
BENEFIT MAXIMIZING CLASSIFICATION USING

FEATURE INTERVALS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Nazlı
�
kizler

September, 2002

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Prof. Dr. H. Altay Güvenir (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Cevdet Aykanat

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Özgür Ulusoy

Approved for the Institute of Engineering and Science:

 Prof. Dr. Mehmet Baray

 Director of the Institute

ii

iii

ABSTRACT

BENEFIT MAXIMIZING CLASSIFICATION USING

FEATURE INTERVALS

Nazlı � kizler

M.S. in Computer Engineering

Supervisor: Prof. Dr. H. Altay Güvenir

September, 2002

For a long time, classification algorithms have focused on minimizing the quantity of

prediction errors by assuming that each possible error has identical consequences.

However, in many real-world situations, this assumption is not convenient. For instance,

in a medical diagnosis domain, misdiagnosing a sick patient as healthy is much more

serious than its opposite. For this reason, there is a great need for new classification

methods that can handle asymmetric cost and benefit constraints of classifications. In this

thesis, we discuss cost-sensitive classification concepts and propose a new classification

algorithm called Benefit Maximization with Feature Intervals (BMFI) that uses the

feature projection based knowledge representation. In the framework of BMFI, we

introduce five different voting methods that are shown to be effective over different

domains. A number of generalization and pruning methodologies based on benefits of

classification are implemented and experimented. Empirical evaluation of the methods

has shown that BMFI exhibits promising performance results compared to recent wrapper

cost-sensitive algorithms, despite the fact that classifier performance is highly dependent

on the benefit constraints and class distributions in the domain. In order to evaluate cost-

sensitive classification techniques, we describe a new metric, namely benefit accuracy

which computes the relative accuracy of the total benefit obtained with respect to the

maximum possible benefit achievable in the domain.

Keywords: machine learning, classification, cost-sensitivity, benefit maximization,

feature intervals, voting, pruning.

iv

ÖZET

ÖZN
�
TEL

�
K ARALIKLARIYLA FAYDA

MAKS
�
M

�
ZASYONUNA YÖNEL

�
K SINIFLANDIRMA

Nazlı � kizler
Bilgisayar Mühendisli � i, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. H. Altay Güvenir
Eylül, 2002

Uzun zamandır, sınıflandırma algoritmaları bütün olası hataların sonuçlarının benzer

olaca � ı varsayımıyla, tahmine dayalı hataların sayısını azaltma üzerinde

yo� unla � mı � lardır. Fakat bu varsayım, gerçek hayattaki pek çok durum için elveri� li

de� ildir. Örne � in, tıbbi tanı alanında, hasta olan bir kimseyi sa� lıklı olarak sınıflandırmak

tam tersi duruma oranla çok daha ciddi bir hatadır. Bu nedenle, sınıflandırmaların bu tip

asimetrik maliyet ve fayda kriterlerini göz önünde bulunduracak yeni sınıflandırma

metotlarına büyük ihtiyaç vardır. Bu tezde, maliyete duyarlı sınıflandırma kavramları

üzerinde durulmakta ve öznitelik izdü� ümü tabanlı bilgi gösterimini kullanan, Öznitelik

Aralıklarıyla Fayda Arttırma (BMFI) olarak isimlendirilen yeni bir sınıflandırma

algoritması sunulmaktadır. BMFI çatısı altında, farklı veri kümelerinde etkili oldu� u

gösterilen be� ayrı oylama yöntemi tanıtılmı� tır. Bununla birlikte, birkaç genelleme ve

budama yöntemi geli� tirilmi � ve denenmi � tir. Deneysel de � erlendirmelerde BMFI,

performansın problemin veri kümesindeki fayda kriterlerine ve sınıf da � ılımlarına çok

ba� lı olması gerçe� ine ra� men, sarma prensibine dayalı yeni maliyete duyarlı

sınıflandırma algoritmalarıyla kar � ıla � tırıldı � ında, umut verici bir performans

sergilemi� tir. Ek olarak, maliyete duyarlı ve fayda arttırımına yönelik metotların

de� erlendirilmesi için, fayda do� rulu� u olarak isimlendirilmi� yeni bir metrik

önerilmi� tir. Bu metrik, elde edilen toplam faydanın, mümkün olan en yüksek fayda

de� erine oranla göreceli do� rulu� unu hesaplamaktadır.

Anahtar sözcükler: makine ö� renmesi, sınıflandırma, maliyet duyarlılı � ı, fayda

maksimizasyonu, öznitelik aralıkları, oylama, budama.

v

Acknowledgements

Words can never be enough in expressing how grateful I am to many incredible

people in my life who made this thesis possible. First of all, I am deeply indebted to my

supervisor Prof. Dr. H. Altay Güvenir, who has guided me with his invaluable

suggestions, lightened up the way in my darkest times and encouraged me a lot in the

academic life. It was a great pleasure for me to have a chance of working with him.

I would like to address special thanks to Prof. Dr. Cevdet Aykanat and Assoc. Prof.

Özgür Ulusoy, for accepting to read and review this thesis. I would also like to

acknowledge the financial support of TÜB� TAK (Scientific and Technical Research

Council of Turkey) under the grant 101E044 for this research.

Probably most of this work would not have been possible without the technical and

emotional support of dear Engin Demir. I owe him a lot.

I would like to thank all the people of the room EA526, especially to Ediz � aykol, for

their caring friendship, motivation and profound assistance. I am grateful to all of my

friends who fulfilled my life with joy.

Above all, I owe everything to my parents, who supported me in each and every way,

believed in me permanently and inspired me in all dimensions of life. Without their

everlasting love, this thesis would never be completed.

Contents

1 Introduction... 1

1.1 Motivation... 2

1.2 Overview of the Thesis ... 4

2 Cost and Benefit .. 5

2.1 Supervised Learning ... 5

2.2 Cost-Sensitive Learning.. 6

2.2.1 Types of Cost in Supervised Learning.. 7

2.3 The Cost Matrix .. 9

2.3.1 Optimal Prediction Using Cost Matrices .. 11

2.3.2 Reasonableness of the Cost Matrix... 11

2.3.3 Operations on Cost Matrices... 13

2.3.3.1 Scaling... 13

2.3.3.2 Shifting.. 14

2.4 Benefit Matrix... 14

2.4.1 Optimal Prediction Using Benefit Matrices.. 16

2.4.2 Cost and Benefit Matrix Equivalence ... 17

vi

CONTENTS vii

2.5 Feature-dependent Benefits .. 18

2.5.1 Possible Domains for Feature Dependency .. 19

3 Approaches to Cost-Sensitive Learning.. 21

3.1 Cost-Sensitive Algorithms that Manipulate the Training Data......................... 22

3.1.1 Stratification Methods... 22

3.1.2 Boosting Methods ... 23

3.1.3 Meta-learning Methods... 25

3.2 Algorithms That Are Modified To Be Cost Sensitive 28

3.2.1 Decision Trees .. 29

3.2.2 Decision Lists.. 30

3.2.3 Naive Bayesian Classification .. 31

3.2.4 CBR Systems .. 32

3.2.5 Direct Cost-Sensitive Decision Making.. 32

3.3 Approaches to Feature-Dependent Misclassification Costs 32

4 Benefit Maximization with Feature Intervals .. 35

4.1 Knowledge Representation ... 36

4.1.1 Feature Projections Concept ... 36

4.1.2 Basic Notions for Benefit Maximization on Feature Intervals 38

4.2 Training with BMFI.. 42

4.2.1 Voting Methods of BMFI ... 43

4.2.1.1 Probabilistic Voting .. 44

CONTENTS viii

4.2.1.2 Beneficial Voting .. 46

4.2.2 Feature-dependent Voting... 48

4.2.3 Generalization of Intervals.. 50

4.2.3.1 Joining Intervals That Have the Same Frequent Class (SF) 51

4.2.3.2 Joining Intervals That Have the Same Beneficial Class (SBC)............ 52

4.2.3.3 Joining Intervals That Have High Confidence Values (HC) 53

4.2.3.4 Joining Intervals That Have High Benefit Confidences (HBC) 55

4.2.4 Benefit Maximizing Pruning of Intervals ... 56

4.3 Classification with BMFI.. 57

4.4 Time and Space Complexities of BMFI ... 59

4.4.1 Time Complexity of BMFI ... 59

4.4.2 Space Complexity of BMFI .. 61

5 Experimental Results.. 62

5.1 Benefit Accuracy .. 62

5.2 Datasets and Benefit Matrices .. 64

5.2.1 Properties of Datasets Used .. 65

5.2.2 Benefit Matrix Construction ... 66

5.3 BMFI Comparisons... 68

5.3.1 Comparison of Voting Methods.. 68

5.3.2 Effect of Generalization.. 73

5.3.3 Effect of Pruning... 77

5.3.4 Overall Evaluation .. 79

CONTENTS ix

5.4 BMFI versus Other Cost-Sensitive Algorithms.. 84

5.4.1 Properties of Comparison Algorithms .. 84

5.4.1.1 MetaCost ... 85

5.4.1.2 Weka.CostSensitiveClassifier... 85

5.4.1.3 Naive Bayesian Classifier (NBC) ... 85

5.4.1.4 J4.8 Decision Tree Learner ... 86

5.4.1.5 Voting Feature Intervals (VFI) Classifier ... 86

5.4.2 Comparative Results ... 86

5.5 Feature-Dependent Classification using BMFI .. 90

6 Conclusion and Future Work .. 92

A UCI Benchmark Datasets... 101

A.1 Binary Datasets ... 101

A.2 Multi-class Datasets .. 103

B Special Datasets... 107

List of Figures

3.1 The MetaCost Algorithm [16] ... 26

4.1 A simple feature projection illustration for a single instance 37

4.2 Example demonstrating the formation of feature intervals...................................... 38

4.3 An example interval formation .. 41

4.4 Pseudo-code of the training stage in BMFI algorithm... 44

4.5 Pseudo-code for assigning feature-dependent votes .. 49

4.6 Pseudo-code for generalization of intervals... 51

4.7 An example demonstrating merge operation of same frequent class intervals........ 52

4.8 Example for illustrating merging high confidence intervals.................................... 54

4.9 Pseudo-code of prune operation on intervals... 57

4.10 Classification phase of BMFI .. 58

4.11 Runtime evaluation of training phase of BMFI ... 60

5.1 Behavior of voting methods on two-class benchmark datasets 69

5.2 Overall BMFI progressions on two-class benchmark datasets 80

x

LIST OF FIGURES xi

5.3 Overall BMFI progressions on multi-class benchmark datasets.............................. 81

5.4 Overall BMFI progressions on special datasets... 82

5.5 Change in benefit accuracy with respect to interest rate in bank-loans domain...... 91

List of Tables

2.1 An example cost matrix of NYNEX MAX domain [40]. ... 10

2.2 Cost matrix for which the optimal prediction is always C1 and thus no learning is

needed. .. 12

2.3 Cost matrix for which C1 is never predicted... 12

2.4 An example benefit matrix for a two-class problem... 15

2.5 Benefit matrix for a credit application domain where benefits are dependent on

individual instances... 19

5.1 Basic properties of two-class benchmark datasets from UCI ML Repository.......... 65

5.2 Basic properties of multi-class benchmark datasets from UCI ML Repository 65

5.3 Five special datasets which have their own individual benefit matrices 66

5.4 Behavior of voting methods over multi-class datasets ... 72

5.5 Behavior of single voting methods over special datasets ... 73

5.6 Changes in total benefit when SF is used on single voting methods 74

5.7 Effect of SBC on single voting methods... 75

5.8 Effect of HC on single voting methods... 76

xii

LIST OF TABLES xiii

5.9 Effect of HBC on single voting methods.. 77

5.10 Effect of pruning on voting methods .. 78

5.11 Joined effect of SBC, HBC and pruning on voting methods.................................... 79

5.12 List of cost-sensitive algorithms used for evaluation ... 84

5.13 Total benefit values for different benefit ratios on two-class datasets...................... 87

5.14 Comparative evaluation of BMFI with wrapper cost-sensitive algorithms 89

A.1 Benefit table of ecoli dataset computed by using class probabilities in a way to favor

minority class prediction... 103

A.2 Random benefit table of ecoli dataset with a ratio of 2 between consecutive class

labels. .. 103

A.3 Benefit table of glass dataset computed by using class probabilities in a way to favor

minority class prediction... 104

A.4 Random benefit table of glass dataset with a ratio of 2 between consecutive class

labels. .. 104

A.5 Benefit table of glass dataset dependent on class probabilities in inverse proportion

such that minority class prediction is preferable... 105

A.6 Random benefit table of glass dataset with a ratio of 3 between consecutive class

labels. .. 105

A.7 Benefit table of vehicle dataset dependent on class probabilities in inverse

proportion such that minority class prediction is preferable................................... 105

A.8 Random benefit table of vehicle dataset with a ratio of 3 between consecutive class

labels. .. 106

LIST OF TABLES xiv

A.9 Benefit table of wine dataset dependent on class probabilities in inverse proportion

such that minority class prediction is preferable... 106

A.10 Randomly assigned benefits of wine dataset with a ratio of 4 between consecutive

class labels. ... 106

B.1 Benefit table of the arrhythmia2r dataset.. 107

B.2 Benefit table of the bank-loans dataset ... 108

B.3 Benefit table of the bankruptcy dataset... 108

B.4 Benefit table of the dermatology dataset .. 109

B.5 Benefit table of the lesion dataset ... 109

1

Chapter 1

Introduction

One of the most important characteristics of human brain is its capability to learn from

experience, manipulate the gained knowledge and to make use of it in forecasting

possible future events. This learning process is crucial for human being since it is the

doorway to innovation and advancement. For this reason, from the evolution of

computers, researchers try to mimic the way brain works and to integrate various

qualifications of intelligence to the computer. Computer scientists in the field of machine

learning are the foremost people dealing with such issues.

Machine learning is the research area that seeks to build systems that interpret the

data compiled in the datasets or the perceptions collected from the environment for

understanding and making use of the knowledge beneath. Machine learning techniques

are being investigated on and applied to various problems such as natural language

processing, handwriting and speech recognition, text and document categorization,

knowledge discovery in databases, remotely-sensed image analysis, medical data analysis

and diagnosis, weather prediction, email filtering and various applications on the World

Wide Web domain.

In the last few years, significant practical achievements have been obtained in

learning systems by taking advantage of several established learning algorithms.

1

CHAPTER 1. INTRODUCTION 2

Bayesian methods, decision trees, neural networks, instance-based learning algorithms,

support vector machines and genetic algorithms are among those powerful methods

which have aided the learning community in practical applications.

The learning problem is the task of finding general rules that explain data given only

a sample of limited size [25]. In this concept, consider a child who is learning to speak.

He is imposed to a flow of sounds and images from his environment, and apparently, this

environment is a limited portion of the real world. What he does is, by using perceptions,

to acquire attributes of the items around him and to form an association between the

items and the expressions his parents use simultaneously. In this framework, color, shape

and smell of an item are the foremost characteristics that the child observes. His parents’

word concerning the item is the name of the item. By combining these inputs, he learns

the name of the object. Since he has been leaded to that result by his parents’ assistance,

he is said to learn under the supervision of his parents. Counterpart of this situation in

machine learning terminology is supervised learning.

 In this study, we explore the directions of decision making under supervised

learning framework and try to find ways to optimize consequences of predictions in the

real-world situations.

1.1 Motivation

Life is a combination of decisions. Outcomes of these decisions can either be good or

perfect, bad or terrible depending on the correctness of choices. For instance when you

decide on where to invest your money, there is a bunch of possibilities. You may invest

your money in a bank and earn a comparably low yet regular amount of interest. Or, you

can buy stocks of exchange and gain more money, however, in such a circumstance, there

is a major risk of losing all the money you put in. Your net profit depends on how clever

and logical your decision of investment is. In another incident, suppose that you are the

head of an emergency desk in the hospital and two patients come along. You have limited

source of instruments and you have to decide which patient to examine first. Your

judgment in such a case is vital from the patients’ point of view. Hence, there is a scale

CHAPTER 1. INTRODUCTION 3

for outcomes of decisions made, there can be minor or life-threatening mistakes, and

there can be slight achievements or major successes that can change a person’s life.

Keeping this fact in mind, when we look at typical machine learning applications of

present-day, algorithms hardly evaluate the effectiveness and applicability of their

decisions. In classical machine learning applications, what the algorithms try to

accomplish is to reduce the quantity of the error obtained and, most of the time, the

quality of the error is ignored. However, as the above examples demonstrate, the

characteristics of errors can be vital. For this reason, before taking an action,

consequences of decisions should be elaborated and investigated extensively.

The brand new subfield of machine learning that evaluate the effects of decisions is

cost-sensitive machine learning. It is based on incorporating the so-called cost knowledge

to the process of classification. Costs can be categorized under many headings such as

costs of collecting data, acquiring features or costs of misclassifications. The most crucial

of these costs are misclassification costs and in this study, we will be concentrating on

evaluation with respect to misclassification costs.

In this thesis, we propose a cost-sensitive machine learning technique that represents

the learned information in the form of feature projections of the training instances.

Classification algorithms that use this knowledge representation scheme are called

Feature Projection Based Classifiers and many such classifiers have been shown to be

quite successful in a wide range of real-world problem domains ([14], [28], [29] and [30]).

In this study, we introduce another feature projections based classification algorithm,

called Benefit Maximizing classifier with Feature Intervals (BMFI, for short). Voting

procedure of CFI in [28] has been changed to impose the cost-sensitive property to the

algorithm. A number of generalization and pruning techniques have been utilized. BMFI,

along with its versions containing pruning have been evaluated over several benchmark

datasets from UCI Machine Learning repository and several real world datasets,

especially on a financial dataset with loan applications.

CHAPTER 1. INTRODUCTION 4

1.2 Overview of the Thesis

Chapter 2 of the thesis presents fundamental concepts about supervised learning. Cost-

sensitive learning is introduced in this chapter together with the types of costs considered.

Cost matrix and benefit matrix notions are evaluated in detail and several algorithmic

definitions that will be used throughout the thesis are presented. Feature dependent

benefit problem is another headline from Chapter 2.

In Chapter 3, several different approaches to misclassification cost-sensitive learning

in the literature are described and discussed thoroughly. Two main groups of algorithms

are presented within this context: wrapper algorithms and direct cost-minimizing

algorithms.

 Chapter 4 hosts the algorithmic descriptions of our BMFI algorithm along with the

details of feature projection concept, voting methods and cost-sensitivity elements.

Generalization and pruning methodologies are presented. Illustrative examples delineate

the progression of the algorithm clearly.

Experimental evaluation of the proposed algorithm is presented in Chapter 5 by the

results of its application to real world and benchmark datasets. Its comparison to

MetaCost and cost-sensitive classifier on Weka over Naive Bayesian Classifier, C4.5

decision tree learner and VFI classifier is also included in this chapter.

Chapter 6 reviews the results and the contributions of this thesis and outlines future

research directions on this subject.

Chapter 2

Cost and Benefit

In this chapter, firstly supervised learning or inductive concept learning, with its basic

terminology is introduced. An outline of the different types of cost considered in

inductive learning is presented. Subsequently, we sketch the borderlines of cost-sensitive

learning along with its fundamental concepts. Finally, the need for a benefit matrix

representation is discussed and non-stationary benefit domains are explored.

2.1 Supervised Learning

In the context of supervised learning, the instances provided to the learning program have

class labels associated with them. For this reason, supervised learning is also called

induction from examples. The aim is to produce a classifier capable of predicting labels

of the unseen cases correctly.

More formally, given a set of labeled examples <xi,yi> where xi is a vector of

continuous or discrete values called features and yi is the label of xi, supervised learning

is finding a mathematical model that accurately labels a high proportion of unlabeled

examples drawn from the same probabilistic distribution.

5

CHAPTER 2. COST AND BENEFIT 6

The input set of examples is called training data or instance space and it is assumed

to inherit an unknown probability distribution P(x,y) of the class labels. Features can have

either linear (discrete or continuous) or nominal (categorical) values. For example, “age

of the patient” in a medical domain dataset is a linear feature which can have discrete

values from a subset of integers. On the other hand, “exchange rate of US Dollar to

Turkish Lira” is a continuous linear feature which is assessed from a subset of real

numbers. Conversely, “color” is a nominal feature possessing values from a predefined

range of color attributes.

Similar to the feature categorization, labels yi, i.e., classes of the instances in the

dataset can either be elements of a discrete set of classes such as {1,2,…,N} or elements

from a continuous set such as real numbers. When the set of possible predictions is

discrete, the supervised learning procedure is called classification or concept learning.

On the other hand, if possible predictions can be drawn from a continuous subset of

values; this task is called regression or function approximation. Besides, instances in a

dataset can be assigned more than one class label depending on the nature of the problem.

Such a learning problem is called multi-class classification. In this thesis, we will be

focusing on the single-class classification problem in which there is only one class

assigned to each instance.

In order to determine the predictive capability of a learning system, an independent

test data that was not used at any time during the learning process is presented to the

model. This test data is a set of unlabeled examples, i.e., <xi>’s, assumed to possess the

same probability distribution P(x,y) as the training set. In most of the classification

systems, the metric used for evaluating a model’s predictive capacity is the accuracy of

the system. Accuracy is defined as the rate of correct predictions made by the model over

the data set [34]. It refers to the degree of fit between the model and the data.

2.2 Cost-Sensitive Learning

In traditional classification systems, all types of errors are treated in the same manner and

predictive accuracy of the system simply measures the ratio of correct predictions.

CHAPTER 2. COST AND BENEFIT 7

However, in many real-world domains, errors may differ in significance and may have

different consequences. An obvious example of this situation is available in the medical

diagnosis domain. Misdiagnosing a patient who is ill as being healthy has much more

serious consequences than misdiagnosing a patient who is healthy as having a disease.

Hence, in such situations, it is not enough to simply predict the most probable class.

Instead, the system should predict in a way to minimize unwanted side effects, namely

costs.

Therefore, traditional classification systems mostly seem to fail in real world domains

where correct and incorrect classifications have different interpretations. That is why

cost-sensitive classification systems are being recently studied. The goal of these

classification schemes is to minimize the total cost acquired by the prediction process.

Since conventional predictive accuracy metric does not include cost information, it is

possible for a less accurate classification model to be more cost-effective in reality. This

means, to obtain the minimal cost, cost-sensitive learning systems may need to trade off

some of the predictive accuracy and are subject to make more mistakes in quantity.

2.2.1 Types of Cost in Supervised Learning

Turney has created a taxonomy of the different types of cost in inductive concept learning

in [46]. According to this taxonomy there are nine major types of costs. Some of these

types can be overviewed as follows:

� Cost of misclassification errors: This type of errors is the most crucial one and

most of the cost-sensitive learning research has investigated the ways to

manipulate such costs. These error costs can either be constant or conditional

depending on the nature of the domain. Conditional misclassification costs may

depend on the characteristics of a particular case, on time of classification, on

feature values or on classification of other cases.

�

Cost of tests (features): In some domains, such as medical diagnosis, some of the

tests (i.e., features) may have acquirement costs. For instance, taking a

CHAPTER 2. COST AND BENEFIT 8

computational tomography is a costly operation and doctors avoid prescribing

unless it is especially required. This necessity is proportional to the cost of

misclassification. If the cost of misclassification surpasses the costs of tests

greatly, then all tests of predictive value should be taken into consideration.

Similar to error costs, test costs can be constant or conditional on various issues

such as prior test selection and results, true class of instance, side effects of the

test or time of the test.

�

Cost of teacher: It might be expensive to determine the correct class of an

example in some circumstances. In such a case, a learning algorithm should

rationally try to minimize the cost of teaching, and one possible way is actively

selecting instances for the teacher, i.e., active learning. Again, this type of costs

can be constant or varying dependent on individual cases.

�

Cost of computation: Size and structural complexity, time and space requirements

of a classification algorithm both in training and test phases are considered under

this category.

�

Cost of cases: Turney states that there may also be a cost of acquiring instances

[46]. In such situations, it is argued that cost of cases for a batch learner and an

incremental learner should be evaluated separately.

In addition to these types, there may be other kind of costs such as intervention costs,

unwanted achievement costs, human-computer interaction costs and costs of instability.

Nevertheless, most of these costs are non-trivial and hard to formulate since they are

generally domain dependent and irregular. In our studies, we concentrated on costs of

misclassification and in this thesis, we use the term cost related to this type of error costs.

CHAPTER 2. COST AND BENEFIT 9

2.3 The Cost Matrix

Definition 2.1: C=[cij] is a n×m cost matrix of domain D if n equals to the number of

prediction labels, m equals to the number of possible class labels in D and cij’s are such

that

0 if i = j

 >0 if i
�

 j

cij =

According to Definition 2.1, a square cost matrix of order n has the following

structure:

Actual

Prediction C0 C1 . . Cn

C0 c00 c01 . . c0n

C1 c10 c11 c1n

. . .

. . .

Cn cn0 cn1 . . cnn

where rows of the matrix correspond to predicted classes and the columns of the matrix

correspond to actual classes. Thus, cij represents the cost of classifying an instance of

class j as class i.

In the cost matrix formation, the elements c00, c11, c22,…,cnn which constitute up the

main diagonal of the matrix are assumed to be all 0, representing the natural

interpretation that correct classifications have no cost to the user. On the other hand, the

non-diagonal elements of the cost matrix are assumed to be greater than zero, denoting

loses of misclassification from a positive baseline. However, this positive representation

of costs is far form the natural perception of net gain flow concept, as we will see shortly.

When there are n probable classes in classification and the algorithm forces a class to

be determined, the cost matrix of classification is a square matrix of order n. If there is a

probability to leave the instance’s class label undetermined by the classification

CHAPTER 2. COST AND BENEFIT 10

algorithm, then the cost matrix is a rectangular (n+1)×n matrix where the extra row

stands for possible losses and gains for the undetermined cases. In our evaluations, we

omit the undetermined class option and force the classification algorithm to predict a

class for each test instance. Hence, in our computations, and from now on in this thesis,

we will be talking over n×n square matrices.

Table 2.1: An example cost matrix of NYNEX MAX domain [40].

Actual Class

Prediction PDF PDO PDI

PDF 0 150 250

PDO 100 0 250

PDI 150 50 0

Table 2.1 shows an example cost matrix taken from [40] which denotes the cost

matrix for problem of dispatching technicians to fix faults in the local loop of a telephone

network (NYNEX MAX domain). This cost matrix represents the costs associated with

each of the three dispatches, PDF, PDO, PDI. As it can be seen, the cost matrix is

asymmetric and different types of misclassifications have different costs. For example,

identifying a PDI dispatch as PDO is five times more costly than dispatching a PDI

instead of a PDO. From such a cost matrix, we can see that identification of PDI dispatch

is more important from the company’s point of view, since its erroneous classification

inquires the most cost.

Errors made in a classification algorithm can be viewed as a special case of cost.

Specifically, if the cost matrix has uniform cost distribution over all classes, and non-

diagonal elements of cost matrix are all 1’s, then resultant total cost simply gives the

error made by the classification algorithm. Such a cost matrix is called uniform cost

matrix [37].

CHAPTER 2. COST AND BENEFIT 11

2.3.1 Optimal Prediction Using Cost Matrices

In a cost-sensitive classification problem, an instance should be predicted to have the

class label that leads to the lowest expected cost [20]. More formally, the optimal

prediction for an example x is the class that minimizes
��

j

jiCxjPixEC),()|(),((2.1)

where P(j | x) is the probability that x has the true class j, C(i,j) is the cost of predicting

class i when the true class of the instance is j and EC(x,i) is the expected cost of

prediction (also referred as conditional risk [18]). If i=j then the prediction is correct, if

i � j then the prediction is incorrect. According to this formulation, although some class k

is more probable for an instance x, it can be more optimal to predict another class for the

sake of cost minimization.

2.3.2 Reasonableness of the Cost Matrix

Cost matrix logic comes from the natural fact that the cost of correct classification of an

instance can never be higher than the cost of incorrect classification. Elkan has named

this condition as ‘reasonableness condition’ and for a two-class cost matrix, he has

mathematically formulated it as c10>c00 and c01>c11 [20].

To generalize this condition to multiple possible classes, we define the reasonableness

condition as follows:

Definition 2.2: An n×n cost-matrix is reasonable if and only if for each i,j � {0,…,n} and

i � j, cij>cjj .

When evaluating the predictive capability of a cost-sensitive system, the

reasonableness of the cost matrix is a crucial requirement. As pointed out in [36], a cost

matrix should let each possible class label be predictable by the cost-sensitive classifier.

If a cost matrix is not reasonable, some class labels may never be predicted by the

optimal cost-sensitive decision policy. For instance, when for all C(m,j) � C(k,j); i.e., all

the cost values of row m dominate cost values of row k, optimal decision policy never

CHAPTER 2. COST AND BENEFIT 12

predicts class m, since there exists a better decision for all possibilities, which is class k,

that will lead to lesser cost.

Consider the following two examples: In a three-class cost-sensitive classification

problem with the cost matrix in Table 2.2, there is no need to run any learning algorithm,

since it is obvious that, no matter what the class probability distributions are, the optimal

prediction is always C1.

Table 2.2: Cost matrix for which the optimal prediction is always C1 and thus no learning

is needed.

Actual class

Prediction C1 C2 C3

C1 1 2 4

C2 2 3 5

C3 3 10 7

Similarly, if the cost matrix in use is the one shown in Table 2.3, optimal classifier

never makes it choice from C1, because C2 and C3 predictions always outperform in terms

of cost [36].

Table 2.3: Cost matrix for which C1 is never predicted.

Actual Class

Prediction C1 C2 C3

C1 3 10 7

C2 2 0 5

C3 1 3 1

In this thesis, we make sure that all the cost matrices used for evaluation purposes are

reasonable and they allow all class labels to be predicted.

CHAPTER 2. COST AND BENEFIT 13

2.3.3 Operations on Cost Matrices

Some particular operations can change the baseline of cost matrices from which costs are

measured, without changing the optimal predictions made. These operations are useful

especially when the unit amount for costs are subject to any change. In this subsection,

we present two such elementary operations: scaling and shifting.

2.3.3.1 Scaling

Given a cost matrix C, suppose each entry of the cost matrix is multiplied by a positive

constant b. In Equation 2.1, each C(i,j) is multiplied by b, so we have

�� �����
jj

jiCxjPbjiCbxjPixE),()|(),()|(),((2.2)

As the above equivalence shows, we can formulate the optimal decision criterion

in terms of the original matrix and since b is a constant, the optimal decisions made by

the cost-sensitive classifier do not change [20]. The only change is in the total cost

obtained in the result of the decisions. This operation is called scaling and it can also be

interpreted as changing the unit measure of costs.

2.3.3.2 Shifting

In a similar fashion to scaling, when a positive constant is added to each entry of a cost

matrix, the optimal decisions made by a cost-sensitive algorithm is unchanged. Shifting

operation is useful when we want to represent all the entries of a cost matrix from a

different baseline, such as the zero baseline with all costs being positive. As it has been

pointed out in [20], this shifting means changing the baseline of cost measurements by

the addition of positive constant.

CHAPTER 2. COST AND BENEFIT 14

Shifting operation can be formulated as follows: Suppose positive constant b is added

to each entry of the cost matrix C(i,j). Then, optimal decision equation (Equation 2.1) is

modified as in Equation 2.3:

�� �

��

������

�������

jj j

jj

bjiCxjPxjPbjiCxjP

bxjPjiCxjPbjiCxjPixE

),()|()|(),()|(

)])|(()),()|([()),(()|(),(

 (2.3)

By the nature of probability distributions, 1)|(��

j

xjP . Hence, by Equation 2.3,

each expected total cost value is incremented by the positive constant b and optimal

decision which chooses the minimum of these values is unchanged.

2.4 Benefit Matrix

Recent research in machine learning has used the terminology of costs when dealing with

misclassifications. However, those studies mostly lack the information that correct

classifications may have different interpretations. Besides implying no cost, accurate

labeling of instances may entail indisputable gains. Elkan points out the importance of

these gains [20]. He states that doing accounting in terms of benefits is commonly

preferable because there is a natural baseline from which all benefits can be measured,

and thus, it is much easier to avoid mistakes.

Benefit concept is more appropriate to real world situations, since net flow of gain is

more accurately denoted by benefits attained. If a decision made is profitable from the

decision agent’s point of view, its benefit is positive. Otherwise, it is negative, which

equals to the cost of wrong decision. To incorporate this natural knowledge of benefits to

the notion of cost-sensitive learning, in this thesis we have used benefit matrices

(sometimes referred as cost-benefit matrices in literature [1]).

CHAPTER 2. COST AND BENEFIT 15

Definition 2.3: B=[bij] is a n×m benefit matrix of domain D if n equals to the number of

prediction labels, m equals to the number of possible class labels in D and bij’s are such

that �
0 if i = j

 < bii if i � j

bij =

In benefit matrix representation, bij represents the benefit of classifying an instance of

true class j as belonging to class i. Benefit matrix structure is just like the cost matrix,

with the extension that entries can either have positive or negative values. In addition,

diagonal elements (bii’s) should be non-negative values, ensuring that correct

classifications can never have negative benefits associated with them.

Table 2.4 presents a benefit matrix for a binominal classification problem. In this

benefit matrix, misjudgment of an actual “bad” instance as “good” is assigned a negative

benefit of 200 whereas correct identification of a “bad” instance has a gain of 100. In this

domain, although correct classification of “good” instances has a certain benefit,

identification of “bad” instances are 10 times more beneficial.

Table 2.4: An example benefit matrix for a two-class problem.

Actual class

Prediction good bad

good 10 -200

bad -50 100

Benefit matrices can also be interpreted as the negation of cost-matrices in which the

diagonal elements are non-negative. Thus, a benefit matrix incorporates all the

characteristics of a cost matrix, and all operations applicable to cost matrices generate the

similar results in benefit matrices. Specifically, benefit matrices should obey

reasonableness rule, which is already satisfied by the definition of benefit matrices, and

can be subject to scaling and shifting operations without any alteration in the optimal

predictions.

CHAPTER 2. COST AND BENEFIT 16

In some situations, incorrect classifications can also bring benefits. For example in a

medical diagnosis domain, classifying a type of a disease as another type can still be

beneficial, rather than classifying the patient as healthy. Of course, this kind of erroneous

classifications is never more beneficial than the accurate one, but by further

investigations and common treatment techniques, it can be manageable. An example to

such a domain is lesion (gastric carcinoma) dataset, which has the benefit matrix

approved by experts given in Table B.5 in Appendix B.

Our benefit model resembles the cost model proposed in [15] to some extent. In

Domingos’s study, the aim is to answer the question of whether a machine learning

system should be deployed depending on its net present value (NPV) [9]. To accomplish

this goal, the so-called cost model is also formulated in terms of cash flows, instead of

costs, asserting the awkwardness of treating revenues as negative costs.

2.4.1 Optimal Prediction Using Benefit Matrices

Using the framework of benefit matrices, the cost-sensitive classification problem is

slightly modified to involve benefits. Since costs are negated to represent benefits,

minimization problem becomes a maximization problem. Thus, given a benefit matrix B

the optimal prediction for an example x is the class that maximizes

��
j

jiBxjPixEB),()|(),((2.4)

where P(j | x) is the probability that x has the true class j, B(i,j) is the benefit of predicting

class i when the instance x has true class j and EB(x,i) is the expected benefit of making

that prediction.

Equation 2.4 represents the expected benefit in classifying a single instance x. The

total expected benefit of the classifier model m over the whole test data is

CHAPTER 2. COST AND BENEFIT 17

���� �� �
x jx Yi

m jiBxjPixEBEB),()|(),(maxarg (2.5)

2.4.2 Cost and Benefit Matrix Equivalence

In [37] it has been shown that a benefit matrix can be transformed into a cost matrix by

using the following theorem.

Definition 2.4: Let h1 and h2 be any two classifiers. Let C1 and C2 be two cost matrices

corresponding to loss functions L1 and L2. The two cost matrices C1 and C2 are

“equivalent” (C1 � C2) iff, for any two classifiers h1 and h2 , L1(h1) > L1(h2) iff L2(h1) >

L2(h2), and L1(h1) = L1(h2) iff L2(h1) = L2(h2).

Theorem 2.1: Let C1 be an arbitrary cost matrix. If C2=C1+ � , where � is a matrix of the

form

n

n

n

���

���
���

...

.

.

...

21

21

21

��

then C1 � C2.

For a complete proof of Theorem 2.1 the reader is referred to page 12 of [37].

Transformation of a benefit matrix to a cost matrix according to Theorem 2.1 is shown in

Example 2.1. The idea behind such a transformation is to consider benefits of correct

classification as lost opportunities in the case of incorrect classifications and add them to

the cost of misclassifications. So, in the cost matrix, the incorrect classification entries are

sum of resultant costs and lost opportunity values.

CHAPTER 2. COST AND BENEFIT 18

Example 2.1: A given benefit matrix B =

401015

20203

10310

��

��

��

can be transformed into

an equivalent cost matrix C by adding a matrix which consists of negation of benefit

elements

401015

20203

10310

��

��

��

 +

402010

402010

402010

���

���

���

 =

03025

60013

50230

��

��

��

According to Margeniantu, this transformation does not alter the optimal decisions

made [37]. This is true when the base classification algorithm uses only the Equation 2.4

when determining the class of the instance. However, in our algorithm, which is fully

dependent on the concept of benefits, and other techniques that incorporate the matrix

information inside the core of the algorithm, alteration may occur in the decision process.

2.5 Feature-dependent Benefits

Cost and benefit matrices discussed so far assume that there is a uniform loss or gain

value for each kind of classification. To be more precise, the matrices are static and for

each instance, classification algorithm uses the predefined entry of the given matrix,

independent of the instance itself.

However, in some real-world domains, benefits and costs can be dependent on

individual examples, therefore values in benefit and cost matrices may not be constant.

For example, consider the credit application domain. When a customer does not repay the

loan money he is granted, the bank loses the entire credit amount. On the other hand, if

the bank refuses a good customer who is likely to pay the money back, the interest

amount that is proportional to the credit loaned will be lost. This situation can be

illustrated with the benefit matrix shown in Table 2.5. Here “approve” means to grant the

credit loan amount and “deny” means to reject the customer’s request for loan. The term

f(x) in benefit table denotes the credit amount requested by customer x. Obviously, in

such a situation, bank officials should be more careful with the high amount requests,

CHAPTER 2. COST AND BENEFIT 19

because losses and gains will be much higher. For example, when a customer’s request

for $10000 is approved and he has defaulted, the benefit of the bank is -$10000, whereas

in another application of the same case, if the loan amount is $100, the loss will be much

lower, i.e., -$100.

Table 2.5: Benefit matrix for a credit application domain where benefits are dependent on

individual instances

Actual class

Prediction approve deny

approve 0.5f(x) - f(x)

deny - 0.5f(x) 0

2.5.1 Possible Domains for Feature Dependency

Below is a categorization of domains where benefits can be feature-dependent.

� Financial Domains: As described above, in loan applications, benefits can be a

function of the amount queried. In fraud detection of transaction problems,

benefits are functions of transaction magnitudes. Moreover, in bankruptcy

datasets, benefits might be represented as the size of the bank in dollars. Donation

amount prediction as in KDD’98 Cup is another example domain for instance-

dependent benefit amounts [5].

� Medical Diagnosis Domains: Benefits of classification can be based on the age of

the patients. The younger the patient, the more effective a medication can be in

some circumstances. Additionally, there may be temporal parameters associated

with patient’s health from which benefit functions can be estimated.

� Temporal Domains: In domains where benefits of decisions change over time, it

would be more appropriate to specify f(x)’s in the benefit table as functions of

time. For example, in geo-scientific predictions, like predicting earthquakes,

natural disasters, time of prediction is a vital component and benefit of prediction

CHAPTER 2. COST AND BENEFIT 20

mostly depends on this parameter. The earlier the prediction is, the more

precautions can be taken.

�

Spatial Domains: Benefits can be represented as measures of distance in domains

where the locality of prediction is important. In weather predictions for example,

the rainfall area accuracy is important, and can be a functional parameter for

benefit degree.

In this thesis, we have analyzed an example domain, which is bank-loans domain, in

which benefits can be dependent on feature values of individual instances. We present a

naive approach that is incorporated into the feature projection method.

Chapter 3

Approaches to Cost-Sensitive

Learning

Being a recent research area, cost-sensitive learning studies are at their infancy level, and

there is plenty of room for improvement in this principal topic. Although preliminary

studies were made as early as 1984 by Breiman et al. [11], most of the classification

algorithms continue to ignore the asymmetric cost constraints of many real-world

situations. Within the last five years, attention over this area has augmented significantly,

leading to an online bibliography [3] and a special workshop organization totally

dedicated to cost-sensitive learning to be held in 2000 at Stanford University [4].

Recently, fundamentals of the subject are being depicted by Elkan [20] and Turney [46].

In the framework of cost-sensitive learning, costs have been divided into many

categories and there is a variety of algorithms working on different cost types. When

talking in terms of misclassification costs, there are two major groups of approach. First

type of algorithms relies on manipulating the training data whereas the second type

studies on converting an error-based classifier into a cost-sensitive one by changing its

internal discipline. Margeniantu argues that there is a third approach which manipulates

the outputs of the algorithm by probability estimates [37], but we consider such methods

21

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 22

in the second main group. In this chapter, after presenting an overview of these two

approaches, studies over feature-dependency of costs are summarized.

3.1 Cost-Sensitive Algorithms that Manipulate

the Training Data

Stratification, meta-learning techniques such as MetaCost [16] and boosting are among

efforts that manipulate the training data, rather than integrating cost information to the

internal classifier.

3.1.1 Stratification Methods

Depending on misclassification cost priorities, predicting a certain class accurately may

be more important than predicting the others. If the “important” class is more frequent in

the training data, then a standard error-based algorithm is likely to be successful in

reducing the total loss, since it will try to minimize errors caused mostly by

misclassifying the dominant class. Keeping this aspect in mind, machine learning

community has examined the ways to employ an existing error-based algorithm to proper

distributions of data such that cost-sensitivity is accomplished. For this reason, some of

the researches try altering probability distributions of the original data and build cost-

sensitive models using the modified data.

Stratification is the process of changing the frequency of classes in training data in

proportion to their cost [16]. There are two methods of stratification, namely

undersampling and oversampling. In undersampling procedure, all examples belonging to

the important class are preserved and a fraction of examples belonging to each other class

i is chosen at random for inclusion in the reconstructed training set. Although this

approach is widely used, it reduces the size of the data available for training, and this may

reduce the efficiency of the algorithm while increasing the total cost acquired.

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 23

Another alternative method of stratification is oversampling. In oversampling, all

examples of class whose erroneous classification is less costly are retained and examples

of other classes are duplicated in proportion to their cost values. While doing this, no data

is lost, but redundancy in data is increased together with total learning time.

All of the stratification methods distort the original distribution of the dataset.

Therefore, classification models learned over stratified datasets do not reflect the reality

and many interesting traits may go undetected. In order to overcome these flaws, Chan et

al. [12] have proposed a variation of stratification. They have formulated a procedure to

convert a natural class distribution to subsets of desired class distributions by replicating

the minority class. Then, they apply an arbitrary learning algorithm to each of formed

subsets. By the help of a meta-learning strategy such as class-combiner, predictions of the

base classifiers are combined.

Chan et al. [12] have tested their approach only in a single domain, namely credit

card fraud detection. They have observed that, the training class distribution have larger

effects on cost performance than cost-based sampling or stratification. However, they

confess that there is an unavoidable need to run preliminary experiments to determine the

desired class distribution which is highly dependent on the cost model.

3.1.2 Boosting Methods

Instead of modifying the class distributions, some techniques deal with changing the

weights of instances provided to the algorithm. This weight adjustment should be

processed in such a way that new weights reflect the impact of cost distribution. Boosting

is a multi-classifier approach that operates with this initiative. It is a general method of

iteratively enhancing the performance of a classifier by the help of an instance

reweighting methodology [50]. Boosting forms new models based on strengthening the

old models’ weak points and combines all decisions made by those classification models

by a voting scheme. A fundamental algorithm on boosting is AdaBoost which is recently

being studied and extended [2].

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 24

Main idea of AdaBoost is to form multiple individual classification models in

sequential runs and to adjust the weights of training instances so as to maximize the

performance [50]. It begins with assigning equal weights to all instances in the training

data. Then, it calls the learning algorithm to form a classifier for this data and reweights

each instance according to the correctness of the classifier’s decisions. The weight of a

misclassified instance is increased effectively so as to make its classification more

important in the next iteration. Respectively, the weight of a correctly classified instance

is decreased. These adjusted weights cause the base learner to concentrate on different

examples in each turn. After a finite number of generations which build models on

reweighted data, individual classifiers are combined by means of a voting procedure [42].

There are several recent attempts to make AdaBoost cost-sensitive in the literature.

The natural way of doing this is to use the cost of misclassifications to update the training

data weights on successive boosting rounds. One of such variations is presented by Fan et

al. in [22]. They have integrated a misclassification cost adjustment function into the

weight updating formula of AdaBoost. This function increases the weights of more costly

instances while decreasing the weights of inexpensive examples relatively. Their method

is mostly applicable to situations where misclassification costs are relatively stable. They

have evaluated their algorithm by comparing it with original AdaBoost procedure and the

results show that AdaCost is superior to AdaBoost in reducing misclassification costs.

Two other cost-sensitive variants of boosting have been proposed by Ting et al. in

[45]. Their study differs from AdaCost in a way that methods are based upon tree

classifications in the situation where misclassification costs change very often. In their

first approach, the minimum expected cost criterion is used to select the predicted class.

They have used a modified version of C4.5 decision tree algorithm [41], i.e., C4.5c as the

base learner. During classification stage, at the leaf of the tree, C4.5c calculates the

expected misclassification cost for every class and chooses the predicted class with the

lowest expected cost for a given instance.

The second approach of Ting et. al in [45], which is called cost-boosting, entirely

modifies the weight updating rule of AdaBoost. According to new rule, if an instance is

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 25

misclassified, its weight is replaced with its misclassification cost; otherwise its weight

remains unchanged. Their reported results have shown that cost-boosting is a better

approach for reducing costs than simple boosting with minimum expected cost criterion.

In his further studies, Ting improved his boosting approaches by presenting two new

variants [43]. All these alternatives should relearn their models when misclassification

cost information changes. For evaluation of the effectiveness, he has compared four

boosting methods, namely CSB0, CSB1, CSB2 and AdaCost. In the result of

experimentation, the mean relative cost is reduced by a small margin, i.e., less than 10%,

for first three variants and is increased by 5% for AdaCost. Ting also points out the

deficiencies in AdaCost weight updating procedure and shows directions for improving it

[43].

3.1.3 Meta-learning Methods

Some approaches to cost-sensitive learning treat the internal base classifier as a black box

and wrap a meta-learning stage around that base in order to tune it in presence of

fluctuating costs. MetaCost [16] is one of such meta-learning methods and it has become

a benchmark for comparison between cost-sensitive classification algorithms.

MetaCost, as originally defined by Domingos, relies on a bagging algorithm. It firstly

starts by forming multiple bootstrap replicates of the training set and learning a classifier

on each. Then, by using the votes of this ensemble of classifiers, it tries to estimate the

probability of each class for a given instance. Using these approximated probabilities,

MetaCost algorithm relabels each training instance with the estimated optimal class and

then reiterate the classifier on the relabeled training set. The pseudo-code for MetaCost

algorithm is given in Figure 3.1.

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 26

Input: S is the training set,

L is a classification learning algorithm,

C is a cost matrix,

m is the number of resamples to generate,

n is the number of examples in each resample,

p is True iff L produces class probabilities,

q is True iff all resamples are to be used for each example.

Procedure MetaCost (S, L, C, m, n, p, q)

For i = 1 to m

 Let Si be a resample of S with n examples.

 Let Mi = Model produced by applying L to Si.

For each example x in S

 For each class j

 Let
���

i

i

i

MxjPxjP),|(
1

1
)|(

 Where

 If p then),|(iMxjP is produced by Mi

 Else),|(iMxjP = 1 for the class predicted

 by Mi for x, and 0 for all others.

 If q then i ranges over all Mi

 Else i ranges over all Mi such that x � Si .

 Let x's class = argmini �
j

jiCxjP),()|(

Let M = Model produced by applying L to S.

Return M .

Figure 3.1: The MetaCost Algorithm [16]

One difference of MetaCost from Chan et al.’s method [12] is that it does not have to

repeat all the runs when the cost matrix changes. Only the final learning stage is needed

to be rerun, and thus making MetaCost more flexible to variations in the cost matrix.

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 27

Another advantage of MetaCost is its generic form and ability to introduce cost-

sensitivity aspects to any error-based classifier.

MetaCost has been shown to outperform undersampling and oversampling

stratification methods, and reduced cost compared to C4.5 error-based classifier.

However, Ting [43] argues that Domingos made no comparison between MetaCost’s

final model and the internal cost-sensitive bagging model. When MetaCost is compared

to a cost-sensitive bagging or boosting method, Ting has showed that the latter algorithms

give better results and thus, meta-learning stage of MetaCost burdens more computation

than necessary. His study suggests that a classifier with cost-sensitive elements may

outperform a generic cost-sensitive wrapper method like MetaCost applied to an error-

based classifier. So, it is more beneficial to directly incorporate cost information to the

classifier itself.

Another wrapper approach is studied by Lin et al.[35]. Their method initially uses a

logistic model to minimize number of misclassification errors, then uses a cost sensitive

algorithm which is a variant of Breiman’s bagging [10] and MetaCost [16]. It takes into

account not only the misclassification costs but also the prior probabilities. Their target

domain is prediction of financial distress. In the result of their observations, Lin et al.

claim that cost sensitive learning should also consider the prior probabilities whenever

possible.

Weka [6], which is a famous implementation platform of machine learning algorithms,

has implemented a meta-cost-sensitive classifier which uses two methods to introduce

cost factors to its base classifier. First method is to reweight training instances according

to the total cost assigned to each class, and second method is to directly predict the class

with the minimum expected misclassification cost. The second method requires the base

classifier to be distribution classifier, which outputs the estimated probabilities of classes

for instances.

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 28

3.2 Algorithms That Are Modified To Be Cost

Sensitive

There have been various attempts to make different classifiers sensitive to

misclassification costs. Most of these studies have focused on decision trees whereas

there is number of studies over decision lists, naïve Bayesian classifiers and case-based

reasoning, a.k.a. CBR, systems. In addition, there is a direct attempt of using estimated

probability outputs in minimization of total misclassification costs.

3.2.1 Decision Trees

The earliest efforts to incorporate variable misclassification costs into the process of

decision tree induction were made by Breiman et al. In [11], two different methods

adapting the test selection criterion in the growing stage of the tree are described. One of

these methods was reported to infer negative results by Pazzani et al.’s empirical study

[39] Their observation was that cost-sensitive trees do not always have lower

misclassification than the conventional error-based trees. The naïve approach of using

error costs as test selection metric is investigated in [39]. For this purpose, the partitions

of the training set made by each possible test are found initially. Then the test that

minimizes the sum of costs of all partitions is selected. However, this approach did not

produce desired results when compared to standard decision tree metrics, mostly due to

the problem of overfitting.

Contrary to pre-processing approaches, Webb proposes a post-processing strategy to

lower costs [47] His strategy is inspired by the theorem of decreasing inductive power.

This theorem suggests that elements of a classifier having high misclassification costs

should be specialized so as to minimize the proportion of false positives to true positives.

In terms of decision trees, elements to be specialized are leaves of the tree. In this

strategy, as leaves associated with classes of high costs are specialized, leaves having

lower costs are generalized respectively. Webb presents a theoretical analysis of this

concept together with its application to C4.5 decision tree inducer. In order to achieve

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 29

this goal, C4.5CS which is a decision tree post-processor is employed and he has reported

a slight reduction in misclassification costs. He also notes that the effect of specialization

is smaller for pruned trees than unpruned ones. One interesting aspect of specialization

approach is that it does not need accurate misclassification costs, the only need is the

relative ordering of them. However, in such a case, how the accurate degree of agreement

between specialization and the cost model will be determined, is an open question.

In contrast to Pazzani et al’s study, Ting claims that, a truly cost-sensitive tree can be

learned directly from the training data [44]. For this purpose, the greedy divide and

conquer algorithm is coalesced with a simple heuristic. Specifically, weights of the

instances that are modified proportionally to the cost of misclassifications are used in

place of the number of instances in the standard greedy divide-and-conquer. They have

converted C4.5 to C4.5CS (same naming for the second time in literature) by employing

this methodology and their approach seeks to minimize the number of high cost errors,

rather than minimizing the total misclassification cost. An interesting note made by Ting

[43] at this point is that, minimizing the number of high error costs does not guarantee to

achieve minimization in the total misclassification cost. This is because as the algorithm

avoids high cost errors, the number of consequential low cost errors is usually increased.

Margineantu in [37] has investigated ways to manipulate weights in order to incorporate

general cost matrices into decision tree algorithms as well. He presents a general wrapper

method and five other techniques for determining weights for growing decision trees.

Bradford et al. have studied decision tree pruning for minimizing loss together with

probability estimation techniques [8]. They have extended existing pruning methods to

involve cost-complexity characteristics and formed two variants of pruning based on

Laplace corrections. Results obtained in their studies indicate that no method dominates

the others in all datasets and furthermore, different pruning mechanisms are better for

different cost matrices. They also show that Laplace correction performs well compared

to others, for some cost matrices.

Another study dealing with pruning methods of decision trees is [17]. Drummond et

al. have investigated the effects of the splitting criteria and pruning methods over

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 30

expected misclassification costs. They have shown that decision tree splitting criteria in

common use are relatively insensitive to costs and class distribution. Two methods have

been suggested in their study [17]; one is completely treating decision tree with cost-

insensitive splitting and pruning techniques and the other is to grow decision tree cost-

independently and then prune it in accordance with the costs. Second approach intersects

greatly with Webb’s [47] specialization.

Zubek et al. have also scrutinized the effects of pruning the search space for the sake

of cost minimization [52]. They have considered misclassification costs together with

attribute measurement costs, i.e., test costs. Their algorithm is based on formulating the

classification process as a Markov Decision Process. Zubek et al.’s admissible search

heuristic is shown to reduce the problem search space remarkably. In addition, to reduce

overfitting, they have introduced a supplementary pruning heuristic named “statistical

pruning”.

3.2.2 Decision Lists

Pazzani et al. have studied two algorithms concerning decision lists, first is called

Reduced Cost Ordering for creating decision lists and second one is the Clause Prefix

method for avoiding overfitting in decision lists [39]. Reduced Cost Ordering algorithm

firstly initializes the decision list to a default rule that guesses the least expected cost

class. Then, by replacing the default rule with a new rule, it tries to progress upon the

available decision list. This strategy results in significantly lower costs than Reduced

Error Ordering, which tries to minimize the error rate and most of the time better than the

decision tree approaches studied in [39].

Clause Prefix method [39] is a pruning algorithm which is designed to be used in

combination with Reduced Cost Ordering algorithm. It is based on finding all prefixes of

each clause that is learned and adding them to the pool of clauses from which Reduced

Cost Ordering algorithm selects clauses that have more prediction power in less literals.

However, similar to the case of decision trees, this pruning method is shown to have no

significant effect over minimizing the cost.

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 31

3.2.3 Naive Bayesian Classification

Cost-sensitivity issue has also been examined in the context of other classification

algorithms such as Naive Bayesian Classification. Pazzani et al. have also studied cost-

sensitive decision making with Bayes classifier among their decision tree approaches [39].

Bayes-Cost simply assigns an instance to the least expected cost class which is

determined by function of the probability estimates returned by the classifier. Empirical

results show that Bayes-Cost does well when the data does not violate the independence

assumption and there are few irrelevant features, otherwise it performs poorer.

In [27], Gama et al. have presented an iterative approach to naive Bayes which also

exhibits cost-sensitive properties. This approach consists of building distribution tables

by naïve Bayesian techniques at first, and then applying an optimization process. The

optimization process is based on an iterative update of the contingency tables and it aims

to improve the probability class distribution associated with each training example. When

there are non-uniform error costs in the domain, this iterative update can be guided by

misclassification costs and, in such a situation, contingency tables are updated according

to correct or incorrect classifications made. Experimental results over UCI benchmark

datasets show that this method brings advantages over error-based and stratification

based naive Bayesian classification in most of the datasets.

3.2.4 CBR Systems

Cost-sensitive CBR systems have been investigated by Wilke et al.[49]. KNNcost which is

a modified version of KNN algorithm is presented in order to learn feature weights for

classification improvement of CBR systems. Their method is based on conjugate gradient

and it uses an integrated decision value matrix within the error function. They have

shown that their method based on cost minimization is much more effective than their

method based on accuracy, namely KNNacc and both provide improvements over initial

CBR systems. However, their evaluation has only covered one application domain which

is credit scoring domain of very limited size, and they have not compared their algorithm

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 32

to other existing methods. For that reason, we cannot fully decide on the predictive power

of their approach.

3.2.5 Direct Cost-sensitive decision making

Zadrozny et al. have proposed a method called direct cost-sensitive decision making [51].

This study is based on the idea that any learned classifier that can provide conditional

probability estimates for training data can also estimate conditional probabilities for test

data of the same domain. By means of those estimated probabilities, Zadrozny et al.

claim that the optimal prediction labels of test examples can directly be computed. By

testing their approach using five different probability estimation methods over the

KDD’98 dataset, they have reported better results than MetaCost, which uses the same

probability estimation methods on C4.5 with pruning and collapsing. This result is not

surprising, since it has also been approved by [43] that MetaCost usually does not

perform better than an internal cost-sensitive classifier.

3.3 Approaches to Feature-Dependent

Misclassification Costs

In the literature of cost-sensitive learning, there are few studies which have included

feature-dependent aspects of cost matrices. As mentioned in section 2.5.1, in several real-

world domains, prediction outcomes may be dependent on specific feature values that

vary for different instances. In such a case, although misclassification type is the same,

costs can be considerably diverse.

Fawcett et al. are among the first ones who incorporated feature-dependent costs

in their classification problem. In cellular cloning fraud detection [23] used a variable

cost matrix based on the fraudulent airtime used. Naturally, this is due to the more cost of

prolonged fake calls. Static cost notion is inappropriate in such situations.

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 33

Since the credit card fraud detection domain is extremely dependent on the dollar

amount of each credit card transaction, Chan et al. in their studies [12] and [13]

represented the cost model in terms of overheads, which are equivalent to operational

costs that is needed for each investigation and transaction amounts of instances. If the

amount of transaction is smaller than the overhead, net gain will be lower even if that

transaction is fraudulent, so it is not worthwhile to make an investigation. They have

examined the effects of cost-based sampling, which samples instances in proportion to

their transaction amount ratios, but their concluded performance is not much different

from random sampling. Instead, as stated in Section 3.1.1, they pointed out that variations

in training set class distributions have more promising effects on cost performance.

Recently, Hollmen et al. [26] have examined feature-dependency, i.e., input

dependency concept thoroughly and pointed out that there is an indisputable area of

applications in which cost matrices of functions should be used instead of fixed cost

matrices. They present a cost model and decision function based on Bayesian

formulation. Posterior probabilities they make use of are obtained by a Hidden Markov

model. The observed variables are assumed to be conditionally dependent on a discrete

hidden variable in the HMM structure. Their input-dependent cost model exhibits

promising results in terms of profit performance, when compared to cost-neutral and

fixed-cost approaches in fraud detection of telecommunications domain. Furthermore, it

is stated that the described cost model is applicable with other methods such as neural

networks or probabilistic networks. However, Hollmen et al. make a footnote that this

approach is favorable when the input-dependent cost model is easily formulated [26].

Elkan [19] take one step further and ask the question “What will happen if instance-

dependent costs C(i,j,x) are unknown for some labels i and j, for some training examples

x?” This question is worthwhile to be considered with great attention. Such situations

occur when costs are functions of features that are dependent on the class label, such as

charity donation amounts, and practically impossible to be known beforehand. In [51], it

is further emphasized that estimating unknown costs can be more important than

estimating probabilities. The method Zadronzy et al. use to predict instance-dependent

cost amounts is least-squares multiple linear regression. By looking at the examples in the

CHAPTER 3. APPROACHES TO COST-SENSITIVE LEARNING 34

training set, costs for test instances are predicted. Simple methods are used for probability

and cost estimations and their study tries to provide an insight and a baseline for future

research. More sophisticated regression methods for cost estimation are likely to give

more satisfactory improvements in this research area [51].

Chapter 4

Benefit Maximization with

Feature Intervals

The concept of benefit, i.e., the worth of correct classification, has been undervalued in

the literature of cost-sensitive learning. Most of the cost-sensitive algorithms presume

that correct classifications have no further interpretations other than simply conveying no

cost to the domain. However, as described in Chapter 2, there may be non-uniform

distributions of benefits between accurate predictions in particular domains. Bearing this

aspect in mind, we have investigated the benefit maximization problem where there are

different merits related to different class labels.

In this study, we have chosen to integrate the notion of benefit maximization into the

framework of feature projections technique. The most important advantages of this

feature projection representation are its flexibility of organization, robustness to noisy

training instances and missing feature values together with the resultant short training and

classification time. Additionally, in the end of the prediction process, it produces a

human readable model of the classification knowledge.

35

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 36

In this chapter, we firstly describe feature projection concept and introduce a new

cost-sensitive feature projection based learning algorithm, namely Benefit Maximization

with Feature Intervals (a.k.a. BMFI). Subsequently, training and querying with BMFI is

discussed comprehensively, along with time and space complexity analysis of the

methods.

4.1 Knowledge Representation

Feature projections for knowledge representation constitute the background for BMFI

algorithm. Feature projection technique is another exemplar-based learning methodology

in which intervals formed on features are independent units of knowledge. BMFI inherits

the knowledge representation scheme of feature projection technique of early FIL, VFI,

VFI5 and CFI algorithms ([14],[28],[29] and [30]).

4.1.1 Feature Projections Concept

In a particular classification problem, given the training dataset consisting of m features,

an instance x can be thought as a point in an m-dimensional space with an associated

class label xc. It is represented as a vector of nominal or linear feature values and its

associated class label, i.e., <x1,x2,..,xm,xc>. Here, xi represents the value of the ith feature

of the instance x. If we consider each feature separately, and take x’s projection onto each

feature dimension, then we can represent x by the combination of its feature projections.

Figure 4.1 illustrates such a situation in a three-dimensional space.

BMFI algorithm first projects all training instances on each feature separately. As a

result, over each linear dimension of features, instances are marked as points in the

beginning. Using these projections, BMFI algorithm constructs a set of intervals for each

feature. An interval can either be a point or a range interval. Point interval stands for a

single feature value, whereas range interval is a set of consecutive values of the particular

feature.

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 37

Figure 4.1: A simple feature projection illustration for a single instance

Definition 4.1: An interval on a feature f is represented by a vector of the following

format:

I = < lb, ub, N1, N2,…,Nk, V1, V2, …, Vk>

where k is the number of classes in the domain, Nj is the number of instances belonging

to class j in and Vj represents the vote of the interval I for class j. The first two elements

of the vector lb and ub denote the lower and upper bound values of the interval,

respectively.

Definition 4.2: A point interval is an interval I = < lb, ub, N1, N2,…, Nk, V1, V2, …, Vk>

such that lb = ub on feature f.

As the name implies, point intervals are single-valued projections of features. It is

noteworthy that a nominal feature’s projection dimension consists of point intervals only.

Definition 4.3: A range interval is an interval I = < lb, ub, N1, N2,…, Nk, V1, V2, …, Vk>

such that lb < ub on feature f.

In the training phase, the feature intervals of concept definitions are constructed by

generalization and specialization [31]. When forming intervals, those instances that have

the same value on a feature dimension are grouped into point intervals. By looking at

neighboring point intervals that share the similar characteristics are combined to form

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 38

range intervals. Merging of intervals for generalization purposes is mentioned in detail in

the training phase of the algorithm in section 4.2.

An example training set and the corresponding feature interval construction steps are

shown in Figure 4.2. The example domain consists of three features, namely f1, f2 and f3,

the first two of which are linear and the last one is a nominal feature. The nominal feature

f3 can take values from the set {A,B,C}. The class labels are C1, C2 and C3. There are

seven training instances in the example.

Figure 4.2: Example demonstrating the formation of feature intervals

Training algorithm forms three intervals on the feature f1, two of which are range

intervals. The first interval on f1, spans the value range [1,3], and there are only 2

instances of C1 in that interval. Vote assignment will be discussed later on in this chapter.

4.1.2 Basic Notions for Benefit Maximization on Feature

Intervals

Definition 4.4: A voting method, VM for short, is a function of the form f(I)� g(I) that

takes interval I as an input and assign votes to classes on that interval by a predefined

routine.

1 2 3 4 5 6 7 8

Training Set:
<1,0,B,C1>

<4,5,A,C2>

<3,0,B,C1>

<4,0,C,C2>

<7,1,C,C3>

<4,6,A,C2>

<5,3,?,C3>

Benefit Table:
 2 -1 -6

 -4 3 -1

 -5 -4 5

f1

(linear)

f2

(linear)

f3

(nominal)

0 1 2 3 4 5 6 7

A B C

<1,3,2,0,0,V1,V2,V3> <5,7,0,0,2,V1,V2,V3>

<4,4,0,3,0,V1,V2,V3>

<0,0,2,1,0,V1,V2,V3 >

<1,3,0,0,2,V1,V2,V3> <5,6,0,2,0,V1,V2,V3>

<A,A,0,2,0,V1,V2,V3>

<B,B,2,0,0,V1,V2,V3>

<C,C,0,1,1,V1,V2,V3>

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 39

For example, most of the error-based classifiers generate probability estimation

outputs when predicting an unseen example. In such a circumstance, a possible voting

method for a feature projection based classifier might be assigning votes according to the

number of instances belonging to each class in the particular interval. Specifically, votes

can be set according to the formula:

VoteI(c) = Number of instances of class c in interval I

Another voting method may compute ratios of instance occurrences in the interval

such that

VoteI(c) = (number of instances of class c in I) / (total number of instances in I)

These probability estimations on the interval structure are analogous to decision tree

leaf structure. In benefit maximization, these voting methods should consider benefits or

costs of the classifications before casting votes to intervals. One possible approach is

simply using expected benefits, computed according to Equation 2.5, as vote values.

Different versions of BMFI with a number of voting methods are introduced in Section

4.2.

Definition 4.5: Benefit of classifying a single instance x of class k as class c is denoted as

�����
],[

],[
),(

kcB

ccB
cxB

kc

kc ��
,

,

given the benefit matrix B.

Definition 4.6: A class c is the beneficial class of an interval I iff for � j � C and j 	 c

� ix

cxB),(�

� ix

jxB),(, where C is the set of all possible classes.

Beneficial class concept solely relies on the interval structure. Considering the

interval as an independent and distinct unit of knowledge, it is questioned whether it

would be worthwhile to predict all the instances as of a certain class label. Thus, if the

prediction problem has a simple benefit matrix such as

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 40

and the interval I has a signature I=<0,40,10,5,V1,V2> then interval I's beneficial class

will be class 1, even though there are six more instances of class 0 than instances of class

1. The subsequent calculations verify this fact:

 0)25()110()0,(������
�

� ix

xB

5)110()35()1,(������
�

� ix

xB

Therefore, regardless of other factors, it will be more advantageous to predict all

instances as class 1, rather than predicting all as class 0, in this interval. From a cost-

sensitive point of view, it is often more sensible to predict the most beneficial class

instead of the most probable class.

Definition 4.7: Minimum benefit, denoted as minB(S), of an instance set S, is the sum of

B[j,k]’s of predictions j � C such that � x � S having true class k, j � k and B[j,k] is

minimal.

minB(S) =
�

� 	Sx kj

kjB]),[(minarg

Here, instance set S can either be a test instances set or an interval’s instance set.

When S is an interval’s instance set, minimum benefit is the worst benefit that might take

place when all the predictions made by the interval are incorrect. For example consider

the benefit matrix B supplied and the interval formation shown in Figure 4.3.

In interval I1, there are four instances of C1, one instance of C2 and two instances of

C3. The least beneficial classification for an instance of C1 is misclassifying it as C3,

which has a benefit of -8. Conversely, C2 instances lead to the smallest amount of benefit

 Actual Class

Prediction Class 0 Class 1

Class 0 1 -2

Class 1 -1 3

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 41

if classified as C3. Prediction row of C3 shows that the worst case classification is

accompanied with a benefit of -12 in B[C1,C3]. Thus, the lower bound of benefit

obtainable for the situation in Figure 4.3 is calculated as follows:

minB(I1)= ������
1

]),[min(arg
ix kj

kjB = (4×-8)+(1×-10)+(2×-12) = -66

Figure 4.3: An example interval formation

Definition 4.8: Maximum benefit, denoted as maxB(S), of an instance set S, is the sum of

B[xc,xc]’s for � x � S, such that true class of x is xc.

maxB(S) = � � Sx

CC xxB],[

Maximum benefit of an interval is the highest benefit obtainable when all the

instances of that interval are correctly classified. Of course, Definition 4.8 relies on the

assumption that all benefit matrices in consideration obey the reasonableness conditions.

In a similar fashion to the example above, if we consider the circumstances shown in

Figure 4.3, the maximum benefit obtainable by using B is

maxB(i1) = (4×10)+(1×20)+(2×15) = 90

Identification of possible upper and lower bounds of accessible benefits are crucial

for determining the benefit accuracy of the algorithm. With respect to those limits, a

benefit scale is formed for evaluating the efficiency of the algorithm. Details of this

performance scale are given in Section 5.1.

Definition 4.9: Confidence of an interval I is the difference between the highest vote and

the second highest vote available in I.

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 42

Definition 4.10: Benefit confidence of an interval I is the difference between benefits of

the most beneficial class and second beneficial class of I.

Both confidence values indicate the prediction strength and assertion of intervals. If

confidence of an interval is low, i.e., near zero, then the decision made by the interval is

somewhat tentative. Confidence tests are used for finding and coalescing uncertain

intervals to form more robust ones.

4.2 Training with BMFI

The training process of BMFI algorithm is shown in Figure 4.4. In the beginning, for

each feature f, all training instances are sorted with respect to their value for f. This sort

operation is identical to forming the projections of training instances for each feature f. A

point interval is constructed for each projection. Initially, the lower and upper bounds of

the interval are equal to the f value of the corresponding training instance. If the f value of

a training instance is unknown, it is simply ignored. Then, if there are several point

intervals as the same f value, then they are combined into one point interval by adding the

class counts. At the end of point interval construction, vote for each class label is

assigned by a predefined voting method. This voting method is mostly based on benefit

matrix provided as an additional input to the algorithm. Five of the possible voting

methods are described in detail in subsection 4.2.1.

After determination of votes on point intervals, consecutive point intervals are

scanned for combination only for linear features. This generalization operation can be

done by means of several issues, such as frequency of class labels, majority of votes or

benefit of the intervals. Details of generalization are presented in subsection 4.2.2. After

combining intervals to form more general ones, some of them can be pruned as an

optional routine. Pruning is useful when the classification model created becomes so

much dependent on the nature of the training set. This problem is referred as overfitting

[38] and should be avoided as much as possible. In addition to voting and generalization

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 43

methods, different pruning approaches are studied and discussed in detail in subsection

4.2.3.

train(TrainingSet,BenefitMatrix)

begin

for each feature f

sort(f, TrainingSet) /* sort TrainingSet with respect to f */

/* construct a list of point intervals using feature values and class labels */

interval_list � make_point_intervals (f, TrainingSet)

 for each interval i in interval_list

 /* cast a vote for each class in the interval using the instances in interval */

 votei(c) � voting_method (i,f,BenefitMatrix)

 if f is linear

 /* join adjacent point intervals to form range intervals */

 interval_list � generalize (interval_list,BenefitMatrix)

 if (pruning=yes)

 interval_list � prune (interval_list,BenefitMatrix)

end.

Figure 4.4: Pseudo-code of the training stage in BMFI algorithm

4.2.1 Voting Methods of BMFI

As explained above, votes on the class labels in intervals can be determined by

considering several different factors. There are two main approaches to make voting

methodology sensitive to cost factors. First approach adjusts probability estimations to

reflect the importance of beneficial predictions and second approach directly incorporates

benefit matrix knowledge to the voting. Here, we introduce and discuss several methods

of voting and their possible outcomes.

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 44

4.2.1.1 Probabilistic Voting

This type of voting is profitable when the importance of the class is proportional to its

distribution in the training dataset. As discussed in Chapter 3, there are various wrapper

algorithms that try to make its internal error-based classifier sensitive to misclassification

costs by altering the class distribution ratios. Without altering these ratios, if class

distribution knowledge is included in the algorithm, then more reliable predictions which

exhibit the natural characteristics of domain can be attained. However, there is a major

handicap in determining a general approach when using only probabilistic methods, i.e.,

the classification importance of a class can be directly or indirectly proportional to its

frequency in the dataset. Assuming an optimistic world-view, most of the fraudulent,

illegitimate or hazardous cases rarely occur and in such situations, classification of the

rare class is more important. On the other hand, in a medical domain, it is more likely to

encounter poor health incidents more often than healthy cases, since people usually see a

doctor only when they are sick. In such domains, a traditional error-based classifier

which tries to minimize number of errors made rather than total misclassification cost is

likely to perform well. Nevertheless, probability estimation methods that favor the

prediction of the rare classes are less likely to achieve desired success. This observation

reinforces the fact “There is no universally best classifier” [24].

Since conventional error-based learning algorithms predicts the most frequent class to

reduce the number of errors, we look at the situations where rare classes are more

important and introduce probabilistic approaches that are suitable to such domains.

Voting Method 1 (VM1):

The first scheme that we will investigate is the voting method of the original CFI

algorithm [28], called VM1 in our context, which can be formulated as follows:

)(
),(1

cclassCount

N
IcVM

c� (4.1)

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 45

where Nc is the number of instances that belongs to class c in interval I and classCount(c)

is the total number of instances of class c in the entire training set. Note that this sort of

voting does not take benefit of classifications into account. Consider the interval

Ik = <2,10,15,10,V1,V2> in which 15 instances belong to C1 and 10 instances belong to C2.

In the whole training set, suppose there are 100 instances of C1 and 50 instances of C2.

According to Equation 4.1, V1=15/100=0.15 and V2=10/50=0.20. As it can be seen from

these results, although C1 is more frequent in the interval, its vote can be lesser than the

other class because the second class is rarer in the whole dataset. By this voting method,

classification of a single rare class instance becomes more important in proportion to its

scarcity in the training set.

When testing the performance of algorithmic approaches, VM1 produced surprisingly

well results, mostly due to its simplicity and natural characteristic of favoring rare classes.

However, it ignores the benefit information and this deficiency makes it still far from

optimal benefit accuracy when used on its own.

Voting Method 2 (VM2):

VM2 is the second probabilistic voting method and is a slight modification of VM1.

When assigning votes, it simply uses the ratio of interval class distribution to the dataset

class distribution. More formally, VM2 is formulated as:

)_/)((

))(/(
),(2

TrainersNocclassCount

ItotalN
IcVM c� (4.2)

where Nc is the number of instances that belong to class c in interval I, total(I) is the total

number of instances falling into interval I, classCount(c) is the total number of instances

of class c in the entire training set and as the name implies No_Trainers is the total

number of training instances. The ratio in the denominator of Equation 4.2 is sometimes

called base rate of class c [51].

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 46

VM2 is more complex than VM1 and it is questionable whether it will suffer or

benefit from this complexity in terms of benefit performance issues. In Chapter 5, the

answer to this question is examined.

4.2.1.2 Beneficial Voting

This type of voting is more general than probabilistic voting since it is dependent on

benefit matrix information rather than class distributions. In this approach, the benefit

matrix is directly embedded in the voting scheme and that’s why we call it beneficial

voting.

Beneficial voting is applicable to both situations where the rare or the frequent class

prediction is more important. Its prediction power can be supported by accurate

probability estimations to gain higher benefit performance. Here, we will consider three

different variations of beneficial voting.

Voting Method 3 (VM3):

The first method of beneficial voting determines the votes of classes in an interval by

using the relative benefit of the classes. The vote of class c is computed by

)()(

)(),(_
),(3

IminBImaxB

IminBIcbenefittotal
IcVM �

�� (4.3)

where minB(I) and maxB(I) are the minimum and maximum benefit possible in interval I

and total_benefit(c,I) is the benefit of labeling all instances in the interval as class c.

More formally,

�

�
�

Ix

cxBIcbenefittotal),(),(_ (4.4)

Note that B(x,c) is the benefit of labeling instance x as class c.

This voting scheme is similar to benefit accuracy calculation that is used in evaluating

the performance of the algorithm. VM3 normalizes the votes of the interval, i.e., maps

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 47

them to [0,1] range, by subtracting the minimum possible benefit in the interval and then

by taking the resultant’s ratio to the possible maximal range of benefits in the interval.

Evidently, this voting method makes direct use of the benefit matrix entries and makes

decisions based on importance of the classes.

Voting Method 4 (VM4):

An example of beneficial voting supported by probabilities is VM4. VM4 is based on

VM3 with an additional multiplicand of interval class probability. It can be formulated as

)()()(

)(),(_
),(4

Itotal

N

IminBImaxB

IminBIcbenefittotal
IcVM c�

�
�� (4.5)

where the first multiplicand of the right-hand side of Equation 4.5 is same as VM3

formula, Nc is the number of instances that belongs to class c in interval I and total(I) is

the total number of instances falling into interval I.

Voting Method 5 (VM5):

The last but not the least voting method that we will introduce in this chapter is expected

benefit voting, a.k.a. VM5. This voting mechanism is totally founded on optimal

prediction approximation given in Equation 2.5. Thus, VM5 casts votes to class c in

interval I by
�

�
��

Ck

IkPkcBIcVM)|(],[),(5 (4.5)

Here, B[c,k] is the benefit matrix entry that represents the benefit of predicting an

instance of class k as class c and P(k | I) is the estimated probability that an instance

falling to interval I will have the true class k. There are various methods for estimating

probabilities and some of them have been explored above. However, by the empirical

results we obtained, we decided to use the following probability estimation:

)(
)|(

kclassCount

N
IkP k�

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 48

Again, here Nk is the number of instances that belongs to class k in interval I and

classCount(k) is the total number of instances of class k in the entire training set.

There are several other methods we have tried and eliminated during the empirical

evaluation of classifiers. In Chapter 5, a throughout comparison between different types

of voting on various datasets is presented.

4.2.2 Feature-dependent Voting

All of the methods described above assume that there is a static benefit associated with

each pair of predicted and actual class labels. However, there may be situations where the

benefit matrix is defined in functional dependency forms. When the benefit matrix of

classification is dependent on features, votes of intervals should be arranged in a way to

reflect this feature dependency.

In feature projection concept, each feature is assumed to be an independent unit of

knowledge and they individually contribute to voting with equal prediction power.

However in feature-dependent conditions, the dependent variable would have some effect

on decision of other feature dimensions as well. For this reason, it is not very

straightforward to incorporate feature dependency concerns to an autonomous

environment like feature projections. In this thesis, we handle feature dependency on the

dependent variable’s dimension only.

Pseudo-code in Figure 4.5 summarizes the routine followed in feature-dependent

voting scheme. It uses VM5 as the base voting method. Other beneficial voting methods

can be employed as well, but expected benefit calculation is more suitable to our current

implementation.

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 49

/* Input: f is the feature, interval list is the corresponding intervals on dimension f. */

assign_dependent_votes (interval_list, f)

begin

for each i in interval_list do

if f is a dependent variable

 /* take the average value dependent in the interval */

avg � average(i.upper , i.lower)

 votei(c) � VM5(i,f,BenefitMatrix)×avg

 else

votei(c) � VM5(i,f,BenefitMatrix)

end.

Figure 4.5: Pseudo-code for assigning feature-dependent votes

Consider a medical diagnosis domain, in which the benefit of classification depends

on the age of the patient. In this yes-no classification problem, an example matrix can

have the following format:

where fage represents the age feature in the dataset. This benefit matrix implies that

accurate diagnosis in elder patients is more important, because side effects caused by

wrong classification may be more damaging (In some cases, this situation can be vice

versa and accurate prediction of younger patient may be more important.). On fage

dimension, votes will be arranged as follows. For I1=<30,40,20,7,Vh,Vi>

Bh = (20+(7×-2))×35 = 180 and Bi = (-20+(7×3))×35 = 35. For I2=<45,60,15,20,Vh,Vi>

Bh = (15+(20×-2))×52.5 = -1312.5 and Bi = (-15+(20×3))×52.5= 2362.5. These values

should be normalized by subtracting the minimum benefit of interval and mapped to the

 Actual Class

Prediction healthy ill

healthy fage -2 fage

ill -1 fage 3fage

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 50

[0..1] range by dividing into possible range of benefits. Taking the average of interval

feature value is necessary, since it would be extremely costly and redundant in terms of

space to hold each instance’s value. So, we take the average and find the effective value

through the interval.

4.2.3 Generalization of Intervals

After votes are assigned to each interval with respect to some specified criteria as

described, point intervals should be generalized to form range intervals. This process can

be likened to clustering process of machine learning. Successive intervals showing

similar characteristics are joined to form more general and informative units of

knowledge. There is a number of ways to carry out this combination process. One group

of policies looks at the votes of the interval for combination, and the other group

considers the possible benefits of each consecutive interval.

The generic form of generalization process is illustrated in Figure 4.6. The

merge_condition() function is a comparison mechanism that evaluate relative properties

of each interval and returns true if sufficient similarity level between those intervals is

reached. Some join operations combine two consecutive intervals, whereas some

operations compare and combine three consecutive intervals to form a larger single

interval.

Besides adding more prediction power to the algorithm, proper generalization of

intervals reduces the number of intervals to a great extent, and thus, decreases the

classification time substantially. However, careful attention must be paid when

combining intervals, because minor yet vital information related to rare occurrences of

instances may go undetected when excessive generalization take place. In this section,

some of such generalization policies are examined and exemplified. Subsequently in the

next chapter, their effects to classification progress are investigated in depth.

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 51

generalize (interval_list)

begin

I � first interval in interval_list

while I is not empty do

I’ is the interval after I

I” is the interval after I’

if merge_condition(I,I’,I”) is true

 then merge I’(or I”) into I

else I� I’

end.

Figure 4.6: Pseudo-code for generalization of intervals

4.2.3.1 Joining Intervals That Have the Same Frequent Class (SF)

First method to combine two consecutive intervals is to test whether their most frequent

class is the same. The intervals whose highest class counts are for the same class are

merged to form range intervals. So, in this process, merge_condition_SF() is defined as

merge_condition_SF (I,I’)

if (frequent_class(I) = frequent_class(I’))

 then return(true)

 else

 return(false)

where frequent_class(I) function returns the class label that have the highest class count

in the interval I.

An example demonstrating this join process is shown in Figure 4.7. Here, on

projection dimension of f1, which is a linear feature taking values between 0 and 100,

there are five point intervals initially. The specified domain has two classes to predict and

instances of the training set are projected onto f1 dimension as shown on interval

signatures. Instance counts of point intervals imply that the first three consecutive

intervals have the same frequent class, i.e., C1. In the first execution of the while loop in

the generalize function given in Figure 4.6, I1 and I2 are joined to form I1’. When joining

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 52

intervals, number of instances belonging to each class is summed up and their

corresponding votes are rearranged. In the second step, seeing that I1’ and I3 have the

same majority class, they are combined to form I1”.

Figure 4.7: An example demonstrating merge operation of same frequent class intervals

In the example above, number of intervals is reduced from five to three. During the

classification progress these resultant three intervals will be used in search and vote

operations, so there will be a noticeable reduction in classification time.

4.2.3.2 Joining Intervals That Have the Same Beneficial Class (SBC)

A second methodology for generalizing intervals is to join consecutive intervals that have

the same beneficial class. This approach relies strictly on benefit matrix provided to the

algorithm. If the beneficial classes of two consecutive intervals are the same, then it can

be more profitable to unite them into a single interval. Corresponding pseudocode for

SBC is as follows:

merge_condition_SBC(I,I’)

if (beneficial_class(I) = beneficial_class(I’))

then return(true)

 else

return(false)

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 53

To exemplify this process, let us consider the following benefit matrix in a binominal

problem dataset

and the two consecutive intervals I1 and I2 having signatures I1=<lb1,ub1,10,15,V1,V2>

and I2=<lb2,ub2,5,5,V1,V2> respectively. The beneficial class of I1 is C1, calculated as

follows:

5)315()110()0,(
1

��������

� Ix

xB

40)210()415()1,(
1

�������

� Ix

xB

The beneficial class of I2 is also C1 and these two intervals can be joined to form a

new and more general interval I1’=<lb1,ub2,15,20,V1,V2>.

5)35()110()0,(
2

��������

� Ix

xB

0)210()45()1,(
2

�������

� Ix

xB

4.2.3.3 Joining Intervals That Have High Confidence Values (HC)

This type of generalization looks at three consecutive intervals and joins them into a

single interval. By this type of generalization, intervals that are formed from redundant or

noisy data are eliminated and their information is assimilated to the other two.

Generalization takes place if merge_condition_HC() is satisfied :

 Actual class

Prediction C0 C1

C0 1 -3

C1 -2 4

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 54

merge_condition_HC(I,I’,I”)

if (majority_vote(I) = majority_vote(I”)) and

(confidence(I) > confidence(I’)) and

(confidence(I”) > confidence(I’))

then return(true)

 else return(false)

The illustration of this process is given in Figure 4.8. In this example there are four

intervals with their specified signatures. Problem domain consists of three class labels to

predict and according to the differences between those votes, the intervals are decided to

be joined or not.

Figure 4.8: Example for illustrating merging high confidence intervals

As seen, I1 has the majority class C1, whereas I2 and I4 have majority class C3 and I2

has majority class C2. The loop in the generic generalize() function checks intervals in a

three-wise fashion. In first iteration, it checks whether I1 and I3 have the same majority

class. In our case, this is not the situation, so no combination takes place we iterate to the

second trio, which is I2, I3 and I4. Seeing that I2 and I4 share the common majority class,

we check their confidences. Here I2 has a confidence of 0.45 and I4 has a confidence of

0.3. These values are much higher than the confidence of the middle interval I3’s

confidence 0.05. So, according to our join operation, we combine those three intervals

into a single one, by adding the instance counts and recalculating class votes.

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 55

4.2.3.4 Joining Intervals That Have High Benefit Confidences (HBC)

Joining high benefit confidence intervals has the same logic as joining high confidence

intervals with the exception that all calculations are based on benefits rather than majority

of the votes. The process again combines three consecutive intervals to a single one, if

the middle interval has less prediction power then the other two. Corresponding

formulation of condition when such three intervals are to be merged is as follows:

merge_condition_hb(Ileft,Imiddle,Iright)

if (beneficial_class(Ileft) = beneficial_class(Iright)) and

(benefit_confidence(Ileft) > benefit_confidence(Imiddle)) and

 (benefit_confidence(Iright) > benefit_confidence (Imiddle))

 then return(true)

 else return(false)

Continuing with the example given in Figure 4.8, with regards to benefit matrix

benefit and benefit confidence of each interval is calculated as follows: For I1,

5)0,(
1 �

���
Ix

xB , 10)1,(
1 ��

� �
Ix

xB and 20)2,(
1 ��

� �
Ix

xB . So, for I1, the beneficial class is C0

with a benefit confidence of 15. For I2, 13)1,(
2 ��

� �
Ix

xB , 21)2,(
2 ��

� �
Ix

xB

and 14)2,(
2 �

� �
Ix

xB . These calculations indicate that I2 has a benefit confidence of 27 for

beneficial class C2. For I3, corresponding benefit confidence is 2 favoring the beneficial

class of C1. In I4, beneficial class is C2 with a relatively high confidence of 90. Hence,

according to these values, I2 and I4 have the same beneficial class and their benefit

confidences are much higher than the middle interval I3. Thus, although the beneficial

class of the middle interval is different, those three intervals are joined into a single one,

 Actual class

Prediction C0 C1 C2

C0 1 -1 -3

C1 -1 2 -4

C2 -2 -2 4

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 56

because the middle interval I3 is not certain about making a decision in terms of benefit.

Again, by this merge operation, number of intervals has been reduced from four to two.

4.2.4 Benefit Maximizing Pruning of Intervals

Pruning, as in the case of decision trees is a powerful tool for avoiding the problem of

overfitting and reducing the problem size. Hence, we decided to include pruning

techniques in our BMFI algorithm and investigated its effects over the benefit

performance. In decision tree discussions, advantages of pruning techniques are still

being questioned [39] and a consensus on this issue has not been reached yet. Bearing

this issue in mind, we have investigated effects of pruning on benefits in the context of

feature projection based classification.

In this section, we will introduce a single method for eliminating redundant or

disadvantageous feature intervals and in Chapter 5 we will discuss effects of this

procedure on various datasets. Overall, choice of pruning seems to be dependent strictly

on the nature of the domain and the amount of redundancy available in the training

datasets provided.

Our approach to interval pruning is based on the comparison of the votes of the most

beneficial class and majority voted class. If the vote of the most beneficial class is less

than the highest vote to some extent, i.e., beneficial class is undervalued in the interval,

then pruning that interval may be a good choice. The reason behind this is usually in such

intervals there is a more evenly distribution of classes and thus, that feature value range is

somewhat uncertain about making prediction. Elimination of these dangling intervals

may be profitable since such an operation will shift the power of voting to more “certain”

intervals. Corresponding pseudo-code of this procedure is given in Figure 4.9.

In the code of Figure 4.9, major is the class that receives the highest vote from

interval I and most is the most rewarding class when predicted. After the determination of

these classes in a particular interval, the standard deviation between all the votes of I is

calculated. If the difference between the votes of majority class and beneficial class

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 57

exceeds this standard deviation, then I is pruned. This standard deviation test allows us to

check whether votes of the interval are in accordance with the benefit concerns. If there is

critical gap between, then it is better to simply ignore that interval.

prune(interval_list)

 begin

 for each I in interval_list

 most � beneficial class of I

 major � majority class of I

 std � standard_deviation(I.votes)

 if (vote[major] – vote[most]) is greater than std

 prune I

 end

Figure 4.9: Pseudo-code of prune operation on intervals

4.3 Classification with BMFI

After the prediction model is constructed on the training data, it is time to classify

previously unseen data. The classification (querying) process of the BMFI algorithm is

given in Figure 4.10. BMFI classification stage is very similar to that of CFI [28] and it

involves a voting scheme where each feature acts as an independent unit and casts its

vote for the particular instance’s class.

The process starts by initializing the votes of each class label to zero. If the value of

the query instance q for a feature f, i.e., qf is unknown (missing), then that feature does

not involve in the voting process. Rather than altering the characteristics of the instance

(i.e., by assigning average quantities for unknown feature values), simply ignoring that

feature dimension is a more natural and straightforward way of handling missing values.

If qf is known, then the interval I into which qf falls is searched. If the qf does not fall in

any interval of f, then again, the feature f does not participate in the voting. If an interval I

is found that covers the qf value, then the votes of that particular interval are the votes it

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 58

casts in the overall voting operation. Once all features have completed casting their votes,

the class that received the highest amount of the votes is predicted as the class of the

query instance q.

classify (q) /* q: query instance to be classified */

begin

 /* initialize total votes */

 for each class c

 vc
� 0

/* go over each feature dimension and sum up votes */

for each feature f

 if qf is known

I � search_interval(f, qf)

 for each class c

vc
� vc + interval_vote(I, c)

 /* predicted class is the one with the maximum votes */

prediction � arg maxc (vc)

return prediction

end.

Figure 4.10: Classification phase of BMFI

It should be noted that in our classification scheme, each feature has an equal power

in the voting. This condition is guaranteed by normalizing the votes of each interval in

the training phase of BMFI. Several policies that play with the weights of features in

voting can be employed, especially when costs of features are asymmetrical. However,

those policies are beyond our current discussion and are subject to future research.

When querying examples using a constant benefit table, the total benefit is calculated

by simply adding up the corresponding benefit matrix entry for each test instance. In that

case, each type of classification, e.g. classifying i as j, has identical revenue. On the other

hand, if a feature dependent benefit table is available in the domain, for each query

example there is a different benefit gained and it is the functional form of feature values

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 59

identified in the table. For each instance in the test set, these functional measures are

summed up to calculate the total resultant benefit.

4.4 Time and Space Complexities of BMFI

When evaluating performance of a classification algorithm, learning time and disk

storage needed are important concerns along with the predictive accuracy. An algorithm

having a superior accuracy is not favorable and practical if it runs in exponential time

and/or needs excessive amounts of disk space. Our BMFI algorithm runs in a

considerably well amount of time and has manageable space requirements. In this section

of the thesis, we will investigate estimations of these figures in terms of algorithmic

variables. In Table 4.1, the list of those algorithmic variables is given.

Table 4.1: Input variables of BMFI

N number of training instances

f number of features in the domain

l number of linear features in the domain

k number of possible classes

r maximum number of distinct values of a feature

t number of test instances

4.4.1 Time Complexity of BMFI

Training:

With reference to training pseudo-code re-presented in Figure 4.11, all the training

instances are processed f times to form point intervals on each feature dimension f. Hence,

make_point_intervals() function requires O(N) time for a single feature pass. As a result

of this pass, for r distinct feature values, r point intervals are formed initially. Calculating

votes of these intervals requires constant time and total operation on r intervals takes O(r)

time. Generalization of intervals makes a second pass over the interval list of l features,

that consists of at most r intervals. If pruning is employed, then it is processed over at

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 60

most r intervals again, assuming the worst case that no joining on intervals took place.

Therefore, pruning on the worst case consumes O(r) for a single feature’s interval list.

train(TrainingSet,BenefitMatrix)

begin

for each feature f

/* sort TrainingSet with respect to f */

sort(f, TrainingSet)

interval_list � make_point_intervals (f, TrainingSet) O(N)

 for each interval i in interval_list O(r)

 votei(c) � voting_method (i,f,BenefitMatrix) O(k) O(fN)

if f is linear

 /* join adjacent point intervals to form range intervals */

 interval_list � generalize (interval_list,BenefitMatrix) O(l)

 if (pruning=yes)

 interval_list � prune (interval_list,BenefitMatrix) O(l)

end.

Figure 4.11: Runtime evaluation of training phase of BMFI

Overall, each of interval formation, generalization and pruning operations are carried

out for each feature in the domain, and at worst case, run time of BMFI is

O(f×(r+N))=O(fr+fN), since f
�

l. When each feature have a distinct value on a particular

feature f, r can be at most N, and therefore, at the worst case, runtime of the algorithm is

O(2f×N)=O(f×N) which is a quadratic and very efficient training time.

Classification (Querying):

In the classification process given in Figure 4.10, classification of a single instance

requires a pass over all feature values of that instance. For each f, a binary search over f’s

intervals is performed and this requires O(log r) time on the average with r intervals. At

the worst case, when no generalization and pruning is carried out and there are N distinct

values for feature f, then r=N and worst case search requires O(logN) time. For f features,

CHAPTER 4. BENEFIT MAXIMIZATION WITH FEATURE INTERVALS 61

the total time is O(f×logN). Votes for k classes are summed up for each feature entailing

O(f×k) time. So, overall time needed for classification of a single instance is

O(f×logN+f×k)=O(f×logN), since logN >> k. As a result, the classification of total test

data is done in O(t×f×logN) time. On the average case, runtime of the classification is

much lower than this upper bound since there will be a substantial reduce in the number

of intervals by generalization and pruning operations.

4.4.2 Space Complexity of BMFI

When training BMFI, there can be at most N distinct values and thus N intervals for a

feature f. So, we need a total of f×N space to hold interval structure. Interval structure

itself consists of 2k +2 values, i.e., k for holding number of instances belonging to each

class, k for holding their corresponding votes and 2 for holding lower and upper bound

values of the interval. This equals to O(k). Therefore, storage requirement is O (f×N×k)

initially. As the algorithm progresses, there will be extensive shrink in this upper limit

due to the reduction in number of intervals.

Chapter 5

Experimental Results

When dealing with cost-sensitivity, class imbalance in the datasets is the main issue faced

with. Importance and consequences of this problem have been widely addressed in [48].

Most of the error-based algorithms fail when the minority class is more valuable in the

domain, and in some contexts, cost-sensitive classification has become the process of

detecting minority class. However, a generic method which is applicable to all sorts of

domains is needed. That’s why we think that benefit information should directly be used.

In this chapter, we will investigate the behavior of BMFI algorithm in various

domains. Consequences of employing different voting methods to different class

distributions are monitored, together with the effects of generalization of intervals and

pruning over these voting methods. Later on, comparisons of BMFI with wrapper cost-

sensitive algorithms using Naïve Bayesian Classification and C4.5 decision tree learner

are presented.

5.1 Benefit Accuracy

In order to evaluate the efficiency of cost-sensitive algorithms, there are a few proposed

methods, such as Receiver Operating Characteristics (ROCs), area under ROC curves

62

CHAPTER 5. EXPERIMENTAL RESULTS 63

(AUCs), average cost per instance calculations [37]. ROC curve evaluation has the

flexibility to make comparisons between classifiers when the cost matrices are not strictly

defined. However, it has its own drawbacks and a more simple representation that reflects

the precision of classification in terms of benefit is needed. For this reason, we propose

an accuracy metric which is defined as follows:

Definition 5.1: Benefit accuracy of a classification model M in domain D over the

instance set S is the normalized ratio of gained benefit to the maximum possible benefit,

i.e.,

)(minB-)(maxB

)(minB-)(Benefit
)(AccuracyBenefit

DD

DD
D

SS

SM,S
M,S �

Here, BenefitD(M,S) is the benefit obtained by model M on domain D, minBD(S) and

maxBD(S) is the minimum and maximum benefit obtainable in domain D respectively.

That is, minBD(S) is the total benefit achievable when all the test instances are classified

as the worst wrong case. Similarly, maxBD(S) is obtained when all instances in S are

classified correctly. When BenefitD(M,S) is equal to the minimum benefit possible, then

benefit accuracy of the model is 0. Correspondingly, when it equals the maximum benefit

possible, then benefit accuracy is 1, as expected. In other words, this metric maps the

obtained benefit to [0..1] range as in the case of conventional predictive accuracy. To be

more specific, benefit accuracy is the general form of classical predictive accuracy. When

the diagonal elements of the benefit matrix are one and non-diagonal elements are all

zero, i.e., all types of classifications have equal importance and there is no cost for

misclassifications, then benefit accuracy equals predictive accuracy used in comparison

of error-based classifiers.

It should be noted that benefit accuracy metric not only compares relative benefits of

two classifiers, but also indicates the algorithm’s efficiency over the particular domain.

For this reason, we have chosen to evaluate our algorithm mainly with regards to benefit

accuracy. All the accuracy results presented in this chapter are the average benefit

accuracies achieved when 10-fold cross validation is utilized over the entire datasets.

That is, for each dataset, initially the instance space is partitioned into 10 equal-sized

CHAPTER 5. EXPERIMENTAL RESULTS 64

subsets. The algorithms are run 10 times using a different subset each time as the test set

and the remaining nine as the training set. By this process, it is guaranteed that the

training sets are disjoint and each instance in the whole dataset is classified exactly once.

Resultant benefit accuracy is the average of the accuracy values of these 10 runs. Gained

total benefit, BenefitD(M,S), is another metric that is used to evaluate cost-sensitivity.

5.2 Datasets and Benefit Matrices

For evaluation purposes, we have used several benchmark datasets taken from UCI ML

Repository [7] and datasets that we constructed from real-world domains. Individual

characteristics of the datasets influence results obtained significantly, since cost-

sensitivity is extremely correlated to class distributions. Thus, we first give fundamental

information about the datasets used throughout the experimentation stage. Later on,

details of benefit matrix construction are presented.

5.2.1 Properties of Datasets Used

Datasets that we have used in evaluation of our algorithm can be divided into three

groups. First group of datasets consists of five binary datasets taken from UCI ML

repository. In these datasets, one class is assumed to be more important to predict

correctly than the other by a constant benefit ratio. Basic properties of these two-class

datasets are given in Table 5.1. In this table, base rate represents the ratio of the important

class instances in the dataset. These five two-class datasets are chosen to characterize

each possible sort of distribution, e.g. in breast-cancer and diabetes datasets, the

important class is the minority class, whereas in ionosphere and liver disorders datasets

the important one is the majority class. Sonar dataset is chosen because there is a natural

near-equal distribution of instances among class labels.

A detailed explanation of these datasets is provided in Appendix A. In two-class

benchmark datasets, the benefit matrix is not explicitly specified and thus, we have

chosen to set the positive class as the most important one in classification. For medical

CHAPTER 5. EXPERIMENTAL RESULTS 65

datasets, this is the existence of the particular disease, i.e., classification as being ill is

considered as more important.

Table 5.1: Basic properties of two-class benchmark datasets from UCI ML Repository

Dataset
of

instances

of

features

of linear

features

of

classes
Base Rate

Breast-cancer-w 699 9 9 2 0.3447

Pima-diabetes 768 8 8 2 0.3490

Ionosphere 351 34 34 2 0.6410

Liver disorders 345 6 6 2 0.5797

Sonar 208 60 60 2 0.5336

Table 5.2: Basic properties of multi-class benchmark datasets from UCI ML Repository

Dataset
of

instances

of

features

of linear

features

of

classes
Class Distributions

Ecoli 336 8 8 8

C1=143

C2=77

C3=52

C4=35

C5=20

C6=5

C7=2

C8=2

Glass 214 9 9 6

C1=70

C2=76

C3=17

C4=13

C5=9

C6=29

Page-

blocks
5473 34 34 5

C1=4913

C2=329

C3=28

C4=88

C5=115

Vehicle 846 18 18 4
C1=199

C2=217

C3=218

C4=212

Wine 178 13 13 3
C1=59

C2=71

C3=48

The second group of datasets consists of multi-class datasets, again taken from UCI

ML repository [7]. Table 5.2 lists basic characteristics of these datasets together with

class distributions. These datasets are chosen among the ones that have an abundant

number of linear features, in order to evaluate the effectiveness of generalization and

pruning methodologies. As it can be observed, these five multi-class datasets are selected

to reflect properties of various possibilities and different class distributions. We have

assigned two types of benefit matrices to these datasets, for evaluating cost-sensitivity

issues. One of the matrices is constructed so as to facilitate the prediction of minority

CHAPTER 5. EXPERIMENTAL RESULTS 66

classes. Construction of such matrices is explained in the next subsection. We have also

used a random benefit matrix which gives random importance levels to prediction of

different classes. Both of the matrices that have been used in experiments and the details

of these datasets are given in Appendix A.

Other than benchmark datasets, there are five datasets that we have used in our

studies. Fundamental characteristics of these datasets are given in Table 5.3. To evaluate

benefit aspects, there are pre-assigned benefit matrices, which have been determined by

experts of the specified domains or by us after a careful examination of domain

specifications, for these datasets. All these benefit matrices are presented together with

detailed information about the datasets, in Appendix B.

Table 5.3: Five special datasets which have their own individual benefit matrices

Dataset Size
of

features

of linear

features

of

classes
Base Rate

Bank-loans 1443 13 7 2 C1=1000 C2=443

Bankruptcy 1444 19 19 2 C1=1030 C2=414

Dermatology 366 34 33 6 C1=112

C2=61

C3=72

C4=49

C5=52

C6=20

Lesion (Gastric

Carcinoma)

285 68 7 9 C1=3

C2=55

C3=7

C4=103

C5=6

C6=6

C7=17

C8=69

C9=19

Arrhythmia2r 526 279 272 2 C1=245 C2=281

5.2.2 Benefit Matrix Construction

In our experiments, we constructed two-class benefit matrices by the help of a constant

benefit ratio which denotes the ratio between benefits of correct classification of each

class. For two-class datasets, we used benefit ratio values 2, 5, 10, 20, 50 and benefit

matrix of the format:

CHAPTER 5. EXPERIMENTAL RESULTS 67

Actual Class

Prediction C0 C1

C0 1 - b

C1 -1 b

where b denotes the benefit ratio constant. This matrix can be interpreted as correct

prediction of C1 is b times more beneficial than C0.

For multi-class problems, if the particular dataset does not have a predefined benefit

table, one is constructed with respect to the distribution of classes in the dataset. When

the minority class is assumed to be more important, construction procedure is done as

follows: If the probability distribution of class i is represented as P(i), the benefit of

classifying an instance of class i as class j is assigned as -[P(j)/P(i)]×b where b is a

constant representing the importance degree of correct classification of class j. Diagonal

elements are determined by multiplying the benefit ratio with the inverse of probability of

that class occurrence. Constant multiplicand of diagonal elements can be varied in order

to adjust the matrix to represent the features of the domain. Below is an example

illustrating the construction of a benefit matrix from scratch: If instances of C1 and C2

constitute up 0.2 and 0.3 of the dataset respectively, and C3 makes up the remaining 0.5;

an example benefit matrix with a benefit ratio of 5 is constructed as:

Actual Class

Prediction C1 C2 C3

C1 [1/P(1)] × b - [P(1)/P(2)] × b - [P(1)/P(3)] × b

C2 - [P(2)/P(1)] × b [1/P(2)] × b - [P(2)/P(3)] × b

C3 - [P(3)/P(1)] × b - [P(3)/P(2)] × b [1/P(3)] × b

If we place the corresponding P(i) values, the resultant benefit matrix B is as follows:

Actual Class

Prediction C1 C2 C3

C1 25 -3.33 -2

C2 -7.5 16.67 -3

C3 -12.5 -8.33 10

B =

CHAPTER 5. EXPERIMENTAL RESULTS 68

It can be clearly observed that, constructed benefit matrix adjusts benefits in inverse

proportion to the probability distribution of the class. This configuration favors prediction

of the rare class. On the contrary, if importance of the class is in direct proportion to its

class frequency, then we can form an appropriate benefit matrix by taking the inverse of

the ratios in the above construction and adjusting the diagonal elements appropriately.

5.3 BMFI Comparisons

In this section, we present an incremental progress of BMFI versions. First, we give

comparative test results of five different voting methods on various datasets. Later on,

generalization and pruning effects over voting methods are illustrated through a number

of experiments. Overall evaluation on combined effect of techniques and voting methods

are discussed consequently.

5.3.1 Comparison of Voting Methods

As described in Section 4.2.1, there are five voting methods we have employed during

the experimentation stage of BMFI. Two of these voting schemes are probabilistic

methods that favor the prediction of rare classes. The remaining three methods use

benefit table information to value possible prediction outcomes. In Figure 5.1, the

behavior of these five voting methods on two-class datasets and changing benefit ratios

are presented.

When a probabilistic voting method is used singly, the classifier becomes almost an

error-based classifier that does not consider benefits of classifications (we say “almost”

because this type of voting is strictly dependent on class distributions and it favors the

prediction of minority class). As the results of Figure 5.1 illustrate, beneficial voting

methods outperform error-based approach especially when the benefit ratio is increased.

Not surprisingly, when the benefit ratio is low, probabilistic voting logic becomes more

adequate in the domain.

CHAPTER 5. EXPERIMENTAL RESULTS 69

breast-cancer wisconsin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

benefit ratio

b
e
n

e
fi

t
a
c
c
u

ra
c
y

VM1 0.978 0.983 0.986 0.987 0.988

VM2 0.978 0.983 0.986 0.987 0.988

VM3 0.978 0.973 0.961 0.924 0.955

VM4 0.963 0.982 0.985 0.986 0.992

VM5 0.955 0.865 0.817 0.897 0.955

2 5 10 20 50

pima-diabetes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

benefit ratio

b
e
n

e
fi

t
a
c
c
u

ra
c
y

VM1 0.652 0.619 0.601 0.589 0.581

VM2 0.634 0.589 0.565 0.550 0.539

VM3 0.659 0.754 0.848 0.913 0.960

VM4 0.594 0.726 0.834 0.909 0.959

VM5 0.666 0.751 0.840 0.898 0.938

2 5 10 20 50

Figure 5.1: Behavior of voting methods on two-class benchmark datasets

CHAPTER 5. EXPERIMENTAL RESULTS 70

ionosphere

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

benefit ratio

b
e
n

e
fi

t
a
c
c
u

ra
c
y

VM1 0.612 0.545 0.515 0.498 0.487

VM2 0.612 0.545 0.515 0.498 0.487

VM3 0.901 0.941 0.954 0.972 0.986

VM4 0.872 0.920 0.947 0.958 0.984

VM5 0.839 0.950 0.966 0.986 0.992

2 5 10 20 50

liver disorders

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

benefit ratio

b
e
n

e
fi

t
a
c
c
u

ra
c
y

VM1 0.552 0.548 0.545 0.542 0.540

VM2 0.552 0.548 0.545 0.542 0.540

VM3 0.701 0.822 0.896 0.940 0.972

VM4 0.678 0.823 0.889 0.940 0.972

VM5 0.698 0.824 0.890 0.933 0.964

2 5 10 20 50

Figure 5.1(cont.): Behavior of voting methods on two-class benchmark datasets

CHAPTER 5. EXPERIMENTAL RESULTS 71

sonar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

benefit ratio

b
e
n

e
fi

t
a
c
c
u

ra
c
y

VM1 0.502 0.510 0.513 0.515 0.517

VM2 0.502 0.510 0.513 0.515 0.517

VM3 0.557 0.645 0.695 0.718 0.734

VM4 0.546 0.646 0.688 0.718 0.734

VM5 0.542 0.608 0.641 0.657 0.667

2 5 10 20 50

Figure 5.1(cont.): Behavior of voting methods on two-class benchmark datasets

Both of the probabilistic methods VM1 and VM2 performed poorly on two-class

datasets except breast-cancer dataset, and beneficial voting methods have acquired

considerably well results on each of the datasets. With the increase in benefit ratios, there

is an observable proliferation in benefit accuracies when beneficial voting is used. On the

other hand, rise in benefit ratios cause a slight reduction in benefit accuracies in the case

of probabilistic voting. This reduction is due to the lack of benefit information in

probabilistic voting.

On multi-class datasets, behavior of voting methods is presented in Table 5.4. These

datasets are evaluated by using a pair of benefit matrices, one favoring the prediction of

rare class and the other assigning importance levels randomly. In Table 5.4, the

difference of accuracy between series of rare_matrix and random_matrix are natural since

they operate on different benefit matrices, i.e., different baselines. What is really

important is the local maximum of these series. According to those results, VM1 and

VM5 are the most promising voting methods when rare class prediction is more

CHAPTER 5. EXPERIMENTAL RESULTS 72

important. The reason why VM1 become this much efficient in these datasets is that, in

the construction of benefit matrices, relatively small benefit ratios, i.e., in the range of 2-4,

are used. Conversely, VM3 causes the worst results in four of the five multi-class datasets.

When random matrix is used, VM4 produces considerably well results. On the average,

however, VM5 is the winner of performance in majority of the multi-class datasets.

Table 5.4: Behavior of voting methods over multi-class datasets

Ecoli

VM1 VM2 VM3 VM4 VM5

rare_matrix 0.72051 0.626925 0.572779 0.631834 0.611721

random_matrix 0.487577 0.455996 0.434554 0.468542 0.406952

average 0.604044 0.541461 0.503667 0.550188 0.509337

(a)

Glass

VM1 VM2 VM3 VM4 VM5

rare_matrix 0.477259 0.467146 0.363039 0.313882 0.465963

random_matrix 0.514916 0.513629 0.641634 0.650164 0.606015

average 0.496088 0.490388 0.502337 0.482023 0.535989

(b)

Page-blocks

VM1 VM2 VM3 VM4 VM5

rare_matrix 0.720676 0.719496 0.671866 0.682976 0.685656

random_matrix 0.6567 0.65615 0.612202 0.619543 0.655472

average 0.688688 0.687823 0.642034 0.65126 0.670564

(c)

Vehicle

VM1 VM2 VM3 VM4 VM5

rare_matrix 0.712325 0.621851 0.594291 0.644188 0.723903

random_matrix 0.541159 0.527543 0.699733 0.73221 0.707321

average 0.626742 0.574697 0.647012 0.688199 0.715612

(d)

Wine

VM1 VM2 VM3 VM4 VM5

rare_matrix 0.812696 0.807971 0.81729 0.818441 0.813927

random_matrix 0.810475 0.809609 0.726201 0.819187 0.822311

average 0.811586 0.80879 0.771746 0.818814 0.818119

(e)

CHAPTER 5. EXPERIMENTAL RESULTS 73

On special datasets with expert-defined benefit matrices, performance evaluation of

voting methods is presented in Table 5.5. Here, it should be noted that in bank-loans,

bankruptcy and lesion datasets, prediction of the minority class is much more important

than prediction of majority class. In those domains, not surprisingly, probabilistic

methods VM1 and VM2 produced the best results. This is because their internal structure

relies solely on favoring prediction of minority classes. On the other hand, in

arrhythmia2r dataset the important class which is the detection of arrhythmic instances is

more abundant than healthy instances, and thus, VM1 and VM2 operate poorly in that

dataset. On the average of all datasets, VM1 is the winner of benefit accuracy with a

value of 0.74, but VM5 is very close with an average benefit accuracy of 0.72 on five of

the datasets. When single voting is processed, VM5 is more preferable since it is more

general and applicable to any kind of class distributions. However, if domain knowledge

is utilized and it is seen that there is a great difference between class distributions of

classes and that the minority class is more important, VM1 can be useful. Alternatively, if

voting method is to be supported with benefit elements like generalization and pruning,

then VM1 can be more effective, as we will see in Section 5.3.4.

Table 5.5: Behavior of single voting methods over special datasets

VM1 VM2 VM3 VM4 VM5

arrhythmia2r 0.67106 0.638288 0.814835 0.814835 0.814835

bank-loans 0.680171 0.66353 0.669783 0.512857 0.551286

bankruptcy 0.503108 0.503108 0.510482 0.509069 0.510671

dermatology 0.969257 0.969257 0.700129 0.58594 0.936078

lesion 0.878923 0.878923 0.673071 0.724255 0.797718

Average 0.740504 0.730621 0.67366 0.629391 0.722118

5.3.2 Effect of Generalization

Merging formed intervals is important for reducing the problem size and the effect of

overfitting to the training data. It also helps the algorithm become more general and

effective over a wide range of values. In this subsection, we present how the

generalization strategies mentioned in Section 4.2.3 change the total benefit and benefit

accuracy with respect to those of single voting schemes.

CHAPTER 5. EXPERIMENTAL RESULTS 74

Effect of Merging Intervals that Have the Same Frequent Class (SF)

Merging intervals that have the same frequent class in the interval is a simple way of

merging intervals, yet this strategy does not consider benefit calculations of the interval.

It simply joins two intervals into one by looking at the most frequent class in these

intervals. Table 5.6 lists the changes of total benefit in terms of ratio (i.e., change in

benefit/prior benefit) when this form of generalization takes place. For example, a value

of 3.29 means that the increase in total benefit is 3.29 times the prior total benefit. In the

following tables, (a)’s near multi-class datasets represent the results obtained when using

rare class benefit matrices.

Table 5.6: Changes in total benefit when SF is used on single voting methods

Datasets

VM1 VM2 VM3 VM4 VM5

breast-cancer-w -0.042 -0.070 -0.113 -0.030 -0.001

diabetes 0.202 -0.079 -0.018 0.092 -0.012

ionosphere 8.330 8.045 -0.001 0.042 0.012

liver 0.007 -1.716 0.000 0.011 0.008

sonar 114.857 104.857 1.038 1.030 1.850

Ecoli (a) -0.939 -4.900 -3.500 -0.114 0.414

glass(a) 0.721 0.317 1.145 0.322 0.608

page-blocks(a) 0.187 0.078 0.104 -0.010 0.085

vehicle(a) 0.000 -1.261 2.439 0.272 -0.083

wine(a) 0.239 0.044 0.199 0.142 0.241

arrhythmia2r 0.299 1.155 0.000 0.000 0.000

bank-loans -0.348 -1.432 0.145 -0.038 0.127

bankruptcy -1.138 -1.257 -0.449 -0.732 -0.646

dermatology -0.027 -0.452 -0.001 0.000 -0.033

lesion 0.030 -0.458 0.000 0.020 0.063

datasets in which

benefit is increased
9 6 6 8 9

Voting methods

By looking at the resultant values in Table 5.6, it can be said that the effect of

merging intervals that have the same frequent class is not very promising when used with

VM2 and VM3. However, on 9 of 15 datasets SF technique has produced an increase

when used with VM1 and VM5. Especially on sonar dataset, which has a more or less

CHAPTER 5. EXPERIMENTAL RESULTS 75

equal distribution of classes, joining intervals of same frequent class with VM1 and VM2

produced highly effective results. As our empirical results on datasets show, SF option is

more useful when used in combination with SBC and HC generalization methods.

Effect of Merging Intervals That Have the Same Beneficial Class (SBC)

According to the results presented in Table 5.7, it is often beneficial to use SBC merging

strategy to generalize intervals, especially when using VM1,VM2 and VM4 voting. It

can be seen that in VM4 column, the number of benefit increase situations is more than

any other voting methods. This suggests that, if VM4 is used, it will be beneficial to use

SBC merging most of the time. However, when VM3 and VM5 is in use, it is

questionable whether to use SBC or not, since in only 6 out of 15 datasets, it has caused

an increase in the benefit obtained.

Table 5.7: Effect of SBC on single voting methods

VM1 VM2 VM3 VM4 VM5

breast-cancer-w -0.028 -0.028 -0.059 -0.029 -0.001

diabetes -0.003 1.124 -0.019 0.038 -0.026

ionosphere 8.723 8.714 -0.013 0.032 0.000

liver 0.526 1.280 0.000 0.011 -0.012

sonar 92.286 100.286 0.953 1.026 1.448

Ecoli (a) -0.888 -1.750 -0.097 0.684 0.155

glass(a) 0.868 0.994 0.984 0.372 0.741

page-blocks(a) 0.092 0.085 0.074 -0.062 -0.003

vehicle(a) 0.035 0.049 2.742 0.227 -0.155

wine(a) 0.268 0.081 0.238 0.268 0.264

arrhythmia2r 0.145 -1.733 0.000 0.000 0.000

bank-loans -0.262 -0.751 -0.087 0.002 0.208

bankruptcy -0.873 -0.874 -0.865 -0.864 -0.865

dermatology -0.009 -0.166 0.038 0.000 -0.043

lesion 0.016 0.017 0.000 0.020 0.069

datasets in which

benefit is increased
9 9 6 10 6

CHAPTER 5. EXPERIMENTAL RESULTS 76

Effect of Merging Intervals That Have High Confidence (HC)

Merging intervals that have high confidence is a probabilistic method that does not

consider benefit characteristics of classifications. Table 5.8 presents HC’s effect on single

voting methods.

Table 5.8: Effect of HC on single voting methods

VM1 VM2 VM3 VM4 VM5

breast-cancer-w -0.007 -0.132 -0.091 -0.012 -0.001

diabetes 0.262 0.559 -0.022 0.070 0.014

ionosphere 0.089 0.089 -0.002 0.000 0.008

liver -0.713 -0.159 0.000 0.011 -0.003

sonar -16.286 12.000 1.111 1.148 1.047

Ecoli (a) -0.304 1.750 -3.097 0.494 0.241

glass(a) 0.253 0.584 -2.097 0.004 0.766

page-blocks(a) 0.036 0.073 -0.050 0.002 0.048

vehicle(a) 0.023 1.005 2.742 0.578 -0.174

wine(a) 0.112 0.183 0.124 0.202 0.157

arrhythmia2r -0.212 0.857 0.000 0.000 0.000

bank-loans 0.003 -0.494 -0.327 -0.081 -0.048

bankruptcy 0.114 0.817 1.939 1.755 1.888

dermatology 0.000 -0.500 -0.240 -0.825 -0.159

lesion 0.015 0.028 0.000 0.020 0.067

datasets in which

benefit is increased
9 11 4 10 9

Overall, HC operation is effective with all of the voting methods except VM3.

Especially, it enhances the accuracy of VM2, i.e., causing an increase of benefit in the

eleven datasets. This improvement power of HC can be boosted up by using it in

combination with other parameters.

Effect of Merging Intervals That Have High Benefit Confidence (HBC)

The most profitable of all generalization strategies is HBC as the experimental results

presented on Table 5.9 demonstrate. These results indicate that HBC is a powerful

generalization process effective over all voting methods in general. Especially combined

CHAPTER 5. EXPERIMENTAL RESULTS 77

with VM4 and VM5, HBC increases total benefit in most of the datasets. Results

emphasize that an effective BMFI version should use HBC as an internal routine.

Table 5.9: Effect of HBC on single voting methods

Datasets

VM1 VM2 VM3 VM4 VM5

breast-cancer-w 0.001 -0.024 -0.013 -0.001 0.000

diabetes 0.868 -0.678 0.002 0.091 0.030

ionosphere -0.607 -0.955 0.001 0.031 0.023

liver -0.394 0.602 0.011 0.022 0.008

sonar 122.286 119.714 1.287 1.372 2.176

Ecoli (a) -0.708 -0.650 -0.855 -0.051 0.121

glass(a) 0.489 0.646 -0.855 0.042 0.361

page-blocks(a) 0.093 0.085 0.041 0.048 0.003

vehicle(a) 0.165 1.488 2.470 0.454 -0.039

wine(a) 0.199 0.185 0.114 0.144 0.145

arrhythmia2r -0.415 -2.683 0.000 0.000 0.000

bank-loans -0.003 -0.316 0.003 0.033 -0.042

bankrupcty 2.640 2.605 2.593 2.604 2.572

dermatology 0.000 0.000 0.011 0.000 0.010

lesion 0.010 0.007 0.000 0.020 0.047

datasets in which

benefit is increased
9 8 10 11 11

Voting methods

5.3.3 Effect of Pruning

Pruning, as described in 4.2.4, is helpful when there is an excessive amount of overfitting

in classification model besides the noisy and redundant data in the domain. Our

experiments with BMFI algorithm also confirm this fact. However, it should be noted

that pruning is not very effective without generalization. Table 5.10 gives an idea about

the change in benefit accuracy when pruning is used solely over the voted intervals.

As it can be seen in Table 5.10, pruning without generalization of intervals does not

change benefit accuracy especially when used with beneficial voting methods. Moreover,

it has a degrading effect over VM5. This is due to the internal structure of the pruning

methodology. Pruning is based on divergence in majority and beneficial classes of

CHAPTER 5. EXPERIMENTAL RESULTS 78

intervals and in intervals formed with beneficial voting methods, these two are generally

equal. That’s why pruning is more successful when used with probabilistic voting

schemes.

Table 5.10: Effect of pruning on voting methods

Datasets

VM1 VM2 VM3 VM4 VM5

breast-cancer-w 0.009 0.009 0.000 -0.001 0.009

diabetes 1.252 2.629 0.000 0.005 0.001

ionosphere 6.875 6.875 0.000 0.022 0.000

liver 3.979 4.152 0.000 0.000 0.000

sonar 13.143 13.143 0.000 -0.005 0.000

Ecoli (a) -0.128 -0.400 3.484 1.861 -0.121

glass(a) 0.000 0.143 0.177 0.724 0.000

page-blocks(a) -0.005 -0.002 0.127 0.071 0.000

vehicle(a) 0.035 2.044 4.500 0.089 0.000

wine(a) 0.000 0.001 0.000 0.000 0.000

arrhythmia2r 2.161 4.957 0.000 0.000 0.000

bank-loans 0.060 0.131 0.000 0.381 0.029

bankrupcty -0.004 -0.004 0.000 0.000 0.000

dermatology -0.005 -0.020 -0.172 0.000 -0.005

lesion 0.100 0.028 0.154 -0.127 0.058

datasets in which

benefit is increased
9 11 5 7 4

Voting methods

Alternatively, when pruning is employed after merging intervals with respect to their

beneficial classes and benefit confidences, i.e., with SBC and HBC, more profitable

results are obtained. Results of these joint effects are given in Table 5.11. Although the

increase in benefit accuracy is relatively lower in the case of VM5, there happens to be a

promising overall increase when pruning is used with probabilistic voting. With VM3, in

eleven of fifteen datasets there is a slight increase in total benefits, whereas with VM2

this increase is more significant in thirteen of the datasets. The results reinforce the

hypothesis that with most of the datasets, it is beneficial to use a combination of SBC,

HBC and pruning options.

CHAPTER 5. EXPERIMENTAL RESULTS 79

Table 5.11: Joined effect of SBC, HBC and pruning on voting methods

VM1 VM2 VM3 VM4 VM5

breast-cancer-w -0.028 -0.028 -0.059 -0.029 -0.001

diabetes 2.085 3.842 -0.019 0.040 0.006

ionosphere 8.723 8.723 -0.029 -0.017 -0.047

liver 5.377 5.377 0.011 0.022 0.019

sonar 45.714 56.857 1.287 1.372 2.176

Ecoli (a) -0.708 3.550 3.855 3.671 -1.190

glass(a) 1.168 1.292 1.371 1.682 0.734

page-blocks(a) 0.232 0.231 0.175 0.103 -0.644

vehicle(a) 0.174 2.719 6.152 0.827 -0.377

wine(a) 0.333 0.320 0.266 0.223 0.198

arrhythmia2r 2.132 4.733 0.000 0.000 0.000

bank-loans 0.479 0.290 0.566 0.327 -0.120

bankruptcy 2.664 2.664 2.593 2.604 2.572

dermatology -0.001 -0.005 0.041 0.000 0.005

lesion 0.120 0.086 0.034 -0.127 0.084

datasets in which

benefit is increased
12 13 11 10 8

5.3.4 Overall Evaluation

Up to now, we have observed that if no generalization or pruning is used, then single

beneficial voting methods that incorporate benefit knowledge directly are effective over

any kind of datasets. On the other hand, probabilistic voting methods can be quite

effective when supported with benefit-based generalization and pruning. In this section,

we present overall outcomes of strategies tested on different datasets and discuss about

which form of BMFI is more profitable in general. For this reason, the best four of

progression series of results for each single dataset have been plotted and displayed in

Figure 5.2, Figure 5.3 and Figure 5.4. In these figures, ‘single’ denotes the voting method

used singly and ‘p’ option represents the employment of pruning,

CHAPTER 5. EXPERIMENTAL RESULTS 80

breast-cancer-w

0

500

1000

1500

2000

2500

3000

voting method

to
ta

l
b

e
n

e
fi

t

single 2776 2776 2664 2782 1954

HBC 2778 2710 2630 2778 1954

p 2800 2800 2664 2778 1972

SBC HBC p 2698 2698 2506 2700 1952

VM 1 VM 2 VM 3 VM 4 VM 5

pima-diabetes

0

500

1000

1500

2000

2500

voting method

to
ta

l
b

e
n

e
fi

t

single 634 404 2222 2118 2168

HBC 1184 130 2226 2310 2232

SBC HBC 1918 1740 2180 2206 2180

SBC HBC p 1956 1956 2180 2202 2180

VM 1 VM 2 VM 3 VM 4 VM 5

ionosphere

0

500

1000

1500

2000

2500

voting method

to
ta

l
b

e
n

e
fi

t

single 224 224 2188 2160 2228

HBC 88 10 2190 2228 2280

SBC p 2266 2262 2160 2222 2228

SBC HBC p 2178 2178 2124 2124 2124

VM 1 VM 2 VM 3 VM 4 VM 5

liver

0

500

1000

1500

2000

voting method

to
ta

l
b

e
n

e
fi

t

single 289 289 1835 1815 1821

SBC 441 659 1835 1835 1799

HBC 175 463 1855 1855 1835

SBC HBC p 1843 1843 1855 1855 1855

VM 1 VM 2 VM 3 VM 4 VM 5

sonar

0

200

400

600

800

1000

1200

voting method

to
ta

l
b

e
n

e
fi

t

single 7 7 443 427 319

HBC 863 845 1013 1013 1013

SBC HBC 327 327 1013 1013 1013

SBC HBC p 327 405 1013 1013 1013

VM 1 VM 2 VM 3 VM 4 VM 5

Figure 5.2: Overall BMFI progressions on two-class benchmark datasets

CHAPTER 5. EXPERIMENTAL RESULTS 81

ecoli(a)

0

0.2

0.4

0.6

0.8

voting method

b
e
n

e
fi

t
a
c
c
u

ra
c
y

single 0.72051 0.62693 0.57278 0.63183 0.61172

SBC p 0.64836 0.63074 0.66932 0.70902 0.61574

p 0.70962 0.62394 0.65614 0.68858 0.60886

SBC HBC p 0.67197 0.65507 0.6605 0.73728 0.58437

VM 1 VM 2 VM 3 VM 4 VM 5

glass(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

voting method

b
e
n

e
fi

t
a
c
c
u

ra
c
y

single 0.47726 0.46715 0.36304 0.31388 0.46596

SBC 0.54274 0.52938 0.38677 0.34937 0.51227

SBC p 0.54274 0.53712 0.39933 0.39239 0.51227

SBC HBC p 0.55916 0.54301 0.39985 0.46702 0.50498

VM 1 VM 2 VM 3 VM 4 VM 5

page-blocks(a)

0

0.2

0.4

0.6

0.8

1

voting method

b
e
n

e
fi

t
a
c
c
u

ra
c
y

single 0.72068 0.7195 0.67187 0.68298 0.68566

SF 0.79816 0.75325 0.71467 0.67766 0.69176

SBC p 0.75863 0.75504 0.73186 0.71403 0.66864

SBC HBC p 0.81698 0.81616 0.74055 0.71381 0.36415

VM 1 VM 2 VM 3 VM 4 VM 5

vehicle(a)

0

0.2

0.4

0.6

0.8

voting method

b
e
n

e
fi

t
a
c
c
u

ra
c
y

single 0.71233 0.62185 0.59429 0.64419 0.7239

HBC 0.7336 0.68233 0.62704 0.67219 0.71815

p 0.71694 0.70457 0.65414 0.64983 0.7239

SBC HBC p 0.7348 0.73209 0.67568 0.69533 0.66999

VM 1 VM 2 VM 3 VM 4 VM 5

wine(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

voting method

b
e
n

e
fi

t
a
c
c
u

ra
c
y

single 0.8127 0.80797 0.81729 0.81844 0.81393

SBC 0.9235 0.84164 0.91612 0.93042 0.9235

SBC p 0.9235 0.92896 0.91612 0.93042 0.9235

SBC HBC p 0.95047 0.93843 0.92726 0.9116 0.8958

VM 1 VM 2 VM 3 VM 4 VM 5

Figure 5.3: Overall BMFI progressions on multi-class benchmark datasets

CHAPTER 5. EXPERIMENTAL RESULTS 82

bank-loans

0

0.2

0.4

0.6

0.8

voting methods

b
e
n

e
fi

t
a
c
c
u

ra
c
y

single 0.68017 0.66353 0.66978 0.51286 0.55129

SBC p 0.6607 0.63326 0.66212 0.59223 0.60614

SBC HBC 0.72454 0.62621 0.72215 0.48556 0.5252

SBC HBC p 0.72025 0.6925 0.72215 0.59484 0.52568

VM 1 VM 2 VM 3 VM 4 VM 5

bankruptcy

0

0.2

0.4

0.6

0.8

1

voting method

b
e
n

e
fi

t
a
c
c
u

ra
c
y

single 0.50311 0.50311 0.51048 0.50907 0.51067

HBC 0.82165 0.81756 0.84052 0.83775 0.8386

SBC HBC 0.87515 0.87515 0.90434 0.90434 0.90434

HBC p 0.82468 0.82468 0.84052 0.83775 0.8386

VM 1 VM 2 VM 3 VM 4 VM 5

dermatology

0

0.2

0.4

0.6

0.8

1

voting method

b
e
n

e
fi

t
a
c
c
u

ra
c
y

single 0.969257 0.969257 0.700129 0.58594 0.936078

HBC 0.969257 0.969257 0.703667 0.58594 0.941373

SBC p 0.959883 0.951042 0.718536 0.58594 0.914995

HBC p 0.968834 0.966329 0.713582 0.58594 0.93852

VM 1 VM 2 VM 3 VM 4 VM 5

lesion

0

0.2

0.4

0.6

0.8

1

voting methods

b
e
n

e
fi

t
a
c
c
u

ra
c
y

single 0.87892 0.87892 0.67307 0.72426 0.79772

SBC 0.88451 0.88467 0.67307 0.72837 0.81625

SBC HBC 0.90409 0.90409 0.67307 0.72426 0.81811

SBC HBC p 0.91861 0.90824 0.67732 0.70025 0.81964

VM 1 VM 2 VM 3 VM 4 VM 5

arrhythmia2r

0

0.2

0.4

0.6

0.8

1

voting method

b
e
n

e
fi

t
a
c
c
u

ra
c
y

single 0.67106 0.638288 0.814835 0.814835 0.814835

SF 0.69116 0.683469 0.814835 0.814835 0.814835

SBC p 0.75874 0.787634 0.814835 0.814835 0.814835

HBC p 0.831391 0.818649 0.814835 0.814835 0.814835

VM 1 VM 2 VM 3 VM 4 VM 5

Figure 5.4: Overall BMFI progressions on special datasets

CHAPTER 5. EXPERIMENTAL RESULTS 83

For two-class datasets, except breast cancer domain, beneficial voting methods

dominate probabilistic voting and VM4 and VM5 can be counted as the most efficient

voting methods in maximizing the benefit. VM3 also displays very close results to VM4

and VM5.

In Figure 5.3, multi-class datasets are evaluated with benefit matrices that favor the

prediction of the rare class. The results indicate that probabilistic methods VM1 and VM2

supported with benefit-based generalization and pruning, are efficient in predicting

minority classes and thus in acquiring higher benefit accuracy. On the other hand, if

benefit matrices that assign benefits independent of the distribution of the classes are

used, VM4 and VM5 become more effective in increasing benefit accuracy. In all of

special datasets except arrhythmia2r, predefined benefit matrices also imply that minority

class is more important. Results over those datasets represented in Figure 5.4 again

denote the dominance of VM1 and VM2 in benefit performance. Respectively, VM3 is

not as effective as the other voting methods, however it achieves promising results

especially on bank-loans domain.

To sum up, the performance of the voting methods relies mostly on the nature of the

benefit matrix. If the correct prediction of infrequent classes is more profitable, then

probabilistic voting with benefit-based generalization and pruning is more preferable. In

this point, it is remarkable that using just the voting method for classification is not

sufficient in the case of probabilistic voting. When used, they should be supplemented

with interval merge and prune operations. As the empirical results we achieved on our

datasets imply, and after examining other possible combinations of options, we propose

to use VM1 voting together with SF, BC and HBC techniques when benefit of

classification of a certain class is in inverse proportion to the distribution of that class. In

other words, if the rarer the class label, the more profitable it is, then, best results are

obtained using VM1 with SF, SBC and HBC. Of course, further experimentation on

diverse datasets, will outline the borders of this generalization more precisely.

On the contrary, using benefit information directly in voting method, i.e., beneficial

voting is a more general approach and applicable to any sort of benefit matrix. VM4 and

CHAPTER 5. EXPERIMENTAL RESULTS 84

VM5 display very close performance results in this framework. When the benefit matrix

is not dependent on the distribution of classes in the dataset, either of VM4 or VM5 can

be employed together with SBC, HBC and pruning to boost up the benefit performance.

5.4 BMFI versus Other Cost-Sensitive

Algorithms

In this section, we compare BMFI results with wrapper cost-sensitive strategies. For

observing relative performance of our algorithmic approach, we have compared BMFI

with MetaCost and CostSensitiveClassifier of Weka [6] on base classifiers Naïve

Bayesian Classifier and C4.5 (J4.8) decision tree learner. In this section, after giving a

brief outline of the specifications of those algorithms, their benefit performances on

several datasets are presented. All results given are recorded by using 10-fold cross

validation over the whole datasets.

5.4.1 Properties of Comparison Algorithms

In Table 5.12, list of algorithms that we have used for comparison purposes is presented.

In the rest of this thesis, we will use the pseudonyms for easy-referencing.

Table 5.12: List of cost-sensitive algorithms used for evaluation

Pseudonym Description

MetaNB MetaCost on Naive Bayes

MetaJ48 MetaCost on J4.8

C1NB CostSensitiveClassifier with reweighting on Naive Bayes

C2NB CostSensitiveClassifier with direct minimization on Naive Bayes

C1J48 CostSensitiveClassifier with reweighting on J4.8

C2J48 CostSensitiveClassifier direct minimization on J4.8

C1VFI CostSensitiveClassifier with reweighting on VFI

C2VFI CostSensitiveClassifier with direct minimization on VFI

CHAPTER 5. EXPERIMENTAL RESULTS 85

5.4.1.1 MetaCost

MetaCost is a wrapper algorithm that takes a base classifier and makes it sensitive to

costs of classification [16]. It operates with a bagging logic beneath and learns multiple

classifiers on multiple bootstrap replicates of the training set. By using the resultant votes

of classifiers, MetaCost relabels training instances with the estimated optimal class.

Pseudo-code and other algorithmic details of MetaCost have been given in section 3.1.3

of this thesis.

5.4.1.2 Weka.CostSensitiveClassifier

There are two methods implemented in Weka’s cost-sensitive wrapper algorithm. First

method uses reweighting of training instances in order to make its internal classifier cost-

sensitive. The second method requires its internal classifier to be a distribution based

classifier and makes direct cost-minimization based on probability distributions. This is

very similar to Zadronzy et al.’s studies presented in [51].

For the first method of Weka’s cost-sensitive classifier, we use pseudonym C1 and

for the second C2, respectively. In C1, if the internal classifier has not the property of

weight instances, then resampling is done to adjust weights of the training instances. On

the other hand, if internal classifier supports weighting of instances, then the weights of

the instances are simply updated to reflect the effect of benefit of classification.

When C2 is wrapped around a distribution based classifier, it uses the probability

outputs of the internal classifier and puts these probabilities in the optimal decision

equation to determine the optimal predictions that minimizes the cost of classification.

5.4.1.3 Naive Bayesian Classifier (NBC)

We have chosen naive Bayesian classifier as the first internal classifier to be used with

MetaCost, C1 and C2 due to its simplicity and accuracy. Naive Bayesian classifier is

based on Bayes theorem and on the simplifying assumption that the feature values are

conditionally independent given the target value [38]. This assumption is the same as the

one that feature intervals concept relies on. Although this may not be a realistic

CHAPTER 5. EXPERIMENTAL RESULTS 86

assumption, it produces highly practical and efficient results and in some domains, Naive

Bayesian Classifier’s performance has been shown to outperform to that of neural

network and decision tree learning.

5.4.1.4 J4.8 Decision Tree Learner

J4.8 is the Weka’s implementation of C4.5 decision tree learner. It actually implements a

later and a slightly improved version called C4.5 Revision 8, which was the last public

version of this family of algorithms before C5.0 [50]. C4.5 is proven to be a very

successful decision tree learner [41]. That’s why most of the cost-sensitive research

presented in Section 3.2.1 has focused on increasing benefit performance of this

classification algorithm.

5.4.1.5 Voting Feature Intervals (VFI) Classifier

VFI is another feature projection based classifier [31] and its underlying concept

representation (i.e., feature intervals) is the same as BMFI. In Weka’s implementation of

VFI, there is a simple feature weighting scheme added. Higher weight is assigned to more

confident intervals where confidence is a function of entropy such that

 Weight(fi)= (entropy of class distribution on fi / maximum uncertainty)
bias

where bias represents the strength of bias towards more confident features. In our

experiments, we have used the default bias value of 0.6 with feature reweighting.

5.4.2 Comparative Results

Results obtained by running eight algorithms discussed on binominal, multi-class and

special datasets are presented in Table 5.13(a)-(e) and Table 5.14. In Table 5.13, the

behavior of cost-sensitive algorithms with respect to benefit ratios and their

corresponding total benefit values are presented. Average values in the bottom of each

sub-table is the average total benefit value each algorithm acquire in the end of using five

pre-defined benefit ratios (represented with column named b in the tables).

CHAPTER 5. EXPERIMENTAL RESULTS 87

Table 5.13: Total benefit values for different benefit ratios on two-class datasets

Breast-Cancer Wisconsin Dataset
b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

2 890 862 900 900 852 836 860 24 896

5 1599 1551 1601 1611 1555 1471 1511 747 1603

10 2784 2678 2776 2796 2692 2580 2596 1952 2722

20 5154 5016 5122 5206 4928 4846 4766 4362 5172

50 12262 12118 12264 12374 12240 11794 11276 11592 12324

AVG 4537.8 4445 4532.6 4577.4 4453.4 4305.4 4201.8 3735.4 4551.4

(a)

Pima-diabetes Dataset
b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

2 398 494 508 460 474 466 36 36 370

5 958 940 1128 992 946 920 -394 834 958

10 2136 2180 2316 2098 2240 1932 -1114 2164 2100

20 4466 4486 4736 4690 4706 4328 -2554 4824 4866

50 12712 12404 12440 12766 12512 11324 -6874 12804 12902

AVG 4134 4100.8 4225.6 4201.2 4175.6 3794 -2180 4132.4 4239.2

(b)

Ionosphere Dataset
b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

2 472 504 482 488 470 458 530 378 476

5 1043 1159 1103 1083 1117 1019 1175 999 1165

10 1986 2284 2142 2088 2294 1994 2250 2124 2280

20 3876 4450 4414 4078 4506 3904 4400 4374 4516

50 9544 11172 11150 10146 11124 9634 10850 11124 11256

AVG 3384.2 3913.8 3858.2 3576.6 3902.2 3402 3841 3799.8 3938.6

(c)

Liver Disorders Dataset
b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

2 251 215 239 267 233 245 227 253 253

5 841 775 827 865 831 665 701 847 855

10 1819 1819 1785 1865 1855 1515 1491 1837 1857

20 3819 3759 3745 3865 3855 3259 3071 3817 3855

50 9759 9579 9465 9865 9855 8315 7811 9757 9855

AVG 3297.8 3229.4 3212.2 3345.4 3325.8 2799.8 2660.2 3302.2 3335

(d)

CHAPTER 5. EXPERIMENTAL RESULTS 88

Sonar Dataset

b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

2 107 185 207 155 131 161 26 109 127

5 296 444 484 336 468 354 27 376 458

10 687 955 929 827 963 691 1 821 1013

20 1695 1975 1965 1803 1995 1357 -29 1711 2123

50 4547 5309 5053 4969 5453 3649 -119 4381 5453

AVG 1466.4 1773.6 1727.6 1618 1802 1242.4 -18.8 1479.6 1834.8

(e)

Results presented in Table 5.13 are average BMFI runs with voting method VM1,

generalization strategies SBC and HC together with pruning. If we look at the average

values, it is observed that BMFI is very effective in maximizing the benefit in all of the

two-class datasets. At this point, it is worth stating that as benefit ratio increases, i.e.,

classification of a certain class becomes more important, the success of BMFI increases.

This is an important highlight of the BMFI algorithm and is mostly due to BMFI’s high

sensitivity to benefits of classification.

In breast-cancer, ionosphere, and sonar datasets BMFI shows the best benefit

performance on the average. In breast-cancer BMFI is the second best and in liver

disorders dataset, it is the third. In breast-cancer and liver disorders datasets C2NB

performs better than BMFI. This ranking can be counted as very successful from BMFI’s

point of view, because it outperforms most of the algorithms, among which there is a

successful decision tree learner C4.5 that considers conditional cases between features

themselves. Here, it should not be forgotten that for different benefit ratios, there exists

different performance winners and this observation emphasizes that benefit maximization

in a particular domain is mostly dependent of the nature of the benefit matrix.

In addition, it is worthwhile to note that BMFI outperforms cost-sensitive versions of

VFI (C1VFI and C2VFI), which is also a feature-projection based classifier. This

observation suggests that using benefit knowledge inside the algorithm itself is more

effective than wrapping a meta-stage around it to transform it into a cost-sensitive

classifier.

In Table 5.14, results obtained by BMFI are compared to other algorithms. The

results have been compiled by making use of the rule-of-thumb presented in the end of

CHAPTER 5. EXPERIMENTAL RESULTS 89

Section 5.3. According to this rule, when the infrequent class is important in the dataset,

BMFI is executed using VM1 with SF, SBC and HBC. If importance is not related to

distribution of classes, then VM4 and VM5 is tried and best result is recorded. Results

over binominal datasets are the ones achieved when using a benefit ratio of 10. For

multi-class datasets, the average results over two benefit matrices, i.e., random and rare

class, are presented. In sonar, bankruptcy and lesion domains, BMFI is the winner of

performance whereas in bank-loans and dermatology datasets its performance is very

high and comparable to other algorithms. However, in ecoli database, BMFI performs

poorly, mostly due to the nature of the specified domain. In glass dataset, BMFI was the

fifth in performance. In vehicle and wine domains, BMFI gains fourth place in the benefit

performance ranking. It can be observed that no algorithm is dominant over all domains

and performance is highly dependent on the nature of the domain. Yet, if we look at

overall results in Table 5.14, C2NB, C1J48 and BMFI are the most efficient approaches

in terms of benefit, and they have both achieved best performance on three of the datasets.

Another interesting observation that can be derivable from Table 5.14 is that, no single

algorithm has shown concrete benefit performance on multi-class domains and for each

of the six multi-class datasets, a different algorithm has been the most successful in

maximizing the total benefit.

Table 5.14: Comparative evaluation of BMFI with wrapper cost-sensitive algorithms

MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

breast-cancer-w 2784 2678 2776 2796 2692 2580 2596 1952 2722

pima-diabetes 2136 2180 2316 2098 2240 1932 -1114 2164 2100

ionosphere 1986 2284 2142 2088 2294 1994 2250 2124 2280

liver disorders 1819 1819 1785 1865 1855 1515 1491 1837 185

sonar 687 955 929 827 963 691 1 821 1013

bank-loans -1080 -608 -1288 -816 104 -744 -1656 -4016 -180

bankruptcy 11225 10789 11088 10624 10865 10595 11141 11271 11399

dermatology 2747 2631 2747 2757 2623 2658 2532 2049 2701

lesion 2479 2223 2524 2551 2219 2179 1827 1139 2560

ecoli(avg) 1098 1177.5 1069.5 1101 1165 1110.5 1261.5 1282 976.5

glass(avg) 607.75 814.5 539.75 618.25 766.25 713.25 707.75 421 643.75

vehicle(avg) 2073 3597 2392.5 2378.5 3681 3156.5 1089.5 2165.5 3115

wine(avg) 1985 1789.5 1966 1981.5 1863 1719 1937.5 1672.5 1960

7

CHAPTER 5. EXPERIMENTAL RESULTS 90

5.5 Feature-Dependent Classification using

BMFI

As described in Section 3.3 and Section 4.2.2, benefit of a classification can be quite

dependent on one or more of the domain features. In such a case, there is no static benefit

matrix available and the classification of each instance has a different benefit associated

with it. In this thesis, we have presented a naïve way for dealing with such situations and

indicate that this is an open area for extensive research. Here, it should be noticed that it

is not straightforward to incorporate feature-dependency concept to a framework like

feature projections which assume independency in feature domain.

Bank-loans data is a direct application area for feature dependency. If the benefit

matrix is assigned so as to indicate the net cash flow in the bank with respect to granted

loans, then for each customer asking for a loan, there is a different benefit dependent on

the amount requested. This situation can be formulated by the benefit matrix as follows:

 Actual class

Prediction default Don’t default

default r×la -la

Don’t default -r×la 0

Here, r is the interest rate that the bank utilizes, logically 0<r<1, and la is the loan

amount that the customer asks for. According to this matrix, if the money is granted and

customer pays the loan back, then net money gain from bank’s perspective is r×la. If

money is not granted to a good customer who will pay it back, this means the bank has

lost r×la amount of profit. On the contrary, if the loan is granted but the customer does

not pay it back, then the bank loses the entire loan amount. The net cash flow is 0 when

there is no money is given to a bad customer who will not default.

Figure 5.5 illustrates the benefit accuracy of BMFI and its change with respect to

interest rate that the bank uses for loan applications. In this chart, the results indicate that

the lower the interest rate, the higher benefit accuracy BMFI acquires. Since most of the

Turkish banks applies a combined interest policy with an interest rate around 0.08 per

CHAPTER 5. EXPERIMENTAL RESULTS 91

month, then we can say that overall accuracy of BMFI on bank-loans domain is

approximately 0.78.

bank-loans

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05 0.08 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.8

interest rate

b
e
n

e
fi

t
a
c
c
u

ra
c
y

Figure 5.5: Change in benefit accuracy with respect to interest rate in bank-loans domain

As the interest rate increases in this experiment, the ratio of importance between

classes decreases and this causes a decrease in the performance of BMFI, since it is

already observed that BMFI performs better when the benefit ratio between classes

becomes higher.

Chapter 6

Conclusion and Future Work

In this thesis, we have focused on the problem of making predictions when the possible

outcomes have different benefits associated with them. We have implemented a new

methodology, namely BMFI that uses the predictive power of feature intervals concept in

maximizing the total benefit gained in a classification problem. The previous studies in

the literature of cost-sensitive learning have undervalued the differences in the benefits of

correct classifications. For this reason, as the main contribution of the thesis, we aimed to

emphasize the importance of classification benefits and to present the first study, as to

our best knowledge, in the literature that is built solely on benefit concept and its

maximization.

Classification in feature projection based classifiers depends on a voting process

within the formed feature intervals. In the framework of BMFI, we have proposed five

different voting methods that are shown to be effective over different domains. In

addition, a number generalization and pruning methodologies based on benefits of

classification are implemented and experimented. The results obtained gave us an insight

of using different techniques, dependent on the characteristics of the domain.

Since BMFI is a non-incremental inductive concept learning algorithm, some

information about the domain, e.g., class distributions and type of features, is known

apriori. By making use of this knowledge, algorithmic parameters of BMFI can be

92

CHAPTER 6. CONCLUSION AND FUTURE WORK 93

arranged in such a way that enables fine-tuning with respect to specifications of the

domain. We have observed that the benefit maximization routine is highly dependent on

the benefit matrix introduced and the corresponding class distributions in the domain.

Therefore, we propose using VM1 voting method with SF, SBC and HBC techniques

when the minority class prediction is more beneficial. On the other hand, our results

demonstrated that when benefits are not related to class frequencies, then it would be

more apt to employ VM4 or VM5 voting methods.

When a probabilistic voting method is used solely in BMFI, then it becomes an error-

based classifier. The results show that BMFI is very effective in maximizing the total

benefit compared to its error-based version.

Furthermore, BMFI has been compared to MetaCost and other two cost-sensitive

classification algorithms implemented in the Weka package. These two generic

algorithms are wrapped over two prevailing classification algorithms, NBC and C4.5.

BMFI results are very promising when compared to MetaCost, C1 (instance reweighting)

and C2 (direct cost minimization techniques). Individual characteristics of the datasets

influence results significantly, due to the extreme correlation between cost-sensitivity and

class distributions. It can be inferred from the results that no algorithm is superior to the

others in all of the domains. This observation suggests that there is still need for future

research and improvement in cost-sensitive classification field.

Another contribution of this study is the proposal of a new metric, namely benefit

accuracy, for the cost-sensitive evaluation of classifiers. It computes the relative accuracy

of the total benefit obtained with respect to the maximum possible benefit achievable in

the domain. Benefit accuracy metric is the generalization of the classical predictive

accuracy metric. It is easy to interpret since it resembles the standard predictive accuracy.

In the context of this study, we have also dealt with situations when benefits are not

static and dependent on the values of features. We have presented a naive approach

concerning this issue and experimented over a recently constructed dataset, bank-loans

data. We have achieved promising results in this domain as well.

CHAPTER 6. CONCLUSION AND FUTURE WORK 94

The research described in this thesis can be extended in many directions. First of all,

by testing over new domains, BMFI options can be stabilized more and by this means,

the results can be improved. Stratified cross-validation, in which the folds are stratified so

that they contain approximately the same proportions of class labels as the original

dataset, can be employed. We think that this will greatly enhance the accuracy of the

algorithm.

As an additional future work, feature-dependent domains can be explored in depth

and feature-dependency aspect of BMFI can be improved. Especially, new voting

methods that are more efficient in handling functions of varying benefits can be

developed. In addition, benefit maximization can be extended to include the feature costs.

In order to accomplish this, feature selection mechanisms that are sensitive to individual

costs of features can be utilized. This will make the classification algorithm more

comprehensive and applicable in real-world domains. Furthermore, this sort of benefit

maximization research can be extended to handle incremental datasets, as in the case of

active learning.

Bibliography

[1] PredictionWorks Data Mining Glossary, http://www.predictionworks.com/glossary.

[2] Boosting Research Site, http://www.boosting.org.

[3] Cost-sensitive learning bibliography. Online bibliography. P. Turney, O. Boz,

editors, Institute for Information Technology of the National Research Council of Canada,

Ottawa, 1997, http://home.ptd.net/~olcay/cost-sensitive.html.

[4] ICML-2000 Workshop on Cost-Sensitive Learning – Workshop Notes,

http://www.dmargineantu.net/Workshops/Workshop-ICML2000/worknotes.html.

[5] KDD Cup 1998, http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html.

[6] The University of Waikato software documentation, Weka 3 - Data Mining with

Open Source Machine Learning Software in Java.

[http://www.cs.waikato.ac.nz/~ml/weka].

[7] C. L. Blake and C. J. Merz. UCI repository of machine learning databases.

University of California, Irvine, Department of Information and Computer Sciences,

1998. [http://www.ics.uci.edu/~mlearn/MLRepository.html].

[8] J. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C.E. Brodley. Pruning decision

trees with misclassification costs. In Proceedings of Tenth European Conference on

Machine Learning (ECML-98), pages 131-136, Berlin, 1998.

95

BIBLIOGRAPHY 96

[9] R.A. Brealey and S.C. Myers. Principles of Corporate Finance. New York, NY:

MacGraw-Hill, 5
th

 edition, 1996.

[10] L. Breiman. Bagging Predictors. Machine Learning, 24(2):123-140, 1996.

[11] L. Breiman, J. H. Friedman, R. A. Olsen, and C. J. Stone. Classification and

Regression Trees. Wadsworth International Group, Belmont, Wadsworth, 1984.

[12] P. Chan and S. Stolfo. Towards scalable learning with non-uniform class and cost

distributions: A case study in credit card fraud detection. In Proceedings of the Fourth

International Conference on Knowledge Discovery and Data Mining, pages 164-168,

1998.

[13] P. Chan and S. Stolfo. Learning with Non-uniform Class and Cost Distributions:

Effects and a Distributed Multi-Classifier Approach. In Workshop Notes KDD-98

Workshop on Distributed Data Mining, pages 1-9, 1998.

[14] G. Demiröz, and H. A. Güvenir. Classification by voting feature intervals. In

Proceedings of 9th European Conference on Machine Learning, Maarten van Someren

and Gerhard Widmer (Eds.), Springer-Verlag, LNAI 1224, pages 85-92, Prague, Czech

Republic, April 23-25, 1997.

[15] P. Domingos. How to get a free lunch: A simple cost model for machine learning

applications. In Proceedings of AAAI-98/ICML-98 Workshop on the Methodology of

Applying Machine Learning, pages 1-7, Madison, Wisconsin, 1998.

[16] P. Domingos. Metacost: A general method for making classifiers cost-sensitive. In

Proceedings of the International Conference on Knowledge Discovery and Data Mining,

pages 155-64, San Diego, CA, 1999.

[17] C. Drummond and R. Holte. Exploiting the cost (in)sensitivity of decision tree

splitting criteria. In Proceedings of the 17th International Conference on Machine

Learning (ICML'2000), pages 239-246, 2000.

BIBLIOGRAPHY 97

[18] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New

York, 1973.

[19] C. Elkan. Cost-sensitive learning and decision-making when costs are unknown. In

Workshop on Cost-Sensitive Learning at the Seventeenth International Conference on

Machine Learning (WCSL at ICML-2000), Stanford University, California, 2000.

[20] C. Elkan. The Foundations of Cost-Sensitive Learning. In Proceedings of the

Seventeenth International Joint Conference on Articial Intelligence, August, 2001.

[21] N. Emeksiz. Diagnosis of gastric carcinoma tumors by multi-class voting. M.S.

Thesis, Middle East Technical University, Turkey, July 2001.

[22] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. AdaCost: Misclassification cost-

sensitive boosting. In Machine Learning: Proceedings of the Sixteenth International

Conference, pages 97-105, San Francisco, Morgan Kaufmann, 1999.

[23] T. Fawcett and F. Provost. Adaptive fraud detection. Journal of Data Mining and

Knowledge Discovery, 1(3):291-316, 1997.

[24] A. A. Freitas. On rule interestingness measures. Knowledge-Based Systems, 12(5-6):

309-315, October 1999.

[25] R. Herbrich. Learning Kernel Classifiers. The MIT Press, 2002.

[http://www.learning-kernel-classifiers.org/index.htm].

[26] J. Hollmen, M. Skubacz, and M. Taniguchi. Input dependent misclassification costs

for cost-sensitive classifiers. In Proceedings of the Second International Conference on

Data Mining, pages 495-503, 2000.

[27] J. Gama. A cost-sensitive iterative Bayes. In Workshop on Cost-Sensitive Learning

at the Seventeenth International Conference on Machine Learning (WCSL at ICML-

2000), Stanford University, California, 2000.

BIBLIOGRAPHY 98

[28] H. A. Güvenir. Detection of abnormal ECG recordings using feature intervals. In

Proceedings of the Tenth Turkish Symposium on Artificial Intelligence and Neural

Networks (TAINN'2001), A. Acan, I. Aybay, and M. Salamah (Eds.), pages 265-274,

Gazimagusa, T.R.N.C., 2001.

[29] H. A. Güvenir and H. G. Koç. Concept representation with overlapping feature

intervals. Cybernetics and Systems: An International Journal, 29(3):263-282, 1998.

[30] H. A. Güvenir and I.
�

irin. Classification by feature partitioning, Machine Learning,

23(1):47-67, 1996.

[31] H. A. Güvenir, G. Demiröz, and N. � lter. Learning differential diagnosis of

erythemato-squamous diseases using voting feature intervals. Artificial Intelligence in

Medicine, 13(3):147-165, 1998.

[32] H. A. Güvenir, S. Altıngövde, I. Uysal, and E. Erel. Bankruptcy prediction using

feature projection based classification. In Proceedings of SCI/ISAS'99, pages 108-113,

Orlando, Florida, 1999.

[33] N. � kizler and H. A. Güvenir. Mining interesting rules in bank loans data. In

Proceedings of the Tenth Turkish Symposium on Artificial Intelligence and Neural

Networks (TAINN'2001), A. Acan, I. Aybay, and M. Salamah (Eds.), pages 238-246,

Gazimagusa, T.R.N.C., June 2001.

[34] R. Kohavi and F. Provost. Glossary of terms. Special Issue on Applications of

Machine Learning and the Knowledge Discovery Process, Machine Learning, 30:271-

274, 1998.[http://robotics.stanford.edu/~ronnyk/glossary.html].

[35] F.Y. Lin and S. McClean. The prediction of financial distress using a cost sensitive

approach and prior probabilities. In Workshop on Cost-Sensitive Learning at the

Seventeenth International Conference on Machine Learning (WCSL at ICML-2000),

Stanford University, California, 2000.

BIBLIOGRAPHY 99

[36] D. Margineantu. On class probability estimates and cost-sensitive evaluation of

classifiers. In Workshop Notes, Workshop on Cost-Sensitive Learning, International

Conference on Machine Learning, June 2000.

[37] D. Margineantu. Methods for cost-sensitive learning. Ph.D. Dissertation, Oregon

State University, 2002.

[38] T. Mitchell. Machine Learning, The McGraw-Hill Companies, Inc., 1997.

[39] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk. Reducing

misclassification costs: Knowledge-intensive approaches to learning from noisy data. In

Proceedings of the Eleventh International Conference on Machine Learning, ML-94,

pages 217-225, New Brunswick, New Jersey, 1994.

[40] F. J. Provost and A. P. Danyluk. A Study of Complications in Real-world Machine

Learning. Available at http://citeseer.nj.nec.com/19634.html.

[41] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffmann, San

Francisco, 1993.

[42] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-

rated predictions. Machine Learning, 37(3):297-336, 1999. Boston: Kluwer Academic

Publishers.

[43] K. M. Ting. Cost-sensitive classification using decision trees, boosting and

MetaCost. Book chapter in Heuristic and Optimization for Knowledge Discovery. Edited

by Sarker, R., Abbass, H. & Newton, C. Idea Group Publishing, 2002.

[44] K. M. Ting. An instance weighting method to induce cost-sensitive trees. IEEE

Transactions on Knowledge and Data Engineering, 14(3):659-665, May/June 2002.

[45] K. M. Ting and Z. Zheng. Boosting trees for cost-sensitive classifications. In

Machine Learning: ECML-98: 10th European Conf on Machine Learning, pages 190-

195, Chemnitz, Germany:Springer ,1998.

BIBLIOGRAPHY 100

[46] P. Turney. Types of cost in inductive concept learning. In Workshop on Cost-

Sensitive Learning at the Seventeenth International Conference on Machine Learning

(WCSL at ICML-2000), pages 15-21, Stanford University, California, 2000.

[47] G. I. Webb. Cost-sensitive specialization. In Proceedings of the 1996 Pacific Rim

International Conference on Artificial Intelligence, pages 23-34, Springer-Verlag.

[48] G. M. Weiss and F. Provost. The effect of class distribution on classifier learning.

Technical Report ML-TR 43, Department of Computer Science, Rutgers University,

2001.

[49] W. Wilke and R. Bergmann. Considering decision cost during learning of feature

weights. In Proceedings of Advances in Case-Based Reasoning, Third European

Workshop, EWCBR-96, Lausanne, Switzerland. Lecture Notes in Computer Science,

pages 460-472, 1168 Springer, 1996.

[50] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and

techniques with Java implementations. Academic Press, 2000.

[51] B. Zadrozny and C. Elkan. Learning and making decisions when costs and

probabilities are both unknown. In Proceedings of the Seventh International Conference

on Knowledge Discovery and Data Mining, AAAI Press (distributed by MIT Press), 2001.

[52] V.Bayer Zubek and T.G.Dietterich. Pruning improves heuristic search for cost-

sensitive learning. To appear in Proceedings of the International Conference on Machine

Learning (ICML’02), 2002.

Appendix A

UCI Benchmark Datasets

In the following, we provide the details for the benchmark datasets we have used from

UCI Machine Learning Repository [7]. There is a total of ten benchmark datasets that

have been used for evaluation in this thesis. Five of these datasets are two-class

(binominal) datasets, and five of them are multi-class datasets. Along with dataset

properties, benefit matrices that we have used in their experimentation are given.

A.1 Binary Datasets

Breast Cancer Wisconsin: This breast cancer databases was obtained from the

University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. There are 9

features and 699 instances. The aim is to predict whether a taken tissue is benign or

malignant. Missing attribute values in the entire dataset are 16. 458 (65.5%) of the

instances belong to benign class and 241(34.5%) are malignant. From cost-sensitive point

of view, detection of malignant instances are much more important.

Pima Indian Diabetes: The diagnostic, binary-valued variable investigated in this

dataset is whether the patient shows signs of diabetes according to World Health

Organization criteria (i.e., if the 2 hour post-load plasma glucose was at least 200 mg/dl

at any survey examination or if found during routine medical care). The population lives

101

APPENDIX A. UCI BENCHMARK DATASETS 102

near Phoenix, Arizona, USA. There are 768 instances and 8 features all of which are

numeric valued. 500 of the instances are negative (tested negative for diabetes) and

remaining 268 are positive.

Ionosphere: This is a radar data that was collected by a system in Goose Bay, Labrador.

This system consists of a phased array of 16 high-frequency antennas with a total

transmitted power on the order of 6.4 kilowatts. The targets were free electrons in the

ionosphere. "Good" radar returns are those showing evidence of some type of structure in

the ionosphere. "Bad" returns are those that do not; their signals pass through the

ionosphere. Received signals were processed using an autocorrelation function whose

arguments are the time of a pulse and the pulse number. There were 17 pulse numbers

for the Goose Bay system. Instances in this database are described by 2 attributes per

pulse number, corresponding to the complex values returned by the function resulting

from the complex electromagnetic signal.

Liver Disorders: The aim of this dataset is to predict whether a patient has liver

disorders or not. There are 345 instances collected by Bupa Medical Research Ltd. The

first 5 variables are all blood tests which are thought to be sensitive to liver disorders that

might arise from excessive alcohol consumption. Each line in the data file constitutes the

record of a single male individual. The last feature represents the drink number of half-

pint equivalents of alcoholic beverages drunk per day.

Sonar: This is the data set used by Gorman and Sejnowski in their study of the

classification of sonar signals using a neural network. The task is to train a network to

discriminate between sonar signals bounced off a metal cylinder and those bounced off a

roughly cylindrical rock. Each pattern is a set of 60 numbers in the range 0.0 to 1.0. Each

number represents the energy within a particular frequency band, integrated over a

certain period of time. The integration aperture for higher frequencies occurs later in

time, since these frequencies are transmitted later during the chirp. The label associated

with each record in the original dataset contains the letter "R" if the object is a rock and

"M" if it is a mine (metal cylinder). These class labels have been transformed to 0 and 1

APPENDIX A. UCI BENCHMARK DATASETS 103

for indicating the presence of a mine. 111 patterns recorded are mine and 97 patterns are

rocks.

With two-class datasets, five different benefit matrices having benefit ratios of 2, 5,

10, 20 and 50 have been used in testing.

A.2 Multi-class Datasets

Ecoli: There are 336 instances with 7 predictive features in this dataset. The aim is to

predict the protein localization sites within the cells. There are no missing attributes

values and possible 8 localization sites.

Table A.1: Benefit table of ecoli dataset computed by using class probabilities in a way to

favor minority class prediction

Actual Class

Prediction C1 C2 C3 C4 C5 C6 C7 C8

C1 2 -2 -3 -4 -7 -29 -70 -70

C2 -1 3 -1 -2 -3 -15 -30 -30

C3 -1 -1 4 -2 -2 -10 -25 -25

C4 -1 -1 -1 5 -2 -7 -15 -15

C5 -1 -1 -1 -1 6 -4 -10 -10

C6 -2 -2 -2 -1 -1 9 -2 -2

C7 -3 -3 -2 -2 -1 -1 10 -1

C8 -4 -3 -2 -2 -1 -1 -1 10

Table A.2: Random benefit table of ecoli dataset with a ratio of 2 between consecutive

class labels.

Actual Class

Prediction C1 C2 C3 C4 C5 C6 C7 C8

C1 1 -2 -2 -3 -3 -3 -3 -3

C2 -1 2 -1 -1 -2 -2 -2 -3

C3 -1 -1 4 -2 -3 -3 -3 -4

C4 -1 -2 -2 8 -2 -3 -3 -3

C5 0 0 0 0 16 -1 -1 -1

C6 0 -1 -2 -2 -2 32 -3 -3

C7 0 0 -1 -2 -3 -3 64 -4

C8 0 -1 -2 -2 -2 -3 -3 128

APPENDIX A. UCI BENCHMARK DATASETS 104

Glass: This dataset consists of attributes of glass samples taken from the scan of an

accident. The glass dataset contains 214 classes which belong to one of the six classes

available in the domain. There is a total of 9 features and all of them are continuous.

Benefit matrix favoring rare classes in this domain is given in Table A.3. Subsequently,

the random matrix that has been used in experiments is presented in Table A.4.

Table A.3: Benefit table of glass dataset computed by using class probabilities in a way to

favor minority class prediction

Actual Class

Prediction C1 C2 C3 C4 C5 C6

C1 3 -1 -4 -5 -8 -2

C2 -1 2 -4 -6 -8 -3

C3 -1 -1 6 -2 -3 -1

C4 -1 -1 -1 8 -2 -1

C5 -0.5 -0.5 -1 -1 10 -1

C6 -2 -1 -2 -3 -4 5

Table A.4: Random benefit table of glass dataset with a ratio of 2 between consecutive

class labels.

Actual Class

Prediction C1 C2 C3 C4 C5 C6

C1 1 0 -1 -1 -2 -3

C2 0 2 0 -1 -2 -2

C3 -1 -2 4 -2 -3 -3

C4 -1 -2 -2 8 -2 -2

C5 0 -1 -1 -1 16 -2

C6 -1 -2 -2 -3 -3 32

Page-blocks: Compiled by Donato Malerba from Dipartimento di Informatica,

University of Bari, The problem consists in classifying all the blocks of the page layout

of a document that has been detected by a segmentation process. This is an essential step

in document analysis in order to separate text from graphic areas. Indeed, the five classes

are: text (1), horizontal line (2), picture (3), vertical line (4) and graphic (5). It is a

relatively large database with 5473 examples from 54 distinct documents. All attributes

are numeric with no missing values.

APPENDIX A. UCI BENCHMARK DATASETS 105

Table A.5: Benefit table of glass dataset dependent on class probabilities in inverse

proportion such that minority class prediction is preferable.

Actual Class

Prediction C1 C2 C3 C4 C5

C1 10 -15 -175 -56 -43

C2 -1 40 -12 -4 -3

C3 -1 -1 100 -1 -1

C4 -1 -2 -5 60 -1

C5 -1 -3 -10 -4 50

Table A.6: Random benefit table of glass dataset with a ratio of 3 between consecutive

class labels.

Actual Class

Prediction C1 C2 C3 C4 C5

C1 1 -2 -4 -5 -5

C2 -2 3 -3 -3 -4

C3 -1 -2 9 -5 -6

C4 -1 -3 -5 27 -6

C5 -1 -2 -3 -5 81

Vehicle: This dataset comes from the Turing Institute, Glasgow, Scotland. The purpose is

to classify a given silhouette as one of four types of vehicle, using a set of features

extracted from the silhouette. There are 18 features with a total of 846 instances. Four

types of vehicles to be classified are Opel, Saab, Bus and Van.

Table A.7: Benefit table of vehicle dataset dependent on class probabilities in inverse

proportion such that minority class prediction is preferable.

Actual Class

Prediction C1 C2 C3 C4

C1 4 -1 -2 -3

C2 -2 3 -1 -2

C3 -4 -2 2 -1

C4 -6 -3 -1 1

APPENDIX A. UCI BENCHMARK DATASETS 106

Table A.8: Random benefit table of vehicle dataset with a ratio of 3 between consecutive

class labels.

Actual Class

Prediction C1 C2 C3 C4

C1 1 -4 -4 -6

C2 -1 3 -2 -2

C3 -1 -3 9 -5

C4 -2 -3 -4 27

Wine: This dataset has been compiled by Institute of Pharmaceutical and Food Analysis

and Technologies of Italy and it is on the results of a chemical analysis of wines grown in

the same region in Italy but derived from three different cultivars. The analysis

determined the quantities of 13 constituents found in each of the three types of wines. In

a classification context, this is a well posed problem with "well behaved" class structures.

It is assumed to be a good data set for first testing of a new classifier and many other

classification algorithms have used it for testing. All three classes are separable and there

is a total of 178 instances and 13 attributes. Corresponding benefit tables we have used

are shown in Table A.9 and Table A.10.

Table A.9: Benefit table of wine dataset dependent on class probabilities in inverse

proportion such that minority class prediction is preferable.

Actual Class

Prediction C1 C2 C3

C1 17 -8 -12

C2 -12 14 -15

C3 -8 -6 21

Table A.10: Randomly assigned benefits of wine dataset with a ratio of 4 between

consecutive class labels.

Actual Class

Prediction C1 C2 C3

C1 1 -3 -5

C2 -2 4 -8

C3 -1 -4 16

Appendix B

Special Datasets

There are five additional domains in which we have tested our BMFI algorithm. These

datasets are called “special” because they have a specific benefit matrix assigned to them

by domain experts or by hand, after a careful evaluation of the characteristics of the

domains.

Arrhythmia2r: The data set used here consists of 526 ECG recordings [28]. Each record

consists of a set of clinical parameters measured on rest ECG signals automatically by a

commercially available system, and some personal information about the subjects. There

are 279 parameters (features) in a single record. The patient population is divided into

two groups based on the investigation of an expert cardiologist, as normal and abnormal.

There are 246 cases in the normal group and 280 cases in the abnormal group. Out of

279 features 206 of them are continuous valued (linear) and 73 features are Boolean

valued (nominal). 0.33% of the feature values are missing. Benefit table of the domain is

adjusted as follows:

Table B.1: Benefit table of the arrhythmia2r dataset

Actual Class

Prediction C1 C2

C1 1 -7

C2 -2 5

107

APPENDIX B. SPECIAL DATASETS 108

Bank-loans: The raw form of this dataset has been compiled by a private Turkish bank.

We have preprocessed it by eliminating redundant data and missing attribute values. The

entire raw dataset consists of more than 24000 instances. In this study, we have

investigated a small, yet representative portion of it consisting 1443 instances. In the

literature of machine learning, this data has been investigated initially in [33]. There are

13 attributes in the domain, 7 of them are linear and 6 are categorical. The dataset

purpose is to predict whether a customer is likely to default or not. This domain is also

very suitable for investigating the effects of feature dependency as presented in Section

5.5. The static benefit table used for testing is given in Table B.2.

Table B.2: Benefit table of the bank-loans dataset

Actual Class

Prediction C1 C2

C1 4 -20

C2 -4 0

Bankruptcy: This is the data compiled from the Compact Disclosures
TM

 by Dorsey et

al.[32]. The data set consists of financial ratios from firms for three successive years,

1989--1991. Each case (instance) in the data set contains the values of the 19 ratios about

a firm for a year and an indicator of whether or not the firm failed in the following year.

Here the failure is defined as financial distress. A firm is in financial distress if it has

entered bankruptcy under chapters 7 or 11 of the U.S. Bankruptcy code. The data set

contains 1444 instances, 414 of which are bankrupt firms. There are no missing values

and the corresponding benefit table is given in Table B.3.

Table B.3: Benefit table of the bankruptcy dataset

Actual Class

Prediction C1 C2

C1 1 -15

C2 -1 30

Dermatology: The differential diagnosis of erythemato-squamous diseases is a difficult

problem in dermatology. They all share the clinical features of erythema and scaling,

with very little differences. The diseases in this classification problem are psoriasis,

seboreic dermatitis, lichen planus, pityriasis rosea, chronic dermatitis and pityriasis rubra

pilaris. Patients were first evaluated clinically with 12 features. Skin samples were taken

APPENDIX B. SPECIAL DATASETS 109

for the evaluation of 22 histopathological features. Hence, there is a total of 34 features

in the domain and only one of them is a categorical feature. The entire dataset consists of

366 patient records. For more information, please refer to [31].

Table B.4: Benefit table of the dermatology dataset

Actual Class

Prediction C1 C2 C3 C4 C5 C6

C1 10 -5 -4 -5 -5 -4

C2 -3 6 -3 -4 -1 -3

C3 -2 -5 10 -5 -5 -4

C4 -5 -4 -4 8 -3 -3

C5 -3 -1 -2 -3 3 -2

C6 -2 -2 -2 -3 -3 4

Lesion (Gastric Carcinoma): This is the dataset of stomach cancer instances. There are

285 cases and all of them are malignant. The aim is to differentiate between stages of

cancer. There are 9 classes representing the relative degree of the cancer. The first 4

classes are defined as early cancers whereas the remaining are counted as late cancers.

Hence, the correct prediction of early cancer instances is more beneficial. Benefit table

displaying such traits is given in Table B.5. There are 68 features, and only 7 of them are

linear. In the entire dataset there are 970 missing features, which means that 5% of the

dataset is missing. More information about the dataset is presented in [21].

Table B.5: Benefit table of the lesion dataset

Actual Class

Prediction C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 18 8 8 8 2 -10 -12 -15 -18

C2 10 15 12 12 4 -8 -10 -13 -15

C3 10 12 15 12 4 -8 -10 -13 -15

C4 10 12 12 15 4 -8 -10 -13 -15

C5 6 8 8 8 10 -6 -8 -11 -13

C6 -2 -3 -3 -3 -1 8 1 1 -2

C7 -4 -5 -5 -5 -3 4 6 3 -1

C8 -8 -10 -10 -10 -7 2 3 4 1

C9 -10 -12 -12 -12 -9 1 1 2 3

