
DATA MODELING AND QUERYING FOR
VIDEO DATABASES

a dissertation submitted to

the department of computer engineering

and the institute of engineering and science

of bi̇lkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Mehmet Emin Dönderler

July, 2002

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. Özgür Ulusoy (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Uǧur Güdükbay (Co-supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Attila Gürsoy

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Uǧur Doǧrusöz

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Adnan Yazıcı

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

iii

ABSTRACT

DATA MODELING AND QUERYING FOR VIDEO
DATABASES

Mehmet Emin Dönderler

Ph.D. in Computer Engineering

Supervisors: Assoc. Prof. Dr. Özgür Ulusoy and

Asst. Prof. Dr. Uǧur Güdükbay

July, 2002

With the advances in information technology, the amount of multimedia data

captured, produced and stored is increasing rapidly. As a consequence, multime-

dia content is widely used for many applications in today’s world, and hence, a

need for organizing this data and accessing it from repositories with vast amount

of information has been a driving stimulus both commercially and academically.

In compliance with this inevitable trend, first image and especially later video

database management systems have attracted a great deal of attention since tra-

ditional database systems are not suitable to be used for multimedia data.

In this thesis, a novel architecture for a video database system is proposed.

The architecture is original in that it provides full support for spatio-temporal

queries that contain any combination of spatial, temporal, object-appearance,

external-predicate, trajectory-projection and similarity-based object-trajectory

conditions by a rule-based system built on a knowledge-base, while utilizing an

object-relational database to respond to semantic (keyword, event/activity and

category-based) and low-level (color, shape and texture) video queries. Research

results obtained from this thesis work have been realized by a prototype video

database management system, which we call BilVideo. Its tools, Fact-Extractor

and Video-Annotator, its Web-based visual query interface and its SQL-like tex-

tual query language are presented. Moreover, the query processor of BilVideo

and our spatio-temporal query processing strategy are also discussed.

Keywords: video databases, multimedia databases, information systems,

video data modeling, content-based retrieval, spatio-temporal relations, spatio-

temporal query processing, video query languages.

iv

ÖZET

VİDEO VERİ TABANLARI İÇİN VERİ MODELLEME
VE SORGULAMA

Mehmet Emin Dönderler

Bilgisayar Mühendisliği, Doktora

Tez Yöneticileri: Doç. Dr. Özgür Ulusoy ve

Yard. Doç. Dr. Uǧur Güdükbay

Temmuz, 2002

Bilgi teknolojisindeki gelişmeler ile, elde edilen, üretilen ve saklanan mültimedya

veri miktarı hızlı bir şekilde artmakta ve bu veriler günümüzde birçok uygulamada

kullanılmaktadır. Bu nedenle, bu verilerin düzenlenmesi ve bu verilere büyük

miktarlarda bilgi bulunduran saklama alanlarından erişim gereksinimi, hem ticari

hem de akademik olarak, bir tetikleyici etken oluşturmuştur. Kaçınılmaz olan bu

eǧilime baǧlı olarak, ilk olarak resim ve özellikle daha sonra da video veri tabanı

yönetim sistemleri, geleneksel veri tabanı sistemlerinin mültimedya için uygun

olmaması nedeniyle, büyük bir ilgi çekmiştir.

Bu tezde, yeni bir video veri tabanı sistem mimarisi önerilmektedir. Bu mi-

marinin özelliǧi, yerleşimsel, zamansal, nesne görünüm, harici önerme, hareket

izdüşüm ve benzerlik tabanlı nesne hareket koşullarının herhangi bir kombinas-

yonunu içeren yerleşim-zamansal sorgulara bir bilgi tabanı üzerine kurulu kural

tabanlı bir sistem ile, anlamsal (anahtar kelime, olay/aktivite ve kategori tabanlı)

ve alt seviyedeki (renk, şekil ve desen) video sorgularına da nesneye yönelik

ve ilişkisel bir veri tabanı kullanılarak tam bir desteǧin saǧlanmasıdır. Bu tez

kapsamında elde edilen araştırma sonuçları, BilVideo olarak isimlendirdiǧimiz

bir video veri tabanı yönetim sistemi prototipinin gerçekleştirilmesinde kul-

lanılmıştır. BilVideo sisteminin parçaları olan Gerçek Çıkartıcı, Video Anlamsal

İlişkilendirici, Web tabanlı görsel sorgu arayüzü ve SQL benzeri metne dayalı

sorgu dili de tanıtılmaktadır. Ayrıca, BilVideo sisteminin sorgu işlemcisi ve

yerleşim-zamansal sorgu işleme yöntemimiz de tartışılmaktadır.

Anahtar sözcükler : video veri tabanları, mültimedya veri tabanları, bilgi sistem-

leri, video veri modelleme, içerik-tabanlı veri alma, yerleşim-zamansal ilişkiler,

yerleşim-zamansal sorgu işleme, video sorgu dilleri.

v

Acknowledgement

I would like to express my sincere gratitude to my supervisors Assoc. Prof. Dr.

Özgür Ulusoy and Asst. Prof. Dr. Uğur Güdükbay for their instructive comments,

suggestions, support and encouragement during this thesis work.

I am also very much thankful to Prof. Dr. Mehmet B. Baray for showing a

keen interest in finding me a place to stay on campus during the last two years

of my study, which accelerated the pace of my research considerably.

Finally, I am grateful to Asst. Prof. Dr. Attila Gürsoy, Asst. Prof. Dr. Uǧur

Doǧrusöz and Prof. Dr. Adnan Yazıcı for reading and reviewing this thesis.

vi

To My Family,

vii

Contents

1 Introduction 1

1.1 Organization of the Thesis . 5

2 Related Work 7

2.1 Spatio-Temporal Video Modeling 8

2.2 Semantic Video Modeling . 11

2.3 Systems and Languages . 12

2.3.1 QBIC . 12

2.3.2 OVID and VideoSQL . 13

2.3.3 MOQL and MTQL . 14

2.3.4 AVIS . 15

2.3.5 VideoQ . 16

2.3.6 VideoSTAR . 17

2.3.7 CVQL . 18

3 BilVideo VDBMS 19

viii

CONTENTS ix

3.1 BilVideo System Architecture . 19

3.2 Knowledge-Base Structure . 21

3.3 Fact-Extraction Algorithm . 24

3.4 Directional Relation Computation 28

3.5 Query Examples . 30

4 Tools For BilVideo 34

4.1 Fact-Extractor Tool . 34

4.2 Video-Annotator Tool . 36

5 Web-based User Interface 40

5.1 Spatial Query Specification . 40

5.2 Trajectory Query Specification . 42

5.3 Final Query Formulation . 43

6 BilVideo Query Language 45

6.1 Features of the Language . 46

6.2 Query Types . 49

6.2.1 Object Queries . 49

6.2.2 Spatial Queries . 50

6.2.3 Similarity-Based Object-Trajectory Queries 50

6.2.4 Temporal Queries . 55

CONTENTS x

6.2.5 Aggregate Queries . 56

6.2.6 Low-level (Color, Shape and Texture) Queries 56

6.2.7 Semantic Queries . 57

6.3 Example Applications . 57

6.3.1 Soccer Event Analysis System 57

6.3.2 Bird Migration Tracking System 59

6.3.3 Movie Retrieval System 61

7 Query Processor 63

7.1 Query Recognition . 64

7.2 Query Decomposition . 65

7.3 Query Execution . 65

7.4 Query Examples . 67

8 Spatio-Temporal Query Processing 70

8.1 Interval Processing . 71

9 Performance and Scalability Experiments 76

9.1 Tests with Program-Generated Video Data 77

9.2 Tests with Real Video Data . 80

10 Application Areas 89

10.1 An Example Application: News Archives Search System 90

CONTENTS xi

11 Conclusions and Future Work 93

Appendices 101

A List of Inference Rules 101

A.1 Strict Directional Rules . 101

A.2 Strict Topological Rules . 102

A.3 Heterogeneous Directional and Topological Rules 104

A.4 Third-Dimension Rules . 104

B Query Language Grammar Specification 106

C Query Processing Functions 111

C.1 Prolog Subqueries . 111

C.2 Similarity-Based Object-Trajectory Subqueries 112

C.3 Trajectory-Projection Subqueries 112

C.4 Operator AND . 113

C.5 Operator OR . 113

C.6 Operator NOT . 113

C.7 Temporal Operators . 114

List of Figures

3.1 BilVideo System Architecture . 20

3.2 Fact-Extraction Algorithm . 26

3.3 Directional Relation Computation 30

4.1 Fact-Extractor Tool . 36

4.2 Video-Annotator Tool . 37

4.3 Database Schema for Our Video Semantic Model 38

5.1 Spatial Query Specification Window 41

5.2 Trajectory Query Specification Window 42

5.3 Final Query Formulation Window 44

6.1 Directional Coordinate System . 52

7.1 Web Client - Query Processor Interaction 64

7.2 Query Processing Phases . 64

7.3 Query Execution . 66

7.4 The query tree constructed for Query 1 68

xii

LIST OF FIGURES xiii

9.1 Space Efficiency Test Results (8 Objects and 1000 Frames) 78

9.2 Space Efficiency Test Results (15 Objects and 1000 Frames) . . . 78

9.3 Space Efficiency Test Results (25 Objects and 1000 Frames) . . . 79

9.4 Query 1: west(X, Y, F) ∧ disjoint(X, Y, F) (100 Frames) 81

9.5 Query 2: west(1, Y, F) ∧ disjoint(1, Y, F) (100 Frames) 81

9.6 Query 3: west(X, 7, F) ∧ disjoint(X, 7, F) (100 Frames) 82

9.7 Query 4: west(1, 7, F) ∧ disjoint(1, 7, F) (100 Frames) 82

9.8 Query 5: west(X, Y, F) ∧ disjoint(X, Y, F) (8 Objects) 83

9.9 Query 6: west(1, Y, F) ∧ disjoint(1, Y, F) (8 Objects) 83

9.10 Query 7: west(X, 0, F) ∧ disjoint(X, 0, F) (8 Objects) 84

9.11 Query 8: west(1, 0, F) ∧ disjoint(1, 0, F) (8 Objects) 84

9.12 Space Efficiency Test Results for jornal.mpg 85

9.13 Space Efficiency Test Results for smurfs.avi 85

List of Tables

3.1 Definitions of 3D relations on z-axis of three-dimensional space . . 24

3.2 Dependencies Among Rules . 28

8.1 Interval Intersection (AND) . 73

8.2 Interval Union (OR) . 73

9.1 Specifications of the movie fragments 76

9.2 Queries for the Scalability Tests 79

9.3 Time Efficiency Test Results for jornal.mpg 87

9.4 Time Efficiency Test Results for smurfs.avi 87

xiv

Chapter 1

Introduction

There is an increasing demand toward multimedia technology in recent years with

the rapid growth in the amount of multimedia data available in digital format,

much of which can be accessed through the Internet. As a consequence of this

inevitable trend, first image and later video database management systems have

attracted a great deal of attention both commercially and academically because

traditional database systems are not suitable to be used for multimedia data. The

following are two possible approaches in developing a multimedia system [39]:

a) metadata along with its associated multimedia data may be stored in a

single database system, or

b) multimedia data is stored in a separate file system whereas the correspond-

ing metadata is stored in a database system.

The first approach implies that databases should be redesigned to handle

multimedia data together with conventional data. Since the user of the system

may not need a full-fledged multimedia system and some modifications to existing

databases are required, the first approach is not considered in practice. The

second approach allows users to base their multimedia systems on their existing

database systems with an additional multimedia storage server where the actual

multimedia data is stored. Users only need to integrate their existing database

1

CHAPTER 1. INTRODUCTION 2

systems with the multimedia storage system, and even though this approach may

complicate the implementation of some of the database functionalities such as

data consistency, it is preferred over the first approach.

Major challenges in designing a multimedia system are [54]:

a) the storage and retrieval requirements of multimedia data,

b) finding an expressible and extensible data model with a rich set of modeling

constructs, and

c) user interface design, query language and processing.

In this thesis, BilVideo, a Web-based prototype Video Database Management

System (VDBMS), is introduced [7, 8]. The architecture of BilVideo is original

in that it provides full support for spatio-temporal queries that contain any com-

bination of spatial, temporal, object-appearance, external-predicate, trajectory-

projection and similarity-based object-trajectory conditions by a rule-based sys-

tem built on a knowledge-base, while utilizing an object-relational database to

respond to semantic (keyword, event/activity and category-based) and low-level

(color, shape and texture) video queries. The knowledge-base of BilVideo con-

tains a fact-base and a comprehensive set of rules implemented in Prolog. The

rules in the knowledge-base significantly reduce the number of facts that need

to be stored for spatio-temporal querying of video data; our storage space sav-

ings was about 40% for some real video data we experimented on. Moreover,

the system’s response time for different types of spatio-temporal queries posed

on the same data was at interactive rates [10]. Query processor interacts with

both of the knowledge-base and object-relational database to respond to user

queries that contain a combination of spatio-temporal, semantic and low-level

video queries. Intermediate query results returned from these two system compo-

nents are integrated seamlessly by the query processor and final results are sent

to Web clients. BilVideo has a simple, yet very powerful SQL-like textual query

language for spatio-temporal queries on video data [9]. For novice users, there is

also a visual query language [6]. Both languages are currently being extended to

CHAPTER 1. INTRODUCTION 3

support semantic and low-level video queries. Contributions made by this thesis

work can shortly be stated as follows:

Rule-based approach BilVideo uses a rule-based approach for modeling and

querying spatio-temporal relations. Spatio-temporal relations are repre-

sented as Prolog facts partially stored in the knowledge-base and those re-

lations that are not stored explicitly can be derived by our inference engine,

Prolog, using the rules in the knowledge-base. BilVideo has a comprehen-

sive set of rules, which reduces the storage space needed for spatio-temporal

relations considerably as proven by our performance tests conducted using

both synthetic and real video data.

Spatio-temporal video segmentation: A novel approach is proposed for the

segmentation of video clips based on the spatial relationships between

salient objects in video data. Video clips are segmented into shots when-

ever the current set of relations between salient objects changes, thereby

helping us to determine parts of videos where the spatial relationships do

not change at all.

Directional relations To determine which directional relation holds between

two objects, center points of the objects’ Minimum Bounding Rectangles

(MBRs) are used. Thus, directional relations may also be defined for over-

lapping objects provided that the center points of their MBRs are different,

as opposed to other works that are based on Allen’s temporal interval alge-

bra [2, 28, 46, 47].

Third-Dimension (3D) Relations Some additional relations were also de-

fined on the third-dimension (z-axis of the three dimensional space) and

rules were implemented for them. 3D relations defined in the system are

infrontof, behind, strictlyinfrontof, strictlybehind, touchfrombehind, touched-

frombehind and samelevel.

Query types: BilVideo system architecture has been designed to support spatio-

temporal (directional, topological, 3D-relation, external-predicate, object-

appearance, trajectory-projection and similarity-based object-trajectory),

CHAPTER 1. INTRODUCTION 4

semantic (keyword, event/activity and category-based) and low-level (color,

shape and texture) video queries in an integrated manner.

Query language: An SQL-like textual query language, based on our data

model, is proposed for spatio-temporal querying of video data. This lan-

guage is very easy to use even by novice users, who are a bit familiar

with SQL. In fact, it is relatively easier to use compared with other pro-

posed query languages for video databases, such as CVQL, MOQL and

VideoSQL [21, 29, 38].

Retrieval Granularity: Users may wish to see only the parts of a video, where

the conditions given in a query are satisfied, rather than the scenes that con-

tain these segments. To the best of our knowledge, all the systems proposed

in the literature associate video features with scenes that are defined to be

the smallest logical units of video clips. Nevertheless, our spatio-temporal

data model supports a finer granularity for query processing that is inde-

pendent of semantic segmentation of videos (events/activities): it allows

users to retrieve any segment of a video clip, in addition to semantic video

units, as a result of a query. Thereby, BilVideo query language can return

precise answers for spatio-temporal queries in terms of frame intervals.

Predicate-like conditions: Users specify the conditions in where clause of the

BilVideo query language as is the same in SQL. However, spatial and

external-predicate conditions are specified as Prolog-type predicates, which

makes it much easier to shape complex query conditions, especially when

combined with temporal operators, such as before, during, etc. Intermediate

result sets computed for each subquery contain a list of interval sequences

and/or a list of variable-value sequences. Output of all interval operators

is of the same type, as well. Hence, temporal operators may follow one an-

other in where clause, and the output of a temporal operator may become

an input argument of the next one. This feature of the language results in a

more intuitive, easy-to-write and easy-to-understand query declaration. It

also provides more flexibility for users in forming complex spatio-temporal

queries.

CHAPTER 1. INTRODUCTION 5

Aggregate Functions: BilVideo query language provides three aggregate func-

tions, average, sum and count, which may be very attractive for some ap-

plications to collect statistical data on spatio-temporal events.

Application Independency: BilVideo is application-independent, and thus, it

can be used for any application that requires spatio-temporal, semantic and

low-level query processing capabilities on video data.

Extensibility: BilVideo can easily be tailored for specific requirements of any

application through the definition of external predicates. BilVideo query

language has a condition type external defined for application-dependent

predicates. This condition type is generic, and hence, a user query may

contain any application-dependent predicate in where clause of the language

having a name different from a predefined predicate and language construct,

and with at least one argument that might be either a variable or a constant

(atom). Such predicates are processed just like spatial predicates as part

of the Prolog subqueries. If an external predicate is to be used to query

video data, facts and/or rules related to the predicate should be added to

the knowledge-base priori, which is the only requirement posed.

1.1 Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 gives a review of the research in the literature that is related to our work.

Chapter 3 explains the overall architecture of BilVideo and gives some example spatio-

temporal queries based on an imaginary soccer game fragment through

which our rule-based approach is demonstrated.

Chapter 4 presents the tools developed for BilVideo, namely Fact-Extractor and

Video-Annotator. The Fact-Extractor tool was developed to populate the

knowledge-base of the system with facts for spatio-temporal querying of

video data. The tool also extracts color and shape histograms of objects

CHAPTER 1. INTRODUCTION 6

and stores them in the feature database for low-level video queries. The

Video-Annotator tool is used to annotate video clips for semantic content

and to populate the system’s feature database.

Chapter 5 presents the Web-based visual query interface of BilVideo.

Chapter 6 presents the system’s SQL-like textual query language for spatio-temporal

querying of video data.

Chapter 7 provides a discussion on the query processor of BilVideo.

Chapter 8 elaborates on our spatio-temporal query processing strategy.

Chapter 9 provides the results of our performance tests for spatio-temporal queries

regarding the efficiency of the proposed system in terms of space and time

criteria, and its scalability with respect to the number of salient objects per

frame and the total number of frames in video.

Chapter 10 makes a discussion on the system’s flexibility to support a broad range of

applications and gives an example application of BilVideo, news archives

search system, with some spatio-temporal queries.

Chapter 11 states the conclusions and future work.

Appendix A gives a list of our inference rules.

Appendix B presents the grammar of BilVideo query language.

Appendix C provides some of our spatio-temporal query processing functions in the form

of simplified pseudo-codes.

Chapter 2

Related Work

There are numerous Content-Based Retrieval (CBR) systems, both commercial

and academic, developed in recent years. However, most of these systems support

only image retrieval. In this chapter, we restrict our discussion to the research

in the literature mostly related to video modeling, indexing and querying. A

comprehensive review on the CBR systems in general can be found in [52, 55].

One point worth noting at the outset is that BilVideo, to the best of our knowl-

edge, is unique in its support for retrieving any segment of a video clip, where the

given query conditions are satisfied, regardless of how video data is semantically

partitioned. None of the systems discussed in this chapter can return a subinter-

val of a scene as part of a query result because video features are associated with

scenes defined to be the smallest semantic units of video data. In our approach,

object trajectories, object-appearance relations and spatio-temporal relations be-

tween video objects are represented as Prolog facts in a knowledge-base and they

are not explicitly related to semantic units of videos. Thus, BilVideo can return

precise answers for spatio-temporal queries in terms of frame intervals. More-

over, our assessment for the directional relations between two video objects is

also novel in that overlapping objects may have directional relations defined for

them provided that the center points of their MBRs are different. It is because

Allen’s temporal interval algebra, [2], is not used as a basis for the directional

relation definition in our approach [10]: in order to determine which directional

7

CHAPTER 2. RELATED WORK 8

relation holds between two objects, center points of the objects’ MBRs are used.

Furthermore, BilVideo query language provides three aggregate functions, aver-

age, sum and count, which may be very attractive for such applications as sports

statistical analysis systems to collect statistical data on spatio-temporal events.

2.1 Spatio-Temporal Video Modeling

As mentioned in [48], there is a very limited number of proposals in the litera-

ture that take into account both spatial and temporal properties of video salient

objects in an integrated manner. Some of the proposed index structures are

MR-trees and RT-trees [53], 3D R-trees [49] and HR-trees [37]. These structures

are some adaptations of the well-known R-tree family. There are also quadtree-

based indexing structures, such as Overlapping Linear Quadtrees [50], proposed

for spatio-temporal indexing.

3D R-trees consider time as an extra dimension to the original two-dimensional

space. Thus, objects represented by two-dimensional MBRs are now captured by

three-dimensional Minimum Bounding Boxes (MBBs). However, if this approach

were to be used for moving objects, a lot of empty space would be introduced

within objects’ MBBs since the movement of an object is captured by using only

one MBB. Thus, it is not a proper representation mechanism for video data,

where objects frequently change their positions in time.

RT-trees are proposed to solve this dead space problem by incorporating the

time information by means of time intervals inside the R-tree structure. Nev-

ertheless, whenever an object changes its position, a new entry with temporal

information must be inserted to the structure. This causes the generation of

many entries that makes the RT-tree grow considerably. Furthermore, time in-

formation stored with nodes plays a complementary role and RT-trees are not

able to answer temporal queries such as “find all objects that exist in the database

within a given interval”.

CHAPTER 2. RELATED WORK 9

MR-trees and HR-trees use the concept of overlapping B-trees [32]. They

have separate index structures for each time point where a change occurs in an

object position within the video data. It is space-efficient if the number of objects

changing their locations is low because index structures may have some common

paths for those objects that have not moved. Nonetheless, if the number of

moving objects is large, they become inefficient. Detailed discussion of all these

index structures can be found in [48].

All these approaches incorporate the MBR representation of spatial infor-

mation within index structures. Thus, to answer spatio-temporal queries, spatial

relations should be computed and checked for query satisfaction, which is a costly

operation when performed during query processing. Our rule-based approach to

model spatio-temporal relations in video data eliminates the need for the com-

putation of relations at the time of query processing, thereby cutting down the

query response time considerably. In our approach, a keyframe represents some

consecutive frames in a video with no change in the set of spatial relations be-

tween video objects in the frames. Computed spatial relations for each keyframe

are stored to model and query video data for spatio-temporal relations.

Li et al. describe an effort somewhat similar to our approach, where some

spatial relations are computed by associated methods of objects while others may

be derived using a set of inference rules [28]. Nonetheless, the system introduced

in [24, 25, 28] does not explicitly store a set of spatio-temporal relations from

which a complete set of relations between all pairs of objects can be derived

by rules, and consequently, the relations which cannot be derived by rules are

computed during query processing. Our approach of pre-computing and storing

a set of relations that cannot be derived by the set of inference rules a priori

to querying reduces the computational cost of queries considerably since there

is no need at all to compute any spatio-temporal relation using any coordinate

information at the time of query processing. All the relations that are not stored

explicitly in the fact-base can be easily derived by the inference rules.

CHAPTER 2. RELATED WORK 10

A video model, called Common Video Object Tree Model (CVOT), is de-

scribed in [24]. In this model, there is no restriction on how videos are seg-

mented. After the segmentation, shots are grouped in a hierarchy on the basis

of the common video objects they contain, developing an index structure, called

CVOT. However, employed as a common practice by all the systems proposed

in the literature to the best of our knowledge, video features are associated with

scenes that are defined to be the smallest logical units of videos. In our approach,

spatio-temporal relations between video objects, object-appearance relations and

object-trajectories are represented as facts in a knowledge-base and they are not

explicitly related to semantic units of videos. It is because users may also wish

to see only the parts of a video, where the conditions given in a query are satis-

fied, rather than the scenes that contain these segments. Thus, BilVideo returns

precise answers for spatio-temporal queries in terms of frame intervals whereas

this functionality is not implemented in CVOT.

Sistla et al. propose a graph and automata based approach to find the minimal

set of spatial relations between objects in a picture given a set of relations that is a

superset of the minimal set [46, 47]. They provide algorithms to find the minimal

set from a superset as well as to deduce all the relations possible from the minimal

set itself for a picture. However, the authors restrict the directional relations to

be defined only for disjoint objects as opposed to our approach, where overlapping

objects may also have directional relations. Moreover, the set of inference rules

considered in their implementation is rather small compared to ours. They do not

incorporate any 3D relation, either. Furthermore, our fact-extraction algorithm

is simpler and it extracts spatio-temporal, appearance and trajectory properties

of objects from a video even though we do not claim that it produces the minimal

set of spatial relations in a video frame as they do for a picture.

CHAPTER 2. RELATED WORK 11

2.2 Semantic Video Modeling

A video database system design for automatic semantic extraction, semantic-

based video annotation and retrieval with textual tags is proposed in [31]. Low-

level image features, such as color, shape, texture and motion, and object extrac-

tion/recognition techniques are used in extracting some semantic content from

video clips. To reveal the temporal information, the authors use temporal dia-

grams for videos and scenes in videos. Components of a temporal diagram con-

structed for a video are the temporal diagrams for scenes, and the arcs between

two such components (scenes) present the relationships between the scenes in one

cluster. A temporal diagram created for a scene contains the shots in the scene,

and the components in the diagram represent the objects in the shots. Video

semantic content is automatically extracted using low-level image features (color,

shape, texture and motion) and the temporal diagrams constructed for videos and

scenes. As a result of this process, shots/scenes are added some textual descrip-

tions (tags), which are used for semantic queries. However, automatic extraction

of semantic content and tagging shots/scenes with some textual descriptions with

respect to the extracted information are limited to simple events/activities.

Hacid et al. propose a video data model that is based on logical video seg-

ment layering, video annotations and associations between them [35]. The model

supports user queries and retrieval of the video data based on its semantic con-

tent. The authors also give a rule-based constraint query language for querying

both semantic and video image features, such as color, shape and texture. Color,

shape and texture query conditions are sent to IBM’s QBIC system whereas

semantic video query conditions are processed by FLORID, a deductive object-

oriented database management system. A database in their model can essentially

be thought of as a graph and a query in their query language can be viewed as

specifying constrained paths in the graph. BilVideo does not use a rule-based

approach for semantic queries on video data. In this regard, our semantic video

model diverts from the one proposed by Hacid et al.

There is also some research in the literature that takes into account audio

and closed caption text stored together with video data for extracting semantic

CHAPTER 2. RELATED WORK 12

content from videos and indexing video clips based on this extracted semantic

information. In [4], a method of event-based video indexing by means of inter-

model collaboration, a strategy of collaborative processing considering the se-

mantic dependency between synchronized multimodal information streams, such

as auditory and textual streams, is proposed. The proposed method aims to de-

tect interesting events automatically from broadcasted sports videos and to give

textual indexes correlating the events to shots. In [16], a digital video library

prototype, called VISION, is presented. VISION is being developed at the In-

formation and Telecommunication Technologies Laboratory of the University of

Kansas. In VISION, videos are automatically partitioned into short scenes using

audio and closed caption information. The resulting scenes are indexed based on

their captions and stored in a multimedia system. Informedia’s news-on-demand

system described in [17] also uses the same information (audio and closed cap-

tion) for automatic segmentation and indexing to provide efficient access to news

videos. Satoh et al. propose a method of face detection and indexing by an-

alyzing closed caption and visual streams [43]. However, all these systems and

others that take into account audio and closed caption information stored with

videos for automatic segmentation and indexing are application-dependent whilst

BilVideo is not.

2.3 Systems and Languages

2.3.1 QBIC

QBIC is a system primarily designed to query large online image databases [14].

In addition to text-based searches, QBIC also allows users to pose queries using

sketches, layout or structural descriptions, color, shape, texture, sample images

(Query by Example) and other iconic and graphical information. As a basis for

content-based search, it supports color, shape, texture and layout. For example,

it is possible to give a query such as “Return the images that have blue at the top

and red at the bottom”, which is a color-based search with layout specification.

CHAPTER 2. RELATED WORK 13

QBIC provides some support for video data, as well [15]; however, this support is

limited to the features used for image queries: video is represented as an ordered

set of representative frames (still images) and the content-based query operators

used for images are applicable to video data through representative frames. Con-

sequently, spatio-temporal relations between salient objects and semantic content

of video data are not taken into account for video querying.

2.3.2 OVID and VideoSQL

A paper by Oomoto and Tanaka [38] describes the design and implementation

of a prototype video object database system, named OVID. Main components of

the OVID system are VideoChart, VideoSQL and Video Object Definition Tool.

Each video object consists of a unique identifier, a pair of starting and ending

video frame numbers for the object, annotations associated with the object as

a set of attribute/value pairs and some methods such as play, inspect, disaggre-

gate, merge and overlap. Users may define different video objects for the same

frame sequences and each video object is represented as a bar chart on the OVID

user interface VideoChart. VideoChart is a visual interface to browse the video

database and manipulate/inspect the video objects within the database. The

query language of the system, VideoSQL, is an SQL-like query language used for

retrieving video objects. The result of a VideoSQL query is a set of video objects,

which satisfy given conditions. Before examining the conditions of a query for

each video object, target video objects are evaluated according to the interval

inclusion inheritance mechanism. A VideoSQL query consists of the basic select,

from and where clauses. However, the select clause in VideoSQL is considerably

different from the ordinary SQL select clause in that it only specifies the category

of the resultant video objects with Continuous, Incontinuous and anyObject.

Continuous retrieves video objects with a single continuous video frame sequence

while Incontinuous retrieves those objects with more than one single continuous

video frame sequence. anyObject is used to retrieve all types of video objects

regardless of whether they are contiguous or not. The from clause is used to

specify the name of the object database, and where clause is used to state the

CHAPTER 2. RELATED WORK 14

conditions for a query. Conditions may contain attribute/value pairs and com-

parison operators. Video numbers may also be used in specifying conditions. In

addition, VideoSQL has a facility to merge the video objects retrieved by multiple

queries. Nevertheless, the language does not contain any expression to specify

spatial and temporal conditions on video objects. Hence, VideoSQL does not

support spatio-temporal queries, which is a major weakness of the language.

2.3.3 MOQL and MTQL

In [30], multimedia extensions to the Object Query Language (OQL) and

TIGUKAT Query Language (TQL) are proposed. The extended languages are

called Multimedia Object Query Language (MOQL) and Multimedia TIGUKAT

Query Language (MTQL), respectively. The extensions made are spatial, tem-

poral and presentation features for multimedia data. MOQL has been used both

in the Spatial Attributes Retrieval System for Images and Videos (STARS) [27]

and an object-oriented SGML/HyTime compliant multimedia database system

[40] developed at the University of Alberta.

Most of the extensions that are introduced with MOQL are in where

clause in the form of three new predicate expressions: spatial-expression,

temporal-expression and contains-predicate. A spatial-expression may

include spatial objects (points, lines, circles, etc.), spatial functions (length,

area, intersection, union, etc.) and spatial predicates (cover, disjoint, left, right,

etc.). A temporal-expression may contain temporal objects, temporal func-

tions (union, intersection, difference, etc.) and temporal predicates (equal, before,

meet, etc.). Moreover, contains-predicate is used to determine if a particular

media object contains a given salient object. A media object may be either an im-

age object or a video object. Besides, a new clause present is introduced to deal

with multimedia presentation. With this clause, the layout of the presentation is

specified.

MTQL has the same extensions as those made for MOQL, namely spatial,

CHAPTER 2. RELATED WORK 15

temporal and presentation properties. Hence, both languages support content-

based spatial and temporal queries as well as query presentation. MOQL and

MTQL include support for 3D-relation queries, as we call them, by front, back and

their combinations with other directional relations, such as front left, front right,

etc. BilVideo query language has a different set of third-dimension (3D) rela-

tions, though. 3D relations supported by BilVideo query language are infrontof,

behind, strictlyinfrontof, strictlybehind, touchfrombehind, touchedfrombehind and

samelevel. The moving object model integrated in MOQL and MTQL, [26], is also

different from our model. BilVideo query language does not support similarity-

based retrieval on spatial conditions as MOQL and MTQL do. Nonetheless, it

does allow users to specify separate weights for the directional and displacement

components of trajectory conditions in queries, which both languages lack.

Nabil et al. propose a symbolic formalism for modeling and retrieving video

data by means of moving objects in video frames [36]. A scene is represented as

a connected digraph whose nodes are the objects of interest in the scene while

edges are labeled by a sequence of spatio-temporal relations between two objects

corresponding to the nodes. Trajectories are also associated with object nodes in

the scene graph. A graph is precomputed for each scene in video data and stored

before query processing. For each user query, a query scene graph is constructed

to match the query with the stored scene graphs. However, 3D relations are not

addressed in [36]. The concepts used in the model are similar to those adopted

in [26]; therefore, the same arguments we made for MOQL and MTQL also hold

for the model proposed in [36].

2.3.4 AVIS

In [34], a unified framework for characterizing multimedia information systems,

which is built on top of the implementations of individual media, is proposed.

Some of user queries may not be answered efficiently using these data structures;

therefore, for each media-instance, some feature constraints are stored as a logic

program. Nonetheless, temporal aspects and relations are not taken into account

in the model. Moreover, complex queries involving aggregate operations as well

CHAPTER 2. RELATED WORK 16

as uncertainty in queries require further work to be done. In addition, although

the framework incorporates some feature constraints as facts to extend its query

range, it does not provide a complete deductive system as we do.

The authors extend their work defining feature-subfeature relationships in

[33]. When a query cannot be answered, it is relaxed by substituting a subfea-

ture for a feature. This relaxation technique provides some support for reasoning

with uncertainty. In [1], a special kind of segment tree called frame segment tree

and a set of arrays to represent objects, events, activities and their associations

are introduced. The proposed model is based on the generic multimedia model

described in [34]. Additional concepts introduced in the model are activities,

events and their associations with objects, thereby relating them to frame se-

quences. The proposed data model and algorithms for handling different types of

semantic queries were implemented within a prototype, called Advanced Video

Information System (AVIS). However, objects have no attributes other than the

roles defined for the events. In [19], an SQL-like video query language, based

on the data model developed by Adalı et al. [1], is proposed. Nevertheless, the

proposed query language does not provide any support for temporal queries on

events. Nor does it have any language construct for spatio-temporal querying

of video clips since it was designed for semantic queries on video data. In our

query model, temporal operators, such as before, during, etc., may also be used

to specify order in time between events just as they are used for spatio-temporal

queries.

2.3.5 VideoQ

An object-oriented content-based video search engine, called VideoQ, is presented

in [5]. VideoQ provides two methods for users to search for video clips. The first

one is to use keywords since each video shot is annotated. Moreover, video clips

are also catalogued into a subject taxonomy and users may navigate through the

catalogue easily. The other method is a visual one, which extends the capabilities

of the textual search. A video object is a collection of regions that are grouped

together under some criteria across several frames. A region is defined as a

CHAPTER 2. RELATED WORK 17

set of pixels in a frame, which are homogeneous in the features of interest to

the user. For each region, VideoQ automatically extracts the low-level features,

color, shape, texture and motion. These regions are further grouped into higher

semantic classes known as video objects. The regions of a video object may

exhibit consistency in some of the features, but not all. For example, an object

representing a person walking may have several regions, which show consistency

only on the motion attribute of the video object, but not the others. Motion

is the key attribute in VideoQ and the motion trajectory interface allows users

to specify a motion trajectory for an object of interest. Users may also specify

the duration of the object motion in an absolute (in seconds) or intuitive (long,

medium and short) way. Video queries are formulated by animated sketches.

That is, users draw objects with a particular shape, paint color, add texture

and specify motion to pose a query. Objects in the sketch are then matched

against those in the database and a ranked list of video shots complying with

the requirements is returned. The total similarity measure is the weighted sum

of the normalized distances and these weights can be specified by users while

drawing the sketches of various features. When a query involves multiple video

objects, the results of each individual video object query are merged. The final

query result is simply the logical intersection of all individual video object query

results. However, when a multiple object query is submitted, VideoQ does not

use the video objects’ relative ordering in space and in time. Therefore, VideoQ

does not support spatio-temporal queries on video data.

2.3.6 VideoSTAR

VideoSTAR proposes a generic data model that makes it possible sharing and

reusing of video data [18]. Thematic indexes and structural components might

implicitly be related to one another since frame sequences may overlap and may

be reused. Therefore, considerable processing is needed to explicitly determine

the relations, making the system complex. Moreover, the model does not support

spatio-temporal relations between video objects.

CHAPTER 2. RELATED WORK 18

2.3.7 CVQL

A content-based logic video query language, CVQL, is proposed in [22]. Users

retrieve video data specifying some spatial and temporal relationships for salient

objects. An elimination-based preprocessing for filtering unqualified videos and

a behavior-based approach for video function evaluation are also introduced. For

video evaluation, an index structure, called M-index, is proposed. Using this

index structure, frame sequences satisfying a query predicate can be efficiently

retrieved. Nonetheless, topological relations between salient objects are not sup-

ported since an object is represented by a point in two-dimensional (2D) space.

Consequently, the language does not allow users to specify topological queries.

Nor does it support similarity-based object-trajectory queries. BilVideo query

language provides full support for spatio-temporal querying of video data.

Chapter 3

BilVideo VDBMS

3.1 BilVideo System Architecture

BilVideo is built over a client-server architecture as illustrated in Figure 3.1. The

system is accessed on the Internet through its visual query interface developed as

a Java Applet. Users may query the system with sketches and a visual query is

formed by a collection of objects with some conditions, such as object trajectories

with similarity measures, spatio-temporal orderings of objects, annotations and

events. Object motion is specified as an arbitrary trajectory for each salient

object of interest and annotations may be used for keyword-based video search.

Users are able to browse the video collection before posing complex and specific

queries. A text-based SQL-like query language is also available for experienced

users.

Web clients communicate user queries to the query processor. If queries are

specified visually, they are first transformed into SQL-like textual query language

expressions before being sent to the query server. The query processor is respon-

sible for retrieving and responding to user queries. It first separates the semantic

and low-level (color, shape and texture) query conditions in a query from those

that could be answered by the knowledge-base. The former type of conditions

is organized and sent as regular SQL queries to an object-relational database

19

CHAPTER 3. BILVIDEO VDBMS 20

Video Clips

 Users

Extracted Facts

Results

Query

Fact−Extractor Knowledge−Base

Visual Query Interface

Raw Video Database

Video−Annotator

Query Processor

Object−Relational DBMS

Web Client

Feature Database
(File System)

Figure 3.1: BilVideo System Architecture

whereas the latter part is reconstructed as Prolog queries. Intermediate results

returned by these two system components are integrated by the query processor

and the final results are sent to Web clients.

Raw video data and video data features are stored separately. The feature

database contains semantic and low-level properties for videos. Video semantic

features are generated and maintained by the Video-Annotator tool developed as

a Java application. The knowledge-base is used to respond to spatio-temporal

queries on video data and the facts-base is populated by the Fact-Extractor tool,

which is a Java application as well. The Fact-Extractor tool also extracts color

and shape histograms of objects of interest in video keyframes to be stored in the

feature database [45].

CHAPTER 3. BILVIDEO VDBMS 21

3.2 Knowledge-Base Structure

Rules have been extensively used in knowledge representation and reasoning. The

reason of why we employed a rule-based approach to model and query spatio-

temporal relations between salient objects is that it is very space efficient: only

does a relatively small number of facts need to be stored in the knowledge-base

and the rest can be derived by the inference rules, which yields a substantial

improvement in storage space. Besides, our rule-based approach provides an

easy-to-process and easy-to-understand structure for a video database system.

In the knowledge-base, each fact1 has a single frame number, which is of a

keyframe. This representation scheme allows Prolog, our inference engine, to pro-

cess spatio-temporal queries faster and easier than it would with frame intervals

attached to the facts because the frame interval processing to form the final query

results can be carried out efficiently by some optimized code, written in C++,

outside the Prolog environment. Therefore, the rules used for querying video

data, which we call query rules, have frame-number variables as a component. A

second set of rules that we call extraction rules was also created to work with frame

intervals in order to extract spatio-temporal relations from video clips. Extracted

spatio-temporal relations are converted to be stored as facts with frame numbers

of the keyframes attached in the knowledge-base and these facts are used by the

query rules for query processing in the system. In short, spatio-temporal relations

in video clips are stored as Prolog facts in the knowledge-base in a keyframe basis

and the extraction rules are only used to extract the spatio-temporal relations

from video data.

The reason of using a second set of rules with frame intervals to extract

spatio-temporal relations is that it is much easier and more convenient to create

the facts-base by first populating an initial facts-base with frame intervals and

then converting this facts-base to the one with frame numbers of the keyframes

1Except for appear and object-trajectory facts, which have frame intervals as a component
instead of frame numbers because of storage space, ease of processing and processing cost
considerations.

CHAPTER 3. BILVIDEO VDBMS 22

in comparison to directly creating the final facts-base in the process of fact-

extraction. The main difficulty, if a second set of rules with frame intervals had

not been used while extracting spatio-temporal relations, would be detecting the

keyframes of a video clip when processing it frame by frame at the same time. It

is not a problem so far as the coding is concerned, but since the program creating

the facts-base would perform this keyframe detection operation for each frame, it

would take whole a lot of time to process a video clip compared to our method.

In the knowledge-base, only are the basic facts stored, but not those that

can be derived by rules according to our fact-extraction algorithm. Nonetheless,

using a frame number instead of a frame interval introduces some space overhead

because the number of facts increases due to the repetitions of some relations

for each keyframe over a frame interval. Nevertheless, it also greatly reduces the

complexity of the rules and improves the overall query response time.

The algorithm developed for converting an initial facts-base of a video clip to

the one incorporated into the knowledge-base is very simple. It makes use of a

keyframe vector, also stored as a fact in the facts-base, which stores frame num-

bers of the keyframes of a video clip in ascending order. Using this vector, each

fact with a frame interval is converted into a group of facts with frame numbers

of the keyframes. For example, if west(A, B, [1, 100]) is a fact in the initial facts-

base and 1, 10 and 50 are the keyframes that fall into the frame interval range of

[1, 100], then, this fact is converted to the following facts in the knowledge-base:

west(A, B, 1), west(A, B, 10) and west(A, B, 50). Keyframe detection and fact-

base conversion are automatically performed by the Fact-Extractor tool for each

video clip processed.

In the system, facts are stored in terms of four directional relations, west,

south, south-west and north-west, six topological relations, cover, equal, inside,

disjoint, touch and overlap, and four 3D relations defined on z-axis of the three

dimensional space, infrontof, strictlyinfrontof, touchfrombehind and samelevel, be-

cause the query rules are designed to work on these types of explicitly stored facts.

However, there are also rules for east, north, north-east, south-east, right, left, be-

low, above, behind, strictlybehind, touchedfrombehind, contains and covered-by.

CHAPTER 3. BILVIDEO VDBMS 23

These rules do not work directly with the stored facts, but rather they are used

to invoke related rules. For example, let’s suppose that there is a relation stored

as a fact for the pair of objects σ(A, B), such as west(A, B, 1), where A and B

are object identifiers and 1 is the frame number of the relation. When a query

“east(B, A, F)” is posed to the system, the rule east is used to call the rule west

with the order of objects switched. That is, it is checked to see if west(A, B, F)

can be satisfied. Since there is a fact west(A, B, 1) stored in the facts-base, the

system returns 1 for F as the result of the query. This argument also holds for the

extraction rules only this time for extracting relations from a video clip rather

than working on stored facts. Therefore, the organization of the extraction rules

is the same as that of the query rules.

Four types of inference rules, strict directional, strict topological, heterogeneous

directional and topological, and 3D rules, were defined with respect to the types of

the relations in the rule body. For example, directional rules have only directional

relations in their body whilst heterogeneous rules incorporate both directional and

topological components. The complete listing of our inference rules is given in

Appendix A.

In addition, some other facts, such as object-trajectory and appear facts, are

also stored in the knowledge-base. These facts have frame intervals rather than

frame numbers attached as a component. Appear facts are used to derive some

trivial facts, equal(A, A), overlap(A, A) and samelevel(A, A), as well as to answer

object-appearance queries in video clips by rules. Object-trajectory facts are used

for processing trajectory-projection and similarity-based object-trajectory query

conditions.

Table 3.1 presents semantic meanings of our 3D relations based on Allen’s

temporal interval algebra. The relations behind, strictlybehind and touchedfrombe-

hind are inverses of infrontof, strictlyinfrontof and touchfrombehind, respectively.

Moreover, the relation strictlyinfrontof is transitive whilst samelevel is reflexive

and symmetric. While the relations strictlyinfrontof and strictlybehind impose

that objects be disjoint on z-axis of the three dimensional space, infrontof and

CHAPTER 3. BILVIDEO VDBMS 24

Relation Inverse Meaning

AAA
BBB

A infrontof B B behind A or
AAABBB

or
AAA BBB
AAA BBB

A strictlyinfrontof B B strictlybehind A or
AAABBB
AAA
BBBBBB

or
AAA

BBBBBB
A samelevel B B samelevel A or

AAA
BBBBBB

or
AAA
BBB

A touchfrombehind B B touchedfrombehind A BBBAAA

Table 3.1: Definitions of 3D relations on z-axis of three-dimensional space

behind do not enforce this condition. Hence, if object o1 strictlyinfrontof (strictly-

behind) object o2, then o1 infrontof (behind) o2. Object o1 touchfrombehind object

o2 iff o1 strictlybehind o2 and o1 touches o2 on the z-axis. If object o1 samelevel

object o2, then, o1(o2) is inside, covered-by or equal to o2(o1) on z-axis of the three

dimensional space. Further information on directional and topological relations

can be found in [13, 41].

3.3 Fact-Extraction Algorithm

The algorithm for deciding what relations to store as facts in the knowledge-base

is illustrated as a pseudo-code in Figure 3.2. In this algorithm, objects at each

frame, κ, are ordered with respect to the center-point x-axis values of objects’

MBRs. Index values of the objects are used as object labels after this sorting

process. Then, objects are paired with respect to their labels starting with the

object whose label is 0. The directional and topological relations are computed

for each possible object pair whose first object’s label is smaller than that of the

CHAPTER 3. BILVIDEO VDBMS 25

second object and whose label distance is one. The label distance of an object pair

is defined as the absolute numerical difference between the object labels. After

exhausting all the pairs with the label distance one, the same operation is carried

out for the pairs of objects whose label distance is two. This process is continued

in the same manner and terminated when the distance reaches the number of

objects in the frame.

Initially, the set of relations, η, is empty. All directional and topological

relations are computed for each object pair as described above for the current

frame being processed and the computed relations are put in the array λ in order.

Then, for each relation in λ, starting with the first one indexed as 0, it is checked

to see if it is possible to derive the computed relation from the relations in η by the

extraction rules. For example, for the first frame, if a relation cannot be derived

from η using the rules, this relation is added to η with the frame interval [0, 0].

Otherwise, it is ignored since it can be derived. For the consecutive frames, if a

computed relation cannot be derived, an additional check is made to see whether

there is such a relation in η that holds for a frame interval up to the current frame

processed. If so, the frame interval of that relation is extended with the current

frame by increasing the last component of its interval by one. Otherwise, the

computed relation is added to η with the frame interval [current frame, current

frame]. The set of relations obtained at the end contains the relations that must

be stored as facts in the knowledge-base after conversion. The rest of the relations

may be derived from these facts by rules.

For 3D relations, computation cannot be done automatically since 3D coor-

dinates of the objects are unknown and cannot be extracted from video frames.

Hence, these relations are entered manually for each object-pair of interest and

those that can be derived by rules are eliminated automatically by the Fact-

Extraction tool. The tool can perform an interactive conflict check for 3D rela-

tions and has some facilities to keep the existing set of 3D relations intact for the

consecutive frames as well as to edit this set with error-and-conflict check on the

current set for the purpose of easy generation of 3D relations. Generation of 3D

relations is carried out for each frame of a video clip at the same time while the

rest of the spatio-temporal relations is extracted. These 3D relations are then

CHAPTER 3. BILVIDEO VDBMS 26

1. Start with an empty set of facts, η.
2. Set m to the number of frames in video
3. For (currentFrame = 0; currentFrame < m; currentFrame + +)
4. Begin
5. Set κ to be the object array of the current frame
6. Sort κ in ascending order on x-axis coordinates of object MBR center points

(* Use object index values in the sorted array as object labels *)
7. Set n = |κ| (Number of objects in the frame)
8. For (i = 0; i < n; i + +)
9. Begin
10. If (there exist an object-appearance fact for κ[i] in η)
11. Update this fact accordingly for currentFrame
12. Else
13. Put an object-appearance fact for κ[i] in η
14. If (κ[i] has changed its position in [currentFrame - 1, currentFrame])
15. If (there exist an object-trajectory fact for κ[i] in η)
16. Update this fact accordingly for currentFrame
17. Else
18. Put an object-trajectory fact for κ[i] in η
19. EndFor
20. Set λ to be an empty array
21. Set index to 0
22. For (labelDistance = 1; labelDistance < n; labelDistance + +)
23. Begin
24. For (index1 = 1; index1 < n − labelDistance; index1 + +)
25. Begin
26. index2 = index1 + labelDistance
27. Find dirRelation(κ[index1], κ[index2]) and put it in λ[index]
28. Increment index by 1
29. Find topRelation(κ[index1], κ[index2]) and put it in λ[index]
30. Increment index by 1
31. EndFor
32. EndFor
33. Put 3D relations in λ incrementing index by 1 at each step
34. Reorder λ with respect to the dependency criteria among relations as follows:

* A relation with a smaller index value is placed before a relation of the same
type with a bigger index value

* The order of placement is (a), (b), (c), (d), (e), (f), (g) and (h)
a) {equal}, b) directional relations, c) {cover, touch}
d) {inside}, e) {overlap, disjoint}, f) {samelevel, touchfrombehind}
g) {strictlyinfrontof}, h) {infrontof}

35. Update η as follows: (* Facts-base population *)
36. For (i = 0; i < index ; i + +)
37. Begin
38. If (λ[i] can be derived by extraction rules using the relations in η)
39. Skip and ignore the relation
40. Else
41. If (∃β ∈ η such that β is the same as λ[i] except for its frame

interval whose ending frame is currentFrame − 1)
42. Extend the frame interval of β by 1 to currentFrame
43. Else
44. Put λ[i] in η with the frame interval [currentFrame, currentFrame]
45. EndFor
46. EndFor

Figure 3.2: Fact-Extraction Algorithm

CHAPTER 3. BILVIDEO VDBMS 27

put in λ and they, along with the rest of the relations, are also used for keyframe

detection.

The initial fact-base, η, is also populated with the appear and object-trajectory

facts. For each object, an appear fact is kept where it appears in video represented

with a list of frame intervals. Furthermore, for each object, an object-trajectory

fact is added for the entire video. These facts are copied to the final facts-base

without any conversion. Appear facts are also used to detect keyframes if an

object appears when there is no object in the previous frame or if an object

disappears while it is the only object in the previous frame.

Our approach greatly reduces the number of relations to be stored as facts in

the knowledge-base, which also depends on some other factors as well, such as

the number of salient objects, the frequency of change in spatial relations, and

the relative spatial locations of the objects with respect to each other. Never-

theless, it is not claimed that the set of relations stored in the knowledge-base

is the minimal set of facts that must be stored because the number of facts to

be stored depends on the labeling order of objects in our method and we use the

x-axis ordering to reduce this number. Our heuristic in this approach is that if

it is started with the pairs of objects whose label distance is smaller, most of

the relations may not need to be stored as facts for the pairs of objects with a

bigger label distance. The reason is that these relations might be derived from

those already considered to be stored in the knowledge-base. In addition, since

the spatial relations are ordered according to the dependency criteria given in

Table 3.2 before deciding which relations to store in the facts-base, no depen-

dent relation is stored just because a relation of different type it depends on has

not been processed yet, except for the relations strictlyinfrontof and infrontof.

The relations strictlyinfrontof and infrontof depend on each other; however, the

precedence is given to strictlyinfrontof since it implies infrontof.

The fact-extraction process is semi-automatic: objects’ MBRs are specified

manually and 3D relations are entered by the user through graphical compo-

nents. Users do not have to draw each MBR for consecutive frames because

CHAPTER 3. BILVIDEO VDBMS 28

Order Relation Dependencies

1 equal -
2 Directional Relations equal
3 cover, touch equal
4 inside equal, cover
5 overlap, disjoint equal, cover, touch, inside
6 samelevel, touchfrombehind -
7 strictlyinfrontof touchfrombehind, infrontof
8 infrontof touchfrombehind, strictlyinfrontof

Table 3.2: Dependencies Among Rules

MBR resizing, moving and deletion facilities are provided for convenience. More-

over, the tool performs 3D-relation conflict check and eliminates the derivable 3D

relations from the set as they are entered by the user. The set for 3D relations

is also kept intact for subsequent frames so that the user can update it without

having to reenter any relation that already exists in the set. Nevertheless, with

this user intervention involved, it is not possible to make a complete complexity

analysis of the algorithm. During our experience with the tool, it has been ob-

served that the time to populate a facts-base for a given video is dominated by the

time spent interacting with the tool. However, since the fact extraction process

is carried out offline, it does not have any influence on the system’s performance.

When the user intervention part is ignored, the complexity of our algorithm can

be roughly stated as O(mn2), where m is the number of frames processed and

n is the average number of objects per frame. It is a rough estimation because

the facts-base is populated as frames are processed and it is not possible to guess

the size of the facts-base or the number of relations put in the set by type at any

time during the fact-extraction process.

3.4 Directional Relation Computation

According to our definition, overlapping objects can also have directional relations

associated with them except for the pairs of objects whose MBRs’ center points

are the same, as opposed to the case where Allen’s temporal interval algebra is

CHAPTER 3. BILVIDEO VDBMS 29

used to define the directional relations.

In order to determine which directional relation holds between two objects,

the center points of the objects’ MBRs are used. Obviously, if the center points

of the objects’ MBRs are the same, then there is no directional relation between

the two objects. Otherwise, the most intuitive directional relation is chosen with

respect to the closeness of the line segment between the center points of the

objects’ MBRs to the eight directional line segments. For that, the origin of the

directional system is placed at the center of the MBR of the object for which the

relation is defined. In the example given in Figure 3.3, object A is to the west

of object B because the center of object B’s MBR is closer to the directional line

segment east than the one for south-east. Moreover, these two objects overlap

with each other, but a directional relation can still be defined for them. As a

special case, if the center points of objects’ MBRs fall exactly onto the middle

of two directional segments, which one to be considered is decided as follows:

the absolute distance of the objects’ MBRs is computed on x and y axes with

respect to the farmost vertex coordinates on the region where the two directional

line segments in question reside. If the distance in x-axis is greater, then the

line segment that is closer to the x-axis is selected. Otherwise, the other one is

chosen. Here, the objects’ relative sizes and positions in 2D coordinate system

implicitly play an important role in making the decision. Our approach to find

the directional relations between two salient objects can be formally expressed as

in Definitions 1 and 2.

Definition 1 The directional relation β(A,B) is defined to be in the opposite

direction to the directional line segment that originates from the center of object

A’s MBR and is the closest to the center of object B’s MBR.

Definition 2 The inverse of a directional relation β(A,B), β−1(B,A), is the di-

rectional relation defined in the opposite direction.

According to Definition 1, given two objects A and B, if the center of object

B’s MBR is closer to the directional line segment east in comparison to the others

CHAPTER 3. BILVIDEO VDBMS 30

6

?

-¾ ¡
¡

¡¡µ

@
@@I

@
@

@@R

¡
¡¡ª

p

A B
n

s

ew

nenw

sesw

west(A,B), east(B,A)

Figure 3.3: Directional Relation Computation

when the directional system’s origin is at the center of object A’s MBR, then the

directional relation between objects A and B is west(A, B), where object A is the

one for which the relation is defined. Thus, object A is to the west of object B.

Using Description 2, it can also be concluded that object B is to the east of object

A. The rest of the directional relations can be determined in the same way.

3.5 Query Examples

This section provides some spatio-temporal query examples based on an imagi-

nary soccer game fragment between England’s two teams Arsenal and Liverpool.

These queries do not have any 3D-relation condition. Nor do they contain any

temporal, trajectory-projection or similarity-based object-trajectory conditions

because algorithms to process such conditions were still under development at

the time of testing the system. In the examples, the word “player(s)” is used for

the member(s) of a soccer team except for the goalkeeper. Prolog query predicates

and query results are only provided for the first example.

Example 1 “Give the number of passes for each player of Arsenal ”.

Query: pass X Y arsenal, where X and Y are variables that stand for the

players of Arsenal who give and take the passes, respectively.

Query Predicates:

pass(X, Y, T) :- fmember(X, T), fmember(Y, T), X \= Y,

p touch(X, ball, F1), p inside(ball, field, F1),

CHAPTER 3. BILVIDEO VDBMS 31

noother(X, ball, F1), p touch(Y, ball, F2), F2 > F1,

p inside(ball, field, F2), noother(Y, ball, F2),

fkframe(L, F1, F2), checklist(p inside(ball, field), L),

checklist(notouch(ball), L).

fmember(X, T) :- (getmembers(L, T), member(X, L),

not(goalkeeper(X, T))).

noother(X, Y, F) :- findall(Z, p touch(Z, Y, F), L),

forall(member(Z, L), Z = X).

fkframe(L, F1, F2) :- keyframes(K),

findall(X, kframes(X, K, F1, F2), L).

keyframes([1, 10, 21, 25, 31, 35, 55, 61, 80, 91, 95, 101, 105,

111, 115, 121, 125, 131, 135, 141, 150, 161, 165, 171,

172, 175, 181]).

kframes(X, L, F1, F2) :- member(X, L), X > F1, X < F2.

notouch(X, F) :- not(p touch(Z, X, F)).

goalkeeper(X, T) :- getmembers(Y, T), last(X, Y).

getmembers(X, T) :- (T = arsenal, X = [dixon, keown, adams,

winterburn, ljunberg, petit, vieira, overmars, kanu,

bergkamp, seaman]); (T = liverpool, X = [staunton,

henchoz, hyypia, heggem, carragher, redknapp, hamann,

smicer, owen, camara, westerveld]).

It is assumed that if a player touches the ball alone, it is in his control.

Consequently, if a player of Arsenal touches the ball for some time and then

transfers the control of it to another player of his team, this event is considered

as a pass from this player to another one in his team. Moreover, the ball should

not be played (touched) by anyone else and it should also stay inside the field

during this event.

CHAPTER 3. BILVIDEO VDBMS 32

The result of this query is:

Player:keown Passes(given):1

Player:adams Passes(given):2

Player:kanu Passes(given):1

Player:bergkamp Passes(given):1

Team:arsenal Total Passes:5

Example 2 “Give the number of shots to the goalkeeper of the opponent team

for each player of Arsenal ”.

Query: shoot X arsenal, where X is a variable that stands for the players of

Arsenal who shoot.

In this query, we are interested in finding the number of shots to the goalkeeper

of Liverpool by each player of Arsenal. In order to answer this query, the facts

of touch to the ball are found for each player of Arsenal. For each fact found,

it is also checked if there is a fact of touch to the ball for the opponent team’s

goalkeeper, whose frame number is bigger. Then, a check is made to see if there

is no other touch to the ball between these two events and also if the ball is inside

the field during the entire period. If all above conditions are satisfied, this is

considered a shot to the goalkeeper. Then, all such occasions are counted to find

the number of shots to the goalkeeper by each player of Arsenal.

Example 3 “Give the average ball control (play) time in frames for each player

of Arsenal ”.

Query: hold X arsenal, where X is a variable that stands for the players of

Arsenal who play with the ball.

As it is assumed that when a player touches the ball alone, it is in his control,

the ball control time for a player is computed with respect to the frame intervals

during which he is in touch with the ball. Therefore, the following operation is

performed for each player of Arsenal so as to answer this query: frame intervals

CHAPTER 3. BILVIDEO VDBMS 33

during which a player touches the ball are found and the number of frames in

the intervals are summed up. Divided by the number of frame intervals found,

this gives for the player the average ball control time in terms of the number of

frames. Since in a soccer game, a player may touch the ball outside the field as

well, only are the frame intervals when the ball is inside the field considered. It

is also possible to give the time information in seconds provided that the frame

rate of the video is known.

Example 4 “Give the number of ball losses to the opponent team’s players for

Adams of Arsenal ”.

Query: loss adams arsenal.

If Adams of Arsenal touches the ball for some time and then the control of the

ball goes to a player of the opponent team, this event is considered as a ball loss

from Adams to an opponent player. Furthermore, the ball should not be played

(touched) by anyone else and it should stay inside the field during this event.

Example 5 “Give the number of kicks to outside field for Adams of Arsenal ”.

Query: outside adams arsenal.

First, the keyframes when Adams of Arsenal is in touch with the ball while

the ball is inside the field are found. Then, for each keyframe found, a fact with a

bigger frame number, representing the ball being outside the field, is searched. If

there is no touch to the ball between these two events, then this is a kick outside

the field. All such occasions are counted to find the number of kicks outside the

field by Adams.

Chapter 4

Tools For BilVideo

4.1 Fact-Extractor Tool

Fact-Extractor is used to populate the facts-base of BilVideo and to extract color

and shape histograms of salient objects in video keyframes. Spatio-temporal rela-

tions between salient objects, object-appearance relations and object trajectories

are extracted semi-automatically. This information is stored in the facts-base as

a set of facts representing the relations and trajectories, and it is used to query

video data for spatio-temporal query conditions. Sets of facts are kept in separate

facts-files for each video clip processed, along with some other video specific data,

such as video length, video rate, keyframes list, etc., extracted automatically by

the tool. Extracted color and shape histograms of salient objects are stored in

the feature database to be used for color and shape video queries.

The fact-extraction process is semi-automatic: objects are manually specified

in video frames by MBRs. Using the object MBRs, a set of spatio-temporal

relations (directional and topological) is automatically computed. The rules in

the knowledge-base are used to eliminate redundant relations; therefore, the set

contains only the relations that cannot be derived by the rules. For 3D-relations,

extraction cannot be done automatically because 3D-coordinates of the objects

34

CHAPTER 4. TOOLS FOR BILVIDEO 35

cannot be obtained from video frames. Hence, these relations are entered man-

ually for each object-pair of interest and the relations that can be derived by

the rules are eliminated automatically. The tool performs an interactive conflict-

check for 3D-relations and carries the set of 3D-relations of a frame to the next

frame so that the user may apply any changes in 3D-relations by editing this set

in the next frame. Object trajectories and object-appearance relations are also

extracted automatically for each object once the objects are identified by their

MBRs. Moreover, object MBRs need not be redrawn for each frame since MBR

resizing, moving and deletion facilities are available. When exiting the tool after

saving the facts, some configuration data is also stored in the knowledge-base if

the video is not entirely processed yet so that the user may continue processing the

same video clip later on from where it was left off. Since object MBRs are drawn

manually by users, there is a space for erroneous MBR specification although in

many cases small errors do not affect the set of relations computed. To automate

this process, an Object-Extractor utility module has been developed [44]. We plan

to embed this module into Fact-Extractor to help users specify object MBRs with

a few mouse clicks on objects instead of drawing them manually.

Fact-Extractor populates the facts-base with facts that have a single frame

number, which is of a keyframe, except for the object-appearance and object

trajectory facts that have frame intervals rather than frame numbers because of

storage space, ease of processing and processing cost considerations. Thus, the

tool segments video clips into shots, each represented by a single keyframe, during

the process of fact-extraction. This segmentation is based on spatial relationships

between objects in video frames: video clips are segmented into shots whenever

the current set of relations between objects changes and the video frames, where

these changes occur, are chosen as keyframes. The relations stored in the facts-

base are those that are present in such keyframes in a video clip because the

set of relations in a frame does not change from frame to frame in the same

shot. Hence, BilVideo can support much finer granularity for spatio-temporal

query processing, which is independent of the semantic segmentation of video

clips employed by all other video database systems in the literature to the best

of our knowledge: it allows users to retrieve any part of a video clip, where the

CHAPTER 4. TOOLS FOR BILVIDEO 36

Figure 4.1: Fact-Extractor Tool

relations do not change at all, in addition to semantic video units, as a result of

a query.

Fact-Extractor uses a heuristic algorithm to decide which spatio-temporal rela-

tions to store as facts in the knowledge-base as explained in Chapter 3. Figure 4.1

gives a snapshot of the Fact-Extractor tool.

4.2 Video-Annotator Tool

Video-Annotator is a tool developed for annotating video clips for semantic con-

tent and populating the system’s feature database with this data to be used for

semantic video queries. The tool also provides facilities for viewing, updating

and deleting semantic data that has already been obtained from video clips and

stored in the feature database. A snapshot of the tool is given in Figure 4.2.

CHAPTER 4. TOOLS FOR BILVIDEO 37

Figure 4.2: Video-Annotator Tool

Our semantic video hierarchy contains three levels: video, sequence and scene.

Videos consist of sequences and sequences contain scenes that need not be con-

secutive in time. With this semantic data model, we plan to answer three types

of queries: video, event/activity and object. Video queries can be used for retriev-

ing videos based on descriptional data (annotations) of video clips. Conditions

may include title, length, producer, production year, category and director infor-

mation about a video clip. Event/activity queries are the most common queries

among all and they can be used to retrieve videos by specifying events that occur

at the sequence layer because events are associated with sequences. However, a

particular scene or scenes of an event can also be returned as an answer to a

semantic query when requested because events may have subevents associated

with scenes. Object queries are used to retrieve videos by specifying semantic

object features. As videos are annotated, video salient objects are also associated

with some descriptional meta data. With respect to our semantic video model,

a relational database schema, which consists of fifteen database tables, has been

designed to store semantic contents of videos, such as bibliographic information

about videos, utility data (audiences, video types, activity types, roles for activity

CHAPTER 4. TOOLS FOR BILVIDEO 38

Figure 4.3: Database Schema for Our Video Semantic Model

types, subactivity types, object attributes, etc.) and data about objects of inter-

ests, events and subevents. The conceptual design of the database is presented

in Figure 4.3.

Video consists of events, and activities are the abstractions of events. For ex-

ample, wedding is an activity, but the wedding of Richard Gere and Julia Roberts

in a movie is considered as an event, a specialization of activity wedding. Hence,

activities can be thought of as classes while events constitute some instances

(specializations) of these classes in videos. In our semantic model, a number

of roles are defined for each activity. For example, activity murder is defined

with two roles, murderer and victim. If the murder of Richard Gere by Julia

Roberts is an event in a movie, then Richard Gere and Julia Roberts have the

roles victim and murderer, respectively. Events may also have subevents defined

for them, and these subevents are used to detail events and model the relation-

ships between objects of interest. For example, a party event in a video may have

a number of subevents, such as drinking, eating, dancing and talking, as some

people participating in this event may be drinking, eating, dancing or talking.

Moreover, the objects of interest in the party event may assume the roles host

CHAPTER 4. TOOLS FOR BILVIDEO 39

and guest. Objects are defined and assigned roles for an event; however, they are

also associated with subevents defined for an event because actions represented

by subevents, such as dancing and talking in the example given, are performed

by those objects. Furthermore, subevents may overlap in time as is the case for

events. In our semantic video model, a video is segmented into sequences, which

are in turn divided into scenes. This task is accomplished by specifying events

and subevents because events and subevents are associated with sequences and

scenes, respectively. The order of annotation follows our hierarchical semantic

model from top to bottom. In other words, video is annotated first as a whole

entity and the annotation of events with their corresponding subevents may be

carried out afterwards. During this process, objects may be annotated whenever

needed. Further information on the video annotation process, Video-Annotator

and our relational database schema for storing semantic contents of videos can

be found in [3].

Chapter 5

Web-based User Interface

BilVideo can handle multiple requests over the Internet through a graphical query

interface developed as a Java Applet [6]. The interface is composed of query

specification windows for different types of queries: spatial and trajectory. The

specification and formation of these queries vary significantly, and hence, specific

windows to handle them are created. Since video has a time dimension, these

two types of primitive queries can be combined with temporal predicates (before,

during, etc.) to query temporal contents of videos.

Since the relations that are stored in the knowledge-base (e.g. directional,

topological, etc.) are computed according to the MBRs of the salient objects

during database population, users draw rectangles for salient objects, which rep-

resent objects’ MBRs, in query specification. Specification of queries by visual

sketches is much easier for novice users and most of the relations are computed

automatically based on these sketches.

5.1 Spatial Query Specification

Spatial content of a video keyframe is the relative positioning of its salient objects

with respect to each other. This relative positioning consists of three separate

sets of relations: directional, topological and 3D relations. In order to query the

40

CHAPTER 5. WEB-BASED USER INTERFACE 41

Figure 5.1: Spatial Query Specification Window

spatial content of a keyframe, these relations have to be specified in the query

within a proper combination. This combination should be constructed with the

logical connector and; thus, all the relations have to be present in the video

frame(s) returned as a result.

In the spatial query specification window shown in Figure 5.1, salient objects

are sketched by rectangles, which represent MBRs of the objects. Similar to

the database population phase, the directional and topological relations between

objects are extracted automatically from the MBRs of the salient objects in the

query specification phase. Since it is impossible to extract 3D relations from 2D

data, users are guided to select appropriate 3D relations for salient-object pairs.

To provide flexibility, some facilities are also provided: users may change the

locations, sizes and relative positions of the MBRs during the query specification.

The spatial-relation extraction process takes place after the final configuration is

formalized. Deleting or hiding a salient object modifies the relation set, and if this

CHAPTER 5. WEB-BASED USER INTERFACE 42

Figure 5.2: Trajectory Query Specification Window

modification occurs after the extraction process, relations relating to the deleted

or hidden objects are removed accordingly from the set.

5.2 Trajectory Query Specification

Trajectory of a salient object is described as a path of vertices corresponding

to the locations of the object in different video keyframes. Displacement values

and directions between consecutive keyframes (vertices) are used in defining the

trajectory fact of an object. In the trajectory query specification window shown in

Figure 5.2, users can draw trajectories of salient objects as a sequence of vertices.

The trajectories are dynamic in the sense that any vertex can be deleted from or

a new vertex can be inserted to the trajectory of a salient object. Locations of

the vertices can also be altered to obtain a desired trajectory.

CHAPTER 5. WEB-BASED USER INTERFACE 43

Object-trajectory queries are similarity-based; therefore, users specify a sim-

ilarity value, between 0 and 100, where the value 100 implies an exact match.

Since an object trajectory contains lists of directions and displacements, weights

can be assigned to each list. By default, both lists have equal weights (i.e., the

weights are 0.5); however, users may modify these values that add up to 1. There

are two sliders on the trajectory specification window (see lower part of Fig. 5.2):

the first slider is for similarity value and the other slider is for assigning weights.

If the head of the slider used for weight specification is closer to the left end,

directions become more important than displacements, and vice versa.

5.3 Final Query Formulation

Spatial and trajectory queries are specified in separate windows through the user

interface. Each of these specifications forms a subquery and these subqueries

are combined in the final query formulation window as shown in Figure 5.3. This

window contains all the specified subqueries as well as object-appearance relations

for each object. Users can combine subqueries by logical operators (and, or) and

temporal predicates (before, during, etc.). Except for the logical operator not,

all temporal and logical operators are binary. If more than two subqueries are

given as arguments to binary operators, the first two are processed first and the

output is pipelined back to the operator to be processed with the next argument.

After applying operators to subqueries, a new query is augmented to the list, and

hierarchical combinations become possible. After the final query is formed, it can

be sent to the query server. Furthermore, any subquery of the final query may

also be sent to the query server at any time to obtain partial results if requested.

For an example visual query formulation, let us suppose that a and b are two

salient objects and that their query trajectories are denoted by Ta and Tb, respec-

tively. Let us also assume that S1 denotes a spatial subquery on objects a and

b, which is given as west(a,b) AND disjoint(a,b) AND infrontof(a,b). The

query appear(a) AND appear(b) AND finishes(S1, before(Ta,Tb)) may be

formed visually as follows: Trajectory subqueries Ta and Tb are constructed

CHAPTER 5. WEB-BASED USER INTERFACE 44

Figure 5.3: Final Query Formulation Window

in the trajectory query specification window while the spatial subquery S1 is

specified in the spatial query specification window. After the subqueries are

formed, the final query can be defined visually in the final query formulation

window. This window displays as a list all the subqueries constructed. The

conditions appear(a) and appear(b) are added to the list in the window and

are connected with the and operator. This new subquery is added to the list

and it can be used to form new composite conditions. Then, the condition

before(Ta, Tb) is constructed, which is also displayed in the list. After that, the

condition finishes(S1, before(Ta, Tb)) can be formed with the conditions S1

and before(Ta, Tb) in the list, and it is connected to the condition appear(a)

AND appear(b) constructed before, using the operator and. This last composition

gives the final query.

Chapter 6

BilVideo Query Language

Retrieval of video data by its content is a very important and challenging task.

Users should be able to query a video database by spatio-temporal relations be-

tween video objects, object-appearance relations, object trajectories, low-level

features (color, shape and texture), keywords (annotations) as well as some

other semantic contents (events/activities). Query languages designed for re-

lational, object and object-relational databases do not provide sufficient support

for content-based video retrieval; either a new language that supports all these

types of content-based queries on video data should be designed and implemented

or an existing language should be extended with the required functionality.

In this chapter, we present a new video query language that is similar to SQL

in structure. The language can currently be used for spatio-temporal queries

that contain any combination of directional, topological, 3D-relation, object-

appearance, external-predicate, trajectory-projection and similarity-based object-

trajectory conditions. As a work in progress, the language is being extended so

that it could support semantic (keyword, event/activity and category-based) and

low-level (color, shape and texture) queries as well in a unified and integrated

manner.

45

CHAPTER 6. BILVIDEO QUERY LANGUAGE 46

6.1 Features of the Language

BilVideo query language has four basic statements for retrieving information:

select video from all [where condition];

select video from videolist where condition;

select segment from range where condition;

select variable from range where condition;

Target of a query is specified in select clause. A query may return

videos (video) or segments of videos (segment), or values of variables (variable)

with/without segments of videos where the values are obtained. Regardless of

the target type specified, video identifiers for videos in which the conditions are

satisfied are always returned as part of the query answer. Aggregate functions,

which operate on segments, may also be used in select clause. Variables might

be used for object identifiers and trajectories. Moreover, if the target of a query

is video, users may also specify the maximum number of videos to be returned

as a result of a query. If the keyword random is used, video fact-files to process

are selected randomly, thereby returning a random set of videos as a result. The

range of a query is specified in from clause, which may be either the entire video

collection or a list of specific videos. Query conditions are given in where clause.

In BilVideo query language, condition is defined recursively, and consequently, it

may contain any combination of spatio-temporal query conditions.

Supported Operators: The language supports a set of logical and temporal

operators to be used in query conditions. Logical operators are and, or

and not while temporal operators are before, meets, overlaps, starts, during,

finishes and their inverse operators.

The language also has a trajectory-projection operator, project, which can

be used to extract subtrajectories of video objects on a given spatial condi-

tion. The condition is local to project and it is optional. If it is not given,

entire object trajectories rather than subtrajectories of objects are returned.

CHAPTER 6. BILVIDEO QUERY LANGUAGE 47

The language has two operators, “=” and “!=”, to be used for assignment

and comparison. The left argument of these operators should a variable

whereas the right argument may be either a variable or a constant (atom).

Operator “!=” is used for inequality comparison while operator “=” may

take on different semantics depending on its arguments. If one of the argu-

ments of operator “=” is an unbound variable, it is treated as the assignment

operator. Otherwise, it is considered as the equality-comparison operator.

These semantics were adopted from the Prolog language.

Operators that perform interval processing are called interval operators.

Hence, all temporal operators are interval operators. Logical operators are

also considered as interval operators if their arguments contain intervals.

In the language, the precedence values of logical, assignment and compari-

son operators follow their usual order. Logical operators assume the same

precedence values defined for them when they are considered as interval op-

erators, as well. Temporal operators are given a higher priority over logical

operators when determining the arguments of operators and they are left

associative as are logical operators.

The query language also provides a keyword, repeat, that can be used

in conjunction with a temporal operator, such as before, meets, etc., or a

trajectory condition. Video data may be queried by repetitive conditions in

time using repeat with an optional repetition number given. If a repetition

number is not given with repeat, then it is considered indefinite, thereby

causing the processor to search for the largest intervals in a video, where

the conditions given are satisfied at least once over time. The keyword tgap

may be used for temporal operators and a trajectory condition. However, it

has rather different semantics for each type. For temporal operators, tgap

is only meaningful when repeat is used because it specifies the maximum

time gap allowed between pairs of intervals to be processed for repeat.

Therefore, the language requires that tgap be used along with repeat for

temporal operators. For a trajectory condition, it may be used to specify

the maximum time gap allowed for consecutive object movements as well

as pairs of intervals to be processed for repeat if repeat is also given in

CHAPTER 6. BILVIDEO QUERY LANGUAGE 48

the condition. Hence, tgap may be used in a trajectory condition without

any restriction.

Aggregate Functions: The query language has three aggregate functions, av-

erage, sum and count, which take a set of intervals (segments) as input.

Average and sum return a time value in minutes whilst count returns an

integer for each video clip satisfying given conditions. Average is used to

compute the average of the time durations of all intervals found for a video

clip whereas sum and count are used to calculate the total time duration

for and the total number of all such intervals, respectively. These aggregate

functions might be very useful to collect statistical data for some appli-

cations, such as sports event analysis systems, motion tracking systems,

etc.

External Predicates: The proposed query language is generic and designed

to be used for any application that requires spatio-temporal query pro-

cessing capabilities. The language has a condition type external defined

for application-dependent predicates, which we call external predicates.

This condition type is generic; consequently, a query may contain any

application-dependent predicate in where clause of the language with a

name different from any predefined predicate and language construct, and

with at least one argument that is either a variable or a constant (atom).

External predicates are processed just like spatial predicates as part of Pro-

log subqueries. If an external predicate is to be used for querying video

data, facts and/or rules related to the predicate should be added to the

knowledge-base beforehand.

In our design, each video segment returned as an answer to a user query has

an associated importance value ranging between 0 and 1, where 1 denotes an

exact match. The results are ordered with respect to these importance values

in descending order. Prolog subqueries return segments with importance value

1 because they are exact-match queries whereas the importance values for the

segments returned by similarity-based object-trajectory queries are the similarity

values computed. Interval operators not and or return the complements and

CHAPTER 6. BILVIDEO QUERY LANGUAGE 49

union of their input intervals, respectively. Interval operator or returns intervals

without changing their importance values whilst the importance value for the

intervals returned by not is 1. The rest of the interval operators takes the average

of the importance values of their input interval pairs for the computed intervals.

Users may also specify a time period in a query to view only parts of videos,

either from the beginning or from the end of videos, returned as an answer. The

grammar of the language is given in Appendix B.

6.2 Query Types

The architecture of BilVideo has been designed to support spatio-temporal, se-

mantic and low-level (color, shape and texture) queries in an integrated manner.

6.2.1 Object Queries

This type of queries may be used to retrieve salient objects for each video queried

that satisfies the conditions, along with segments if desired, where the objects

appear. Some example queries of this type are given below:

Query 1: “Find all video segments from the database in which object o1 ap-

pears.”

select segment

from all

where appear(o1);

Query 2: “Find the objects that appear together with object o1 in a given video

clip and also return such segments.” (Video identifier for the given video

clip is assumed to be 1.)

CHAPTER 6. BILVIDEO QUERY LANGUAGE 50

select segment, X

from 1

where appear(o1, X) and X != o1;

6.2.2 Spatial Queries

This type of queries may be used to query videos by spatial properties of ob-

jects defined with respect to each other. Supported spatial properties for objects

can be grouped into mainly three categories: directional relations that describe

order in 2D space, topological relations that describe neighborhood and inci-

dence in 2D space and 3D relations that describe object positions on the z-axis of

three-dimensional space. There are eight distinct topological relations: disjoint,

touch, inside, contains, overlap, covers, covered-by and equal. Fundamental direc-

tional relations are north, south, east, west, north-east, north-west, south-east and

south-west, and 3D relations contain infrontof, strictlyinfrontof, touchfrombehind,

samelevel, behind, strictlybehind and touchedfrombehind.

6.2.3 Similarity-Based Object-Trajectory Queries

In our data model, for each moving object in a video clip, a trajectory fact is

stored in the facts-base. A trajectory fact is modelled as tr(ν, ϕ, ψ, κ), where

ν: object identifier,

ϕ (list of directions): [ϕ1, ϕ2,, ϕn] where ϕi ∈ F1 (1≤i≤n),

ψ (list of displacements): [ψ1, ψ2,, ψn] where ψi ∈ Z+ (1≤i≤n), and

κ (list of intervals): [[s1, e1],, [sn, en]] where si, ei ∈ N and si ≤ei

(1≤i≤n).

A trajectory query is modeled as

tr(α, λ) [sthreshold σ [dirweight β | dspweight η]] [tgap γ]

1set of fundamental directional relations

CHAPTER 6. BILVIDEO QUERY LANGUAGE 51

or

tr(α, θ) [sthreshold σ] [tgap γ]

where

α: object identifier,

λ: trajectory list ([θ, χ]),

θ: list of directions,

χ: list of displacements,

sthreshold (similarity threshold): 0< σ <1,

dirweight (directional weight): 0≤ β ≤1 and 1-β = η,

dspweight (displacement weight): 0≤ η ≤1 and 1-η = β, and

tgap: time threshold, γ ∈ N, for the gap between consecutive object

movements.

In a trajectory query, variables may be used for α and λ, and the number

of directions is equal to the number of displacements in λ just like in trajectory

facts because each element of a list is associated with an element of the other list

that has the same index value. The list of directions specifies a path an object

follows whilst the displacement list associates each direction in this path with a

displacement value. However, it is optional to specify a displacement list in a

query in which case no weights are used in matching trajectories. Such queries

are useful when displacements are not important to the user.

In a trajectory query, similarity and time threshold values are also optional.

If a similarity threshold is not given, the query is considered as an exact-match

query. A query without a tgap value implies a continuous motion without any

stop between consecutive object movements. The time threshold value specified in

a query is considered in seconds. A trajectory query may have either a directional

or a displacement weight supplied because the other is computed from the one

given. Moreover, for a weight to be specified, a similarity threshold value must

also be provided. If a similarity value is supplied and no weight is given, then the

weights of the directional and displacement components are considered equal by

default. The key idea in measuring the similarity between a pair of trajectories

is to find the distance between the two and this is achieved by computing the

CHAPTER 6. BILVIDEO QUERY LANGUAGE 52

north

north-east

eastwest

north-west

south-eastsouth-west

south

Figure 6.1: Directional Coordinate System

distances between the directional and displacement components of the trajectories

when both lists are available. If a displacement list is not specified in a query, then

trajectory similarity is measured by comparing the directional lists. Furthermore,

when a weight value is 0, then its corresponding list is not taken into account in

computing similarity between trajectories.

Directional Similarity:

Definition 3 A directional region is an area between neighboring directional seg-

ments in the directional coordinate system depicted in Figure 6.1.

Definition 4 Let da and db be two directions in the directional coordinate sys-

tem. The distance between da and db, denoted as D(da, db), is defined to be the

minimum number of directional regions between da and db.

Definition 5 The directional normalization factor, ω, is defined to be the number

of directional regions between two opposite directions in the directional coordinate

system (w = 4).

Let A and B be two directional lists each having n elements such that

A = [A1, A2, ..., An] and B = [B1, B2, ..., Bn]. The similarity between A

CHAPTER 6. BILVIDEO QUERY LANGUAGE 53

and B is specified as follows according to Definitions 3-5:

ς(A,B) = 1− 1

w

√√√√ 1

n

n∑

i=1

D(Ai, Bi)2 (6.1)

Displacement Similarity:

Definition 6 The displacement normalization factor of a displacement list A is

defined to be the maximum displacement value in the list and it is denoted by Aµ.

Let A and B be two displacement lists each having n elements such that

A = [A1, A2, ..., An] and B = [B1, B2, ..., Bn]. Furthermore, let us suppose

that Dnr(Ai, Bi) denotes the normalized distance between Ai and Bi for 1≤i≤n.

Then, the similarity between A and B is specified as follows:

ς(A,B) = 1−
√√√√ 1

n

n∑

i=1

Dnr(Ai, Bi)2 , where Dnr(Ai, Bi) =
BµAi − AµBi

AµBµ

(6.2)

Trajectory Matching:

Similarity-based object-trajectory queries are processed by the trajectory pro-

cessor, which takes such queries as input and returns a set of intervals each as-

sociated with an importance value (similarity value), along with some other data

needed by the query processor for forming the final set of answers to user queries,

such as variable bindings (values) if variables are used. Here, we formally discuss

how similarity-based object-trajectory queries with no variables are processed by

the trajectory processor. In doing so, it is assumed without loss of generality that

trajectory queries contain both the directional and displacement lists. Moreover,

we restrict our discussion to such cases as those where the time gaps between

consecutive object movements in trajectory facts are equal to or below the time

threshold given in a query. These assumptions are made just for the sake of

simplicity because our main target here is to explain the theory that provides a

novel framework for our similarity-based object-trajectory matching mechanism

rather than presenting our query processing algorithm in detail.

CHAPTER 6. BILVIDEO QUERY LANGUAGE 54

Let Q and T be a similarity-based object-trajectory query and a trajectory

fact for an object that is stored in the facts-base for a video clip, respectively,

such that Q = tr(α, λ) sthreshold σ dirweight β and T = (ν, ϕ, ψ, κ), where

λ = [θ, χ]. Let us assume that there is no variable used in Q or all variables are

bound, α = ν, ‖ϕ‖ = n and ‖θ‖ = m. Let us also assume that there is no gap

between any consecutive pairs of intervals in κ such that κei
= κsi+1

(1≤i<m).

Case 1 (n=m): The similarity between the two trajectories Qt = (θ, χ) and

Tt = (ϕ, ψ) is computed as follows:

ς(Qt, Tt) = β ς(θ, ϕ) + η ς(χ, ψ), where β = 1− η (6.3)

In this case, the trajectory processor returns only one interval,

ξ = [κs1 , κen], iff ς(Qt, Tt)≥σ. Otherwise (ς(Qt, Tt)<σ), the answer set

is empty because there is no similarity between Qt and Tt with a given

threshold σ.

Case 2 (n>m): In this case, the trajectory processor returns a set of intervals

φ such that

φ = {[si, ei]|1 ≤ i ≤ n−m+1∧si = κsi
∧ei = κei+m−1

∧ς(Qt, Tt[i,i+m−1]
) ≥ σ}

where

Tt[i,i+m−1]
= ([ϕi,, ϕi+m−1], [ψi,, ψi+m−1])

If there is no match found for any Tti for 1≤i≤n-m+1, where Tti = Tt[i,i+m−1]
,

then the answer set is empty.

Case 3 (n<m): As in Case 1, the trajectory processor returns only one interval,

ξ = [κs1 , κen],

iff ∃ ς(Qt[i,i+n−1]
, Tt) ≥ m

n
σ for 1 ≤ i ≤ m− n + 1,

where

Qt[i,i+n−1]
= ([θi, . . . , θi+n−1], [χi, . . . , χi+n−1])

CHAPTER 6. BILVIDEO QUERY LANGUAGE 55

The importance value (similarity value) associated and returned with ξ is

ς =
n

m
MAX {ς|ς(Qt[i,i+n−1]

, Tt) (1 ≤ i ≤ m− n + 1)}

If there is no match found, the answer set is empty because there is no

similarity between Qt and Tt with a given threshold σ.

Projection Operator:

BilVideo query language provides a trajectory-projection operator,

project(α [, β]), to extract subtrajectories from trajectory facts, where α is an

object identifier for which a variable might be used and β is an optional condition.

If a condition is not given, then the operator returns the entire trajectory that

an object follows in a video clip. Otherwise, subtrajectories of an object, where

the given condition is satisfied, are returned. Hence, the output of project is a set

ϑ = {λ | λ = [θ, χ]} where λ is a trajectory, and θ and χ are the directional and

displacement components of λ, respectively. The condition, if it is given, is local

to project and it is of type <spatial-condition> as specified in Appendix B.

6.2.4 Temporal Queries

This type of queries is used to specify the order of occurrence of conditions in time.

Conditions may be of any type, but temporal operators process their arguments

only if they contain intervals. BilVideo query language implements all tempo-

ral relations as temporal operators defined by Allen’s temporal interval algebra

except for equal: our interval operator and yields the same functionality as that

of equal. Supported temporal operators, which are used as interval operators in

BilVideo query language, are before, meets, overlaps, starts, during, finishes and

their inverse operators. A user query may contain repeating temporal conditions

specified by repeat with an optional repetition number given. If tgap is not

provided with repeat, then its default value for temporal operators (equivalent

to one frame when converted) is assumed.

CHAPTER 6. BILVIDEO QUERY LANGUAGE 56

6.2.5 Aggregate Queries

This type of queries may be used to retrieve statistical data about objects and

events in video data. There are three aggregate functions, average, sum and count

as explained in Section 6.1. These aggregate functions may be very attractive in

collecting statistical data for such applications as sports event analysis systems.

6.2.6 Low-level (Color, Shape and Texture) Queries

This type of queries is used to query video data by low-level (color, shape and

texture) properties. Among all, color and shape are the most frequently used

properties first adopted in image databases. Since a video can be considered

as a sequence of images, the techniques developed for content-based retrieval of

images by color, shape and texture features can also be used in video databases

to enhance their query capabilities and provide more accurate answers for user

queries.

In BilVideo, video data is preprocessed to semi-automatically extract object

trajectories, object-appearance relations and spatio-temporal relations between

video objects by the Fact-Extractor tool. In our video data model, video clips

are segmented into shots whenever the current set of relations between objects

changes and the video frames, where these changes occur, are chosen as keyframes.

We have enhanced the Fact-Extractor tool so that it could also generate color and

shape histograms of video salient objects for each keyframe detected. Extracted

color and shape histograms of video objects will be used together with spatio-

temporal relations to enrich query capabilities of the system. Details about our

work on using low-level (color, shape and texture) features for video data can be

found in [6].

CHAPTER 6. BILVIDEO QUERY LANGUAGE 57

6.2.7 Semantic Queries

This type of queries is used to query video data by semantic features. In our

system, videos are partitioned into semantic units, which form a hierarchy. This

partitioning is carried out by the Video-Annotator tool. Our approach of seg-

menting videos into shots by detecting keyframes, where the set of spatial rela-

tions between objects changes, should not be confused by semantic partitioning

of videos. The former approach is only used for extracting spatio-temporal rela-

tions between video objects and answering spatio-temporal queries on video data.

Spatio-temporal relations stored in the knowledge-base are not explicitly related

to any semantic video unit, and this feature makes the system more powerful

than others proposed in the literature because BilVideo can return not only se-

mantic units of videos but also any segment of videos, where given conditions are

satisfied. BilVideo query language has been extended for semantic conditions on

video data and semantic query processing is under development.

6.3 Example Applications

To demonstrate the capabilities of BilVideo query language for spatio-temporal

queries, three application areas, soccer event analysis, bird migration tracking and

movie retrieval systems, have been selected. However, BilVideo system architec-

ture and query language provide a generic framework to be used for other types

of applications, as well.

6.3.1 Soccer Event Analysis System

A soccer event analysis system may be used to collect statistical data on events

that occur during a soccer game, such as finding the number of goals, offsides and

passes, average ball control time for players, etc., and to retrieve video segments

where such events take place. BilVideo query language can be used to answer

such queries provided that some necessary facts, such as players and goalkeepers

CHAPTER 6. BILVIDEO QUERY LANGUAGE 58

for the teams, as well as some predicates, such as player to find the players of a

certain team, are added to the knowledge-base.

Query 1: “Find the number of direct shots to the goalkeeper of Liverpool by

each player of Manchester United in a given video clip, and return such

video segments.”

This query can be specified in BilVideo query language as follows:

select count(segment), segment, X

from 1

where goalkeeper(X, liverpool) and player(Y, manchester)

and touch(Y, ball) meets not(touch(Z, ball)) meets

touch(X, ball);

In this query, the external predicates are goalkeeper and player, and the

video identifier for the given video clip is assumed to be 1. For each player

of Manchester United found in the specified video clip, the number of direct

shots to the goalkeeper of Liverpool by the player, along with the player’s

name and video segments found, is returned provided that such segments

exist. In BilVideo, semantic meta data is stored in an object-relational

database. Hence, video identifiers can be retrieved from this database,

querying it with some descriptional data.

Query 2: “Find the average ball control (play) time for each player of Manch-

ester United in a given video clip.”

This query can be specified in BilVideo query language as follows:

select average(segment), X

from 1

where player(X, manchester) and touch(X, ball);

In answering this query, it is assumed that when a player touches the ball,

it is in his control. Then, the ball control time for a player is computed

with respect to the time interval during which he is in touch with the ball.

Hence, the average ball control time for a player is simply the sum of all

time intervals where the player is in touch with the ball divided by the

CHAPTER 6. BILVIDEO QUERY LANGUAGE 59

number of these time intervals. This value is computed by the aggregate

function average. If we were interested in finding the total ball control time,

then we would use the aggregate function sum instead of average.

Query 3: “Find the number of goals of Liverpool scored against Manchester

United in a given video clip.”

This query can be specified in BilVideo query language as follows:

select count(segment)

from 1

where samelevel(ball, net) and touch(ball, net) meets

overlap(ball, net);

In this query, 3D relation samelevel ensures that an event, which is not a

goal because the ball does not go into the net, but rather passes somewhere

near the net, is not considered as a goal. The ball may first touch and

then overlap with the net in 2D space while it is behind or in front of the

net on the z-axis of three-dimensional space. Hence, by using 3D relation

samelevel, such false events are discarded.

6.3.2 Bird Migration Tracking System

A bird migration tracking system is used to determine the migration paths of

birds over a set of regions in certain times. In [36], an animal movement querying

system is discussed, and we have chosen a specific application of such a system

to show how BilVideo query language might be used to answer spatio-temporal,

especially object-trajectory, queries on the migration paths of birds.

Query 1: “Find the migration paths of bird o1 over region r1 in a given video

clip.”

This query can be specified in BilVideo query language as follows:

select X

from 2

where X = project(o1, inside(o1, r1));

CHAPTER 6. BILVIDEO QUERY LANGUAGE 60

In this query, X is a variable used for the trajectory of bird o1 over region r1.

Video identifier of the video clip, where the migration of bird o1 is recorded,

is assumed to be 2. This query returns the paths bird o1 follows when it is

inside region r1.

Query 2: “How long does bird o1 appear inside region r1 in a given video clip?”

This query can be specified in BilVideo query language as follows:

select sum(segment)

from 2

where inside(o1, r1);

The result of this query is a time value, which is computed by the aggregate

function sum adding up the time intervals during which bird o1 is inside

region r1.

Query 3: “Find the video segments where bird o1 enters region r1 from west and

leaves from north in a given video clip.”

This query can be specified in BilVideo query language as follows:

select segment

from 2

where (touch(o1, r1) and west(o1, r1)) meets

overlap(o1, r1) meets coveredby(o1, r1) meets

inside(o1, r1) meets

coveredby(o1, r1) meets overlap(o1, r1) meets

(touch(o1, r1) and north(o1, r1));

Query 4: “Find the names of birds following a similar path to that of bird o1

over region r1 with a similarity threshold value 0.9 in a given video clip,

and return such segments.”

This query can be specified in our query language as follows:

select segment, X

from 2

where Y = project(o1, inside(o1, r1)) and inside(X, r1) and

X != o1 and tr(X, Y) sthreshold 0.9;

CHAPTER 6. BILVIDEO QUERY LANGUAGE 61

Here, X and Y are variables representing the bird names and subtrajectories

of bird o1 over region r1, respectively. Projected subtrajectories of bird o1,

where the given condition is to be inside region r1, are used to find similar

subtrajectories of other birds over the same region.

6.3.3 Movie Retrieval System

A movie retrieval system contains movies and series from different categories,

such as cartoon, comedy, drama, fiction, horror, etc. Such a system may be

used to retrieve videos or segments from a collection of movies with some spatio-

temporal, semantic and low-level (color, shape and texture) conditions given. In

this section, a specific episode of Smurfs, a cartoon series, titled as Bigmouth’s

Friend is used for all query examples given. The video identifier of this episode

is assumed to be 3.

Query 1: “Find the segments from Bigmouth’s Friend where Bigmouth is below

RobotSmurf while RobotSmurf starts moving towards west and then goes to

east repeating this as many times as it happens in the video clip.”

select segment

from 3

where below(bigmouth, robotsmurf) and

(tr(bigmouth, [west, east])) repeat;

Query 2: “Find the segments from Bigmouth’s Friend where Gargamel is to the

southwest of his father and boyking while boyking is to the right of soldier1

and left of soldier2, and soldier1 is behind soldier2.”

select segment

from 3

where southwest(gargamel, father) and

southwest(gargamel, boyking) and right(boyking, soldier1)

and left(boyking, soldier2) and behind(soldier1, soldier2);

CHAPTER 6. BILVIDEO QUERY LANGUAGE 62

Query 3: “Find the segments from Bigmouth’s Friend where lazysmurf, farm-

ersmurf, grouchysmurf, smurfette and handysmurf all appear together such

that lazysmurf is to the west of handysmurf and smurfette is to the east of

farmersmurf.”

select segment

from 3

where appear(grouchysmurf) and west(lazysmurf, handysmurf) and

east(smurfette, farmersmurf);

In this query, there is no need to ask if lazysmurf, handysmurf, smurfette

and farmersmurf appear together with grouchysmurf because the conditions

west and east imply this condition.

Query 4: “Find the segments from Bigmouth’s Friend where robotsmurf and

bigmouth are disjoint and robotsmurf is to the right of bigmouth while there

is no other object of interest that appears.”

select segment

from 3

where disjoint(robotsmurf, bigmouth) and

right(robotsmurf, bigmouth) and

appear alone(robotsmurf, bigmouth);

In this query, appear alone is an external predicate defined in the knowledge-

base as follows:

appear alone(X, Y, F) :- keyframes(L1), member(F, L1),

findall(W, p appear(W, F), L2), length(L2, 2),

forall(member(Z, L2), (Z = X; Z = Y)).

Chapter 7

Query Processor

Figure 7.1 illustrates how the query processor communicates with Web clients and

the underlying system components to answer user queries. The phases of query

processing for spatio-temporal queries are shown in Figure 7.2. Web clients make

a connection request to the query request handler, which creates a process for

each request passing a new socket for communication between the process and

the Web client. Then, the clients send user queries to the processes created by the

query request handler. If the queries are specified visually, they are transformed

into SQL-like textual query language expressions before being sent to the server.

Having received the query from the client, each process calls the query processor,

compiled as a library, with a query string and waits for the query answer. When

the query processor returns, the process communicates the answer to the Web

client issuing the query and exits. The query processor first separates the semantic

(keyword, event/activity and category-based) and low-level (color, shape and

texture) query conditions in a query from the spatio-temporal query conditions

that could be handled by the knowledge-base. The former type of conditions

is organized and sent as regular SQL queries to an object-relational database

whereas the latter part is reconstructed as Prolog-type knowledge-base queries.

Intermediate results obtained are integrated by the query processor and returned

to the query request handler, which communicates the final results to Web clients.

Currently, the query processor can handle a wide range of spatio-temporal queries

and we are working on extending it to support semantic and low-level queries, as

63

CHAPTER 7. QUERY PROCESSOR 64

Web Client
(Java Applet)

User Query

Query Result
Set

Query Request
Handler

User Query

Query Result
Set

Query
Processor

(C++)(C++)

Figure 7.1: Web Client - Query Processor Interaction

DECOMPOSER

Query

PARSERLEXER QUERY
EXECUTOR

QUERY Result SetQuery Parse Tree Query TreeTokens

Query Execution PhaseQuery Decomposition PhaseQuery Recognition Phase

Figure 7.2: Query Processing Phases

well.

7.1 Query Recognition

The lexical analyzer and parser for the query language were implemented using

Flex and Bison that work under a Linux operating system [11, 42], which are

the GNU versions of the original Lex&Yacc [20, 23] compiler-compiler generator

tools. The lexical analyzer partitions a query into tokens, which are passed to the

parser with possible values for further processing. The parser assigns structure

to the resulting pieces and creates a parse tree to be used as a starting point for

query processing. This phase is called query recognition phase.

CHAPTER 7. QUERY PROCESSOR 65

7.2 Query Decomposition

The parse tree generated after the query recognition phase is traversed in a second

phase, which we call query decomposition phase, to construct a query tree. The

query tree is constructed from the parse tree decomposing a query into three basic

types of subqueries: Prolog queries or maximal subqueries that can be directly

sent to the inference engine Prolog, trajectory-projection queries that are handled

by the trajectory projector and similarity-based object-trajectory queries that are

processed by the trajectory processor. Temporal queries are handled by interval-

operator functions such as before, during, etc. Arguments of the interval operators

are handled separately because they should be processed before the interval op-

erators are applied. Since a user may give any combination of spatial, temporal,

object-appearance, external-predicate, trajectory-projection and similarity-based

object-trajectory conditions in any order while specifying a query, a query is

decomposed in such a way that a minimum number of subqueries are formed.

This is achieved by grouping the Prolog-type predicates into maximal subqueries

without changing the semantic meaning of the original query.

7.3 Query Execution

The input for the query execution phase is a query tree. In this phase, the query

tree is traversed in postorder, executing each subquery separately and performing

interval processing in internal nodes so as to obtain the final set of results. Since

it would be inefficient and very difficult, if not impossible, to fully handle spatio-

temporal queries by Prolog alone, query execution phase is mainly carried out by

some efficient C++ code. Thus, Prolog is utilized only to obtain intermediate

answers to user queries from the facts-base. Intermediate query results returned

by Prolog are further processed and final answers to user queries are formed after

interval processing. Figure 7.3 illustrates the query execution phase.

BilVideo query language has been designed to return variable values, when

requested explicitly, as part of the result as well. Therefore, the system not only

CHAPTER 7. QUERY PROCESSOR 66

Processor
Interval

Unit

Processing

Central Query

Answers Trajectory

Processor

Queries

Subqueries
Maximal

Answers

Knowledge−base

 Set
Query Result

Query Tree

Interval
Operator

Input

Interval
Operator
Output

Object
Trajectories

Trajectory
Queries

Trajectory
Projector

Similarity−Based
Object−Trajectory

Answers

Trajectory−Projection
Queries

Trajectory Queries

Condition Queries

Answers

Figure 7.3: Query Execution

supports video/segment queries but also variable-value retrieval for the parts of

videos satisfying given query conditions utilizing a knowledge-base. Variables

may be used for object identifiers and trajectories.

One of the main challenges in query execution is to handle such user queries

where the scope of a variable used extends to several subqueries after the query is

decomposed. It is a challenging task because subqueries are processed separately,

accumulating and processing the intermediate results along the way to form the

final set of answers. Hence, the values assigned to variables for a subquery are

retrieved and used for the same variables of other subqueries within the scope

of these variables. Therefore, it is necessary to keep track of the scope of each

variable for a query. This scope information is stored in a hash table generated for

the variables. Dealing with variables makes the query processing much harder,

but it also empowers the query capabilities of the system and yields much richer

semantics for user queries.

CHAPTER 7. QUERY PROCESSOR 67

7.4 Query Examples

In this section, three example spatio-temporal queries are given to demonstrate

how the query processor decomposes a query into subqueries. Intermediate results

obtained from these subqueries are integrated step by step to form the final answer

set.

Query 1: select segment, X, Y

from all

where west(X, Y) and west(Y, o1) and west(o1, o2) and

tr(o2, [[west, east], [24, 40]]) sthreshold 0.4

dspweight 0.3 and disjoint(X, Y) before touch(X, Y)

and disjoint(Y, o1);

This example query is decomposed into following subqueries:

Subquery 1: tr(b, [[west, east], [24, 40]]) sthreshold 0.4

dspweight 0.3

Subquery 2: disjoint(X, Y)

Subquery 3: touch(X, Y)

Subquery 4: west(X, Y) and west(Y, o1) and west(o1, o2) and

disjoint(Y, o1)

In this example, subqueries 2 and 3 are linked to each other by temporal

operator before. The rest of the internal nodes in the query tree contains operator

and. Figure 7.4 depicts the query tree constructed for this example query.

Query 2: select segment, Y

from all

where west(X, Y) and west(Y, o1) and

tr(o2, [[west, east], [24, 40]]) sthreshold 0.4

dirweight 0.4 and disjoint(Y, o1);

CHAPTER 7. QUERY PROCESSOR 68

AND

AND

from all
where west(X, Y) and west(Y, a), and west(a, b) and

disjoint(X, Y) before touch(X, Y) and disjoint(Y, a);

Query: select segment, X, Y

tr(b, [[west, east], [24, 40]]) sthreshold 0.4 dspweight 0.3 and

BEFORE

touch(X, Y)disjoint(X, Y)

west(X, Y) and west(Y, a) and

tr(b, [[west, east], [24, 40]], 0.4, 0.7, 0.3)

west(a, b) and disjoint(Y, a)

Figure 7.4: The query tree constructed for Query 1

Query 2 is decomposed into following subqueries:

Subquery 1: tr(o2, [[west, east], [24, 40]]) sthreshold 0.4

dirweight 0.4

Subquery 2: west(X, Y) and west(Y, o1) and disjoint(Y, o1)

To answer Query 1, the query processor computes each subquery traversing

the query tree in postorder performing interval processing at each internal node

and taking into account the scope of each variable encountered. Here, the scope

of object variables X and Y is subqueries 2, 3 and 4. Hence, for each value-pair of

variables X and Y, a set of intervals is computed in subquery 2. Another reason

for computing a set of intervals for each value-pair is that the values obtained

for variables X and Y are also returned in pairs, along with the video segments

satisfying the query conditions, as part of the query results. Hence, even if the

scope of these variables were to be only subquery 2, the same type of interval

CHAPTER 7. QUERY PROCESSOR 69

processing and care must be provided. Nonetheless, if an object variable is bound

by only one subquery and its values are not to be returned as part of the query

result as in the case of object variable X in Query 2, then it is possible to combine

consecutive intervals, where the variable takes different values while the rest of

the conditions are satisfied for the same set of value-sequences for the rest of the

variables. Query 3 better explains this concept of interval processing and variable

value computation:

Query 3: “Return video segments in the database where object o1 is first disjoint

from object o2 and then touches it repeating this event 3 times while it is

inside another object.”

select segment

from all

where inside(o1, X) and

(disjoint(o1, o2) meets touch(o1, o2)) repeat 3;

In this query, we do not care which object object o1 is inside, but we are

only interested in finding the video segments where object o1 is first disjoint from

object o2 and then touches it repeating this event 3 times while it is inside another

object. Thus, consecutive intervals for different objects that contain object o1 may

be combined provided that given conditions are satisfied.

Chapter 8

Spatio-Temporal Query

Processing

BilVideo query language currently provides support for spatio-temporal video

queries that contain Prolog, similarity-based object-trajectory and trajectory-

projection types of subqueries. The query processor makes use of the query

tree constructed from the parse tree, which is formed in the process of query

parsing. Since it is relatively inefficient and difficult to handle similarity-based

object-trajectory, temporal-predicate and trajectory-projection query conditions

by Prolog alone, these conditions are mainly processed by some C++ code outside

the Prolog environment. However, Prolog is still used for such types of conditions

to obtain some necessary data from the knowledge-base, such as object trajec-

tories, which is needed for query processing. BilVideo query language has been

designed to return object names, which satisfy the given query conditions, as part

of the result as well. This feature of the system and the language is unique be-

cause the system not only supports video/video-segment queries but also object

information (name) retrieval for the parts of videos satisfying given query condi-

tions utilizing a knowledge-base. The main challenge here is to handle such user

queries when the scope of an object variable used in a query extends to several

subqueries after the query is decomposed. Hence, it is necessary to keep track

of the scope of each variable for a query. This task makes the query process-

ing and especially the interval processing much harder than it would be without

70

CHAPTER 8. SPATIO-TEMPORAL QUERY PROCESSING 71

object-information-retrieval support implemented, but it also broadens the set of

query types that the system can answer and yields much richer semantics for user

queries. Some of our spatio-temporal query processing functions are given in the

form of simplified pseudo-codes in Appendix C.

8.1 Interval Processing

Intervals are categorized into two types: non-atomic and atomic intervals. If

a condition holds for every frame of a part of a video clip, then the interval

representing an answer for this condition is considered as a non-atomic inter-

val. Non-atomicity implies that for every frame within an interval in question

does the condition hold. Hence, the condition also holds for any subinterval of

a non-atomic interval as well. This implication is not correct for atomic inter-

vals, though. The reason is that the condition associated with an atomic interval

does not hold for all its subintervals. Consequently, an atomic interval cannot

be broken into its subintervals for query processing. On the other hand, subin-

tervals of an atomic interval are populated for query processing provided that

conditions are satisfied in their range. In other words, the query processor gen-

erates all possible atomic intervals for which the given conditions are satisfied.

This interval population is necessary since atomic intervals cannot be broken

into subintervals and all such intervals, where the conditions hold, should be

generated for query processing. The intervals returned by the Prolog queries

that contain topological, directional, object-appearance, external-predicate and

3D-relation conditions are non-atomic whereas those obtained by applying the

temporal predicate functions to the interval sets as well as those returned by the

similarity-based object-trajectory function are atomic intervals. As the logical

operators AND, OR and NOT are considered as interval operators when their

arguments contain intervals to process, they also work on intervals. The opera-

tors AND and OR may return atomic and/or non-atomic intervals depending on

the types of their input intervals. The operator AND takes the intersection of its

input intervals while the operator OR performs a union operation on its input

intervals. The unary operator NOT returns the complement of its input interval

CHAPTER 8. SPATIO-TEMPORAL QUERY PROCESSING 72

set with respect to the video clip being queried, and the intervals in the result set

are of type non-atomic regardless of the types of the input intervals. Semantics

of the interval intersection and union operations are given in Tables 8.1 and 8.2,

respectively.

The rationale behind classifying video frame intervals into two categories as

atomic and non-atomic may be best described with the following query example:

“Return the video segments in the database, where object A is to the west of

object B and object A follows a similar trajectory to the one specified in the query

with respect to the similarity threshold given”. Let us assume that the intervals

[10, 200] and [10, 50] are returned as part of the answer set for a video for the

trajectory and spatial (directional) conditions of this query, respectively. Here,

the first interval is of type atomic because the trajectory of object A is only valid

within the interval [10, 200], and therefore, trajectory similarity computation

is not performed for any of its subintervals. However, the second interval is

non-atomic since the directional condition given is satisfied for each frame in

this interval. When these two intervals are processed to form the final result

by the AND operator, no interval is returned as an answer because there is no

such an interval, where both conditions are satisfied together. If there were no

classification of intervals and all intervals were to be breakable into subintervals,

then the final result set would include the interval [10, 50]. However, as obvious,

the two conditions cannot hold together in this interval due to the fact that the

trajectory of object A spans over the interval [10, 200]. As another case, let

us suppose that the intervals [10, 200] and [10, 50] are returned as part of the

answer set for the spatial (directional) and trajectory conditions of this query,

respectively, and the intervals were to be unbreakable to sub-intervals. Then, the

result set would be empty for these two intervals. This is not correct since there

is an interval, [10, 50], where both conditions hold. These two cases clearly show

that intervals must be classified into two groups as atomic and non-atomic for

query processing. Following is a discussion with another example query that has

a temporal predicate provided to make all these concepts much clearer.

Let us suppose that a user wants to find the parts of a video clip satisfying

the following query:

CHAPTER 8. SPATIO-TEMPORAL QUERY PROCESSING 73

Input Interval 1 Input Interval 2 Result Set Result Interval
Type

I1 iff I1 ⊇ I2

I1 (Atomic) I2 (Atomic) I2 iff I1 ⊂ I2 Atomic
otherwise, Ø

I1 (Atomic) I2 (Non-atomic) I1 iff I2 ⊇ I1 Atomic
otherwise, Ø

I1 (Non-atomic) I2 (Atomic) I2 iff I1 ⊇ I2 Atomic
otherwise, Ø
[Is, Ie] iff I1 overlaps I2

Is = I1s iff I1s ≥ I2s

I1 (Non-atomic) I2 (Non-atomic) otherwise, Is = I2s Non-atomic
Ie = I1e iff I1e ≤ I2e

otherwise, Ie = I2e

otherwise, Ø

Table 8.1: Interval Intersection (AND)

Input Interval 1 Input Interval 2 Result Set Result Interval
Type

I1 (Atomic) I2 (Atomic) {I1, I2} Atomic
Atomic

I1 (Atomic) I2 (Non-atomic) {I1, I2} and
Non-atomic
Non-atomic

I1 (Non-atomic) I2 (Atomic) {I1, I2} and
Atomic

[I1s , I2e] if I2s = I1e + 1
[I2s , I1e] if I1s = I2e + 1
[Is, Ie] if I1 overlaps I2

I1 (Non-atomic) I2 (Non-atomic) Is = I1s iff I1s ≥ I2s Non-atomic
otherwise, Is = I2s

Ie = I1e iff I1e ≤ I2e

otherwise, Ie = I2e

otherwise, {I1, I2}

Table 8.2: Interval Union (OR)

CHAPTER 8. SPATIO-TEMPORAL QUERY PROCESSING 74

Query: (A before B) and west(x, y), where A and B are Prolog subqueries, and

x and y are atoms (constants).

The interval operator “before” returns a set of atomic intervals, where first A

is true and B is false, and then, A is false and B is true in time. If A and B are

true in the intervals [4, 10] and [20, 30], respectively, and if these two intervals

are both non-atomic, then the result set will consist of [10, 20], [10, 21], [9, 20],

[10, 22], [9, 21], ..., [4, 30]. Now, let’s discuss two different scenarios:

Case 1: west(x, y) holds for [9, 25]. This interval is non-atomic because

“west(x, y)” returns non-atomic intervals. If the operator “before” re-

turned only the atomic interval [4, 30] as the answer for “A before B”,

then the answer set to the entire query would be empty. However, the user

is interested in finding the parts of a video clip, where “(A before B) and

west(x, y)” is true. The intervals [10, 20], [10, 21],, [4, 29] also satisfy

“A before B”; however, they would not be included in the answer set for

“before”. This is wrong! All these intervals must be a part of the answer

set for “before” as well. If they are included, then the answer to the entire

query will be [9, 25] because [9, 25] (atomic) and [9, 25] (non-atomic) =>

[9, 25] (atomic). Nonetheless, make a note of that such intervals as [10, 19],

[11, 25], etc. are not included in the answer set of “A before B” since they

do not satisfy the condition “A before B”.

Case 2: west(x, y) holds for [11, 25]. Let’s suppose that “before” returned

non-atomic intervals rather than atomic intervals and that the answer for

“A before B” were [4, 30]. Then, the answer to the entire query would

be [11, 25] for [4, 30] (non-atomic) and [11, 25] (non-atomic) => [11, 25]

(non-atomic). Nevertheless, this is wrong due to the fact that “A before B”

is not satisfied within this interval. Hence, “before” should return atomic

intervals so that such incorrect results are not produced.

These two cases clearly show that temporal operators should return atomic

intervals and that the results should also include subintervals of each largest

CHAPTER 8. SPATIO-TEMPORAL QUERY PROCESSING 75

interval that satisfy the given conditions rather than consisting only of the set of

largest intervals. It also demonstrates why such a classification for the intervals

as atomic and non-atomic is necessary.

Chapter 9

Performance and Scalability

Experiments

In order to show that BilVideo is scalable for spatio-temporal queries in terms

of the number of salient objects per frame and the total number of frames in

a video clip as well as to demonstrate the space savings due to our rule-based

approach, some program-generated synthetic video data was used. These tests

constitute the first part of the overall tests. In the second part, the system’s

performance was tested on some real video clip fragments with the consideration

of space and time efficiency criteria to show its applicability for spatio-temporal

queries in real-life applications. The real video clip fragments were extracted from

jornal.mpg, MPEG-7 Test Data set CD-14, Port. news, and a Smurfs cartoon

episode named Bigmouth’s Friend. Table 9.1 presents some information about

these video fragments.

In order to make a judgement on how successful our fact-extraction algorithm

Original Video Total # of Frames Total # of Objects Max. # of Objects
in a Frame

Jornal.mpg 5254 21 4
Smurfs.avi 4185 13 6

Table 9.1: Specifications of the movie fragments

76

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 77

is in eliminating the redundant facts for both synthetic and real video data, two

facts-bases were created. The first facts-base consists only of the basic facts

extracted using the fact-extraction algorithm while the second one comprises all

the facts computed again with this algorithm, but this time with its fact-reduction

feature turned off. Since the two facts-bases were created using the same video

data for synthetic and real video separately, the sizes of the resultant facts-bases

give us an idea about how well our fact-reduction feature works as well as how

efficient our approach is for space considerations.

9.1 Tests with Program-Generated Video Data

For the space efficiency tests, the number of objects per frame was selected as 8,

15 and 25 while the total number of frames was fixed to 100. To show the system’s

scalability in terms of the number of objects per frame, the total number of frames

was chosen to be 100 and the number of objects per frame was varied from 4 to 25.

For the scalability test with respect to the total number of frames, the number

of objects was fixed to 8 whilst the total number of frames was varied from 100

to 1000.

Figures 9.1-9.3 give the space efficiency test results as bar charts for 8, 15

and 25 objects per frame for a 1000-frame synthetic video data. In these fig-

ures, Facts-base 1 is the facts-base with redundant facts eliminated whereas

Facts-base 2 is the other facts-base that contains all the relations computed by the

fact-extraction algorithm with its fact-reduction feature turned off. The numbers

corresponding to these fields present the number of facts stored for each relation

separately and in total for all relations in respective facts-bases.

Four different types of queries were used for the scalability tests by taking four

possible combinations of object-variable unifications that can be used to query

the system. The queries are based on the west and disjoint relations and they are

given in Table 9.2.

In the first part of the tests, where the system’s scalability in terms of the

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 78

0

10000

20000

30000

40000

50000

60000
N

um
be

r
of

 F
ac

ts

Facts-base 1 7240 4290 6018 4257 0 79 16 1 22068 383 44352

Facts-base 2 9141 5300 7944 5391 0 79 16 1 27101 383 55160

West South
North-
west

South-
west

Equal Cover Inside Touch Disjoint Overlap All

Figure 9.1: Space Efficiency Test Results (8 Objects and 1000 Frames)

0

50000

100000

150000

200000

250000

N
um

be
r

of
 F

ac
ts

Facts-base 1 22763 13910 17274 14079 0 114 50 35 73392 1129 142746

Facts-base 2 32626 19322 30560 21652 0 114 50 35 102832 1129 208320

West South
North-
west

South-
west

Equal Cover Inside Touch Disjoint Overlap All

Figure 9.2: Space Efficiency Test Results (15 Objects and 1000 Frames)

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 79

0

100000

200000

300000

400000

500000

600000

N
um

be
r

of
 F

ac
ts

Facts-base 1 58765 33528 36022 37987 0 592 274 188 186538 3235 357129

Facts-base 2 93620 56442 75875 71763 0 596 274 188 295392 3250 599400

West South
North-
west

South-
west

Equal Cover Inside Touch Disjoint Overlap All

Figure 9.3: Space Efficiency Test Results (25 Objects and 1000 Frames)

X Y Query Format

Not Unified Not Unified west(X, Y, F) ∧ disjoint(X, Y, F)
Unified Not Unified west(1, Y, F) ∧ disjoint(1, Y, F)

Not Unified Unified west(X, 7/0, F) ∧ disjoint(X, 7/0, F)
Unified Unified west(1, 7/0, F) ∧ disjoint(1, 7/0, F)

Table 9.2: Queries for the Scalability Tests

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 80

number of objects per frame was checked, 1 and 7 were used in queries as ob-

ject identifiers while for the second part, in which the system was tested for its

scalability on the total number of frames, 1 and 0 were selected as object iden-

tifiers. In our test data, integer identifiers were used for each object for the sake

of simplicity, but in real video, salient objects are annotated by some meaningful

textual names they can be remembered with. In our tests, each query returns

non-empty results. Figures 9.4-9.11 provide the graphs obtained from the tests.

9.2 Tests with Real Video Data

We present our space efficiency test results as bar charts in Figures 9.12 and 9.13

for the video fragments taken from jornal.mpg and smurfs.avi, respectively. For

the time efficiency tests, four queries were used for each of the video fragments.

The queries used on the news report video fragment are as follows:

Query 1: Show the fragments of the clip where priest, interviewee2 and inter-

viewee3 appear together, and also interviewee2 is to the left of interviewee3.

Query 2: Show the fragments of the clip where reporter1 and reporter2 appear

together with priest who is in his car.

Query 3: Show the fragments of the clip where man3 is to the west of man4

who is to the east of woman2.

Query 4: Show the longest possible fragments of the clip where man6 is first

to the left of man5, and later he becomes to the right of man5.

The first query is a directional-appearance query on salient objects priest,

interviewee2 and interviewee3. Query 2 is a topological-appearance query and

Query 3 is a directional query. The last query, Query 4, is a motion query based

on directional relations between salient objects man5 and man6.

The second query assumes that if a person is inside a car or covered-by a car,

then he/she is in that car. This assumption may not be correct depending on the

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 81

0.98 7.27 25.19 70.18 172.32 357.30
705.65

1378.09

3145.10

11899.16

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Objects

0

2000

4000

6000

8000

10000

12000

T
im

e
(S

ec
on

d)

Figure 9.4: Query 1: west(X, Y, F) ∧ disjoint(X, Y, F) (100 Frames)

0.31 1.70 4.81 16.37 6.06
29.80 27.26

121.51

493.38

247.20

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Objects

0

100

200

300

400

500

T
im

e
(S

ec
on

d)

Figure 9.5: Query 2: west(1, Y, F) ∧ disjoint(1, Y, F) (100 Frames)

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 82

0.34 1.05 5.65 6.13 15.66 20.67

66.57
90.57

172.68

525.21

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Objects

0

100

200

300

400

500

600

T
im

e
(S

ec
on

d)

Figure 9.6: Query 3: west(X, 7, F) ∧ disjoint(X, 7, F) (100 Frames)

0.14 0.28 0.63 1.58 0.89
2.98

0.80

8.28

51.63

1.74

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Objects

0

10

20

30

40

50

60

T
im

e
(S

ec
on

d)

Figure 9.7: Query 4: west(1, 7, F) ∧ disjoint(1, 7, F) (100 Frames)

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 83

18.39 72.64
186.48

363.65

558.77

892.18

1221.55

1598.93

2041.40

2799.98

100 200 300 400 500 600 700 800 900 1000

Number of Frames

0

500

1000

1500

2000

2500

3000

T
im

e
(S

ec
on

d)

Figure 9.8: Query 5: west(X, Y, F) ∧ disjoint(X, Y, F) (8 Objects)

3.98 12
26.1

45.4

71.6

116

157

222

270

315

100 200 300 400 500 600 700 800 900 1000

Number of Frames

0

50

100

150

200

250

300

350

T
im

e
(S

ec
on

d)

Figure 9.9: Query 6: west(1, Y, F) ∧ disjoint(1, Y, F) (8 Objects)

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 84

1.86 9.28
25.41

41.23

71.73

132.87

196.62

268.75

358.52

463.21

100 200 300 400 500 600 700 800 900 1000

Number of Frames

0

100

200

300

400

500

T
im

e
(S

ec
on

d)

Figure 9.10: Query 7: west(X, 0, F) ∧ disjoint(X, 0, F) (8 Objects)

0.29 2.12
4.21

6.38

11.89

19.94

32.55

43.67

58.97

73.98

100 200 300 400 500 600 700 800 900 1000

Number of Frames

0

10

20

30

40

50

60

70

80

T
im

e
(S

ec
on

d)

Figure 9.11: Query 8: west(1, 0, F) ∧ disjoint(1, 0, F) (8 Objects)

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 85

0

100

200

300

400

500

600

N
um

be
r

of
 F

ac
ts

Facts-base 1 102 18 52 8 0 17 32 2 26 118 375

Facts-base 2 109 18 65 8 0 17 33 4 52 294 600

West South
North-
west

South-
west

Equal Cover Inside Touch Disjoint Overlap All

Figure 9.12: Space Efficiency Test Results for jornal.mpg

0

200

400

600

800

1000

1200

N
um

be
r

of
 F

ac
ts

Facts-base 1 115 18 100 39 0 0 12 0 231 94 604

Facts-base 2 139 18 142 39 0 0 12 0 462 196 1008

West South
North-
west

South-
west

Equal Cover Inside Touch Disjoint Overlap All

Figure 9.13: Space Efficiency Test Results for smurfs.avi

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 86

camera view, but yet, it could be handled easily using the 3D relation samelevel.

Nonetheless, since our tests are based on 2D spatial relations, no 3D relation is

considered even though the system has a set of 3D inference rules as well. The

results obtained for the queries are given in Table 9.3. The queries posed on the

Smurfs video fragment are as follows:

Query 1: Give the parts of the video clip where bigmouth is below robotsmurf

while robotsmurf starts moving from bigmouth’s left to his right and then

goes from his right to his left repeating this as many times as it happens in

the video fragment.

Query 2: Give the parts of the video clip where Gargamel is to the southwest

of his father and boyking, who is between soldier1 and soldier2 (to his left

and his right) and is in some distance with Gargamel and his father.

Query 3: Give the parts of the video clip where lazysmurf, farmersmurf,

grouchysmurf, smurfette and handysmurf all appear together such that

lazysmurf is to the west of handysmurf and smurfette is to the east of

farmersmurf.

Query 4: Give the parts of the video clip where robotsmurf and bigmouth are

close to each other (not disjoint) and robotsmurf is to the right of bigmouth,

and there is no other object of interest that appears.

Query 1 is a directional-motion query while Query 2 is a directional-topological

query. The third query is a directional-appearance query and the last one is a

directional-topological-appearance query. In Query 1, we are interested in finding

the largest sequences of frames in the fragment repeating the motion condition

stated as many times as possible sequentially in the video. Thus, the final answer

returned by the system is the set of video frame intervals where this motion is

repeated as many times as possible sequentially in the video. For Query 2, it

is concluded that two objects are in some distance and not close to each other

if their MBRs are disjoint. If the objects are close to each other, then it is

decided that their MBRs are not disjoint as in Query 4. These assumptions

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 87

Query # Reduced Set (Sec.)

1 0.04
2 0.03
3 0.01
4 0.02

Table 9.3: Time Efficiency Test Results for jornal.mpg

Query # Reduced Set (Sec.)

1 0.13
2 0.03
3 0.01
4 0.03

Table 9.4: Time Efficiency Test Results for smurfs.avi

are only our semantic definitions of being two objects close to each other or

in a distance. Therefore, these queries are partially based on these semantic

definitions. Table 9.4 shows the results obtained for the queries.

In the tests conducted with program-generated video data, there is a 19.59%

savings from the space for the sample data of 8 objects and 1000 frames. The

space savings for the sample video of 15 objects and 1000 frames is 31.47% while

it is 40.42% for 25 objects and 1000 frames. With real data, for the first video

fragment jornal.mpg, our rule-based approach provides a savings of 37.5% from

the space. The space savings for the other fragment, smurfs.avi, is 40%.

The space savings obtained from the program-generated video data is rela-

tively low compared to that obtained from the real video fragments. We believe

that the reason behind such a behavior is due to the random simulation of the

motion of objects in our synthetic test data: while creating the synthetic video

data, the motion pattern of objects was simulated randomly changing objects’

MBR coordinates by choosing only one object to move at each frame. However,

in real video, objects generally move slower causing the set of spatial relations to

change over a longer period of frames. During the tests with the synthetic video

data, it is also observed that space savings do not change when the number of

frames is increased while the number of objects of interest per frame is fixed. The

test results obtained for the synthetic data comply with those obtained for the

CHAPTER 9. PERFORMANCE AND SCALABILITY EXPERIMENTS 88

real video. Some differences seen in the results are due to the fact that synthetic

data was produced by a program, therefore not being able to perfectly simulate

a real-life scenario.

The results plotted in Figures 9.4-9.11 show that BilVideo is scalable for

spatio-temporal queries in terms of the number of objects and the number of

frames when either of these numbers is increased while the other is fixed. The

time value deviations in some graphs are due to the data sets that had to be

created separately for each object set, thereby each set having possibly differ-

ent facts. Furthermore, the results obtained from the time efficiency tests on real

video data show that BilVideo has a reasonable response time for spatio-temporal

queries.

Chapter 10

Application Areas

BilVideo has been designed to be a full-fledged Web-based video database man-

agement system that supports spatio-temporal, semantic and low-level (color,

shape and texture) queries on video data. There are only a few video

database prototypes around developed for either academic or commercial pur-

poses; nonetheless, they do only provide support for a rather small subset of the

video features in comparison to BilVideo, and hence, their success in returning

what the user has actually in mind for his/her query is very limited. Moreover,

their support for visual query specification is also not as powerful as that of

BilVideo, which is very important because the success rate of a video database

system also depends on how it acquires the query parameters from users. The

visual query interface should be simple and easy-to-use, yet sophisticated and

powerful enough to make use of all the capabilities of the underlying system.

BilVideo does not target a specific application area, and thus, it can be used

to support any application, where vast amount of video data needs to be searched

by spatio-temporal, semantic and low-level video features. Furthermore, BilVideo

query language provides a simple way to extend the system’s query capabilities

through external predicates, which makes BilVideo application-independent but

yet easily fine-tunable for specific needs of such applications without much effort

and without any loss in performance at all. This can be achieved by adding

to the knowledge-base some application-dependent rules and/or facts that will

89

CHAPTER 10. APPLICATION AREAS 90

be used for queries. Some example applications that might be supported are

sports event analysis systems (soccer, basketball, etc.), object movement tracking

systems (medical, biological, astrophysical, etc.) and video archive search systems

(movie retrieval, digital libraries, news retrieval, etc.). Specifically, some emerging

applications in such areas as digital culture, tourism, entertainment, education

and e-commerce may greatly benefit from BilVideo using it as their underlying

video database management system.

10.1 An Example Application: News Archives

Search System

In this section, we present an application, news archives search system, for Bil-

Video. A news archives search system contains video clips of news broadcasts and

is used to retrieve specific news fragments based on some descriptions given as

query conditions. The traditional approach for accomplishing this task is to pro-

vide some keywords that would describe semantic content of the news fragments

for retrieval. For this, a traditional database system would suffice since news frag-

ments are indexed by some textual data. Nevertheless, spatio-temporal relations

between objects and object trajectories are not considered. Moreover, traditional

database systems also lack of support for color, shape and texture video queries.

Furthermore, the traditional approach might result in retrievals of some news

fragments that are irrelevant to what the user wants to see while also missing

some others that are actually expected by the user. It is because keyword-based

search is not powerful enough to formulate what the user has in his/her mind as a

query. Therefore, some other search mechanisms are also needed. In this regard,

BilVideo fills up this gap by providing support for spatio-temporal, semantic,

color, shape and texture video queries. Users may also query news archives by

some specific application-dependent predicates supported by the query language

of BilVideo to retrieve precise answers to queries.

A fragment video clip captured from news broadcast by a national Turkish TV

channel was chosen as a basis for the spatio-temporal query examples given in this

CHAPTER 10. APPLICATION AREAS 91

section. Facts representing the spatio-temporal relations between objects, object-

appearance relations and object trajectories were extracted and inserted into the

knowledge-base prior to submitting the queries to the system. The following is

an example set of such relations extracted from a keyframe of this news fragment:

south(policevehicle, israeliflag)

overlap(policevehicle, israeliflag)

appear(israeliflag)

appear(policevehicle)

samelevel(israeliflag, policevehicle)

Query 1: “Retrieve the segments from the sample news clip, where Arafat and

Powell appear together alone (no other object of interest is in the scene)

and Powell is to the right of Arafat.”

select segment from vid

where appear alone(arafat, powell) and right(powell, arafat);

In this query, appear alone is an external (application-dependent) predicate.

It is used to search for video keyframes, where the only objects appearing

are those specified. The predicate right is a directional predicate. Vid is a

unique video identifier assigned to the sample news video clip.

Query 2: “Retrieve the segments from the sample news clip, where Turkish

Prime Minister Ecevit and Turkish Foreign Affairs Minister Cem appear

together close to each other and Ecevit is to the right of and in front of

Cem.”

select segment from vid

where right(ecevit, cem) and infrontof(ecevit, cem) and

close(ecevit, cem);

In this query, close is an external predicate. It is used to search for video

keyframes, where the objects specified are very close to each other. Here,

the closeness is defined semantically as follows: If two objects are close, then

their MBRs are not disjoint. This definition is given for this application and

CHAPTER 10. APPLICATION AREAS 92

may change for others. The system can easily adapt to such changes through

external predicates defined in the knowledge-base according to applications’

specific needs. The predicate infrontof is a third-dimension (3D) predicate.

Query 3: “Retrieve the segments from the sample news clip, where a police

vehicle moves toward west together with an Israeli flag that is above the

vehicle and overlaps with it, given a similarity threshold value of 0.8 and

an allowed time gap value of 1 second.”

select segment from vid

where (tr(policevehicle, [[west]]) sthreshold 0.8 tgap 1)

repeat and overlap(israeliflag, policevehicle) and

above(israeliflag, policevehicle);

In this query, a similarity-based trajectory condition is given, along with

directional and topological conditions. The interval operator and implies

that all conditions are satisfied in the intervals returned to the user as

segments and that for all video frames in such segments, the flag is above

the police vehicle and also it overlaps with the vehicle. The keywords tgap

(time gap) and repeat are used for the trajectory condition to ensure that

all segments in the clip that satisfy the given conditions, where the police

vehicle may stop for at most 1 second at a time during its movement toward

west, are returned as an answer to the query.

Chapter 11

Conclusions and Future Work

BilVideo system architecture has been designed to support spatio-temporal

(directional, topological, 3D-relation, object-appearance, external-predicate,

trajectory-projection and similarity-based object-trajectory conditions), seman-

tic (keyword, event/activity and category-based conditions) and low-level (color,

shape and texture conditions) queries on video data in an integrated manner.

BilVideo responds to spatio-temporal queries using its knowledge-base, which

consists of a fact-base and a comprehensive set of rules implemented in Prolog,

while semantic and low-level queries are handled by an object-relational database.

The query processor of BilVideo interacts with both of the knowledge-base and

object-relational database to respond to user queries and the intermediate query

results returned from these two system components are integrated seamlessly by

the query processor to be sent to Web clients.

The query language of BilVideo currently supports a broad range of spatio-

temporal video queries. In order to provide support for color and shape queries,

we propose a new approach to store and compare color and shape features of

the salient objects in video keyframes [45]. In our approach, three histograms,

distance, angle and color, are used to store shape and color contents of the salient

objects. Shape information is gathered from the interior and boundary pixels

of an object and the mass center of the object plays an important role in this

process. This technique resembles the visualization of an human eye and resolves

the drawbacks of the existing methods because only are the boundaries of objects

93

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 94

considered in most of the other systems. Moreover, since the method gathers

information from the pixels, the length and shape of an object’s boundary as

well as the presence of holes in the interior of an object have no effect on the

method. Besides, there is no polynomial restriction on object boundaries. Hence,

the method is very successful in processing even noisy objects.

Our work on semantic and low-level (color, shape and texture) modeling and

querying of video data is ongoing. For semantic video queries, extensions to the

BilVideo textual query language have been defined, but not incorporated fully into

its parser yet. We will also make extensions to the language grammar for low-level

video queries. Furthermore, semantic and low-level query processing algorithms

are currently being implemented and will be incorporated into the BilVideo query

processor. Another important issue we are studying is the optimization of user

queries [51]. BilVideo query processor has currently been optimized for spatio-

temporal video queries, but we are still looking for ways to improve it more.

In an ideal environment, BilVideo textual query language will establish the

basis for a visual query interface and serve as an embedded language for users

because some video queries are much easier to specify visually. Hence, we will

also enhance query specification capabilities of the Web-based user interface of

BilVideo in compliance with the features supported by its textual video query

language.

We are also in close watch of the MPEG-7 work, whose goal is to provide a rich

set of standardized tools to describe the multimedia content [12]. Structure-based

Description Schemes in MPEG-7 describe the audio-visual (AV) content from the

viewpoint of its structure. They are organized around a Segment Description

Scheme that represents the spatial, temporal or spatio-temporal structure of the

AV content. The Segment Description Scheme can be organized into a hierarchical

structure to produce a Table of Content for accessing or Index for searching the

AV content. Segments can be further described on the basis of perceptual features

using MPEG-7 Descriptors for color, texture, shape, motion and audio features,

and semantic information using textual annotations. We will see in future if we

could make use of the outcomes of the MPEG-7 work in BilVideo.

Bibliography

[1] S. Adalı, K.S. Candan, S. Chen, K. Erol, and V.S. Subrahmanian. Advanced

video information systems: Data structures and query processing. ACM

Multimedia Systems, 4:172–186, 1996.

[2] J.F. Allen. Maintaining knowledge about temporal intervals. Communica-

tions of ACM, 26(11):832–843, 1983.

[3] U. Arslan. A semantic data model and query language for video databases.

M.S. thesis, Department of Computer Engineering, Bilkent University,

Ankara, Turkey, January 2002.

[4] N. Babaguchi, Y. Kawai, and T. Kitahashi. Event based indexing of broad-

casted sports video by intermodel collaboration. IEEE Transaction on Mul-

timedia, 4(1):68–75, March 2002.

[5] S. Chang, W. Chen, H.J. Meng, H. Sundaram, and D. Zhong. VideoQ: An

automated content-based video search system using visual cues. In Proc. of

ACM Multimedia, pages 313–324, Seattle, Washington, USA, 1997.

[6] E. Şaykol. Web-based user interface for query specification in a video

database system. M.S. thesis, Department of Computer Engineering, Bilkent

University, Ankara, Turkey, September 2001.

[7] M.E. Dönderler, E. Şaykol, U. Arslan, Ö. Ulusoy, and U. Güdükbay. Bil-

Video: A video database management system. submitted journal paper.

[8] M.E. Dönderler, E. Şaykol, Ö. Ulusoy, and U. Güdükbay. BilVideo: A video

database management system. accepted for publication in IEEE Multimedia

(Multimedia at Work), 2002.

95

BIBLIOGRAPHY 96

[9] M.E. Dönderler, Ö. Ulusoy, and U. Güdükbay. Rule-based spatio-temporal

query processing for video databases. submitted journal paper.

[10] M.E. Dönderler, Ö. Ulusoy, and U. Güdükbay. A rule-based video database

system architecture. Information Sciences, 143(1-4):13–45, June 2002.

[11] C. Donnelly and R. Stallman. Bison: The yacc-compatible parser generator.

Online manual, http://www.combo.org/bison/, 1995.

[12] J. M. Martinez (Editor). Overview of the MPEG-7 standard (Ver-

sion 6.0). Technical Report ISO/IEC JTC1/SC29/WG11 N4509,

http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm,

December 2001.

[13] M. Egenhofer and R. Franzosa. Point-set spatial relations. Int’l Journal of

Geographical Information Systems, 5(2):161–174, 1991.

[14] C. Faloutsos, , W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Bar-

ber. Efficient and effective querying by image content. Special Issue on Inte-

grating Artificial Intelligence and Database Technology, Journal of Intelligent

Information Systems, 3(3/4):231–262, July 1994.

[15] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,

M. Gorkani abd J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker.

Query by image and video content: The qbic system. IEEE Computer,

28(9):23–32, September 1995.

[16] S. Gauch, J. Gauch, and K. M. Pua. The VISION digital video library

project. to appear in the Encyclopedia of Library and Information Science.

[17] A.G. Hauptmann and M.J. Witbrock. Intelligent Multimedia Information

Retrieval, M. T. Maybury (ed.), chapter Informedia: News-on-demand Mul-

timedia Information Acquisition and Retrieval, pages 215–239. MIT Press,

1997.

[18] R. Hjelsvold and R. Midtstraum. Modelling and querying video data. In

Proc. of the 20th Int. Conference on VLDB, pages 686–694, Santiago, Chile,

1994.

BIBLIOGRAPHY 97

[19] E. Hwang and V.S. Subrahmanian. Querying video libraries. Journal of

Visual Communication and Image Representation, 7(1):44–60, 1996.

[20] S.C. Johnson. Yacc: Yet another compiler compiler. Computing Science

Technical Report 32, Bell Laboratories, Murray Hill, NJ, 1975.

[21] T.C.T. Kuo and A.L.P. Chen. A content-based query language for video

databases. In Proc. of IEEE Multimedia Computing and Systems, pages

209–214, 1996.

[22] T.C.T. Kuo and A.L.P. Chen. Content-based query processing for video

databases. IEEE Transactions on Multimedia, 2(1):1–13, 2000.

[23] M.E. Lesk. Lex - a lexical analyzer generator. Computing Science Technical

Report 39, Bell Laboratories, Murray Hill, NJ.

[24] J.L. Li, I.A. Goralwalla, M.T. Özsu, and D. Szafron. Modeling video tempo-

ral relationships in an object database management system. In International

Symposium on Electronic Images: Multimedia Computing and Networking,

1997.

[25] John Z. Li, M. Tamer Özsu, and Duane Szafron. Modeling of video spatial

relationships in an object database management system. In Proc. of the In-

ternational Workshop on Multimedia DBMSs, pages 124–133, Blue Mountain

Lake, NY, USA, 1996.

[26] J.Z. Li. Modeling and querying multimedia data. Technical Report TR-98-

05, Department of Computing Science, The University of Alberta, Alberta,

Canada, 1998.

[27] J.Z. Li and M.T. Özsu. Stars: A spatial attributes retrieval system for images

and videos. In Proc. of the 4th Int. Conf. on Multimedia Modeling, pages

69–84, Singapore, 1997.

[28] J.Z. Li, M.T. Özsu, and D. Szafron. Spatial reasoning rules in multimedia

management systems. In Proc. of Int. Conf. on Multimedia Modeling, pages

119–133, Toulouse, France, 1996.

BIBLIOGRAPHY 98

[29] J.Z. Li, M.T. Özsu, D. Szafron, and V. Oria. MOQL: A multimedia object

query language. In Proc. of the 3rd Int. Workshop on Multimedia Informa-

tion Systems, pages 19–28, Como, Italy, 1997.

[30] J.Z. Li, M.T. Özsu, D. Szafron, and V. Oria. Multimedia extensions to

database query languages. Technical Report TR-97-01, Department of Com-

puting Science, The University of Alberta, Alberta, Canada, 1997.

[31] Y. Liu and F.Li. Semantic extraction and semantics-based annotation and

retrieval for video databases. Multimedia Tools and Applications, 17:5–20,

2002.

[32] Y. Manolopoulos and G. Kapetanakis. Overlapping B+ trees for tempo-

ral data. In Proceedings of the 5th Jerusalem Conference on Information

Technology (JCIT), pages 491–498, 1990.

[33] S. Marcus and V.S. Subrahmanian. Foundations of multimedia information

systems. Journal of ACM, 43(3):474–523, 1996.

[34] S. Markus and V.S. Subrahmanian. Multimedia Database Systems: Issues

and Research Directions (eds. V.S. Subrahmanian and S. Jajodia), chapter

Towards a Theory of Multimedia Database Systems, pages 1–35. Springer-

Verlag, 1996.

[35] M.S.Hacid, C. Decleir, and J. Kouloumdjian. A database approach for mod-

eling and querying video data. IEEE Transaction on Knowledge and Data

Engineering, 12(5):729–750, September/October 2000.

[36] M. Nabil, A.H. Ngu, and J.Shepherd. Modeling and retrieval of moving

objects. Multimedia Tools and Applications, 13:35–71, 2001.

[37] M.A. Nascimento and J.R.O. Silva. Towards historical R-trees. In Proceed-

ings of ACM Symposium on Applied Computing (ACM-SAC), pages 235–240,

1998.

[38] E. Oomoto and K. Tanaka. OVID: Design and implementation of a video

object database system. IEEE Trans. on Knowledge and Data Engineering,

5:629–643, 1993.

BIBLIOGRAPHY 99

[39] Özden, R. Rastogi, and A. Silberschatz. Multimedia support for databases.

In PODS, pages 1–11, 1997.

[40] M.T. Özsu, P. Iglinski, D. Szafron, S. El-Medani, and M. Junghanns. An

object-oriented sqml/hytime compliant multimedia database management

system. In Proc. of ACM Multimedia, pages 233–240, Seattle, WA, 1997.

[41] D. Papadias, Y. Theodoridis, T. Sellis, and M. Egenhofer. Topological rela-

tions in the world of minimum bounding rectangles: A study with R-trees.

In Proceedings of ACM SIGMOD International Conference on Management

of Data, pages 92–103, San Jose, CA, USA, 1996.

[42] V. Paxson. Flex: A fast scanner generator. Online manual,

http://www.combo.org/flex/, 1995.

[43] S. Satoh, Y. Nakamura, and T. Kanade. Name-it: Naming and detecting

faces in news videos. IEEE Multimedia, 6(1):22–35, January-March 1999.

[44] E. Şaykol, U. Güdükbay, and Ö. Ulusoy. A semi-automatic object extraction

tool for querying in multimedia databases. In S. Adali and S. Tripathi,

editors, 7th Workshop on Multimedia Information Systems MIS’01, Capri,

Italy, pages 11–20, November 2001.

[45] E. Şaykol, U. Güdükbay, and Ö. Ulusoy. A histogram-based approach for

object-based query-by-shape-and-color in multimedia databases. submitted

journal paper and also Tech. Rep. BU-CE-0201, Bilkent University, January

2002.

[46] A.P. Sistla and C. Yu. Similarity based retrieval of pictures using indices on

spatial relationships. In Proc. of the 21st VLDB Conference, pages 619–629,

Zurich, Switzerland, September 1995.

[47] A.P. Sistla and C. Yu. Reasoning about qualitative spatial relationships.

Journal of Automated Reasoning, 25(4):291–328, November 2000.

[48] Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento. On the generation

of spatio-temporal datasets. In Proceedings of the 6th Int’l Symposium on

BIBLIOGRAPHY 100

Large Spatial Databases (SSD), LNCS Series, Hong Kong, China, July 1999.

Springer-Verlag.

[49] Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-temporal indexing for

large multimedia applications. In Proceedings of the 3rd IEEE Conference

on Multimedia Computing and Systems (ICMCS), 1996.

[50] T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. Overlapping

linear quadtrees: A spatio-temporal access method. In Proceedings of the

6th Int’l ACM Workshop on Geographical Information Systems (ACM-GIS),

pages 1–7, 1998.

[51] G. Ünel. An efficient query optimization strategy for spatio-temporal queries

in video databases. M.S. thesis, Department of Computer Engineering,

Bilkent University, Ankara, Turkey, July 2002.

[52] R.C. Veltkamp and M. Tanase. Content-based retrival system: A survey.

Technical Report UU-CS-2000-34, Utrect University, The Netherlands, Oc-

tober 2000.

[53] X. Xu, J. Han, and W. Lu. RT-tree: An improved R-tree index structure

for spatio-temporal databases. In Proceedings of the 4th International Sym-

posium on Spatial Data Handling (SDH), pages 1040–1049, 1990.

[54] Y. Yesha and M. Singhal. Multimedia database systems: Challenges and

opportunities. Technical Report OSU-CISRC-1/96-TR07, Department of

Computer and Information Science, Ohio State University, 1996.

[55] A. Yoshitaka and T. Ichikawa. A survey of content-based retrieval for multi-

media databases. IEEE Transactions on Knowledge and Data Engineering,

11(1):81–93, 1999.

Appendix A

List of Inference Rules

In this appendix, we give our set of strict directional, strict topological, heteroge-

neous directional and topological and third-dimension rules. In defining the rules,

the following terminology has been adopted: if the relation r1 implies the rela-

tion r2, r1 =⇒ r2 is used. Moreover, if r1 =⇒ r2 and r2 =⇒ r1, it is denoted by

r1 ⇐⇒ r2. In addition, there is also a rule set for appear, which is used to derive

trivial facts, equal(A,A), overlap(A,A) and samelevel(A,A) , as well as to answer

object-appearance queries in video clips. This set is given below:

appear(A) ⇐⇒ equal(A,A)

appear(A) ⇐⇒ overlap(A,A)

appear(A) ⇐⇒ samelevel(A,A)

A.1 Strict Directional Rules

Rule Set 1.1 (Inverse Property) The relations west, north, north-west, north-

east, right and above are inverses of east, south, south-east, south-west, left and

below, respectively.

101

APPENDIX A. LIST OF INFERENCE RULES 102

a) west(A,B) ⇐⇒ east(B,A)

b) north(A,B) ⇐⇒ south(B,A)

c) north-west(A,B) ⇐⇒ south-east(B,A)

d) north-east(A,B) ⇐⇒ south-west(B,A)

e) right(A,B) ⇐⇒ left(B,A)

f) above(A,B) ⇐⇒ below(B,A)

Rule Set 1.2 (Transitivity) If β ∈ S, where S is the set of directional relations,

then

β(A,B) ∧ β(B,C) =⇒ β(A,C).

Rule Set 1.3 The relations right, left, above and below can be expressed by other

directional relations.

a) east(A,B) ∨ north-east(A,B) ∨ south-east(A,B) ⇐⇒ right(A,B)

b) west(A,B) ∨ north-west(A,B) ∨ south-west(A,B) ⇐⇒ left(A,B)

c) north(A,B) ∨ north-east(A,B) ∨ north-west(A,B) ⇐⇒ above(A,B)

d) south(A,B) ∨ south-east(A,B) ∨ south-west(A,B) ⇐⇒ below(A,B)

A.2 Strict Topological Rules

Rule Set 2.1 (Inverse Property) The relations inside and cover are inverses of

contains and covered-by, respectively.

a) inside(A,B) ⇐⇒ contains(B,A)

b) cover(A,B) ⇐⇒ covered-by(B,A)

Rule Set 2.2 (Reflexivity) The relations equal and overlap are reflexive.

a) equal(A,A)

b) overlap(A,A)

Rule Set 2.3 (Symmetry) The relations equal, overlap, disjoint and touch are

symmetric.

APPENDIX A. LIST OF INFERENCE RULES 103

a) equal(A,B) ⇐⇒ equal(B,A)

b) overlap(A,B) ⇐⇒ overlap(B,A)

c) disjoint(A,B) ⇐⇒ disjoint(B,A)

d) touch(A,B) ⇐⇒ touch(B,A)

Rule Set 2.4 (Transitivity) The relations inside and equal are transitive.

a) inside(A,B) ∧ inside(B,C) =⇒ inside(A,C)

b) equal(A,B) ∧ equal(B,C) =⇒ equal(A,C)

Rule Set 2.5 The relations inside, equal and cover imply the relation overlap.

a) inside(A,B) =⇒ overlap(A,B)

b) equal(A,B) =⇒ overlap(A,B)

c) cover(A,B) =⇒ overlap(A,B)

Rule Set 2.6 The relationships between equal and {cover, inside, disjoint, touch,

overlap} are as follows:

a) equal(A,B) ∧ cover(B,C) =⇒ cover(A,C)

b) equal(A,B) ∧ cover(C,B) =⇒ cover(C,A)

c) cover(A,B) ∧ equal(A,C) =⇒ cover(C,B)

d) cover(A,B) ∧ equal(B,C) =⇒ cover(A,C)

e) equal(A,B) ∧ inside(B,C) =⇒ inside(A,C)

f) equal(A,B) ∧ inside(C,B) =⇒ inside(C,A)

g) inside(A,B) ∧ equal(A,C) =⇒ inside(C,B)

h) inside(A,B) ∧ equal(B,C) =⇒ inside(A,C)

i) equal(A,B) ∧ disjoint(B,C) =⇒ disjoint(A,C)

j) disjoint(A,B) ∧ equal(B,C) =⇒ disjoint(A,C)

k) equal(A,B) ∧ overlap(B,C) =⇒ overlap(A,C)

l) overlap(A,B) ∧ equal(B,C) =⇒ overlap(A,C)

m) equal(A,B) ∧ touch(B,C) =⇒ touch(A,C)

n) touch(A,B) ∧ equal(B,C) =⇒ touch(A,C)

Rule Set 2.7 The relationships between disjoint and {inside, touch, cover} are

as follows:

APPENDIX A. LIST OF INFERENCE RULES 104

a) inside(A,B) ∧ disjoint(B,C) =⇒ disjoint(A,C)

b) disjoint(A,B) ∧ inside(C,B) =⇒ disjoint(A,C)

c) inside(A,B) ∧ touch(B,C) =⇒ disjoint(A,C)

d) touch(A,B) ∧ inside(C,B) =⇒ disjoint(A,C)

e) cover(A,B) ∧ disjoint(C,A) =⇒ disjoint(C,B)

f) disjoint(A,B) ∧ cover(A,C) =⇒ disjoint(C,B)

g) inside(A,B) ∧ touch(B,C) ∧ cover(C,D) =⇒ disjoint(A,D)

Rule Set 2.8 The relationships between overlap and {inside, cover} are as follows

(excluding those given by Rule Set 2.5):

a) inside(A,B) ∧ overlap(C,A) =⇒ overlap(B,C)

b) overlap(A,B) ∧ inside(B,C) =⇒ overlap(A,C)

c) cover(A,B) ∧ overlap(B,C) =⇒ overlap(A,C)

d) overlap(A,B) ∧ cover(C,B) =⇒ overlap(A,C)

e) cover(A,B) ∧ inside(C,B) =⇒ overlap(A,C)

Rule Set 2.9 The relationships between inside and cover are as follows:

a) inside(A,B) ∧ cover(C,B) =⇒ inside(A,C)

b) inside(A,C) ∧ cover(A,B) =⇒ inside(B,C)

c) cover(A,B) ∧ cover(B,C) ∧ not(cover(A,C)) =⇒ inside(C,A)

A.3 Heterogeneous Directional and Topological

Rules

Rule Set 3.1 If β ∈ S, where S is the set of directional relations, then

a) equal(A,B) ∧ β(B,C) =⇒ β(A,C)

b) β(A,B) ∧ equal(B,C) =⇒ β(A,C)

A.4 Third-Dimension Rules

Rule Set 4.1 (Reflexivity) The relation samelevel is reflexive.

APPENDIX A. LIST OF INFERENCE RULES 105

samelevel(A,A)

Rule Set 4.2 (Symmetry) The relation samelevel is symmetric.

samelevel(A,B) =⇒ samelevel(B,A)

Rule Set 4.3 (Inverse Property) The relations infrontof, strictlyinfrontof and

touchfrombehind are inverses of behind, strictlybehind and touchedfrombehind, re-

spectively.

a) infrontof(A,B) ⇐⇒ behind(B,A)

b) strictlyinfrontof(A,B) ⇐⇒ strictlybehind(B,A)

c) touchfrombehind(A,B) ⇐⇒ touchedfrombehind(B,A)

Rule Set 4.4 (Transitivity) The relations infrontof and strictlyinfrontof are tran-

sitive.

a) infrontof(A,B) ∧ infrontof(B,C) =⇒ infrontof(A,C)

b) strictlyinfrontof(A,B) ∧ strictlyinfrontof(B,C) =⇒ strictlyinfrontof(A,C)

Rule Set 4.5 The relation touchfrombehind implies the relation strictlyinfrontof.

touchfrombehind(A,B) =⇒ strictlyinfrontof(B,A)

Rule Set 4.6 The relationships between strictlyinfrontof and infrontof are as

follows:

a) strictlyinfrontof(A,B) =⇒ infrontof(A,B)

b) strictlyinfrontof(A,B) ∧ infrontof(B,C) =⇒ strictlyinfrontof(A,C)

c) infrontof(A,B) ∧ strictlyinfrontof(B,C) =⇒ strictlyinfrontof(A,C)

Appendix B

Query Language Grammar

Specification

/* Select-from-where */

<query> := select <target> from all [where <condition>] ‘;’

| select <target> from <videolist> where <condition> ‘;’

| select segment [‘,’ <variablelist>] from <range>

where <condition> ‘;’

| select <variablelist> from <range> where <condition> ‘;’

| select <aggregate> ‘(’ segment ‘)’ [‘,’ segment]

[‘,’ <variablelist>] from <range> where <condition> ‘;’

<target> := <video> [‘:’ (<number> | random ‘(’ <number> ‘)’)]

/* Aggregate Functions */

<aggregate> := average | sum | count

<range> := all | <videolist>

<video> := video [[last] <time> [seconds]]

<videolist> := [<videolist> ‘,’] <vid>

106

APPENDIX B. QUERY LANGUAGE GRAMMAR SPECIFICATION 107

/* Condition specification */

<condition> := ‘(’ <condition> ‘)’ | not ‘(’ condition ‘)’

| <condition> and <condition> | <condition> or <condition>

| <condtype1> | <condtype2> | <condtype3> | <condtype4>

<condtype1> := <appearance> | <directional> | <topological> |

<tdimension> | <external-predicate>

<condtype2> := <variable> <cop> (<atom> | <variable>)

| <variable> ‘=’ <tprojection>

<condtype3> := <condition> <tmpred> <condition>

| ‘(’ <condition> <tmpred> <condition> [<timegap>] ‘)’

<trepeat>

<condtype4> := <trajectory-query> | ‘(’ <trajectory-query> ‘)’

<trepeat>

<appearance> := appear ‘(’ <objectlist> ‘)’

<directional> := <direction> ‘(’ <object> ‘,’ <object> ‘)’

<topological> := <tpred> ‘(’ <object> ‘,’ <object> ‘)’

<tdimension> := <tdpred> ‘(’ <object> ‘,’ <object> ‘)’

<external-predicate> := <predicate-name> ‘(’ <objectlist> ‘)’

<tprojection> := project ‘(’ <object>

[‘,’ <spatial-condition>] ‘)’

APPENDIX B. QUERY LANGUAGE GRAMMAR SPECIFICATION 108

/* Trajectory condition */

<trajectory-query> := tr ‘(’ <object> ‘,’

(<trajectory1> ‘)’ [<similarity>]

| <trajectory2> ‘)’ [<simthreshold>]) [<timegap>]

<trajectory1> := <variable> | ‘[’ <dircomponent> ‘,’

<dispcomponent> ‘]’

<trajectory2> := ‘[’ <dircomponent> ‘]’

<dircomponent> := ‘[’ <dirlist> ‘]’

<dispcomponent> := ‘[’ <displist> ‘]’

<similarity> := <simthreshold> [dirweight <dirweight>

| dspweight <dspweight>]

<simthreshold> := sthreshold <threshold>

<timegap> := tgap <time>

<displist> := [<displist> ‘,’] <dspvalue>

<dirlist> := [<dirlist> ‘,’] <fdirection>

<trepeat> := repeat [<number>]

/* Local condition for trajectory projection */

<spatial-condition> := ‘(’ <spatial-condition> ‘)’

| not ‘(’ <spatial-condition> ‘)’

| <spatial-condition> and <spatial-condition>

| <spatial-condition> or <spatial-condition>

| <appearance> | <directional>

| <topological> | <tdimension>

| <variable> <cop> <object> | <external-predicate>

APPENDIX B. QUERY LANGUAGE GRAMMAR SPECIFICATION 109

<direction> := left | right | above | below | <fdirection>

<fdirection> := west | east | north | south | northeast

| southeast | northwest | southwest

<tpred> := equal | contains | inside | cover | coveredby

| disjoint | overlap | touch

<tdpred> := infrontof | behind | sinfrontof | sbehind | tfbehind

| tdfbehind | samelevel

<tmpred> := before | meets | overlaps | starts | during

| finishes | ibefore | imeets | ioverlaps | istarts

| iduring | ifinishes

<object> := <variable> | <atom>

<objectlist> := [<objectlist> ‘,’] <object>

<variablelist> := [<variablelist> ‘,’] <variable>

<vid> := (1-9)(0-9)*

<number> := (1-9)(0-9)*

<time> := (1-9)(0-9)*

<variable> := (A-Z)(A-Za-z0-9)*

<atom> := (a-z)(A-Za-z0-9)*

APPENDIX B. QUERY LANGUAGE GRAMMAR SPECIFICATION 110

<predicate-name>1:= (a-z)(A-Za-z0-9)*

<cop> := ‘=’ | ‘‘!=’’

<threshold> := 0 ‘.’ (0* (1-9) 0*)+

<dspweight> := 0 [‘.’ (0-9)*] | 1

<dirweight> := 0 [‘.’ (0-9)*] | 1

<dspvalue> := (1-9)(0-9)*

1Lexer recognizes such a character sequence as an external predicate name iff it is different
from any predefined predicate and construct in the language.

Appendix C

Query Processing Functions

In this chapter, pseudo-codes of some of the functions used for spatio-temporal

query processing on video data are given. These functions are very much sim-

plified in that many implementation details have been omitted for the sake of

simplicity and understanding. Hence, they should be considered as a very coarse

and general presentation of our spatio-temporal query processing strategy.

C.1 Prolog Subqueries

int plQuery(CQueryNode* qnode)
Begin-CODE
fetchSubquery(querynode:qnode, subquery:α)
fetchVariables(querynode:qnode, variables:β)
constructPrologQuery(subquery:α, variables:β, query:σ)
If(β is not empty AND variables in β have previously computed values

to use)
Begin-IF

For each value list ς for the variables in β do
Begin-FOR

CallProlog(query:σ, valuelist:ς, results:γ)
If(γ is not empty)

addResults(results:γ, resultset:ρ)
End-FOR

End-IF
Else

111

APPENDIX C. QUERY PROCESSING FUNCTIONS 112

Begin-ELSE
callProlog(query:σ, results:γ)
If(γ is not empty)

addResults(results:γ, resultset:ρ)
End-ELSE
pushResultSettoStack(resultset:ρ)
If(ρ is empty) return NO ANSWER
Else return ANSWER

End-CODE

C.2 Similarity-Based Object-Trajectory Sub-

queries

int trQuery(CQueryNode* qnode)
Begin-CODE
fetchSubquery(querynode:qnode, subquery:α)
fetchVariables(querynode:qnode, variables:β)
fetchRepeat(querynode:qnode, repeat:τ)
callTrajectoryProcessor(subquery:α, variables:β, repeat:τ,

resultset:ρ)
pushResultSettoStack(resultset:ρ)
If(ρ is empty) return NO ANSWER
Else return ANSWER

End-CODE

C.3 Trajectory-Projection Subqueries

int prQuery(CQueryNode* qnode)
Begin-CODE
fetchSubquery(querynode:qnode, subquery:α)
fetchVariables(querynode:qnode, variables:β)
callTrajectoryProjector(subquery:α, variables:β, resultset:ρ)
pushResultSettoStack(resultset:ρ)
If(ρ is empty) return NO ANSWER
Else return ANSWER

End-CODE

APPENDIX C. QUERY PROCESSING FUNCTIONS 113

C.4 Operator AND

CResultSet* opAnd(CResultSet* s1, CResultSet* s2, CQueryNode* qnode)
Begin-CODE
If(s1->empty() OR s2->empty()) return an empty result set (no answer)
callIntervalProcessor(operator:AND, resultset:s1, resultset:s2,

resultset:ρ)
return ρ

End-CODE

C.5 Operator OR

CResultSet* opOr(CResultSet* s1, CResultSet* s2, CQueryNode* qnode)
Begin-CODE
If(s1->empty() AND s2->empty()) return an empty result set (no answer)
If(s1->empty()) return s2
If(s2->empty()) return s1
callIntervalProcessor(operator:OR, resultset:s1, resultset:s2,

resultset:ρ)
return ρ

End-CODE

C.6 Operator NOT

CResultSet* opNot(CResultSet* s, int vlength1, CQueryNode* qnode)
Begin-CODE
If(s->empty()) return a result set with an empty object table

(equivalent to TRUE)
callIntervalProcessor(operator:NOT, resultset:s, videolength:vlength,

resultset:ρ)
return ρ

End-CODE

1video size in frames

APPENDIX C. QUERY PROCESSING FUNCTIONS 114

C.7 Temporal Operators

CResultSet* before(CResultSet* s1, CResultSet* s2, CQueryNode* qnode,
int fgap2)

Begin-CODE
return process(resultset:s1, resultset:s2, operator:BEFORE,

querynode:qnode, framegap:fgap)
End-CODE

CResultSet* meets(CResultSet* s1, CResultSet* s2, CQueryNode* qnode,
int fgap)

Begin-CODE
return process(resultset:s1, resultset:s2, operator:MEETS,

querynode:qnode, framegap:fgap)
End-CODE

CResultSet* overlaps(CResultSet* s1, CResultSet* s2, CQueryNode* qnode,
int fgap)

Begin-CODE
return process(resultset:s1, resultset:s2, operator:OVERLAPS,

querynode:qnode, framegap:fgap)
End-CODE

CResultSet* during(CResultSet* s1, CResultSet* s2, CQueryNode* qnode,
int fgap)

Begin-CODE
return process(resultset:s1, resultset:s2, operator:DURING,

querynode:qnode, framegap:fgap)
End-CODE

CResultSet* starts(CResultSet* s1, CResultSet* s2, CQueryNode* qnode,
int fgap)

Begin-CODE
return process(resultset:s1, resultset:s2, operator:STARTS,

querynode:qnode, framegap:fgap)
End-CODE

2frame gap for the repeating condition computed from time gap (tgap) and video rate if
tgap is specified (its default value is 1 frame) -used for repeat-

APPENDIX C. QUERY PROCESSING FUNCTIONS 115

CResultSet* finishes(CResultSet* s1, CResultSet* s2, CQueryNode* qnode,
int fgap)

Begin-CODE
return process(resultset:s1, resultset:s2, operator:FINISHES,

querynode:qnode, framegap:fgap)
End-CODE

CResultSet* process(CResultSet* s1, CResultSet* s2, int fcode,
CQueryNode* qnode, int fgap)

Begin-CODE
If(s1->empty() OR s2->empty()) return an empty result set (no answer)
fetchRepeat(querynode:qnode, repeat:τ)
callIntervalProcessor(operator:fcode, resultset:s1, resultset:s2,

repeat:τ, framegap:fgap, resultset:ρ)
return ρ

End-CODE

