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ABSTRACT

SIMPLIFICATION OF

TETRAHEDRAL MESHES

BY SCALAR VALUE ASSIGNMENT

Can Sezer

M.S. in Computer Engineering

Supervisors: Prof. Dr. Cevdet Aykanat and

Assist. Prof. Dr. U�gur G�ud�ukbay

September, 2002

A new approach to simpli�cation of volumetric data over an unstructured tetra-

hedral mesh is presented. The data consist of sample values of a scalar �eld

de�ned over a spatial domain, which is subdivided with a tetrahedral mesh. Sim-

pli�cation is performed by means of contraction of the tetrahedra and also of

the edges. The simpli�cation algorithm can provide a continuum of aproximate

models of the given dataset with any desired degree of accuracy. Hence, the

simpli�cation method is suitable for multi-resolution modeling.

The novelty of the approach comes from the arbitrariness in the selection

of the point to which a tetrahedron or an edge is contracted. Unlike most of

the existing methods, the �nal vertex of the contraction need not be a vertex

of the original mesh. The scalar value to be assigned to the �nal vertex of

contraction is determined by an extremely simple method (both conceptually and

computationally), which also provides an estimate of the error of simpli�cation.

The proposed method is applied to two volumetric grids to illustrate its e�ec-

tiveness in simpli�cation of volumetric data.

Keywords: Volumetric dataset, tetrahedral mesh, tetrahedron contraction, edge

contraction, scalar value assignment.
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�OZET

SKALAR DE�GER ATAMA Y�ONTEM_I _ILE

HAC_IMSEL VER_ILER_IN YALINLAS�TIRILMASI

Can Sezer

Bilgisayar M�uhendisli�gi, Y�uksek Lisans

Tez Y�oneticileri: Prof. Dr. Cevdet Aykanat and

Assist. Prof. Dr. U�gur G�ud�ukbay

Eyl�ul, 2002

D�uzensiz d�orty�uzl�u �zgaralar �uzerinde tan�mlanm��s hacimsel verilerin yal�nla�st�r�lmas�

i�cin yeni bir y�ontem sunulmaktad�r. Veri, bir hacim �uzerinde tan�ml� skalar alan-

dan al�nm��s �ornek de~gerler ve bu hacimi b�olen d�orty�uzl�usel �zgaradan olu�sur.

Yal�nla�st�rma, d�orty�uzl�ulerin ya da kenarlar�n�n noktaya indirgenmesiyle sa~glan�r.

Yal�nla�st�rma metodu, istenilen derecedeki do~grulukta modeller sa~glayabilir.

Dolay�s�yla, bu metod �coklu-�c�oz�un�url�uk modellemesi i�cin uygundur.

Metodun g�uzelli~gi, d�orty�uzl�un�un ya da kenar�n�n indirgenece~gi noktan�n

de~gi�sken olabilmesinden kaynaklan�r. Di~ger metodlar�n aksine, indirgenilecek

noktan�n as�l �zgaran�n bir k�o�sesi olmas� gerekmez. _Indirgeme sonunda indirge-

nilen noktan�n skalar de~geri son derece basit bir y�ontemle belirlenir ve bu y�ontem

hatan�n tahmini bir de~gerini de sa~glar.

�Onerilen metod, hacimsel verilerin yal�nla�st�r�lmas�ndaki verimlili~ginin

g�or�ulmesi a�c�s�ndan, iki farkl� hacimsel veri �orne~ginde denenmi�stir.

Anahtar s�ozc�ukler : Hacimsel veri, d�orty�uzl�usel a�g, d�orty�uzl�u indirgeme, kenar

indirgeme, skalar de�ger atama.
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Chapter 1

Introduction

A problem commonly encountered in computer graphics is rendering large vol-

metric datasets. Especially, when the visualization needs to be at interactive

speeds the problem is even more severe. This thesis study concentrates on the

simpli�cation of volumetric datasets. Volumetric data come from a variety of

resources such as medical diagnosis tools or �nite element simulations. In either

case, some degree of simpli�cation may be required for various reasons, such as

reducing visualization times or reducing storage requirements.

A volumetric dataset consists of a set of sample points in R
3 spanning the

domain 
, hence representing a scalar �eld over 
 (e.g. temperature distribution

in a room). Moreover, 
 is spatially subdivided into cells de�ned as the mesh.

A commonly used mesh type is the tetrahedral mesh that is also used in this

thesis. It is a type of unstructured triangular volumetric data where the cells are

tetrahedra. A tetrahedron consists of 4 trianglular faces.

Simpli�cation refers to reducing the number of vertices and tetrahedra while

preserving the appearance of the dataset as much as possible. Vertex clustering,

decimation and edge contraction are three very commonly used simpli�cation

methods. This thesis study concentrates on edge contraction and its extensions

to tetrahedron contraction.

1



CHAPTER 1. INTRODUCTION 2

An edge contraction operation is the merging of the two vertices of the edge

into a single vertex. During this process all tetrahedra that share the edge are

contracted to surfaces. If one of the vertices is merged onto the other, the method

is called subset placement. However, it is also possible to determine a �nal vertex

position other than the two original vertices. In fact, this has been used in order

to reduce the error introduced by the contraction.

Every contraction (simpli�cation) is bound to introduce some error into the

simpli�ed model. An accurate error evaluation is very time consuming and is

usually done as a post processing step. However, it is desirable to at least aprox-

imate the error during simpli�cation. This allows the simpli�cation to terminate

when an error threshold is reached.

The problem of simplifying surface datasets have been heavily investigated

and many error prediction methods were introduced. Some of these methods have

also been applied to volumetric datasets. Moreover, there have been researches

that optimize the �nal vertex position in order to minimize the predicted error.

None of the previous researches on volumetric data simpli�cation attempts to

assign a new scalar value to the �nal vertex after the contraction. In this thesis

study, a new method is introduced for the determination of the scalar value of

the �nal vertex, called Scalar Value Assignment (SVA). Moreover, in conjunction

with the SVA method an error prediction method is introduced.

The SVA and error prediction methods were applied both with edge con-

traction and tetrahedron contraction methods. Tetrahedron contraction is the

merging of the four vertices of the tetrahedron into a single vertex.



Chapter 2

Background and Related Work

In this chapter we introduce the terminology and basic de�nitions used through-

out this thesis and review previous work directly related to our study. Most of

the de�nitions are standard, and therefore, not referenced individually. Details

can be found in [6, 14].

2.1 Meshes and Simplicial Complexes

A mesh is a general subdivision of a spatial domain into a �nite number of smaller

units called cells. Symbolically, a mesh in a k-dimensional space is described as

� = f �1; �2; : : : ; �m j �i � Rk g
The cells �i are closed sets that are either disjoint or intersect at their boundaries.

Their union


� =
m[
i=1

�i � Rk

constitutes the domain of the mesh. The domain is usually a polyhedron, which

may be convex or non-convex, or even have cavities. Each cell is uniquely char-

acterized as a convex combination of a set of points in 
�, called the vertices of

the cell. Vertices of all cells make up a �nite vertex set

V = fv1;v2; : : : ;vn jvi 2 Rk g
3



CHAPTER 2. BACKGROUND AND RELATED WORK 4

Meshes can be structured (Cartesian, regular, rectilinear or curvilinear) or

unstructured (regular or irregular). A structured mesh is implicitly de�ned by

its vertices. For unstructured meshes, the mesh topology (the connectivity infor-

mation of the cells) must be explicitly speci�ed. This introduces ine�ciencies in

storage, however, they are much more 
exible than structured meshes. A com-

monly used unstructured mesh type is tetrahedral mesh, which is well suited for a

number of visualization techniques [9, 20, 22], and is described below in a general

framework.

Let V� = fv0;v1; : : : ;vd g be a set of d+1 a�nely independent points in Rk,

where d � k. (By a�ne independence of the d+1 points v0;v1; : : : ;vd, we mean

linear independence of the d vectors v1�v0; : : : ;vd�v0 in linear algebraic sense.

Thus, any three points not on a straight line, any four points not on a plane,

and in general, any d + 1 points not on a d-dimensional hyperplane are a�nely

independent.) The convex hull of V�

� = fp =
dX

i=0

civi j
dX

i=0

ci = 1; 0 � ci � 1 g

is called a d-simplex in Rk. d is referred to as the order of �, and the points in

V� are called the vertices of �. Any s-simplex formed by a proper subset of V�
is called an s-face of �. Thus a triangle is a 2-simplex with each edge being a

1-simplex (a 1-face), and a tetrahedron is a 3-simplex with each triangular face

being a 2-simplex (a 2-face) and each edge a 1-simplex (a 1-face).

A �nite collection � of d-simplexes in Rk that obey the following rules is

called a d-simplicial complex:

� All faces of a simplex � 2 � belong to �.

� For a pair of simplexes �; � 2 �, either � \ � = ; or � \ � is a proper face

of both � and � .

� d is the maximum of the orders of simplexes in �.

Thus a 2-simplicial complex in R3 de�nes a triangulated surface (not neces-

sarily a plane), and a 3-simplicial complex de�nes tetrahedrized volume. Clearly,
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a simplical complex is a special mesh. In what follows, we will deal mostly with

tetrahedral meshes. According to the rules above, a tetrahedral mesh is a collec-

tion of tetrahedra such that any two tetrahedra are either disjoint or they meet at

a common vertex or an edge or a face. Subdivision of a domain with a tetrahedral

mesh is called tetrahedrization. It should be pointed out that a domain with a

vertex set V may be tetrahedrized in many di�erent ways. Delanuay tetrahedriza-

tion has some nice properties, which make it suitable for many applications [12].

A Delanuay d-simplicial complex � is one in which the interior of the hypersphere

circumscribing any d-simplex does not contain a vertex of �.

2.2 Volumetric Datasets

Roughly speaking, a volumetric dataset is a discrete representation of a scalar �eld

 de�ned over some spatial domain 
 � R3. Let D = fd1;d2; : : : ;dn jdi 2 
 g
be the set of discretization points, and S = f s1; s2; : : : ; sn j si =  (di) g be the

set of corresponding sample values of  . For the discrete representation of  to

be useful (e.g., for visualization)  should be reconstructible at every point in

its domain from the sample values with simple and fast calculations. For this

purpose, the domain 
 is subdivided with a mesh � = f �1; �2; : : : ; �m j �i � 
 g
such that the domain of the mesh


� =
m[
i=1

�i

approximates 
 with any desired degree of accuracy. In general, the vertices

of the mesh � may or may not coincide with the data points, and a cell may

contain none, one or more data points in its interior. For convenience, however,

the mesh is usually constructed such that its vertex set V coincides with D and

no cell contains any other data point in its interior. Such a mesh corresponds to

a maximal subdivision of 
. Each cell �i 2 � is associated with an interpolating

function  i that serves to approximate  within �i, that is,  (p) �  i(p) at

any p 2 �i. In most cases,  i are linear interpolants of  that can be generated

from the values of  at the vertices of �, which are either part of (when V � D)
or interpolated from the given data. The mesh �, the set of interpolants 	� =
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f 1; : : : ;  m g, data points D and the sample values S altogether constitute a

volumetric dataset.1

Maximal tetrahedral meshes allow for easy construction of the interpolants  i

associated with the tetrahedra �i as linear functionals. Suppose that for a point

p described in homogeneous coordinates as

p =

2
6666664

xp

yp

zp

1

3
7777775

(2.1)

the function  i has the value

 i(p) = �
T
i p (2.2)

where �T is a constant row 4-vector. In open form, the expression for  i(p) is

 i(p) = �ixxp + �iyyp + �izzp + �ic

Representing p in homogeneous coordinates allows for including the constant

term �ic into the parameter vector �i. Evaluating  i at the vertices of �i we

obtain

�
T
i [ vi0 vi1 vi2 vi3 ] = [ si0 si1 si2 si3 ]

which can be written in compact form as

�
T
i Vi = sTi (2.3)

The fact that vertices of �i are not planar guarantees that the matrix Vi in (2.3)

is non-singular. Hence, �T
i can be solved uniquely as

�i = sTi V
�1

i (2.4)

and the linear interpolant of  for �i is obtained as

 i(p) = sTi V
�1

i p (2.5)

1Scienti�c datasets are generally multi-valued. That is, for each vertex there may be a

number of scalar values associated with it, each being a sample of a di�erent scalar �eld (e.g.,

temperature, pressure, velocity, etc.) over the same domain. However, usually each of these

�elds is studied independently.
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The expression for  i(p) above has an interesting interpretation. If, for a

�xed p, we de�ne

V
�1

i p = c =

2
6666664

ci0

ci1

ci2

ci3

3
7777775

then

p = Vici = ci0vi0 + ci1vi1 + ci2vi2 + ci3vi3 (2.6)

which characterizes p as a linear combination of the vertices of �i. Considering

the last components of both sides of (2.6), we observe that the coe�cients satisfy

ci0 + ci1 + ci2 + ci3 = 1

If, in addition, ci � 0, then the right-hand side of (2.6) speci�es p as a convex

combination of the vertices of �i, implying that p 2 �i. Then, (2.5), written in

terms of the coe�cients in ci in open form as

 i(p) = sTi ci = ci0si0 + ci1si1 + ci2si2 + ci3si3 (2.7)

speci�es  i(p) as the same linear combination of the associated scalar values.

2.3 Mesh Simpli�cation

Consider a mesh � de�ned over a vertex set V and covering a domain 
�. The

mesh may or may not be associated with a scalar �eld as, for example, in the case

of a volumetric dataset, or in the case of a triangulated surface of a 3D object.

Let us call �, together with the sample values of a scalar �eld at the vertices

or its interpolants associated with the cells (if any such �eld accompanies �), a

reference model [3]. For various reasons as described below, it may be desirable to

obtain an approximate model consisting of a mesh �0 with fewer cells de�ned over

a vertex set V 0 with fewer vertices such that the domain of �0 is approximately

the same as that of � (
�0 � 
�). If a scalar �eld  is associated with �, it is also

required that the �elds reconstructed from �0 and � should be close ( �0 �  �).
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The process of obtaining an approximate mesh from a reference mesh is called

simpli�cation. Simpli�cation may be performed for various reasons, such as elim-

inating redundancies in the model introduced during its generation, or reducing

the model size to satisfy storage constraints, or improving runtime performance

of an application working with the model [14]. In either case, the purpose of sim-

pli�cation is to reduce the amount of data without sacri�cing useful information.

Usually, these two objectives are con
icting, and depending on the particular

application, one is favored at the expense of the other.

The main parameters in a typical simpli�cation are a cell (polygon or poly-

hedron) count and/or an error threshold. Cell count measures the compactness

of the approximate model and the error parameter measures the quality of the

approximation. The simpli�cation error can be de�ned in a variety of ways de-

pending on the nature of the model. In the case of rendering 2D surfaces of 3D

objects, the error is based on geometric closeness of 
�0 and 
�, for a faithful

representation of the object is the main concern. In volumetric datasets, closeness

of the reconstructed �elds is even more important. Cignoni et al. [1] distinguish

these two types of errors as the domain error and the �eld error. A convex vol-

umetric dataset has a relatively small number of vertices on its boundary, and

therefore, the domain error due to simpli�cation is usually ignored. In fact, a sim-

pli�cation algorithm may be designed to leave the boundary unchanged, resulting

in zero domain error.

Many applications use a number of approximations of a given reference mesh

interchangeably. For example, in computer graphics distant objects need not be

modeled in as much detail as close objects. Availability of several versions of the

same object, each at a di�erent level of detail, allows a rendering algorithm to

choose the coarsest satisfactory model, and thus increases the rendering speed.

Such a sequence of approximations is called a level of detail (LOD) representation

of a given reference mesh. LOD representations are usually obtained by itera-

tive application of a speci�c simpli�cation algorithm, although it is also possible

to obtain each approximation directly from the reference mesh. Because LODs

are computed o�ine, such an approach to simpli�cation is also called static sim-

pli�cation [14]. In a LOD representation, the whole dataset is stored for every
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approximation. In addition to storage requirements, LOD representations have

the disadvantage that they do not allow for a smooth transition between models.

An alternative to static LOD representation is dynamic multi-resolution mod-

eling, which is based on the idea of recording a series of simple operations that

allow for reconstruction of an approximate model with any desired degree of ac-

curacy. The desired model may be obtained by simplifying the reference model

until a speci�ed error threshold is reached, or alternatively, by re�ning a base

model (the coarsest approximation with the largest error) until the error drops

below the speci�ed treshold. In either case, the transformations (edge contraction

or vertex split) rather than the individual approximate models are stored. These

operations are usually local and are stored in tree structures. In dynamic simpli�-

cations the desired model is formed in real time (by performing the simpli�cation

or re�nement operations) [14]. Advantages of dynamic simpli�cation are better

granularity (much greater number of representations of a reference model), e�-

ciency in storage space, and smooth transition between models. The surveys by

Garland [6] and Puppo and Scopigno [16] explain di�erent algorithms of creating

multi-resolution models and their data structures in detail.

Polygonal simpli�cation algorithms are also classi�ed according to the mech-

anisms they employ as clustering, decimation and contraction algorithms. Clus-

tering algorithms are based on replacing a group (cluster) of vertices in a mesh by

a single representative vertex. Decimation algorithms iteratively remove vertices

or higher dimensional units from a mesh. Contraction algorithms collapse edges,

faces or cells of a mesh to vertices, thereby eliminating a number of cells at a

single operation. These algorithms are discussed in the next section.

2.4 Related Work

Most of the research on mesh simpli�cation has been concentrated on surface

meshes [4, 7, 11, 14, 15], with relatively few of the methods having also been

extended to simpli�cation of volumetric data. In this section, we present a brief
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outline of some of the basic simpli�cation methods.

One of the earliest work on vertex clustering algorithms was proposed by

Rossignac and Borrel [18]. In their method, a regular grid is superimposed on

the domain of the mesh. Vertices in the same cell of the grid are then collapsed

to the single representative vertex within the cell, and the mesh topology is

updated accordingly (Figure 2.1). The representative vertex is chosen to be the

most important vertex in the cell, where importance of the vertices is determined

according to their curvature and the size of the faces they are attached to. Quality

of the approximation depends on the resolution of the grid as well as the regularity

of the mesh. Although this method is very fast, it is not adaptive, meaning that

simpli�cation occurs at the same level over the entire mesh. Low and Tan [13]

improved the method of [18] by introducing the 
oating-cell algorithm. In their

method, a cell of speci�ed size is centered on the most important vertex, all the

vertices within the cell are merged into the center vertex, the mesh is modi�ed

accordingly, and the process is repeated with the next most important cell. The

algorithms of [18] and [13] as well as their variations developed later are very

fast and can be applied to arbitrary polygonal meshes. However, since the vertex

clustering algorithms do not preserve topology of the mesh, the quality of the

resulting meshes are poor. In [7], it is pointed out that clustering methods can

be generalized to use an adaptive grid structure such as an octree [15] to improve

quality.

Vertex decimation methods, which are based on iterative removal of vertices

of a mesh, have been used mostly on triangulated surfaces [4, 14, 19]. In the

basic method of Schroeder et al. [19], a vertex is chosen for removal, all the

edges connected to the chosen vertex are deleted, and the resulting hole is then

re-triangulated (Figure 2.2). Due to the re-triangulation process the method is

restricted to manifold surfaces only2. However, it provides reasonable e�ciency

and quality together. Extension of decimation algorithms to volumetric meshes

has been considered by Renze and Oliver [17]. The problem with volumetric

2A manifold surface is a 2D mesh in which the neighborhood of every vertex, edge or a face

consists of a connected ring of polygons that form a single surface.
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Figure 2.1: Vertex clustering on a 2D mesh

meshes is that the hole after the removal of a vertex may be non-convex, cre-

ating di�culties in re-tetrahedrization of the hole. In fact, even the problem of

whether a non-convex domain is tetrahedrizable is NP-complete [3]. Therefore,

decimation algorithms may not work as e�ectively for volumetric meshes as they

do for surfaces. Decimation methods are not restricted to vertex removal. Co-

hen et al. [4] described a decimation approach that iteratively removes triangles

from a surface mesh. In their approach, they created simpli�cation envelopes that

consist of two o�set surfaces, which are copies of the original surface o�set by a

�xed amount in both directions along the normals of the vertices. By keeping the

surface of the re-triangulated hole after the removal of a triangle, they guarantee

that the simpli�ed surface does not deviate from the original by more than the

�xed amount of the o�set.

Decimation methods lie in the class of incremental simpli�cation methods, in

which a sequence of local operations produce a sequence of approximate meshes

with little di�erences, thus resulting in good quality multi-resolution models.

Edge contraction algorithms, which are widely used in surface simpli�cation,

are also in this class. Like decimation algorithms, edge contraction methods

iteratively select an edge to contract and remove all faces that include the selected

edge. Edges are weighted with respect to the error they will introduce if they
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Figure 2.2: Decimation illustrated on a 2D mesh

are collapsed, which is called the predicted error. At each iteration, the edge

with the smallest predicted error is contracted to a point. The process continues

until a speci�ed cell count or an error threshold is reached. There have been

many edge contraction algorithms with similar basic operations, the di�erences

stemming from the choice of the position of the new point after contraction, the

error metric used, and the way error is estimated.

In order to have a good quality multi-resolution model, the error must increase

smoothly through the simpli�cation process. Iterative algorithms are naturally

suitable for this purpose. An iterative selection process requires calculation of the

predicted errors of all candidates, which would take enormous time if to be done

at every iteration. The basic approach to overcome this problem is to perform

local operations and to calculate only the predicted errors of those edges that are

modi�ed or have modi�ed neighbors. Combined with piecewise linearity used in

visualization algorithms, this approach often produces satisfactory results, and is

therefore used in a majority of the edge contraction algorithms.

Most edge contraction algorithms choose one of the vertices of the edge to

be collapsed as the point of contraction. Garland and Heckbert [8] call this

type of edge contraction subset placement, because the vertex set of the mesh

after each edge contraction is a subset of the vertex set of the previous mesh.
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Trotts et al. [21] used the subset placement strategy in the simpli�cation of tetra-

hedral meshes. In their method, a tetrahedron is collapsed to one of its four

vertices by three consecutive edge contractions as illustrated in Figure 2.3 for a

triangular surface mesh (where a triangle is collapsed to one of its vertices by

two edge contractions). Although the approach seems simple to implement, the

order in which the edges are contracted a�ects both the �nal point of contraction

and the approximation error. To deal with this problem, they simply check all

possibilities and determine the sequence that introduces the lowest error. Their

error prediction is accurate but complicated (takes to much time to determine

the predicted error). They measure the error by the maximum di�erence between

the scalar �elds before and after the contraction. To determine the error they

check the di�erence in the scalar �eld at every intersection of the original and the

simpli�ed mesh. Due to linearity of the interpolants of the scalar �elds, it turns

out that the maximum di�erence occurs at one of the points at which an edge of

one of the new tetrahedra in the simpli�ed mesh intersects a face of one of the

tetrahedra of the original mesh. Figure 2.4 illustrates how these points are found

on a 2D mesh. Their paper also discusses preservation of the boundary, which is

also considered in our study.

Figure 2.3: Triangle contraction by subset placement

The subset placement strategy has also been used by Cignoni et al. [1] in

simpli�cation of tetrahedral meshes, who adopted the quadric error metric for

calculation of both the domain error and the �eld error due to the collapse of a

tetrahedron. Quadric error metric introduced by Garland and Heckbert [7] is a
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Figure 2.4: Calculation of the error bound in triangle contraction addopted
from [21]

clever way of estimating the geometric error resulting from merging two vertices

(not necessarily forming an edge) of a surface mesh, and is worth mentioning

brie
y.

The main idea of the quadric error metric is to associate a set of planes with

each vertex, and de�ne the sum of the squared distances of that vertex from the

associated planes as the error of the vertex. (Initially, the planes associated with

a vertex v are the faces incident on v, and therefore, the error of v is zero.)

When a source vertex vs is merged with a destination vertex vd, the set of planes

associated with vd is augmented by the set of planes associated with vs, and the

error of vd is updated. The innovative contribution of [7] is to devise a method of

updating the error of vd without actually keeping track of the planes associated

with the vertices. If the equation of the ith plane associated with a vertex v in

homogeneous coordinates is

nTi p = 0 (2.8)

In open form (2.8) is written as

nxixp + nyiyp + nzizp + nci = 0

where nxi, nyi and nzi are the components of the unit normal of the plane, and

nci is the distance from the origin. Expressing p in homogeneous coordinates as
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in (2.1) allows for the constant term nci to be included as a fourth components

of nTi . Then the square of the distance of v from that plane is simply

d
2

i = (nTi v)
2 = vTnin

T
i v

The error of v is then the sum of the squared distances over all associated planes,

that is,

e(v) =
X
i

d
2

i = vT (
X
i

nin
T
i )v = vTQv

where Q is the 4 � 4 quadric error matrix of v. Thus to calculate the error of

v it su�ces to know its quadric error matrix (which requires storing only ten

coe�cients as Q is symmetric). When a vertex vs is merged into vd, the quadric

error matrix of vd is updated simply as Qd  Qd + Qs. Although adding Qs to

Qd results in double counting of the planes common to vs and vd, and thus an

overestimation of the error, it is much faster than the more accurate alternative of

the inclusion-exclusion method (in which the contribution of the doubly counted

planes is later subtracted from the �nal quadric).

Cignoni et al. [1] estimated the domain error by providing a quadric matrix

for each of the boundary vertices. To calculate the �eld error, they associated

with each vertex v a set of linear interpolants  i as given by (2.1), and de�ned

the �eld quadric error of a vertex v as

ef (v) =
X

i

( i(v)� s)2 = vT (
X

i

�i�
T
i )v = vTQfv

where s is the �eld on v and

�i = �i �

2
6666664

0

0

0

s

3
7777775

As in the case of domain quadric, initially the �elds associated with v are the

linear interpolants of the tetrahedra incident on v so that ef(v) = 0. However,

when a source vertex vd is merged with a destination vertex vs, then the �eld

quadric matrix of vs is updated as Qfs  Qfs +Qfd.



CHAPTER 2. BACKGROUND AND RELATED WORK 16

An improvement over subset placement strategy was proposed by Garland and

Heckbert [7], who considered the problem of optimal choice of the �nal vertex

position in association with an edge contraction algorithm in order to minimize

the quadric error. Cignoni et al. [1] proposed a suboptimization scheme that

selects the best �nal vertex position among a number of candidates.

Closely related to mesh simpli�cation is re�nement, which is the process of

adding detail to a coarse representation to enhance the detail level and reduce

the approximation error. In re�nement, a coarse approximation of the reference

mesh is taken as a base mesh, whose vertices form a small subset of the data

points. At each iteration, a data point is inserted into the mesh followed by a re-

triangulation process to construct a �ner mesh in which the newly inserted data

point becomes the vertex of a cell. Hamann and Chen [10] have extended this

method for volume data. Their method selects a data point based on curvature,

and inserts it into the convex hull of the of the domain of the dataset. The mesh

is then re-tetrahedralized with local modi�cations in order to minimize some

error criteria. Like in most re�nement methods, the base mesh must be convex.

Cignoni et al [2] have also proposed a re�nement method, which selects the data

point that introduces the maximum error with respect to the reference mesh.

They used Delaunay tetrahedrization and local operations to modify the mesh

when a new point is inserted [12]. Later, they extended their work to include

non-convex meshes obtained by the deformation of convex domains (curvilinear

datasets) [3]. (The data structure used in the implementation of this study is

very similar to the one used in [3].)



Chapter 3

Optimization in Contraction

Operations

In this chapter, we consider the problem of contracting a primitive in a volumetric

mesh with an associated scalar �eld (e.g., a volumetric dataset), while introducing

the minimum error with respect to an error criteria.

3.1 Formulation of the Optimization Problem

Consider a mesh � = f �1; : : : ; �m g and a set of associated linear interpolating

functions f 1; : : : ;  m g that forms a piecewise linear approximate  � of a given

scalar �eld  . We assume that each  i can be generated uniquely from the scalar

values assigned to the vertices of the corresponding cell �i, which are either given

(if the vertex of interest is also a data point) or assigned (if the vertex is generated

by a previous contraction and does not coincide with a data point). Let � be any

simplex that is to be contracted to a vertex. � need not be a maximal simplex.

For example, in a tetrahedral mesh, � may be a tetrahedron, or a face, or an edge

of a tetrahedron.

Let �0 = f �0
1
; : : : ; �

0
m0 g denote the mesh after contraction of � to a new

17
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vertex v0 and a suitable modi�cation of the local topology of � . Let s0 denote

the scalar value assigned to v0, and let  0i denote the interpolants (vertices) of

�
0
i recalculated from s

0 and the scalar values of the vertices common to � and

�0 (untouched vertices). Then, the optimization problem concerned with the

contraction of � to v0 can be formulated as

min
v02�

min
s0

e( �;  �0)

where

e( �;  �0) = e(v0; s0)

is a suitable error measure that evaluates the quality of the contraction. The

optimization problem is also associated with some constraints such as preservation

of the boundary of the domain 
� of the mesh [5] and avoidance of the 
ipping

of the cells [3].

3.2 A Summary of Solutions

Clearly, solution of the optimization problem depends heavily on the choice of

the error measure. In the following, we summarize possible choices of the error

measure and the corresponding solutions. For convenience, we will illustrate

various approaches on the one-dimensional mesh shown in Figure 3.1, where

V = f v1; v2; v3; v4 g = f 0; 1; 3; 4 g

S = f s1; s2; s3; s4 g = f 0; 1; 2; 1 g
and

� = f �1; �2; �3 g
with

�1 = [0; 1] ;  1(x) = x

�2 = [1; 3] ;  2(x) =
1

2
x +

1

2
�3 = [3; 4] ;  3(x) = �x + 5
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Let the simplex � = �2 be contracted to a point v0 2 [1; 3], which is assigned

the scalar value s0. The mesh after contraction is also shown in Figure 3.1, where

V 0 = f v0
1
; v

0

2
; v

0

3
g = f 0; v0; 4 g

and

�0 = f �0
1
; �

0
2
g

with

�
0

1
= [0; v0] ;  

0

1
(x) =

s
0

v0
x

�
0

2
= [v0; 4] ;  

0

2
(x) =

1� s0
4� v0 x +

4s0 � v0
4� v0

s

x

s3
s1

s2

v'v2 v4v3

s'

v1

s1 s2 s3

s1' s2'

0

1

2

0 1 2 3 4

Figure 3.1: A one dimensional mesh and contraction of the edge �2. (Original

mesh is shown with solid lines and the simpli�ed mesh is shown with dashed lines)
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3.2.1 Generalized Quadric Error

Garland and Heckbert [8] proposed a generalized quadric error by augmenting the

vertices with the scalar values associated with them. Their approach is equivalent

to �nding a point in homogeneous coordinates

v0 =

2
6664

v
0

s
0

1

3
7775

in the xs-plane which minimizes the sum of the quadrics associated with the

endpoints

v2 =

2
6664

v2

s2

1

3
7775 =

2
6664

1

1

1

3
7775 and v3 =

2
6664

v3

s3

1

3
7775 =

2
6664

2

1

1

3
7775

Note that this formulation is equivalent to treating the dataset (�;S) as a one-

dimensional mesh (1-simplicial complex) in R2 whose cells are the lines L1; L2; L3

shown in Figure 3.2.

The quadric associated with v2 is the sum of the squared distances of a point

p =

2
6664

x

s

1

3
7775

to the neighboring lines L1 and L2, and similarly, the quadric associated with v3

is the sum of the squared distances of p to the neighboring lines L2 and L3.

From the equations of the lines

L1 : [
1p
2
� 1p

2
0 ]

2
6664

x

s

1

3
7775 = nT

1
p

L2 : [
1p
5
� 2p

5

1p
5
]

2
6664

x

s

1

3
7775 = nT

2
p
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p

L1

L2
L3

s

0

1

2

0 1 2 3 4

v2

v3

v4

v1

Figure 3.2: The mesh in Figure 3.1 as a mesh in R2

L3 : [
1p
2

1p
2
� 5p

2
]

2
6664

x

s

1

3
7775 = nT

3
p

the quadric matrices are formed as

Q2 = n1n
T
1
+ n2n

T
2
=

1

10

2
6664

7 �9 2

�9 13 �4
2 �4 2

3
7775

and

Q3 = n2n
T
2
+ n3n

T
3
=

1

10

2
6664

7 1 �23
1 13 �29

�23 �29 127

3
7775

Consequently, the quadric error associated with point v0 is

e(v0; s0) = Q(v0) = (v0)T (Q2 +Q3)(v
0)
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=
1

10
[ v0 s

0 1 ]

2
6664

14 �8 �21
�8 26 �33
�21 �33 129

3
7775

2
6664

v
0

s
0

1

3
7775

Note that the distance of point v0 to the line L2 is counted twice, which is a

weakness of the quadric error measure.

Minimization of Q(v0) yields

2
4 v

0

s
0

3
5 =

2
4 14 �8
�8 26

3
5
�1 2
4 21

33

3
5 =

2
4 2:7

2:1

3
5

The corresponding simpli�ed mesh is shown in Figure 3.3.

(1,1)

(2.7,2.1)
(3,2)

(4,1)

0 1 3 4

0

1

2

Figure 3.3: Contraction based on generalized quadric error metric

This method of using generalized quadric metric as a measure of error can

easily be generalized to higher dimensional meshes with multiple values assigned

to the vertices. However, treating the �eld values as generalized coordinates is

debatable for the following reason. If the cell to be contracted is not a boundary

cell (as in the illustrative example above), then the domain error due to contrac-

tion is of no concern, and only the �eld error needs to be considered. However,
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attachment of the �eld values to vertices as additional coordinates transforms the

problem to one of minimizing the domain error in a higher dimensional space,

which in turn, necessarily involves inclusion of the domain error of the original

mesh into consideration. This can be better understood by noticing that Q(v0)

in the illustrative example measures the domain error introduced by contracting

line L2, which is a boundary edge of the line mesh fL1; L2; L3 g, to the point

v0 2 R2.

3.2.2 Field Quadric

Cignoni et al. [1] proposed to use a weighted sum of domain and �eld error

quadrics as an error measure. Although their purpose was to evaluate the error

in a subset placement strategy rather than to minimize it, their error measure

can also be used for optimum choice of the �nal vertex position as we illustrate

below.

Referring to the illustrative example, since the cell to be contracted is not a

boundary cell we need not consider the domain error quadric, and concentrate

only on the �eld error. To calculate the �eld error, we observe that associated

with the vertex v2 are the linear interpolants  1 and  2, and with v3 are  2 and

 3. Hence, the �eld error quadric associated with v2 at a point

p =

2
4 x

1

3
5

is

e2(p) = ( 1(x)� s2)2 + ( 2(x)� s2)2

= [ x 1 ]

2
4

5

4
�5

4

�5

4

5

4

3
5
2
4 x

1

3
5 = pTQ2 p

Similarly, the �eld error quadric associated with v3 at p is

e3(p) = ( 2(x)� s3)2 + ( 3(x)� s3)2

= [ x 1 ]

2
4

5

4
�15

4

�15

4

45

4

3
5
2
4 x

1

3
5 = pTQ3 p
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Cignoni et al. used these quadrics in evaluating the �eld errors when either

of v2 or v3 is merged to the other. If v3 is merged to v2, then the quadric of v2 is

updated as

Q2  Q2 +Q3 =

2
4

5

2
�10

2

�10

2

25

2

3
5

and the �eld error due to the contraction is

e(v2) = (v2)
T
Q2(v2) = [ 1 1 ]

2
4

5

2
�10

2

�10

2

25

2

3
5
2
4 1

1

3
5 = 5

If, on the other hand, v2 is merged to v3, then the quadric of v3 is updated as

Q3  Q3 +Q2 =

2
4

5

2
�10

2

�10

2

25

2

3
5

and the �eld error becomes

e(v3) = (v3)
T
Q3(v3) = [ 3 1 ]

2
4

5

2
�10

2

�10

2

25

2

3
5
2
4 3

1

3
5 = 5

In either case, the scalar value assigned to the �nal vertex (v2 or v3) is the

same as the �eld on that vertex before the contraction. The resulting contractions

are shown in Figure 3.4, where e(v2) = d
2

32
+ d

2

33
and e(v3) = d

2

21
+ d

2

22
.

We can use the quadrics associated with v2 and v3 in �nding the optimal �nal

vertex position. If v2 and v3 are both merged to a new vertex v0 2 [1; 3], then the

�eld error at v0 is

e(v0) = (v0)T (Q2 +Q3)(v
0) = [ v0 1 ]

2
4

5

2
�10

2

�10

2

25

2

3
5
2
4 v

0

1

3
5

Minimization of e(v0) with respect to v0 yields

v
0 = 2:0

The mesh after contracting �2 to v
0 found above is shown in Figure 3.5, where v0

is assigned the value

s
0 =  2(v

0) = 1:5
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d33

d32 d22

d21

v'=v2 v'=v3

s

xv4v1

Figure 3.4: Contractions based on �eld quadric error with subset placement

The error of contraction is the sum of the squares of the distances indicated in

the �gure, which is

e = [ 2 1 ]

2
4

5

2
�10

2

�10

2

25

2

3
5
2
4 2

1

3
5 = 2:5

How meaningful that error measure is needs justi�cation.

3.2.3 Minimization of the Absolute Field Error

As mentioned earlier, if the simplex to be contracted is not on the boundary of the

mesh, then we can leave the domain error out of consideration, and concentrate
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d33

d32

d22

v2 v3

s

xv4v1 v'

d21

Figure 3.5: Contraction based on optimization of �eld quadric

only on the �eld error. A meaningful choice of the �eld error is

e( �;  �0) = max
p2


j �(p)�  �0(p) j (3.1)

This is a true error metric in the sense that if � is �rst contracted to �0 and �0

is then contracted to �00, then

e( �;  �00) � e( �;  �0) + e( �0 ;  �00)

Thus, we obtain an upper bound on the total error due to the resulting multistep

simpli�cation by accumulating the errors in successive contractions.

The error measure in (3.1) involves a continuum of points in the domain of

the mesh, and therefore, it is impractical to evaluate let alone to be considered for

optimization. However, since  � and  �0 are piecewise linear over their respective

meshes, the maximum di�erence between the two occurs at one of the vertices of

the polyhedra formed by intersection of � and �0. That is,

e( �;  �0) = max
p2Vp

j �(p)�  �0(p) j (3.2)
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where Vp is the set of vertices at which edges of � intersect faces of �0 and vice

versa. Vp is illustrated in Figure 2.4 for a 2D mesh.

In one dimension (3.2) further reduces to

e( �;  �0) = e(v0; s0) = max
x2V[V 0

j �(x)�  �0(x) j

Referring to the illustrative example, the error expression above becomes

e(v0; s0) = max f j 0
1
(v2)� s2 j ; j 02(v3)� s3 j ; j 2(v0)� s0 j g

= max f (1� s
0

v0
); (2� 3

1� s0
4� v0 �

4s0 � v0
4� v0 ); (s

0 � 1

2
v
0 � 1

2
) g

which is the maximum absolute di�erence before and after contraction between

the �elds at v2 and v3 (the endpoints of �2) and at v0 (the �nal vertex of contrac-

tion). Values of v0 and s0 that minimize e(v0; s0) can be found by solving

1� s
0

v0
= 2� 3

1� s0
4� v0 �

4s0 � v0
4� v0 = s

0 � 1

2
v
0 � 1

2

as

v
0 =
p
7 = 2:65

and

s
0 =

7 + 2
p
7

6
= 2:05

The corresponding mesh is shown in Figure 3.6.

In higher dimensions, minimization of the error expression in (3.2) requires

calculation of the points in Vp and the errors at these points. However, the points
of Vp are determined by the choice of v0, and the errors at these points by s

0.

Clearly, the only way to solve the problem is a brute force search approach, which

is computationally intractible. In the following section, we will present a heuristic

argument to obtain a suboptimal solution.

3.3 Scalar Value Assignment Problem

As mentioned in the previous subsection, minimization of the maximum absolute

�eld error in (3.1) is a computationally di�cult problem for surface or volume
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s

x

0

1

2

0 1 2 3 42.65

2.05

d1

d3d2

d1=d2=d3=0.23 

Figure 3.6: Contraction based on maximum absolute �eld error

meshes. A partial simpli�cation can be reached by restricting v0 to a few can-

didates and thus transforming the problem to a one-dimensional minimization

over s0. That v0 which results in the minimum error among the candidates can

then be selected as the �nal vertex position. However, even when v0 is �xed,

minimization of the maximum �eld error requires calculation of the errors at the

points of Vp, which depend on s0 assigned to v0. Instead of searching for the best

value of s0 we propose to settle down with a reasonable suboptimal choice.

Assume that v0 2 � is �xed (at one of the candidates of the �nal vertex

position). Let �i; i = 1; : : : ; k, denote the neighbors of � including � itself, and

de�ne

s
0
M = max

1�i�k
f i(v0) g

s
0

m = min
1�i�k

f i(v0) g (3.3)

s
0 =

s
0

M + s
0

m

2

where  i are the linear interpolants associated with �i. (Note that in the case of

a volume mesh, if � is a tetrahedron, then �i includes all vertex, edge and face

neighbors of � .)
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Let  0M ,  0m and  
0 denote the piecewise linear �elds associated with the

simpli�ed mesh (after contraction of � to v0) corresponding to the assignments

 
0(v0) = s

0
M ,  0(v0) = s

0
m and  0(v0) = s

0 to v0, respectively. We now claim that

for any p 2 
,

j 0(p)�  (p)j � s
0
M � s0m
2

(3.4)

so that

ep =
s
0

M � s0m
2

(3.5)

is an upper bound of the �eld error due to contraction of � to v0.

To prove the claim it su�ces to consider only the points in the polyhedron

P� =
k[
i=1

�i

consisting of � and its neighborhood as  0(p) =  (p) for all p 2 
 � P� . Con-
traction of � to v0 eliminates � and its edge and face neighbors, resulting in a

tetrahedrization of P� into �0j; j = 1; : : : ; k0, such that one of the vertices of each

�
0
j is v

0 and the other three are boundary vertices of P� .

Consider an arbitrary point p 2 P� , which belongs to one of �0j, and therefore,
can be expressed as a convex combination of its vertices as

p = c
0v0 +

3X

j=1

cjvij (3.6)

where vij are the vertices of �
0
j that are on the boundary of P� , and 0 � c

0
; cj � 1.

On noticing that

 
0

M(vij) =  
0

m(vij) =  
0(vij) = sij

for the boundary vertices, (3.6) implies that

 
0

M(p) = c
0
s
0

M +
3X

j=1

cjsij � c
0
 (v0) +

3X

j=1

cj (vij) =  (p)

 
0

m(p) = c
0
s
0

m +
3X

j=1

cjsij � c
0
 (v0) +

3X
j=1

cj (vij) =  (p)

that is,

 
0
m(p) �  (p) �  

0
M(p)
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(3.6) also implies that

 
0(p) = c

0
s
0 +

3X
j=1

cjsij

=
1

2
(c0s0M +

3X
j=1

cjsij) +
1

2
(c0s0m +

3X
j=1

cjsij)

=
 
0

M (p) +  
0

m(p)

2

From the last two relations we obtain (see Figure 3.7)

j 0(p)�  (p)j �  
0
M(p)�  0m(p)

2
=
c
0(s0M � s0m)

2
= c

0
ep � ep

proving the claim.

We now illustrate our heuristic on the 1D mesh of Figure 3.1. We consider

three choices of the �nal vertex position, v0 = 1:5, v0 = 2:0, and v0 = 2:5.

For v0 = 1:5,

 1(v
0) = 1:5;  2(v

0) = 1:2 = s
0

m;  3(v
0) = 3:5 = s

0

M

and therefore, the value assigned to v0 and the corresponding predicted error are

s
0 =

3:5 + 1:2

2
= 2:35 and ep =

3:5� 1:2

2
= 1:15

For v0 = 2:0,

 1(v
0) = 2:0;  2(v

0) = 1:5 = s
0

m;  3(v
0) = 3 = s

0

M

and

s
0 =

3:0 + 1:5

2
= 2:25 and ep =

3:0� 1:5

2
= 0:75

Finally, for v0 = 2:5,

 1(v
0) =  3(v

0) = 2:5 = s
0

M ;  2(v
0) = 1:75 = s

0

m;

and

s
0 =

2:5 + 1:75

2
= 2:125 and ep =

2:5� 1:75

2
= 0:375
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v1 v2 v3 v4xv'
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Figure 3.7: Relative magnitudes of  0M ,  0m, 
0 and  at p

The contractions based on the three choices of v0 above and the scalar values

assigned to them according to (3.3) are shown in Figure 3.8. Incidentally, the

pair (v0; s0) = (2:5; 2:125) turns out to be the best choice among all possibilities.

It should be observed that once the �nal vertex position v0 is decided, our

heuristic method not only provides a way of assigning the scalar value of the �nal

vertex, but also gives an estimate of the �eld error due to the contraction. Besides,

it is a general method that can be applied to meshes of arbitrary dimension as

long as the linear interpolants  i of the individual cell are known, and it does not

di�erentiate whether the simplex to be contracted is an edge, a face or a higher

order one. In this study, we implement simpli�cation of a tetrahedral mesh by
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means of contraction of tetrahedra and edges of tetrahedra. Clearly, contraction

of faces, which is an in-between case, can also be implemented easily.

To conclude our discussion on the scalar value assignement problem, we

present in Table 3.1 a comparison of the maximum absolute �eld errors due

to the contractions by the methods considered in the previous section and by

our heuristic approach. We observe that, for the illustrative example considered,

our heuristic method is de�nitely better than the �eld error quadric approach

of Cignoni et al, and is quite close to the generalized quadric of Garland and

Heckbert.

s

x

0

0 1 2 3 4

2.35
2.25

2.125

1.5 2.5

Figure 3.8: Contractions based on heuristics

Table 3.1: A comparison of the error of various contractions for the illustrative

example

G-H Cignoni SVA Absolute

0.2500 0.7500 0.3750 0.2257



Chapter 4

Implementations Details and

Examples

In this chapter, we present the implementation details of our heuristic scalar

value assignment (SVA) method introduced in the previous chapter. In the im-

plementation, we considered iterative simpli�cation of a volumetric dataset (with

a tetrahedral mesh) by means of both tetrahedron and edge contractions. The

SVA method is explained for tetrahedron contraction; however, implementation

of the method for edge contraction is very similar. The small di�erences between

the two implementations and problems unique to edge contraction approach are

described in a separate section. By these two implementations, it is believed

that the performance of a possible surface collapse method can be predicted.

The performances of tetrahedron and edge contraction approaches using SVA are

compared using two examples.

4.1 Data Structures

The volume data to be simpli�ed are stored in four structures: A vertex array,

a data array, a tetrahedron array and a connectivity array. Structures of these

arrays and their relations are shown in Figure 4.1.

33
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Tet i

vj

vk

vl

vm

xk zkyk

Tetrahedron Array

Vertex Array
Scalar Value Array

Parallel
 Arrays

Sk1
Sk2

Skn_scalar

Tet i

face 0

face 1

face 2

face 3

tetp

tetq

tetr

tets

facet

faceu

facev

facew

Connectivity Array

n_scalar : # of scalar values per vertex

j,k,l,m < # of vertices

t,u,v,w < 4 (# of faces)

i,p,q,r,s < # of tetrahedra

Figure 4.1: Data structures

The vertex array is an n� 3 dimensional array that stores for each vertex vi

the triple xi; yi; zi de�ning the position of vi, where n is the number of vertices

of the original mesh.

The data array stores for each vertex vi a set of ns scalar values each repre-

senting the sample values of a di�erent scalar �eld. Simpli�cation is performed

on the basis of one of these scalar values.

The m � 4 tetrahedron array keeps for each tetrahedron �j in the mesh the

indices of the four vertices of �j, where m is the number of tetrahedra.

The �nal structure is an m� 8 array that keeps the connectivity information,

which is de�ned over the faces of the tetrahedra. For every tetrahedron �j there
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are four entries corresponding to the faces of �j and each consisting of two parts:

The index of the neighboring tetrahedron �k, and the face index of �k from which

�k is connected to �j.

In addition to the basic structures above are a couple of work arrays. One is a

priority queue in which information about contractible tetrahedra in the current

mesh is stored. The priority queue is implemented as a binary heap in this thesis.

Each heap element consists of three enries: The tetrahedron index, the predicted

error to be introduced if that tetrahedron is contracted, and the �nal vertex

position of contraction. The error is also used as the key value of the heap.

A second work array is an error array, which stores for each vertex vi a scalar

error value ei. Initially, all vertices are assigned zero error. When a tetrahedron

is contracted, three of its four vertices are removed from the vertex array and the

fourth one is replaced with the �nal vertex of contraction. The predicted error

associated with the contracted tetrahedron is then assigned to the �nal vertex,

and the vertices that are removed are marked by assigning a sentinel value to

their errors. The error of a vertex is later added to the overall predicted error if

a tetrahedron including this vertex is collapsed.

The power of incremental simpli�cation methods comes from the locality of

the operations, which allows for working with a small portion of the dataset at a

time. In our study, locality is facilitated by means of two neighbors arrays, which

store the indices of the neighbors of a tetrahedron in process (TIP).

4.2 Tetrahedron Contraction

The general algorithm used in this implementation is shown in Table 4.2. It

consists of three stages: Initialization, simpli�cation, and �nalization. In the

initialization part, a pass over the whole tetrahedron array is executed in order to

�nd all contractible tetrahedra and insert them into the heap together with their

�nal vertex positions and predicted errors. In the simpli�cation part, tetrahedra

in the heap are contracted one at a time, and the data and the heap are updated
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accordingly. In the �nalization part, the data arrays are cleaned of removed

tetrahedra and vertices. Next, the basic steps of the algorithm are explained.

Figure 4.2: Pseudocode for tetrahedron collapse

/* Initial pass */

for every tetrahedron � do

�nd neighbors of �

determine if � is contractible

compute the predicted error, scalar value and position of the �nal vertex

insert � into priority queue

/* Iterative simpli�cation */

while error is within bound

extract the tetrahedron � with minimum error

�nd neighbors of �

contract �

determine the e�ected tetrahedra

for every e�ected tetrahedron � do

�nd neighbors of �

compute the predicted error, scalar value and position of the �nal vertex

update the position of � in the priority queue

/* Finalize */

write the simpli�ed volume data to disk

4.2.1 Determination of the neighbors

Various steps of the algorithm require neighbors of a given tetrahedron �. A

function determines the neighbors of �, and returns their indices in two arrays,

one containing the indices of the face and edge neighbors of �, and the other

indices of the vertex neighbors. Although edge and vertex neighbor information
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is not explicitly held, edge or vertex neighbors are face neighbors to other vertex,

edge or face neigbors. Eventually, any neighbor is a face neighbor of a neighbor

and therefore, it is possible to reach any edge or vertex neighbor. This observation

allows for �nding all neighbors of � by a breadth-�rst-search (BFS) method over

the connectivity array.

The BFS is initiated by inserting � into a queue. The �rst element of the

queue is extracted as the TIP. If a face neighbor � of the TIP is not previously

checked (colored) and if it shares at least one vertex with �, then it is inserted

into the queue and is colored. If � shares a single vertex with �, it is included into

vertex-neighbors array together with the index of the shared vertex. Otherwise,

it is included into the face/edge-neighbors array. When the queue is empty, the

function returns the neighbors arrays.

A naive method for �nding the neighbors would be to search the entire tetra-

hedron array. The running time of such an algorithm would take �(m). Theoret-

ically the running time of the BFS method is also O(m). However, in practice, a

tetrahedron has much less neighbors that require an average running time much

less than the naive approach. Since neighbors of the same tetrahedron are needed

more than once at various steps of the algorithm, such a saving in the time com-

plexity becomes extremely important.

4.2.2 Contractibility check and boundary preservation

For every tetrahedron � in the current mesh a number of candidates for the �nal

vertex position (FVP) are determined depending on whether � has a primitive

(a vertex, and edge or a face) on the boundary of the mesh.

In the easier case when � has no primitive on the boundary, choice of the

candidates for the FVP is arbitrary. In this study �ve candidates, the four ver-

tices of � and their midpoint, are considered, although it is possible to consider

additional candidates at the expense of increasing computation time (Midpoints

of the edges and faces of �, and/or the midpoints of the corner subtetrahedra
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formed by a vertex and the midpoints of the edges incident on that vertex, are

reasonable choices of the additional candidates for the FVP). Then, � is checked

for contractibility to each candidate FVP v0, and if it is found to be contractible

to v0 the corresponding predicted error is calculated. If � is contractible to at

least one candidate FVP, it is inserted into the heap together with the FVP that

results in the smallest predicted error.

The test for contractibility of � to v0 involves determining whether the con-

traction operation results in an inconsistency in the mesh, which occurs when a

vertex neighbor of � occupies part of the region occupied by another neighbor.

Such an inconsistency arises when the shared vertex of a neighbor 
ips sides with

respect to the plane formed by the other three vertices after contraction. Flipping

of a vertex neighbor is illustrated in Figure 4.3 for a 2D mesh.

FVP

Figure 4.3: Flipping of a triangle in a 2D mesh

The test whether a vertex neighbor � of � 
ips involves a couple of triple

vector products. Let � have the vertices v0, v1, v2 and v4, with v0 being the

vertex common to � and �. The cross product of the vectors w1 = v1 � v3 and
w2 = v2 � v3

n = w1 �w2

points in the direction of the normal of the plane formed by v1, v2 and v3. The

sign of the inner product of n with the vector w0 = v0 � v3 and w0 = v0 � v3
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indicate whether these vectors point in the same direction n. As a result, a


ipping occurs if and only if

(nTw0)(n
Tw0) < 0

When a tetrahedron � has a primitive on the boundary, requirement to pre-

serve the boundary after the contraction imposes additional constraints on the

FVP. We consider several possibilities separately.

If � has primitives on two disjoint surfaces (e.g., the top and bottom surfaces

of a cube), contraction of � results in a deformation of at least one of these

surfaces. If it has more than one face on the boundary, then contraction results

in a deformation along the edge or at the vertex these faces meet. In these two

cases, � is not contracted.

If � has a single vertex or a single edge on the boundary, then the boundary

can be preserved by choosing the FVP at the vertex or along the edge on the

boundary. In such a case � is contractible to the chosen FVP provided no 
ipping

of a vertex neighbor occur.

If � has a single face � (a triangle) on the boundary, then the problem becomes

one of surface simpli�cation. In our implementation, the normal of � is compared

to the normal of each of its neighbors (triangles on the boundary). If all the

angles between the normal of � and the normals of its neighbors are smaller than

a predetermined interval, then � can be contracted to a point on �, provided such

a choice of the FVP does not result in a 
ipping. In this case, contraction of �

introduces a small domain error.

4.2.3 Error prediction

Let, as usual, � be a tetrahedron to be contracted to FVP v0, and let �i be the

neighbors of �, i = 1; : : : ; k. As explained in the previous chapter, to �nd the

value s0 to be assigned to v0 and calculate the corresponding predicted error, we

need to evaluate each of the linear interpolants  i at v
0. As we already considered
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in Section 2.3,

 i(v
0) = sTi ci = ci0si0 + ci1si1 + ci2si2 + ci3si3

where sij's are the scalar values associated with the vertices of �i, and cij's are

obtained by solving the 4� 4 system

2
6666664

x
0

y
0

z
0

1

3
7777775
=

2
6666664

xi0 xi1 xi2 xi3

yi0 yi1 yi2 yi3

zi0 zi1 zi2 zi3

1 1 1 1

3
7777775

2
6666664

ci0

ci1

ci2

ci3

3
7777775

(4.1)

In our implementation, instead of the 4 � 4 system in (4.1), we solve the

equivalent 3� 3 system

2
6664

x
0 � xi3
y
0 � yi3
z
0 � zi3

3
7775 =

2
6664

xi0 � xi3 xi1 � xi3 xi2 � xi3
yi0 � yi3 yi1 � yi3 yi2 � yi3
zi0 � zi3 zi1 � zi3 zi2 � zi3

3
7775

2
6664

ci0

ci1

ci2

3
7775 (4.2)

which is obtained from (4.1) on noting that

ci0 + ci1 + ci2 + ci3 = 1 (4.3)

Once ci0, ci1 and ci2 are found from (4.2), ci3 can be calculated from (4.3) easily.

Replacing the 4 � 4 system in (4.1) by the equivalent 3 � 3 system in (4.2)

saves quite signi�cant computing time.

4.2.4 Contraction of a tetrahedron

When a tetrahedron � is contracted to a �nal vertex v0

� � disappears,

� all face and edge neighbors of � also disappear,

� vertex neighbors of � are modi�ed,
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� mesh topology changes, and

� some tetrahedra which were previously uncontractible may become con-

tractible, and vice versa.

When � is contracted it is not actually erased from the tetrahedron array;

instead, a 
ag associated with � is turned on to indicate that it does not exist

anymore. The same is done for all the face and edge neighbors of �, whose indices

are kept in the face/edge neighbors array.

Similarly, three of the vertices of � are 
agged in the vertex array to indicate

that they do not exist in the simpli�ed mesh. The location of the fourth vertex

is used to store the position (x0; y0; z0) of v0. At the same time, the index of the

shared vertex of any vertex neighbor of � is changed to the index of this fourth

vertex. This takes care of modi�cation of the vertex neighbors of �.

Removal of � and its neighbors change the mesh topology, i.e., the connectivity

information. Obviously, the vertex neighbors are only modi�ed and do not cause

a change in the topology directly. Since the connectivity information is de�ned

over the faces of tetrahedra, removal of a face neighbor of � does not change the

topology either, because a face neighbor reduces to an edge after contraction of

�. Now, consider an edge neighbor � of �. When � is contracted, � collapsess

to a triangle on which two of its faces (with a common base and tips connected

with the shared edge) merge together as shown in Figure 4.4. Then the two face

neighbors of � become face neighbors themselves sharing this triangle. In this

case the neighbor information of the two face neighbors of � are modi�ed to point

at each other and this ensures that no tetrahedron in the current mesh points to

� which is practically removed from the mesh.

Finally, since all vertex neighbors of � are modi�ed when � is contracted,

Their contractibility properties and the associated predicted errors change. A

vertex neighbor, which is previously uncontractible may be contractible after its

modi�cation, in which case it is included into the heap. Even if it was in the

heap prior to contraction of � and remains contractible after the contraction

operation, its associated predicted error changes, necessitating a modi�cation in
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Edge being contracted
(Edge shared with the TIP) 

Tetrahedron 1

Tetrahedron 2

Face shared with tetrahedron 1

Face shared with tetrahedron 1

Tetrahedron 1

Tetrahedron 2

The resulting face after the contraction

Figure 4.4: Modi�cation of the mesh after removal of an edge neighbor

its position in the heap. Conversely, a vertex neighbor of � which is previously

contractible may be unconcontractible, in which case it must be removed from

the heap. Unfortunately, vertex neighbors of � are not the only tetrahedra which

needs o be checked for contractibility. Their neighbors are also e�ected by the

contraction of � and must be tested again for contractibility. The set of all

tetrahedra that will be retested are called the e�ected tetrahedra. In order to

determine the e�ected tetrahedra, a similar method to the one used in �nding

the neighbors of a tetrahedron is used. The only di�erence is that a tetrahedron

is checked if it shares a vertex with any of the modi�ed tetrahedra.
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4.2.5 Data cleaning

Once the program exits the main loop, the mesh will contain redundant informa-

tion. This is due to the fact that the removal process is just a marking instead of

actually altering the data structures. Therefore, a �nal step in the algorithm ex-

tracts the useful information, vertices and tetrahedra still existing in the current

mesh, and arranges these arrays. A naive way of doing it would be scaning the

tetrahedron array for an existing tetrahedron and placing it in the �rst available

position in the array. Of course all the connectivity information of must change

their neighbor indices at every step. The running time of such an algorithm would

be O(n2). However, the use of a map can reduce the running time to O(n). A

pass over the tetrahedron array is used to construct a map. The map array keeps

the new location for a tetrahedron and therefore is of size n. Then, by using the

information in the map array, the tetrahedron array can be modi�ed in a single

pass.

4.3 Edge contraction

Although edge contraction is very similar to tetrahedron contraction there are

some implementational problems associated with edge contraction. In the general

sense, the data structure is based on tetrahedra; therefore, a number of steps must

be taken for the edge contraction method to work properly and e�ciently.

One method of dealing with the data structure would be to extract the implicit

edge information from the current dataset (by numbering edges and associated

vertices, and by determining the neighborhood relations). Although this is man-

ageable, we preferred the use the current dataset to have the option of switching

between tetrahedron and edge collapse methods whever desired.

Every tetrahedron consists of exactly six edges, and these edges can be num-

bered just like its faces. Therefore, in order to specify a speci�c edge, the index of

the tetrahedron and the edge number are su�cient. Edges are likely to be shared
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by many tetrahedra and can be numbered in as many di�erent ways as the num-

ber of tetrahedra sharing the edge. This gives rise to the problem of inserting

multiple copies of the edge into the heap while processing di�erent tetrahedra.

Checking whether an edge had already been inserted into heap is very time con-

suming; instead, an ordering over the tetrahedra does solve the problem. In the

tetrahedron contraction method every tetrahedron keeps an index to its position

in the heap. However, in the edge contraction method, a tetrahdron needs to

keep six indices for its edges. A sentinel value indicates that the edge is not in

the heap either because it is not contractible or it is already in the heap with a

di�erent tetrahedron index.

In the initialization stage all tetrahedra are processed sequentially, and all the

edges of a tetrahedron are processed before the next tetrahedron is processed.

When a tetrahedron is processed it is colored. Consider a tetrahedron � and a

face neighbor � , where � is processed before � . � will not process the edges shared

by � (a face neighbor shares three edges) because they were already processed.

In this way, an edge is only processed once and there are no multiple entries into

the heap.

One other situation where the ordering is important is when dealing with the

e�ected edges, which must be processed after the contraction of an edge. As in the

tetrahedron contraction method, all the e�ected tetrahedra are found and their

colors are reset. In order to process an edge only once (as in the initialization

stage), the tetrahedra which are e�ected but not modi�ed are processed �rst and

the modi�ed tetrahedra are processed later.

The rest of the of the methods in edge contraction are similar to the ones used

in tetrahedron contraction with only trivial modi�cations.
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4.4 Examples

The SVA method was experimented with two datasets.

The �rst dataset is a rather small one with cube-shaped domain. It is created

by MeshGenerator, which was implemented as part of this study. The MeshGen-

erator divides a hexagonal cell into six tetrahedra such that two haxagonal cells

can be put side by side or one on top of the other without causing incompatibil-

ities with the tetrahedra. In the example, we generated a mesh of 20 � 20 � 20

unit cubes, having a total number of m = 48:000 tetrahedra. The scalar �eld of

the dataset was chosen (quite arbitrarily) as

 (x; y; z) = xyz

The second dataset is the famous blunt dataset taken from NASA. The dataset

consists of �ve di�erent scalar �elds; however, we used only the pressure �eld to

run our experiments. The blunt data is the output of a �nite volume simulation

run over a blunt �n at mach 2. The pressure �eld displays a good view of the

shock wave produced on the leading edge of the �n and bends over the �n.

In both of the examples considered, the error was expressed in percent. For

this purpose, the di�erence between the maximum and minimum values of the

scalar �eld values over the dataset is de�ned as the scalar value range, and the

absolute error was scaled by this value.

The results of our simpli�cation method using SVA are tabulated in Tables

4.1 and 4.2 for di�erent values of the predicted error. In both tables \Max error"

corresponds to the case where no more contraction is possible. The following

symbols are used in the tables.

n : Number of vertices (n0: # of vertices in the original mesh)

m : Number of tetrahedra (m0: # of tetrahedra in the original mesh)

N : Number of iterations to simplify the mesh until the error hits the

indicated percent

T : Simpli�cation time in sec
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The experiments were carried out on a PentiumIV 1.5 GHz CPU with 256

MBytes of RD-RAM.

In simpli�cation of the cube, tetrahedron and edge contractions resulted in

comparable cell counts for a given error bound; although edge contraction, work-

ing with smaller units, was expected to provide a better simpli�cation. The

reason is perhaps the regularity of the dataset, which was made up of identical

unit cubes. The more realistic blunt data, however, con�rmed our expectation,

resulting in a reduction of the cell count to about 20% of the original data for 5%

error bound in the case of edge contraction as opposed to about 53% in the case

of tetrahedron contraction.

Another observation is that edge contraction requires many more iterations

than tetrahedron contraction for a given error bound. This is a completely ex-

pected result because a typical mesh contains many more edges than tetrahedra.

What is interesting, however, is that number of iterations per second in tetrahe-

dron and edge contractions are comparable. In fact, contraction of a tetrahedron

takes a little less time than the contraction of an edge. Although an edge has

relatively less number of neighbors with respect to a tetrahedron, the greater

heap size might cause such an outcame.

The original and simpli�ed datasets are visualized by using Koyamada's direct

volume visualization technique. As an aid for debugging, a code which renders

only the boundary of a mesh, was developed. This is an interactive application

in which the camera can 
y through and around the volume. This enables the

user to see whether the boundary was preserved or not. It can also be used to

visualize the vertices before and after simpli�cation.

Finally, the images of the original and simpli�ed datasets for both examples

are given in Figures 4.5, 4.6, 4.7 and 4.8.



CHAPTER 4. IMPLEMENTATIONS DETAILS AND EXAMPLES 47

Table 4.1: Experimental Results: Cube Dataset

Dataset : Cube

n0 = 9261
m0 = 48000

Method : Tetrahedron contraction

Initialization Time : 6.80 sec

% error n m m=m0 N T N=T

0.1 8,679 44,673 93.07 194 9.06 21.4
0.2 5,427 26,425 55.05 1,278 54.59 23.4

0.3 4,359 20,943 43.63 1,634 64.54 25.3
0.5 3,492 16,352 34.07 1,923 73.19 26.3

1.0 2,400 10,577 22.04 2,287 82.68 27.7

5.0 1,518 5,850 12.19 2,581 91.09 28.3
Max 1,326 4,740 9.88 2,645 93.56 28.3

Method : Edge contraction

Initialization Time : 9.80 sec

% error n m m=m0 N T N=T

0.1 7,026 37,011 77.11 2,235 107.34 20.8
0.2 5,413 29,788 62.06 3,848 181.91 21.2

0.3 4,740 26,282 54.75 4,521 212.84 21.2

0.5 3,976 21,788 45.39 5,285 249.39 21.2
1.0 3,067 16,331 34.02 6,194 293.89 21.1
5.0 1,678 7,864 16.38 7,583 363.74 20.7

Max 940 3,315 6.91 8,321 401.67 20.7

n : # of vertices

m : # of tetrahedra

N : # of iterations
T : Time in seconds
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Table 4.2: Experimental Results: Blunt's Dataset

Dataset : Blunt

n0 = 40960
m0 = 187395

Method : Tetrahedron contraction

Initialization Time : 35.09 sec

% error n m m=m0 N T N=T

0.1 40,438 184,723 98.57 174 12.25 14.2
0.2 39,142 178,058 95.02 606 42.86 14.1

0.3 37,570 169,784 90.60 1,130 80.31 14.1
0.5 34,180 152,014 81.12 2,260 156.14 14.5

1.0 29,428 127,381 67.97 3,844 243.42 15.8

5.0 24,082 99,107 52.87 5,826 330.80 17.6
Max 22,735 91,745 48.96 6,075 350.22 17.2

Method : Edge contraction

Initialization Time : 44.16 sec

% error n m m=m0 N T N=T

0.1 28,047 138,775 74.05 12,913 968.34 13.3
0.2 23,689 120,837 64.48 17,271 1,245.22 13.9

0.3 20,953 108,942 58.13 20,007 1,410.50 14.2

0.5 17,720 94,091 50.21 23,240 1,596.79 14.6
1.0 13,604 74,093 39.54 27,356 1,823.24 15.0
5.0 7,017 37,837 20.19 33,943 2,178.38 15.6

Max 2,640 11,279 6.02 38,320 2,437.33 15.7

n : # of vertices

m : # of tetrahedra

N : # of iterations
T : Time in seconds
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(f)

(a) (b)

(c) (d)

(e)

Figure 4.5: Images of cube data with tetrahedron collapse. (a) Original. (b) 0.2
% error. (c) 0.5 % error. (d) 1.0 % error. (e) 5.0 % error. (f) Max error
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(f)

(a) (b)

(c) (d)

(e)

Figure 4.6: Images of cube data with edge collapse. (a) Original. (b) 0.2 % error.
(c) 0.5 % error. (d) 1.0 % error. (e) 5.0 % error. (f) Max error
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(f)

(a) (b)

(c) (d)

(e)

Figure 4.7: Images of blunt data with tetrahedron collapse. (a) Original. (b) 0.2
% error. (c) 0.5 % error. (d) 1.0 % error. (e) 5.0 % error. (f) Max error
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(f)

(a) (b)

(c) (d)

(e)

Figure 4.8: Images of blunt data with edge collapse. (a) Original. (b) 0.2 %

error. (c) 0.5 % error. (d) 1.0 % error. (e) 5.0 % error. (f) Max error



Chapter 5

Conclusions and Future Work

In this thesis, we proposed two simpli�cation methods for volumetric datasets

represented as unstructured tetrahedral grids. The simpli�cation algorithms use

tetrahedron contraction and edge contraction based on scalar value assignment.

The results obtained by the SVA method shows that the heuristic works quite

well. The method is easy to implement, fast and efective. Tetrahedron contrac-

tion method works much faster than the edge contraction method, however, the

edge contraction method is a �ner method and can do more drastic simpli�cation

than the tetrahedron collapse method.

Tetrahedron contraction can be viewed as a combination of three sequential

edge contractions that reduce the tetrahedron to a vertex. Therefore, the chance

of a tetrahedron being contractible is lower with respect to an edge. This explains

why tetrahedron contraction algorithm can not do drastic simpli�cation.

Two things are worth some more e�ort in this thesis. First, the edge contrac-

tion method can be modi�ed in order to increase its performance. One approach

could be extracting the edge information implicit in the current dataset before the

main algorithm. Second, a hybrid method can be applied in which the algorithm

starts with contracting tetrahedra, then switching to face or edge contractions. As

mentioned earlier, it is possible to contract any degree of simplicial in the mesh.

53
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The face contraction method was not implemented because the performance can

be predicted from the two extreme ends of tetrahedron and edge contraction.

In order for a hybrid method to work, the heap must be able to store di�erent

types of primitives (edges, faces and tetrahedra). This can be done by using a

union structure in C. However, the contraction part would have to be extended

to deal with all three types. It is expected that a hybrid method will have better

performance and will be a �ner method than tetrahedron contraction.

There are also a couple of modi�cations that can be done to the implemen-

tations in general. First of all, the heap elements store unnecessary information.

This is due to the fact that the initialization stage is run once and the heap is

stored for later use. This enables the user to run the initialization phase only

once and get multiple records of simpli�cation without the initialization. A better

approach would be to store tetrahedra related information in another array and

store it also along with the heap.

One other improvement can be done while checking for contractibility. In our

implementations, for every candidate �nal vertex position (FVP), every vertex

negihbor is checked for 
ipping. Checking for 
ipping on a neighbor involves com-

putation of the 3� 3 � matrix of the tetrahedron. Instead of doing this for every

candidate, it is more convenient to calculate the � matrix of a vertex neighbor

and check for 
ipping with every candidate FVP (the number of candidates is

much less than the number of vertex neighbors). In the latter case, the function is

likely to return before all the vertex neighbors are checked and therefore improve

the average running time.

The calculation of the predicted error for every candidate FVP is again a

similar problem described in the contractibility check. In order to determine the

error and sccalar value at FVP, the scalar value at the FVP must be calculated

with respect to every neighbor. In the current implementations, every candidate

FVP is taken into account and all the scalar �elds are calculated. However, in

this case the � matrices of all the negihbors are calculated as many times as the

number of candidate FVPs.
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In general the SVA and error prediction heuristic works quite well and the

performance can be improved further by some small modi�cations and possibly

with the implementation of a hybrit method.
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