
into this process, the pages in the Recommendation Table are stored in another list
that is used as a result set by FindPage and the pages in Recommendation Table are
deleted. Assuming that the number of pages to be recommended in the result set is 5

CHAPTER 3: NEXTPAGE 76

and the number of recommendation determined by webmaster is 10, we neal extra 5
pages. These five pages will be aquired by the process of the indexes belonging to
the parent domain of the identity. Of course, there may be found more than five
pages for the parent domain of the identity, but after sorting the pages found, we take
the first five pages in the Recommendation Table and add them to the result set to
complete the necessary number of pages for the recommendation. If the number of
pages found for the identity is adequate for recommendation, we do not do any work
for the indexes of the parent domain of the identity.

It is clea that the dgorithm exeautes in the least time if the number of pages
satisfies the number of recommendation determined by the Webmaster at the first
iteration of the dgorithm shown in Figure 3.22. In case of having not enough pages
for recommendation, the same processwill continue for the parent domain. Because
the indexes of the parent domain will cover wider segment of the Result File than the

segment of the identity, the processtime of the dgorithm increases.

Node “tr” - | 45321 | 99657 Node “tr” > 45321 | 99657
Node “edu” > | 45321 | 99657 Node “edu” > 45321 | 99657
Node “bilkent” = | 45301 | 99657 Node “bilkent” - 45321 | 99657
Node “cs’ > 45321 | 99657 Node “fen” = 0 0
Node “pc503" > 0 0 Nodedorm3042 > | 0
(a) (b)

Figure 3.27: Index_Table of the given identities

If an identity is not available on the tree meaning that the system has no
sesson information about her/him, the rows assgned for the domain identifiers that

CHAPTER 3: NEXTPAGE 77

could not be found in Index Table ae set to 0. For instance for the identity
“pc503.cs.bilkent.edu.tr”, the Index_Table will be & in Figure 3.27(a) and for the
identity “dorm3042fen.bilkent.edu.tr”, the Index_Table will be ain Figure 3.27(b).

The seach operation is done only for the indexes having a value different
from 0. For the identity “pc503cs.bilkent.edu.tr”, the first seach is done for the
parent domain of the identity (cs.bilkent.edu.tr) whereas for the identity
“dorm3042fen.bilkent.edu.tr”, the first search is done for the domain of the identity
(bilkent.edu.tr). In the first case, the sessons belong to the identities in
“cs.bilkent.edu.tr” domain, which is at one-level up, are seached for the probable
pages to be recommended. In the sewmnd case, the sessons belong to the
“bilkent.edu.tr” domain, which is at two-level up, are seached for the probable pages
to be recommended.

Chapter 4

Efficient Use of Resour ces

The most important task in all system is to use resources efficiently because there is
no resource that is not scarce. If the limit of the resources could not be taken into
account, the system designed becomes unusable in one day in future. So, all
resources to be used by the system must be considered as the most important factor

for the existence of the system

The system must use some resources efficiently such as the main memory,
the disk capacity and the time. As we discussed earlier, the size of log files grows in
an enormous rate. Sometimes the number of entries added to the access log file of the
web site becomes two or more times more than a normal day, especially on the days
the web site has an announcement for the visitors of the web site, for instance, the

announcement of the grades in a university.

4.1 Efficient use of the main memory

The efficient use of resources concept is related to Log Analyzer module of the
system because the most and dense work is done in that module. The Log Analyzer
module is generally designed to execute everyday to update the session information

kept in the Result File. The module can hold all information in the main memory for

CHAPTER 4: EFFICIENT USE OF RESOURCES 79

the entries belonging to one day. Assuming the system has been designed for general
usage, the module is configured to process all entries even in case of having more
entries that cannot be processed in one hop. The main steps of the use of man
memory can be depicted asin Figure 4.1.

[1] For each entry in access log file Do

[2] Check whether it is a valid request or not

[3] TOTAL_MEMORY_OCCUPATION =0and MEMORY_LIMIT =XX
[4] If the entry isvalid

[5] Insert the information to be used into the main memory

[6] TOTAL_MEMORY_OCCUPATION«
TOTAL_MEMORY_OCCUPATION + the size of the objects inserted
into the main memory

[7] If (TOTAL_MEMORY_OCCUPATION > MEMORY_LIMIT)

[8] Position< the position of the access log file

[9] Eliminate_Session_L.ist

[10] Update the Result File with the new finished sessions

[11] Delete the stored session nodes

[12] Update the Index file

[13] End If

[14] If there exists remaining entries in the access log file

[15] Process the entries after the Position variable by going on from
Line2

[16] End If

[17] Else

[18] Delete al objects in the main memory

[19] Exit the program

[20] End Else

[21] EndIf

[22] End For
Figure 4.1: Algorithm Use_Memory_Efficient
The space requirement in the memory for the objects used in our system can
be calculated by summing the object sizes at each allocation because most of them
such as a sesson object are created by dynamic memory allocation. So,
TOTAL_MEMORY_OCCUPATION is assgned for caculating the memory

CHAPTER 4: EFFICIENT USE OF RESOURCES 80

occupation. (Line 3) The variable as3gned is st to 0 at the beginning of the module
and for every objed that is loaded into the main memory during the exeaution of the
module; it is incremented by the size of the objed. (Line 6) The system operator
assgns an upper limit to another variablee, MEMORY _LIMIT. The module
configures itself in the cae of excealing the MEMORY _LIMIT. This configuration
is made by transferring the objeds loaded in the main memory to the permanent
storage and release the occupied space of the main memory. (Lines 7-12) The
module knows where it has gopped and finds the position of the accss log file
where the last entry proces=d. If there still exists remaining entries, the module

processes them asiif it starts for the first time.

4.2 Efficient use of the disk capacity

Because Log Analyzer module exeautes and filters all sesson information everyday
from the new entries in the accsslog file and updites the sesson information kept in
Result File, the size of the Result File grows everyday. If this fad is not taken into
consderation, the size of the Result file may read an unaccetable size that cannot
be hold in the permanent storage. The other important fador that must be taken into
acount to limit the size of the Result File is the speed of the exeaution of the
Recommendation Engine. This effeds the loading time of a page to the dient’s
madiine becaise the seach operation for the pages to be recommended is mainly
done in Result File. In other words, the speed of Recommendation Engine deaeases

while the size of the Result File increases.

The loading time of a page requested to the dient’s browser is very important
for al dynamic web applicaions. If the loading time increases due to the speed of the
dynamic content in the HTML pages, the visitor may be bored while the page is
being loaded and may leave the page before the page is loaded into the browser. So,
the system operator must choose the speal of the dynamic goplicaions embedded in
the HTML pages reasonable. There eist two important fadors affeding the speed of

CHAPTER 4: EFFICIENT USE OF RESOURCES 81

the Recommendation Engine designed. The possble caes of having no pages to
recommend to the visitor based on her/his past experience and the size of the Result
File. The former fador cannot be wntrolled, but the latter can be cntrolled by the
system operator.

We have discussed the first fador affeding the speed of the Recommendation
Engine dove. If an identity requesting a page from the web server is new for the
system meaning the system has no sesson information about the identity, the system
tries to find the pages that are accesed by the visitors coming from the parent
domain of the visitor and recommends the pages found to the visitor. For instance,
asuming that the identity “pcmil234.cs.bilkent.edu.tr” requests a page from the
server and is a new for the system, the Recommendation Engine will find the pages
which are accesd by the visitors belonging to its parent domain, which are in
“cs.bilkent.edu.tr” domain to make arecommendation to the visitor by searching the
sesson sedion in the Result File belonging “cs.bilkent.edu.tr” domain. It is fad that
the size of the sesgon sedion belonging to the domain “cs.bilkent.edu.tr” is greaer
than that belonging to the identity “pcmil234.cs.bilkent.edu.tr”, so the time spent to
find the pages in the sessons belonging to the visitors coming from the parent
domain is more than that belonging to the visitor itself. The system encounters with
these drcumstances frequently because there will be dways new identities for the
system.

When the size of the Result file reates an unacceptable size there cme
some questions that must be aswered such as how the size of the file can be
reduced. Another question may be “Do we delete whole sesson information or some
pages from the sesson information to reduce the size of the file?’ It was discussd
that the main asped of the thesis is to recommend the pages that the visitors have
been spent the most time to the visitor. For instance, after retrieving the page A, if
the visitor spends 24 seconds on page B in one sesson and spends 45 seconds on
page C in another sesson, we firstly recommend the page C first and then the page B

CHAPTER 4: EFFICIENT USE OF RESOURCES 82

to the visitor. We can draw the answer of the questions above from our main goal as
far as we discussed. The least interesting thing in the Result File is the page that has
been accessed by the visitor for avery small time period.

The main problem in this phase is to deted how many and which pages
should be diminated from the sessons. So, there must be a @mponent in the system
to hold some information about all pages in the web site in case of “forgetting” the
pages. The word “forgetting” means the dimination of some input which has no
effed on the accssof the system or have beaome uselessfor the system.

S0, the system is designed in such a way that it has an ability to configure
itself and to start the process of the dimination of the pages in the sessons
automaticaly that are discovered by the forgetting algorithm in the cae of excealing
the threshold predetermined for the size of the Result File. The forgetting is done by
the dimination of the pages, but there ae two circumstances that should be
lightened. Only two pages may form some sessons in the Result File. That is, the
vistor may have been requested a page and another page dter retrieving the first
page .At that time, she/lhe may have been deaded to exit. So, only two pages
retrieved by the visitor form the sesson. Asauming that one of the pages in that
sesson is the same & one of the pages discovered by the forgetting agorithm and
must be diminated to reduce the size of the Result File, the number of pages in that
sesson is deaemented by 1 and beames 1 after eliminating that page. The sessons
having only one page canot be acceted as a sesson anymore and must also be
eliminated. Sometimes, the visitor who has such a sesgon explained above may have
not have one more sesson information in the Result File. After eliminating the
sesson of the vigitor, there is no available information about her/his surfing in the
Result File anymore meaning that the index information about the visitor must also
be diminated. In other words, the dimination may begin with a single page, but it
may cause the dimination of the sesgon it belongs and even the index information of

the vigtor.

CHAPTER 4: EFFICIENT USE OF RESOURCES 83

The system operator determines an upper and lower bound for the size of the
Result File by taking some factors into account. When the size of the Result file
updated by the Log Analyzer module exceeds the upper bound, the forgetting process
takes into effect to reduce the size of the Result file to the lower bound. These
bounds are generally determined parallel to the speed of the Recommendation
Engine. The upper bound must be an acceptable limit that the speed of the
Recommendation Engine that uses the Result File to discover the pages to be
recommended to the visitor is as fast as possible. If that bound is determined too
small, the speed of Recommendation Engine may be fast because it searches on a
smal file to find the pages to be recommended but the success of the pages
recommended decreases because less session information can be kept in such a small
size file. The determination of the lower bound is related to the frequency of the
execution of the forgetting algorithm. If the lower bound is set to very close to the
upper bound, the probability of execution of the forgetting agorithm increases
because the gap between the lower and upper bound may be filled in a few days. Of
course, the elimination of the pages or sessions is not a desirable action because the
elimination of them is the deletion of some information about the visitor. So the
lower bound must be determined small enough to hold enough information about the
visitors and big enough which makes the speed of the Recommendation Engine
reasonable.

A Page Information_List is maintained to hold the information about the
pages in the web site in the execution of Log Analyzer module that will be used by
the Forgetting Algorithm. The name of the page, the number of hits and the time
spent on that page are dynamically stored into this list. The name of the pages in the
list is unique. The changing variables are the number of hits and the time spent .

There is an important point here to be clarified. However we are interested in
the time spent on the pages, some of the pages may be visited for a short period of
time which are redly important for the users. For instance, a page containing a grade

CHAPTER 4: EFFICIENT USE OF RESOURCES 84

list for the students of a university may be commonly visited for a short period of
time. They vigit that page just for looking at their grades and then leave it. According
to the assumption used in the thesis, that page must be classified as a navigational
page. But, that page is more important for the students than the other pages
especidly on the days after an exam or homework. So, there comes a problem with
that page about making it a content page.

In the light of these circumstances, the calculation of the spent time value of
such pages must be correlated with the number of hits on these pages. For instance,
assume that the page A containing a story has been visited just for once and the time
spent for that page is 50 seconds whereas the page B containing a grade list for the
students has been visited four times and the time spent for that page is 15 seconds for
each vigt. It seems as that the content page must be page A, not page B. But, page B
is more important than page A for the students because it has been visited much more
than page A on the special days. As a result, by making the calculation of spent time
value of the pages as shown in Figure 4.2, the viewing time of such pages is
increased due to the number of hits and as a result, its class changes from
navigational to content.

Number of hits (i) Duration Time Spent
1 10 0+10=10
2 20 10+20=30
3 15 30+15=45
4 55 45+55=100

Figure 4.2: Calculation of the time spent

Page Information_List is stored permanently in a separate file at every end of
the execution of the Log Anayzer module and loaded into main memory at every
beginning of the execution of the module. Besides, the list is updated with the next
new entry information in the access log file.

CHAPTER4: EFFICIENT USE OF RESOURCES 85

The “forgetting’ processis done by the dgorithm shown in Figure 4.3. The
first work done by the dgorithm is to ched the size of the Result File whether it
exceadls the threshold determined. If it is positive, the dgorithm starts the forgetting
process(Lines 1-2). The next step isto deted the pages to be forgotten and eliminate
them from the Result File to reduce the size of the file to lower bound. The page
information list is constructed and sorted by the time spent field deaeasing becaise
we try to forget the pages that the visitors have spent the least time. We have dso the
number of the occurrence of the pages in the Result File. (Lines 3-5) We start with
the first page in the list to determine the difference value, which is used to reduce the
size of the Result File. (Lines 6-10) So, by multiplying the number of occurrence
with the length of the name of the page, a difference value is cdculated. If this
difference vaue is enough to reduce the size of the Result File to the lower bound of
the Result File, the processof forgetting is darted. In the cae of having not enough
difference value, then the difference value is caculated again by incrementing with
the next page's difference value in the list until the exough difference value is
aqquired to reduce the size of the Result File to the predetermined lower bound. As a
result, we have alist of pages that have been visited for lesstime than that of the

other pagesin the site.

After determining the pages to be forgotten, the process of elimination of
these pages from the Result File starts. Main components of this processare the list
of pages to be diminated and the Result File. This processis done for al unique
identity in the Result File. Because the new sesson information must be stored in the
Result File dter forgetting the pages from the sessons belong to a unique identity
that means the index variables must be updated for ead unique identity. Besides,
sometimes we may have not enough sesson information about the identity after
forgetting which have been discussed in the dimination of the sesson sedion. In
these caes, the index entry for that identity must also be diminated from the Index
File because it has no sesson information in the Result File.

CHAPTER 4: EFFICIENT USE OF RESOURCES 86

[1] Filesize €size of the Result File
[2] If Filesize >Upper Limit

[3] Load the page information into the memory

[4] Sort the Page Information List by time_spent deaeasingly
[5] diff € 0

[6] For ead page in the page list

[7] diff & diff + (num_of _hit *strlen (page))

[8] Add the page to the Forget list.

[9] If (Filesize— diff) <= Lower Limit bre&k

[10] End For

[11] Open Result File

[12] For ead unique identity in the file

[13] Load Sesgon information into sesson list

[14] For Each Page in the Forget List

[15] If it existsin sesgon, delete from the sesson
[16] End For

[17] Store the new sesgon information and make anew indexing
[18] End For

[19) EndIf

Figure 4.3: Algorithm Forget

The important thing here is that the tree holding the identity and index
information is reconstructed and updited after ead forgetting process So, the root of
the treeis constructed before the beginning of the forgetting processand the treeis
updated with the identities that have enough sesson information after forgetting

process

The Result file is opened after constructing the Forget List. (Lines 11-18) By
starting the first identities in the file, the sesson information belong to the identity is
loaded into the sesson list in the memory. So, we have sesson information in the
sesson list just for a unique identity, not for al identities. The sesgon list may have
one or more sessons belong to the identity. After constructing the sesson list for the
identity, we ded al pages in the sessons whether it exists in Forget List or not.
That the page dhedked exists in Forget List means that the page must be diminated
from the sesson. This process is done for every unique identity in the Result file

until the end of thefile.

CHAPTER 4: EFFICIENT USE OF RESOURCES 87

After eliminating of the pages from the sessions, the identity information is
stored in the tree and the session information is stored in a new Result file. The
indexing process is done according to the new Result File created after forgetting
process. The size of the Result file automatically reduces to the lower limit
determined by the system operator at the end of the forgetting algorithm terminates.

After the forgetting process is terminated, note that all pages found to be
forgotten have been deleted from the Result File. As a result, the occurrence of the
pages and the time_spent variable in the Forget List are set to 0 and the file holding
the information about the pages in the web site is updated with these changed values.

Chapter 5

Evaluation

In this chapter, the results of the experiments conducted for determining the
applicability of the system will be demonstrated. Although, the system will work on
the web site of the CS department of Bilkent University, we close to run experiments
on a standalone computer because of the changing load of the UNIX systems to

obtain more accurate results.

The first experiment has been done to determine the effect of the
preprocessing phase. Remember that if a web page consisting of three images is
requested, the web server puts four separate entry into the access log file, one for the
page itself and the others for the images containing it. The system focuses only on
the entries containing HTML pages. So, as discussed before, a preprocessing
algorithm is applied onto the access log file before session identification to eliminate

these entries containing images.

We performed our experiments by using the access log file maintained by the
web server of the CS Department at Bilkent University. We had an opportunity to
evaluate the success of the results of the experiments by using real data, not
generated data. We have chosen a 10-day period fragment of the access log file as

the resource for our experiments.

CHAPTER 5: EVALUATION 89

Day Size of Log File Total Number of the Entries |Number of the Relevant Entry
1 1873976 9229 3769
2 5206384 26100 10929
3 4717906 24600 13255
4 3421910 16324 6525
5 5063804 26319 13547
6 5330442 24501 11802
7 5112256 23721 12821
8 3557033 17038 7247
9 4246646 20212 8136

10 4038749 19503 8139

Table 5.1 Test results of the Preprocessing Algorithm for 10-day period. Size
values are in byte.

Log Analyzer module runs automatically everyday at a predetermined time.
(especially when the load of the system is the minimum). At every execution, the last
entry processed is obtained and the module processes the newly added entries.

Table 5.1 shows the results for the execution of the preprocessing algorithm.
In this table, the second column shows the size of the access log files belong to days
shown in the first column meaning that the number in the second column of the i
row contains the size of the data added into the log file in the i ™ day. Third column
gives the total number of the entries in the access log files while the fourth one gives
the number of entries that are relevant for mining process.

It can be said that at least the half of the total entries contain irrelevant items
(e.g. pictures, sounds etc.) and sometimes this number may reach to 2/3 of the access
log file. Some of the existing web servers have an ability to eliminate irrelevant
entries before recording them in the access log file. For instance, the web server can
be configured as not to put entries including images or sounds or whatever. But,
unless such a configuration is available, a preprocessing agorithm like the one used
in our system must be applied to eliminate these irrelevant items.

CHAPTER 5: EVALUATION 90

The second experiment is conducted to determine the properties of the
sessions created. Table 5.2 shows the results of the experiment conducted for Session
Identification Algorithm. As discussed in 3.1.3, an elimination process is applied
onto the sessions created at the end of the execution of the Log Analyzer module just
before the storing the session information into the file.

We have discussed that the last access of the sessions are eliminated because
we cannot calculate the time spent on the last page. After discarding the last page
from the sessions, some sessions may not have enough information about the visitor
and must be eliminated.

Day | Total Session Eliminated Finished Unfinished
1 1103 791 225 87
2 2775 2004 633 138
3 2290 1717 394 179
4 2205 1603 367 235
5 2663 1951 408 304
6 2740 1978 407 355
7 2817 1975 420 422
8 2792 1939 386 467
9 2847 1869 456 522
10 2829 1806 472 551

Table 5.2 Test results of the Session Identification Algorithm

The second column represents the number of total sessions created at the end
of the execution of the Algorithm Session_ldentification. The number of the
eliminated sessions is shown in the third column of the table. The reason that the
number of eliminated sessions is high is that we are not interested in the path
completion or the number of pages on that path. It means that a session consisting of
only two pages may be important for a system based on the path completion, but it
must be eliminated for our system. In red life, most of the visitors begin surfing a
web site with a page in the site and then retrieves another page and at last they leave
the web site. So the sessions belonging to these kinds of visitors have only two pages
and do not have enough information for our system. Besides, some of the users begin

CHAPTERS: EVALUATION 91

to vigt the site in a page and leave the site without going any further pages. We do
not accept the sessons consisting only one page & a valid sesson, so these kinds of
sessons are diminated. By taking this fad into account, it can be said that the high

number of the diminated sessons can be acceted as reasonable.

Also, we have discussed that some sessons gill continue & the end of the
exeaution of the module and these sessons are kept in the Sesson File and then
loaded into the memory as “open” sessons just before the exeaution of the module
on the next day. These unfinished sessons are updated with the new entries and then
closed. The unfinished sessons in the i row of the table ae loaded into the memory
on the (i+1) ™ day and can be thought that they are included in the number of finished
sesgons on the (i+1) ™ row if and only if al of them are acceted as closed or not

eliminated sessons.

Because the identity information is the most important fador for the
presented model, an experiment is conducted to clarify the user identificaion
process The results of the experiment are givenin Table 5.3.

Day Num of identities Size of IndexFile Size of Result_File
1 147 5300 49630
2 512 19724 186316
3 739 28659 278560
4 944 37445 375926
5 1159 46043 485616
6 1376 54510 583341
7 1600 63415 680885
8 1807 71647 776893
9 2004 79536 913301
10 2224 88848 1024632

Table 5.3 Test results of the identity information and the size of the Index and
Result_File. Sizevalues are in byte.

The number in the (i+1)™ row of the seand column of the table represents the
total number of unique identities on the i day meaning that the total number of
unique identity at the end of the 10" day is 2224 The third column represents the

CHAPTER 5: EVALUATION 92

size of the IndexFile consisting of the identity information and their start and end
indexes indicating the position of the sessions in the Result_File. And the last
column represents the size of the Result_File consisting of all sessions belong to the
identities. The sze of the Index and the Result File are important for
Recommendation Engine because it uses these two files to generate a
recommendation set based on the session information of the visitors. The size of the
Result_File is more important than that of the IndexFile, so the size of the
Result_File must be chosen reasonable by the web master as discussed in Chapter 4.

The main phases of Log Analyzer module can be divided into four main steps
asshownin Figure 5.1
Step 1: Preprocessing Phase
Step 2: Constructing the tree at every beginning of the execution of the module
Step 3: Creating the sessions
Step 4: Storing the identity and session information

Figure 5.1 Main Phases of the Log Analyzer Module

Day Step 1 Step?2 Step3 Step4d
1 0,66 0 0,21 0,05
2 1,61 0,005 1,45 0,55
3 1,43 0,011 1,87 0,94
4 0,97 0,017 0,69 1,43
5 1,64 0,019 1,92 2,41
6 2,05 0,028 1,31 2,31
7 1,68 0,031 1,42 3,95
8 1,22 0,043 1,12 4,25
9 1,81 0,045 1,43 5,17

10 0,98 0,048 1,44 5,22

Table 5.4 Test results of each phase of the Log Analyzer module. Time
values are in seconds

CHAPTER 5: EVALUATION 93

The second column of the table shows the running time needed to perform to
determine whether the entries are valid or not as $own in the third and the fourth
column of the Table 5.1. By comparing the number of the “Total Entry” column in
Table 5.1 to the running time of preprocessng of these anitries, it is clea that the
running times of the entries are proportional to the number of total entry.

The third column of the table represents the time needed for constructing the
tree & every beginning of the exeaution of the Log Analyzer module. As discussed
above, the identity information is kept in a file cdled as IndexFile and this identity
information is loaded into main memory at every exeaution of the module just before
the processng the newly added entries. In the first day, the time is O becaise no
identity information is available for the previous days. As $own in Table 5.3, the
module processed the entries for 147 identities and stored this information in the
IndexFile with a size of 5300bytes. The value in the third column of the second row,
0.05 seq gives us the time needed to construct the treewith these 147 identities. The
time needed for constructing the tree with the identity information gathered in one
day before increases because the total number of the identities discovered increases
everyday. The time values for preprocessng are proportional to the size of the
IndexFile and the number of the identities in the IndexFile.

The fourth column of the table represents the time needed for creding the
sessons. The sesgons are aeded with the entries in the accss log file dter
eliminating the irrelevant items as iown in the fourth column in Table 5.1. The time
values are proportional to the number of the relevant entries in the accsslog file in
the same day.

The results indicate that the most significant time cnsumption occurs during
the exeaution of the fourth step. In the fourth step, al sessons creaed into the
Result_File and the time needed for this operation is given in the last column of the
table. As discussd in 3.1.6, before storing the identity and sesson information into
the file on the i™ day belong to the identity X, all sesson information belong to the

CHAPTER 5: EVALUATION 94

same identity in the Result_File created on prior days is firstly rewritten in the
Result_File and then the sessions created on the i day are added to the session
information. So, excessive numbers of 1/0O operations performed in this step make
the time needed for storing the identity and session information higher.

A sample fragment of IndexFile is given in Figure 5.2. A single entry in the
file represents the identity information, start index value and end index vaue. As
discussed in Section 3.1.6, IndexFile is created by searching all nodes of the tree.
Firstly, the start and end index values of the identities belonging to Class A are
written to the IndexFile, and then Class B and at last FQDNs. At the end of the
updating of IndexFile, the first section of the IndexFile is for the identities belonging
to Class A whereas the last section is for the identities belonging to the FQDNSs. The
identities shown in the sample fragment belongs to the Class A residing at the first
section of the IndexFile.

62. 60. 74. 123 22049 22225
62. 85. 56. 131 22225 22886
62. 98. 243. 73 22886 24062
62.108. 64.1 24062 24561
62.114. 36. 165 24561 24706
62.140. 2. 8 24706 25052
62. 235. 20. 22 25052 25492
62.248. 0. 161 25492 26140
62.248.17. 152 26140 26390
62.248.17. 194 26390 26484
62.248. 25. 2 26484 26642
62.248. 105. 102 26642 27293
62.251.172.26 27293 27421
63. 69. 85.2 27421 27674
63. 70. 129. 194 27674 27804
63. 83. 144. 159 27804 27987
63. 88. 160. 101 27987 28462
63. 97. 144. 96 28462 28772
63. 115. 16. 66 28772 28977

Figure 5.2 A fragment of IndexFile

CHAPTER 5: EVALUATION

95

The session information belonging to some identities (written in italic) in

Figure 5.2 is given in Figure 5.3. The first entry of the sessions indicates the Identity

Information/Agent pair and the number of the pages in the sesson. The remaining

entries in the sessions indicate the pages in the sessions and the spent time value of

the page.

*62.248. 105. 102 "Mozilla/ 4.0 (conpati bl e;
/ 4

/courses. htm 3

/ ~guveni r/ cour ses/ CS315 8

/ ~guveni r/ cour ses/ CS315/ pl. ht m 15

/ ~guveni r/ cour ses/ CS315/ p2. ht m 4
/ ~guveni r/ cour ses/ CS315/ hwl. ht m 8
/ ~guveni r/ cour ses/ CS315/ hw2. ht m 7
/ ~guveni r/ cour ses/ CS315/ hw3. ht m 7
/ ~guveni r/ cour ses/ CS315/ qui zzes. htm 7
/ ~ugur/ t eachi ng/ cs319 15

/ ~ugur/t eachi ng/ cs319/ outl i ne. ht m 6
| ~ugur/ t eachi ng/ cs319/ assi gnnent . ht m

/ ~endeni r/ cour ses/ cs35101/ cs35101. ht m
/ ~endeni r/ cour ses/ cs35101/ hwl. ht m 13
/ ~endeni r/ cour ses/ cs35101/ hw2. ht m 9

/ ~endeni r/ cour ses/ cs35101/ hw3. ht m 14
|/ ~endemi r/ cour ses/ cs35101/ gr ades. ht m

/ CS299 14

*62.251.172.26 "Mzilla/4.0 (conpatible;

/ ~erayo/wmr /cv. htm 141

| ~erayo/ wml / per sonal - dat a. ht m 7
*63.69.85.2 "Mzilla/4.0 (conpati bl e;

| ~akman/ j our - papers/air/air.htm 7

| ~akman/ j our -
| ~akman/ j our -
| ~akman/ j our -
| ~akman/ j our -

paper s/ air/nodel. ht m 10
paper s/ air/ node2. ht m 4
paper s/ air/ node3. ht m 16
paper s/ ai r/ node4. ht m 4

MSI E 6.0; Wndows 98; Wn 9x 4.90)" 18

29
21

23

MSIE 6.0; Wndows NT 5.1)" 2

MSIE 5.5; Wndows NT 4.0)" 5

*63.70.129.194 "Mozillal4.77 [en] (Wn9s; U" 3

| ~davi d/ derya/ ywc. ht m 127
| ~davi d/ t ywc/ ganes/ wgane?2 14
| ~davi d/ derya/ about . ht m 21

*63.83.144.159 "Mzilla/4.0 (conpati bl e;
| ~davi d/ deryal/ ywc. ht ml 187

| ~davi d/ derya/ keypal s. ht m 7

| ~davi d/ der ya/ nenber s/ newappl . ht m

331

MSIE 6.0; Wndows NT 5.1;

Figure 5.3 A Fragment of Result_File

i spl057;

@B12461) 3

Another experiment is conducted to determine the effect of the Forgetting

algorithm. Forgetting in our system has been described as to eliminate the pages that

were visited for a short time period in the case of exceeding the threshold value

predetermined for the size of the Result_File to use disk capacity efficiently. Test

results are shown in Table 5.5.

CHAPTER5: EVALUATION 96
Sizeof L Upper Lower Time Size of the Size of the Number of
9 Limit | Limit Result_File IndexFile I dentity
42569943 | 1200000 | 1000000 647 1024632 88848 2218
42569943 | 1000000 | 800000 651 721949 74464 1857
42569943 | 1000000 | 600000 656 492366 54238 1345

Table 5.5 Test Results of Forgetting Algorithm. Time values are in seconds
while the sizes are in bytes.

We have decided to utilize a larger log file for this experiment, so we have
chosen the same 10-day period access log file as awhole that has been also used in
other experiments. The size of the access log file is quite huge because it contains all
requests in along time period. The first row of the table shows the results without
exceeding the threshold shown in the second column. The reader is reminded that the
Forgetting Algorithm starts if and only if the size of the Result_File exceeds the
threshold predetermined. Because the size of the Result_File does not exceed the
threshold in the experiment shown in the first row, the module did not start the
Forgetting algorithm. In this experiment, 2218 unique identity information is stored
in the IndexFile meaning that the Result_File holds all session information belonging
to these 2218 identities.

Then, the Upper Limit has been lowered to make Forgetting Algorithm run
and it is set to the value shown in the second column of the third row. Two separate
experiments were conducted to see the effect of the algorithm by setting the Lower
Limit to different values. The difference between the time needed to process all
entries in the access log file without exceeding the threshold and that in case of
exceeding of the threshold is used to eliminate the pages discovered by the
Forgetting Algorithm from the Result_File.

Another important point here to be clarified is the decreasing number of the
identities. As discussed in section 4.2, if an identity has no more session information
after eliminating the pages that are found by the Forgetting Algorithm to reduce the
size of the Result_File from the sessions belong to the identity considered, then this

CHAPTER 5: EVALUATION 97

identity is also discarded from the IndexFile. So the number of the identitiesin the
IndexFile deaeases due to the threshold determined for the Lower Limit. This
stuation also affeds the size of the Result_File dter processng the Forgetting

Algorithm.

A sample output of the Recommendation Engine is given in Figure 5.4. As
shown in the figure, the Recommendation Engine has been exeauted for the page
“/~guvenir” for the identity “pcmil2.cs.bilkent.edu.tr” making the page request. The
recommended pages have been found acmrding to their spent time values. Also, the
sample output shows the dfed of BACK button. For instance, assuming that the
page “/~guvenir” has been reated after the page “/csfaaulty”, the visitor has deaded
to go to the page “/~aykanat” by clicking BACK button to return the page
“/csfaaulty” and then clicking on the link of the page “/~aykanat”

H. Altay Glvenir

Professor, Chairman
Department of Computer Engineering
Bilkent University

Ankara, 06532 TURKEY

Email: guvenir@cs. bilkent.edu.tr
Phone: +290 (312) 290 1252
Fax: +90 (312) 266 4047

Research interests: Artificial Intelligence, Machine Learning and Data Mining.
Research: Publications, Projects, FunApp Repository, Software, ML Group

Teaching: Courses, Schedule, Theses Supervised

Professional: Activities, vita

|1 .. http:/ fvrrvr .cs.bilkent.edu.b-/ ~~guwenir /publications.html

|2 .. http:/ fvmrer . cs.bilkent.edu.b-/ ~~guvenir /projects .html

|3 - http:/ fvrwer .cs.bilkent.edu. b/ ~guvenir /softwrare himl

|4 . http:/ Svrervr o5 bilkent.edu. b/ ~aknan ftalks fcil

|=.5 . htip:/ ferwrwr .os.bilkent.edu. -/

|6 .. http:/ /vrverer o5 bilkent.edu. v/ ~~guvenir /courses /L5313

|7 .. http:/ fver .cs.billkkent.edu. b/ ~guvenir /courses

|8 .. http:/ fvorer o5 bilkent.edu. b/ ~~guwenir /courses /L5558

|‘_l . http:/ fvrervr .cs.bilkent.edu. -/ ~guwenir /courses /C55350

|1l] . http:/ fwvnw o5 bilkent.edu. v/ ~aykanat

Figure 5.4 A Sample Output of the Recommendation Engine

Chapter 6

Conclusions and Future Work

In this thesis, we have presented a new usage based persondization system. The
system developed has two main modules, Log Anayzer and Recommendation
Engine. Log Analyzer runs off-line to mine the access log file to determine the the
user and session information. The other module, Recommendation Engine, uses the
Result and IndexFile updated everyday by the Log Anayzer module to make
dynamic recommendation to the visitor by getting its identity information by the help
of the PHP scripting language and sending this information to a CGI program.

The main idea of the system is to guess the next access page of the visitors
based on their past experiences and recommend these pages dynamicaly to the
vigtor. In static web gites, the visitors are limited to access to the pages they are
interested in only by retrieving a number of pages consecutively. But, recommending
of these pages to the visitor dynamically makes retrieving of the desired information
easier by just clicking on the recommended link. Assuming that each visitor has
different interests, the system processes the identity information of the visitor before
recommendation. So, the recommendation set is found according to the past

experiences of the user vigiting the site.

One of the properties of the system is the ability to hold al sesson and

identity information in a manageable way. Increasing the amount of the session

CHAPTER 6: CONCLUSON AND FUTURE WORK 99

information belonging to the identities can increase the success of the recommended
pages. But, the solution is not easy becaise the time needed for the exeaution of the
Recommendation Engine to find the pages to be recommended to the visitor is
criticd. The size of the Result_File holding the sesson information must be dosen
reasonable so that the Recommendation Engine produces the set of recommendations
in the least time without boring the visitor. Becaise, most of the visitors behave
impatiently that they are dissatisfied with too much loading time of the page into the
client’s madiine. But, as the number of the visitors gets larger, it makes keeping all
sesson information in such a limited size of file more difficult. In other words, we
have to minimize the anount of sesson information without deaeasing the success

of the recommendations.

One of the problems we encountered is to determine the unique users. As
discussed in 3.1.3, espeaaly proxy servers which can be thought as a gateway to
World Wide Web for many users make the determination of unique users more
difficult even sometimes impossible. All visitors coming from the same proxy server
are seen as if they all have the same identity information. To reduce the dfed of this
problem, we have used the “Agent” field of the entries. So, the identity information
has been accepted as a pair of “IP Addressand Agent”. As aresult, we had an abili ty
to distinguish unique users who use the same proxy server with different browsers.

The other problem was the behavior of the visitors who visit the site without
any goa. These vigitors retrieve the pages in the site randomly without any ideain
their mind. As a result, the sesson information of these kinds of visitors reduces the
success of the recommendation. This problem is also related to a given coffee bre&.
That is, the visitor gives himself/herself a wffee bresk while surfing the web site &
the time looking at a page that may not be interesting for her/him. Because our main
ideais to recommend the pages that have been spent much more time than the others
to the vigitor, that given coffeebred increases the score of that page however it may

not a content page and consists of any related information.

CHAPTER 6: CONCLUSON AND FUTURE WORK 100

The experiments conducted indicate that the most time consumption occursin
the execution of the Log Analyzer module. But this drawback may not be considered
as a big problem because the Log Analyzer module runs off-line and does not have
any influence on the success of the Recommendation Engine. The factor affecting the
success of the Recommendation Engine is the size of the Result_File created by the
Log Anayzer module. But, the size of the Result_File is under the control of the
Forgetting Algorithm. It checks the size of the Result File at every end of the
execution of the Log Analyzer module and if the size of the Result_File exceeds the
threshold that has been chosen reasonable for the success of the online module, the
Forgetting Algorithm starts and eliminates the pages which the vistors retrieved
them for a short time period. At every end of execution of the Forgetting Algorithm,
the size of the Result_File is reduced to a reasonable limit determined by the web
master.

We foresee that if a particular visitor shows some trends on hisher
navigational behavior, the visitors belong to the parent domain of the visitor will also
be inclined to show the same trends. So, the system firstly tries to guess the behavior
of the visitor by looking at the sessions belonging to the visitor considered. But, if
the vigitor is new for the system, then the identity information of the visitor is parsed
to obtain its parent domain and the pages to be recommended are searched in the
sessons belonging to its parent domain. It is clear that the success of the
recommendation based on the past experiences of a particular visitor is higher than
that of the parent domain of the visitor considered.

The experiments conducted show that the success of the pages recommended
to the visitors is satisfactory. But it is nearly impossible to say that the success is
100% in the redl life. But, observing the number of times in which the visitors utilize
our recommendation can measure the success of the recommendation. If the
recommended pages are redly interesting for the vistors, they will follow the
recommended links instead of the static links on the page.

CHAPTER 6: CONCLUSON AND FUTURE WORK 101

The eperiments also showed the importance of preprocessng of the entries
before inserting them to the sesgon information. As dwown in Table 5.1,
approximately the half of the total entries in the acceslog file seans as irrelevant
items that cannot be an input to the Log Analyze module. All irrelevant entries
(including image, sound etc) are deteded by the Log Anadyzer module and
eliminated just before the sesson identificaion phase. In the future, if the
configuration of the web server permits, the web server can be wnfigured in such a
way that it does not record the entries including irrelevant items in the accsslog file.
In that case, approximately al entries in the accsslog file will be relevant items, so
the st of the preprocessng phase can be aitomaticdly reduced.

In the future, the system may be extended by the cncept of “Information
Retrieval System”. In the thesis, we have assumed that a page in which the visitors
spent much more time than the others is a content page, otherwise anavigational
page. We think that the successof the recommendation will be higher if a procedure,
that analyzes the content of a web page and produces a score for ead page to
caegorize it as a content page or navigational page by evaluating the frequencies of
the terms in the page, is added to the module, In that case, Recommendation Engine
will show the pages in which the visitors gent much more time than the others and
also be cdegorized as content page by the procedure that analyze the wntent of the
page. We believe that the successof the recommendation set will increase dter such
aprocedure is added to the module.

Also, asaming that the same module deteds all static links on the pages
while analyzing the @ntent of the page, we have an ability to understand the link
structure of the site. By using the link structure of the web site, Recommendation
Engine shows a recommended pege if the adive page has no satic link to the
recommended page. Otherwise, if alink exists on the page to the recommended page,
existing link may be lightened to attrad attention to the importance of the page.

CHAPTER 6: CONCLUSON AND FUTURE WORK 102

At the same time, the system may be modified in such a way that it may use
an extra index structure formed for the pages in the gite. In the existing system, only
one index structure is used to find the position of the sessions belonging to the
vigitors. But this index structure may be extended to find the position of the active
page in the sessions. As a result, the system will have an ability to know the position
of the active page in the sessions beside the start and the end positions of the session
section belonging to the visitor. If an extra index for the active page were available,
then the Recommendation Engine does not need to find the active page in the
sessions, it automatically redirects itself to the position of the active page in the

Sessions.

As a conclusion, a system is developed as a starting point and improved due
to the interests and needs of human being. However, the success of the system we
designed and implemented is satisfactory, it is open to be improved by future works
and we believe that our system will inspire the people who are desirable to develop
applications on web usage mining.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

R. Cooley, B. Mobasher and J. Srivastava. Web Mining: Information and
Pattern Discovery on the World Wide Web. In Procealings of the 9" IEEE
Internationd Conference on Tods with Artificial Intelligence (ICTAI' 97),
1997

C. M. Brown, P. B. Danzig, D. R. Hardy, U. Manber and M. F. Schwartz. The
Harvest Information Discovery and Access System. In the 2" Internationd
WWWConference, (Chicago, IL, 1994, 763-771

E. Spertus. Parasite: Mining Structural Information on the Web. In Computer
Networks and ISDN Systems, 29: 1205-1215,1997

R. B. Doorenbos, O. Etzioni and D. S. Weld. A scalable comparison shopping
agent for the World Wide Web. In Procealings of the 1% Internationd
Conference on Autonamous Agents, pp 39-48. New York, NY.1997, ACM
Press

W. B. Fakes and R. Baeza-Y ates. Information Retrieval Data Structures and
Algorithms. In Prentice Hall Englenmood Cliffs, NJ, 1992

T. Joachims, D. Freitag and T. Mitchell. WebWatcher: A Tour Guide for the
World Wide Web. In Proceadings of 15" Internationd Joint Conference on
Artificial Intelli gence pages 770-775. Morgan Kaufmann, Aug.1997.

M. Pazzani, J. Muramatsu and D. Billsus. Syskill&Webert: Identifying
interesting web sites. In Procealings of the 13" Nationd Conference on
Artificial Intelli gence, Portland OR, 1996

D. Konopnicki and O. Shmueli. W3QS: A Query system for the World Wide
Web. In Procedings of the 21% Internationd Conference on Avery Large
Databases, pages 54-65,1995

BIBLIOGRAPHY 104

[9]

[10]

[11

[12]

[13]

[14]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

J. Srivasta, R. Cooley, M. Deshpande aad P. Tan. Web Usage Mining:
Discovery and Applications of Usage Patterns from Web Data. In SGKKD
Explorations, (1) 2, 2000

S. Chakrabarti, B. Dom and P. Indyk. Enhanced hypertext caegorizaion using
hyperlinks. In SGMOD Conference, ACM, 1998

S. Brin and L. Page. The Anatomy of a Large-Scde Hypertextual Web Seach
Engine. In the 7" Internationd WWW Conference, (WWWF), pp. 107-117,
Brisbane, Austraia

J. Borges and M. Levene. Data Mining of User Navigation Patterns. In Web
Analysis and User Profiling, Volume 1836 pages 92-111 Ledure Notes in
Computer Science, 1999

Web Site Traffic Analysis Toadl. Online at http://wwwsoftseekconvlinter net/

Web Statistics Software. Online at http: //mwww.o penwebscope.comV

J. Pitkow and P. Pirolli. Mining Longest Repeding Subsequences to predict
World Wide Web Surfing. In Proceealings of the 1999 USENIX Tedhnical
Conference, April 1999

H. Lieberman. Letiziae An Agent That Asssts Web Browsing. In Procealings
of the 1995 Joint Conference on Artificial Intelligence Montred, Canada,
1995

Esra Satiroglu. Mining User Access Patterns and Identity Information From
Web Logs For Effedive Personalization. Master of Science Thesis submitted to
Bilkent University, September 2001

M.Spiliopoulou, L.C.Faultich. WUM: A Web Utilizaion Miner. In
Procealings of EDBT Workshop WebDB98, Valencia, LNCS 159Q Springer
Verlag, 1999

B. Mobasher. WebPersondlizer : A Server Side Recommender System Based
on Web Usage Mining. In Tedhnical Report TR-01-004, March 1991

D. Aha and D.Kibler. Instance-Based Leaning Algorithms. Machine Learning,
6, 37-66,1991

C. R. Cunhg, C. F. B. Jacmud. Determining WWW User’s Next Accessand Its
Applicaion to Pre-fetching. In Proceadings of the Internationa Symposium on
Computers and Comnunications 97, Alexandria, Egypt, July 1997.

BIBLIOGRAPHY 105

[22]

[23]

[24]

[29]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

T. Nakayama, H. Kato and Y. Yamane. Discovering the Gap Between Web
Site Designers Expedations and Users Behavior. In the 9" International
WWW Conference, Amsterdam, May 2000

F. Mas%glia, P. Poncdet and M. Teissire. Using Data Mining Tedniques on
Web Access Logs to Dynamicdly Improve Hypertext Structure. In ACM
SgWeb Letters, 8(3): 13-19, October 1999

M. Perkowitz, O. Etzioni. Adaptive Web Sites: Automaticdly Synthesizing
Web Pages. In Communications of the ACM, 43(8): 152158 2000

T. W. Yan, M. Jambsen, H. GarciaMolina, U. Dayal. From User Access
Patterns to Dynamic Hypertext Linking. In Computer Networks, 28(7): 1007
1014 May, 1996

Z. Su, Q. Yang, H. Zhang. WhatNext: A Prediction System for Web Requests
usng N-Gram Sequence Models. In First International Conference on Web
Information Systems and Engineering Conference. Hong Kong, June 2000

S. Schedter, M. Krishnan, M. D. Smith. Using peth profiles to predict HTTP
requests. In Proceedings of the 7" International VWAV Conference, 1998

R. R. Sarukkal. Link Prediction and Path Analysis Usng Markov Chains. In
the 9" International WMV Conference, 200Q

L. Chen, K. Syraca WebMate: A Persona Agent for Browsing and Seaching.
In Proceedings of the 2" International Conference on Autonomous Agents,
132-139

K. Wu, P. S. Yu and A. Balman. SpeedTrace: A Web Usage Mining and
Analysis Tool. Internet Computing, 37(1): 89, 1997.

WebTrends Log Analyzer. Online at http://www.webtrends.com

R. Cooley, B. Mobasher, J. Srivastava. Data Preparation for Mining World
Wide Web Browsing Patterns. In Knowedge and Information Systems, 1(1): 5
32,1999

Y. Fu, K. Sandhu and M. Shih.Clustering of web users based on access
patterns. In Proceedings of the 1999 KDD Workshop on Web Mining, 1999

M. S. Chen, J. S. Park and P. S. Yu. Efficient Data Mining for Path Traversal
Patterns. In Knowledge and Data Engineering, 10(2): 209-221,1998

BIBLIOGRAPHY 106

[33]

[36]

[37]

[38]

[39]

[40]

[41]

A.G. Buchrer and M. D. Mulvenna. Discovering Internet Marketing
Intelligence through Online Analyticd Web Usage Mining. In ACM SGMOD
Record, 27(4): 54-61, 1998

D. S W. Ngu and X. Wu. SiteHelper: A Locdized Agent that Helps
Incremental Exploration of the World Wide Web. In the Internationd Journal
of Computer and Telecommunications Networking, 30, 1997

A. Bestavros. Using Speaulation to Reduce Server Load and Service Time on
the WWW. In Tedchnical Report TR-95-006 Computer Science Department,
Boston University, page 15, February 1995

V. N. Padmanabhan and J. C. Mogul. Using Predictive Prefetching to Improve
World Wide Web Latency. In Procealings of ACM S GComm 1996 pp 2236,
1996

J. Pei, JHan, H. Zhu and B. Mortazavi-ad. Mining Access Patterns Efficiently
from Web Logs. In Procealings of Pacific-Asa Conference on Knowledge
Discovery and Data Mining (PAKDD’00), pages 396-407, Kyoto, Japan, April
2000

O. R. Zaiane, M. Xin and J. Han. Discovering Web AccessPatterns and Trends
by Applying OLAP and Data Mining Tednology on Web Logs. In Advances
in Digital Libraries, pages 19-29, April, 1998

L. D. Catledge, J. E. Pitkow. Charaderizing Browsing Strategies in the WWW.
In Procealings of the Internationa Conference onthe WWW Darmstadt 1995

