
RULE-BASED SPATIO-TEMPORAL QUERY PROCESSING FOR

VIDEO DATABASES�

Mehmet Emin Dönderler, Özgür Ulusoy and Uǧur Güdükbay

Department of Computer Engineering, Bilkent University

Bilkent, 06533 Ankara, Turkey

e-mail: {mdonder, oulusoy, gudukbay}@cs.bilkent.edu.tr

Abstract

In our earlier work, we proposed a novel architecture for a Web-based video database management system provid-

ing an integrated support for both spatio-temporal and semantic video queries. In this paper, we focus on the task

of query processing for spatio-temporal queries, which may contain any combination of directional, topological,

3D-relation, external-predicate, object-appearance, trajectory-projection, and similarity-based object-trajectory

conditions. We also propose an SQL-like textual video query language that has the capability to handle a broad

range of spatio-temporal queries. The query language is rule-based in that it allows users to express the spatial

query conditions on video data in terms of Prolog-type predicates.

In our video database management system, called BilVideo (Bilkent Video), spatio-temporal query processing

is carried out in five main stages: lexical analysis (lexer), syntax checking and parse-tree production (parser),

query decomposition and query-tree construction, subquery and interval processing, and final query result forma-

tion.

Keywords: spatio-temporal relations, spatio-temporal query processing, content-based retrieval, knowledge

representation, inference rules, video databases, multimedia databases.

1 Introduction

The interest for multimedia databases, especially for video databases, is growing rapidly. The research that was

first started tackling the issue of content-based image retrieval by low-level features (color, shape, and texture)

and keywords, [5, 7, 15, 38], has progressed in time towards video databases dealing with spatio-temporal and

semantic features of video data [6, 19, 23, 30, 32, 42]. There has also been some work on picture retrieval systems

to enhance their query capabilities using the spatial relationships between objects in images [7, 8].

First attempts for supporting content-based video retrieval were initiated by applying the techniques devised

for image retrieval to video databases since video can basically be regarded as a consecutive sequence of images

ordered in time [15, 40]. Some prototype systems were designed and implemented, such as VideoQ, KMED,

QBIC, and OVID [6, 8, 15, 34]. Furthermore, querying video objects by motion properties has also been studied

extensively [16, 25, 27, 33, 39]. Some examples on using semantic properties of video data for querying video

collections can be found in [2, 19, 21]. Nonetheless, to the best of our knowledge, no proposal has been made

�This work is supported by the Scientific and Research Council of Turkey (TÜḂITAK) under Project Code 199E025.

1

thus far for a generic, application-independent video database management system that targets to support spatio-

temporal, semantic, and low-level queries on video data in an integrated manner.

In our earlier work, we proposed a novel architecture for a video database management system, which pro-

vides an integrated support for both spatio-temporal and semantic queries on video data [12]. A spatio-temporal

query may contain any combination of directional, topological, 3D-relation, external-predicate, object-appearance,

trajectory-projection, and similarity-based object-trajectory conditions. The system responds to spatio-temporal

queries using its knowledge-base, which consists of a fact-base and a comprehensive set of rules implemented in

Prolog, while semantic queries are handled by an object-relational database. The query processor interacts with

both the knowledge-base and object-relational database to respond to user queries that contain a combination of

spatio-temporal and semantic queries. Intermediate query results returned from these two system components are

integrated seamlessly by the query processor, and sent to Web clients. The architecture is extensible in that it can be

augmented easily to provide integrated support for low-level video queries as well, in addition to spatio-temporal

and semantic queries on video data.

The focus and contributions of this paper are on the spatio-temporal video query processing; therefore, issues

related to semantic and low-level video queries are not discussed. Our rule-based spatio-temporal video query

processing strategy is explained in detail. Moreover, an SQL-like textual query language is proposed for spatio-

temporal queries on video data. The language can be used to query the knowledge-base of the system, proposed

in [12], for object trajectories, spatio-temporal relations between video objects, external predicates, and object-

appearance relations. It is very easy to use even by novice users. In fact, it is relatively easier to use compared

with other proposed query languages for video databases, such as CVQL, MOQL, and VideoSQL [22, 28, 34].

Furthermore, it offers great expressiveness for creating complex spatio-temporal queries, thanks to its rule-based

structure. Similarity-based object-trajectory and trajectory-projection query conditions are processed separately

from spatio-temporal, object-appearance, and external-predicate query conditions. The latter type of conditions

are grouped together to form the maximal subqueries. Given a query, a maximal subquery is defined as a longest

sequence of conditions that can be processed by Prolog without changing the semantics of the original query.

Grouping the spatial conditions in a query into maximal subqueries minimizes the number of subqueries to be

processed by our inference engine Prolog, thus reducing the interval processing time, and improving the overall

performance of the system for spatio-temporal query processing. Spatio-temporal query processing is carried out in

five main stages: lexical analysis (lexer), syntax checking and parse-tree production (parser), query decomposition

and query-tree construction, subquery and interval processing, and final query result formation.

In [12], we also proposed a novel video segmentation technique specifically for spatio-temporal modeling of

video data, which is based on the spatio-temporal relations between video salient objects. In our approach, video

clips are segmented into shots whenever the current set of relations between video objects changes, thereby helping

us to determine parts of the video, where the spatial relationships do not change at all. Spatio-temporal relations

are represented as Prolog facts partially stored in the knowledge-base, and those relations that are not stored

explicitly can be derived by our inference engine Prolog, using the rules in the knowledge-base. The system has a

2

comprehensive set of rules, which reduces the storage space needed for the spatio-temporal relations considerably,

while keeping the query response time at interactive rates, as proven by our performance tests conducted using both

synthetic and real video data [12]. Our rule-based spatio-temporal query processing strategy and query language

take advantage of this segmentation technique to provide precise (fine-grained) answers to spatio-temporal video

queries. Consequently, the smallest unit of retrieval is not a scene (a single camera shot), but a single frame in our

video database management system, which we call BilVideo.

To the best of our knowledge, all video database management systems proposed in the literature associate the

spatio-temporal relations between video objects, and also object trajectories, with scenes defined as single camera

shots. Hence, these systems are unable to return arbitrary segments of video clips in response to user queries that

consist of spatio-temporal conditions. Nonetheless, users may not be interested in seeing an entire scene as a result

of a query, if the query conditions are satisfied only in some parts of the scene. Moreover, since object trajectories

are conventionally defined within the scenes, and thereby, do not span over the entire video as one entity, trajectory

matching is restricted to the subtrajectories of objects that fall into scenes in the entire video. We believe that such

a restriction limits the flexibility and power of a video database management system for spatio-temporal query

processing: users should be able to retrieve arbitrary video segments, if there is a matching for a given query

trajectory with a part of an object trajectory, where the object trajectory spans over the entire video. To the best of

our knowledge, only BilVideo provides this support due to its unique video segmentation technique that is based

on the spatio-temporal relations between video objects.

The rest of the paper is organized as follows: Section 2 presents a discussion of some of the video database

management systems and query languages proposed in the literature, and their comparison to BilVideo and its

query language. Overall architecture of BilVideo and our rule-based approach to represent spatio-temporal relations

between video salient objects are briefly mentioned in Section 3. Section 4 presents the proposed SQL-like textual

query language, and demonstrates the capabilities of the language with some query examples on three different

application areas; soccer event analysis, bird migration tracking, and movie retrieval systems. Section 5 provides

a detailed discussion on the proposed rule-based spatio-temporal query processing strategy with some example

queries. The results of our preliminary performance and scalability tests conducted on the knowledge-base of

BilVideo, which are presented in detail in [12], are summarized in Section 6. We draw our conclusions and

state possible future work areas in Section 7. Finally, the grammar of the proposed query language is given in

Appendix A.

2 Related Work

In this section, we compare BilVideo and its query language with some other systems and query languages pro-

posed in the literature. One point worth noting at the outset is that BilVideo query language, to the best of our

knowledge, is unique in its support for retrieving any segment of a video clip, where the given query conditions

are satisfied, regardless of how video data is semantically partitioned. None of the systems discussed here can

3

return a subinterval of a scene as part of a query result because video features are associated with scenes defined

to be the smallest semantic units of video data. In our approach, object trajectories, object-appearance relations,

and spatio-temporal relations between video objects are represented as Prolog facts in a knowledge-base, and they

are not explicitly related to semantic units of videos. Thus, BilVideo query language can return precise answers

for spatio-temporal queries in terms of frame intervals. Moreover, our assessment for the directional relations

between two video objects is also novel in that two overlapping objects may have directional relations defined

for them with respect to one another, provided that center points of the objects’ Minimum Bounding Rectangles

(MBRs) are different. It is because Allen’s temporal interval algebra, [3], is not used as a basis for the directional

relation definition in our approach: in order to determine which directional relation holds between two objects,

center points of the objects’ MBRs are used [12]. Furthermore, BilVideo query language provides three aggregate

functions, average, sum, and count, which may be very attractive for some applications, such as sports statistical

analysis systems, to collect statistical data on spatio-temporal events. Moreover, BilVideo query language provides

full support for spatio-temporal querying of video data.

VideoSQL: VideoSQL is an SQL-like query language developed for OVID to retrieve video objects [34].

Before examining the conditions of a query for each video object, target video objects are evaluated according to

the interval inclusion inheritance mechanism. A VideoSQL query consists of the basic select, from, and where

clauses. Conditions may contain attribute/value pairs and comparison operators. Video numbers may also be used

in specifying conditions. In addition, VideoSQL has a facility to merge the video objects retrieved by multiple

queries. Nevertheless, the language does not contain any expression to specify spatial and temporal conditions

on video objects. Thus, VideoSQL does not support spatio-temporal queries, which is a major weakness of the

language.

MOQL and MTQL: In [29], multimedia extensions to the Object Query Language (OQL) and TIGUKAT

Query Language (TQL) are proposed. The extended languages are called Multimedia Object Query Language

(MOQL) and Multimedia TIGUKAT Query Language (MTQL), respectively. The extensions made are spatial,

temporal, and presentation features for multimedia data. MOQL has been used in the STARS system [26] as

well as in an object-oriented SGML/HyTime compliant multimedia database system [35], both developed at the

University of Alberta.

MOQL and MTQL support content-based spatial and temporal queries, as well as query presentation. Both

languages include support for 3D-relation queries, as we call them, by front, back, and their combinations with

other directional relations, such as front_left, front_right, etc. BilVideo query language has a different set of

third-dimension (3D) relations, though. The 3D relations supported by the BilVideo query language are infrontof,

behind, strictlyinfrontof, strictlybehind, touchfrombehind, touchedfrombehind, and samelevel. Definitions of these

3D relations are given in Section 4.2.2. The moving object model integrated in MOQL and MTQL, [25], is also

different from our model. BilVideo query language does not support similarity-based retrieval on spatial conditions

as MOQL and MTQL do. Nonetheless, it does allow users to specify separate weights for the directional and

displacement components of the trajectory conditions in queries, which both languages lack.

4

AVIS: In [31], a unified framework for characterizing multimedia information systems is proposed. Some

user queries may not be answered efficiently using these data structures; therefore, for each media-instance, some

feature constraints are stored as a logic program. Nonetheless, temporal aspects and relations are not taken into

account in the model. Moreover, complex queries involving aggregate operations as well as uncertainty in queries

require further work to be done. In addition, although the framework incorporates some feature constraints as facts

to extend its query range, it does not provide a complete deductive system as we do.

The authors extend their work defining feature-subfeature relationships in [30]. When a query cannot be an-

swered, it is relaxed by substituting a subfeature for a feature. This relaxation technique provides some support for

reasoning with uncertainty.

In [2], a prototype video information system, called Advanced Video Information System (AVIS), is introduced.

The authors propose a special kind of segment tree, namely frame segment tree, and a set of arrays to represent

objects, events, activities, and their associations. The proposed data model is based on the generic multimedia

model described in [31]. Consequently, temporal queries on events are not addressed in AVIS.

In [18], an SQL-like video query language, based on the data model developed by Adalı et al. [2], is proposed.

Thus, the language does not provide any support for temporal queries on events. Nor does it have any language

construct for spatio-temporal querying of video clips since it was designed for semantic queries on video data. In

BilVideo query model, temporal operators, such as before, during, etc., would also be used to specify order in time

between events just as they are used for spatio-temporal queries.

VideoSTAR: VideoSTAR proposes a generic data model that makes it possible to share and reuse video

data [17]. Thematic indexes and structural components might implicitly be related to one another since frame

sequences may overlap, and may be reused. Therefore, considerable processing is needed to explicitly determine

the relations, making the system complex. Moreover, the model does not support spatio-temporal relations between

video objects.

CVQL: A content-based logic video query language, CVQL, is proposed in [23]. Users retrieve video data

specifying some spatial and temporal relationships for salient objects. An elimination-based preprocessing for

filtering unqualified videos, and a behavior-based approach for video function evaluation are also introduced. For

video evaluation, an index structure, called M-index, is proposed. Using this index structure, frame sequences

satisfying a query predicate can be efficiently retrieved. Nevertheless, topological relations between salient objects

are not supported since an object is represented by a point in two-dimensional (2D) space. Consequently, the

language does not allow users to specify topological and similarity-based object-trajectory queries.

3 BilVideo VDBMS

This section is intended only to provide a very brief overview of the BilVideo system architecture. Further infor-

mation and details can be found in our earlier publication [12].

5

Video Clips Raw Video Database

Extracted Facts

Feature Database

Object−Relational DBMS

Knowledge−Base

Query Processor

Fact−Extractor

Results

Query

Video−Annotator

(File System)

Figure 1: BilVideo System Architecture

3.1 Overall System Architecture

Figure 1 illustrates the system architecture of BilVideo. In the heart of the system lies the query processor, which

is responsible for processing and responding to user queries in a multi-user environment. The query processor

communicates with a knowledge-base and an object-relational database. The knowledge-base stores fact-based

meta data used for spatio-temporal queries, whereas semantic and histogram-based (color, shape, and texture)

meta data is stored in the feature database maintained by the object-relational database. Raw video data and

video data features are stored separately. Semantic meta data stored in the feature database is generated and

updated by a Video-Annotator tool, and the facts-base is populated by a Fact-Extractor tool, both developed as

Java applications [4, 11]. The Fact-Extractor tool also extracts the color and shape histograms of objects of interest

in video keyframes to be stored in the feature database [10].

BilVideo is built over a client-server architecture, and users access the video database on the Internet through a

Java client Applet. The system may be queried with user-drawn sketches. A visual query is formed by a collection

of objects with some conditions, such as object trajectories with similarity measures, spatio-temporal orderings of

objects, annotations, and events. Object motion is specified as an arbitrary trajectory for each object of interest,

and annotations are used for keyword-based video search. Users are able to browse the video collection before

giving complex and specific queries, as well. A text-based SQL-like query language is also available for the users.

BilVideo VDBMS can current handle only spatio-temporal video queries, but its query processor, query lan-

guage, and graphical user interface are currently being extended to provide an integrated support for semantic and

low-level (color, shape, and texture) queries, as well.

6

3.2 Knowledge-base Structure

In the knowledge-base, each facty has a single frame number, which is of a keyframe. This representation scheme

allows our inference engine Prolog to process spatio-temporal queries faster and easier compared to using frame

intervals for the facts. It is because the frame interval processing to form the final query results is carried out

efficiently by some optimized code, written in C++, outside the Prolog environment. Therefore, the rules used for

querying video data, which we call query rules, have frame-number variables associated. A second set of rules

that we call extraction rules was also created to work with frame intervals so as to extract spatio-temporal relations

from video data. Extracted spatio-temporal relations are then converted to be stored as facts with frame numbers

of the keyframes in the knowledge-base, and these facts are used by the query rules for query processing in the

system.

The rules in the knowledge-base significantly reduce the number of facts that need to be stored for spatio-

temporal querying of video data. Our storage space savings was about 40% for some real video data we ex-

perimented on. Moreover, the system’s response time for different types of spatio-temporal queries posed on

the same data was at interactive rates. We provide a brief summary of our performance tests conducted on the

knowledge-base of BilVideo in Section 6. Details on the knowledge-base structure of BilVideo, our fact-extraction

(video segmentation) algorithm, types of the rules/facts used, their definitions, and the detailed discussion of our

performance tests involving spatial relations can be found in [12].

4 BilVideo Query Language

Retrieval of video data by its spatio-temporal content is a very important and challenging task. Query languages

designed for relational, object and object-relational databases do not provide sufficient support for spatio-temporal

video retrieval; consequently, either a new language should be designed and implemented, or an existing language

should be extended with the required functionality.

In this section, we present a new video query language that is similar to SQL in structure. The language can

be used for spatio-temporal queries that contain any combination of directional, topological, 3D-relation, external-

predicate, object-appearance, trajectory-projection, and similarity-based object-trajectory conditions.

4.1 Features of the Language

BilVideo query language has four basic statements for retrieving information:

select video from all [where condition];

select video from videolist where condition;

yExcept for appear and object-trajectory facts, which have frame intervals as a component instead of frame numbers because of storage

space, ease of processing, and processing cost considerations.

7

select segment from range where condition;

select variable from range where condition;

The target of a query is specified in the select clause. A query may return videos (video), or segments of

videos (segment), or values of variables (variable) with/without segments of videos. Regardless of the target type

specified, video identifiers for videos are always returned as part of the query answer. The aggregate functions

(sum, average, and count), which operate on segments, may also be used in the select clause. Variables might

be used for the object identifiers and trajectories. Moreover, if the target of a query is videos (video), users may

also specify the maximum number of videos to be returned as a result of a query. If the keyword random is used,

video fact-files to process are selected randomly in the system, thereby returning a random set of videos as a result.

The range of a query is specified in the from clause, which may be either the entire video collection or a list of

specific videos. The query conditions are given in the where clause. In BilVideo query language, the condition is

defined recursively, and consequently, it may contain any combination of spatio-temporal query conditions.

Supported Operators: BilVideo query language supports a set of logical and temporal operators to be used in the

query conditions. The logical operators are and, or, and not, while the temporal operators are before, meets,

overlaps, starts, during, finishes, and their inverse operators.

The language also has a trajectory-projection operator, project, which can be used to extract subtrajectories

of video objects on a given spatial condition. The condition is local to project, and it is optional. If it is not

given, entire object trajectories rather than subtrajectories of objects are returned.

The language has two operators, “=” and “!=”, to be used for assignment and comparison. The left argument

of these operators should be a variable, whereas the right argument may be either a variable or a constant

(atom). Operator “!=” is used for inequality comparison, whilst operator “=” may take on different semantics

depending on its arguments. If one of the arguments of operator “=” is an unbound variable, it is treated as

the assignment operator. Otherwise, it is considered as the equality-comparison operator. These semantics

were adopted from the Prolog language.

Operators that perform interval processing are called interval operators. Hence, all temporal operators are

interval operators. Logical operators are also considered as interval operators, when their arguments contain

intervals.

In BilVideo query language, precedence values of the logical, assignment, and comparison operators follow

their usual order. Logical operators assume the same precedence values when they are considered as interval

operators, as well. Temporal operators are given a higher priority over logical operators, when determining

the arguments of operators, and they are left associative as are logical operators.

BilVideo query language also provides a keyword, repeat, that can be used in conjunction with a temporal

operator, such as before, meets, etc., or a trajectory condition. Video data may be queried by repetitive

conditions in time using repeat with an optional repetition number given. If a repetition number is not

8

given with repeat, then it is considered indefinite, thereby causing the processor to search for the largest

intervals in a video, where the conditions given are satisfied at least once over time. The keyword tgap

may be used for the temporal operators and a trajectory condition. However, it has rather different semantics

for each type. For temporal operators, tgap is only meaningful when repeat is used, because it specifies

the maximum time gap allowed between the pairs of intervals to be processed for repeat. Therefore, the

language requires that tgap be used along with repeat for temporal operators. For a trajectory condition,

it may be used to specify the maximum time gap allowed for consecutive object movements, as well as pairs

of intervals to be processed for repeat if repeat is also given in the condition.

Aggregate Functions: BilVideo query language has three aggregate functions, average, sum, and count, which

take a set of intervals (segments) as input. Average and sum return a time value in minutes, whilst count

returns an integer for each video clip satisfying given conditions. Average is used to compute the average

of the time durations of all intervals found for a video clip, whereas sum and count are used to calculate the

total time duration for, and the total number of all such intervals, respectively. These aggregate functions

might be very useful to collect statistical data for some applications, such as sports event analysis systems,

motion tracking systems, etc.

External Predicates: BilVideo query language is generic, and is designed to be used for any application that re-

quires spatio-temporal query processing capabilities. It has a condition type external defined for application-

dependent predicates, which we call external predicates. This condition type is generic; consequently, a

query may contain any application-dependent predicate in the where clause of the language with a name

different from any predefined predicate and language construct, and with at least one argument that is either

a variable or a constant (atom). External predicates are processed just like spatial predicates as part of the

maximal subqueries. If an external predicate is to be used for querying video data, facts and/or rules related

to the predicate should be added to the knowledge-base beforehand.

In our design, each video segment returned as an answer to a user query has an associated importance value

ranging between 0 and 1, where 1 denotes an exact match. The results are ordered with respect to these impor-

tance values in descending order. Maximal subqueries return segments with importance value 1 because they are

exact-match queries, whereas the importance values for the segments returned by similarity-based object-trajectory

queries are the similarity values computed. Interval operators not and or return the complements and union of their

input intervals, respectively. Interval operator or returns intervals without changing their importance values, whilst

the importance value for the intervals returned by not is 1. The rest of the interval operators takes the average of

the importance values of their input interval pairs for the computed intervals. Users may also specify a time period

in a query to view only the parts of videos returned as an answer. The grammar of the BilVideo query language is

given in Appendix A.

9

4.2 Basic Query Types

This section presents the basic query types that the BilVideo query language supports. These types of queries can

be combined to construct complex spatio-temporal queries without any restriction, which makes the language very

flexible and powerful in terms of expressiveness. In this section, we provide some examples for the object and

similarity-based object-trajectory queries; examples of the other types used in combination are introduced later in

Sections 4.3 and 5.5.

4.2.1 Object Queries

This type of queries may be used to retrieve salient objects for each video queried that satisfies the conditions,

along with segments if desired, where the objects appear. Some example queries of this type are given below:

Query 1: “Find all video segments from the database in which object o� appears.”

select segment

from all

where appear(o�);

In this query, appear predicate returns the frame intervals (segments) of each video in the database, where

object o� appears. The segments returned are grouped by videos, and each group is sorted in the linear timeline

based on the starting frames, where smaller segments appear before larger ones if the starting frames of the intervals

are the same.

Query 2: “Find the objects that appear together with object o� in a given video clip, and also return such seg-

ments.” (Video identifier for the given video clip is assumed to be 1.)

select segment, X

from 1

where appear(o�, X) and X != o�;

4.2.2 Spatial Queries

This type of queries may be used to query videos by spatial properties of objects defined with respect to each

other. Supported spatial properties for objects can be grouped into mainly three categories: directional relations

that describe order in 2D space, topological relations that describe neighborhood and incidence in 2D space, and

3D relations that describe object positions on the z-axis of three-dimensional space.

There are eight distinct topological relations: disjoint, touch, inside, contains, overlap, covers, coveredby,

and equal. The fundamental directional relations are north, south, east, west, northeast, northwest, southeast,

10

Relation Inverse Meaning

AAA
BBB (A overlaps B)

A infrontof B B behind A or
AAABBB (A meets B)

or
AAA BBB (A before B)
AAA BBB (A before B)

A strictlyinfrontof B B strictlybehind A or
AAABBB (A meets B)
AAA
BBBBBB (A starts B)

or
AAA

BBBBBB (A finishes B)
A samelevel B B samelevel A or

AAA
BBBBBB (A during B)

or
AAA
BBB (A equal B)

A touchfrombehind B B touchedfrombehind A BBBAAA (B meets A)

Table 1: Definitions of our 3D relations on the z-axis of three-dimensional space

and southwest. Furthermore, our 3D relations consist of infrontof, strictlyinfrontof, touchfrombehind, samelevel,

behind, strictlybehind, and touchedfrombehind.

Definitions of the topological and 3D relations are based on Allen’s temporal interval algebra [3]. Table 1

presents the semantics of our 3D relations. We, however, do not provide in this paper the semantics for the

topological relations since they are given in a number of papers in the literature (e.g. [14] and [36]). We

also include the relations left, right, below, and above in the group of directional relations, and these relations

are defined in terms of the fundamental directional relations. However, directional components of the object

trajectories can only contain the fundamental directional relations in query specifications. Our definitions for the

directional relations are given in [12].

4.2.3 Similarity-Based Object-Trajectory Queries

In our data model, for each moving object in a video clip, a trajectory fact is stored in the facts-base. A trajectory

fact is modelled as tr(�, �, �, �), where

�: object identifier,

� (list of directions): [��, ��,, �n], where �i � Fz (1�i�n),

� (list of displacements): [��, ��,, �n], where �i � Z� (1�i�n), and

� (list of intervals): [[s�, e�],, [sn, en]], where si, ei � N and si �ei (1�i�n).

A trajectory query is modeled as

zset of fundamental directional relations

11

tr(�, �) [sthreshold � [dirweight 	 j dspweight
]] [tgap �]

or

tr(�, �) [sthreshold �] [tgap �]

where

�: object identifier,

�: trajectory list ([�,
]),

�: list of directions,

: list of displacements,

sthreshold (similarity threshold): 0� � �1,

dirweight (directional weight): 0� 	 �1 and 1-	 �
,

dspweight (displacement weight): 0�
 �1 and 1-
 � 	, and

tgap: time threshold, � � N, for the gap between consecutive object movements.

In a trajectory query, variables may be used for � and �, and the number of directions is equal to the number

of displacements in � just like in trajectory facts, because each element of a list is associated with an element of

the other list that has the same index value. The list of directions specifies a path an object follows, whilst the

displacement list associates each direction in this path with a displacement value. However, it is optional to specify

a displacement list in a query in which case no weights are used in matching trajectories. Such queries are useful

when displacements are not important to the user.

In a trajectory query, similarity and time threshold values are also optional. If a similarity threshold is not

given, the query is considered as an exact-match query. A query without a tgap value implies a continuous

motion without any stop between consecutive object movements. The time threshold value specified in a query is

considered in seconds. A trajectory query may have either a directional or a displacement weight supplied because

the other is computed from the one given. Moreover, for a weight to be specified, a similarity threshold value must

also be provided. If a similarity value is supplied, and no weight is given, then the weights of the directional and

displacement components are considered equal by default. The key idea in measuring the similarity between a pair

of trajectories is to find the distance between the two, and this is achieved by computing the distances between the

directional and displacement components of the trajectories when both lists are available. If a displacement list

is not specified in a query, then trajectory similarity is measured by comparing the directional lists. Furthermore,

when a weight value is 0, its corresponding list is not taken into account in computing the similarity between

trajectories.

Directional Similarity:

Definition 1 A directional region is an area between neighboring directional segments in the directional coordi-

nate system depicted in Figure 2.

12

north

north-east

eastwest

north-west

south-eastsouth-west

south

Figure 2: Directional Coordinate System

Definition 2 Let da and db be two directions in the directional coordinate system. The distance between da and

db, denoted as D(da, db), is defined to be the minimum number of directional regions between da and db.

Definition 3 The directional normalization factor, �, is defined to be the number of directional regions between

two opposite directions in the directional coordinate system (w = 4).

Let A and B be two directional lists each having n elements such that A = [A�, A�, ..., An] and B = [B�, B�,

..., Bn]. The directional similarity between A and B is specified as follows:

��A�B� � ��
�

w

vuut �

n

nX
i��

D�Ai�Bi�� (1)

Displacement Similarity:

Definition 4 The displacement normalization factor of a displacement list A is defined to be the maximum dis-

placement value in the list, and it is denoted by A�.

Let A and B be two displacement lists each having n elements such that A = [A�, A�, ..., An] and B = [B�,

B�, ..., Bn]. Furthermore, let us suppose that Dnr(Ai, Bi) denotes the normalized distance between Ai and Bi for

1�i�n. Then, the displacement similarity between A and B is specified as follows:

��A�B� � ��

vuut�

n

nX
i��

Dnr�Ai�Bi�� �where Dnr�Ai�Bi� �
B�Ai�A�Bi

A�B�

(2)

13

Trajectory Matching:

Similarity-based object-trajectory queries are processed by the trajectory processor, which takes such queries

as input and returns a set of intervals each associated with an importance value (similarity value), along with some

other data needed by the query processor for forming the final set of answers to user queries, such as variable

bindings (values) if variables are used. Here, we formally discuss how similarity-based object-trajectory queries

with no variables are processed by the trajectory processor. In doing so, it is assumed without loss of generality

that trajectory queries contain both the directional and displacement lists. Moreover, we restrict our discussion to

such cases as those where the time gaps between consecutive object movements in trajectory facts are equal to or

below the time threshold given in a query. These assumptions are made just for the sake of simplicity, because our

main goal here is to explain the theory that provides a novel framework for our similarity-based object-trajectory

matching mechanism rather than presenting our query processing algorithm in detail.

Let Q and T be a similarity-based object-trajectory query and a trajectory fact for an object that is stored in the

facts-base for a video clip, respectively, such that Q = tr(�, �) sthreshold � dirweight 	 and T = (�, �,

�, �), where � = [�,
]. Let us assume that there is no variable used in Q or all variables are bound, � = �, k�k =

n, and k�k = m. Let us also assume that there is no gap between any consecutive pairs of intervals in � such that

�ei � �si��
(1�i�m).

Case 1 (n=m): The similarity between the two trajectories Qt = (�,
) and Tt = (�, �) is computed as follows:

��Qt�Tt� � 	 �������
 ��
���� where 	 � ��
 (3)

In this case, the trajectory processor returns only one interval, � = [�s� , �en], iff �(Qt, Tt)��. Otherwise

(�(Qt, Tt)��), the answer set is empty because there is no similarity between Qt and Tt with a given

threshold �.

Case 2 (n�m): In this case, the trajectory processor returns a set of intervals � such that

�� f�si�ei�j�� i� n�m��� si � �si � ei � �ei�m��
� ��Qt�Tt�i�i�m���

�� �g (4)

where

Tt�i�i�m���
� ���i� �������i�m���� ��i� �������i�m���� (5)

If there is no match found for any Tti for 1�i�n-m+1, where Tti = Tt�i�i�m���
, then the answer set is empty.

Case 3 (n�m): As in Case 1, the trajectory processor returns only one interval, � = [�s� , �en],

i� � ��Qt�i�i�n���
�Tt��

m

n
� for �� i�m�n���

where

Qt�i�i�n���
� ���i� � � � ��i�n���� �
i� � � � �
i�n����

14

The importance value (similarity value) associated and returned with � is

� �
n

m
MAX f� j��Qt�i�i�n���

�Tt� ��� i�m�n���g

If there is no match found, the answer set is empty because there is no similarity between Qt and Tt with a

given threshold �.

Following is an example similarity-based object-trajectory query specification in BilVideo query language. In

this example query, we are interested in retrieving the segments of a video, whose video identifier is specified as

1, where object o� follows a similar path to the query trajectory with no time gap value given (continuous move-

ment). For the sake of simplicity, let us assume that the trajectory of object o� stored in the knowledge-base for

the video queried is tr(o�, [east, north, east, north, south], [10, 20, 10, 30, 15],

[[1, 100], [100, 150], [150, 200], [200, 250], [250, 300]]).

select segment

from 1

where tr(o�, [[east, north, east, northwest], [10, 20, 15, 25]])

sthreshold 0.6 dirweight 0.7;

Hence, for this query example, � = � = o�, k�k = n = 5, k�k = m = 4, � = 0.6, and 	 = 0.7

(
 = 1 - 	 = 0.3). Moreover, T = (�, �, �, �) and Q = tr(�, �) sthreshold � dirweight 	, where

� = [east, north, east, north, south],

� = [10, 20, 10, 30, 15],

� = [[1, 100], [100, 150], [150, 200], [200, 250], [250, 300]], and

� = [�,
]

� = [east, north, east, northwest],

 = [10, 20, 15, 25].

Since n > m, this query falls into Case 2. Thus, from Equation 5,

Tt����� = [[east, north, east, north], [10, 20, 10, 30]] and

Tt����� = [[north, east, north, south], [20, 10, 30, 15]].

According to Equation 4, ��Qt�Tt������ and ��Qt�Tt������ are computed using the formula given in Equation 3.

Therefore,

��Qt�Tt������ = 0.7 �����Tt����� � + 0.3 ��
��Tt����� � and

��Qt�Tt������ = 0.7 �����Tt����� � + 0.3 ��
��Tt����� �, where

�Tt�����
= [east, north, east, north],

�Tt�����
= [north, east, north, south],

�Tt�����
= [10, 20, 10, 30], and

15

�Tt�����
= [20, 10, 30, 15].

�����Tt�����
� and �����Tt����� � are computed using Equation 1, while ��
��Tt�����

� and ��
��Tt����� � are com-

puted using Equation 2. After the computations, �����Tt�����
� = 0.875, �����Tt����� � = 0.427, ��
��Tt����� � = 0.949,

and ��
��Tt����� � = 0.156. Thereby, ��Qt�Tt������ = 0.897 and ��Qt�Tt������ = 0.346.

Since ��Qt�Tt������ > 0.6, but ��Qt�Tt������ < 0.6, the only interval, �s�e�, returned as a result of this query is

��s� ��e� �, where �s� � � and �e� � 	
�. Hence, �� f���	
��g.

Projection Operator:

BilVideo query language provides a trajectory-projection operator, project(� [,]), to extract subtrajectories

from the trajectory facts, where � is an object identifier for which a variable might be used, and 	 is an optional

condition. If a condition is not given, then the operator returns the entire trajectory that an object follows in a

video clip. Otherwise, subtrajectories of an object, where the given condition is satisfied, are returned. Hence,

the output of project is a set � = {� | � = [�,
]}, where � is a trajectory, and � and
 are the directional and

displacement components of �, respectively. The condition, if it is given, is local to project, and it is of type

<spatial-condition> as specified in Appendix A.

4.2.4 Temporal Queries

This type of queries is used to specify the order of occurrence of conditions in time. Conditions may be of any type,

but temporal operators process their arguments only if they contain intervals. BilVideo query language implements

all temporal relations, defined by Allen’s temporal interval algebra, as temporal operators, except for equal: our

interval operator and yields the same functionality as that of equal because its definition, given in Section 5.4, is the

same as that of equal for interval processing. Supported temporal operators, which are used as interval operators

in BilVideo query language, are before, meets, overlaps, starts, during, finishes, and their inverse operators. A user

query may contain repeating temporal conditions specified by repeat with an optional repetition number given.

If tgap is not provided with repeat, then its default value for the temporal operators (equivalent to one frame

when converted) is assumed. Definitions of the temporal relations can be found in [3].

4.2.5 Aggregate Queries

This type of queries may be used to retrieve statistical data about objects and events in video data. The BilVideo

query language supports three aggregate functions, average, sum, and count, as explained in Section 4.1.

4.3 Example Applications

To demonstrate the capabilities of the BilVideo query language, three application areas, soccer event analysis, bird

migration tracking, and movie retrieval systems, have been selected. However, it should be noted that the BilVideo

16

system architecture and BilVideo query language provide a generic framework to be used for any application that

requires spatio-temporal query processing capabilities.

4.3.1 Soccer Event Analysis System

A soccer event analysis system may be used to collect statistical data on events that occur during a soccer game,

such as finding the number of goals, offsides and passes, average ball control time for players, etc., as well as to

retrieve video segments, where such events take place. BilVideo query language can be used to answer such queries,

provided that some necessary facts, such as players and goalkeepers for the teams, as well as some predicates, such

as player to find the players of a certain team, are added to the knowledge-base. This section provides some query

examples based on an imaginary soccer game fragment between England’s two teams Liverpool and Manchester

United. The video identifier of this fragment is assumed to be 1.

Query 1: “Find the number of direct shots to the goalkeeper of Liverpool by each player of Manchester United in

a given video clip, and return such video segments.”

This query can be specified in BilVideo query language as follows:

select count(segment), segment, X

from 1

where goalkeeper(X, liverpool) and player(Y, manchester) and

touch(Y, ball) meets not(touch(Z, ball)) meets touch(X, ball);

In this query, the external predicates are goalkeeper and player. For each player of Manchester United found

in the specified video clip, the number of direct shots to the goalkeeper of Liverpool by the player, along

with the player’s name and video segments found, is returned provided that such segments exist. In BilVideo

system architecture, semantic meta data is stored in an object-relational database. Hence, video identifiers

can be retrieved from this database querying it with some descriptional data.

Query 2: “Find the average ball control (play) time for each player of Manchester United in a given video clip.”

This query can be specified in BilVideo query language as follows:

select average(segment), X

from 1

where player(X, manchester) and touch(X, ball);

In answering this query, it is assumed that when a player touches the ball, it is in his control. Then, the

ball control time for a player is computed with respect to the time interval during which he is in touch with

the ball. Hence, the average ball control time for a player is simply the sum of all time intervals where the

player is in touch with the ball divided by the number of these time intervals. This value is computed by the

aggregate function average.

17

Query 3: “Find the number of goals of Liverpool scored against Manchester United in a given video clip.”

This query can be specified in BilVideo query language as follows:

select count(segment)

from 1

where samelevel(ball, net) and overlap(ball, net);

In this query, 3D relation samelevel ensures that an event, which is not a goal because the ball does not go

into the net, but rather passes somewhere near the net, is not considered as a goal. The ball may overlap with

the net in 2D space while it is behind or in front of the net on the z-axis of three-dimensional space. Hence,

by using the 3D relation samelevel, such false events are discarded.

4.3.2 Bird Migration Tracking System

A bird migration tracking system is used to determine the migration paths of birds over a set of regions in certain

times. In [33], an animal movement querying system is discussed, and we have chosen a specific application

of such a system to show how the BilVideo query language might be used to answer spatio-temporal, especially

object-trajectory, queries on the migration paths of birds.

Query 1: “Find the migration paths of bird o� over region r� in a given video clip.”

This query can be specified in BilVideo query language as follows:

select X

from 2

where X = project(o�, inside(o�, r�));

In this query, X is a variable used for the trajectory of bird o� over region r�. The video identifier of the

video clip, where the migration of bird o� is recorded, is assumed to be 2. This query returns the paths bird

o� follows when it is inside region r�.

Query 2: “How long does bird o� appear inside region r� in a given video clip?”

This query can be specified in BilVideo query language as follows:

select sum(segment)

from 2

where inside(o�, r�);

The result of this query is a time value, which is computed by the aggregate function sum adding up the time

intervals during which bird o� is inside region r�.

Query 3: “Find the video segments where bird o� enters region r� from west, and leaves from north, in a given

video clip.”

18

This query can be specified in BilVideo query language as follows:

select segment

from 2

where (touch(o�, r�) and west(o�, r�)) meets

overlap(o�, r�) meets coveredby(o�, r�) meets

inside(o�, r�) meets

coveredby(o�, r�) meets overlap(o�, r�) meets

(touch(o�, r�) and north(o�, r�));

Query 4: “Find the names of birds following a similar path to that of bird o� over region r� with a similarity

threshold value 0.9 in a given video clip, and return such segments.”

This query can be specified in BilVideo query language as follows:

select segment, X

from 2

where Y = project(o�, inside(o�, r�)) and inside(X, r�) and

X != o� and tr(X, Y) sthreshold 0.9;

Here, X and Y are variables representing the bird names and subtrajectories of bird o� over region r�,

respectively. Projected subtrajectories of bird o�, where the given condition is to be inside region r�, are

used to find similar subtrajectories of other birds over the same region.

4.3.3 Movie Retrieval System

A movie retrieval system contains movies and series from different categories, such as cartoon, comedy, drama,

fiction, horror, etc. Such a system may be used to retrieve videos or segments from a collection of movies with

some spatio-temporal, semantic, and low-level conditions given. In this section, a specific episode of Smurfs (a

cartoon series), titled as Bigmouth’s Friend, is used for the two spatio-temporal query examples given. The video

identifier of this episode is assumed to be 3.

Query 1: “Find the segments from Bigmouth’s Friend where Bigmouth is below RobotSmurf, while RobotSmurf

starts moving towards west, and then goes to east, repeating this as many times as it happens in the video

clip.”

select segment

from 3

where below(bigmouth, robotsmurf) and

(tr(bigmouth, [west, east])) repeat;

Query 2: “Find the segments from Bigmouth’s Friend where robotsmurf and bigmouth are

disjoint, and robotsmurf is to the right of bigmouth, while there is no other object of interest that appears.”

19

DECOMPOSER

Query

PARSERLEXER QUERY
EXECUTOR

QUERY Result SetQuery Parse Tree Query TreeTokens

Query Execution PhaseQuery Decomposition PhaseQuery Recognition Phase

Figure 3: Query Processing Phases

select segment

from 3

where disjoint(robotsmurf, bigmouth) and

right(robotsmurf, bigmouth) and

appear_alone(robotsmurf, bigmouth);

In this query, appear_alone is an external predicate defined in the knowledge-base as follows:

appear_alone(X, Y, F) :- keyframes(L1),

member(F, L1), findall(W, p_appear(W, F), L2),

length(L2, 2), forall(member(Z, L2), (Z = X; Z = Y)).

5 Spatio-temporal Query Processing

This section explains our rule-based spatio-temporal query processing strategy in detail. The query processing is

carried out in three phases, namely, query recognition, query decomposition, and query execution. These phases

are depicted in Figure 3, and they are explained in Sections 5.1 through 5.3. The interval processing is performed

in the query execution phase, and it is discussed in Section 5.4 through some case studies.

In BilVideo query model, the conditions are evaluated in a single timeline. For each internal node in the query

tree, the child nodes are evaluated first, and the results obtained from the child nodes are propagated to the parent

node for interval processing, going up in the query tree until the final query results are obtained.

5.1 Query Recognition

The lexical analyzer and parser for the BilVideo query language were implemented using Flex and Bison that work

under a Linux operating system [13, 37], which are the GNU versions of the original Lex&Yacc [20, 24] compiler-

compiler generator tools. The lexical analyzer partitions a query into tokens, which are passed to the parser with

possible values for further processing. The parser assigns structure to the resulting pieces and creates a parse tree

to be used as a starting point for query processing. This phase is called query recognition phase.

20

5.2 Query Decomposition

The parse tree generated after the query recognition phase is traversed in a second phase, which we call the query

decomposition phase, to construct a query tree. The query tree is constructed from the parse tree decomposing

a query into three basic types of subqueries: plain Prolog subqueries or maximal subqueries that can be directly

sent to the inference engine Prolog, trajectory-projection subqueries that are handled by the trajectory projector,

and similarity-based object-trajectory subqueries that are processed by the trajectory processor. Temporal queries

are handled by the interval-operator functions such as before, during, etc. Arguments of the interval operators are

handled separately because they should be processed before the interval operators are applied. Since a user may

give any combination of conditions in any order while specifying a query, a query is decomposed in such a way

that a minimum number of subqueries are formed. This is achieved by grouping the Prolog-type predicates into

maximal subqueries without changing the semantic meaning of the original query.

5.3 Query Execution

The input for the query execution phase is a query tree. In this phase, the query tree is traversed in postorder,

executing each subquery separately and performing interval processing in internal nodes so as to obtain the final

set of results. Since it would be inefficient and very difficult, if not impossible, to fully handle spatio-temporal

queries by Prolog alone, the query execution phase is mainly carried out by some efficient C++ code. Thus,

Prolog is utilized only to obtain intermediate answers to user queries from the facts-base. The intermediate query

results returned by Prolog are further processed, and the final answers to user queries are formed after the interval

processing. Figure 4 illustrates the query execution phase.

The BilVideo query language is designed to return variable values, when requested explicitly, as part of the

query result, as well. Therefore, the language not only supports video/segment queries but also variable-value

retrieval for the parts of videos satisfying given query conditions, utilizing a knowledge-base. Variables may be

used for the object identifiers and trajectories.

One of the main challenges in query execution is to handle such user queries where the scope of a variable

used extends to several subqueries after the query is decomposed. It is a challenging task because subqueries are

processed separately, accumulating and processing the intermediate results along the way to form the final set of

answers. Hence, the values assigned to variables for a subquery are retrieved and used for the same variables of

other subqueries within the scope of these variables. Therefore, it is necessary to keep track of the scope of each

variable for a query. This scope information is stored in a hash table generated for the variables. Dealing with

variables makes the query processing much harder, but it also empowers the query capabilities of the system and

yields much richer semantics for user queries.

21

Processor
Interval

Unit

Processing

Central Query

Answers Trajectory

Processor

Queries

Subqueries
Maximal

Answers

Knowledge−base

 Set
Query Result

Query Tree

Interval
Operator

Input

Interval
Operator
Output

Object
Trajectories

Trajectory
Queries

Trajectory
Projector

Similarity−Based
Object−Trajectory

Answers

Trajectory−Projection
Queries

Trajectory Queries

Condition Queries

Answers

Figure 4: Query Execution

5.4 Interval Processing

In BilVideo query model, intervals are categorized into two types: non-atomic and atomic intervals. If a condition

holds for every frame of a part of a video clip, then the interval representing an answer for this condition is consid-

ered as a non-atomic interval. Non-atomicity implies that for every frame within an interval in question does the

condition hold. Hence, the condition holds for any subinterval of a non-atomic interval, as well. This implication

is not correct for atomic intervals, though. The reason is that the condition associated with an atomic interval does

not hold for all its subintervals. Consequently, an atomic interval cannot be broken into its subintervals for query

processing. On the other hand, subintervals of an atomic interval are populated for query processing, provided

that conditions are satisfied in their range. In other words, the query processor generates all possible atomic in-

tervals for which the given conditions are satisfied. This interval population is necessary since atomic intervals

cannot be broken into subintervals, and all such intervals, where the conditions hold, should be generated for query

processing. The intervals returned by the plain Prolog subqueries (maximal subqueries) that contain directional,

topological, object-appearance, 3D-relation, and external-predicate conditions are non-atomic, whereas those ob-

tained by applying the temporal operators to the interval sets, as well as those returned by the similarity-based

object-trajectory subqueries are atomic intervals. Since the logical operators AND, OR and NOT are considered as

interval operators when their arguments contain intervals to process, they also work on intervals. The operators

AND and OR may return atomic and/or non-atomic intervals depending on the types of their input intervals. The

operator AND takes the intersection of its input intervals, while the operator OR performs a union operation on its

22

Input Interval 1 Input Interval 2 Result Set Result Interval

Type

I� iff I� � I�

I� (Atomic) I� (Atomic) I� iff I� � I� Atomic

otherwise, Ø

I� (Atomic) I� (Non-atomic) I� iff I� � I� Atomic

otherwise, Ø

I� (Non-atomic) I� (Atomic) I� iff I� � I� Atomic

otherwise, Ø

[Is, Ie] iff I� overlaps I�

Is = I�s iff I�s � I�s

I� (Non-atomic) I� (Non-atomic) otherwise, Is = I�s Non-atomic

Ie = I�e iff I�e � I�e

otherwise, Ie = I�e

otherwise, Ø

Table 2: Interval Intersection (AND)

input intervals. The unary operator NOT returns the complement of its input interval set with respect to the video

clip being queried, and the intervals in the result set are of type non-atomic, regardless of the types of the input

intervals. Semantics of the interval intersection and union operations are given in Tables 2 and 3, respectively.

The rationale behind classifying the video frame intervals into two categories as atomic and non-atomic may

be best described with the following query example: “Return the video segments in the database, where object A

is to the west of object B and object A follows a similar trajectory to the one specified in the query with respect

to the similarity threshold given”. Let us assume that the intervals [10, 200] and [10, 50] are returned as part of

the answer set for a video for the trajectory and spatial (directional) conditions of this query, respectively. Here,

the first interval is of type atomic because the trajectory of object A is only valid within the interval [10, 200],

and therefore, trajectory similarity computation is not performed for any of its subintervals. However, the second

interval is non-atomic since the directional condition given is satisfied for each frame in this interval. When these

two intervals are processed to form the final result by the AND operator, no interval is returned as an answer

because there is no such an interval, where both conditions are satisfied together. If there were no classification

of intervals, and all intervals were to be breakable into subintervals, then the final result set would include the

interval [10, 50]. However, as obvious, the two conditions cannot hold together in this interval due to the fact

that the trajectory of object A spans over the interval [10, 200]. As another case, let us suppose that the intervals

[10, 200] and [10, 50] are returned as part of the answer set for the spatial (directional) and trajectory conditions

of this query, respectively, and the intervals were to be unbreakable to sub-intervals. Then, the result set would be

empty for these two intervals. This is not correct since there is an interval, [10, 50], where both conditions hold.

These two cases clearly show that intervals must be classified into two groups as atomic and non-atomic for query

processing. Following is a discussion with another example query that has a temporal predicate provided to make

23

Input Interval 1 Input Interval 2 Result Set Result Interval

Type

I� (Atomic) I� (Atomic) {I�, I�} Atomic

Atomic

I� (Atomic) I� (Non-atomic) {I�, I�} and

Non-atomic

Non-atomic

I� (Non-atomic) I� (Atomic) {I�, I�} and

Atomic

[I�s , I�e] if I�s = I�e��

[I�s , I�e] if I�s = I�e��

[Is, Ie] if I� overlaps I�

I� (Non-atomic) I� (Non-atomic) Is = I�s iff I�s � I�s Non-atomic

otherwise, Is = I�s

Ie = I�e iff I�e � I�e

otherwise, Ie = I�e

otherwise, {I�, I�}

Table 3: Interval Union (OR)

all these concepts much clearer.

Let us suppose that a user wants to find the parts of a video clip satisfying the following query:

Query: (A before B) and west(x, y), where A and B are Prolog subqueries, and x and y are atoms (constants).

The interval operator “before” returns a set of atomic intervals, where first A is true and B is false, and then,

A is false and B is true in time. If A and B are true in the intervals [4, 10] and [20, 30], respectively, and if these

two intervals are both non-atomic, then the result set will consist of [10, 20], [10, 21], [9, 20], [10, 22], [9, 21], ...,

[4, 30]. Now, let us discuss two different scenarios:

Case 1: west(x, y) holds for [9, 25]. This interval is non-atomic because “west(x, y)” returns non-atomic intervals.

If the operator “before” returned only the atomic interval [4, 30] as the answer for “A before B", then the

answer set to the entire query would be empty. However, the user is interested in finding the parts of a

video clip, where “(A before B) and west(x, y)” is true. The intervals [10, 20], [10, 21],, [4, 29] also

satisfy “A before B”; however, they would not be included in the answer set for “before”. This is wrong! All

these intervals must be a part of the answer set for “before” as well. If they are included, then the answer

to the entire query will be [9, 25] because [9, 25] (atomic) and [9, 25] (non-atomic) �� [9, 25] (atomic).

Nonetheless, make a note of that such intervals as [10, 19], [11, 25], etc. are not included in the answer set

of “A before B” since they do not satisfy the condition “A before B”.

Case 2: west(x, y) holds for [11, 25]. Let us suppose that “before” returned non-atomic intervals rather than atomic

24

intervals, and that the answer for “A before B” were [4, 30]. Then, the answer to the entire query would be

[11, 25] for [4, 30] (non-atomic) and [11, 25] (non-atomic) �� [11, 25] (non-atomic). Nevertheless, this is

wrong due to the fact that “A before B” is not satisfied within this interval. Hence, “before” should return

atomic intervals so that such incorrect results are not produced.

These two cases clearly show that the temporal operators should return atomic intervals, and that the results

should also include the subintervals of each largest interval that satisfy the given conditions, rather than consisting

only of the set of largest intervals. It also demonstrates why such a classification of the intervals as atomic and

non-atomic is necessary for interval processing.

5.5 Query Examples

In this section, three example spatio-temporal queries are given to demonstrate how the query processor decom-

poses a query into subqueries. Intermediate results obtained from these subqueries are integrated step by step to

form the final answer set.

Query 1: select segment, X, Y

from all

where west(X, Y) and west(Y, o�) and west(o�, o�) and

tr(o�, [[west, east], [24, 40]]) sthreshold 0.4 dspweight 0.3 and

disjoint(X, Y) before touch(X, Y) and disjoint(Y, o�);

This example query is decomposed into following subqueries:

Subquery 1: tr(o�, [[west, east], [24, 40]]) sthreshold 0.4 dspweight 0.3

Subquery 2: disjoint(X, Y)

Subquery 3: touch(X, Y)

Subquery 4: west(X, Y) and west(Y, o�) and west(o�, o�), and disjoint(Y, o�)

The directional conditions west(X, Y), west(Y, o�), and west(o�, o�) can be grouped together with

the topological condition disjoint(Y, o�) using the and operator without changing the semantics of the

original query, as shown in the example decomposition. It should be noted here that if the topological condition

disjoint(Y, o�)were connected in the query with the operator or or a temporal operator, then such a grouping

would not be possible. In this example, subqueries 2 through 4 are the maximal subqueries. Subqueries 2 and 3

are linked to each other by the temporal operator before. The rest of the internal nodes in the query tree contains

the operator and. Figure 5 depicts the query tree constructed for this example query.

25

AND

AND

from all
where west(X, Y) and west(Y, a), and west(a, b) and

disjoint(X, Y) before touch(X, Y) and disjoint(Y, a);

Query: select segment, X, Y

tr(b, [[west, east], [24, 40]]) sthreshold 0.4 dspweight 0.3 and

BEFORE

touch(X, Y)disjoint(X, Y)

west(X, Y) and west(Y, a) and

tr(b, [[west, east], [24, 40]], 0.4, 0.7, 0.3)

west(a, b) and disjoint(Y, a)

Figure 5: The query tree constructed for Query 1

Query 2: select segment, Y

from all

where west(X, Y) and west(Y, o�) and

tr(o�, [[west, east], [24, 40]]) sthreshold 0.4 dirweight 0.4 and

disjoint(Y, o�);

Query 2 is decomposed into following subqueries:

Subquery 1: tr(o�, [[west, east], [24, 40]]) sthreshold 0.4 dirweight 0.4

Subquery 2: west(X, Y) and west(Y, o�) and disjoint(Y, o�)

To answer Query 1, the query processor computes each subquery traversing the query tree in postorder per-

forming interval processing at each internal node and taking into account the scope of each variable encountered.

Here, the scope of object variables X and Y is subqueries 2, 3 and 4. Hence, for each value-pair of variables X and

Y, a set of intervals is computed in subquery 2. Another reason for computing a set of intervals for each value-pair

is that the values obtained for variables X and Y are also returned in pairs, along with the video segments satisfy-

ing the query conditions, as part of the query results. Hence, even if the scope of these variables were to be only

subquery 2, the same type of interval processing and care must be provided. Nonetheless, if an object variable

is bound by only one subquery, and its values are not to be returned as part of the query result as in the case of

26

object variable X in Query 2, then it is possible to combine consecutive intervals, where the variable takes different

values, while the rest of the conditions is satisfied for the same set of value-sequences for the rest of the variables.

Query 3 better explains this concept of interval processing and variable value computation:

Query 3: “Return video segments in the database where object o� is first disjoint from object o� and then touches

it repeating this event 3 times while it is inside another object.”

select segment

from all

where inside(o�, X) and (disjoint(o�, o�) meets touch(o�, o�)) repeat 3;

In this query, we do not care which object object o� is inside, but we are only interested in the video segments

where object o� is first disjoint from object o�, and then touches it, repeating this event 3 times, while it is inside

another object. Thus, the consecutive intervals for different objects that contain object o� may be combined,

provided that the given conditions are satisfied.

6 Discussion on Performance

The running time of our algorithms for processing spatio-temporal queries depend on many parameters that are very

hard to formulate nicely. The reason of this is mostly due to the possible existence of variables in user queries. As

explained in Section 5.3, allowing variables in a user query makes the query processing much harder; nonetheless,

it also empowers the query capabilities of the system, and results in much richer semantics for user queries. In

BilVideo, when a variable is unified (bound to some values previously computed within its scope), these values

are transferred and used for a condition (containing that variable) that comes next within the variable’s scope.

The query processor uses these values, instead of finding all the values of the variable that satisfy the condition

regardless of the previous condition(s) and eliminating those that cannot be included in the result set because they

do not satisfy the previous condition(s) in the variable’s scope. This speeds up the query processing with unified

variables, even though there is also an overhead for transferring the previously computed values for the variables.

The reason is that the query domains of the variables for the next condition are narrowed down (restricted to the

previously computed values for the unified variables). Since a condition may contain any number of variables, and

some of these variables might have been unified previously in executing the query, the query processor has to take

into account for that condition a set of variable-value lists. For this reason, it is very hard to formalize the running

time behaviors of our spatio-temporal query processing algorithms as they depend on many parameters, such as the

number of variables used, their scope within the entire query, the query domains of the variables for each condition,

the overhead involved in transferring the variable-value lists, etc., in addition to the database size. Therefore, we

instead provide a brief summary of our preliminary performance results which are presented in detail in [12].

These performance results show that the system is scalable for spatio-temporal queries in terms of the number

27

Original Video Total � of Frames Total � of Objects Max. � of Objects in a Frame

Jornal.mpg 5254 21 4

Smurfs.avi 4185 13 6

Table 4: Specifications of Real Video Data

of salient objects per frame and the total number of frames in a video clip. The results also demonstrate the

space savings achieved due to our rule-based approach. For the time efficiency tests, queries were given to the

knowledge-base as Prolog predicates. For the scalability and space savings, program-generated synthetic video

data was used. These tests constitute the first part of our overall tests. In the second part, the performance of

the knowledge-base was tested on some real video fragments with the consideration of space and time efficiency

criteria to show its applicability in real-life applications. Real video data was extracted from jornal.mpg [1] and a

Smurfs cartoon episode named Bigmouth’s Friend. Table 4 presents some information about these video fragments.

For the space efficiency tests with the program-generated synthetic data, the number of objects per frame was

selected as 8, 15 and 25, while the total number of frames was fixed to 100. To show the system’s scalability in

terms of the number of objects per frame, the total number of frames was chosen to be 100, and the number of

objects per frame was changed from 4 to 25. For the scalability test with respect to the total number of frames, the

number of objects was fixed to 8, whilst the total number of frames was varied from 100 to 1000.

In the tests conducted with the program-generated video data, there was a 19.59% savings from the space for

the sample data of 8 objects and 1000 frames. The space savings was 31.47% for the sample video of 15 objects

and 1000 frames, while it was 40.42% for 25 objects and 1000 frames. With the real data, for the first video

fragment jornal.mpg, our rule-based approach achieved a savings of 37.5% from the space. The space savings for

the other fragment, smurfs.avi, was 40%.

The space savings obtained from the program-generated video data is relatively low compared to that obtained

from the real video fragments. We believe that the reason behind such a behavior is due to the random simulation

of the motion of objects in our synthetic test data: while creating the synthetic video data, the motion pattern of

objects was simulated randomly changing the objects’ MBR coordinates by choosing only one object to move at

each frame. Nevertheless, objects generally move slower in real video, causing the set of spatial relations to change

over a longer period of frames. During the tests with the synthetic video data, it is also observed that space savings

do not change when the number of frames is increased as the number of objects of interest per frame is fixed. The

test results obtained for the synthetic data comply with those obtained for the real video. Some differences seen in

the results stem from the fact that synthetic data was produced by a program, thereby not being able to perfectly

simulate a real-life scenario.

The time efficiency tests performed on the program-generated synthetic data show that the system is scalable

in terms of the number of objects and the number of frames, when either of these numbers is increased while the

other is fixed. Moreover, the knowledge-base of the system has a reasonable response time as the results of the

28

time efficiency tests on the real video data show. Therefore, we can claim that the knowledge-base of BilVideo is

reasonably fast enough for answering spatio-temporal queries.

7 Conclusions and Future Work

We proposed an SQL-like textual query language for spatio-temporal queries on video data, and demonstrated

the capabilities of the language through some example queries given on different application areas. Our novel

rule-based spatio-temporal query processing strategy has also been explained with some query examples.

The BilVideo query language is designed to be used for any application, which needs spatio-temporal query

processing facilities. It is extensible in that any application-dependent predicate with a different name from those

of predefined predicates and constructs of the language, and with at least one argument, can be used in user queries.

For that, it suffices to add some necessary facts and/or rules to the knowledge-base priori. Hence, the language

provides query support through external predicates for application-dependent data.

The BilVideo query language currently supports a broad range of spatio-temporal queries. However, the Bil-

Video system architecture is designed to handle semantic (keyword, event/activity, and category-based) and low-

level (color, shape, and texture) video queries, as well. We completed our work on semantic video modeling,

which has been reported in [4]. As for the low-level queries, our Fact-Extractor tool also extracts color and shape

histograms of the salient objects in video keyframes [10], and it is currently being extended to extract texture infor-

mation from the video keyframes, as well. We are currently working on integrating the support for semantic and

low-level video queries into BilVideo, by extending its query processor and query language, without affecting the

way the spatio-temporal query conditions are specified in the query language, and processed by the query proces-

sor. Furthermore, we also completed our initial work on the optimization of the spatio-temporal video queries [41].

In an ideal environment, the BilVideo query language will establish the basis for a Web-based visual query inter-

face and serve as an embedded language for users. Hence, we developed a Web-based visual query interface for

specifying spatio-temporal video queries, visually, over the Internet [9]. We are currently working on enhancing

the interface for the semantic and low-level video query specification support. We will integrate the Web-based

visual query interface to BilVideo, and make it available on the Internet in future, when we complete our work on

semantic and low-level video queries.

References

[1] MPEG-7 test data set CD-14, port. news.

[2] S. Adalı, K.S. Candan, S. Chen, K. Erol, and V.S. Subrahmanian. Advanced video information systems: Data

structures and query processing. ACM Multimedia Systems, 4:172–186, 1996.

29

[3] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of ACM, 26(11):832–843,

1983.

[4] U. Arslan, M. E. Dönderler, E. Şaykol, Ö. Ulusoy, and U. Güdükbay. A semi-automatic semantic annotation

tool for video databases. In Proc. of Workshop on Multimedia Semantics (SOFSEM’2002), pages 1–10, Czech

Republic, 2002. Available online at http://www.cs.bilkent.edu.tr/ ediz/bilmdg/papers/sofsem02.pdf.

[5] N.S. Chang and K.S. Fu. Query by pictorial example. IEEE Trans. on Software Engineering, SE6, 6:519–524,

1980.

[6] S. Chang, W. Chen, H.J. Meng, H. Sundaram, and D. Zhong. VideoQ: An automated content-based video

search system using visual cues. In Proc. of ACM Multimedia, pages 313–324, Seattle, Washington, USA,

1997.

[7] S.K. Chang, Q.Y. Shi, and C.W. Yan. Iconic indexing by 2-d strings. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 9:413–428, 1987.

[8] W.W. Chu, A.F. Cardenas, and R.K. Taira. A knowledge-based multimedia medical distributed database

system - KMED. Information Systems, 20(2):75–96, 1995.

[9] E. Şaykol. Web-based user interface for query specification in a video database system. M.S. thesis, Depart-

ment of Computer Engineering, Bilkent University, Ankara, Turkey, September 2001.

[10] E. Şaykol, U. Güdükbay, and Ö. Ulusoy. A histogram-based approach for object-based query-by-shape-and-

color in multimedia databases. submitted journal paper, and also available as a Technical Report (BU-CE-

0201) at http://www.cs.bilkent.edu.tr/tech-reports/2002/BU-CE-0201.ps.gz.

[11] M. E. Dönderler, E. Şaykol, Ö. Ulusoy, and U. Güdükbay. BilVideo: A video database management system.

to appear in IEEE Multimedia, 2003.

[12] M.E. Dönderler, Ö. Ulusoy, and U. Güdükbay. A rule-based video database system architecture. Information

Sciences, 143(1–4):13–45, 2002.

[13] C. Donnelly and R. Stallman. Bison: The yacc-compatible parser generator. Online manual,

http://www.combo.org/bison/, 1995.

[14] M. Egenhofer and R. Franzosa. Point-set spatial relations. Int’l Journal of Geographical Information Systems,

5(2):161–174, 1991.

[15] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,

D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: The QBIC system. IEEE Computer,

28:23–32, 1995.

30

[16] R.H. Guting, M.H. Bohlen, M. Erwig, C.S. Jensen, N.A.Lorentzos, M. Schneider, and M. Vazirgiannis. A

foundation for representing and querying moving objects. ACM Tran-sactions on Database Systems, 25(1):1–

42, 2000.

[17] R. Hjelsvold and R. Midtstraum. Modelling and querying video data. In Proc. of the 20th Int. Conference on

VLDB, pages 686–694, Santiago, Chile, 1994.

[18] E. Hwang and V.S. Subrahmanian. Querying video libraries. Journal of Visual Communication and Image

Representation, 7(1):44–60, 1996.

[19] H. Jiang, D. Montesi, and A.K. Elmagarmid. VideoText database systems. In Proc. of IEEE Multimedia

Computing and Systems, pages 344–351, 1997.

[20] S.C. Johnson. Yacc: Yet another compiler compiler. Computing Science Technical Report 32, Bell Labora-

tories, Murray Hill, NJ, 1975.

[21] J. Koh, C. Lee, and A.L.P. Chen. Semantic video model for content-based retrieval. In Proc. of IEEE

Multimedia Computing and Systems, volume 1, pages 472–478, 1999.

[22] T.C.T. Kuo and A.L.P. Chen. A content-based query language for video databases. In Proc. of IEEE Multi-

media Computing and Systems, pages 209–214, 1996.

[23] T.C.T. Kuo and A.L.P. Chen. Content-based query processing for video databases. IEEE Transactions on

Multimedia, 2(1):1–13, 2000.

[24] M.E. Lesk. Lex - a lexical analyzer generator. Computing Science Technical Report 39, Bell Laboratories,

Murray Hill, NJ.

[25] J.Z. Li. Modeling and querying multimedia data. Technical Report TR-98-05, Department of Computing

Science, The University of Alberta, Alberta, Canada, 1998.

[26] J.Z. Li and M.T. Özsu. Stars: A spatial attributes retrieval system for images and videos. In Proc. of the 4th

Int. Conf. on Multimedia Modeling, pages 69–84, Singapore, 1997.

[27] J.Z. Li, M.T. Özsu, and D. Szafron. Modeling of moving objects in a video database. In Proc. of IEEE

Multimedia Computing and Systems, pages 336–343, Ottawa, Canada, 1997.

[28] J.Z. Li, M.T. Özsu, D. Szafron, and V. Oria. MOQL: A multimedia object query language. In Proc. of the

3rd Int. Workshop on Multimedia Information Systems, pages 19–28, Como, Italy, 1997.

[29] J.Z. Li, M.T. Özsu, D. Szafron, and V. Oria. Multimedia extensions to database query languages. Technical

Report TR-97-01, Department of Computing Science, The University of Alberta, Alberta, Canada, 1997.

[30] S. Marcus and V.S. Subrahmanian. Foundations of multimedia information systems. Journal of ACM,

43(3):474–523, 1996.

31

[31] S. Markus and V.S. Subrahmanian. Multimedia Database Systems: Issues and Research Directions (eds.

V.S. Subrahmanian and S. Jajodia), chapter Towards a Theory of Multimedia Database Systems, pages 1–35.

Springer-Verlag, 1996.

[32] S. Mehrotra, K. Chakrabarti, M. Ortega, Y. Rui, and T.S. Huang. Multimedia analysis and retrieval system

(MARS project). In Proc. of the 3rd Int. Workshop on Information Retrieval Systems, pages 39–45, Como,

Italy, 1997.

[33] M. Nabil, A.H. Ngu, and J.Shepherd. Modeling and retrieval of moving objects. Multimedia Tools and

Applications, 13:35–71, 2001.

[34] E. Oomoto and K. Tanaka. OVID: Design and implementation of a video object database system. IEEE

Trans. on Knowledge and Data Engineering, 5:629–643, 1993.

[35] M.T. Özsu, P. Iglinski, D. Szafron, S. El-Medani, and M. Junghanns. An object-oriented sqml/hytime com-

pliant multimedia database management system. In Proc. of ACM Multimedia, pages 233–240, Seattle, WA,

1997.

[36] D. Papadias, Y. Theodoridis, T. Sellis, and M. Egenhofer. Topological relations in the world of minimum

bounding rectangles: A study with R-trees. In Proceedings of ACM SIGMOD International Conference on

Management of Data, pages 92–103, San Jose, CA, USA, 1996.

[37] V. Paxson. Flex: A fast scanner generator. Online manual, http://www.combo.org/flex/, 1995.

[38] E.G.M. Petrakis and S.C. Orphanoudakis. Methodology for the representation, indexing and retrieval of

image by content. Image and Vision Computing, 11(8):504–521, 1993.

[39] A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving objects. In Proc. of

IEEE Data Engineering, pages 422–432, 1997.

[40] S.W. Smoliar and H. Zhang. Content-based video indexing and retrieval. IEEE Multimedia Magazine,

1(2):62–72, 1994.

[41] G. Ünel, M. E. Dönderler, Ö. Ulusoy, and U. Güdükbay. An efficient query optimization strategy for spatio-

temporal queries in video databases. submitted journal paper.

[42] Y. Zhuang, Y. Rui, T.S. Huang, and S. Mehrotra. Applying semantic association to support content-based

video retrieval. In Proc. of IEEE VLBV98 Workshop, pages 45–48, Urbana, IL, 1998.

32

A Grammar Specification of the Query Language

<query> := select <target> from all [where <condition>] ‘;’

| select <target> from <videolist> where <condition> ‘;’

| select segment [‘,’ <variablelist>] from <range>

where <condition> ‘;’

| select <variablelist> from <range> where <condition> ‘;’

| select <aggregate> ‘(’ segment ‘)’ [‘,’ segment] [‘,’ <variablelist>]

from <range> where <condition> ‘;’

<target> := <video> [‘:’ (<number> | random ‘(’ <number> ‘)’)]

<aggregate> := average | sum | count

<range> := all | <videolist>

<video> := video [[last] <time> [seconds]]

<videolist> := [<videolist> ‘,’] <vid>

<condition> := ‘(’ <condition> ‘)’ | not ‘(’ condition ‘)’

| <condition> and <condition> | <condition> or <condition>

| <condtype1> | <condtype2> | <condtype3> | <condtype4>

<condtype1> := <appearance> | <directional> | <topological>

| <tdimension> | <external-predicate>

<condtype2> := <variable> <cop> (<atom> | <variable>)

| <variable> ‘=’ <tprojection>

<condtype3> := <condition> <tmpred> <condition>

| ‘(’ <condition> <tmpred> <condition> [<timegap>] ‘)’ <trepeat>

<condtype4> := <trajectory-query>

| ‘(’ <trajectory-query> ‘)’ <trepeat>

<appearance> := appear ‘(’ <objectlist> ‘)’

33

<directional> := <direction> ‘(’ <object> ‘,’ <object> ‘)’

<topological> := <tpred> ‘(’ <object> ‘,’ <object> ‘)’

<tdimension> := <tdpred> ‘(’ <object> ‘,’ <object> ‘)’

<external-predicate> := <predicate-name> ‘(’ <objectlist> ‘)’

<tprojection> := project ‘(’ <object> [‘,’ <spatial-condition>] ‘)’

<trajectory-query> := tr ‘(’ <object> ‘,’ (<trajectory1> ‘)’

[<similarity>] | <trajectory2> ‘)’ [<simthreshold>]) [<timegap>]

<trajectory1> := <variable> | ‘[’ <dircomponent> ‘,’ <dispcomponent> ‘]’

<trajectory2> := ‘[’ <dircomponent> ‘]’

<dircomponent> := ‘[’ <dirlist> ‘]’

<dispcomponent> := ‘[’ <displist> ‘]’

<similarity> := <simthreshold> [dirweight <dirweight>

| dspweight <dspweight>]

<simthreshold> := sthreshold <threshold>

<timegap> := tgap <time>

<displist> := [<displist> ‘,’] <dspvalue>

<dirlist> := [<dirlist> ‘,’] <fdirection>

<trepeat> := repeat [<number>]

<spatial-condition> := ‘(’ <spatial-condition> ‘)’

| not ‘(’ <spatial-condition> ‘)’

| <spatial-condition> and <spatial-condition>

| <spatial-condition> or <spatial-condition>

| <appearance> | <directional> | <topological> | <tdimension>

| <variable> <cop> <object> | <external-predicate>

34

<direction> := left | right | above | below | <fdirection>

<fdirection> := west | east | north | south | northeast | southeast

| northwest | southwest

<tpred> := equal | contains | inside | cover | coveredby | disjoint

| overlap | touch

<tdpred> := infrontof | behind | sinfrontof | sbehind | tfbehind

| tdfbehind | samelevel

<tmpred> := before | meets | overlaps | starts | during | finishes

| ibefore | imeets | ioverlaps | istarts | iduring | ifinishes

<object> := <variable> | <atom>

<objectlist> := [<objectlist> ‘,’] <object>

<variablelist> := [<variablelist> ‘,’] <variable>

<vid> := (1-9)(0-9)*

<number> := (1-9)(0-9)*

<time> := (1-9)(0-9)*

<variable> := (A-Z)(A-Za-z0-9)*

<atom> := (a-z)(A-Za-z0-9)*

<predicate-name>x:= (a-z)(A-Za-z0-9_)*

<cop> := ‘=’ | “!=”

<threshold> := 0 ‘.’ (0* (1-9) 0*)+

<dspweight> := 0 [‘.’ (0-9)*] | 1

<dirweight> := 0 [‘.’ [0-9]*] | 1

<dspvalue> := (1-9)(0-9)*

xLexer recognizes such a character sequence as an external predicate name iff it is different from any predefined predicate and construct in

the language.

35

