A SEMANTIC DATA MODEL AND QUERY
LANGUAGE FOR VIDEO DATABASES

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Umut Arslan
January, 2002

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Ugur Giiditkbay(Co-supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Attila Gursoy

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

1

ABSTRACT

A SEMANTIC DATA MODEL AND QUERY
LANGUAGE FOR VIDEO DATABASES

Umut Arslan
M.S. in Computer Engineering
Supervisors: Assoc. Prof. Dr. ()zgiir Ulusoy and
Assist. Prof. Dr. Ugur Gudukbay
January, 2002

Advances in compression techniques, decreasing cost of storage, and high-speed
transmission have facilitated the way video is created, stored and distributed. As
a consequence, video is now being used in many application areas. The increase
in the amount of video data deployed and used in today’s applications not only
caused video to draw more attention as a multimedia data type, but also led to
the requirement of efficient management of video data. Management of video data
paved the way for new research areas, such as indexing and retrieval of videos
with respect to their spatio-temporal, visual and semantic contents. In this thesis,
semantic content of video is studied, where video metadata, activities, actions and
objects of interest are considered within the context of video semantic content. A
data model is proposed to model video semantic content, which is extracted from
video data by a video annotation tool. A video query language is also provided

to support semantic queries on video data.

The outcome of this thesis work will be used in a project, which proposes a
video database system architecture with spatio-temporal, object-trajectory and
object-apperance query facilities so as to build a complete video search system

to query video data by its spatio-temporal, visual and semantic features.

Keywords: video databases, semantic video modeling, annotation of video data,

semantic querying of video data.

111

OZET

VIDEO VERILERI ICIN ANLAMSAL VERI MODELI
VE SORGULAMA DILI

Umut Arslan
Bilgisayar Muhendisligi, Yiksek Lisans
Tez Yoneticileri: Dog. Dr. (")zgiir Ulusoy ve
Yrd. Dog¢. Dr. Ugur Gudikbay
Ocak, 2002

Sikigtirma tekniklerindeki gelismeler, veri saklama maliyetlerinin diugmesi ve
yuksek hizda veri transferi, videonun olusturulmasi, saklanmas1 ve dagitilmasim
kolaylagtirmigtir. Bundan dolayi, video ginumiizde bircok uygulama alaninda
kullanilmaktadir. Uygulama alanlarinda olugturulan ve kullanilan video sayisinda
ve veri miktarindaki artig, hem videonun sadece bir miiltimedya (¢oklu iletigim
araci) veri tipi olarak daha ¢ok ilgi cekmesini saglamig, hem de video verilerinin
daha verimli bir sekilde kullanilmasi geregini dogurmustur. Video verilerinin
yonetimi, videonun yer-zaman, gorsel ve anlamsal iceriklerine gore endekslenmesi
ve yeniden edinilmesi gibi aragtirma alanlarinin olugmasina olanak saglamigtir.
Bu tezde videonun anlamsal icerigi tuzerine calisilmigtir. Videonun anlamsal
icerigi video ile ilgili bibliyografik verileri, video i¢inde gecen etkinlikleri, aksi-
yonlar1 (hareketleri) ve ilging nesneleri kapsar. Videonun anlamsal icerigini mo-
dellemek icin bir video veri modeli 6nerilmektedir. Videonun anlamsal icerigi bir
¢ikarim araci ile elde edilir. Video verileri tizerinde anlamsal sorgular yapabilmek

amaciyla bir video sorgulama dili saglanmistir.

Bu tezin sonuclari, yer-zaman, nesne yoriungesi, nesne gorunum sorgula-
malarin1 destekleyen video veritabani mimarisinin 6nerildigi bir projede kul-
lanilacaktir. Buradaki amac yer-zaman, gorsel ve anlamsal sorgular destekleyen

eksiksiz bir video arama sistemi olugturmaktir.

Anahtar sozcikler: video veritabanlari, anlamsal video modelleme, video veri-

lerinden ¢ikarimlar yapma, video verilerini anlamsal sorgulama.

v

Acknowledgement

I would like to express my gratitude to my supervisors Assoc. Prof. Dr. (")zgﬁr
Ulusoy and Assist. Prof. Dr. Ugur Gudikbay for their instructive comments in

the supervision of the thesis.

I would like to express my special thanks and gratitude to Prof. Dr. Cevdet
Aykanat and Assist. Prof. Dr. Attila Gursoy for showing keen interest to the

subject matter and accepting to read and review the thesis.

I would like to acknowledge the support of Turkish Scientific and Technical
Research Council (TUBITAK) under the grant number EEEAG-199E025.

I would like to express my special thanks to Mehmet Emin Donderler for

reading and reviewing the thesis and for his support and patience.

I thank to my family and to my friends Feyzal, Engin, Sengor, and Ediz for
their support.

Finally, I thank to my managers Ilker Kuruoz and Fatih Bektasoglu for their
support.

Contents

1 Introduction

1.1 Organization of the Thesis
2 Related Work

3 Video Database System
3.1 Video Database System Architecture
3.2 Video Data Model
3.3 Query Language

3.4 Query Processing

4 Semantic Video Model
4.1 The Data Model
4.1.1 Hierarchical Structure

4.1.2 Temporal Management

4.2 Database Design Lo

vi

10

10

12

12

13

16

CONTENTS

5 Annotation Tool

5.1 Initialization Process and the Main User Interface
5.2 The Order of Annotation
5.3 Utility Data Annotation
5.4 Video Metadata Annotation
5.5 Hierarchical Video Tree
5.6 Object Annotation
5.7 Event Annotation L oo
5.8 Subevent Annotation oL
5.9 Hierarchical Video Tree Functionality

5.10 Implementation Details

Semantic Query Language

6.1 Features of the Language,

6.2 Types of Conditions
6.2.1 Metadata Conditions
6.2.2 Event Conditions
6.2.3 Object Conditions,

6.3 Semantic Conditions L oL
6.3.1 Semantic Conditions for Output Type Videos

6.3.2 Semantic Conditions for Qutput Type Sequences

vii

21

23

24

26

26

27

30

31

36

38

40

43

CONTENTS viii

6.3.3 Semantic Conditions for Output Type Scenes 51
7 Conclusions and Future Work 52
Bibliography 55
Appendices 58
A Semantic Query Grammar Specification 58
B Java Class Definitions 66

C Database Table Specifications 70

List of Figures

3.1 Video Database System Architecture. 11
3.2 Web client - query processor interaction. 13
3.3 Query processing phases. Lo 14
4.1 Database design of the semantic video model. 20
5.1 The main user interface of the annotation tool. 23
5.2 The main user interface with a video file opened. 24
5.3 Utility window. Lo 26
5.4 Video metadata annotation process. L. 27
5.5 Video window with data inserted. 28
5.6 Hierarchy treeof avideo. oL 29
5.7 The user interface with hierarchy tree after video metadata anno-
tation. oL 29
5.8 Object Window with data inserted. 30
5.9 The user interface with video tree hierarchy after object annotation. 31
5.10 Event annotation, event specification process. 32

X

LIST OF FIGURES X

5.11 Event annotation, object selection process. 33
5.12 Event annotation, role definition process. 34
5.13 The user interface with hierarchy tree after event annotation. . . . 35
5.14 Subevent annotation, subevent specification process. 36
5.15 Subevent annotation, object selection process. 37

5.16 The hierarchy after subevent annotation process. 38

Chapter 1

Introduction

Advances in compression techniques, decreasing cost of storage, and high-speed
transmission have facilitated the way video is created, stored and distributed.
These improvements in technology created new application areas, where large
amounts of video data is used, such as digital libraries, distance learning, public
information systems, electronic commerce, video-on-demand systems, and so on.
Consequently, more and more videos are created each day, and this fact leads to
an enormous growth in the number of videos to be dealt with. The fast increase
in the amount of video data caused video to draw more attention as a multimedia
data type and revealed an important problem; new methods should be developed
to manage them because existing data management techniques do not provide

sufficient support for video data type.

Traditional database systems are not suitable to manage videos since video
data has its own characteristics, which differentiates it from simple textual or
numerical data. A video consists of a sequence of frames, which are nothing
but images. Therefore, video data possesses all attributes of image data such
as color, texture, object layout, shape of objects, etc. Moreover, huge volumes
of data, audio content and temporal structure can be listed as attributes that
differentiate video data from image data. The volume of data contained in a
video is huge compared to image data since a typical video clip may contain

thousands of images. Temporal structure of video provides events and motions

1

CHAPTER 1. INTRODUCTION 2

of objects to be specified as attributes particular to video. To summarize, video
data has rich audio-visual content, and thereby, new methods for managing video

data are required.

Some terms need to be defined before the explanation of the concepts in
management of video data: Video consists of frames. Shot is a set of frames
recorded in a single camera action. Keyframe, which is one frame of the shot,
can be used to identify the shot. Scene is a sequential collection of shots unified
by a common event or locale. Sequence is a collection of semantically related
scenes that need not be consecutive in time, and sequences build up the video.
To conclude, video has a hierarchical structure, where sequences, scenes, shots

and frames constitute the levels in the hierarchy.

As stated in [10], data related with video can be divided into two groups.
The first group is metadata about video. Data, which is not extracted from video
content like video name, production year, etc., can be modeled as metadata about
video. Extracted data from video content constructs the second group of data
and is also categorized into two groups: physical data and semantic data. Low-
level features like color, texture, shape and spatial relationships of objects can be
specified as physical data. Semantic data covers events, actions, attributes and

relations of objects.

Management of video data paved the way for new research areas, such as
indexing and retrieval of videos with respect to their spatio-temporal, visual and
semantic contents. Traditional database systems must be enhanced with new
capabilities to handle video data, as a data type to query, and the first step in
achieving this goal would be to create a video model and incorporate it into the
existing database architectures. The defined model can then be used for retrieval
and querying of video with the extracted information. Video indexing is the
process of segmentation of video for efficient management and retrieval. Video
modeling can be defined as the process of translating raw video data into an
efficient internal representation. Video retrieval is the process of retrieving video
according to its content. There are many works dealing with these aspects, some

of which will be described in Chapter 2.

CHAPTER 1. INTRODUCTION 3

Video can be modeled in many different ways. Since video consists of se-
quential images (frames) in a time-line, models applied to image files can also be
applied to video files. Color, texture of video and objects appearing in video can

be modeled by the same methods applied to images.

Spatial, temporal and semantic models of videos have also been provided.
Spatial models deal with the relative locations of objects in video frames whereas
temporal models deal with the locations of objects between video frames on a
time-line. Spatial and temporal models are merged to construct spatio-temporal
models. Semantic models deal with the meaning perceived by humans when a

video is watched.

Video indexing mechanisms can be categorized into three groups: automatic,
semi-automatic and manual. Computer vision techniques are used to automat-
ically index video with respect to physical features like color and texture. In
semi-automatic indexing, computer vision techniques are used with human in-
teraction in the process. In manual indexing, indexing process is performed by
end-users. Indexing algorithms are used to segment videos into smaller units
for efficient management. Shot boundary detection algorithms are used to di-
vide videos into shots. Scene change detection algorithms decide where the scene
changes occur in a video file. The output of such algorithms is also used for
browsing and retrieval of videos. Clustering methods have been used to index

shots into scenes.

Feature extraction algorithms have been proposed to analyze video data. Au-
dio streams, color histograms and textures of frames are analyzed to extract
semantic information from video. Compressed video streams are examined to
annotate motions of objects that appear in video, where annotation is the name
given to the process of analysis of video files. Automatic feature extraction tech-
niques cannot directly extract semantic information from a video, but a number
of systems have been proposed that model high-level data like events in video.
However, these systems are generally domain specific and cannot be used to model
every type of video. News and sports are examples of some domains where au-

tomatic extraction of high-level data is possible. Objects that appear in a video

CHAPTER 1. INTRODUCTION 4

can be annotated using object extraction algorithms.

Summary of a video can be created by specifying a few important scenes and
the other important scenes are detected automatically, which are the ones that
are similar to the specified scenes with respect to a given similarity constraint.
Heuristics are defined for similarity measurements. For classification of videos,
reasoning methods have been defined. For example, if there are more close-ups

in a movie, then the movie can be of type romance.

For querying video data, indexes created by video indexing algorithms are
used. Moreover, video is queried by image content. Given an image, the most
similar frames in video are returned with respect to spatio-temporal attributes of
objects, color histograms, and texture analysis. Query-by-example, iconic-based
query, query by annotated text, query by motion and trajectory of objects, query

by semantic content are some of the proposed methods for retrieval of video.

In this thesis, we concentrate on the extraction, modeling, and querying of
semantic information in video databases. The content of the semantic informa-
tion includes bibliographic data about video and events, actions, and objects of

interest taking place in video.

We propose a semantic video model which models semantic information in
video. Video is modeled in a hierarchy of events, subevents and objects of interest.
Video consists of events and events consist of subevents. Moreover, objects are
modeled in every level in the hierarchy. An event is an instance of activity, which
may involve many different objects over a time period. Subevents are used to
detail the activity (event) into actions, and to model relations between objects
of interest. The hierarchical model provides many semantic levels that facilitate
understanding of video content. A database model is constructed to have proper

database management support for the semantic video model.

We have implemented an annotation tool in Java to extract the semantic
information from videos, and to view and update semantic information that has
already been extracted. The annotation tool is a database application that is used

to insert and update semantic information extracted from videos to the database

CHAPTER 1. INTRODUCTION 3

defined for the semantic video model.

Finally, we have designed a query language to facilitate video retrieval accord-
ing to semantic conditions. Three types of queries can be issued by the end-users.
Video metadata queries are used to retrieve videos with respect to bibliographic
data. Fvent queries are used to retrieve videos according to activities and actions
that take place in video. Object queries are used to query videos according to

objects of interest, their attributes and roles in activities.

The work done in this thesis constitutes a part of a video database system
architecture, proposed by Donderler et al. in [5, 6, 7, 8]. Therein, a rule-based
spatio- temporal model for videos and a video query processor, which can answer
spatial, temporal, trajectory, motion and object queries for videos, are proposed.
The work done in this thesis will be integrated into that video database architec-
ture. Thus, the extended query processor will be able to answer semantic queries

as well.

1.1 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, related work
about semantic modeling of video is discussed. The video database architecture,
into which the proposed semantic model will be integrated, is described in Chap-
ter 3. In Chapter 4, the semantic data model that we propose is defined. The
annotation tool developed, which is used to extract semantic information from
videos, is introduced in Chapter 5. In Chapter 6, the query language that is used
to retrieve semantic content from videos is described. Conclusions of our work and
future research directions are given in Chapter 7. Grammar specification of our
semantic query language is presented in Appendix A. Java class definitions used
in the implementation of the annotation tool are given in Appendix B. Database

table specifications for the semantic video model are presented in Appendix C.

Chapter 2

Related Work

In the literature, there are numerous works about indexing, modeling, and re-
trieval of the semantic content of videos. As stated in [13], semantic conceptual-
ization can be performed at several levels of information granularity. At the finest
level of granularity, video data can be indexed based on low-level features such
as color, texture, shape, and objects. At a coarser level of granularity, indexing
of video data can be focused on activities, actions which are higher level abstrac-
tions. Automatic indexing of video data is desirable since manual indexing is hard
and indexes that are created may differ with respect to the indexers. Low-level
features, which can be extracted from video data without user intervention, have
been used in automatic indexing of video data [2, 3,9, 17, 18, 19, 21]. However
low-level features are not sufficient enough to index video data based on higher
level abstractions. There are a number of works [2, 9] where low-level features
are used to index higher level abstractions but these works are specific to some

domain of videos like news videos or sports videos.

Many works try to index video data based on low-level features. In [16], an
interactive workbench is provided supporting the researcher in the development
of new movie content analysis algorithms. Low-level features of video are supplied
to the researcher and by combining these low-level features, he/she tries to design

an algorithm, which can be used for indexing high level video data.

CHAPTER 2. RELATED WORK 7

A browseable/searchable paradigm is proposed in [3] for organizing video
databases. Automatic indexing approach is used to classify shots into pre-
determined semantic classes. The semantic classes are broadly defined semantic
categories that can be derived from low-level features. The semantic classes cor-
respond to head and shoulders, man-made versus natural, indoor versus outdoor

which cannot model high level semantic content of video.

A probabilistic framework for semantic indexing and retrieval of video is pro-
posed in [17, 18]. The framework uses multijects and multinets where multi-
jects are multimedia objects representing semantic features and concepts, and a
multinet is a probabilistic network of multijects that accounts for the interaction
between concepts. Video is segmented into shots and shots are segmented into
regions, which are labeled by a person. Then, low-level features of the regions
are extracted. The regions (multijects) are then related to other multijects by a
factor graph framework that uses sum-product algorithm in a tree. In this work
importance is given to the relations between semantic concepts. For example, de-
tection of ‘beach’ increases the chances of detecting ‘water’. Detection of ‘speech’
in the audio content and detection of a ‘face’ in the video frame may infer the
event ‘human talking’. The multijects represent general concepts and they are
not capable of supporting activities and objects in detail. In the ‘human talking’
event, data such as the name of the person or the subject of the talk are not

supported.

A video browsing system is proposed in [11, 12] which accepts conceptual
queries from users. Conceptual terms are extracted from low-level features. The
retrieval engine calculates relevance values for the results of a conceptual query by
feature aggregation on video shot granularity to offer conceptual, content-based
access. For example, ‘artificial light’ is specified by the user to retrieve indoor

shots. High-level semantic information is not addressed by this work.

An algebraic video model is proposed in [22] which assigns content informa-
tion to logical video segments. In this way, the same data can have multiple
annotations. A video algebra is also proposed that consists of operations for

temporally combining video segments to generate a desired video stream. In this

CHAPTER 2. RELATED WORK 8

work, no model is defined for activities, actions, and objects of interest taking

place in video.

Close-captioned text has been used to index and model semantic information.
In [23], a basic keyword set is annotated from the close-caption of video. An
electronic lexical system (Word-Net) is used to provide semantic association. The
authors also apply TOC (Table of Content) and index logic to videos in [21].
Video is structured into a hierarchy based on low-level features and keywords are
associated with the levels in the hierarchy. The usage of a lexical system is a good
idea in query processing especially when finding words with the same meaning.
However, this work does not provide a semantic video model that will abstract

activities, actions and interesting objects.

A spatio-temporal model is proposed in [4] to model semantic information
of video. Modeling events by using spatio-temporal attributes of objects is per-
formed but this can only be used for specific domains like sports videos. A ‘pass
event in a soccer game’ can be modeled by using spatio-temporal attributes but

a ‘party event’ cannot be modeled in this way.

A metadata database and a query interface for video is proposed in [20], where
bibliographic, structural, and content indexes are identified. Bibliographic data
stores metadata about video. Structural data stores information about shot,
scene, and segments of video. Content data stores keywords and objects. In this
video model, objects are associated with actions but activites are not supported.

Attributes cannot be defined for objects.

A semantic video model is proposed in [1]. Video entities are specified as
activities, events, and video objects. In this model, video is divided into fixed-
time duration frame sequences. Activities, events and objects are related to the
frame sequences and these relations are modeled by using a frame segment tree
and arrays that store activities, events and video objects. For retrieval of the
semantic data, different query types are defined such as object, activity, event,
and compound queries. The proposed data model and the algorithms for handling
different types of queries were implemented within a prototype, called Advanced

Video Information System (AVIS). In this model, objects have no attributes other

CHAPTER 2. RELATED WORK 9

than role in the event. Dividing video into fixed-size time intervals is not a good
solution for temporal modeling of video. The query language proposed cannot

answer temporal queries.

In [14, 15], video is modeled using spatial attributes of objects. Common
Video Object Tree (CVOT) model is proposed. In this model, all common ob-
jects among video clips are found and video clips are grouped according to these
common objects. This data model is integrated into a temporal object model
to provide concrete object database management support for video data. The
salient objects and shots are recognized by a video analyzer. Spatio-temporal
queries are supported by this system. Temporal attributes for events and objects
are supported by storing history of events and objects. Semantic attributes for

objects and roles for activities are not addressed by the system.

In [10], a data model and a rule-based query language is developed for video
content-based indexing and retrieval. The data model is designed around the
object and constraint paradigms. The data model consists of feature and con-
tent layer and semantic layer. The semantic layer includes objects, attributes of
objects, and relations between objects. The query language can be used to infer
relationships about information represented in the model. Queries can refer to

both the feature-content layer and the semantic layer.

Chapter 3

Video Database System

In this chapter, a Web-based video database system proposed in [5, 6, 7, 8] to
which the work in this thesis will be integrated, is described. The organization of
this chapter is as follows: The architecture of the video database system is given
in Section 3.1. The spatio-temporal data model proposed for video data type is
described in Section 3.2. Types of queries that can be answered by the system are

given in Section 3.3. The query processing approach is explained in Section 3.4.

3.1 Video Database System Architecture

Figure 3.1 illustrates the overall architecture of the target Web-based video
database system. The proposed system is built on a client-server architecture.

Users access the video database on the Internet through a Java client Applet.

Spatio-temporal relations of objects in video frames are extracted from video
clips by Fact-Fxtractor and these relations are stored in Knowledge-Base as
Prolog-type predicates. Fealure Database, which stores data about semantic con-
tent of videos, is populated by Video Annotator. Feature Database and Video

Annotator constitute part of this thesis work and detailed explanation on these

10

CHAPTER 3. VIDEO DATABASE SYSTEM 11

Video Clips Extracted Facts
»| Fact—Extractor »| Knowledge—-Base
WEB Cli ! 1
n
Users ent Query _ Y
»| Visual Query Interface | Query Processor
\ Results \
Y \i
Raw Video Database Feature Database

Y

(File System)
A

ORACLE DBMS

Y

Video Annotator

A

Figure 3.1: Video Database System Architecture.

components are given in Chapters 4 and 5, respectively. In the heart of the sys-
tem lies the query processor, which is responsible for answering user queries in
a multithreaded environment. Spatio-temporal, relative object-motion, object-
appearance and similarity-based object-trajectory queries are supported by this
system, which uses the knowledge-base to answer these types of queries. By using
spatio-temporal relations, a restricted set of events can also be specified as query
conditions. Users may query the system with sketches. A visual query is formed
by a collection of objects with different attributes including object-trajectory
with similarity measure and spatio-temporal ordering of objects in time. Motion
is sketched as an arbitrary polygonal trajectory for each query object. Users are
able to browse the video collection before posing complex and specific queries. A

text-based SQL-like query language is also available for the experienced users.

CHAPTER 3. VIDEO DATABASE SYSTEM 12

3.2 Video Data Model

A new approach is proposed for segmentation of video into shots where segmen-
tation 1s done using spatial relations of objects in video frames. Spatial relations
can be grouped into mainly three categories: topological relations that describe
neighborhood and incidence, directional relations that describe order in space,
and distance relations that describe range between objects. Spatial relations
are extracted using the minimum bounding rectangles of salient objects that are

specified manually by a Java application developed, called Fact-Fztractor.

In a video, a shot is detected when the set of spatial relations between objects
changes. The frames where the change occurs are used as an index for the shots
and are considered as keyframes. Spatial relations are called spatio-temporal
relations because they do have a time component represented by frame numbers
of keyframes. Spatio-temporal relations for the shots are stored, on a keyframe
basis, as Prolog facts in a knowledge- base. Inference rules are used to reduce the
number of facts stored in the knowledge-base since some facts could be derived
using other facts stored. The benefit of storing facts in a knowledge-base is the
reduction of the computational cost of relation computation during the time of

query processing since computation of relations are done a priori.

3.3 Query Language

The query language is a text-based SQL-like language designed and implemented
to support spatio-temporal queries on video data. Different query types that can

be specified by the query language are as follows:

o Object queries: this type of queries may be used to retrieve objects, along

with video segments where the objects appear.

o Spatial queries: this type of queries may be used to query videos by spa-
tial properties of objects defined with respect to each other. Supported

CHAPTER 3. VIDEO DATABASE SYSTEM 13

spatial properties for objects can be grouped into mainly three categories:
topological relations that describe neighborhood and incidence in 2D-space,
directional relations that describe order in 2D- space, and 3D-relations that

describe object positions on z-axis of the three dimensional space.

o Similarity-based object-trajectory queries: this type of queries may be used

to query videos to find paths of moving objects.

o Temporal queries: this type of queries is used to specify the order of occur-
rence for conditions in time. Supported temporal operators, which are used
in temporal queries, are before, meets, overlaps, starts, during, finishes and

their inverse operators.

o Aggregate queries: this type of queries may be used to retrieve statistical
data about objects and events in video data. The three aggregate func-
tions are average, sum, and count. These functions may be very attractive
in collecting statistical data for such applications as sports event analysis

systems.

3.4 Query Processing

User Query User Query
WEB Client >| Query Request - Query
Handler Processing
(Java Applet) < (Java Application) = Unit
Query Result Query Result
Set Set
QUERY PROCESSOR

Figure 3.2: Web client - query processor interaction.

Figure 3.2 illustrates how the query processor communicates with Web clients
and the underlying system components to answer user queries. Web clients send
user queries, transformed into SQL-like text-based query language expressions if
visual queries are given, to the query processor. Query processor is responsible for

retrieving and responding to user queries in a multithreaded environment. The

CHAPTER 3. VIDEO DATABASE SYSTEM 14

queries are reconstructed by the query processor as Prolog-type knowledge-base
queries. Results returned from the knowledge-base are sent to Web clients. The
phases of query processing for spatio-temporal queries are shown in Figure 3.3

and can be briefly described as follows.

Query
Query LEXER Tokens PARSER Parse Tree QUERY Query Tree QUERY Result Set
DECOMPOSER EXECUTOR ——>
Query Recognition Phase Query Decomposition Phase Query Execution Phase

Figure 3.3: Query processing phases.

1. Query parsing: The lexical analyzer partitions a query into tokens, which
are passed to the parser with possible values for further processing. The
parser assigns structure to the resulting pieces and creates a parse tree to
be used as a starting point for query processing. This phase is called query

recognition phase.

2. Query decomposition: The parse tree generated after the query recognition
phase is traversed in a second phase, which is called query decomposition
phase, to construct a query tree. Queries are decomposed into three basic
types of subqueries: plain Prolog subqueries or maximal subqueries that
can be directly sent to the inference engine Prolog, trajectory-projection
subqueries that are handled by the trajectory projector, and similarity-based

object-trajectory subqueries that are processed by the trajectory processor.

3. Query execution: The query tree is then traversed in preorder in the next
phase of query processing, query execution phase, executing each subquery
separately and performing interval processing so as to obtain the final set

of results.

4. Interval processing: Results returned by subqueries are further processed in
the internal nodes of the query tree to compute the final result set for user

queries.

CHAPTER 3. VIDEO DATABASE SYSTEM 15

In order for the system to support semantic video queries, a semantic video
model and semantic extensions to the query language are needed. Extraction of
semantic information from video data and querying this data are the focuses of
the work done in this thesis. This work will be used in the video database system
explained so that the resulting system is able to answer semantic video queries
in addition to spatio-temporal, relative object-motion, object appearance, and

similarity-based object-trajectory queries on video data.

Chapter 4

Semantic Video Model

Modeling is necessary for efficient management and retrieval of video. Semantic
video modeling is the translation of video data into an internal representation,
which captures the semantic content of video and creates indexes for efficient

retrieval.

In this chapter, a video model is proposed to model video semantic content.
Video has two layers; the first one is the feature and content layer that deals with
the low level details of video, and the second one is the semantic layer that deals
with the meaning perceived by humans from a video. A semantic video model
should capture events, subevents, objects of interest and bibliographic data about
video. An event is an instance of an activity that may involve many different ob-
jects over a time period. Subevents are used not only to model relations between
objects but also to detail the activity (event) into actions. Actions are the acts
performed by living objects. Data that is related to video in general, but not
related to video content, such as name, year of production, producer and etc., is

specified as bibliographic data about video.

This chapter is organized as follows: In Section 4.1, our semantic video model
is defined. The database model, which is used to support the semantic video

model, is described in Section 4.2.

16

CHAPTER 4. SEMANTIC VIDEO MODEL 17

4.1 The Data Model

Video consists of sequence of images in a time-line. The main difference between
video and image is the temporal structure of video. Temporal structure provides
video with semantic content that cannot be derived from single images. While
two people dancing in a ballroom can be depicted by an image, how long they
have danced and which figures they have played can only be captured by a video.
For example, a goal event in a soccer game can only be described by a sequence

of images, which corresponds to video.

Video consists of events. Events are the instances of activities taking place
in video. In other words, activities are the abstractions of events. For example,
wedding is an activity, but wedding of Richard Gere and Julia Roberts in a movie,
is an event. Activities can be thought of as classes, and events can be thought
of as the instances of these classes. For each activity type, a number of roles are
defined. For example, murder is an activity. Murder activity has two roles defined
for it: murderer and victim. The murder of Richard Gere by Julia Roberts is an
event where Richard Gere has the role ‘victim’ and Julia Roberts has the role

‘murderer’.

Subevents are used to detail events and to model the relations between objects
of interest. The difference between events and subevents can be better explained
with an example. Assume that a party is depicted in a video. The party is
modeled as an event that may contain a number of subevents. Subevents may be

specified as follows:

drinking, a group of people may drink,

eating, a group of people may eat,

dancing, some couples may dance, and

talking, another group may talk about a subject.

Several objects of interest can take place in this party event. These objects

CHAPTER 4. SEMANTIC VIDEO MODEL 18

are assigned roles, which may be defined as ‘Host” and ‘Guest’ for the party event.
Actions represented by subevents, such as drinking or eating, are performed by
living objects. These imply that objects are not only assigned roles defined for
the event, but also they are associated with subevents, where they perform the
actions represented by subevents. To sum up, events, subevents, objects, and
bibliographic data form the abstraction of video semantic content, which can be

categorized in three groups as follows:

e bibliographic or metadata: data about video,
e object data: data about the objects of interest in video,

o cvenl data: activities and actions taking place in video.

Video name, duration, producer, director, video type, audience and subject
of video are classified as bibliographic data. The attributes of interesting objects
and values for the attributes can be stored in object data whereas data related to
events and subevents can be stored in event data. Type of activity, begin and end
times, objects that take part in event, roles for objects, location and time can be
described as event specific data. Subevent specific data can be given as follows:

type of subactivity, begin and end times, and objects that appear in subevent.

4.1.1 Hierarchical Structure

A video is modeled as a hierarchy of events, subevents and objects of interest. A
hierarchical model provides many semantic levels that facilitate understanding of
video content. Video consists of events and events consist of subevents. Moreover,
objects are modeled in every level in the hierarchy. In the semantic video model,
segmentation of video into sequences and scenes is performed by specifying events
and subevents of video since events are associated with sequences and subevents

are associated with scenes.

CHAPTER 4. SEMANTIC VIDEO MODEL 19

4.1.2 Temporal Management

Temporal management of video segments can be categorized into three groups:
segmentation, stratification and temporal cohesion. Segmentation splits video into
independent and contiguous time segments, which allows one level of segmenta-
tion to be specified. Stratification allows overlapping of time segments, which
provides many levels of segmentation to be performed. In temporal cohesion, a
time segment is defined as a set of non-overlapping time intervals and this pro-
vides many levels of segmentation and accurate representation of video segments.
Temporal cohesion, which allows accurate temporal representation of time seg-
ments, is used in our semantic video model. Events and subevents are the time
segments in our model. Video consists of events, which may overlap. Events con-
sist of subevents, which may not be contiguous in time. Scenes may also overlap.

These features provide flexibility in modeling activities and actions in video.

4.2 Database Design

A database model is required to have proper database management support for
the semantic video model. With respect to the specifications of the semantic
video model, a database model, which consists of fifteen database tables, is con-
structed to store the semantic data of videos. The conceptual design of the
database is presented in Figure 4.1. The specification of the tables can be found
in Appendix C.

TVIDEO table stores the bibliographic information about videos. The remain-

ing database tables can be categorized into three groups:

1. Utility tlables: TAUDIENCE, TVIDEOTYPE, TACTIVITY, TACTIVITYROLE,
TSUBACTIVITY, and TATTRIBUTE can be grouped as utility tables. Util-
ity data such as audiences, video types, activity types, roles for activity

types, subactivity types and object attributes are stored in these tables.

CHAPTER 4. SEMANTIC VIDEO MODEL 20

eventid
location
timeafevent

videotypename i el subativityid
i i R inti subactivityname
audiencename j

. subplaverid .
subeventid

, et
videoid
name

— leventid
objectid

Figure 4.1: Database design of the semantic video model.

2. Object tables: Data about the interesting objects in videos are stored in

TOBJECT and TOBJECTATTRIBUTE tables.

3. Fvent tables: Database tables that store data related to events and
subevents are TEVENT, TEVENTDATA, TEVENTOBJECT, TPLAYER, TSUBEVENT,
and TSUBPLAYER.

Chapter 5

Annotation Tool

The video annotation tool developed is a database application coded in Java,
which is used for annotating video clips according to the semantic video model
designed. The tool has two main functionalities. First of all, it is a movie player,
which can play video files in different movie formats. Java Media Framework
Application Programming Interface (JMF API) has been used for the implemen-
tation of the player part of the tool. JMF API allows video, audio and other
time-based media to be used within Java applications and applets. In the an-
notation tool, opening a video for playing, closing a video, navigating inside a
video and viewing the details of a video, such as length of a video and format
of a media stream, could be done by using the functionalities provided by JMF
API. The second main functionality provided by the tool is annotating videos by
their semantic content. The tool is used to extract semantic data about videos
for annotation as well as to view, update and delete the semantic data that has
been extracted before. Semantic data extracted from a video may be categorized

into five groups as follows:

1. Metadata about a video: Metadata contains the data specific to video, such
as video name, length of video, year of production, etc. The annotation
of this data is referred as video metadata annotation and is explained in

Section 5.3.

21

CHAPTER 5. ANNOTATION TOOL 22

2. Object data: Object data is formed by items of interest in video. The
annotation of object data is referred as object annotation and is described

in Section H.6.

3. Fvent data: Data related to activities that take place in video is considered
as event data, and annotation of this data is called event annotation, which

is described in Section 5.7.

4. Subevent data: Data related to actions that take place in activities is con-
sidered as subevent data and annotation of this data is called subevent

annotation, which is described in Section 5.8.

5. Utility data: Utility data consists of audiences, video types, activities, activ-
ity roles, sub-activities and object attributes. The annotation of the utility

data is explained in Section 5.3.

The tool is explained through the annotation of a sample video clip in Sec-
tions 5.1-5.8. The rest of this chapter is organized as follows: In Section 5.1,
initialization of the tool and general information about the main user interface is
given. The order of annotation is discussed in Section 5.2. In Section 5.3, video
metadata annotation is explained. Section 5.4 describes the annotation of utility
data. In Section 5.5, hierarchical video tree that is used to show the annotation
status is explained. Section 5.6 describes the annotation of video objects, and
event annotation is explained in Section 5.7, which is followed by the discussion of
subevent annotation in Section 5.8. Section 5.9 describes the functionality of the
buttons used with hierarchical video tree. Section 5.10 gives the implementation
details of the tool. Java class definitions of the video components used in the tool

are given in Appendix B.

CHAPTER 5. ANNOTATION TOOL 23

5.1 Imitialization Process and the Main User In-

terface

An initialization procedure is executed as soon as the video annotation tool is
started. During the initialization, JDBC (Java Database Connectivity) driver
class is loaded into the Java Virtual Machine (JVM). JDBC is an API that
manages database connections and database operations (queries) within the Java
programming language. After the driver is loaded, ‘utility” data is read from the

video database and then main program window, shown in Figure 5.1, is launched.

=10l x|
HIERARCHY ANNOTATE AND INSERT

VIDEQ

OBJECT

EVENT:

SUBEVENT

UTILITIES

PLAY:
DETAILERITYUPDATE
DELETE

oy Add Event Object
| OPEN VIDEO | LOAD VIDED | CLOSE VIDEQ EXIT Add SUBEVent Object

Figure 5.1: The main user interface of the annotation tool.

Video is loaded and played in the video player area at the left-hand-side of the
main window. To the right of this, there is a rectangular area, where the hierarchy
of an annotated video is displayed as a hierarchical video tree. Moreover, there are
also a number of buttons placed in two groups at the right-hand-side of the main
window. The upper group consists of ‘video’, ‘object’, ‘event’, ‘subevent’ and
‘utilities” buttons, which are used to open new windows to annotate corresponding
video components. For example, when ‘video’ button is clicked, another window
of the tool, referred to as ‘video window’, is launched. Video window is used to

annotate video metadata. When ’object” button is clicked, yet another window

CHAPTER 5. ANNOTATION TOOL 24

referred to as ‘object window’ is launched for the user to annotate interesting
objects in video. The functionality of the lower group of buttons is explained in

Section 5.9.

Initially, ‘open video’, ‘load video’ and ‘exit’ buttons are enabled. A video is
opened and played by using the ‘open video’ button. Main window with a video

playing in the video player area is demonstrated in Figure 5.2.

givideo Player and Annotator ;IEIEI

HIERARCHY ANNOTATE AND INSERT

VIDEO

OBJECT

EVENT

SUBEVENT

UTILITIES

PLAY:
DETAILEDITIUPDATE
DELETE

Add Event Object
OPEN VIDEO | LOAD VIDEO | CLOSE VIDEO EXIT Add SubEvent Object

Figure 5.2: The main user interface with a video file opened.

As soon as a video is opened, the upper group of buttons is enabled. The
annotation of the video is done using these buttons in a pre-determined order

that is described in Section 5.2.

5.2 The Order of Annotation

The order of annotation should follow the hierarchical semantic model of video
from top to bottom. Hence, video is annotated first according to the hierarchy.
Annotation of events with their corresponding subevents may be accomplished

afterwards. During the annotation process, annotation of objects may be carried

CHAPTER 5. ANNOTATION TOOL 25

out whenever needed. However, the annotator must comply with the following

restrictions:

e Utility data annotation is required for video metadata, event, subevent and

object annotations.

e Event and object annotation cannot be done before video metadata anno-

tation.

e Event annotation cannot be done before the annotation of objects of that

event.

e A subevent cannot be annotated before the annotation of the event to which

it is associated.

The annotation of utility data can be done at any time. However, utility
data is required for the annotation of video metadata, events, subevents and ob-
jects. For example, video type and audience information are required during video
metadata annotation. The next annotation that should be done is video meta-
data annotation because event and object annotations depend on video metadata
annotation. Event annotation cannot start immediately after video metadata an-
notation since for an event annotation to be complete, with event objects and
roles of the objects specified, annotation of objects in the event must be done be-
fore the annotation of that event. Subevent annotation must be associated with
an event annotation as well; if the event annotation is not done, then subevent

annotation is not possible.

With the above details, the annotation is performed as follows. First of all,
utility data and video metadata annotation is done. Then, for an event ‘el’,
object annotation for the objects in event ‘el’ is performed followed by event
annotation for ‘el’. Subevent annotations for ‘el” are performed last. Subsequent
annotations of other events should follow the same order of annotation (object
— event — subevent). The order of upper group of buttons in the main window

from top to bottom also reflects this order of annotation.

CHAPTER 5. ANNOTATION TOOL 26

5.3 Utility Data Annotation

The ‘Utility Window’, where all the utility data can be seen and updated, is

shown in Figure 5.3.

=3 Annotate Utilities] =18 x|

Yideo Types SubActivity Types

harror rnning

adventure dancing

caroon A drinking e

science-ficion eating

historical DELETE | talking DELETE |

advertise
romance

Audiences Activity Types Roles
children

dance GET ROLESi
teenager party
adult wedding l—-
wormen Hefe wear L
men game

everyone DELETE | murder ADD DELETE |
old people
DELETE |

Object Attributes

realnarne
color
speed
v

hair

SE DELETE |

ADD

x|

Figure 5.3: Utility window.

Video types, audiences, object attributes subactivity types, activity types
and roles for activity types can be added and deleted by the annotator using this

window.

5.4 Video Metadata Annotation

Semantic annotation of a video starts with video metadata annotation. This
annotation is done by the ‘video window’ that appears when ‘video’ button is

clicked. The video metadata annotation process is given in Figure 5.4.

CHAPTER 5. ANNOTATION TOOL 27

_ioix

Video Name [

Video Length |31 AT secohds

Production Year I

Producer |
Director |
Yideo Type [cornedy ~| wew | ReFresH|
Audience [chitaren ~| mew | REFRESH |
Subject |

CANCEL OK

Figure 5.4: Video metadata annotation process.

Using this window, video specific data can be annotated. Video length is
automatically retrieved from video player. ‘Video Type’ and ‘Audience’ fields
can be selected from a list of choices. The ‘New’ button, when clicked, shows
the ‘Utilities window’, where utility data is annotated. ‘Refresh’ buttons refresh
the items in the lists of video type and audience. The ‘Video Window’, when the

data specific to a video is inserted, is shown in Figure 5.5.

5.5 Hierarchical Video Tree

Video is modeled as a hierarchy in the semantic video model. The hierarchical
video tree is used to show the current annotation status. The following rules

define the hierarchical video tree (see Figure 5.6):

e Root of the tree is a video entry.

e The leaves of a video entry are events and video objects.

CHAPTER 5. ANNOTATION TOOL 28

o

Yideo Name I honus mydonese

Video Length [3147 secofdi

Production Year I 2000

Producer | garanti

Director I sinan cetin

Video Type [advertise ~| mew | REFResH |
Audience [everyone ~| mEw | REFRESH |
Subject | bonus card

CANCEL OK

Figure 5.5: Video window with data inserted.

e The leaves of an event are event objects and subevents.

e The leaves of a subevent are subevent objects.

The leaves of a video object are the attributes and their values.

The leaves of an event object are the roles of the event object in the activity.

Subevent objects have no children.

When video metadata is inserted, the root of the hierarchy tree is constructed.
Hierarchical video tree and the current state in the annotation can be viewed by
clicking the ‘hierarchy’” button. Figure 5.7 shows the ‘Main Window’ with the

current hierarchy tree.

The hierarchy tree has only the root node, which is for the video entry. For
identification, video name is rendered near the video entry as well. Besides, the
lower group of buttons is enabled. These buttons are ‘play’, ‘detail /edit /update’,
‘delete’, ‘add event object’ and ‘add subevent object’. The functionalities of these

buttons are explained in Section 5.9.

CHAPTER 5. ANNOTATION TOOL

Video [-------memmoiiiooe-
Event Event e 06 o Event
Subevent || Subevent| ® ® @| Subevent|----------------------------

» Video objects

------ » Event objects

Egiwdeo Player and Annotator

Figure 5.6: Hierarchy tree of a video.

HIERARCHY

0 [¥ideo : bonus myronese

OPEN VIDEO

LOAD VIDEO

CLOSE VIDEO

EXIT

g [3|

ANNOTATE AND INSERT

YIDEOQ

OBJECT

EVENT

SUBEVENT

UTILITIES

PLAY

DETAIL/EDIT/JPDATE

DELETE

Add Event Object

Add SubEvent Object

Figure 5.7: The user interface with hierarchy tree after video

tion.

metadata annota-

» Subevent objects

CHAPTER 5. ANNOTATION TOOL 30

5.6 Object Annotation

For an event annotation, the objects that appear in that event should be anno-
tated first. ‘Object window’, which appears when the object button is clicked, is
shown in Figure 5.8. In this figure, four objects are inserted into the video, and

attributes and values of ‘object1’ are listed as well.

E%Annuate DObject -1oj x|
Yideo Name Ibonus mydonese
Object List Object Name
ohjectt I
ohject2
ahject3 ADD
abjectd

DELETE |
ATTRIBUTES | Object Attribute [hair x| WEW

Attribute Value | REFRESH |

Object Attribute-Value | ADD | DELETE |

realname-hakan
sex-male
hair-arange

B

Figure 5.8: Object Window with data inserted.

Using the ‘object window’, objects can be added to and deleted from the
video. Attributes for objects and values for the attributes can be defined or
deleted. Only one value can be defined for each attribute. In the ‘video name’
field, the name of the current video, that is being annotated, is displayed for
information. Selecting an object from the object list and clicking the ‘attributes’
button lists all the attributes and values defined for the attributes. Clicking the
‘new’ button brings up the ‘utilities window’, where the annotator can define

new object attributes. ‘Refresh’ button refreshes the items in object attribute

CHAPTER 5. ANNOTATION TOOL 31

list, which is required as new attributes are defined. The hierarchy tree of video,

after some video objects are defined, is shown in Figure 5.9.

E;Uideu Player and Annotator i = |E| 1'
HIERARCHY ANNOTATE AND INSERT
] i_’i_”..‘?E_l.PPﬂHE_’"”.}CE‘...UI‘__‘?.?_F'-_E VIDEOD
@ [video Ohject: object!
[reainame=hakan OBJECT
D sex=male
D hair=orange EYENT
[video Ohject: object2
[video Object: object3 SUBEVENT
[video Ohject: ohjectd
UTILITIES
PLAY
DETAIL/EDIT/UPDATE
DELETE
Add Event Object
OPEN YIDEO | LOAD VIDEQO | CLOSE VIDEO EXIT Add SubEvent Object

Figure 5.9: The user interface with video tree hierarchy after object annotation.

In Figure 5.9, the hierarchy tree with video entry as the root node and four
objects as four children of the root node is displayed. Objectl has three attributes
defined, namely realname, sex and hair. Values for the attributes are ‘hakan’,
‘male’ and ‘orange’. All data that has been annotated up to that point is displayed

in the hierarchy tree, which provides a friendly user interface to the annotator.

5.7 Event Annotation

The next step following the object annotation is the annotation of an event. For
an event annotation, three windows are used. In the first window, event specific

data is entered, as shown in Figure 5.10.

In Figure 5.10, party event has been defined, whose time frame spans from
second 0.08 to second 19.74 in the sample video clip. To obtain the time of a
location in a video, video is sought to the desired location and paused. Time of

that location in the video stream is retrieved from the video player by using the

CHAPTER 5. ANNOTATION TOOL 32

S1=1E

Yideo Name | honus mydonese Role list
Event Type [pary ~| ShowRoles | host
guest
EWY

REFRESH |
Start Time ID.DB Get Time |
End Time 1974 GetTime |
Event Location |studio
Time of Event | bonus concert

CANCEL | OK |

Figure 5.10: Event annotation, event specification process.

‘Get Time’ button. Event type is selected from a list of choices. Roles of the
selected event can be retrieved and listed by clicking the ‘Show Roles” button.
New event types (activities) and roles can be defined in the utilities window,
which appears when ‘new’ button is clicked. Location and time of an event are
also defined. When ‘Ok’ button is clicked, event data is inserted into the database
and the second window of event annotation is launched while the current window
is closed. In the second window, selecting from a list of video objects specifies

objects that appear in the event. This process is demonstrated in Figure 5.11.

Video name and event type are displayed for information. In this annotation
example, there are four objects defined for the video and two of which have been
selected to appear in the event. New objects for the video can be defined by
clicking ‘new’” button, which launches the ‘object window’ for object annotation.
When ‘Ok’ button is clicked, this window is closed and the last window for the
event annotation is shown. The last window is used to define roles for the event

objects, as demonstrated in Figure 5.12.

In this window, video name and event type are given, and roles defined for

CHAPTER 5. ANNOTATION TOOL 33

:E%’,%Dhjects in the Event

honus mydonese

objectl

object2

Figure 5.11: Event annotation, object selection process.

CHAPTER 5. ANNOTATION TOOL 34

|E23 Annotate Team

honus mydonese

party

ohjectz-guest g Ohject? guest

[ohjecti-host i i

Figure 5.12: Event annotation, role definition process.

CHAPTER 5. ANNOTATION TOOL 35

the event type (activity) are also displayed together with the objects appearing
in the event. The annotator has to match the objects with roles. One object may
be associated with more than one role in the event. The ‘New’ button below the
role list brings up the ‘utilities window’, and the ‘New’ button below the object
list launches the second window of the event annotation, where the objects that
appear in the event are specified. The hierarchy tree after the event annotation

is completed is displayed in Figure 5.13.

E‘Ei\l'ideo Player and Annotator o -10O] x|
HIERARCHY ANNOTATE AND INSERT
3 video : bonus mydonese
VIDEO
@ [Event : party
@ [Event Object - object! i
[ralen=host
@ [Event Object : ohject2 EVENT
[rolei=guest
§ [Video Object : object! SUBEVENT
D realname=hakan
[sex=male UTILITIES
[hair=orangs
[video Object : object2
[video Ohject : objecta
[video Ohject: objects
PLAY
s - DETAIL/EDIT/UPDATE
L — DELETE
Add Event Object
OPEN VIDEO | LOAD VIDEO | CLOSE VIDEO EXIT Add SubEvent Object

Figure 5.13: The user interface with hierarchy tree after event annotation.

In the hierarchy tree, the root node (video entry) has five children. The party
event is also inserted as a child of the video entry. This event has two children,
which are event objects, and these event objects have their role names as their
children. Since event objects may have many roles defined for them, roles are
displayed as ‘role()’, ‘rolel’, and ‘role2’ if there is more than one role defined for

an event object.

CHAPTER 5. ANNOTATION TOOL 36

5.8 Subevent Annotation

The ‘Subevent’ button must be clicked to start the annotation of subevents. Two
windows are used in subevent annotation. The first window is used to insert
subevent specific data whereas the second window is used to select the objects

appearing in the subevent. Figure 5.14 shows the first subevent window.

Eéf’,ghnnotate SubE vent !EE
Yideo Name | bonus mydonese
Event Type
SubEvent Type NEw | REFRESH
Start Time 1423 Get Time |
End Time |19.5 Get Time I
CANCEL | oK |

Figure 5.14: Subevent annotation, subevent specification process.

Video name and event type are displayed to provide information to the anno-
tator. Event type is used to show into which event the subevent is being inserted.
Subevent type is selected from a list of choices, and the ‘new’ button is used to
define new subevent types. Start and end times are specified in the same way as
it is done in the event annotation. When ‘Ok’ button is clicked, this window is
closed and the second window of the subevent annotation is launched, which is

demonstrated in Figure 5.15.

Video name and subevent type are displayed for information. Subevents are
associated with events. Therefore, objects that can appear in subevents are only
those objects that appear in the event, with which the subevent is associated. In
the window shown in Figure 5.15, event objects are displayed for the annotator
to select which of them appear in the subevent. In the example annotation, both

of the event objects appear in the subevent ‘dancing’. The ‘New’ button will pop

CHAPTER 5. ANNOTATION TOOL 37

:E%‘:Dhjects in the subEvent

osere |

ohject?

Figure 5.15: Subevent annotation, object selection process.

CHAPTER 5. ANNOTATION TOOL 38

up the second window of the event annotation, where objects for the event are
defined. When ‘Ok’ button is clicked, annotation of ‘dancing’ subevent, which is
associated with the party event, is completed. The hierarchy after this annotation

is displayed in Figure 5.16.

Egaviden Player and Annotator [l (=] S|
HIERARCHY ANNOTATE AND INSERT
3 video : honus mydonase
VIDEO
@ [Event: party
@ [SubEvent: dancing OBJECT
[} subEvent Object - nbjectt
D SubEvent Ohject: ohject2 EVENT
@ [Event Object : object!
[rolen=hast SUBEVENT
@ [Event Ohbject: object2
[rolen=guest UTILITIES
@ 9 video Object: abjectl
D realname=hakan
D sex=male
D hair=orange
[video Object : object2
[video Object: objecta
[video Object : objectd
PLAY
DETAILEDIT/UPDATE
DELETE
Add Event Object
OPEN VYIDEO | LOAD YIDEO | CLOSE VIDEO EXIT Add SubEvent Object

Figure 5.16: The hierarchy after subevent annotation process.

In the hierarchy tree, party event has a new child, which is a subevent whose
subevent type is dancing (cf. Figure 5.16). This subevent has two subevent ob-

jects. New events, objects and subevents can be annotated in the same way.

5.9 Hierarchical Video Tree Functionality

Annotation of all video components has been explained in the preceding sec-
tions. In this section we describe the functionality of the lower group of but-
tons, which work with the hierarchical video tree. These buttons are ‘play’,

‘detail /edit /update’, ‘delete’; ‘add event object’ and ‘add subevent object’.

1. Play button: This button is used to play a selected video component in the

video tree if it is playable. Playable video components are video, event and

CHAPTER 5. ANNOTATION TOOL 39

subevent. The play button makes the video player seek to the beginning
location of the playable video component and starts to play it from that
location until the end of the playable video component. If video is selected
in the hierarchy and play button is clicked, video is sought to the beginning
of the video. If an event is selected, video player seeks to the beginning

location of the event and plays it and stops at the ending location of it.

2. Detail/Edit/Update bulton: This button is used to show the details of a
selected video component in the video tree. Details of video components
are shown in the same windows, where they are annotated. If a video
is selected and the detail button is clicked, then the video window will
appear with the video specific data inserted in the corresponding fields.
If an event is selected, then the event window will appear with the event
specific data for that event. In the detail windows, data editing can be
done, and when the ‘Ok’ buttons are clicked, the data updated in the detail
windows is updated in the database as well. Therefore, detail windows are
used for editing/updating of annotation data. The windows designed for
the annotation of video components are used for the annotation, detail and
update operations. This provides uniformity and standardization in the

annotation tool.

3. Delete button: This button deletes a selected video component both from
the hierarchy and the database. If a video is selected and deleted, all the

annotation data that is entered for that video is lost.

4. Add FEvent Object button: This button is a quick link to the second window
of the event annotation, where objects for the event are specified. The data

for the event selected in the video tree is retrieved into the second window.

5. Add Subevent Object button: This button is also a quick link to the second
window of the subevent annotation, where objects for the subevent are
defined. The data for a subevent selected in the video tree is retrieved into

the second window.

CHAPTER 5. ANNOTATION TOOL 40

The ‘add event object” and ‘add subevent object’ buttons are used because
addition of an object to an event requires the annotator to pass the first window
of the event annotation, where event specific data is defined. Using the update
button, a new event object can be defined. Nonetheless, the annotator must first
see the first window of the event annotation, after which an event object can be
defined in the second window. To eliminate the viewing of the first windows in

the event and subevent annotations, these quick link buttons are defined.

Up to now, functionality of the annotation tool used for the annotation of a
new video is explained. The next part to discuss about is the loading of the an-
notated video. The annotator need not complete the annotation of a video when
he/she starts to annotate it. The annotator can stop the annotation process at
any time, and can continue to annotate after. This functionality is also provided

in the annotation tool.

When the load video button is clicked, a list of video names that have been
annotated before is shown to the annotator. Omne video is selected, and the
program loads that video from the database. When the hierarchy button is
clicked, the hierarchical video tree for that video appears. From then on, the

annotator can continue the annotation and can update the existing annotation.

5.10 Implementation Details

There are a number of implementation details that have not been explained so
far about the annotation tool. First of all, this tool works with one video file
at a time. However, since this program is an application, multiple copies can be

executed at the same time.

For the connection to the database, JDBC is used. When the program is
initialized, the JDBC connection is established, and this connection is used until
the execution of the program ends. For each database access, the same connection
is used, which eliminates the need for reconnecting to the database. This provides

better performance for the database operations.

CHAPTER 5. ANNOTATION TOOL 41

When an exception occurs in the execution, an error window is launched. For
example, when begin and end times of an event are the same, it prompts the
annotator to correct the times. When a subevent’s begin and end times are out
of the range for the event that it is associated with, then it prompts the annotator
stating that subevent begin and end times must be between the event begin and

end times.

There 1s a window controller. Only one copy of one type of window can be
open at any time. This means that the annotator cannot open multiple copies
of the same window at the same time. Hierarchical video tree is displayed as

follows:

e For videos, video name is displayed.

e For events, activity type is displayed.

e For subevents, subactivity type is displayed.

e For subevent objects, object name is displayed.

e For event objects, object name is displayed.

e For video objects, object name is displayed.

e For roles of event objects, role name is displayed.

e For attributes of video objects, attribute name and attribute value are dis-

played.

Annotated events and subevents are listed in a sorted order in the hierarchical
video tree. Events of video are sorted, and so are subevents of all events. Sorting
criterion adopted takes into account the beginning times of events and subevents.
When an update occurs to the beginning time of an event or subevent changing

the order, this change is reflected in the video tree as well.

Annotation of subevents, event objects, and subevent objects need not follow

an order. While annotating a subevent, normally it is associated with the last

CHAPTER 5. ANNOTATION TOOL 42

event that was annotated. However, the annotator can select the event with which
the subevent will be associated. This gives some flexibility to the annotator. The
annotator can select an event or a subevent in the hierarchical video tree, and
add an object to that event or subevent by using the ‘add event object’ and ‘add

subevent object’ buttons.

When an annotation is completed, it is immediately reflected in the video
database. The annotation tool also stores the current annotated video in a Java
class called "Video’. The object instantiated from the video class is a mirror of
the database and is used in the construction of the hierarchical video tree as well
as in the execution of the program. This video object is used because retrieving
data from the database for each operation is unnecessary. Instead, the annotation
tool makes queries to the database only when it is really needed. For example, if
the annotator annotates a video, and then, wants to see the details of the video,
the program retrieves this information from the video object instead of retrieving
from the database since video object and the entries in the database for that video
are the mirrors of each other. This provides better performance in the execution
of the program. There are some cases when database connection is necessary.
When the annotator annotates the video specific information, the program first
queries the database and creates an entry in the database for the video. If no
problem is encountered in this operation, then a video object is created and the
video specific data is inserted into the video object. In this way, both video object
and the database contain the same data. Here, the synchronization problem is
crucial: if some problem occurs in the database operation, this operation must
not be executed by the video object. If video object is thought as a local copy
of the database for that video, then the above operation can be summarized as
follows: First the database operations must be performed. After that, if there is
no problem, local operations could be performed. The Java class definitions for

video class and related classes are given in Appendix B.

Chapter 6

Semantic Query Language

Having defined semantic video model and implemented video annotation tool to
extract semantic data from video clips, we should provide retrieval methods to
query video data by its semantic content. A query language similar to SQL was
designed to specify semantic queries on video. Semantic queries specified by this
language can be used to retrieve videos/video segments based on video metadata,
events, actions and objects of interest in video. The organization of this chapter
is as follows: In Section 6.1 an introduction to the query language is provided.
Explanation of condition types for semantic queries is provided in Section 6.2,
where metadata, event and object conditions are described in detail. Grammar

specification of the language is provided in Appendix A.

6.1 Features of the Language
A query statement format similar to SQL was defined for retrieval of video data
by its semantic content. The format of the query statement is as follows:

select target from range where condition;

In the above statement, target in select clause represents the output type

of a query, which can be specified as video or segments of video. In the semantic

43

CHAPTER 6. SEMANTIC QUERY LANGUAGE 44

video model, segments of video are defined as sequences or scenes, where se-
quences are associated with events and scenes are associated with subevents of
video. The range of a query, which is specified by range in from clause, can be
a video or a list of videos. Conditions for a query are specified in where clause.
Conditions can be categorized in three groups: metadata condilions, evenl con-
ditions and object conditions. Output types of queries depend on the conditions

specified.

Supported operators are logical and temporal operators, which are used to
join conditions. Logical operators are ‘and’, ‘or’ and ‘not’. Temporal operators

join conditions on a time basis and they are explained in Section 6.2.2.4.

Semantic queries are defined as follows:

<query> := select videos from <range> where <conditionl> ’;’
| select sequences from <range> where <condition2> ’;’

| select scenes from <range> where <condition3> ’;’
<range> := all | <vidlist>
<vidlist> := <vid> | <vid> ’,’ <vidlist>

The set of conditions valid for each output type (video, sequence, scene) are
different. Before the explanation of this difference, condition types are given in

Section 6.2.

6.2 Types of Conditions

Condition types for semantic queries are categorized into three groups as follows:
metadata condiltions, event condilions, and object conditions. Metadata condi-
tions query video according to the metadata specified for video such as video
name, video length, production year, etc. Event conditions specify queries re-

lated to events/activities and subevents/actions. Object conditions are used to

CHAPTER 6. SEMANTIC QUERY LANGUAGE 45

specify conditions about interesting objects in video. The types of conditions
are examined in Sections 6.2.1-6.2.3, where the output types for the queries with

these conditions are also mentioned.

6.2.1 Metadata Conditions

These conditions correspond to the metadata defined for videos such as the length
of a video, title of a video, type of a video, etc. Since these attributes are
associated with video in the semantic video model, video is the output type for the
queries with these types of conditions. An example query with a metacondition

is given in as follows:

“Find all videos from the database, which are comedies produced in 2000 that
are less than 90 minutes of length and directed by either Yilmaz Erdogan or Sinan

Cetin”.

select videos

from all

where meta(vtype:comedy and
pyear:2000 and
length:90 and

director:Yilmaz Erdogan or director:Sinan Cetin))

6.2.2 Event Conditions

Event conditions correspond to events and subevents that take place in a video.
Events consists of subevents where events are associated with sequences and
subevents are associated with scenes. The output type for queries with event
conditions can be video, sequence or scene according to the type of the event

condition specified. Event conditions can be categorized in three groups:

1. event conditions without subevent condition,

CHAPTER 6. SEMANTIC QUERY LANGUAGE 46

2. event conditions with subevent conditions, and

3. subevent conditions.

6.2.2.1 Event Conditions without Subevent Condition

This condition type is used to specify event conditions without any subevent
condition. Event type, event metadata (time, location) and role conditions can
be given. Role conditions are used to query events with the specified object in

the given role. An example query for this condition type is listed as follows:

“Find all videos that has a wedding event with two objects (players) with
roles bride and groom where bride is Julia Roberts and groom is Hugh Grant and

the event takes place in London in 2000”.

Select videos

from all

where etype:wedding with
(objectl:role=bride and objectl(name:Julia Roberts) and
object2:role=groom and object2(name:Hugh Grant) and
location:London and

time:2000)

The output type for queries specifying event conditions without subevent con-
ditions are video and sequence since events are associated with sequences. Videos

that consist of sequences can also be specified as the output type.

6.2.2.2 Event Conditions with Subevent Conditions

This condition type is used to specify event conditions with subevent conditions.
Event type, event metadata (time, location), role conditions and subevent condi-
tions can be given. The query in Section 6.2.2.1 revised by joining one subevent

condition is given as follows:

CHAPTER 6. SEMANTIC QUERY LANGUAGE 47

“Find all videos that has a wedding event with two objects (players) with
roles bride and groom who are dancing where bride is Julia Roberts and groom

is Hugh Grant and the event takes place in London in 2000”.

Select videos

from all

where etype:wedding with
(objectl:role=bride and objectl(name:Julia Roberts) and
object2:role=groom and object2(name:Hugh Grant) and
location:London and
time:2000 and
etype:dancing with objectl,object?2)

The output type for queries specifying event conditions with subevent con-
ditions are video, sequence and scene since events are associated with sequences
and subevents are associated with scenes. Videos that contain these scenes and

sequences can also be specified as the output type.

6.2.2.3 Subevent Conditions

Subevent conditions specify actions in events. A list of players (objects) that
take place in the action can also be specified in the condition. Users may query
the video database by specifying subevent conditions without specifying event

conditions. An example of a subevent condition may be given as follows:

“Find all videos where Julia Roberts and Hugh Grant are dancing”.

Select videos

from all

where etype:dancing with objectl,object2 and
objectl(name:Julia Roberts) and

object2(name:Hugh Grant)

CHAPTER 6. SEMANTIC QUERY LANGUAGE 48

The output type for queries specifying subevent conditions are video, sequence
and scene since subevents are associated with scenes and sequences, videos asso-

ciated with these scenes can also be specified as output type.

6.2.2.4 Temporal Conditions

Temporal queries are used to specify the order of occurrence for event conditions
in time. The three groups of event conditions described previously can be tempo-
rally joined. The query language implements all temporal relations as temporal
operators defined by Allen’s temporal interval algebra. Temporal conditions are

defined as follows:

<eventcondition> <temporalconnector> <eventcondition>

<temporalconnector> := overlap | before | during |
starts | finishes | meets |
ioverlap | ibefore | iduring |

istarts | ifinishes | imeets

The meanings implied by temporal operators are given as follows:

overlap: two events overlap in a video.

before: an event comes before the other in a video.

during: an event happens during another event.

starts: an event starts another event.

finishes: an event finishes another event.

e meels: an event finishes and another event starts at the same time.

3

The temporal operators that start with ‘i’ are the inverse operators. The
output types for temporal queries are decided according to the event condition

types that are temporally joined.

CHAPTER 6. SEMANTIC QUERY LANGUAGE 49

6.2.2.5 Event Conditions for Videos

All types of event conditions can be specified when output type for queries is
videos. The event conditions can also be temporally joined. To explain event
conditions more accurately, ‘general event conditions’ is defined as event condi-

tions with or without subevent conditions.

6.2.2.6 Event Conditions for Sequences

All types of event conditions can be specified as event conditions for output type
sequences; however, not all types of event conditions can be joined temporally.
Subevent conditions can be temporally joined to other subevent conditions or
general event conditions. Yet, general event conditions cannot be joined tempo-
rally with other general event conditions since the output type of the query is
videos. This restriction may be demonstrated with a query example in written

English as follows:

“Find all videos where there is a wedding and a party event such that wedding

event comes before party event”.

In this query, two general event conditions are specified, which are connected
temporally, and the output type of the query is videos. Sequences or scenes
cannot be the output type because the event conditions point to two different
sequences and these sequences can be modeled in the hierarchal semantic model

at video level since videos contain sequences.

However there is one exception to this restriction. General events can be
joined temporally only if the temporal operator is 'during’. Events can overlap,
and so can sequences. A general event can be defined inside another general

event. This condition is clarified with the following query.

<generaleventcondition> during <generaleventcondition>

“Find all sequences where there is a robbery event during a wedding event”.

CHAPTER 6. SEMANTIC QUERY LANGUAGE 50

During a wedding event, someone steals something. Stealing is represented
by a general event since it has nothing to do with the wedding event. Wedding

sequence can be returned as the result of the query.

6.2.2.7 Event Conditions for Scenes

When the return type is scene, only subevent conditions can be specified.

6.2.3 Object Conditions

These conditions correspond to the objects (living or nonliving) that are of in-
terest in video. Object attributes can be specified in object conditions. A query

example for object conditions is given as follows:

“Find all scenes where Brad Pitt, Julia Roberts and a Dalmatian dog ap-

pears”.

Select scenes

from videos

where odata (objectl (type:man, name:Brad Pitt) and
object2 (type:woman, name:Julia Roberts) and

object3 (type:dog , kind:dalmatian))

6.3 Semantic Conditions

Semantic conditions are constructed by joining meta, event and object conditions
logically and/or temporally. Specification of semantic conditions differentiate

with respect to different output types which is depicted as follows:

<query> := select videos from <range> where <conditionl> ’;’

CHAPTER 6. SEMANTIC QUERY LANGUAGE 51

| select sequences from <range> where <condition2> ’;’

| select scenes from <range> where <condition3> ’;’
<range> := all | <vidlist>

<vidlist> := <vid> | <vid> ’,’ <vidlist>

6.3.1 Semantic Conditions for Output Type Videos

All conditions can be specified and joined. A recursive structure has not been
used for specifying conditions. Instead, conditions are defined as combinations
of groups. Metaconditions stay as a group and they are connected to object or

event group of conditions. This makes the queries structured and easy to read.

6.3.2 Semantic Conditions for Output Type Sequences

When the output type of queries is sequences, metaconditions cannot be specified
alone since metaconditions are modeled in video level in the hierarchical semantic
model and the output type for metaconditions is videos. When the output type
is video, there is no restriction. Nevertheless, when the output type is sequence,
queries cannot be joined to return video as their output type. Event conditions

can be specified when their return type is sequence.

6.3.3 Semantic Conditions for Output Type Scenes

When the output type of queries is scenes, metaconditions cannot be specified
alone. Event conditions that can be specified are the ones that return scene as

their result.

Chapter 7

Conclusions and Future Work

Video data type has attracted more attention in the recent years and the number
of application areas where video is used has increased. Consequently, more and
more videos are created each day, and this fact leads to an enormous growth in
the number of videos to be dealt with. Management of video has become an
important problem and traditional database systems were not able to provide

sufficient solutions.

Video has its own characteristics that differentiate it from other types of
data. As a consequence, new methods have been proposed to manage video data
efficiently. Management of video covers modeling, indexing and retrieval of video.
In this thesis, management of video semantic information has been investigated,
where semantic information is referred to as the meaning understood by human
from video data. We have defined the content of the semantic information to
include bibliographic data about video and events, actions, and objects of interest

taking place in video.

We have proposed a semantic video model which models video semantic infor-
mation in a hierarchy. Video consists of events, and events consist of subevents.
Moreover, objects are modeled in every level in the hierarchy. A hierarchical
model provides many semantic levels that facilitate understanding of video con-

tent. Temporal cohesion approach has been used to model time segments of

52

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 53

video, which provides flexibility and accuracy in modeling events and subevents.
A database model has been constructed to have proper database management

support for the semantic video model.

We have implemented an annotation tool in Java to extract the semantic
information from videos, and to view and update semantic information that has
already been extracted. The annotation tool is a database application that is used
to insert and update semantic information extracted from videos to the database
defined for the semantic video model. Since manual annotation of video content
is a difficult process, extraction of information automatically is desirable, however
automatic information extraction techniques are not powerful enough to model
video semantic content. Human assistance is required in modeling video semantic
information. The annotation tool simplifies the manual annotation process by
providing simple and easy-to-understand user interfaces. The tool enables the
annotator to see the current status of annotation in a hierarchical tree abstraction.
Annotator is free to stop the annotation at any time and continue after without

loss of data.

Finally, we have designed a query language to facilitate video retrieval accord-
ing to semantic conditions. Three types of queries can be issued by the end-users.
Video metadata queries are used to retrieve videos with respect to bibliographic
data. Event queries are used to retrieve videos according to activities and actions
that take place in video. Object queries are used to query videos according to

objects of interest, their attributes and roles in activities.

Processing of semantic queries is the next step to complete the retrieval pro-
cess of video semantic information. Query processor of the video database system
described in Chapter 3 will be extended to handle semantic queries. Query proces-
sor will first separate semantic query conditions in a query from those conditions
that could be handled by the knowledge-base. The semantic conditions will be
organized and sent as regular SQL queries to the feature database where anno-
tated semantic content is stored. Intermediate results returned from the feature
database and the knowledge-base will be integrated by the query processor, and

then, will be sent to the web-clients.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 54

Web-clients send their queries by a Java client applet, which is used to access
the video database system. The query interface of this applet will be extended

to handle semantic data about video.

Our semantic model can be improved by extending the data stored for video,
events and subevents. Video metadata can be extended to store other kinds of
bibliographic data that we have not handled. Event specific data can be extended
to store more information about events and subevents. For example for a ‘war’
event, name of the war can be stored to identify the war depicted in video. For
a ‘talking’ subevent, ‘about’ field can be defined to mention the topic of the
conversation. In short, data fields specific to event and subevent types can be
defined. The semantic query language should be extended in parallel with the

improvements of the semantic video model.

Annotation tool can be extended to facilitate the annotator with more func-
tionality. One of these functionality can be a visual presentation, which shows

the time segments of video components (event, subevent, object) graphically.

Finally, a library can be constructed that consists of video types, audiences,
activity and subactivity types, roles for activities, and object attributes to facili-
tate the annotator in the annotation process. A dictionary can be merged to the

system to handle words with the same or similar meaning.

Bibliography

1]

S. Adali, K.S. Candan, S. Chen, K. Erol, V.S. Subrahmanian. Advanced
Video Information System: Data Structures and Query Processing. Multi-
media Systems Journal, Vol.4 No.4, pages:172-186, ACM-Springer, August
1996.

G. Ahanger, T.D.C. Little. Data Semantics for Improving Retrieval Perfor-
mance of Digital News Video Systems. IEEFE Transactions on Knowledge
and Data Engineering, Vol.13 No.3, pages:352-360, May-June 2001.

J. Chen, C. Tagkiran, E.J. Delp, C.A. Bouman. VIBE: A New Paradigm
for Video Database Browsing and Search. Proc. of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), May 12-
15 1998, Seattle, WA.

Y.F. Day, A. Khokhar, A. Ghafoor. A Framework for Semantic Modeling of
Video Data for Content-Based Indexing and Retrieval. Multimedia Systems,
Vol.7 No.5, pages:409-423, 1999.

M.E. Donderler, 0. Ulusoy and U. Giidiikkbay, A Rule-Based Approach To
Represent Spatio-Temporal Relations in Video Data, Lecture Notes in Com-

puter Science, Vol.1909, pages:409-418, October 2000.

M.E. Donderler, 0. Ulusoy and U. Gudikbay, A Rule-Based Video Database
System Architecture (Accepted for publication in the Journal of Information
Sciences and also available as a Technical Report (BU-CE-0111) at Bilkent

University Computer Engineering Department).

39

BIBLIOGRAPHY 56

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

M.E. Donderler, 0. Ulusoy and U. Gudikbay, Rule-Based Spatio-Temporal
Query Processing for Video Databases (Submitted to the VLDB journal).

M.E. Donderler, A Rule-Based Spatio-Temporal Query Language for Video
Databases, Ph. D. Progress Report #5, January 2002.

B. Giinsel, M. Ferman, M. Tekalp. Video Indexing Through Integration of
Syntactic and Semantic Features. Proc. of the 3rd IEEE Workshop on Ap-
plications of Computer Vision (WACV), 1996.

M.S. Hacid, C. Decleir, J. Kouloumdjian. A Database Approach for Model-
ing and Querying Video Data. IEFEE Transactions on Knowledge and Data
Engineering, Vol.12 No.5, pages:729-750, September-October 2000.

S. Hollfelder, A. Everts, U. Thiel. Designing for Semantic Access: A Video
Browsing System. Proc. of IEEFE Int. Conf. on Multimedia Computing and
Systems (ICMCS), pages:7-11, June 1999, Florence, Italy, IEEE Computer
Society, Vol.1, pages:394-399, Los Alamitos, 1999.

S. Hollfelder, A. Everts, U. Thiel. Concept-based Browsing in Video Li-
braries. Proc. of the IEEFE Forum on Research and Technology Advances in
Digital Libraries (IEEE ADL 99), May 19-21, 1999, Baltimore, MD, USA,
IEEE Computer Society, pages:105-115, Los Alamitos, 1999, ISDN 0-7695-
0219-9.

W. Khatib, Y.F. Day, A. Ghafoor, P.B. Berra. Semantic Modeling and
Knowledge Representation in Multimedia Databases. IEEFE Transactions
on Knowledge and Data FEngineering, Vol.11 No.l, pages:64-80 January-
February 1999.

J.7. Li, M.T. (")zsu, D. Szafron. Modeling of Video Spatial Relationships
in an Object Database Management System. In Proc. of the International
Workshop on Multimedia DBMSSs, pages:124-133, Blue Mountain Lake, NY,
USA, 1996.

BIBLIOGRAPHY 57

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

J.Z. 11, LLA. Goralwalla, M.T. (")zsu, D. Szafron. Modeling Video Temporal
Relationships in an Object Database Management System. In Proc. of Mul-
timedia Computing and Networking, pages:80-91, San Jose, CA, USA, Feb
1996.

R. Lienhart, S. Pfeiffer, W. Effelsberg. The Moca Workbench. Support for
Creativity in Movie Content Analysis. Proc. of the 1996 International Con-
ference on Multimedia Computing and Systems (ICMCS’96).

M.R. Naphade, I. Kozintsev, T.S. Huang, K. Ramchandran. A Factor
Graph Framework for Semantic Indexing and Retrieval in Video. Proc of
the IEEFE Workshop on Content-based Access of Image and Video Libraries
(CBAIVL’00).

M.R. Naphade, 1. Kozintsev, T.S. Huang, K. Ramchandran. A Probabilistic
Framework for Semantic Indexing and Retrieval in Video. IEEE Inlerna-

tional Conference on Multimedia and Expo, New York, 31 July-2 August
2000.

J. Oh, K.A. Hua. Efficient and Cost-effective Techniques for Browsing and
Indexing Large Video Databases. SIGMOD Conference pages:415-426 2000.

L.A. Rowe, J.S. Boreczky, C.A. Fads. Indexes for User Access to Large
Video Databases,Storage and Retrieval for Image and Video Databases I,
IS&T/SPIE Symp. On Elec. Imaging Sci and Tech, San Jose, CA February
1994.

Y. Rui, T.S. Huang, S. Mehrotra. Constructing Table-of-Content for Videos.
ACM Multimedia Systems Journal , Special Issue Multimedia Systems on
Video Libraries, Vol.7 No.5, pages:359-368 Sept 1999.

R. Weiss, A. Duda, D.K. Gifford. Content-Based Access to Algebraic Video.
Proc. IEEE First International Conference on Multimedia Computing and
Systems, Boston, MA, May 1994.

Y. Zhuang, Y. Rui, T.S. Huang, S. Mehrotra. Applying Semantic Association
to Support Content Based Video Retrieval. Content-based video retrieval
Proc. of IEEKE VLBVI8 workshop, pages:45-48, Urbana, IL.

Appendix A

Semantic Query Grammar

Specification

<query> := select videos from <range> where <conditionil> ’;’
| select sequences from <range> where <condition2> ’;’

| select scenes from <range> where <condition3> ’;’
<range> := all | <vidlist>

<vidlist> := <vid> | <vid> ’,°’ <vidlist>

// Condition specifications for return type videos

<conditionl> := <metaconditions>

| <eventconditionsi>

| <objectconditions>

| <metaconditions> <connector> <eventconditionsi>

| <metaconditions> <connector> <objectconditions>

| <eventconditionsi> <connector> <metaconditions>

| <eventconditionsl1> <connector> <objectconditions>
| <objectconditions> <connector> <metaconditions>

| <objectconditions> <connector> <eventconditionsi>

28

APPENDIX A. SEMANTIC QUERY GRAMMAR SPECIFICATION 59

| <metaconditions> <connector> <eventconditionsi>
<connector> <objectconditions>

| <metaconditions> <connector> <objectconditions>
<connector> <eventconditionsi>

| <eventconditionsl1> <connector> <metaconditions>
<connector> <objectconditions>

| <eventconditionsl> <connector> <objectconditions>
<connector> <metaconditions>

| <objectconditions> <connector> <metaconditions>
<connector> <eventconditionsi>

| <objectconditions> <connector> <eventconditionsi>

<connector> <metaconditions>

// Condition specifications for return type sequences

<condition2> := <eventconditions2>

| <objectconditions>

| <metaconditions> <connector> <eventconditions2>

| <metaconditions> <connector> <objectconditions>

| <eventconditions2> <connector> <metaconditions>

| <eventconditions2> <connector> <objectconditions>

| <objectconditions> <connector> <metaconditions>

| <objectconditions> <connector> <eventconditions2>

| <metaconditions> <connector> <eventconditions2>
<connector> <objectconditions>

| <metaconditions> <connector> <objectconditions>
<connector> <eventconditions2>

| <eventconditions2> <connector> <metaconditions>
<connector> <objectconditions>

| <eventconditions2> <connector> <objectconditions>
<connector> <metaconditions>

| <objectconditions> <connector> <metaconditions>
<connector> <eventconditions2>

| <objectconditions> <connector> <eventconditions2>

<connector> <metaconditions>

APPENDIX A. SEMANTIC QUERY GRAMMAR SPECIFICATION 60

// Condition specifications for return type scenes

<condition3> := <eventconditions3>

| <objectconditions>

| <metaconditions> <connector> <eventconditions3>

| <metaconditions> <connector> <objectconditions>

| <eventconditions3> <connector> <metaconditions>

| <eventconditions3> <connector> <objectconditions>

| <objectconditions> <connector> <metaconditions>

| <objectconditions> <connector> <eventconditions3>

| <metaconditions> <connector> <eventconditions3>
<connector> <objectconditions>

| <metaconditions> <connector> <objectconditions>
<connector> <eventconditions3>

| <eventconditions3> <connector> <metaconditions>
<connector> <objectconditions>

| <eventconditions3> <connector> <objectconditions>
<connector> <metaconditions>

| <objectconditions> <connector> <metaconditions>
<connector> <eventconditions3>

| <objectconditions> <connector> <eventconditions3>

<connector> <metaconditions>
// Metadata condition specifications
<metaconditions> := meta ’(’ <metaconditionlist> ’)°’
<metaconditionlist> := ’(’ <metaconditionlist> ’)’
| not ’(’ <metaconditionlist> ’)°
| <metaconditionlist> and <metaconditionlist>
| <metaconditionlist> or <metaconditionlist>

| <metacondition>

<metacondition> := vtype ’:’ <strvalue> // video type

APPENDIX A. SEMANTIC QUERY GRAMMAR SPECIFICATION 61

| audience ’:’ <strvalue>

| title ’:’ <strvalue>

| length ’:’ <intvalue> // Maximum length (sthreshold) in minutes
| pyear ’:’ <intvalue> // production year

| producer ’:’ <strvalue>

| director ’:’ <strvalue>

| subject ’:’ <strvalue>

// Event condition specifications

// Event condition specification for videos

<eventconditionsi1> := ’(’ <eventconditionsi> ’)°
| not ’(’ <eventconditionsi> ’)’

| <eventconditionsi> and <eventconditionsi>

| <eventconditionsi> or <eventconditionsi>

| <temporalconditioni>

| <generaleventconditionl>

<generaleventconditionl> :=

<generaleventconditions> | <subeventcondition>

<generaleventconditions> :=

<generaleventconditionWsub> | <generaleventconditionWOsub>

<temporalconditionl>=<generaleventconditions>
<temporalconnector><generaleventconditions>
| <generaleventconditions> <temporalconnector>
<subeventcondition> [with <where> event]
| <subeventcondition> <temporalconnector>
<generaleventconditions> [with <where> event]
| <subeventcondition> <temporalconnector>

<subeventcondition> [with <where> event]

<where> := same | different

APPENDIX A. SEMANTIC QUERY GRAMMAR SPECIFICATION

// Event condition specification for sequences

<eventconditions2> := ’(’ <eventconditions2> ’)°
| not ’(’ <eventconditions2> ’)’

| <eventconditions2> and <eventconditions2>

| <eventconditions2> or <eventconditions2>

| <temporalcondition2>

| <generaleventcondition2>

<generaleventcondition2> :=

<generaleventconditions> | <subeventcondition>

<temporalcondition2> := <generaleventconditions>
during <generaleventcondition>
| <generaleventconditions> <temporalconnector>
<subeventcondition> with same event
| <subeventcondition> <temporalconnector>
<generaleventconditions> with same event
| <subeventcondition> <temporalconnector>

<subeventcondition> with same event

// Event condition specification for scenes

<eventconditions3> := ’(’ <eventconditions3> ’)’
| not ’(’ <eventconditions3> ’)’

| <eventconditions3> and <eventconditions3>

| <eventconditions3> or <eventconditions3>

| <subeventcondition>

// General event condition specification with Subevents

<generaleventconditionWsub> := etype ’:’ <strvalue> with
<subeventcondition> <connector> <eventconditionlistl>
| etype ’:’ <strvalue> with <eventconditionlisti1>

<connector> <subeventcondition>

62

APPENDIX A. SEMANTIC QUERY GRAMMAR SPECIFICATION 63

<eventconditionlistl> := ’(’ <eventconditionlistil> ’)°
| not ’(’ <eventconditionlistl> ’)’
| <eventconditionlistl> and <eventconditionlistil>

| <eventconditionlistl> or <eventconditionlisti>

| <eventconditioni>

<eventconditionl> := location ’:’ <strvalue> // event location condition
| time ’:’ <generalvalue> // event time condition

| <objectid> ’:’ role ’=’ <strvalue> // role condition

| <objectcondition> // object condition

| <subeventcondition> // sub event condition

| <subeventcondition> <temporalconnector> <subeventcondition>

// General event condition specification without Subevents

<generaleventconditionWOsub> :=

etype ’:’ <strvalue> [with <eventconditionlisti>]

<eventconditionlistl> := ’(’ <eventconditionlistil> ’)°
| not ’(’ <eventconditionlistl> ’)’
| <eventconditionlistl> and <eventconditionlistil>

| <eventconditionlistl> or <eventconditionlisti>

| <eventconditioni>

<eventconditionl> := location ’:’ <strvalue> // event location condition
| time ’:’ <generalvalue> // event time condition

| <objectid> ’:’ role ’=’ <strvalue> // role condition

| <objectcondition> // object condition

// Subevent condition specifications

<subeventcondition> := etype ’:’ <strvalue> [with <playerlist>]

<playerlist> := [<playerlist> ,] <objectid>

APPENDIX A. SEMANTIC QUERY GRAMMAR SPECIFICATION 64

// 0Object condition specifications

<objectconditions> odata ’(’ <objectconditionlist> ’)’

<objectconditionlist> := ’(’ <objectconditionlist> ’)’

| not >(’ <objectconditionlist> ’)°

| <objectconditionlist> and <objectconditionlist>
| <objectconditionlist> or <objectconditionlist>

| <objectcondition>

<objectcondition> := <objectid> ’(’ <attriblist> ’)’

<attriblist> := <attriblist> ’,’ <attriblist>

| <attributevalue> ’:’ <generalvalue>

// Utilities

<vid> := [1-9][0-9]*

<connector> := and I or

<temporalconnector> :=

overlap | before | during | starts | finishes | meets

| ioverlap | ibefore | iduring | istarts | ifinishes | imeets

<objectid> := <variable> | <atom>

<variable> := [A-Z][A-Za-z0-9]*
<atom> := [a-z][A-Za-z0-9]%*

<attributevalue> := <strvalue>

<generalvale> := [0-9a-zA-Z]+

APPENDIX A. SEMANTIC QUERY GRAMMAR SPECIFICATION 65

[a-zA-Z]+

<strvalue> :

[0-9]+

<intvalue> :

Appendix B

Java Class Definitions

Video

Video class holds metadata about video and a list of events and a list of objects

of interest. Video class has all the information about video.

public class Video implements VideoComponent
{

private String videoname;

private double videolength;

private int productionyear;

private String producer;

private String director;

private String videotype;

private String audience;

private String subject;

private TypedVector events;

private TypedVector objects;

private String videourl;

66

APPENDIX B. JAVA CLASS DEFINITIONS 67

Event

public class Event implements VideoComponent

{

private int eventid;

private String activity;
private EventData eventdata;
private double begintime;
private double endtime;
private TypedVector subevents;

private TypedVector objects;

EventData

public class EventData {
private String time;

private String location;

Event class holds data specific to events. It has a list of subevents and a list of

objects appearing in that event. EventData class is the metadata part of events.

APPENDIX B. JAVA CLASS DEFINITIONS 68

SubEvent

Subevent class holds data about each subevent. It has a list of objects appearing

in that subevent.

public class SubEvent implements VideoComponent
{
private int subeventid;

private int eventid; //which event does this subevent belong

private String subactivity;
private double begintime;
private double endtime;

private TypedVector objects;

VideoObject

VideoObject class holds the attributes and values for the attributes of the

objects.

public class VideoObject implements VideoComponent
{

private String name;

private Vector attributes;

private Vector values;

APPENDIX B. JAVA CLASS DEFINITIONS 69

EventObject

EventObject class stores the roles of VideoObject in that event.

public class EventObject extends VideoObject implements VideoComponent

{
private Vector roles;

private int parentid;

SubEventObject

public class SubEventObject extends EventObject
{
private int grandparentid; //event to which this object belongs

Appendix C

Database Table Specifications

TAUDIENCE:

audienceid = integer

audiencename = string

This table is used to store audience names like, teenager, children, adult, everyone,

etc.

TVIDEQOTYPE:

videotypeid = integer

videotypename = string

This table is used to store video type names, like adventure, horror, science-

fiction, romance, etc.

TACTIVITY:

activityid integer

activityname = string

This table is used to store activity names, like party, wedding, murder, war, etc.

70

APPENDIX C. DATABASE TABLE SPECIFICATIONS 71

TACTIVITYROLE:
roleid = integer
activityid = integer
rolename = string

This table is used to store rolenames for each activity. For example, for the murder
activity the role names are murderer and victim; and for the party activity the

role names are host and guest.

TSUBACTIVITY:

subactivityid integer

subactivityname = string

This table is used to store actions such as talking, eating, dancing, fighting, etc.

TATTRIBUTE:
attributeid = integer
name = string

This table is used to store attribute names for video objects like realname, sex,

color, speed, etc.

APPENDIX C. DATABASE TABLE SPECIFICATIONS 72

TVIDEQ:
videoid = integer
name = string
length = double
pyear = integer
producer = string
director = string
videotype = integer
audience = integer
subject = string
videourl = string

This table stores bibliographic information about video. videotype and

audience values are references to TVIDEOTYPE and TAUDIENCE tables

TOBJECT:
objectid = integer
videoid = integer
name = string

This table stores the object names for each video. videoid field is a reference to

TVIDED table.

TOBJECTATTRIBUTE:
objectid = integer
attributeid = integer
avalue = string

This table stores the attribute values for each attribute defined for each object
objectid and attributeid are references to TOBJECT and TATTRIBUTE tables.

APPENDIX C. DATABASE TABLE SPECIFICATIONS 73

TEVENT:
eventid = integer
videoid = integer
activity = integer
begintime = double
endtime = double

This table stores data about events, like activity type of event and start and end
times of event. videoid field is a reference to TVIDEQ and activity field is a

reference to TACTIVITY table.

TEVENTDATA:
eventid = integer
location = string

timeofevent = string

This table stores metadata about events. The data stored in this table can be
extended. For the time being, location and time of event is stored. eventid field

is a reference to TEVENT table.

TEVENTOBJECT:
eventid = integer
objectid = integer

This table stores the objects that appear in each event. eventid field is a reference

to TEVENT table and objectid field is a reference to TOBJECT table.

APPENDIX C. DATABASE TABLE SPECIFICATIONS 74

TPLAYER:
eventid = integer
objectid = integer
roleid = integer

This table stores the objects that appear in events plus their roles in the events.
Objects can have many roles in an event. eventid, objectid and roleid fields

are references to TEVENT, TOBJECT, and TACTIVITYROLE tables, respectively.

TSUBEVENT:
Subeventid = integer
Eventid = integer
Videoid = integer
Subactivity = integer
Begintime = double
Endtime = double

This table stores data about subevents. Subactivity, begin and end times are

stored. eventid and videoid are references to TEVENT and TVIDEQ tables.

TSUBPLAYER:
subplayerid = integer
subeventid = integer

This table stores the objects that appear in subevents. subeventid field is a
reference to TSUBEVENT table and subplayerid field is a reference to TSUBPLAYER
table.

