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ABSTRACT

BENEFIT MAXIMIZING CLASSIFICATION USING 

FEATURE INTERVALS 

Nazlı � kizler

M.S. in Computer Engineering 

Supervisor: Prof. Dr. H. Altay Güvenir 

September, 2002 

For a long time, classification algorithms have focused on minimizing the quantity of 

prediction errors by assuming that each possible error has identical consequences. 

However, in many real-world situations, this assumption is not convenient. For instance, 

in a medical diagnosis domain, misdiagnosing a sick patient as healthy is much more 

serious than its opposite. For this reason, there is a great need for new classification 

methods that can handle asymmetric cost and benefit constraints of classifications. In this 

thesis, we discuss cost-sensitive classification concepts and propose a new classification 

algorithm called Benefit Maximization with Feature Intervals (BMFI) that uses the 

feature projection based knowledge representation.  In the framework of BMFI, we 

introduce five different voting methods that are shown to be effective over different 

domains. A number of generalization and pruning methodologies based on benefits of 

classification are implemented and experimented. Empirical evaluation of the methods 

has shown that BMFI exhibits promising performance results compared to recent wrapper 

cost-sensitive algorithms, despite the fact that classifier performance is highly dependent 

on the benefit constraints and class distributions in the domain. In order to evaluate cost-

sensitive classification techniques, we describe a new metric, namely benefit accuracy

which computes the relative accuracy of the total benefit obtained with respect to the 

maximum possible benefit achievable in the domain. 

Keywords: machine learning, classification, cost-sensitivity, benefit maximization, 

feature intervals, voting, pruning.
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ÖZET

ÖZN
�
TEL

�
K ARALIKLARIYLA FAYDA 

MAKS
�
M

�
ZASYONUNA YÖNEL

�
K SINIFLANDIRMA 

Nazlı � kizler
Bilgisayar Mühendisli � i, Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. H. Altay Güvenir 
Eylül, 2002 

Uzun zamandır, sınıflandırma algoritmaları bütün olası hataların sonuçlarının benzer 

olaca � ı varsayımıyla, tahmine dayalı hataların sayısını azaltma üzerinde 

yo� unla � mı � lardır. Fakat bu varsayım, gerçek hayattaki pek çok durum için elveri� li

de� ildir. Örne � in, tıbbi tanı alanında, hasta olan bir kimseyi sa� lıklı olarak sınıflandırmak 

tam tersi duruma oranla çok daha ciddi bir hatadır. Bu nedenle, sınıflandırmaların bu tip 

asimetrik maliyet ve fayda kriterlerini göz önünde bulunduracak yeni sınıflandırma  

metotlarına büyük ihtiyaç vardır. Bu tezde, maliyete duyarlı sınıflandırma kavramları

üzerinde durulmakta ve öznitelik izdü� ümü tabanlı bilgi gösterimini kullanan, Öznitelik

Aralıklarıyla Fayda Arttırma (BMFI) olarak isimlendirilen yeni bir sınıflandırma 

algoritması  sunulmaktadır.  BMFI çatısı altında, farklı veri kümelerinde etkili oldu� u

gösterilen be�  ayrı oylama yöntemi tanıtılmı� tır. Bununla birlikte, birkaç genelleme ve 

budama yöntemi geli� tirilmi �  ve denenmi � tir. Deneysel de � erlendirmelerde BMFI, 

performansın problemin veri kümesindeki fayda kriterlerine ve sınıf da � ılımlarına çok 

ba� lı olması gerçe� ine ra� men, sarma prensibine dayalı yeni maliyete duyarlı

sınıflandırma algoritmalarıyla kar � ıla � tırıldı � ında, umut verici bir performans 

sergilemi� tir.  Ek olarak, maliyete duyarlı ve fayda arttırımına yönelik metotların

de� erlendirilmesi için, fayda do� rulu� u olarak isimlendirilmi�  yeni bir metrik 

önerilmi� tir. Bu metrik, elde edilen toplam faydanın, mümkün olan en yüksek fayda 

de� erine oranla göreceli do� rulu� unu hesaplamaktadır.

Anahtar sözcükler: makine ö� renmesi, sınıflandırma, maliyet duyarlılı � ı, fayda 

maksimizasyonu, öznitelik aralıkları, oylama, budama. 
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Chapter 1 

Introduction

One of the most important characteristics of human brain is its capability to learn from

experience, manipulate the gained knowledge and to make use of it in forecasting

possible future events. This learning process is crucial for human being since it is the 

doorway to innovation and advancement. For this reason, from the evolution of 

computers, researchers try to mimic the way brain works and to integrate various 

qualifications of intelligence to the computer. Computer scientists in the field of machine

learning are the foremost people dealing with such issues.

Machine learning is the research area that seeks to build systems that interpret the

data compiled in the datasets or the perceptions collected from the environment for

understanding and making use of the knowledge beneath. Machine learning techniques 

are being investigated on and applied to various problems such as natural language

processing, handwriting and speech recognition, text and document categorization, 

knowledge discovery in databases, remotely-sensed image analysis, medical data analysis 

and diagnosis, weather prediction, email filtering and various applications on the World 

Wide Web domain.

In the last few years, significant practical achievements have been obtained in

learning systems by taking advantage of several established learning algorithms.

1
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Bayesian methods, decision trees, neural networks, instance-based learning algorithms, 

support vector machines and genetic algorithms are among those powerful methods 

which have aided the learning community in practical applications. 

The learning problem is the task of finding general rules that explain data given only 

a sample of limited size [25]. In this concept, consider a child who is learning to speak. 

He is imposed to a flow of sounds and images from his environment, and apparently, this 

environment is a limited portion of the real world. What he does is, by using perceptions, 

to acquire attributes of the items around him and to form an association between the 

items and the expressions his parents use simultaneously. In this framework, color, shape 

and smell of an item are the foremost characteristics that the child observes. His parents’ 

word concerning the item is the name of the item. By combining these inputs, he learns 

the name of the object. Since he has been leaded to that result by his parents’ assistance, 

he is said to learn under the supervision of his parents. Counterpart of this situation in 

machine learning terminology is supervised learning.

 In this study, we explore the directions of decision making under supervised 

learning framework and try to find ways to optimize consequences of predictions in the 

real-world situations. 

1.1 Motivation 

Life is a combination of decisions. Outcomes of these decisions can either be good or 

perfect, bad or terrible depending on the correctness of choices. For instance when you 

decide on where to invest your money, there is a bunch of possibilities. You may invest 

your money in a bank and earn a comparably low yet regular amount of interest. Or, you 

can buy stocks of exchange and gain more money, however, in such a circumstance, there 

is a major risk of losing all the money you put in. Your net profit depends on how clever 

and logical your decision of investment is. In another incident, suppose that you are the 

head of an emergency desk in the hospital and two patients come along. You have limited 

source of instruments and you have to decide which patient to examine first. Your 

judgment in such a case is vital from the patients’ point of view. Hence, there is a scale 
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for outcomes of decisions made, there can be minor or life-threatening mistakes, and 

there can be slight achievements or major successes that can change a person’s life. 

Keeping this fact in mind, when we look at typical machine learning applications of 

present-day, algorithms hardly evaluate the effectiveness and applicability of their 

decisions. In classical machine learning applications, what the algorithms try to 

accomplish is to reduce the quantity of the error obtained and, most of the time, the 

quality of the error is ignored.  However, as the above examples demonstrate, the 

characteristics of errors can be vital. For this reason, before taking an action, 

consequences of decisions should be elaborated and investigated extensively. 

The brand new subfield of machine learning that evaluate the effects of decisions is 

cost-sensitive machine learning. It is based on incorporating the so-called cost knowledge 

to the process of classification. Costs can be categorized under many headings such as 

costs of collecting data, acquiring features or costs of misclassifications. The most crucial 

of these costs are misclassification costs and in this study, we will be concentrating on 

evaluation with respect to misclassification costs. 

In this thesis, we propose a cost-sensitive machine learning technique that represents 

the learned information in the form of feature projections of the training instances. 

Classification algorithms that use this knowledge representation scheme are called 

Feature Projection Based Classifiers and many such classifiers have been shown to be 

quite successful in a wide range of real-world problem domains ([14], [28], [29] and [30]). 

In this study, we introduce another feature projections based classification algorithm, 

called Benefit Maximizing classifier with Feature Intervals (BMFI, for short). Voting 

procedure of CFI in [28] has been changed to impose the cost-sensitive property to the 

algorithm. A number of generalization and pruning techniques have been utilized. BMFI, 

along with its versions containing pruning have been evaluated over several benchmark 

datasets from UCI Machine Learning repository and several real world datasets, 

especially on a financial dataset with loan applications.
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1.2 Overview of the Thesis 

Chapter 2 of the thesis presents fundamental concepts about supervised learning.  Cost-

sensitive learning is introduced in this chapter together with the types of costs considered. 

Cost matrix and benefit matrix notions are evaluated in detail and several algorithmic 

definitions that will be used throughout the thesis are presented. Feature dependent 

benefit problem is another headline from Chapter 2. 

In Chapter 3, several different approaches to misclassification cost-sensitive learning 

in the literature are described and discussed thoroughly. Two main groups of algorithms 

are presented within this context: wrapper algorithms and direct cost-minimizing 

algorithms. 

 Chapter 4 hosts the algorithmic descriptions of our BMFI algorithm along with the 

details of feature projection concept, voting methods and cost-sensitivity elements. 

Generalization and pruning methodologies are presented. Illustrative examples delineate 

the progression of the algorithm clearly.  

Experimental evaluation of the proposed algorithm is presented in Chapter 5 by the 

results of its application to real world and benchmark datasets. Its comparison to 

MetaCost and cost-sensitive classifier on Weka over Naive Bayesian Classifier, C4.5 

decision tree learner and VFI classifier is also included in this chapter. 

Chapter 6 reviews the results and the contributions of this thesis and outlines future 

research directions on this subject. 



Chapter 2 

Cost and Benefit 

In this chapter, firstly supervised learning or inductive concept learning, with its basic 

terminology is introduced. An outline of the different types of cost considered in 

inductive learning is presented. Subsequently, we sketch the borderlines of cost-sensitive 

learning along with its fundamental concepts. Finally, the need for a benefit matrix 

representation is discussed and non-stationary benefit domains are explored. 

2.1 Supervised Learning

In the context of supervised learning, the instances provided to the learning program have 

class labels associated with them. For this reason, supervised learning is also called 

induction from examples. The aim is to produce a classifier capable of predicting labels 

of the unseen cases correctly.

More formally, given a set of labeled examples <xi,yi> where xi is a vector of

continuous or discrete values called features and yi is the label of xi, supervised learning

is finding a mathematical model that accurately labels a high proportion of unlabeled 

examples drawn from the same probabilistic distribution.

5
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The input set of examples is called training data or instance space and it is assumed 

to inherit an unknown probability distribution P(x,y) of the class labels. Features can have 

either linear (discrete or continuous) or nominal (categorical) values. For example, “age 

of the patient” in a medical domain dataset is a linear feature which can have discrete 

values from a subset of integers. On the other hand, “exchange rate of US Dollar to 

Turkish Lira” is a continuous linear feature which is assessed from a subset of real 

numbers. Conversely, “color” is a nominal feature possessing values from a predefined 

range of color attributes. 

Similar to the feature categorization, labels yi, i.e., classes of the instances in the 

dataset can either be elements of a discrete set of classes such as {1,2,…,N} or elements 

from a continuous set such as real numbers. When the set of possible predictions is 

discrete, the supervised learning procedure is called classification or concept learning.

On the other hand, if possible predictions can be drawn from a continuous subset of 

values; this task is called regression or function approximation. Besides, instances in a 

dataset can be assigned more than one class label depending on the nature of the problem. 

Such a learning problem is called multi-class classification. In this thesis, we will be 

focusing on the single-class classification problem in which there is only one class 

assigned to each instance. 

In order to determine the predictive capability of a learning system, an independent 

test data that was not used at any time during the learning process is presented to the 

model. This test data is a set of unlabeled examples, i.e., <xi>’s, assumed to possess the 

same probability distribution P(x,y) as the training set. In most of the classification 

systems, the metric used for evaluating a model’s predictive capacity is the accuracy of 

the system. Accuracy is defined as the rate of correct predictions made by the model over 

the data set [34]. It refers to the degree of fit between the model and the data.  

2.2 Cost-Sensitive Learning 

In traditional classification systems, all types of errors are treated in the same manner and 

predictive accuracy of the system simply measures the ratio of correct predictions. 
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However, in many real-world domains, errors may differ in significance and may have 

different consequences. An obvious example of this situation is available in the medical 

diagnosis domain. Misdiagnosing a patient who is ill as being healthy has much more 

serious consequences than misdiagnosing a patient who is healthy as having a disease. 

Hence, in such situations, it is not enough to simply predict the most probable class. 

Instead, the system should predict in a way to minimize unwanted side effects, namely 

costs.

Therefore, traditional classification systems mostly seem to fail in real world domains 

where correct and incorrect classifications have different interpretations. That is why 

cost-sensitive classification systems are being recently studied. The goal of these 

classification schemes is to minimize the total cost acquired by the prediction process. 

Since conventional predictive accuracy metric does not include cost information, it is 

possible for a less accurate classification model to be more cost-effective in reality. This 

means, to obtain the minimal cost, cost-sensitive learning systems may need to trade off 

some of the predictive accuracy and are subject to make more mistakes in quantity. 

2.2.1 Types of Cost in Supervised Learning 

Turney has created a taxonomy of the different types of cost in inductive concept learning 

in [46]. According to this taxonomy there are nine major types of costs. Some of these 

types can be overviewed as follows: 

� Cost of misclassification errors: This type of errors is the most crucial one and 

most of the cost-sensitive learning research has investigated the ways to 

manipulate such costs. These error costs can either be constant or conditional 

depending on the nature of the domain. Conditional misclassification costs may 

depend on the characteristics of a particular case, on time of classification, on 

feature values or on classification of other cases. 

�

Cost of tests (features): In some domains, such as medical diagnosis, some of the 

tests (i.e., features) may have acquirement costs. For instance, taking a 
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computational tomography is a costly operation and doctors avoid prescribing 

unless it is especially required. This necessity is proportional to the cost of 

misclassification. If the cost of misclassification surpasses the costs of tests 

greatly, then all tests of predictive value should be taken into consideration. 

Similar to error costs, test costs can be constant or conditional on various issues 

such as prior test selection and results, true class of instance, side effects of the 

test or time of the test. 

�

Cost of teacher: It might be expensive to determine the correct class of an 

example in some circumstances. In such a case, a learning algorithm should 

rationally try to minimize the cost of teaching, and one possible way is actively 

selecting instances for the teacher, i.e., active learning. Again, this type of costs 

can be constant or varying dependent on individual cases. 

�

Cost of computation: Size and structural complexity, time and space requirements 

of a classification algorithm both in training and test phases are considered under 

this category.

�

Cost of cases: Turney states that there may also be a cost of acquiring instances 

[46]. In such situations, it is argued that cost of cases for a batch learner and an 

incremental learner should be evaluated separately.  

In addition to these types, there may be other kind of costs such as intervention costs, 

unwanted achievement costs, human-computer interaction costs and costs of instability. 

Nevertheless, most of these costs are non-trivial and hard to formulate since they are 

generally domain dependent and irregular. In our studies, we concentrated on costs of 

misclassification and in this thesis, we use the term cost related to this type of error costs. 
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2.3 The Cost Matrix

Definition 2.1: C=[cij] is a n×m cost matrix of domain D if n equals to the number of 

prediction labels, m equals to  the number of possible class labels in D and cij’s are such 

that

0 if i = j 

   >0 if i
�

 j

cij =

According to Definition 2.1, a square cost matrix of order n has the following

structure:

Actual

Prediction C0 C1 . . Cn

C0 c00 c01 . . c0n

C1 c10 c11 c1n

. . .

. . .

Cn cn0 cn1 . . cnn

where rows of the matrix correspond to predicted classes and the columns of the matrix

correspond to actual classes. Thus, cij represents the cost of classifying an instance of 

class j as class i.

In the cost matrix formation, the elements c00, c11, c22,…,cnn which constitute up the

main diagonal of the matrix are assumed to be all 0, representing the natural

interpretation that correct classifications have no cost to the user. On the other hand, the 

non-diagonal elements of the cost matrix are assumed to be greater than zero, denoting 

loses of misclassification from a positive baseline. However, this positive representation

of costs is far form the natural perception of net gain flow concept, as we will see shortly. 

When there are n probable classes in classification and the algorithm forces a class to

be determined, the cost matrix of classification is a square matrix of order n. If there is a 

probability to leave the instance’s class label undetermined by the classification



CHAPTER 2.  COST AND BENEFIT 10

algorithm, then the cost matrix is a rectangular (n+1)×n matrix where the extra row 

stands for possible losses and gains for the undetermined cases. In our evaluations, we 

omit the undetermined class option and force the classification algorithm to predict a 

class for each test instance. Hence, in our computations, and from now on in this thesis,

we will be talking over n×n square matrices.

Table 2.1: An example cost matrix of NYNEX MAX domain [40]. 

Actual Class 

Prediction PDF PDO PDI

PDF 0 150 250

PDO 100 0 250

PDI 150 50 0

Table 2.1 shows an example cost matrix taken from [40] which denotes the cost 

matrix for problem of dispatching technicians to fix faults in the local loop of a telephone

network (NYNEX MAX domain). This cost matrix represents the costs associated with 

each of the three dispatches, PDF, PDO, PDI. As it can be seen, the cost matrix is 

asymmetric and different types of misclassifications have different costs. For example, 

identifying a PDI dispatch as PDO is five times more costly than dispatching a PDI 

instead of a PDO. From such a cost matrix, we can see that identification of PDI dispatch

is more important from the company’s point of view, since its erroneous classification 

inquires the most cost.

Errors made in a classification algorithm can be viewed as a special case of cost. 

Specifically, if the cost matrix has uniform cost distribution over all classes, and non-

diagonal elements of cost matrix are all 1’s, then resultant total cost simply gives the 

error made by the classification algorithm. Such a cost matrix is called uniform cost 

matrix [37]. 
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2.3.1  Optimal Prediction Using Cost Matrices 

In a cost-sensitive classification problem, an instance should be predicted to have the 

class label that leads to the lowest expected cost [20]. More formally, the optimal

prediction for an example x is the class that minimizes
��

j

jiCxjPixEC ),()|(),( (2.1)

where P(j | x) is the probability that x has the true class j, C(i,j) is the cost of predicting

class i when the true class of the instance is j and EC(x,i) is the expected cost of 

prediction (also referred as conditional risk [18]). If i=j then the prediction is correct, if 

i � j then the prediction is incorrect. According to this formulation, although some class k

is more probable for an instance x, it can be more optimal to predict another class for the 

sake of cost minimization.

2.3.2  Reasonableness of the Cost Matrix 

Cost matrix logic comes from the natural fact that the cost of correct classification of an

instance can never be higher than the cost of incorrect classification. Elkan has named

this condition as ‘reasonableness condition’ and for a two-class cost matrix, he has 

mathematically formulated it as c10>c00 and c01>c11 [20].

To generalize this condition to multiple possible classes, we define the reasonableness

condition as follows:

Definition 2.2: An n×n cost-matrix is reasonable if and only if for each i,j � {0,…,n} and 

i � j,  cij>cjj . 

When evaluating the predictive capability of a cost-sensitive system, the

reasonableness of the cost matrix is a crucial requirement. As pointed out in [36], a cost 

matrix should let each possible class label be predictable by the cost-sensitive classifier.

If a cost matrix is not reasonable, some class labels may never be predicted by the 

optimal cost-sensitive decision policy. For instance, when for all C(m,j) �  C(k,j); i.e., all 

the cost values of row m dominate cost values of row k, optimal decision policy never 
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predicts class m, since there exists a better decision for all possibilities, which is class k,

that will lead to lesser cost.

Consider the following two examples: In a three-class cost-sensitive classification

problem with the cost matrix in Table 2.2, there is no need to run any learning algorithm,

since it is obvious that, no matter what the class probability distributions are, the optimal

prediction is always C1.

Table 2.2: Cost matrix for which the optimal prediction is always C1 and thus no learning 

is needed.

Actual class 

Prediction C1 C2 C3

C1 1 2 4

C2 2 3 5

C3 3 10 7

Similarly, if the cost matrix in use is the one shown in Table 2.3, optimal classifier 

never makes it choice from C1, because C2 and C3 predictions always outperform in terms

of cost [36]. 

Table 2.3: Cost matrix for which C1 is never predicted. 

Actual Class 

Prediction C1 C2 C3

C1 3 10 7

C2 2 0 5

C3 1 3 1

In this thesis, we make sure that all the cost matrices used for evaluation purposes are

reasonable and they allow all class labels to be predicted. 
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2.3.3  Operations on Cost Matrices 

Some particular operations can change the baseline of cost matrices from which costs are 

measured, without changing the optimal predictions made. These operations are useful 

especially when the unit amount for costs are subject to any change. In this subsection, 

we present two such elementary operations: scaling and shifting. 

2.3.3.1 Scaling 

Given a cost matrix C, suppose each entry of the cost matrix is multiplied by a positive

constant b. In Equation 2.1, each C(i,j) is multiplied by b, so we have

�� �����
jj

jiCxjPbjiCbxjPixE ),()|(),()|(),(     (2.2) 

As the above equivalence shows, we can formulate the optimal decision criterion 

in terms of the original matrix and since b is a constant, the optimal decisions made by 

the cost-sensitive classifier do not change [20].  The only change is in the total cost 

obtained in the result of the decisions. This operation is called scaling and it can also be 

interpreted as changing the unit measure of costs. 

2.3.3.2 Shifting 

In a similar fashion to scaling, when a positive constant is added to each entry of a cost 

matrix, the optimal decisions made by a cost-sensitive algorithm is unchanged. Shifting

operation is useful when we want to represent all the entries of a cost matrix from a 

different baseline, such as the zero baseline with all costs being positive. As it has been

pointed out in [20], this shifting means changing the baseline of cost measurements by 

the addition of positive constant. 
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Shifting operation can be formulated as follows: Suppose positive constant b is added 

to each entry of the cost matrix C(i,j). Then, optimal decision equation (Equation 2.1) is 

modified as in Equation 2.3: 
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By the nature of probability distributions, 1)|( ��

j

xjP . Hence, by Equation 2.3,

each expected total cost value is incremented by the positive constant b and optimal

decision which chooses the minimum of these values is unchanged. 

2.4 Benefit Matrix

Recent research in machine learning has used the terminology of costs when dealing with 

misclassifications. However, those studies mostly lack the information that correct

classifications may have different interpretations. Besides implying no cost, accurate 

labeling of instances may entail indisputable gains. Elkan points out the importance of 

these gains [20]. He states that doing accounting in terms of benefits is commonly 

preferable because there is a natural baseline from which all benefits can be measured,

and thus, it is much easier to avoid mistakes.

Benefit concept is more appropriate to real world situations, since net flow of gain is 

more accurately denoted by benefits attained. If a decision made is profitable from the 

decision agent’s point of view, its benefit is positive. Otherwise, it is negative, which

equals to the cost of wrong decision. To incorporate this natural knowledge of benefits to 

the notion of cost-sensitive learning, in this thesis we have used benefit matrices

(sometimes referred as cost-benefit matrices in literature [1]).
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Definition 2.3: B=[bij] is a n×m benefit matrix of domain D if n equals to the number of 

prediction labels, m equals to  the number of possible class labels in D and bij’s are such

that �
0 if i = j 

   < bii if i �  j 

bij =

In benefit matrix representation, bij represents the benefit of classifying an instance of

true class j as belonging to class i. Benefit matrix structure is just like the cost matrix,

with the extension that entries can either have positive or negative values. In addition,

diagonal elements (bii’s) should be non-negative values, ensuring that correct 

classifications can never have negative benefits associated with them.

Table 2.4 presents a benefit matrix for a binominal classification problem. In this 

benefit matrix, misjudgment of an actual “bad” instance as “good” is assigned a negative 

benefit of 200 whereas correct identification of a “bad” instance has a gain of 100. In this 

domain, although correct classification of “good” instances has a certain benefit, 

identification of “bad” instances are 10 times more beneficial. 

Table 2.4: An example benefit matrix for a two-class problem.

Actual class 

Prediction good bad

good 10 -200

bad -50 100

Benefit matrices can also be interpreted as the negation of cost-matrices in which the 

diagonal elements are non-negative. Thus, a benefit matrix incorporates all the 

characteristics of a cost matrix, and all operations applicable to cost matrices generate the 

similar results in benefit matrices. Specifically, benefit matrices should obey 

reasonableness rule, which is already satisfied by the definition of benefit matrices, and 

can be subject to scaling and shifting operations without any alteration in the optimal

predictions.
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In some situations, incorrect classifications can also bring benefits. For example in a

medical diagnosis domain, classifying a type of a disease as another type can still be 

beneficial, rather than classifying the patient as healthy. Of course, this kind of erroneous

classifications is never more beneficial than the accurate one, but by further 

investigations and common treatment techniques, it can be manageable. An example to

such a domain is lesion (gastric carcinoma) dataset, which has the benefit matrix

approved by experts given in Table B.5 in Appendix B. 

Our benefit model resembles the cost model proposed in [15] to some extent. In 

Domingos’s study, the aim is to answer the question of whether a machine learning 

system should be deployed depending on its net present value (NPV) [9]. To accomplish

this goal, the so-called cost model is also formulated in terms of cash flows, instead of 

costs, asserting the awkwardness of treating revenues as negative costs.

2.4.1  Optimal Prediction Using Benefit Matrices 

Using the framework of benefit matrices, the cost-sensitive classification problem is 

slightly modified to involve benefits. Since costs are negated to represent benefits,

minimization problem becomes a maximization problem. Thus, given a benefit matrix B

the optimal prediction for an example x is the class that maximizes

��
j
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where P(j | x) is the probability that x has the true class j, B(i,j) is the benefit of predicting

class i when the instance x has true class j and EB(x,i) is the expected benefit of making

that prediction. 

Equation 2.4 represents the expected benefit in classifying a single instance x. The 

total expected benefit of the classifier model m over the whole test data is
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2.4.2  Cost and Benefit Matrix Equivalence 

In [37] it has been shown that a benefit matrix can be transformed into a cost matrix by 

using the following theorem.

Definition 2.4: Let h1 and h2 be any two classifiers. Let C1 and C2 be two cost matrices 

corresponding to loss functions L1 and L2. The two cost matrices C1 and C2 are 

“equivalent” (C1 �  C2) iff, for any two classifiers h1 and h2 , L1(h1) > L1(h2) iff L2(h1) >

L2(h2), and L1(h1) = L1(h2) iff  L2(h1) =  L2(h2).

Theorem 2.1: Let C1 be an arbitrary cost matrix. If C2=C1+ �  , where �  is a matrix of the

form

n

n

n

���

���
���

...

.

.

...

21

21

21

��

then C1 �  C2.

For a complete proof of Theorem 2.1 the reader is referred to page 12 of [37]. 

Transformation of a benefit matrix to a cost matrix according to Theorem 2.1 is shown in 

Example 2.1. The idea behind such a transformation is to consider benefits of correct

classification as lost opportunities in the case of incorrect classifications and add them to 

the cost of misclassifications. So, in the cost matrix, the incorrect classification entries are

sum of resultant costs and lost opportunity values. 
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Example 2.1: A given benefit matrix B = 

401015

20203

10310

��

��

��

can be transformed into 

an equivalent cost matrix C by adding a matrix which consists of negation of benefit 

elements

401015

20203

10310

��

��

��

 + 

402010

402010

402010

���

���

���

 =

03025

60013

50230

��

��

��

According to Margeniantu, this transformation does not alter the optimal decisions

made [37]. This is true when the base classification algorithm uses only the Equation 2.4 

when determining the class of the instance. However, in our algorithm, which is fully

dependent on the concept of benefits, and other techniques that incorporate the matrix

information inside the core of the algorithm, alteration may occur in the decision process. 

2.5 Feature-dependent Benefits

Cost and benefit matrices discussed so far assume that there is a uniform loss or gain

value for each kind of classification. To be more precise, the matrices are static and for

each instance, classification algorithm uses the predefined entry of the given matrix, 

independent of the instance itself.

However, in some real-world domains, benefits and costs can be dependent on 

individual examples, therefore values in benefit and cost matrices may not be constant. 

For example, consider the credit application domain. When a customer does not repay the 

loan money he is granted, the bank loses the entire credit amount. On the other hand, if 

the bank refuses a good customer who is likely to pay the money back, the interest 

amount that is proportional to the credit loaned will be lost. This situation can be 

illustrated with the benefit matrix shown in Table 2.5. Here “approve” means to grant the 

credit loan amount and “deny” means to reject the customer’s request for loan. The term 

f(x) in benefit table denotes the credit amount requested by customer x. Obviously, in 

such a situation, bank officials should be more careful with the high amount requests, 
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because losses and gains will be much higher. For example, when a customer’s request

for $10000 is approved and he has defaulted, the benefit of the bank is -$10000, whereas 

in another application of the same case, if the loan amount is $100, the loss will be much

lower, i.e., -$100. 

Table 2.5: Benefit matrix for a credit application domain where benefits are dependent on 

individual instances 

Actual class 

Prediction approve deny

approve 0.5f(x) - f(x)

deny - 0.5f(x) 0

2.5.1 Possible Domains for Feature Dependency 

Below is a categorization of domains where benefits can be feature-dependent.

� Financial Domains: As described above, in loan applications, benefits can be a 

function of the amount queried. In fraud detection of transaction problems,

benefits are functions of transaction magnitudes. Moreover, in bankruptcy 

datasets, benefits might be represented as the size of the bank in dollars. Donation 

amount prediction as in KDD’98 Cup is another example domain for instance-

dependent benefit amounts [5].

� Medical Diagnosis Domains: Benefits of classification can be based on the age of

the patients. The younger the patient, the more effective a medication can be in 

some circumstances. Additionally, there may be temporal parameters associated

with patient’s health from which benefit functions can be estimated.

� Temporal Domains: In domains where benefits of decisions change over time, it 

would be more appropriate to specify f(x)’s in the benefit table as functions of 

time. For example, in geo-scientific predictions, like predicting earthquakes,

natural disasters, time of prediction is a vital component and benefit of prediction 
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mostly depends on this parameter. The earlier the prediction is, the more 

precautions can be taken.

�

Spatial Domains: Benefits can be represented as measures of distance in domains 

where the locality of prediction is important. In weather predictions for example, 

the rainfall area accuracy is important, and can be a functional parameter for 

benefit degree.

In this thesis, we have analyzed an example domain, which is bank-loans domain, in 

which benefits can be dependent on feature values of individual instances. We present a 

naive approach that is incorporated into the feature projection method.  



Chapter 3 

Approaches to Cost-Sensitive 

Learning

Being a recent research area, cost-sensitive learning studies are at their infancy level, and

there is plenty of room for improvement in this principal topic. Although preliminary

studies were made as early as 1984 by Breiman et al. [11], most of the classification

algorithms continue to ignore the asymmetric cost constraints of many real-world 

situations. Within the last five years, attention over this area has augmented significantly, 

leading to an online bibliography [3] and a special workshop organization totally 

dedicated to cost-sensitive learning to be held in 2000 at Stanford University [4]. 

Recently, fundamentals of the subject are being depicted by Elkan [20] and Turney [46].

In the framework of cost-sensitive learning, costs have been divided into many

categories and there is a variety of algorithms working on different cost types. When 

talking in terms of misclassification costs, there are two major groups of approach. First 

type of algorithms relies on manipulating the training data whereas the second type 

studies on converting an error-based classifier into a cost-sensitive one by changing its 

internal discipline. Margeniantu argues that there is a third approach which manipulates

the outputs of the algorithm by probability estimates [37], but we consider such methods

21
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in the second main group. In this chapter, after presenting an overview of these two 

approaches, studies over feature-dependency of costs are summarized.

3.1 Cost-Sensitive Algorithms that Manipulate 

the Training Data 

Stratification, meta-learning techniques such as MetaCost [16] and boosting are among 

efforts that manipulate the training data, rather than integrating cost information to the 

internal classifier. 

3.1.1 Stratification Methods 

Depending on misclassification cost priorities, predicting a certain class accurately may

be more important than predicting the others. If the “important” class is more frequent in 

the training data, then a standard error-based algorithm is likely to be successful in 

reducing the total loss, since it will try to minimize errors caused mostly by 

misclassifying the dominant class. Keeping this aspect in mind, machine learning 

community has examined the ways to employ an existing error-based algorithm to proper 

distributions of data such that cost-sensitivity is accomplished. For this reason, some of 

the researches try altering probability distributions of the original data and build cost-

sensitive models using the modified data.

Stratification is the process of changing the frequency of classes in training data in 

proportion to their cost [16]. There are two methods of stratification, namely

undersampling and oversampling. In undersampling procedure, all examples belonging to 

the important class are preserved and a fraction of examples belonging to each other class 

i is chosen at random for inclusion in the reconstructed training set. Although this 

approach is widely used, it reduces the size of the data available for training, and this may

reduce the efficiency of the algorithm while increasing the total cost acquired.
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Another alternative method of stratification is oversampling. In oversampling, all 

examples of class whose erroneous classification is less costly are retained and examples

of other classes are duplicated in proportion to their cost values. While doing this, no data 

is lost, but redundancy in data is increased together with total learning time.

All of the stratification methods distort the original distribution of the dataset. 

Therefore, classification models learned over stratified datasets do not reflect the reality 

and many interesting traits may go undetected. In order to overcome these flaws, Chan et 

al. [12] have proposed a variation of stratification. They have formulated a procedure to 

convert a natural class distribution to subsets of desired class distributions by replicating 

the minority class. Then, they apply an arbitrary learning algorithm to each of formed

subsets. By the help of a meta-learning strategy such as class-combiner, predictions of the 

base classifiers are combined.

Chan et al. [12] have tested their approach only in a single domain, namely credit 

card fraud detection. They have observed that, the training class distribution have larger 

effects on cost performance than cost-based sampling or stratification. However, they 

confess that there is an unavoidable need to run preliminary experiments to determine the 

desired class distribution which is highly dependent on the cost model.

3.1.2 Boosting Methods 

Instead of modifying the class distributions, some techniques deal with changing the

weights of instances provided to the algorithm. This weight adjustment should be 

processed in such a way that new weights reflect the impact of cost distribution. Boosting 

is a multi-classifier approach that operates with this initiative. It is a general method of 

iteratively enhancing the performance of a classifier by the help of an instance

reweighting methodology [50]. Boosting forms new models based on strengthening the 

old models’ weak points and combines all decisions made by those classification models 

by a voting scheme. A fundamental algorithm on boosting is AdaBoost which is recently 

being studied and extended [2].
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Main idea of AdaBoost is to form multiple individual classification models in 

sequential runs and to adjust the weights of training instances so as to maximize the 

performance [50]. It begins with assigning equal weights to all instances in the training

data. Then, it calls the learning algorithm to form a classifier for this data and reweights

each instance according to the correctness of the classifier’s decisions. The weight of a 

misclassified instance is increased effectively so as to make its classification more 

important in the next iteration. Respectively, the weight of a correctly classified instance 

is decreased. These adjusted weights cause the base learner to concentrate on different 

examples in each turn. After a finite number of generations which build models on 

reweighted data, individual classifiers are combined by means of a voting procedure [42]. 

There are several recent attempts to make AdaBoost cost-sensitive in the literature.

The natural way of doing this is to use the cost of misclassifications to update the training 

data weights on successive boosting rounds. One of such variations is presented by Fan et 

al. in [22]. They have integrated a misclassification cost adjustment function into the 

weight updating formula of AdaBoost. This function increases the weights of more costly 

instances while decreasing the weights of inexpensive examples relatively. Their method

is mostly applicable to situations where misclassification costs are relatively stable. They

have evaluated their algorithm by comparing it with original AdaBoost procedure and the 

results show that AdaCost is superior to AdaBoost in reducing misclassification costs. 

Two other cost-sensitive variants of boosting have been proposed by Ting et al. in 

[45]. Their study differs from AdaCost in a way that methods are based upon tree 

classifications in the situation where misclassification costs change very often. In their 

first approach, the minimum expected cost criterion is used to select the predicted class. 

They have used a modified version of C4.5 decision tree algorithm [41], i.e., C4.5c as the 

base learner. During classification stage, at the leaf of the tree, C4.5c calculates the 

expected misclassification cost for every class and chooses the predicted class with the 

lowest expected cost for a given instance.

The second approach of Ting et. al in [45], which is called cost-boosting, entirely 

modifies the weight updating rule of AdaBoost. According to new rule, if an instance is
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misclassified, its weight is replaced with its misclassification cost; otherwise its weight 

remains unchanged. Their reported results have shown that cost-boosting is a better 

approach for reducing costs than simple boosting with minimum expected cost criterion.

In his further studies, Ting improved his boosting approaches by presenting two new 

variants [43]. All these alternatives should relearn their models when misclassification

cost information changes. For evaluation of the effectiveness, he has compared four 

boosting methods, namely CSB0, CSB1, CSB2 and AdaCost. In the result of 

experimentation, the mean relative cost is reduced by a small margin, i.e., less than 10%, 

for first three variants and is increased by 5% for AdaCost. Ting also points out the 

deficiencies in AdaCost weight updating procedure and shows directions for improving it 

[43].

3.1.3 Meta-learning Methods

Some approaches to cost-sensitive learning treat the internal base classifier as a black box 

and wrap a meta-learning stage around that base in order to tune it in presence of

fluctuating costs. MetaCost [16] is one of such meta-learning methods and it has become

a benchmark for comparison between cost-sensitive classification algorithms.

MetaCost, as originally defined by Domingos, relies on a bagging algorithm. It firstly 

starts by forming multiple bootstrap replicates of the training set and learning a classifier

on each. Then, by using the votes of this ensemble of classifiers, it tries to estimate the 

probability of each class for a given instance. Using these approximated probabilities,

MetaCost algorithm relabels each training instance with the estimated optimal class and 

then reiterate the classifier on the relabeled training set. The pseudo-code for MetaCost 

algorithm is given in Figure 3.1. 
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Input: S  is the training set,

L  is a classification learning algorithm,  

C  is a cost matrix,  

m  is the number of resamples to generate,  

n  is the number of examples in each resample,  

p  is True iff L produces class probabilities,  

q   is True iff all resamples are to be used for each example.  

Procedure MetaCost (S, L, C, m, n, p, q)

For i = 1 to m

     Let Si be a resample of S with n examples.  

     Let Mi = Model produced by applying L to Si.

For each example x in S

     For each class j

          Let 
���

i

i

i
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          Where  

               If p then ),|( iMxjP  is produced by Mi

               Else ),|( iMxjP  = 1 for the class predicted

                       by Mi for x, and 0 for all others.

               If q then i ranges over all Mi

               Else i ranges over all Mi such that x � Si . 

      Let x's class = argmini �
j

jiCxjP ),()|(

Let M = Model produced by applying L to S.

Return M .

Figure 3.1: The MetaCost Algorithm [16] 

One difference of MetaCost from Chan et al.’s method [12] is that it does not have to 

repeat all the runs when the cost matrix changes. Only the final learning stage is needed 

to be rerun, and thus making MetaCost more flexible to variations in the cost matrix. 
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Another advantage of MetaCost is its generic form and ability to introduce cost-

sensitivity aspects to any error-based classifier.

MetaCost has been shown to outperform undersampling and oversampling

stratification methods, and reduced cost compared to C4.5 error-based classifier. 

However, Ting [43] argues that Domingos made no comparison between MetaCost’s 

final model and the internal cost-sensitive bagging model. When MetaCost is compared

to a cost-sensitive bagging or boosting method, Ting has showed that the latter algorithms

give better results and thus, meta-learning stage of MetaCost burdens more computation

than necessary. His study suggests that a classifier with cost-sensitive elements may

outperform a generic cost-sensitive wrapper method like MetaCost applied to an error-

based classifier. So, it is more beneficial to directly incorporate cost information to the

classifier itself.

Another wrapper approach is studied by Lin et al.[35]. Their method initially uses a 

logistic model to minimize number of misclassification errors, then uses a cost sensitive

algorithm which is a variant of Breiman’s bagging [10] and MetaCost [16]. It takes into 

account not only the misclassification costs but also the prior probabilities. Their target 

domain is prediction of financial distress. In the result of their observations, Lin et al. 

claim that cost sensitive learning should also consider the prior probabilities whenever

possible.

Weka [6], which is a famous implementation platform of machine learning algorithms,

has implemented a meta-cost-sensitive classifier which uses two methods to introduce 

cost factors to its base classifier. First method is to reweight training instances according 

to the total cost assigned to each class, and second method is to directly predict the class 

with the minimum expected misclassification cost. The second method requires the base

classifier to be distribution classifier, which outputs the estimated probabilities of classes 

for instances. 
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3.2 Algorithms That Are Modified To Be Cost 

Sensitive

There have been various attempts to make different classifiers sensitive to 

misclassification costs. Most of these studies have focused on decision trees whereas

there is number of studies over decision lists, naïve Bayesian classifiers and case-based

reasoning, a.k.a. CBR, systems. In addition, there is a direct attempt of using estimated

probability outputs in minimization of total misclassification costs. 

3.2.1 Decision Trees 

The earliest efforts to incorporate variable misclassification costs into the process of 

decision tree induction were made by Breiman et al. In [11], two different methods

adapting the test selection criterion in the growing stage of the tree are described. One of

these methods was reported to infer negative results by Pazzani et al.’s empirical study 

[39] Their observation was that cost-sensitive trees do not always have lower 

misclassification than the conventional error-based trees. The naïve approach of using 

error costs as test selection metric is investigated in [39]. For this purpose, the partitions

of the training set made by each possible test are found initially. Then the test that 

minimizes the sum of costs of all partitions is selected. However, this approach did not 

produce desired results when compared to standard decision tree metrics, mostly due to 

the problem of overfitting.

Contrary to pre-processing approaches, Webb proposes a post-processing strategy to 

lower costs [47] His strategy is inspired by the theorem of decreasing inductive power. 

This theorem suggests that elements of a classifier having high misclassification costs 

should be specialized so as to minimize the proportion of false positives to true positives. 

In terms of decision trees, elements to be specialized are leaves of the tree. In this

strategy, as leaves associated with classes of high costs are specialized, leaves having 

lower costs are generalized respectively. Webb presents a theoretical analysis of this 

concept together with its application to C4.5 decision tree inducer. In order to achieve
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this goal, C4.5CS which is a decision tree post-processor is employed and he has reported 

a slight reduction in misclassification costs. He also notes that the effect of specialization 

is smaller for pruned trees than unpruned ones. One interesting aspect of specialization

approach is that it does not need accurate misclassification costs, the only need is the 

relative ordering of them. However, in such a case, how the accurate degree of agreement

between specialization and the cost model will be determined, is an open question.

In contrast to Pazzani et al’s study, Ting claims that, a truly cost-sensitive tree can be 

learned directly from the training data [44]. For this purpose, the greedy divide and 

conquer algorithm is coalesced with a simple heuristic. Specifically, weights of the 

instances that are modified proportionally to the cost of misclassifications are used in 

place of the number of instances in the standard greedy divide-and-conquer. They have

converted C4.5 to C4.5CS (same naming for the second time in literature) by employing

this methodology and their approach seeks to minimize the number of high cost errors, 

rather than minimizing the total misclassification cost. An interesting note made by Ting 

[43] at this point is that, minimizing the number of high error costs does not guarantee to 

achieve minimization in the total misclassification cost. This is because as the algorithm 

avoids high cost errors, the number of consequential low cost errors is usually increased.

Margineantu in [37] has investigated ways to manipulate weights in order to incorporate 

general cost matrices into decision tree algorithms as well. He presents a general wrapper 

method and five other techniques for determining weights for growing decision trees.

Bradford et al. have studied decision tree pruning for minimizing loss together with 

probability estimation techniques [8]. They have extended existing pruning methods to

involve cost-complexity characteristics and formed two variants of pruning based on 

Laplace corrections. Results obtained in their studies indicate that no method dominates

the others in all datasets and furthermore, different pruning mechanisms are better for

different cost matrices. They also show that Laplace correction performs well compared

to others, for some cost matrices.

Another study dealing with pruning methods of decision trees is [17]. Drummond et 

al. have investigated the effects of the splitting criteria and pruning methods over 
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expected misclassification costs. They have shown that decision tree splitting criteria in 

common use are relatively insensitive to costs and class distribution. Two methods have 

been suggested in their study [17]; one is completely treating decision tree with cost-

insensitive splitting and pruning techniques and the other is to grow decision tree cost-

independently and then prune it in accordance with the costs. Second approach intersects 

greatly with Webb’s [47] specialization. 

Zubek et al. have also scrutinized the effects of pruning the search space for the sake 

of cost minimization [52]. They have considered misclassification costs together with 

attribute measurement costs, i.e., test costs. Their algorithm is based on formulating the 

classification process as a Markov Decision Process. Zubek et al.’s admissible search

heuristic is shown to reduce the problem search space remarkably. In addition, to reduce

overfitting, they have introduced a supplementary pruning heuristic named “statistical 

pruning”.

3.2.2 Decision Lists 

Pazzani et al. have studied two algorithms concerning decision lists, first is called

Reduced Cost Ordering for creating decision lists and second one is the Clause Prefix 

method for avoiding overfitting in decision lists [39]. Reduced Cost Ordering algorithm 

firstly initializes the decision list to a default rule that guesses the least expected cost 

class. Then, by replacing the default rule with a new rule, it tries to progress upon the 

available decision list. This strategy results in significantly lower costs than Reduced

Error Ordering, which tries to minimize the error rate and most of the time better than the

decision tree approaches studied in [39]. 

Clause Prefix method [39] is a pruning algorithm which is designed to be used in 

combination with Reduced Cost Ordering algorithm. It is based on finding all prefixes of 

each clause that is learned and adding them to the pool of clauses from which Reduced 

Cost Ordering algorithm selects clauses that have more prediction power in less literals.

However, similar to the case of decision trees, this pruning method is shown to have no 

significant effect over minimizing the cost. 
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3.2.3 Naive Bayesian Classification 

Cost-sensitivity issue has also been examined in the context of other classification 

algorithms such as Naive Bayesian Classification. Pazzani et al. have also studied cost-

sensitive decision making with Bayes classifier among their decision tree approaches [39].

Bayes-Cost simply assigns an instance to the least expected cost class which is 

determined by function of the probability estimates returned by the classifier.  Empirical

results show that Bayes-Cost does well when the data does not violate the independence 

assumption and there are few irrelevant features, otherwise it performs poorer.

In [27], Gama et al. have presented an iterative approach to naive Bayes which also 

exhibits cost-sensitive properties. This approach consists of building distribution tables 

by naïve Bayesian techniques at first, and then applying an optimization process. The 

optimization process is based on an iterative update of the contingency tables and it aims

to improve the probability class distribution associated with each training example. When

there are non-uniform error costs in the domain, this iterative update can be guided by 

misclassification costs and, in such a situation, contingency tables are updated according 

to correct or incorrect classifications made. Experimental results over UCI benchmark

datasets show that this method brings advantages over error-based and stratification 

based naive Bayesian classification in most of the datasets. 

3.2.4 CBR Systems 

Cost-sensitive CBR systems have been investigated by Wilke et al.[49]. KNNcost which is 

a modified version of KNN algorithm is presented in order to learn feature weights for

classification improvement of CBR systems. Their method is based on conjugate gradient 

and it uses an integrated decision value matrix within the error function. They have 

shown that their method based on cost minimization is much more effective than their 

method based on accuracy, namely KNNacc and both provide improvements over initial 

CBR systems. However, their evaluation has only covered one application domain which 

is credit scoring domain of very limited size, and they have not compared their algorithm 
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to other existing methods. For that reason, we cannot fully decide on the predictive power 

of their approach.

3.2.5 Direct Cost-sensitive decision making 

Zadrozny et al. have proposed a method called direct cost-sensitive decision making [51]. 

This study is based on the idea that any learned classifier that can provide conditional 

probability estimates for training data can also estimate conditional probabilities for test

data of the same domain. By means of those estimated probabilities, Zadrozny et al. 

claim that the optimal prediction labels of test examples can directly be computed. By 

testing their approach using five different probability estimation methods over the 

KDD’98 dataset, they have reported better results than MetaCost, which uses the same

probability estimation methods on C4.5 with pruning and collapsing. This result is not 

surprising, since it has also been approved by [43] that MetaCost usually does not 

perform better than an internal cost-sensitive classifier.

3.3 Approaches to Feature-Dependent 

Misclassification Costs 

In the literature of cost-sensitive learning, there are few studies which have included 

feature-dependent aspects of cost matrices. As mentioned in section 2.5.1, in several real-

world domains, prediction outcomes may be dependent on specific feature values that

vary for different instances. In such a case, although misclassification type is the same,

costs can be considerably diverse.

Fawcett et al. are among the first ones who incorporated feature-dependent costs

in their classification problem. In cellular cloning fraud detection [23] used a variable 

cost matrix based on the fraudulent airtime used. Naturally, this is due to the more cost of 

prolonged fake calls. Static cost notion is inappropriate in such situations.
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Since the credit card fraud detection domain is extremely dependent on the dollar

amount of each credit card transaction, Chan et al. in their studies [12] and [13]

represented the cost model in terms of overheads, which are equivalent to operational 

costs that is needed for each investigation and transaction amounts of instances. If the

amount of transaction is smaller than the overhead, net gain will be lower even if that 

transaction is fraudulent, so it is not worthwhile to make an investigation. They have 

examined the effects of cost-based sampling, which samples instances in proportion to

their transaction amount ratios, but their concluded performance is not much different 

from random sampling. Instead, as stated in Section 3.1.1, they pointed out that variations 

in training set class distributions have more promising effects on cost performance.

Recently, Hollmen et al. [26] have examined feature-dependency, i.e., input

dependency concept thoroughly and pointed out that there is an indisputable area of 

applications in which cost matrices of functions should be used instead of fixed cost 

matrices.  They present a cost model and decision function based on Bayesian 

formulation. Posterior probabilities they make use of are obtained by a Hidden Markov 

model. The observed variables are assumed to be conditionally dependent on a discrete 

hidden variable in the HMM structure. Their input-dependent cost model exhibits 

promising results in terms of profit performance, when compared to cost-neutral and 

fixed-cost approaches in fraud detection of telecommunications domain. Furthermore, it 

is stated that the described cost model is applicable with other methods such as neural 

networks or probabilistic networks. However, Hollmen et al. make a footnote that this

approach is favorable when the input-dependent cost model is easily formulated [26].

Elkan [19] take one step further and ask the question “What will happen if instance-

dependent costs C(i,j,x) are unknown for some labels i and j, for some training examples

x?” This question is worthwhile to be considered with great attention. Such situations 

occur when costs are functions of features that are dependent on the class label, such as 

charity donation amounts, and practically impossible to be known beforehand.  In [51], it

is further emphasized that estimating unknown costs can be more important than 

estimating probabilities. The method Zadronzy et al. use to predict instance-dependent

cost amounts is least-squares multiple linear regression. By looking at the examples in the 
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training set, costs for test instances are predicted. Simple methods are used for probability 

and cost estimations and their study tries to provide an insight and a baseline for future 

research. More sophisticated regression methods for cost estimation are likely to give

more satisfactory improvements in this research area [51]. 



Chapter 4 

Benefit Maximization with 

Feature Intervals 

The concept of benefit, i.e., the worth of correct classification, has been undervalued in 

the literature of cost-sensitive learning. Most of the cost-sensitive algorithms presume

that correct classifications have no further interpretations other than simply conveying no 

cost to the domain. However, as described in Chapter 2, there may be non-uniform

distributions of benefits between accurate predictions in particular domains.  Bearing this 

aspect in mind, we have investigated the benefit maximization problem where there are 

different merits related to different class labels. 

In this study, we have chosen to integrate the notion of benefit maximization into the

framework of feature projections technique. The most important advantages of this 

feature projection representation are its flexibility of organization, robustness to noisy 

training instances and missing feature values together with the resultant short training and 

classification time.  Additionally, in the end of the prediction process, it produces a

human readable model of the classification knowledge.

35
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In this chapter, we firstly describe feature projection concept and introduce a new 

cost-sensitive feature projection based learning algorithm, namely Benefit Maximization

with Feature Intervals (a.k.a. BMFI). Subsequently, training and querying with BMFI is 

discussed comprehensively, along with time and space complexity analysis of the 

methods.

4.1 Knowledge Representation

Feature projections for knowledge representation constitute the background for BMFI

algorithm. Feature projection technique is another exemplar-based learning methodology

in which intervals formed on features are independent units of knowledge. BMFI inherits 

the knowledge representation scheme of feature projection technique of early FIL, VFI, 

VFI5 and CFI algorithms ([14],[28],[29] and [30]). 

4.1.1  Feature Projections Concept 

In a particular classification problem, given the training dataset consisting of m features,

an instance x can be thought as a point in an m-dimensional space with an associated

class label xc. It is represented as a vector of nominal or linear feature values and its 

associated class label, i.e., <x1,x2,..,xm,xc>. Here, xi represents the value of the ith feature 

of the instance x. If we consider each feature separately, and take x’s projection onto each

feature dimension, then we can represent x by the combination of its feature projections. 

Figure 4.1 illustrates such a situation in a three-dimensional space.

BMFI algorithm first projects all training instances on each feature separately. As a 

result, over each linear dimension of features, instances are marked as points in the 

beginning. Using these projections, BMFI algorithm constructs a set of intervals for each

feature. An interval can either be a point or a range interval. Point interval stands for a 

single feature value, whereas range interval is a set of consecutive values of the particular 

feature.
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Figure 4.1: A simple feature projection illustration for a single instance 

Definition 4.1: An interval on a feature f is represented by a vector of the following

format:

I = < lb, ub, N1, N2,…,Nk, V1, V2, …, Vk>

where k is the number of classes in the domain, Nj is the number of instances belonging

to class j in and Vj represents the vote of the interval I for class j. The first two elements

of the vector lb and ub denote the lower and upper bound values of the interval, 

respectively.

Definition 4.2: A point interval is an interval I = < lb, ub, N1, N2,…, Nk, V1, V2, …, Vk>

such that lb = ub on feature f. 

As the name implies, point intervals are single-valued projections of features. It is 

noteworthy that a nominal feature’s projection dimension consists of point intervals only.

Definition 4.3: A range interval is an interval I = < lb, ub, N1, N2,…, Nk, V1, V2, …, Vk>

such that lb < ub on feature f. 

In the training phase, the feature intervals of concept definitions are constructed by

generalization and specialization [31]. When forming intervals, those instances that have 

the same value on a feature dimension are grouped into point intervals. By looking at 

neighboring point intervals that share the similar characteristics are combined to form
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range intervals. Merging of intervals for generalization purposes is mentioned in detail in 

the training phase of the algorithm in section 4.2.  

An example training set and the corresponding feature interval construction steps are 

shown in Figure 4.2. The example domain consists of three features, namely f1, f2 and f3,

the first two of which are linear and the last one is a nominal feature. The nominal feature 

f3 can take values from the set {A,B,C}. The class labels are C1, C2 and C3. There are 

seven training instances in the example. 

Figure 4.2: Example demonstrating the formation of feature intervals 

Training algorithm forms three intervals on the feature f1, two of which are range 

intervals. The first interval on f1, spans the value range [1,3], and there are only 2 

instances of C1 in that interval. Vote assignment will be discussed later on in this chapter. 

4.1.2  Basic Notions for Benefit Maximization on Feature 

Intervals

Definition 4.4: A voting method, VM for short, is a function of the form f(I)� g(I) that 

takes interval I as an input and assign votes to classes on that interval by a predefined 

routine.

1 2 3 4 5 6 7 8 

Training Set: 
<1,0,B,C1>

<4,5,A,C2>

<3,0,B,C1>

<4,0,C,C2>

<7,1,C,C3>

<4,6,A,C2>

<5,3,?,C3>

Benefit Table: 
  2  -1  -6 

 -4   3  -1 

 -5  -4   5 

f1

(linear)

f2

(linear)

f3

(nominal)

0 1 2 3 4 5 6 7 

A B C

<1,3,2,0,0,V1,V2,V3> <5,7,0,0,2,V1,V2,V3>

<4,4,0,3,0,V1,V2,V3>

<0,0,2,1,0,V1,V2,V3 >

<1,3,0,0,2,V1,V2,V3> <5,6,0,2,0,V1,V2,V3>

<A,A,0,2,0,V1,V2,V3>

<B,B,2,0,0,V1,V2,V3>

<C,C,0,1,1,V1,V2,V3>
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For example, most of the error-based classifiers generate probability estimation 

outputs when predicting an unseen example. In such a circumstance, a possible voting 

method for a feature projection based classifier might be assigning votes according to the 

number of instances belonging to each class in the particular interval. Specifically, votes 

can be set according to the formula: 

VoteI(c) = Number of instances of class c in interval I

Another voting method may compute ratios of instance occurrences in the interval 

such that

VoteI(c) = (number of instances of class c in I) / (total number of instances in I)

These probability estimations on the interval structure are analogous to decision tree 

leaf structure. In benefit maximization, these voting methods should consider benefits or 

costs of the classifications before casting votes to intervals. One possible approach is 

simply using expected benefits, computed according to Equation 2.5, as vote values. 

Different versions of BMFI with a number of voting methods are introduced in Section 

4.2.

Definition 4.5: Benefit of classifying a single instance x of class k as class c is denoted as
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given the benefit matrix B.

Definition 4.6: A class c is the beneficial class of an interval I iff for � j � C and j 	  c 

� ix

cxB ),( � 

� ix

jxB ),( , where C is the set of all possible classes.

Beneficial class concept solely relies on the interval structure. Considering the 

interval as an independent and distinct unit of knowledge, it is questioned whether it 

would be worthwhile to predict all the instances as of a certain class label. Thus, if the 

prediction problem has a simple benefit matrix such as 
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and the interval I has a signature I=<0,40,10,5,V1,V2> then interval I's beneficial class 

will be class 1, even though there are six more instances of class 0 than instances of class 

1. The subsequent calculations verify this fact: 

 0)25()110()0,( ������
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Therefore, regardless of other factors, it will be more advantageous to predict all 

instances as class 1, rather than predicting all as class 0, in this interval. From a cost-

sensitive point of view, it is often more sensible to predict the most beneficial class 

instead of the most probable class.  

Definition 4.7: Minimum benefit, denoted as minB(S), of an instance set S, is the sum of 

B[j,k]’s of predictions j � C such that � x � S having true class k, j �  k and B[j,k] is 

minimal.

minB(S) =
�

� 	Sx kj

kjB ]),[(minarg  

Here, instance set S can either be a test instances set or an interval’s instance set. 

When S is an interval’s instance set, minimum benefit is the worst benefit that might take 

place when all the predictions made by the interval are incorrect. For example consider 

the benefit matrix B supplied and the interval formation shown in Figure 4.3.  

In interval I1, there are four instances of C1, one instance of C2 and two instances of 

C3. The least beneficial classification for an instance of C1 is misclassifying it as C3,

which has a benefit of -8. Conversely, C2 instances lead to the smallest amount of benefit 

 Actual Class 

Prediction Class 0 Class 1

Class 0 1 -2 

Class 1 -1 3 
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if classified as C3. Prediction row of C3 shows that the worst case classification is 

accompanied with a benefit of -12 in B[C1,C3]. Thus, the lower bound of benefit 

obtainable for the situation in Figure 4.3 is calculated as follows: 

minB(I1)= ������
1

]),[min(arg
ix kj

kjB = (4×-8)+(1×-10)+(2×-12) = -66 

Figure 4.3: An example interval formation 

Definition 4.8: Maximum benefit, denoted as maxB(S), of an instance set S, is the sum of 

B[xc,xc]’s  for �  x � S, such that true class of x is xc.

maxB(S) = � � Sx

CC xxB ],[

Maximum benefit of an interval is the highest benefit obtainable when all the 

instances of that interval are correctly classified. Of course, Definition 4.8 relies on the 

assumption that all benefit matrices in consideration obey the reasonableness conditions.  

In a similar fashion to the example above, if we consider the circumstances shown in 

Figure 4.3, the maximum benefit obtainable by using B is 

maxB(i1) = (4×10)+(1×20)+(2×15) = 90 

Identification of possible upper and lower bounds of accessible benefits are crucial 

for determining the benefit accuracy of the algorithm. With respect to those limits, a 

benefit scale is formed for evaluating the efficiency of the algorithm. Details of this 

performance scale are given in Section 5.1. 

Definition 4.9: Confidence of an interval I is the difference between the highest vote and 

the second highest vote available in I. 
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Definition 4.10: Benefit confidence of an interval I is the difference between benefits of

the most beneficial class and second beneficial class of I.

Both confidence values indicate the prediction strength and assertion of intervals. If 

confidence of an interval is low, i.e., near zero, then the decision made by the interval is 

somewhat tentative. Confidence tests are used for finding and coalescing uncertain

intervals to form more robust ones. 

4.2 Training with BMFI 

The training process of BMFI algorithm is shown in Figure 4.4. In the beginning, for

each feature f, all training instances are sorted with respect to their value for f. This sort 

operation is identical to forming the projections of training instances for each feature f. A

point interval is constructed for each projection. Initially, the lower and upper bounds of 

the interval are equal to the f value of the corresponding training instance. If the f value of 

a training instance is unknown, it is simply ignored. Then, if there are several point 

intervals as the same f value, then they are combined into one point interval by adding the 

class counts. At the end of point interval construction, vote for each class label is 

assigned by a predefined voting method. This voting method is mostly based on benefit

matrix provided as an additional input to the algorithm. Five of the possible voting 

methods are described in detail in subsection 4.2.1. 

After determination of votes on point intervals, consecutive point intervals are

scanned for combination only for linear features. This generalization operation can be 

done by means of several issues, such as frequency of class labels, majority of votes or 

benefit of the intervals. Details of generalization are presented in subsection 4.2.2.  After

combining intervals to form more general ones, some of them can be pruned as an 

optional routine. Pruning is useful when the classification model created becomes so 

much dependent on the nature of the training set. This problem is referred as overfitting

[38] and should be avoided as much as possible. In addition to voting and generalization 
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methods, different pruning approaches are studied and discussed in detail in subsection 

4.2.3.

train(TrainingSet,BenefitMatrix)

begin

for each feature f

sort(f, TrainingSet)   /* sort TrainingSet with respect to f */

/* construct a list of point intervals using feature values and class labels */ 

interval_list �  make_point_intervals (f, TrainingSet)

 for each interval i in interval_list

      /* cast a vote for each class in the interval using the instances in interval */ 

      votei(c) �  voting_method (i,f,BenefitMatrix)

 if f is linear 

      /* join adjacent point intervals to form range intervals */ 

      interval_list �  generalize (interval_list,BenefitMatrix)

      if (pruning=yes)

          interval_list �  prune (interval_list,BenefitMatrix)

end.

Figure 4.4: Pseudo-code of the training stage in BMFI algorithm 

4.2.1 Voting Methods of BMFI 

As explained above, votes on the class labels in intervals can be determined by 

considering several different factors. There are two main approaches to make voting 

methodology sensitive to cost factors. First approach adjusts probability estimations to 

reflect the importance of beneficial predictions and second approach directly incorporates 

benefit matrix knowledge to the voting. Here, we introduce and discuss several methods 

of voting and their possible outcomes. 



CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS  44  

4.2.1.1 Probabilistic Voting 

This type of voting is profitable when the importance of the class is proportional to its 

distribution in the training dataset. As discussed in Chapter 3, there are various wrapper 

algorithms that try to make its internal error-based classifier sensitive to misclassification 

costs by altering the class distribution ratios. Without altering these ratios, if class 

distribution knowledge is included in the algorithm, then more reliable predictions which 

exhibit the natural characteristics of domain can be attained.  However, there is a major 

handicap in determining a general approach when using only probabilistic methods, i.e., 

the classification importance of a class can be directly or indirectly proportional to its 

frequency in the dataset. Assuming an optimistic world-view, most of the fraudulent, 

illegitimate or hazardous cases rarely occur and in such situations, classification of the 

rare class is more important. On the other hand, in a medical domain, it is more likely to 

encounter poor health incidents more often than healthy cases, since people usually see a 

doctor only when they are sick. In such domains, a traditional error-based classifier 

which tries to minimize number of errors made rather than total misclassification cost is 

likely to perform well. Nevertheless, probability estimation methods that favor the 

prediction of the rare classes are less likely to achieve desired success. This observation 

reinforces the fact “There is no universally best classifier” [24]. 

Since conventional error-based learning algorithms predicts the most frequent class to 

reduce the number of errors, we look at the situations where rare classes are more 

important and introduce probabilistic approaches that are suitable to such domains. 

Voting Method 1 (VM1):

The first scheme that we will investigate is the voting method of the original CFI 

algorithm [28], called VM1 in our context, which can be formulated as follows: 

)(
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cclassCount

N
IcVM

c�                    (4.1) 
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where Nc is the number of instances that belongs to class c in interval I and classCount(c)

is the total number of instances of class c in the entire training set. Note that this sort of 

voting does not take benefit of classifications into account. Consider the interval             

Ik = <2,10,15,10,V1,V2> in which 15 instances belong to C1 and 10 instances belong to C2.

In the whole training set, suppose there are 100 instances of C1 and 50 instances of C2.

According to Equation 4.1, V1=15/100=0.15 and V2=10/50=0.20. As it can be seen from 

these results, although C1 is more frequent in the interval, its vote can be lesser than the 

other class because the second class is rarer in the whole dataset. By this voting method, 

classification of a single rare class instance becomes more important in proportion to its 

scarcity in the training set. 

When testing the performance of algorithmic approaches, VM1 produced surprisingly 

well results, mostly due to its simplicity and natural characteristic of favoring rare classes. 

However, it ignores the benefit information and this deficiency makes it still far from 

optimal benefit accuracy when used on its own. 

Voting Method 2 (VM2): 

VM2 is the second probabilistic voting method and is a slight modification of VM1. 

When assigning votes, it simply uses the ratio of interval class distribution to the dataset 

class distribution. More formally, VM2 is formulated as: 
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where Nc is the number of instances that belong to class c in interval I, total(I) is the total 

number of instances falling into interval I, classCount(c) is the total number of instances 

of class c in the entire training set and as the name implies No_Trainers is the total 

number of training instances. The ratio in the denominator of Equation 4.2 is sometimes 

called base rate of class c [51].
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VM2 is more complex than VM1 and it is questionable whether it will suffer or 

benefit from this complexity in terms of benefit performance issues. In Chapter 5, the 

answer to this question is examined. 

4.2.1.2 Beneficial Voting  

This type of voting is more general than probabilistic voting since it is dependent on 

benefit matrix information rather than class distributions. In this approach, the benefit 

matrix is directly embedded in the voting scheme and that’s why we call it beneficial 

voting.

Beneficial voting is applicable to both situations where the rare or the frequent class 

prediction is more important. Its prediction power can be supported by accurate 

probability estimations to gain higher benefit performance. Here, we will consider three 

different variations of beneficial voting. 

Voting Method 3 (VM3): 

The first method of beneficial voting determines the votes of classes in an interval by 

using the relative benefit of the classes. The vote of class c is computed by  
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where minB(I) and maxB(I) are the minimum and maximum benefit possible in interval I

and total_benefit(c,I) is the benefit of labeling all instances in the interval as class c. 

More formally, 
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Note that B(x,c) is the benefit of labeling instance x as class c.

This voting scheme is similar to benefit accuracy calculation that is used in evaluating 

the performance of the algorithm. VM3 normalizes the votes of the interval, i.e., maps 
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them to [0,1] range, by subtracting the minimum possible benefit in the interval and then 

by taking the resultant’s ratio to the possible maximal range of benefits in the interval. 

Evidently, this voting method makes direct use of the benefit matrix entries and makes 

decisions based on importance of the classes. 

Voting Method 4 (VM4): 

An example of beneficial voting supported by probabilities is VM4. VM4 is based on 

VM3 with an additional multiplicand of interval class probability. It can be formulated as 
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where the first multiplicand of the right-hand side of Equation 4.5 is same as VM3 

formula, Nc is the number of instances that belongs to class c in interval I and total(I) is 

the total number of instances falling into interval I.

Voting Method 5 (VM5): 

The last but not the least voting method that we will introduce in this chapter is expected

benefit voting, a.k.a. VM5. This voting mechanism is totally founded on optimal 

prediction approximation given in Equation 2.5. Thus, VM5 casts votes to class c in 

interval I by 
�
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Here, B[c,k] is the benefit matrix entry that represents the benefit of predicting an 

instance of class k as class c and P(k | I) is the estimated probability that an instance 

falling to interval I will have the true class k. There are various methods for estimating 

probabilities and some of them have been explored above. However, by the empirical 

results we obtained, we decided to use the following probability estimation: 
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Again, here Nk is the number of instances that belongs to class k in interval I and 

classCount(k) is the total number of instances of class k in the entire training set. 

There are several other methods we have tried and eliminated during the empirical

evaluation of classifiers. In Chapter 5, a throughout comparison between different types 

of voting on various datasets is presented.

4.2.2  Feature-dependent Voting 

All of the methods described above assume that there is a static benefit associated with 

each pair of predicted and actual class labels. However, there may be situations where the 

benefit matrix is defined in functional dependency forms. When the benefit matrix of 

classification is dependent on features, votes of intervals should be arranged in a way to 

reflect this feature dependency.

In feature projection concept, each feature is assumed to be an independent unit of

knowledge and they individually contribute to voting with equal prediction power.

However in feature-dependent conditions, the dependent variable would have some effect

on decision of other feature dimensions as well. For this reason, it is not very 

straightforward to incorporate feature dependency concerns to an autonomous 

environment like feature projections. In this thesis, we handle feature dependency on the 

dependent variable’s dimension only.

Pseudo-code in Figure 4.5 summarizes the routine followed in feature-dependent 

voting scheme. It uses VM5 as the base voting method. Other beneficial voting methods

can be employed as well, but expected benefit calculation is more suitable to our current

implementation.
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/* Input: f is the feature, interval list is the corresponding intervals on dimension f. */ 

assign_dependent_votes (interval_list, f )

begin

for each i in interval_list do 

if f is a dependent variable 

  /* take the average value dependent in the interval */ 

avg �  average(i.upper , i.lower)

  votei(c) �  VM5(i,f,BenefitMatrix)×avg

 else  

votei(c) �  VM5(i,f,BenefitMatrix)

end.

Figure 4.5: Pseudo-code for assigning feature-dependent votes  

Consider a medical diagnosis domain, in which the benefit of classification depends 

on the age of the patient. In this yes-no classification problem, an example matrix can 

have the following format: 

where fage represents the age feature in the dataset. This benefit matrix implies that 

accurate diagnosis in elder patients is more important, because side effects caused by 

wrong classification may be more damaging (In some cases, this situation can be vice 

versa and accurate prediction of younger patient may be more important.). On fage

dimension, votes will be arranged as follows. For I1=<30,40,20,7,Vh,Vi>                        

Bh = (20+(7×-2))×35 = 180 and Bi = (-20+(7×3))×35 = 35. For I2=<45,60,15,20,Vh,Vi>

Bh = (15+(20×-2))×52.5 = -1312.5 and Bi = (-15+(20×3))×52.5= 2362.5. These values 

should be normalized by subtracting the minimum benefit of interval and mapped to the 

 Actual Class 

Prediction healthy ill 

healthy fage -2 fage

ill -1 fage 3fage
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[0..1] range by dividing into possible range of benefits. Taking the average of interval

feature value is necessary, since it would be extremely costly and redundant in terms of 

space to hold each instance’s value. So, we take the average and find the effective value

through the interval.

4.2.3  Generalization of Intervals

After votes are assigned to each interval with respect to some specified criteria as

described, point intervals should be generalized to form range intervals. This process can 

be likened to clustering process of machine learning. Successive intervals showing

similar characteristics are joined to form more general and informative units of 

knowledge. There is a number of ways to carry out this combination process. One group 

of policies looks at the votes of the interval for combination, and the other group 

considers the possible benefits of each consecutive interval.

The generic form of generalization process is illustrated in Figure 4.6. The 

merge_condition() function is a comparison mechanism that evaluate relative properties

of each interval and returns true if sufficient similarity level between those intervals is

reached. Some join operations combine two consecutive intervals, whereas some

operations compare and combine three consecutive intervals to form a larger single

interval.

Besides adding more prediction power to the algorithm, proper generalization of 

intervals reduces the number of intervals to a great extent, and thus, decreases the 

classification time substantially. However, careful attention must be paid when

combining intervals, because minor yet vital information related to rare occurrences of 

instances may go undetected when excessive generalization take place. In this section, 

some of such generalization policies are examined and exemplified. Subsequently in the

next chapter, their effects to classification progress are investigated in depth. 
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generalize (interval_list)

begin

I �  first interval in interval_list

while I is not empty do 

I’ is the interval after I

I” is the interval after I’

if merge_condition(I,I’,I”) is true 

 then merge I’(or I”) into I

else I� I’

end.

Figure 4.6: Pseudo-code for generalization of intervals 

4.2.3.1 Joining Intervals That Have the Same Frequent Class (SF) 

First method to combine two consecutive intervals is to test whether their most frequent 

class is the same. The intervals whose highest class counts are for the same class are 

merged to form range intervals. So, in this process, merge_condition_SF() is defined as 

merge_condition_SF (I,I’)

if (frequent_class(I) = frequent_class(I’))

   then return(true)

  else 

      return(false)

where frequent_class(I) function returns the class label that have the highest class count 

in the interval I.

An example demonstrating this join process is shown in Figure 4.7. Here, on 

projection dimension of f1, which is a linear feature taking values between 0 and 100, 

there are five point intervals initially. The specified domain has two classes to predict and 

instances of the training set are projected onto f1 dimension as shown on interval 

signatures. Instance counts of point intervals imply that the first three consecutive 

intervals have the same frequent class, i.e., C1. In the first execution of the while loop in 

the generalize function given in Figure 4.6, I1 and I2 are joined to form I1’. When joining 
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intervals, number of instances belonging to each class is summed up and their

corresponding votes are rearranged. In the second step, seeing that I1’ and I3 have the

same majority class, they are combined to form I1”.

Figure 4.7: An example demonstrating merge operation of same frequent class intervals 

In the example above, number of intervals is reduced from five to three. During the 

classification progress these resultant three intervals will be used in search and vote 

operations, so there will be a noticeable reduction in classification time.

4.2.3.2 Joining Intervals That Have the Same Beneficial Class (SBC) 

A second methodology for generalizing intervals is to join consecutive intervals that have

the same beneficial class. This approach relies strictly on benefit matrix provided to the

algorithm. If the beneficial classes of two consecutive intervals are the same, then it can 

be more profitable to unite them into a single interval. Corresponding pseudocode for 

SBC is as follows:

merge_condition_SBC(I,I’)

if (beneficial_class(I) = beneficial_class(I’))

then return(true)

  else

return(false)
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To exemplify this process, let us consider the following benefit matrix in a binominal 

problem dataset 

   

and the two consecutive intervals I1 and I2 having signatures I1=<lb1,ub1,10,15,V1,V2>

and I2=<lb2,ub2,5,5,V1,V2> respectively. The beneficial class of I1 is C1, calculated as 

follows: 
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The beneficial class of I2 is also C1 and these two intervals can be joined to form a 

new and more general interval I1’=<lb1,ub2,15,20,V1,V2>.
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4.2.3.3 Joining Intervals That Have High Confidence Values (HC) 

This type of generalization looks at three consecutive intervals and joins them into a 

single interval. By this type of generalization, intervals that are formed from redundant or 

noisy data are eliminated and their information is assimilated to the other two. 

Generalization takes place if merge_condition_HC() is satisfied : 

 Actual class 

Prediction C0 C1

C0 1 -3 

C1 -2 4 
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merge_condition_HC(I,I’,I”)

if (majority_vote(I) = majority_vote(I”)) and 

(confidence(I) > confidence(I’)) and 

(confidence(I”) > confidence(I’))

then return(true)

  else return(false)

The illustration of this process is given in Figure 4.8. In this example there are four 

intervals with their specified signatures. Problem domain consists of three class labels to 

predict and according to the differences between those votes, the intervals are decided to

be joined or not. 

Figure 4.8: Example for illustrating merging high confidence intervals 

As seen, I1 has the majority class C1, whereas I2 and I4 have majority class C3 and I2

has majority class C2. The loop in the generic generalize() function checks intervals in a 

three-wise fashion. In first iteration, it checks whether I1 and I3 have the same majority

class. In our case, this is not the situation, so no combination takes place we iterate to the

second trio, which is I2, I3 and I4. Seeing that I2 and I4 share the common majority class,

we check their confidences. Here I2 has a confidence of 0.45 and I4 has a confidence of 

0.3. These values are much higher than the confidence of the middle interval I3’s

confidence 0.05. So, according to our join operation, we combine those three intervals

into a single one, by adding the instance counts and recalculating class votes.
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4.2.3.4 Joining Intervals That Have High Benefit Confidences (HBC) 

Joining high benefit confidence intervals has the same logic as joining high confidence 

intervals with the exception that all calculations are based on benefits rather than majority 

of the votes. The process again combines three consecutive intervals to a single one, if 

the middle interval has less prediction power then the other two. Corresponding 

formulation of condition when such three intervals are to be merged is as follows: 

merge_condition_hb(Ileft,Imiddle,Iright)

if (beneficial_class(Ileft) = beneficial_class(Iright)) and 

(benefit_confidence(Ileft) > benefit_confidence(Imiddle)) and 

    (benefit_confidence(Iright) > benefit_confidence (Imiddle))

    then return(true)

        else  return(false)

Continuing with the example given in Figure 4.8, with regards to benefit matrix  

benefit and benefit confidence of each interval is calculated as follows: For I1,
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xB . So, for I1, the beneficial class is C0

with a benefit confidence of 15. For I2, 13)1,(
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and 14)2,(
2 �

� �
Ix

xB . These calculations indicate that I2 has a benefit confidence of 27 for 

beneficial class C2. For I3, corresponding benefit confidence is 2 favoring the beneficial 

class of C1. In I4, beneficial class is C2 with a relatively high confidence of 90. Hence, 

according to these values, I2 and I4 have the same beneficial class and their benefit 

confidences are much higher than the middle interval I3. Thus, although the beneficial 

class of the middle interval is different, those three intervals are joined into a single one, 

 Actual class 

Prediction C0 C1 C2

C0 1 -1 -3 

C1 -1 2 -4 

C2 -2 -2 4 
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because the middle interval I3 is not certain about making a decision in terms of benefit. 

Again, by this merge operation, number of intervals has been reduced from four to two. 

4.2.4  Benefit Maximizing Pruning of Intervals 

Pruning, as in the case of decision trees is a powerful tool for avoiding the problem of

overfitting and reducing the problem size. Hence, we decided to include pruning 

techniques in our BMFI algorithm and investigated its effects over the benefit

performance. In decision tree discussions, advantages of pruning techniques are still 

being questioned [39] and a consensus on this issue has not been reached yet. Bearing

this issue in mind, we have investigated effects of pruning on benefits in the context of 

feature projection based classification.

In this section, we will introduce a single method for eliminating redundant or 

disadvantageous feature intervals and in Chapter 5 we will discuss effects of this

procedure on various datasets. Overall, choice of pruning seems to be dependent strictly 

on the nature of the domain and the amount of redundancy available in the training 

datasets provided. 

Our approach to interval pruning is based on the comparison of the votes of the most

beneficial class and majority voted class. If the vote of the most beneficial class is less 

than the highest vote to some extent, i.e., beneficial class is undervalued in the interval,

then pruning that interval may be a good choice. The reason behind this is usually in such 

intervals there is a more evenly distribution of classes and thus, that feature value range is

somewhat uncertain about making prediction. Elimination of these dangling intervals

may be profitable since such an operation will shift the power of voting to more “certain” 

intervals. Corresponding pseudo-code of this procedure is given in Figure 4.9. 

In the code of Figure 4.9, major is the class that receives the highest vote from

interval I and most is the most rewarding class when predicted. After the determination of 

these classes in a particular interval, the standard deviation between all the votes of I is 

calculated. If the difference between the votes of majority class and beneficial class
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exceeds this standard deviation, then I is pruned. This standard deviation test allows us to 

check whether votes of the interval are in accordance with the benefit concerns. If there is 

critical gap between, then it is better to simply ignore that interval. 

prune(interval_list)

 begin 

  for each I in interval_list

   most �  beneficial class of I

   major �  majority class of I

   std �  standard_deviation(I.votes)

   if ( vote[major] – vote[most] ) is greater than std

    prune I

 end 

Figure 4.9: Pseudo-code of prune operation on intervals 

4.3 Classification with BMFI 

After the prediction model is constructed on the training data, it is time to classify 

previously unseen data. The classification (querying) process of the BMFI algorithm is 

given in Figure 4.10. BMFI classification stage is very similar to that of CFI [28] and it 

involves a voting scheme where each feature acts as an independent unit and casts its 

vote for the particular instance’s class.

The process starts by initializing the votes of each class label to zero. If the value of 

the query instance q for a feature f, i.e., qf is unknown (missing), then that feature does 

not involve in the voting process. Rather than altering the characteristics of the instance 

(i.e., by assigning average quantities for unknown feature values), simply ignoring that 

feature dimension is a more natural and straightforward way of handling missing values. 

If qf is known, then the interval I into which qf falls is searched. If the qf does not fall in 

any interval of f, then again, the feature f does not participate in the voting. If an interval I

is found that covers the qf value, then the votes of that particular interval are the votes it 
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casts in the overall voting operation. Once all features have completed casting their votes, 

the class that received the highest amount of the votes is predicted as the class of the 

query instance q.

classify (q) /* q: query instance to be classified */ 

begin

 /* initialize total votes */ 

 for each class c

      vc
�  0 

/* go over each feature dimension and sum up votes */ 

for each feature f

      if qf is known 

I �  search_interval(f, qf)

       for each class c 

vc
�  vc + interval_vote( I, c)

     /* predicted class is the one with the maximum votes */ 

prediction �  arg maxc (vc)

return prediction

end.

Figure 4.10: Classification phase of BMFI 

It should be noted that in our classification scheme, each feature has an equal power 

in the voting. This condition is guaranteed by normalizing the votes of each interval in 

the training phase of BMFI. Several policies that play with the weights of features in 

voting can be employed, especially when costs of features are asymmetrical. However, 

those policies are beyond our current discussion and are subject to future research. 

When querying examples using a constant benefit table, the total benefit is calculated 

by simply adding up the corresponding benefit matrix entry for each test instance. In that 

case, each type of classification, e.g. classifying i as j, has identical revenue. On the other 

hand, if a feature dependent benefit table is available in the domain, for each query 

example there is a different benefit gained and it is the functional form of feature values 



CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 59

identified in the table. For each instance in the test set, these functional measures are 

summed up to calculate the total resultant benefit.

4.4 Time and Space Complexities of BMFI 

When evaluating performance of a classification algorithm, learning time and disk 

storage needed are important concerns along with the predictive accuracy.  An algorithm 

having a superior accuracy is not favorable and practical if it runs in exponential time

and/or needs excessive amounts of disk space. Our BMFI algorithm runs in a 

considerably well amount of time and has manageable space requirements. In this section

of the thesis, we will investigate estimations of these figures in terms of algorithmic

variables. In Table 4.1, the list of those algorithmic variables is given.

Table 4.1: Input variables of BMFI

N number of training instances 

f  number of features in the domain

l number of linear features in the domain

k  number of possible classes 

r maximum number of distinct values of a feature

t number of test instances 

4.4.1  Time Complexity of BMFI 

Training:

With reference to training pseudo-code re-presented in Figure 4.11, all the training 

instances are processed f times to form point intervals on each feature dimension f. Hence,

make_point_intervals() function requires O(N) time for a single feature pass. As a result 

of this pass, for r distinct feature values, r point intervals are formed initially. Calculating

votes of these intervals requires constant time and total operation on r intervals takes O(r)

time. Generalization of intervals makes a second pass over the interval list of l features, 

that consists of at most r intervals. If pruning is employed, then it is processed over at
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most r intervals again, assuming the worst case that no joining on intervals took place. 

Therefore, pruning on the worst case consumes O(r) for a single feature’s interval list. 

train(TrainingSet,BenefitMatrix)

begin

for each feature f

/* sort TrainingSet with respect to f */

sort(f, TrainingSet)

interval_list �  make_point_intervals (f, TrainingSet) O(N)

 for each interval i in interval_list     O(r)

       votei(c) �  voting_method (i,f,BenefitMatrix) O(k)            O(fN)

if f is linear 

      /* join adjacent point intervals to form range intervals */ 

      interval_list �  generalize (interval_list,BenefitMatrix) O(l)

      if (pruning=yes) 

          interval_list �  prune (interval_list,BenefitMatrix) O(l)

end.

Figure 4.11: Runtime evaluation of training phase of BMFI 

Overall, each of interval formation, generalization and pruning operations are carried 

out for each feature in the domain, and at worst case, run time of BMFI is 

O(f×(r+N))=O(fr+fN), since f
�

l. When each feature have a distinct value on a particular 

feature f, r can be at most N, and therefore, at the worst case, runtime of the algorithm is 

O(2f×N)=O(f×N) which is a quadratic and very efficient training time. 

Classification (Querying): 

In the classification process given in Figure 4.10, classification of a single instance 

requires a pass over all feature values of that instance. For each f, a binary search over f’s

intervals is performed and this requires O(log r) time on the average with r intervals. At 

the worst case, when no generalization and pruning is carried out and there are N distinct 

values for feature f, then r=N and worst case search requires O(logN) time. For f features, 
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the total time is O(f×logN). Votes for k classes are summed up for each feature entailing

O(f×k) time. So, overall time needed for classification of a single instance is 

O(f×logN+f×k)=O(f×logN), since logN >> k. As a result, the classification of total test

data is done in O(t×f×logN) time. On the average case, runtime of the classification is 

much lower than this upper bound since there will be a substantial reduce in the number

of intervals by generalization and pruning operations.

4.4.2  Space Complexity of BMFI 

When training BMFI, there can be at most N distinct values and thus N intervals for a 

feature f.  So, we need a total of f×N space to hold interval structure. Interval structure

itself consists of 2k +2 values, i.e., k for holding number of instances belonging to each 

class, k for holding their corresponding votes and 2 for holding lower and upper bound 

values of the interval. This equals to O(k). Therefore, storage requirement is O (f×N×k)

initially. As the algorithm progresses, there will be extensive shrink in this upper limit

due to the reduction in number of intervals.



Chapter 5 

Experimental Results

When dealing with cost-sensitivity, class imbalance in the datasets is the main issue faced 

with. Importance and consequences of this problem have been widely addressed in [48]. 

Most of the error-based algorithms fail when the minority class is more valuable in the

domain, and in some contexts, cost-sensitive classification has become the process of 

detecting minority class. However, a generic method which is applicable to all sorts of 

domains is needed. That’s why we think that benefit information should directly be used.

In this chapter, we will investigate the behavior of BMFI algorithm in various 

domains. Consequences of employing different voting methods to different class 

distributions are monitored, together with the effects of generalization of intervals and 

pruning over these voting methods. Later on, comparisons of BMFI with wrapper cost-

sensitive algorithms using Naïve Bayesian Classification and C4.5 decision tree learner 

are presented. 

5.1 Benefit Accuracy

In order to evaluate the efficiency of cost-sensitive algorithms, there are a few proposed 

methods, such as Receiver Operating Characteristics (ROCs), area under ROC curves 

62
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(AUCs), average cost per instance calculations [37]. ROC curve evaluation has the 

flexibility to make comparisons between classifiers when the cost matrices are not strictly 

defined. However, it has its own drawbacks and a more simple representation that reflects 

the precision of classification in terms of benefit is needed. For this reason, we propose 

an accuracy metric which is defined as follows: 

Definition 5.1: Benefit accuracy of a classification model M in domain D over the 

instance set S is the normalized ratio of gained benefit to the maximum possible benefit, 

i.e.,
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Here, BenefitD(M,S) is the benefit obtained by model M on domain D, minBD(S) and 

maxBD(S)  is the minimum and maximum benefit obtainable in domain D respectively. 

That is, minBD(S) is the total benefit achievable when all the test instances are classified 

as the worst wrong case. Similarly, maxBD(S) is obtained when all instances in S are 

classified correctly. When BenefitD(M,S) is equal to the minimum benefit possible, then 

benefit accuracy of the model is 0. Correspondingly, when it equals the maximum benefit 

possible, then benefit accuracy is 1, as expected. In other words, this metric maps the 

obtained benefit to [0..1] range as in the case of conventional predictive accuracy. To be 

more specific, benefit accuracy is the general form of classical predictive accuracy. When 

the diagonal elements of the benefit matrix are one and non-diagonal elements are all 

zero, i.e., all types of classifications have equal importance and there is no cost for 

misclassifications, then benefit accuracy equals predictive accuracy used in comparison 

of error-based classifiers.

It should be noted that benefit accuracy metric not only compares relative benefits of 

two classifiers, but also indicates the algorithm’s efficiency over the particular domain. 

For this reason, we have chosen to evaluate our algorithm mainly with regards to benefit 

accuracy. All the accuracy results presented in this chapter are the average benefit 

accuracies achieved when 10-fold cross validation is utilized over the entire datasets. 

That is, for each dataset, initially the instance space is partitioned into 10 equal-sized 
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subsets. The algorithms are run 10 times using a different subset each time as the test set 

and the remaining nine as the training set. By this process, it is guaranteed that the 

training sets are disjoint and each instance in the whole dataset is classified exactly once. 

Resultant benefit accuracy is the average of the accuracy values of these 10 runs. Gained 

total benefit, BenefitD(M,S), is another metric that is used to evaluate cost-sensitivity.  

5.2 Datasets and Benefit Matrices 

For evaluation purposes, we have used several benchmark datasets taken from UCI ML 

Repository [7] and datasets that we constructed from real-world domains. Individual 

characteristics of the datasets influence results obtained significantly, since cost-

sensitivity is extremely correlated to class distributions. Thus, we first give fundamental 

information about the datasets used throughout the experimentation stage. Later on, 

details of benefit matrix construction are presented.   

5.2.1  Properties of Datasets Used 

Datasets that we have used in evaluation of our algorithm can be divided into three 

groups. First group of datasets consists of five binary datasets taken from UCI ML 

repository. In these datasets, one class is assumed to be more important to predict 

correctly than the other by a constant benefit ratio. Basic properties of these two-class 

datasets are given in Table 5.1. In this table, base rate represents the ratio of the important 

class instances in the dataset. These five two-class datasets are chosen to characterize 

each possible sort of distribution, e.g. in breast-cancer and diabetes datasets, the 

important class is the minority class, whereas in ionosphere and liver disorders datasets 

the important one is the majority class. Sonar dataset is chosen because there is a natural 

near-equal distribution of instances among class labels. 

A detailed explanation of these datasets is provided in Appendix A. In two-class 

benchmark datasets, the benefit matrix is not explicitly specified and thus, we have 

chosen to set the positive class as the most important one in classification. For medical 
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datasets, this is the existence of the particular disease, i.e., classification as being ill is 

considered as more important.  

Table 5.1: Basic properties of two-class benchmark datasets from UCI ML Repository 

Dataset
# of 

instances

# of 

features

# of linear 

features

# of 

classes
Base Rate

Breast-cancer-w 699 9 9 2 0.3447

Pima-diabetes 768 8 8 2 0.3490

Ionosphere 351 34 34 2 0.6410

Liver disorders 345 6 6 2 0.5797

Sonar 208 60 60 2 0.5336

Table 5.2: Basic properties of multi-class benchmark datasets from UCI ML Repository 

Dataset
# of 

instances 

# of 

features

# of linear 

features

# of 

classes
Class Distributions 

Ecoli 336 8 8 8

C1=143

C2=77

C3=52

C4=35

C5=20

C6=5

C7=2

C8=2

Glass 214 9 9 6

C1=70

C2=76

C3=17

C4=13

C5=9

C6=29

Page-

blocks
5473 34 34 5

C1=4913

C2=329

C3=28

C4=88

C5=115

Vehicle 846 18 18 4
C1=199

C2=217

C3=218

C4=212

Wine 178 13 13 3
C1=59

C2=71

C3=48

The second group of datasets consists of multi-class datasets, again taken from UCI 

ML repository [7]. Table 5.2 lists basic characteristics of these datasets together with 

class distributions. These datasets are chosen among the ones that have an abundant 

number of linear features, in order to evaluate the effectiveness of generalization and 

pruning methodologies.  As it can be observed, these five multi-class datasets are selected 

to reflect properties of various possibilities and different class distributions. We have 

assigned two types of benefit matrices to these datasets, for evaluating cost-sensitivity 

issues. One of the matrices is constructed so as to facilitate the prediction of minority 
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classes. Construction of such matrices is explained in the next subsection. We have also 

used a random benefit matrix which gives random importance levels to prediction of 

different classes. Both of the matrices that have been used in experiments and the details 

of these datasets are given in Appendix A. 

Other than benchmark datasets, there are five datasets that we have used in our 

studies. Fundamental characteristics of these datasets are given in Table 5.3. To evaluate 

benefit aspects, there are pre-assigned benefit matrices, which have been determined by 

experts of the specified domains or by us after a careful examination of domain 

specifications, for these datasets. All these benefit matrices are presented together with 

detailed information about the datasets, in Appendix B. 

Table 5.3: Five special datasets which have their own individual benefit matrices 

Dataset Size 
# of 

features

# of linear 

features

# of 

classes
Base Rate 

Bank-loans 1443 13 7 2 C1=1000 C2=443

Bankruptcy 1444 19 19 2 C1=1030 C2=414

Dermatology 366 34 33 6 C1=112

C2=61

C3=72

C4=49

C5=52

C6=20

Lesion (Gastric 

Carcinoma) 

285 68 7 9 C1=3

C2=55

C3=7

C4=103

C5=6

C6=6

C7=17

C8=69

C9=19

Arrhythmia2r 526 279 272 2 C1=245 C2=281

5.2.2  Benefit Matrix Construction 

In our experiments, we constructed two-class benefit matrices by the help of a constant 

benefit ratio which denotes the ratio between benefits of correct classification of each 

class. For two-class datasets, we used benefit ratio values 2, 5, 10, 20, 50 and benefit 

matrix of the format: 
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Actual Class

Prediction C0 C1

C0 1 - b

C1 -1 b

where b denotes the benefit ratio constant. This matrix can be interpreted as correct

prediction of C1 is b times more beneficial than C0.

For multi-class problems, if the particular dataset does not have a predefined benefit

table, one is constructed with respect to the distribution of classes in the dataset. When

the minority class is assumed to be more important, construction procedure is done as 

follows: If the probability distribution of class i is represented as P(i), the benefit of 

classifying an instance of class i as class j is assigned as -[P(j)/P(i)]×b where b is a 

constant representing the importance degree of correct classification of class j. Diagonal 

elements are determined by multiplying the benefit ratio with the inverse of probability of

that class occurrence. Constant multiplicand of diagonal elements can be varied in order 

to adjust the matrix to represent the features of the domain. Below is an example

illustrating the construction of a benefit matrix from scratch:  If instances of C1 and C2

constitute up 0.2 and 0.3 of the dataset respectively, and C3 makes up the remaining 0.5;

an example benefit matrix with a benefit ratio of 5 is constructed as: 

Actual Class

Prediction C1 C2 C3

C1 [1/P(1)] × b - [P(1)/P(2)] × b - [P(1)/P(3)] × b

C2 - [P(2)/P(1)] × b [1/P(2)] × b - [P(2)/P(3)] × b

C3 - [P(3)/P(1)] × b - [P(3)/P(2)] × b [1/P(3)] × b

If we place the corresponding P(i) values, the resultant benefit matrix B is as follows:

Actual Class

Prediction C1 C2 C3

C1 25 -3.33 -2

C2 -7.5 16.67 -3

C3 -12.5 -8.33 10

B = 
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It can be clearly observed that, constructed benefit matrix adjusts benefits in inverse 

proportion to the probability distribution of the class. This configuration favors prediction 

of the rare class. On the contrary, if importance of the class is in direct proportion to its 

class frequency, then we can form an appropriate benefit matrix by taking the inverse of 

the ratios in the above construction and adjusting the diagonal elements appropriately. 

5.3 BMFI Comparisons 

In this section, we present an incremental progress of BMFI versions. First, we give 

comparative test results of five different voting methods on various datasets. Later on, 

generalization and pruning effects over voting methods are illustrated through a number 

of experiments. Overall evaluation on combined effect of techniques and voting methods 

are discussed consequently. 

5.3.1  Comparison of Voting Methods 

As described in Section 4.2.1, there are five voting methods we have employed during 

the experimentation stage of BMFI. Two of these voting schemes are probabilistic 

methods that favor the prediction of rare classes. The remaining three methods use 

benefit table information to value possible prediction outcomes. In Figure 5.1, the 

behavior of these five voting methods on two-class datasets and changing benefit ratios 

are presented.

When a probabilistic voting method is used singly, the classifier becomes almost an 

error-based classifier that does not consider benefits of classifications (we say “almost” 

because this type of voting is strictly dependent on class distributions and it favors the 

prediction of minority class). As the results of Figure 5.1 illustrate, beneficial voting 

methods outperform error-based approach especially when the benefit ratio is increased. 

Not surprisingly, when the benefit ratio is low, probabilistic voting logic becomes more 

adequate in the domain. 
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Figure 5.1: Behavior of voting methods on two-class benchmark datasets
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Figure 5.1(cont.): Behavior of voting methods on two-class benchmark datasets
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Figure 5.1(cont.): Behavior of voting methods on two-class benchmark datasets

Both of the probabilistic methods VM1 and VM2 performed poorly on two-class 

datasets except breast-cancer dataset, and beneficial voting methods have acquired 

considerably well results on each of the datasets. With the increase in benefit ratios, there

is an observable proliferation in benefit accuracies when beneficial voting is used. On the 

other hand, rise in benefit ratios cause a slight reduction in benefit accuracies in the case 

of probabilistic voting. This reduction is due to the lack of benefit information in 

probabilistic voting.

On multi-class datasets, behavior of voting methods is presented in Table 5.4. These

datasets are evaluated by using a pair of benefit matrices, one favoring the prediction of 

rare class and the other assigning importance levels randomly. In Table 5.4, the 

difference of accuracy between series of rare_matrix and random_matrix are natural since 

they operate on different benefit matrices, i.e., different baselines. What is really

important is the local maximum of these series. According to those results, VM1 and 

VM5 are the most promising voting methods when rare class prediction is more
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important. The reason why VM1 become this much efficient in these datasets is that, in 

the construction of benefit matrices, relatively small benefit ratios, i.e., in the range of 2-4, 

are used. Conversely, VM3 causes the worst results in four of the five multi-class datasets.

When random matrix is used, VM4 produces considerably well results. On the average, 

however, VM5 is the winner of performance in majority of the multi-class datasets. 

Table 5.4: Behavior of voting methods over multi-class datasets 

Ecoli

VM1 VM2 VM3 VM4 VM5

rare_matrix 0.72051 0.626925 0.572779 0.631834 0.611721

random_matrix 0.487577 0.455996 0.434554 0.468542 0.406952

average 0.604044 0.541461 0.503667 0.550188 0.509337

(a)

Glass

VM1 VM2 VM3 VM4 VM5

rare_matrix 0.477259 0.467146 0.363039 0.313882 0.465963

random_matrix 0.514916 0.513629 0.641634 0.650164 0.606015

average 0.496088 0.490388 0.502337 0.482023 0.535989

(b)

Page-blocks

VM1 VM2 VM3 VM4 VM5

rare_matrix 0.720676 0.719496 0.671866 0.682976 0.685656

random_matrix 0.6567 0.65615 0.612202 0.619543 0.655472

average 0.688688 0.687823 0.642034 0.65126 0.670564

(c)

Vehicle

VM1 VM2 VM3 VM4 VM5

rare_matrix 0.712325 0.621851 0.594291 0.644188 0.723903

random_matrix 0.541159 0.527543 0.699733 0.73221 0.707321

average 0.626742 0.574697 0.647012 0.688199 0.715612

(d)

Wine

VM1 VM2 VM3 VM4 VM5

rare_matrix 0.812696 0.807971 0.81729 0.818441 0.813927

random_matrix 0.810475 0.809609 0.726201 0.819187 0.822311

average 0.811586 0.80879 0.771746 0.818814 0.818119

(e)
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On special datasets with expert-defined benefit matrices, performance evaluation of

voting methods is presented in Table 5.5.  Here, it should be noted that in bank-loans, 

bankruptcy and lesion datasets, prediction of the minority class is much more important

than prediction of majority class. In those domains, not surprisingly, probabilistic

methods VM1 and VM2 produced the best results. This is because their internal structure

relies solely on favoring prediction of minority classes. On the other hand, in 

arrhythmia2r dataset the important class which is the detection of arrhythmic instances is 

more abundant than healthy instances, and thus, VM1 and VM2 operate poorly in that 

dataset. On the average of all datasets, VM1 is the winner of benefit accuracy with a 

value of 0.74, but VM5 is very close with an average benefit accuracy of 0.72 on five of 

the datasets. When single voting is processed, VM5 is more preferable since it is more

general and applicable to any kind of class distributions. However, if domain knowledge 

is utilized and it is seen that there is a great difference between class distributions of 

classes and that the minority class is more important, VM1 can be useful. Alternatively, if

voting method is to be supported with benefit elements like generalization and pruning, 

then VM1 can be more effective, as we will see in Section 5.3.4. 

Table 5.5: Behavior of single voting methods over special datasets 

VM1 VM2 VM3 VM4 VM5

arrhythmia2r 0.67106 0.638288 0.814835 0.814835 0.814835

bank-loans 0.680171 0.66353 0.669783 0.512857 0.551286

bankruptcy 0.503108 0.503108 0.510482 0.509069 0.510671

dermatology 0.969257 0.969257 0.700129 0.58594 0.936078

lesion 0.878923 0.878923 0.673071 0.724255 0.797718

Average 0.740504 0.730621 0.67366 0.629391 0.722118

5.3.2 Effect of Generalization 

Merging formed intervals is important for reducing the problem size and the effect of 

overfitting to the training data. It also helps the algorithm become more general and 

effective over a wide range of values. In this subsection, we present how the 

generalization strategies mentioned in Section 4.2.3 change the total benefit and benefit

accuracy with respect to those of single voting schemes.
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Effect of Merging Intervals that Have the Same Frequent Class (SF) 

Merging intervals that have the same frequent class in the interval is a simple way of 

merging intervals, yet this strategy does not consider benefit calculations of the interval.

It simply joins two intervals into one by looking at the most frequent class in these

intervals. Table 5.6 lists the changes of total benefit in terms of ratio (i.e., change in 

benefit/prior benefit) when this form of generalization takes place. For example, a value

of 3.29 means that the increase in total benefit is 3.29 times the prior total benefit. In the

following tables, (a)’s near multi-class datasets represent the results obtained when using 

rare class benefit matrices.

Table 5.6: Changes in total benefit when SF is used on single voting methods

Datasets

VM1 VM2 VM3 VM4 VM5

breast-cancer-w -0.042 -0.070 -0.113 -0.030 -0.001

diabetes 0.202 -0.079 -0.018 0.092 -0.012

ionosphere 8.330 8.045 -0.001 0.042 0.012

liver 0.007 -1.716 0.000 0.011 0.008

sonar 114.857 104.857 1.038 1.030 1.850

Ecoli (a) -0.939 -4.900 -3.500 -0.114 0.414

glass(a) 0.721 0.317 1.145 0.322 0.608

page-blocks(a) 0.187 0.078 0.104 -0.010 0.085

vehicle(a) 0.000 -1.261 2.439 0.272 -0.083

wine(a) 0.239 0.044 0.199 0.142 0.241

arrhythmia2r 0.299 1.155 0.000 0.000 0.000

bank-loans -0.348 -1.432 0.145 -0.038 0.127

bankruptcy -1.138 -1.257 -0.449 -0.732 -0.646

dermatology -0.027 -0.452 -0.001 0.000 -0.033

lesion 0.030 -0.458 0.000 0.020 0.063

# datasets in which

benefit is increased
9 6 6 8 9

Voting methods

By looking at the resultant values in Table 5.6, it can be said that the effect of 

merging intervals that have the same frequent class is not very promising when used with 

VM2 and VM3. However, on 9 of 15 datasets SF technique has produced an increase 

when used with VM1 and VM5. Especially on sonar dataset, which has a more or less 
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equal distribution of classes, joining intervals of same frequent class with VM1 and VM2

produced highly effective results. As our empirical results on datasets show, SF option is 

more useful when used in combination with SBC and HC generalization methods.

Effect of Merging Intervals That Have the Same Beneficial Class (SBC) 

According to the results presented in Table 5.7, it is often beneficial to use SBC merging

strategy to generalize intervals, especially when using VM1,VM2 and VM4 voting.  It 

can be seen that in VM4 column, the number of benefit increase situations is more than 

any other voting methods. This suggests that, if VM4 is used, it will be beneficial to use 

SBC merging most of the time. However, when VM3 and VM5 is in use, it is

questionable whether to use SBC or not, since in only 6 out of 15 datasets, it has caused 

an increase in the benefit obtained. 

Table 5.7: Effect of SBC on single voting methods

VM1 VM2 VM3 VM4 VM5

breast-cancer-w -0.028 -0.028 -0.059 -0.029 -0.001

diabetes -0.003 1.124 -0.019 0.038 -0.026

ionosphere 8.723 8.714 -0.013 0.032 0.000

liver 0.526 1.280 0.000 0.011 -0.012

sonar 92.286 100.286 0.953 1.026 1.448

Ecoli (a) -0.888 -1.750 -0.097 0.684 0.155

glass(a) 0.868 0.994 0.984 0.372 0.741

page-blocks(a) 0.092 0.085 0.074 -0.062 -0.003

vehicle(a) 0.035 0.049 2.742 0.227 -0.155

wine(a) 0.268 0.081 0.238 0.268 0.264

arrhythmia2r 0.145 -1.733 0.000 0.000 0.000

bank-loans -0.262 -0.751 -0.087 0.002 0.208

bankruptcy -0.873 -0.874 -0.865 -0.864 -0.865

dermatology -0.009 -0.166 0.038 0.000 -0.043

lesion 0.016 0.017 0.000 0.020 0.069

# datasets in which

benefit is increased
9 9 6 10 6
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Effect of Merging Intervals That Have High Confidence (HC) 

Merging intervals that have high confidence is a probabilistic method that does not 

consider benefit characteristics of classifications. Table 5.8 presents HC’s effect on single

voting methods.

Table 5.8: Effect of HC on single voting methods

VM1 VM2 VM3 VM4 VM5

breast-cancer-w -0.007 -0.132 -0.091 -0.012 -0.001

diabetes 0.262 0.559 -0.022 0.070 0.014

ionosphere 0.089 0.089 -0.002 0.000 0.008

liver -0.713 -0.159 0.000 0.011 -0.003

sonar -16.286 12.000 1.111 1.148 1.047

Ecoli (a) -0.304 1.750 -3.097 0.494 0.241

glass(a) 0.253 0.584 -2.097 0.004 0.766

page-blocks(a) 0.036 0.073 -0.050 0.002 0.048

vehicle(a) 0.023 1.005 2.742 0.578 -0.174

wine(a) 0.112 0.183 0.124 0.202 0.157

arrhythmia2r -0.212 0.857 0.000 0.000 0.000

bank-loans 0.003 -0.494 -0.327 -0.081 -0.048

bankruptcy 0.114 0.817 1.939 1.755 1.888

dermatology 0.000 -0.500 -0.240 -0.825 -0.159

lesion 0.015 0.028 0.000 0.020 0.067

# datasets in which

benefit is increased
9 11 4 10 9

Overall, HC operation is effective with all of the voting methods except VM3.

Especially, it enhances the accuracy of VM2, i.e., causing an increase of benefit in the 

eleven datasets. This improvement power of HC can be boosted up by using it in 

combination with other parameters.

Effect of Merging Intervals That Have High Benefit Confidence (HBC) 

The most profitable of all generalization strategies is HBC as the experimental results

presented on Table 5.9 demonstrate. These results indicate that HBC is a powerful

generalization process effective over all voting methods in general. Especially combined
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with VM4 and VM5, HBC increases total benefit in most of the datasets. Results

emphasize that an effective BMFI version should use HBC as an internal routine. 

Table 5.9: Effect of HBC on single voting methods

Datasets

VM1 VM2 VM3 VM4 VM5

breast-cancer-w 0.001 -0.024 -0.013 -0.001 0.000

diabetes 0.868 -0.678 0.002 0.091 0.030

ionosphere -0.607 -0.955 0.001 0.031 0.023

liver -0.394 0.602 0.011 0.022 0.008

sonar 122.286 119.714 1.287 1.372 2.176

Ecoli (a) -0.708 -0.650 -0.855 -0.051 0.121

glass(a) 0.489 0.646 -0.855 0.042 0.361

page-blocks(a) 0.093 0.085 0.041 0.048 0.003

vehicle(a) 0.165 1.488 2.470 0.454 -0.039

wine(a) 0.199 0.185 0.114 0.144 0.145

arrhythmia2r -0.415 -2.683 0.000 0.000 0.000

bank-loans -0.003 -0.316 0.003 0.033 -0.042

bankrupcty 2.640 2.605 2.593 2.604 2.572

dermatology 0.000 0.000 0.011 0.000 0.010

lesion 0.010 0.007 0.000 0.020 0.047

# datasets in which

benefit is increased
9 8 10 11 11

Voting methods

5.3.3  Effect of Pruning

Pruning, as described in 4.2.4, is helpful when there is an excessive amount of overfitting 

in classification model besides the noisy and redundant data in the domain. Our 

experiments with BMFI algorithm also confirm this fact. However, it should be noted 

that pruning is not very effective without generalization. Table 5.10 gives an idea about 

the change in benefit accuracy when pruning is used solely over the voted intervals.

As it can be seen in Table 5.10, pruning without generalization of intervals does not 

change benefit accuracy especially when used with beneficial voting methods. Moreover,

it has a degrading effect over VM5. This is due to the internal structure of the pruning

methodology. Pruning is based on divergence in majority and beneficial classes of 
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intervals and in intervals formed with beneficial voting methods, these two are generally 

equal. That’s why pruning is more successful when used with probabilistic voting 

schemes.

Table 5.10: Effect of pruning on voting methods

Datasets

VM1 VM2 VM3 VM4 VM5

breast-cancer-w 0.009 0.009 0.000 -0.001 0.009

diabetes 1.252 2.629 0.000 0.005 0.001

ionosphere 6.875 6.875 0.000 0.022 0.000

liver 3.979 4.152 0.000 0.000 0.000

sonar 13.143 13.143 0.000 -0.005 0.000

Ecoli (a) -0.128 -0.400 3.484 1.861 -0.121

glass(a) 0.000 0.143 0.177 0.724 0.000

page-blocks(a) -0.005 -0.002 0.127 0.071 0.000

vehicle(a) 0.035 2.044 4.500 0.089 0.000

wine(a) 0.000 0.001 0.000 0.000 0.000

arrhythmia2r 2.161 4.957 0.000 0.000 0.000

bank-loans 0.060 0.131 0.000 0.381 0.029

bankrupcty -0.004 -0.004 0.000 0.000 0.000

dermatology -0.005 -0.020 -0.172 0.000 -0.005

lesion 0.100 0.028 0.154 -0.127 0.058

# datasets in which

benefit is increased
9 11 5 7 4

Voting methods

Alternatively, when pruning is employed after merging intervals with respect to their

beneficial classes and benefit confidences, i.e., with SBC and HBC, more profitable 

results are obtained. Results of these joint effects are given in Table 5.11. Although the 

increase in benefit accuracy is relatively lower in the case of VM5, there happens to be a 

promising overall increase when pruning is used with probabilistic voting. With VM3, in

eleven of fifteen datasets there is a slight increase in total benefits, whereas with VM2

this increase is more significant in thirteen of the datasets. The results reinforce the 

hypothesis that with most of the datasets, it is beneficial to use a combination of SBC,

HBC and pruning options.
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Table 5.11: Joined effect of SBC, HBC and pruning on voting methods

VM1 VM2 VM3 VM4 VM5

breast-cancer-w -0.028 -0.028 -0.059 -0.029 -0.001

diabetes 2.085 3.842 -0.019 0.040 0.006

ionosphere 8.723 8.723 -0.029 -0.017 -0.047

liver 5.377 5.377 0.011 0.022 0.019

sonar 45.714 56.857 1.287 1.372 2.176

Ecoli (a) -0.708 3.550 3.855 3.671 -1.190

glass(a) 1.168 1.292 1.371 1.682 0.734

page-blocks(a) 0.232 0.231 0.175 0.103 -0.644

vehicle(a) 0.174 2.719 6.152 0.827 -0.377

wine(a) 0.333 0.320 0.266 0.223 0.198

arrhythmia2r 2.132 4.733 0.000 0.000 0.000

bank-loans 0.479 0.290 0.566 0.327 -0.120

bankruptcy 2.664 2.664 2.593 2.604 2.572

dermatology -0.001 -0.005 0.041 0.000 0.005

lesion 0.120 0.086 0.034 -0.127 0.084

# datasets in which

benefit is increased
12 13 11 10 8

5.3.4  Overall Evaluation 

Up to now, we have observed that if no generalization or pruning is used, then single 

beneficial voting methods that incorporate benefit knowledge directly are effective over 

any kind of datasets. On the other hand, probabilistic voting methods can be quite 

effective when supported with benefit-based generalization and pruning. In this section, 

we present overall outcomes of strategies tested on different datasets and discuss about 

which form of BMFI is more profitable in general. For this reason, the best four of 

progression series of results for each single dataset have been plotted and displayed in 

Figure 5.2, Figure 5.3 and Figure 5.4. In these figures, ‘single’ denotes the voting method 

used singly and ‘p’ option represents the employment of pruning,
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Figure 5.2: Overall BMFI progressions on two-class benchmark datasets 
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Figure 5.3: Overall BMFI progressions on multi-class benchmark datasets 



CHAPTER 5.  EXPERIMENTAL RESULTS 82

bank-loans

0

0.2

0.4

0.6

0.8

voting methods

b
e
n

e
fi

t 
a
c
c
u

ra
c
y

single 0.68017 0.66353 0.66978 0.51286 0.55129

SBC p 0.6607 0.63326 0.66212 0.59223 0.60614

SBC HBC 0.72454 0.62621 0.72215 0.48556 0.5252

SBC HBC p 0.72025 0.6925 0.72215 0.59484 0.52568

VM 1 VM 2 VM 3 VM 4 VM 5

bankruptcy

0

0.2

0.4

0.6

0.8

1

voting method

b
e
n

e
fi

t 
a
c
c
u

ra
c
y

single 0.50311 0.50311 0.51048 0.50907 0.51067

HBC 0.82165 0.81756 0.84052 0.83775 0.8386

SBC HBC 0.87515 0.87515 0.90434 0.90434 0.90434

HBC p 0.82468 0.82468 0.84052 0.83775 0.8386

VM 1 VM 2 VM 3 VM 4 VM 5

dermatology

0

0.2

0.4

0.6

0.8

1

voting method

b
e
n

e
fi

t 
a
c
c
u

ra
c
y

single 0.969257 0.969257 0.700129 0.58594 0.936078

HBC 0.969257 0.969257 0.703667 0.58594 0.941373

SBC p 0.959883 0.951042 0.718536 0.58594 0.914995

HBC p 0.968834 0.966329 0.713582 0.58594 0.93852

VM 1 VM 2 VM 3 VM 4 VM 5

lesion

0

0.2

0.4

0.6

0.8

1

voting methods

b
e
n

e
fi

t 
a
c
c
u

ra
c
y

single 0.87892 0.87892 0.67307 0.72426 0.79772

SBC 0.88451 0.88467 0.67307 0.72837 0.81625

SBC HBC 0.90409 0.90409 0.67307 0.72426 0.81811

SBC HBC p 0.91861 0.90824 0.67732 0.70025 0.81964

VM 1 VM 2 VM 3 VM 4 VM 5

arrhythmia2r

0

0.2

0.4

0.6

0.8

1

voting method

b
e
n

e
fi

t 
a
c
c
u

ra
c
y

single 0.67106 0.638288 0.814835 0.814835 0.814835

SF 0.69116 0.683469 0.814835 0.814835 0.814835

SBC p 0.75874 0.787634 0.814835 0.814835 0.814835

HBC p 0.831391 0.818649 0.814835 0.814835 0.814835

VM 1 VM 2 VM 3 VM 4 VM 5

Figure 5.4: Overall BMFI progressions on special datasets 
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For two-class datasets, except breast cancer domain, beneficial voting methods 

dominate probabilistic voting and VM4 and VM5 can be counted as the most efficient 

voting methods in maximizing the benefit. VM3 also displays very close results to VM4 

and VM5. 

In Figure 5.3, multi-class datasets are evaluated with benefit matrices that favor the 

prediction of the rare class. The results indicate that probabilistic methods VM1 and VM2 

supported with benefit-based generalization and pruning, are efficient in predicting 

minority classes and thus in acquiring higher benefit accuracy. On the other hand, if 

benefit matrices that assign benefits independent of the distribution of the classes are 

used, VM4 and VM5 become more effective in increasing benefit accuracy. In all of 

special datasets except arrhythmia2r, predefined benefit matrices also imply that minority 

class is more important. Results over those datasets represented in Figure 5.4 again 

denote the dominance of VM1 and VM2 in benefit performance. Respectively, VM3 is 

not as effective as the other voting methods, however it achieves promising results 

especially on bank-loans domain. 

To sum up, the performance of the voting methods relies mostly on the nature of the 

benefit matrix. If the correct prediction of infrequent classes is more profitable, then 

probabilistic voting with benefit-based generalization and pruning is more preferable. In 

this point, it is remarkable that using just the voting method for classification is not 

sufficient in the case of probabilistic voting. When used, they should be supplemented 

with interval merge and prune operations. As the empirical results we achieved on our 

datasets imply, and after examining other possible combinations of options, we propose 

to use VM1 voting together with SF, BC and HBC techniques when benefit of 

classification of a certain class is in inverse proportion to the distribution of that class. In 

other words, if the rarer the class label, the more profitable it is, then, best results are 

obtained using VM1 with SF, SBC and HBC. Of course, further experimentation on 

diverse datasets, will outline the borders of this generalization more precisely.  

On the contrary, using benefit information directly in voting method, i.e., beneficial 

voting is a more general approach and applicable to any sort of benefit matrix. VM4 and 
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VM5 display very close performance results in this framework. When the benefit matrix 

is not dependent on the distribution of classes in the dataset, either of VM4 or VM5 can 

be employed together with SBC, HBC and pruning to boost up the benefit performance.  

5.4 BMFI versus Other Cost-Sensitive 

Algorithms

In this section, we compare BMFI results with wrapper cost-sensitive strategies.  For 

observing relative performance of our algorithmic approach, we have compared BMFI 

with MetaCost and CostSensitiveClassifier of Weka [6] on base classifiers Naïve 

Bayesian Classifier and C4.5 (J4.8) decision tree learner. In this section, after giving a 

brief outline of the specifications of those algorithms, their benefit performances on 

several datasets are presented. All results given are recorded by using 10-fold cross 

validation over the whole datasets. 

5.4.1  Properties of Comparison Algorithms 

In Table 5.12, list of algorithms that we have used for comparison purposes is presented. 

In the rest of this thesis, we will use the pseudonyms for easy-referencing.  

Table 5.12: List of cost-sensitive algorithms used for evaluation 

Pseudonym Description

MetaNB MetaCost on Naive Bayes 

MetaJ48 MetaCost on J4.8 

C1NB CostSensitiveClassifier with reweighting on Naive Bayes 

C2NB CostSensitiveClassifier with direct minimization on Naive Bayes

C1J48 CostSensitiveClassifier with reweighting on J4.8 

C2J48 CostSensitiveClassifier direct minimization on J4.8 

C1VFI CostSensitiveClassifier with reweighting on VFI 

C2VFI CostSensitiveClassifier with direct minimization on VFI 
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5.4.1.1  MetaCost 

MetaCost is a wrapper algorithm that takes a base classifier and makes it sensitive to 

costs of classification [16]. It operates with a bagging logic beneath and learns multiple 

classifiers on multiple bootstrap replicates of the training set. By using the resultant votes 

of classifiers, MetaCost relabels training instances with the estimated optimal class. 

Pseudo-code and other algorithmic details of MetaCost have been given in section 3.1.3 

of this thesis. 

5.4.1.2  Weka.CostSensitiveClassifier 

There are two methods implemented in Weka’s cost-sensitive wrapper algorithm. First 

method uses reweighting of training instances in order to make its internal classifier cost-

sensitive. The second method requires its internal classifier to be a distribution based 

classifier and makes direct cost-minimization based on probability distributions. This is 

very similar to Zadronzy et al.’s studies presented in [51].  

For the first method of Weka’s cost-sensitive classifier, we use pseudonym C1 and 

for the second C2, respectively. In C1, if the internal classifier has not the property of 

weight instances, then resampling is done to adjust weights of the training instances. On 

the other hand, if internal classifier supports weighting of instances, then the weights of 

the instances are simply updated to reflect the effect of benefit of classification. 

When C2 is wrapped around a distribution based classifier, it uses the probability 

outputs of the internal classifier and puts these probabilities in the optimal decision 

equation to determine the optimal predictions that minimizes the cost of classification. 

5.4.1.3  Naive Bayesian Classifier (NBC) 

We have chosen naive Bayesian classifier as the first internal classifier to be used with 

MetaCost, C1 and C2 due to its simplicity and accuracy. Naive Bayesian classifier is 

based on Bayes theorem and on the simplifying assumption that the feature values are 

conditionally independent given the target value [38]. This assumption is the same as the 

one that feature intervals concept relies on. Although this may not be a realistic 
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assumption, it produces highly practical and efficient results and in some domains, Naive 

Bayesian Classifier’s performance has been shown to outperform to that of neural 

network and decision tree learning.

5.4.1.4  J4.8 Decision Tree Learner 

J4.8 is the Weka’s implementation of C4.5 decision tree learner. It actually implements a 

later and a slightly improved version called C4.5 Revision 8, which was the last public 

version of this family of algorithms before C5.0 [50]. C4.5 is proven to be a very 

successful decision tree learner [41]. That’s why most of the cost-sensitive research 

presented in Section 3.2.1 has focused on increasing benefit performance of this 

classification algorithm.  

5.4.1.5  Voting Feature Intervals (VFI) Classifier 

VFI is another feature projection based classifier [31] and its underlying concept 

representation (i.e., feature intervals) is the same as BMFI. In Weka’s implementation of 

VFI, there is a simple feature weighting scheme added. Higher weight is assigned to more 

confident intervals where confidence is a function of entropy such that 

 Weight(fi)= (entropy of class distribution on fi / maximum uncertainty)
bias

where bias represents the strength of bias towards more confident features. In our 

experiments, we have used the default bias value of 0.6 with feature reweighting. 

5.4.2  Comparative Results 

Results obtained by running eight algorithms discussed on binominal, multi-class and 

special datasets are presented in Table 5.13(a)-(e) and Table 5.14. In Table 5.13, the 

behavior of cost-sensitive algorithms with respect to benefit ratios and their 

corresponding total benefit values are presented. Average values in the bottom of each 

sub-table is the average total benefit value each algorithm acquire in the end of using five 

pre-defined benefit ratios (represented with column named b in the tables). 



CHAPTER 5.  EXPERIMENTAL RESULTS 87

Table 5.13: Total benefit values for different benefit ratios on two-class datasets 

Breast-Cancer Wisconsin Dataset 
b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

2 890 862 900 900 852 836 860 24 896

5 1599 1551 1601 1611 1555 1471 1511 747 1603

10 2784 2678 2776 2796 2692 2580 2596 1952 2722

20 5154 5016 5122 5206 4928 4846 4766 4362 5172

50 12262 12118 12264 12374 12240 11794 11276 11592 12324

AVG 4537.8 4445 4532.6 4577.4 4453.4 4305.4 4201.8 3735.4 4551.4

(a)

Pima-diabetes Dataset 
b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

2 398 494 508 460 474 466 36 36 370

5 958 940 1128 992 946 920 -394 834 958

10 2136 2180 2316 2098 2240 1932 -1114 2164 2100

20 4466 4486 4736 4690 4706 4328 -2554 4824 4866

50 12712 12404 12440 12766 12512 11324 -6874 12804 12902

AVG 4134 4100.8 4225.6 4201.2 4175.6 3794 -2180 4132.4 4239.2

(b)

Ionosphere Dataset 
b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

2 472 504 482 488 470 458 530 378 476

5 1043 1159 1103 1083 1117 1019 1175 999 1165

10 1986 2284 2142 2088 2294 1994 2250 2124 2280

20 3876 4450 4414 4078 4506 3904 4400 4374 4516

50 9544 11172 11150 10146 11124 9634 10850 11124 11256

AVG 3384.2 3913.8 3858.2 3576.6 3902.2 3402 3841 3799.8 3938.6

(c)

Liver Disorders Dataset 
b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

2 251 215 239 267 233 245 227 253 253

5 841 775 827 865 831 665 701 847 855

10 1819 1819 1785 1865 1855 1515 1491 1837 1857

20 3819 3759 3745 3865 3855 3259 3071 3817 3855

50 9759 9579 9465 9865 9855 8315 7811 9757 9855

AVG 3297.8 3229.4 3212.2 3345.4 3325.8 2799.8 2660.2 3302.2 3335

(d)
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Sonar Dataset 

b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

2 107 185 207 155 131 161 26 109 127

5 296 444 484 336 468 354 27 376 458

10 687 955 929 827 963 691 1 821 1013

20 1695 1975 1965 1803 1995 1357 -29 1711 2123

50 4547 5309 5053 4969 5453 3649 -119 4381 5453

AVG 1466.4 1773.6 1727.6 1618 1802 1242.4 -18.8 1479.6 1834.8

(e)

Results presented in Table 5.13 are average BMFI runs with voting method VM1, 

generalization strategies SBC and HC together with pruning. If we look at the average

values, it is observed that BMFI is very effective in maximizing the benefit in all of the

two-class datasets. At this point, it is worth stating that as benefit ratio increases, i.e., 

classification of a certain class becomes more important, the success of BMFI increases. 

This is an important highlight of the BMFI algorithm and is mostly due to BMFI’s high

sensitivity to benefits of classification.

In breast-cancer, ionosphere, and sonar datasets BMFI shows the best benefit 

performance on the average. In breast-cancer BMFI is the second best and in liver 

disorders dataset, it is the third. In breast-cancer and liver disorders datasets C2NB

performs better than BMFI. This ranking can be counted as very successful from BMFI’s 

point of view, because it outperforms most of the algorithms, among which there is a 

successful decision tree learner C4.5 that considers conditional cases between features 

themselves. Here, it should not be forgotten that for different benefit ratios, there exists

different performance winners and this observation emphasizes that benefit maximization

in a particular domain is mostly dependent of the nature of the benefit matrix.

In addition, it is worthwhile to note that BMFI outperforms cost-sensitive versions of

VFI (C1VFI and C2VFI), which is also a feature-projection based classifier. This 

observation suggests that using benefit knowledge inside the algorithm itself is more 

effective than wrapping a meta-stage around it to transform it into a cost-sensitive

classifier.

In Table 5.14, results obtained by BMFI are compared to other algorithms. The 

results have been compiled by making use of the rule-of-thumb presented in the end of 
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Section 5.3. According to this rule, when the infrequent class is important in the dataset,

BMFI is executed using VM1 with SF, SBC and HBC. If importance is not related to 

distribution of classes, then VM4 and VM5 is tried and best result is recorded.  Results

over binominal datasets are the ones achieved when using a benefit ratio of 10.  For

multi-class datasets, the average results over two benefit matrices, i.e., random and rare

class, are presented. In sonar, bankruptcy and lesion domains, BMFI is the winner of 

performance whereas in bank-loans and dermatology datasets its performance is very 

high and comparable to other algorithms. However, in ecoli database, BMFI performs

poorly, mostly due to the nature of the specified domain. In glass dataset, BMFI was the 

fifth in performance. In vehicle and wine domains, BMFI gains fourth place in the benefit 

performance ranking. It can be observed that no algorithm is dominant over all domains

and performance is highly dependent on the nature of the domain. Yet, if we look at 

overall results in Table 5.14, C2NB, C1J48 and BMFI are the most efficient approaches 

in terms of benefit, and they have both achieved best performance on three of the datasets.

Another interesting observation that can be derivable from Table 5.14 is that, no single 

algorithm has shown concrete benefit performance on multi-class domains and for each

of the six multi-class datasets, a different algorithm has been the most successful in 

maximizing the total benefit.

Table 5.14: Comparative evaluation of BMFI with wrapper cost-sensitive algorithms

MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

breast-cancer-w 2784 2678 2776 2796 2692 2580 2596 1952 2722

pima-diabetes 2136 2180 2316 2098 2240 1932 -1114 2164 2100

ionosphere 1986 2284 2142 2088 2294 1994 2250 2124 2280

liver disorders 1819 1819 1785 1865 1855 1515 1491 1837 185

sonar 687 955 929 827 963 691 1 821 1013

bank-loans -1080 -608 -1288 -816 104 -744 -1656 -4016 -180

bankruptcy 11225 10789 11088 10624 10865 10595 11141 11271 11399

dermatology 2747 2631 2747 2757 2623 2658 2532 2049 2701

lesion 2479 2223 2524 2551 2219 2179 1827 1139 2560

ecoli(avg) 1098 1177.5 1069.5 1101 1165 1110.5 1261.5 1282 976.5

glass(avg) 607.75 814.5 539.75 618.25 766.25 713.25 707.75 421 643.75

vehicle(avg) 2073 3597 2392.5 2378.5 3681 3156.5 1089.5 2165.5 3115

wine(avg) 1985 1789.5 1966 1981.5 1863 1719 1937.5 1672.5 1960

7
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5.5 Feature-Dependent Classification using 

BMFI

As described in Section 3.3 and Section 4.2.2, benefit of a classification can be quite 

dependent on one or more of the domain features. In such a case, there is no static benefit 

matrix available and the classification of each instance has a different benefit associated 

with it. In this thesis, we have presented a naïve way for dealing with such situations and 

indicate that this is an open area for extensive research. Here, it should be noticed that it 

is not straightforward to incorporate feature-dependency concept to a framework like 

feature projections which assume independency in feature domain.  

Bank-loans data is a direct application area for feature dependency. If the benefit 

matrix is assigned so as to indicate the net cash flow in the bank with respect to granted 

loans, then for each customer asking for a loan, there is a different benefit dependent on 

the amount requested. This situation can be formulated by the benefit matrix as follows:  

   Actual class 

Prediction default Don’t default

default r×la -la

Don’t default -r×la 0

Here, r is the interest rate that the bank utilizes, logically 0<r<1, and la is the loan 

amount that the customer asks for. According to this matrix, if the money is granted and 

customer pays the loan back, then net money gain from bank’s perspective is r×la. If 

money is not granted to a good customer who will pay it back, this means the bank has 

lost r×la amount of profit. On the contrary, if the loan is granted but the customer does 

not pay it back, then the bank loses the entire loan amount. The net cash flow is 0 when 

there is no money is given to a bad customer who will not default. 

Figure 5.5 illustrates the benefit accuracy of BMFI and its change with respect to 

interest rate that the bank uses for loan applications. In this chart, the results indicate that 

the lower the interest rate, the higher benefit accuracy BMFI acquires. Since most of the 

Turkish banks applies a combined interest policy with an interest rate around 0.08 per 
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month, then we can say that overall accuracy of BMFI on bank-loans domain is 

approximately 0.78.
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Figure 5.5: Change in benefit accuracy with respect to interest rate in bank-loans domain

As the interest rate increases in this experiment, the ratio of importance between 

classes decreases and this causes a decrease in the performance of BMFI, since it is 

already observed that BMFI performs better when the benefit ratio between classes

becomes higher. 



Chapter 6 

Conclusion and Future Work

In this thesis, we have focused on the problem of making predictions when the possible

outcomes have different benefits associated with them. We have implemented a new 

methodology, namely BMFI that uses the predictive power of feature intervals concept in 

maximizing the total benefit gained in a classification problem. The previous studies in 

the literature of cost-sensitive learning have undervalued the differences in the benefits of 

correct classifications. For this reason, as the main contribution of the thesis, we aimed to 

emphasize the importance of classification benefits and to present the first study, as to 

our best knowledge, in the literature that is built solely on benefit concept and its

maximization.

Classification in feature projection based classifiers depends on a voting process 

within the formed feature intervals. In the framework of BMFI, we have proposed five 

different voting methods that are shown to be effective over different domains. In 

addition, a number generalization and pruning methodologies based on benefits of 

classification are implemented and experimented. The results obtained gave us an insight 

of using different techniques, dependent on the characteristics of the domain.

Since BMFI is a non-incremental inductive concept learning algorithm, some

information about the domain, e.g., class distributions and type of features, is known 

apriori. By making use of this knowledge, algorithmic parameters of BMFI can be 
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arranged in such a way that enables fine-tuning with respect to specifications of the 

domain. We have observed that the benefit maximization routine is highly dependent on 

the benefit matrix introduced and the corresponding class distributions in the domain. 

Therefore, we propose using VM1 voting method with SF, SBC and HBC techniques 

when the minority class prediction is more beneficial. On the other hand, our results 

demonstrated that when benefits are not related to class frequencies, then it would be 

more apt to employ VM4 or VM5 voting methods. 

When a probabilistic voting method is used solely in BMFI, then it becomes an error-

based classifier. The results show that BMFI is very effective in maximizing the total 

benefit compared to its error-based version.  

Furthermore, BMFI has been compared to MetaCost and other two cost-sensitive 

classification algorithms implemented in the Weka package. These two generic 

algorithms are wrapped over two prevailing classification algorithms, NBC and C4.5. 

BMFI results are very promising when compared to MetaCost, C1 (instance reweighting) 

and C2 (direct cost minimization techniques). Individual characteristics of the datasets 

influence results significantly, due to the extreme correlation between cost-sensitivity and 

class distributions. It can be inferred from the results that no algorithm is superior to the 

others in all of the domains. This observation suggests that there is still need for future 

research and improvement in cost-sensitive classification field. 

Another contribution of this study is the proposal of a new metric, namely benefit 

accuracy, for the cost-sensitive evaluation of classifiers. It computes the relative accuracy 

of the total benefit obtained with respect to the maximum possible benefit achievable in 

the domain. Benefit accuracy metric is the generalization of the classical predictive 

accuracy metric. It is easy to interpret since it resembles the standard predictive accuracy.  

In the context of this study, we have also dealt with situations when benefits are not 

static and dependent on the values of features. We have presented a naive approach 

concerning this issue and experimented over a recently constructed dataset, bank-loans 

data. We have achieved promising results in this domain as well. 
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The research described in this thesis can be extended in many directions. First of all, 

by testing over new domains, BMFI options can be stabilized more and by this means, 

the results can be improved. Stratified cross-validation, in which the folds are stratified so 

that they contain approximately the same proportions of class labels as the original 

dataset, can be employed. We think that this will greatly enhance the accuracy of the 

algorithm.   

As an additional future work, feature-dependent domains can be explored in depth 

and feature-dependency aspect of BMFI can be improved. Especially, new voting 

methods that are more efficient in handling functions of varying benefits can be 

developed. In addition, benefit maximization can be extended to include the feature costs. 

In order to accomplish this, feature selection mechanisms that are sensitive to individual 

costs of features can be utilized. This will make the classification algorithm more 

comprehensive and applicable in real-world domains. Furthermore, this sort of benefit 

maximization research can be extended to handle incremental datasets, as in the case of 

active learning.
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Appendix A 

UCI Benchmark Datasets 

In the following, we provide the details for the benchmark datasets we have used from 

UCI Machine Learning Repository [7]. There is a total of ten benchmark datasets that

have been used for evaluation in this thesis. Five of these datasets are two-class

(binominal) datasets, and five of them are multi-class datasets. Along with dataset 

properties, benefit matrices that we have used in their experimentation are given. 

A.1 Binary Datasets

Breast Cancer Wisconsin: This breast cancer databases was obtained from the

University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. There are 9 

features and 699 instances. The aim is to predict whether a taken tissue is benign or 

malignant. Missing attribute values in the entire dataset are 16. 458 (65.5%) of the 

instances belong to benign class and 241(34.5%) are malignant. From cost-sensitive point 

of view, detection of malignant instances are much more important.

Pima Indian Diabetes: The diagnostic, binary-valued variable investigated in this 

dataset is whether the patient shows signs of diabetes according to World Health

Organization criteria (i.e., if the 2 hour post-load plasma glucose was at least 200 mg/dl 

at any survey  examination or if found during routine medical care). The population lives
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near Phoenix, Arizona, USA. There are 768 instances and 8 features all of which are 

numeric valued. 500 of the instances are negative (tested negative for diabetes) and 

remaining 268 are positive.  

Ionosphere: This is a radar data that was collected by a system in Goose Bay, Labrador. 

This system consists of a phased array of 16 high-frequency antennas with a total 

transmitted power on the order of 6.4 kilowatts. The targets were free electrons in the 

ionosphere. "Good" radar returns are those showing evidence of some type of structure in 

the ionosphere.  "Bad" returns are those that do not; their signals pass through the 

ionosphere.  Received signals were processed using an autocorrelation function whose 

arguments are the time of a pulse and the pulse number.  There were 17 pulse numbers 

for the Goose Bay system.  Instances in this database are described by 2 attributes per 

pulse number, corresponding to the complex values returned by the function resulting 

from the complex electromagnetic signal. 

Liver Disorders: The aim of this dataset is to predict whether a patient has liver 

disorders or not. There are 345 instances collected by Bupa Medical Research Ltd. The 

first 5 variables are all blood tests which are thought to be sensitive to liver disorders that 

might arise from excessive alcohol consumption.  Each line in the data file constitutes the 

record of a single male individual. The last feature represents the drink number of half-

pint equivalents of alcoholic beverages drunk per day. 

Sonar: This is the data set used by Gorman and Sejnowski in their study of the 

classification of sonar signals using a neural network.  The task is to train a network to 

discriminate between sonar signals bounced off a metal cylinder and those bounced off a 

roughly cylindrical rock. Each pattern is a set of 60 numbers in the range 0.0 to 1.0.  Each 

number represents the energy within a particular frequency band, integrated over a 

certain period of time.  The integration aperture for higher frequencies occurs later in 

time, since these frequencies are transmitted later during the chirp. The label associated 

with each record in the original dataset contains the letter "R" if the object is a rock and 

"M" if it is a mine (metal cylinder).  These class labels have been transformed to 0 and 1 
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for indicating the presence of a mine. 111 patterns recorded are mine and 97 patterns are 

rocks.

With two-class datasets, five different benefit matrices having benefit ratios of 2, 5, 

10, 20 and 50 have been used in testing. 

A.2 Multi-class Datasets 

Ecoli: There are 336 instances with 7 predictive features in this dataset. The aim is to 

predict the protein localization sites within the cells. There are no missing attributes 

values and possible 8 localization sites.

Table A.1: Benefit table of ecoli dataset computed by using class probabilities in a way to 

favor minority class prediction 

Actual Class

Prediction C1 C2 C3 C4 C5 C6 C7 C8

C1 2 -2 -3 -4 -7 -29 -70 -70

C2 -1 3 -1 -2 -3 -15 -30 -30

C3 -1 -1 4 -2 -2 -10 -25 -25

C4 -1 -1 -1 5 -2 -7 -15 -15 

C5 -1 -1 -1 -1 6 -4 -10 -10 

C6 -2 -2 -2 -1 -1 9 -2 -2

C7 -3 -3 -2 -2 -1 -1 10 -1

C8 -4 -3 -2 -2 -1 -1 -1 10

Table A.2: Random benefit table of ecoli dataset with a ratio of 2 between consecutive 

class labels. 

Actual Class

Prediction C1 C2 C3 C4 C5 C6 C7 C8

C1 1 -2 -2 -3 -3 -3 -3 -3

C2 -1 2 -1 -1 -2 -2 -2 -3

C3 -1 -1 4 -2 -3 -3 -3 -4

C4 -1 -2 -2 8 -2 -3 -3 -3

C5 0 0 0 0 16 -1 -1 -1

C6 0 -1 -2 -2 -2 32 -3 -3

C7 0 0 -1 -2 -3 -3 64 -4

C8 0 -1 -2 -2 -2 -3 -3 128
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Glass: This dataset consists of attributes of glass samples taken from the scan of an 

accident. The glass dataset contains 214 classes which belong to one of the six classes 

available in the domain. There is a total of 9 features and all of them are continuous. 

Benefit matrix favoring rare classes in this domain is given in Table A.3. Subsequently, 

the random matrix that has been used in experiments is presented in Table A.4.  

Table A.3: Benefit table of glass dataset computed by using class probabilities in a way to 

favor minority class prediction 

Actual Class

Prediction C1 C2 C3 C4 C5 C6

C1 3 -1 -4 -5 -8 -2

C2 -1 2 -4 -6 -8 -3

C3 -1 -1 6 -2 -3 -1

C4 -1 -1 -1 8 -2 -1

C5 -0.5 -0.5 -1 -1 10 -1

C6 -2 -1 -2 -3 -4 5

Table A.4: Random benefit table of glass dataset with a ratio of 2 between consecutive 

class labels. 

Actual Class

Prediction C1 C2 C3 C4 C5 C6

C1 1 0 -1 -1 -2 -3

C2 0 2 0 -1 -2 -2

C3 -1 -2 4 -2 -3 -3

C4 -1 -2 -2 8 -2 -2

C5 0 -1 -1 -1 16 -2

C6 -1 -2 -2 -3 -3 32

Page-blocks: Compiled by Donato Malerba from Dipartimento di Informatica, 

University of Bari, The problem consists in classifying all the blocks of the page layout 

of a document that has been detected by a segmentation process. This is an essential step 

in document analysis in order to separate text from graphic areas. Indeed, the five classes 

are: text (1), horizontal line (2), picture (3), vertical line (4) and graphic (5). It is a 

relatively large database with 5473 examples from 54 distinct documents. All attributes 

are numeric with no missing values. 



APPENDIX A. UCI BENCHMARK DATASETS 105

Table A.5: Benefit table of glass dataset dependent on class probabilities in inverse 

proportion such that minority class prediction is preferable. 

Actual Class

Prediction C1 C2 C3 C4 C5

C1 10 -15 -175 -56 -43

C2 -1 40 -12 -4 -3

C3 -1 -1 100 -1 -1

C4 -1 -2 -5 60 -1

C5 -1 -3 -10 -4 50

Table A.6: Random benefit table of glass dataset with a ratio of 3 between consecutive 

class labels. 

Actual Class

Prediction C1 C2 C3 C4 C5

C1 1 -2 -4 -5 -5

C2 -2 3 -3 -3 -4

C3 -1 -2 9 -5 -6

C4 -1 -3 -5 27 -6

C5 -1 -2 -3 -5 81

Vehicle: This dataset comes from the Turing Institute, Glasgow, Scotland. The purpose is 

to classify a given silhouette as one of four types of vehicle, using a set of features 

extracted from the silhouette. There are 18 features with a total of 846 instances. Four 

types of vehicles to be classified are Opel, Saab, Bus and Van.

Table A.7: Benefit table of vehicle dataset dependent on class probabilities in inverse 

proportion such that minority class prediction is preferable. 

Actual Class

Prediction C1 C2 C3 C4

C1 4 -1 -2 -3

C2 -2 3 -1 -2

C3 -4 -2 2 -1

C4 -6 -3 -1 1
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Table A.8: Random benefit table of vehicle dataset with a ratio of 3 between consecutive 

class labels. 

Actual Class

Prediction C1 C2 C3 C4

C1 1 -4 -4 -6

C2 -1 3 -2 -2

C3 -1 -3 9 -5

C4 -2 -3 -4 27

Wine: This dataset has been compiled by Institute of Pharmaceutical and Food Analysis 

and Technologies of Italy and it is on the results of a chemical analysis of wines grown in 

the same region in Italy but derived from three different cultivars. The analysis 

determined the quantities of 13 constituents found in each of the three types of wines. In 

a classification context, this is a well posed problem with "well behaved" class structures. 

It is assumed to be a good data set for first testing of a new classifier and many other 

classification algorithms have used it for testing. All three classes are separable and there 

is a total of 178 instances and 13 attributes. Corresponding benefit tables we have used 

are shown in Table A.9 and Table A.10.

Table A.9: Benefit table of wine dataset dependent on class probabilities in inverse 

proportion such that minority class prediction is preferable. 

Actual Class

Prediction C1 C2 C3

C1 17 -8 -12

C2 -12 14 -15

C3 -8 -6 21

Table A.10: Randomly assigned benefits of wine dataset with a ratio of 4 between 

consecutive class labels. 

Actual Class 

Prediction C1 C2 C3

C1 1 -3 -5

C2 -2 4 -8

C3 -1 -4 16



Appendix B 

Special Datasets

There are five additional domains in which we have tested our BMFI algorithm. These 

datasets are called “special” because they have a specific benefit matrix assigned to them

by domain experts or by hand, after a careful evaluation of the characteristics of the

domains.

Arrhythmia2r: The data set used here consists of 526 ECG recordings [28]. Each record 

consists of a set of clinical parameters measured on rest ECG signals automatically by a 

commercially available system, and some personal information about the subjects. There 

are 279 parameters (features) in a single record. The patient population is divided into 

two groups based on the investigation of an expert cardiologist, as normal and abnormal.

There are 246 cases in the normal group and 280 cases in the abnormal group. Out of 

279 features 206 of them are continuous valued (linear) and 73 features are Boolean 

valued (nominal). 0.33% of the feature values are missing. Benefit table of the domain is 

adjusted as follows:

Table B.1: Benefit table of the arrhythmia2r dataset 

Actual Class

Prediction C1 C2

C1 1 -7

C2 -2 5
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Bank-loans: The raw form of this dataset has been compiled by a private Turkish bank. 

We have preprocessed it by eliminating redundant data and missing attribute values. The 

entire raw dataset consists of more than 24000 instances. In this study, we have 

investigated a small, yet representative portion of it consisting 1443 instances. In the 

literature of machine learning, this data has been investigated initially in [33]. There are 

13 attributes in the domain, 7 of them are linear and 6 are categorical. The dataset 

purpose is to predict whether a customer is likely to default or not. This domain is also 

very suitable for investigating the effects of feature dependency as presented in Section 

5.5. The static benefit table used for testing is given in Table B.2.

Table B.2: Benefit table of the bank-loans dataset 

Actual Class

Prediction C1 C2

C1 4 -20

C2 -4 0

Bankruptcy: This is the data compiled from the Compact Disclosures
TM

 by Dorsey et 

al.[32]. The data set consists of financial ratios from firms for three successive years, 

1989--1991. Each case (instance) in the data set contains the values of the 19 ratios about 

a firm for a year and an indicator of whether or not the firm failed in the following year. 

Here the failure is defined as financial distress. A firm is in financial distress if it has 

entered bankruptcy under chapters 7 or 11 of the U.S. Bankruptcy code. The data set 

contains 1444 instances, 414 of which are bankrupt firms. There are no missing values 

and the corresponding benefit table is given in Table B.3.

Table B.3: Benefit table of the bankruptcy dataset 

Actual Class

Prediction C1 C2

C1 1 -15

C2 -1 30

Dermatology: The differential diagnosis of erythemato-squamous diseases is a difficult 

problem in dermatology. They all share the clinical features of erythema and scaling, 

with very little differences. The diseases in this classification problem are psoriasis, 

seboreic dermatitis, lichen planus, pityriasis rosea, chronic dermatitis and pityriasis rubra 

pilaris. Patients were first evaluated clinically with 12 features. Skin samples were taken 
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for the evaluation of 22 histopathological features. Hence, there is a total of 34 features 

in the domain and only one of them is a categorical feature. The entire dataset consists of 

366 patient records. For more information, please refer to [31]. 

Table B.4: Benefit table of the dermatology dataset 

Actual Class

Prediction C1 C2 C3 C4 C5 C6

C1 10 -5 -4 -5 -5 -4

C2 -3 6 -3 -4 -1 -3

C3 -2 -5 10 -5 -5 -4

C4 -5 -4 -4 8 -3 -3

C5 -3 -1 -2 -3 3 -2

C6 -2 -2 -2 -3 -3 4

Lesion (Gastric Carcinoma): This is the dataset of stomach cancer instances. There are 

285 cases and all of them are malignant. The aim is to differentiate between stages of 

cancer. There are 9 classes representing the relative degree of the cancer. The first 4 

classes are defined as early cancers whereas the remaining are counted as late cancers. 

Hence, the correct prediction of early cancer instances is more beneficial. Benefit table 

displaying such traits is given in Table B.5. There are 68 features, and only 7 of them are 

linear. In the entire dataset there are 970 missing features, which means that 5% of the 

dataset is missing. More information about the dataset is presented in [21]. 

Table B.5: Benefit table of the lesion dataset 

Actual Class

Prediction C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 18 8 8 8 2 -10 -12 -15 -18 

C2 10 15 12 12 4 -8 -10 -13 -15

C3 10 12 15 12 4 -8 -10 -13 -15

C4 10 12 12 15 4 -8 -10 -13 -15

C5 6 8 8 8 10 -6 -8 -11 -13 

C6 -2 -3 -3 -3 -1 8 1 1 -2

C7 -4 -5 -5 -5 -3 4 6 3 -1

C8 -8 -10 -10 -10 -7 2 3 4 1

C9 -10 -12 -12 -12 -9 1 1 2 3


