
COMPARISON OF FOUR APPROXIMATING

SUBDIVISION SURFACE SCHEMES

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF B_ILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

by

Tekin Kabasakal

August, 2002

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. U�gur G�ud�ukbay (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. B�ulent �Ozg�u�c

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. �Ozg�ur Ulusoy

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Science

ii

ABSTRACT

COMPARISON OF FOUR APPROXIMATING

SUBDIVISION SURFACE SCHEMES

Tekin Kabasakal

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. U�gur G�ud�ukbay

August, 2002

The idea of subdivision surfaces was �rst introduced in 1978, and there are many

methods proposed till now. A subdivision surface is de�ned as the limit of repeated

recursive re�nements. In this thesis, we studied the properties of approximating sub-

division surface schemes. We started by modeling a complex surface with splines that

typically requires a number of spline patches, which must be smoothly joined, making

splines burdensome to use. Unlike traditional spline surfaces, subdivision surfaces are

de�ned algorithmically. Subdivision schemes generalize splines to domains of arbitrary

topology. Thus, subdivision functions can be used to model complex surfaces without

the need to deal with patches.

We studied four well-known schemes Catmull-Clark, Doo-Sabin, Loop and the
p
3-

subdivision. The �rst two of these schemes are quadrilateral and the other two are

triangular surface subdivision schemes. Modeling sharp features, such as creases, cor-

ners or darts, using subdivision schemes requires some modi�cations in subdivision

procedures and sometimes special tagging in the mesh. We developed the rules of
p
3-

subdivision to model such features and compared the results with the extended Loop

scheme. We have implemented exact normals of Loop and
p
3-subdivision since using

interpolated normals causes creases and other sharp features to appear smooth.

Keywords: computational geometry and object modeling, subdivision surfaces, Loop,

Catmull-Clark, Doo-Sabin,
p
3-subdivision, modeling sharp features.

iii

�OZET

D�ORT YAKLAS�IMSAL Y�UZEY ALT B�OL�UMLEME

Y�ONTEM_IN_IN KARS�ILAS�TIRILMASI

Tekin Kabasakal

Bilgisayar M�uhendisli�gi, Y�uksek Lisans

Tez Y�oneticisi: Yrd. Do�c. Dr. U�gur G�ud�ukbay

A�gustos, 2002

Y�uzey alt b�ol�umleme �kri ilk olarak 1978 y�l�nda �one s�ur�ulm�u�s ve o g�unden beri bir

�cok y�ontem ortaya konmu�stur. Y�uzey alt b�ol�umleme, bir s�n�r de�gerine kadar kendi

kendini yineleyen bir iyile�stirme olarak tan�mlanmaktad�r. Bu ara�st�rmada yakla�s�msal

y�uzey alt b�ol�umleme y�ontemlerinin �ozellikleri incelenmi�stir. Karma�s�k y�uzeylerin kama

e�grileri ile modellenmesi, �cok say�da yivli kama yamas�n�n incelikle birle�stirilmesini

gerektirdi�ginden kullan�lmalar� zahmetlidir. Geleneksel y�uzey kama yamalar�n�n tersine

y�uzey alt b�ol�umleme y�ontemleri iyi tan�mlanm��st�r ve karal�d�rlar. Y�uzey b�ol�umleme

y�ontemlerinin kama e�grilerini d�uzensiz yap�lara uygulanacak �sekilde genellemesi, karma-

�s�k y�uzeylerin yamalarla u�gra�smadan modellenebilmesine imkan vermektedir.

Bu �cal��smada, Catmull-Clark, Doo-Sabin, Loop ve
p
3-b�ol�umleme y�ontemleri ince-

lenmi�stir. Y�ontemlerden ilk ikisi d�ortgen, di�ger ikisi �u�cgen y�uzeyler i�cin �onerilmi�stir.

Y�uzey b�ol�umleme ile k�r��s�klar, k�vr�mlar ve b�uk�ulme noktalar� gibi keskin hatl� y�uzeyle-

rin modellenmesi y�uzey b�ol�umleme y�ontemlerinin d�uzenlenmesi ve a�g�n i�saretlenmesini

gerektirmektedir.
p
3-b�ol�umleme y�onteminin kurallar� keskin hatl� y�uzeyleri modelleye-

cek �sekilde geli�stirilmi�s ve sonu�clar� geli�stirilmi�s Loop y�onteminin sonu�clar� ile kar�s�la�st�-

r�lm��st�r. Ara kestirim normallerinin kullan�lmas� keskin hatlar�n yumu�sak g�or�unmesine

neden oldu�gundan Loop ve
p
3-b�ol�umleme y�ontemlerinin kesin normal de�gerleri hesap-

lanarak kullan�lm��st�r.

Anahtar S�ozc�ukler: say�sal geometri ve nesne modelleme, y�uzey alt b�ol�umleme,

Loop, Catmull-Clark, Doo-Sabin,
p
3-b�ol�umleme, keskin hatlar�n modellenmesi.

iv

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Assist. Prof. Dr.

U�gur G�ud�ukbay, for his guidance, suggestions, and invaluable encouragement through-

out the development of this thesis.

I am also indebted to Prof. Dr. B�ulent �Ozg�u�c and Assoc. Prof. Dr. �Ozg�ur Ulusoy

for showing keen interest to the subject matter and accepting to read and review this

thesis.

I am grateful to my family and my friends for their in�nite moral support and help.

I owe special thanks to my friend Cenk S�en for reading this thesis. Special thanks to

Turkish General Sta� for giving me the opportunity to complete this study.

Finally, I would like to thank to my wife Kadriye for her endless patience while I

spent untold hours in front of my computer. Her support in so many ways deserves all

I can give.

v

to my beloved wife

vi

Contents

1 Introduction 1

1.1 Overview . 1

1.2 The Organization of the Thesis . 4

2 B-spline and Subdivision Surfaces 6

2.1 B-spline Surfaces . 6

2.1.1 Tensor Product B-spline Surfaces 6

2.1.2 Triangular Box Spline Surfaces 7

2.2 Curves and Surfaces De�ned by Subdivision 8

2.3 Arbitrary Topology Surface Schemes . 8

2.4 Classi�cation of Subdivision Surface Schemes 9

3 Approximating Subdivision Schemes 12

3.1
p
3-Subdivision Scheme . 13

3.1.1 Piecewise Smooth Surfaces by
p
3-Subdivision 14

3.1.2 Normals of the
p
3-Subdivision 17

vii

3.2 Loop Subdivision Scheme . 19

3.2.1 Normals of the Loop Scheme . 20

3.3 Doo-Sabin Scheme . 23

3.4 Catmull-Clark Scheme . 24

4 Implementation of Subdivision Surfaces 27

4.1 Data Structures . 27

4.1.1 The Corner Lath Data Structure 28

4.1.2 Implementing the Data Structure 31

4.2 Implementation of Subdivision Schemes 31

4.2.1
p
3-Subdivision Scheme . 32

4.2.2 Loop Subdivision Scheme . 34

4.2.3 Doo-Sabin Subdivision Scheme 36

4.2.4 Catmull Clark Scheme . 38

5 Subdivision Surfaces Examples and Analysis 41

5.1 Comparing Smoothness of Produced Surfaces 41

5.2 Comparing Computational Cost of the Schemes 44

5.3 Comparing Sharp Features Produced by Triangular Schemes 48

6 Conclusions and Future Work 52

6.1 Conclusions . 52

6.2 Future Work . 54

viii

Bibliography 55

Appendices 58

A B-spline Curves and Surfaces 58

A.1 Continuous and Discrete Convolution . 58

A.2 B-spline Functions . 62

A.3 Analysis of B-spline Curves . 66

A.3.1 Invariant Neighborhood . 66

A.3.2 Eigen Analysis . 67

A.3.3 Convergence Analysis . 68

B Utilities 70

B.1 The Readers . 70

B.1.1 SMF File Format Speci�cations 70

B.1.2 MDL File Format Speci�cations 73

B.2 Rendering Process . 75

ix

List of Figures

1.1 An example subdivision surface. (a) initial coarse mesh, (b) mesh after

�rst subdivision step, (c) mesh after second subdivision step. 3

2.1 Face split and vertex split re�nement rules. (a) quadrilateral face split,

(b) quadrilateral vertex split, (c) triangular 1-to-4 split, and (d) trian-

gular 1-to-3 split. 11

3.1 Labeling control points for
p
3-subdivision scheme. (a) face vertex, (b)

boundary vertex, (c) smooth or dart vertex, and (d) crease vertex. . . . 14

3.2 Masks for the
p
3-subdivision scheme. Double marked edges are the

sharp edges. (a) face vertex, (b) boundary vertex, (c) corner vertex, (d)

smooth or dart vertex, and (e) crease vertex. 16

3.3 Tangent masks for calculating the exact normals of the
p
3-subdivision

scheme. (a), (b) smooth or dart vertex, (c), (d) corner vertex, and (e),

(f) crease vertex. 18

3.4 Masks for the Loop subdivision scheme. (a) smooth or dart vertex, (b)

conical vertex, (c) crease vertex, (d) corner or cusp vertex, (e) smooth

edge, (f) ordinary crease edge, and (g) special crease edge. 21

3.5 Labeling of the 1-neighborhood of (a) a smooth, dart, conical or cusp

vertex, and (b) a crease or corner vertex. 22

x

3.6 Doo-Sabin subdivision scheme masks. (a) regular vertex, (b) extraordi-

nary vertex, and (c) boundary vertex. 24

3.7 Masks for the Catmull-Clark subdivision scheme. (a) face vertex mask,

(b) edge vertex mask, (c) even vertex rule, (d) boundary odd vertex

mask, and (e) boundary even vertex mask. 26

4.1 The lath data element. 29

4.2 Corner lath data structure pointer loops. The continuous arrows show

the loop on a face while the dotted ones show the loop around the vertex. 30

4.3 Illustration of
p
3-subdivision, upper row odd and bottom row even sub-

division steps. (a)new face vertices, (b) new faces (c) old edges
ipped,

(d) new face and boundary vertices, (e) new faces, and (f) old edges

ipped. 34

4.4 Illustration of Loop subdivision. (a) new edge vertices, and (b) new faces. 36

4.5 Illustration of Doo-Sabin subdivision. (a) new vertices are calculated, (b)

new faces are constructed, (c) the faces across the edges are connected,

and (d) the faces around faces are connected. 37

4.6 Illustration of Catmull-Clark subdivision. (a) new face points calculated,

(b) new edge points calculated, (c) new vertex points calculated, and (d)

new points are connected to construct the new faces. 39

5.1 Results of applying various subdivision schemes to a cube. (a)
p
3-

subdivision, (b) Loop subdivision, (c) Doo-Sabin subdivision, and (d)

Catmull-Clark subdivision. The control mesh is the unit cube drawn in

wire frame. 42

5.2 Results of applying various subdivision schemes to a tetrahedron. (a)
p
3-subdivision, (b) Loop subdivision, (c) Doo-Sabin subdivision, and

(d) Catmull-Clark subdivision. The control mesh is the tetrahedron

drawn in wire frame. 43

xi

5.3 Applying various schemes to a suÆciently smooth mesh produce similar

results. (a)
p
3-subdivision, (b) Loop, (c) Doo-Sabin, and (d) Catmull-

Clark. 44

5.4 Models which are used in our experiments. (a) distcap, (b) cow, (c)

mannequin, (d) dragon, (e) pelican, (f) crocodile, (g) cat, (h) bones,

and (i) oilpump. 45

5.5 Applying the Loop and the
p
3-subdivision to a simpli�ed bunny mesh.

(a) original bunny(69,451) (b) decimated bunny(5,000), (c) after one

Loop subdivision(20,000), (d) after one
p
3-subdivision (15,000), (e)

after two Loop subdivision(80,000), and (f) after two
p
3-subdivision

(45,000). 47

5.6 Example sharp features produced by using extended
p
3-subdivision

scheme and extended Loop subdivision scheme. The surfaces on the �rst

and third rows are produced by extended
p
3-subdivision scheme while

the surfaces on the second and fourth row are produced by extended

Loop subdivision scheme. 50

5.7 A�ect of using exact normals vs. interpolating normals. Surfaces on the

left, (a), (c), (e) are rendered by using interpolated normals, and on the

right, (b), (d), and (f) are rendered using exact normals. 51

A.1 Graph of a B-spline function of degree zero, one, two and three. 60

A.2 Invariant neighborhood of cubic B-splines 66

B.1 A sample SMF �le . 72

B.2 A sample MDL �le . 74

xii

List of Tables

4.1 Special knot spacing values for marking sharp features which are used

in MDL �le format. 32

5.1 Polygons processed per second for implemented di�erent subdivision sur-

face schemes. 46

xiii

List of Symbols and Abbreviations

CAGD : Computer Aided Geometric Design

CG : Computer Graphics

OS : Operating System

SS : Subdivision Surfaces

�i : eigenvalue

xi : eigen vector

Nn(t) : B-spline basis function of degree n

 : convolution

U(t) : characteristic function

S : subdivision matrix

r(u) : curve function

Ci : tangent plane continuation of degree i

ti : tangent vector

L : corner-lath element

F : faces

E : edges

V : vertices

xiv

Chapter 1

Introduction

1.1 Overview

Subdivision Surfaces have become a valuable tool in geometric modeling for Computer

Graphics (CG) and Computer Aided Geometric Design (CAGD). In recent years, sub-

division surfaces have received a lot of attention from both academics and industry pro-

fessionals. Movie industry professionals apply subdivision techniques to create complex

characters and to produce highly detailed, smooth animation. For example, in Geri's

game from Pixar Animation Studios [4], Geri's hands, head, jacket, and pants were

each modeled using a single subdivision surface. The high quality graphics, light maps,

and character animations in the game Quake 3 are very impressive. Although they

have done an excellent job in painting the textual details, most of the characters con-

sist of only several hundred triangles, which cannot capture highly detailed geometry.

Because of the recursive nature, subdivision naturally accommodates level-of-details

control through subdivision. This allowed the narrator of the game Quake 3 to spent

triangle budgets in regions where more details are needed by subdividing further.

The idea of subdivision surfaces is �rst introduced by Catmull and Clark [3], and

Doo and Sabin [5] independently in 1978. Unlike traditional spline surfaces, subdivision

surfaces are de�ned algorithmically. Simplicity, eÆciency, and ease of implementation

are the main advantages of the subdivision surfaces. The shape of a subdivision surface

is determined by a structured mesh of control points and a set of subdivision rules

1

CHAPTER 1. INTRODUCTION 2

prescribing a procedure for re�ning the mesh to a �ner approximation. The subdivision

surface itself is de�ned as the limit of repeated recursive re�nements. Subdivision

surfaces satisfy all the usual requirements for surface representation that the computer

graphics practitioners are confronted with.

A subdivision surface is the limit of a recursive re�nement process. Starting with

an initial polygonal mesh of arbitrary topology, a subdivision scheme is used to gener-

ate a new mesh that is the initial mesh for the next re�nement. A sample subdivision

surface is given in Figure 1.1. The repetitive application of this process will gener-

ate a sequence of polygonal meshes whose limit may be a smooth surface, assuming

appropriate conditions are satis�ed.

Subdivision surfaces lie somewhere in between polygon meshes and patch surfaces,

and o�er most of the best attributes of each. The well de�ned surface normal allows

them to be rendered smoothly without the faceted look of low polygon count polygonal

geometry, and they can represent smooth surfaces with arbitrary topology (with holes

or boundaries) without the restriction in patches where the number of columns and

rows has to be identical before two patches can be merged. Secondly, subdivision sur-

faces are constructed easily through recursive splitting and averaging: splitting involves

creating new faces by removing one old face, averaging involves taking a weighted av-

erage of neighboring vertices for the new vertices. Because the basic operations are so

simple, they are very easy to implement and eÆcient to execute. Besides, subdivision

naturally accommodates level-of-details control through adaptive subdivision because

of its recursive nature.

The simple splitting process usually starts from a coarse control mesh, iterating this

process several times will produce so-called semi-regular meshes. A vertex is regular if it

has six neighbors (in triangle mesh) or four neighbors (in quadrilateral mesh). Vertices

which are not regular are called extraordinary. Meshes that are coming from standard

modeling packages or 3D scanning devices usually do not have a regular structure,

hence there is a need to convert these irregular meshes into semi-regular meshes, a

process known as remeshing.

Recursive nature of subdivision surfaces lacks in modeling sharp features, such as

creases, corners and dart vertices. By making some modi�cations to the subdivision

rules and adding some new rules for special cases, this problem can be overcome and

CHAPTER 1. INTRODUCTION 3

(a)

(b)

(c)

Figure 1.1: An example subdivision surface. (a) initial coarse mesh, (b) mesh after

�rst subdivision step, (c) mesh after second subdivision step.

CHAPTER 1. INTRODUCTION 4

sharp features could be modeled.

The main focus of this work will be on implementing and comparing some subdivi-

sion schemes in a common framework, including sharp features on the triangular meshes

where one of the methods,
p
3-subdivision, extended to represent sharp features.

1.2 The Organization of the Thesis

The organization of the thesis is as follows: In Chapter 2, we de�ne the basic prin-

ciples behind subdivision, how subdivision rules are constructed; how their analysis

approached. We �rst de�ne uniform B-spline surfaces and explain how we can extend

B-spline curves to B-spline surfaces. Then, subdividing a B-spline curve and extend-

ing the method to B-spline surfaces are shown. We take subdivision as a method for

de�ning curves and surfaces. Topological restrictions and computational diÆculties of

B-splines are mentioned and how subdivision surfaces eliminate these disadvantages

are discussed.

In Chapter 3, the approximating subdivision schemes that we deal are introduced.

Their subdivision methods and smoothing rules are described with their normal calcu-

lations. Here, we also describe the developments we did for the
p
3-subdivision scheme

rules to model sharp features and to calculate exact normals.

In Chapter 4, we discuss the implementation. First, we outline the underlying rea-

sons for choosing the corner lath data structure, and explain the chosen data structure.

Second, we brie
y explain the implementation of the data structure and modi�cations

we did to manage subdivision and tagging knot spacings. Finally, we describe the algo-

rithms we have implemented in order to support each of the schemes. The main ideas

behind each of the implementations are mentioned here.

In Chapter 5, the results of applying the implemented subdivision surface schemes

to a variety of meshes and their behaviours at these mesh conditions are compared by

examining the images of rendered example surfaces. We highlight certain properties

of the schemes by examining a number of surfaces rendered using the implemented

Interface program. We base our comparisons on three criteria: smoothness of the

surfaces produced, computational work to be done, and modeling the sharp features.

CHAPTER 1. INTRODUCTION 5

The sharp features are compared only for the triangular subdivision schemes.

Conclusions and future research directions are given in Chapter 6.

In Appendix A, the basis for the B-spline functions and curves are explained brie
y.

We de�ne the uniform B-spline basis functions and use them to construct piecewise

polynomial curves. We choose repeated convolution to derive B-splines, since, we can

see from it directly how splines can be generated through subdivision. Techniques for

analysis of subdivision surfaces are then examined.

To model objects using subdivision surfaces we have to use some utilities to support

input handling and the rendering of the modeled surfaces. The utilities except the

representation and manipulation of data, such as data formats supported, rendering

process of surfaces, etc., are discussed in Appendix B.

Chapter 2

B-spline and Subdivision Surfaces

2.1 B-spline Surfaces

Subdivision surface schemes are usually originated from spline curves and surfaces [18].

Splines are piecewise polynomial curves of some chosen degree. Uniform B-spline basis

functions are used to construct piecewise polynomial curves. B-splines can be derived in

many ways. One of them is repeated convolution and brie
y explained in Appendix A.

B-spline curves can be extended to surfaces by some methods. Here, we will brie
y

discuss tensor product B-spline surfaces and triangular box spline surfaces. Then,

we will expand our view on subdivision to de�ne curves and surfaces as the limit of

repeated application of subdivision rules.

2.1.1 Tensor Product B-spline Surfaces

A surface representation can be obtained through the concept of a tensor product. We

start with a curve.

r(u) =
X
i

Fi(u)ci; (2.1)

where Fi(u) are some basis functions. Then, we move the curve while simultaneously

allowing it to alter shape. The motion and deformation in shape can be described by

6

CHAPTER 2. B-SPLINE AND SUBDIVISION SURFACES 7

ci where it is also a function of v as

ci(v) =
X
j

Gj(v)pij ; (2.2)

where Gj(v) is another set of basis functions. This process swept out a surface, which

has the parameterization

r(u; v) =
X
i

X
j

Fi(u)Gj(v)pij ; (2.3)

The control points pij can be organized in a mesh structure. For a �nite surface, there

are a �nite number of control points. The parameter values run over a rectangular

domain.

Replacing the arbitrary functions in above equation with B-spline functions pro-

duces tensor product B-spline surfaces.

r(u; v) =
X
i

X
j

Ni(u)Nj(v)pij ; (2.4)

The construction of tensor product B-spline surfaces indicates that subdivision of a

surface is closely related to subdivision of curves. We can apply the subdivision process

for B-spline curves in Equation A.20 to the control points ci.

Rules for subdivision surfaces can easily be described by masks. The mask is

supposed to be applied to all parts of the mesh and for each application a new control

point calculated using the coeÆcients in the masks.

2.1.2 Triangular Box Spline Surfaces

The spline surfaces considered in the previous section are de�ned on a rectangular pa-

rameter domain. It is also possible to de�ne a spline surface over a regular triangulation

of the parameter plane.

Triangular splines can be de�ned by using the piecewise linear box spline, which is

a hexagonal pyramid with the apex at height 1. The higher degree splines are then can

be obtained through convolution along the three directions simultaneously.

CHAPTER 2. B-SPLINE AND SUBDIVISION SURFACES 8

The triangular splines share many of the properties of B-splines. They have local

support, they are non zero, and their translates forms a partition which can be in any

of the three directions. It is possible to derive a subdivision equation for the triangular

splines similar to B-splines.

2.2 Curves and Surfaces De�ned by Subdivision

In the previous chapter we examined subdivision of spline curves and surfaces. We

examined under repeated subdivision how the control polygon converged to the spline

curve and similar results can be shown for surfaces. The subdivision equation is geo-

metric interpretation of subdivision process: new control points are calculated by using

the old control points. This geometric approach provides the inspiration for using sub-

division to de�ne curves and surfaces.

The problem is choosing coeÆcients for subdivision that converges to a smooth

curve or surface. In other words, given the averaging masks, what are the properties

of the limit curve/surface? This question includes determining, whether a limit object

exists, and, whether that object is smooth. And another problem is also identifying

those masks that allow the mesh approach to a limit curve or surface.

2.3 Arbitrary Topology Surface Schemes

In Section 2.1, we brie
y described two types of surfaces |tensor product B-spline

surfaces and triangular box spline surfaces. For tensor product B-spline surfaces the

control mesh must be a regular quadrilateral grid, while for triangular box spline sur-

faces the control mesh must be a regular triangular mesh. This imposes a restriction

on the topology of the surface that can be modeled.

The topological restrictions on spline based surface modeling methods are overcame

with subdivision surfaces. The early subdivision surface schemes such as those proposed

by Doo and Sabin, Catmull and Clark, and Loop, generalize spline surface schemes to

arbitrary topology by specifying additional mask for irregular vertices in the control

mesh.

CHAPTER 2. B-SPLINE AND SUBDIVISION SURFACES 9

An important property of subdivision surface schemes is that the number of irregu-

lar vertices and faces remains constant after �rst subdivision. As subdivision progresses

the irregular features are separated by larger patches of regular faces. This allows us

to analyze isolated irregular features. The limit position of the control point associated

with an irregular vertex is called an extraordinary point.

2.4 Classi�cation of Subdivision Surface Schemes

In literature there are many known stationary subdivision schemes generating contin-

uous surfaces on arbitrary meshes. There are wholly di�erent classes of subdivision

surfaces. At �rst glance the variety of existing schemes may appear confusing. On the

other hand the schemes can be classi�ed straightforwardly based on four criteria

� Re�nement rule: The re�nement rule is an algorithm to produce a �ner tiling

of the same type, from a given tiling. The most common re�nement rules are the

face split and vertex split.The face split rule can be applied to both triangular and

quadrilateral meshes. Usually, each face is split into four faces of the same type

|in
p
3-subdivision scheme faces split into three. The vertex-split rule can only

be applied to quadrilateral meshes. With this rule every vertex is split into four

new vertices. Subdivision schemes using the face split rules are called primal,

while schemes using the vertex split rules are called dual. See Figure 2.1 for face

split and vertex split re�nement rules.

� Mesh type: Regular subdivision schemes act on regular control meshes. The

regular mesh should be homomorphic to a tiling of the plane. For regular meshes

it's natural to use faces that are identical. If the faces are also required to be

regular polygons, there are only three possibilities: triangular, quadrilateral and

hexagonal tiling. Meshes consisting of hexagons are not very common and most

subdivision schemes operate on regular triangular or regular quadrilateral tiling.

These lead to two types of regular subdivision schemes: those de�ned for quadri-

lateral tilings and those de�ned for triangular tilings.

� Interpolating or approximating: A subdivision scheme is interpolating if all

control points in the original mesh are also the control points in all the meshes

CHAPTER 2. B-SPLINE AND SUBDIVISION SURFACES 10

obtained through subdivision, otherwise the scheme is approximating. In inter-

polation control points de�ning the initial mesh are also the points of the limit

surface, which allows one to control it in an intuitive manner. This property also

allows some algorithms to be considerably simpli�ed. Unfortunately, the quality

of these surfaces are not good as the quality of the surfaces produced by approx-

imating schemes, and these schemes do not converge to the limit surface as fast

as the approximating schemes.

� Smoothness: The order of continuity on the regular parts of the subdivision

surface depends on the scheme used. Most schemes produce C1 or C2 order

surfaces. The order of continuity near extraordinary points is usually lower than

that of regular parts of the surface.

CHAPTER 2. B-SPLINE AND SUBDIVISION SURFACES 11

(a)

(b)

(c)

(d)

Figure 2.1: Face split and vertex split re�nement rules. (a) quadrilateral face split, (b)

quadrilateral vertex split, (c) triangular 1-to-4 split, and (d) triangular 1-to-3 split.

Chapter 3

Approximating Subdivision

Schemes

As we have seen the subdivision schemes are a big family. In our study, we focused on

four di�erent approximating stationary subdivision schemes. Two of them quadrilat-

eral and the other two triangular schemes. Modeling sharp features using subdivision

schemes make these schemes valuable. But this requires some modi�cations in sub-

division rules and tagging in the mesh. Loop subdivision scheme was extended by

Hoppe et al. [9] and further by Schweitzer [15]. We developed subdivision rules for
p
3-subdivision scheme [10] proposed by Leif Kobbelt to model sharp features.

The schemes considered in our work are categorized as follows:

�
p
3-subdivision: triangular, face split, approximating, C2.

� Loop subdivision: triangular, face split, approximating, C2.

� Doo-Sabin subdivision: quadrilateral, vertex split, approximating, C1.

� Catmull-Clark subdivision: quadrilateral, face split, approximating, C2.

12

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 13

3.1
p
3-Subdivision Scheme

p
3-subdivision scheme is an approximating face split scheme de�ned on triangular

meshes presented by Leif Kobbelt [10].
p
3-subdivision scheme generates C2 surfaces

for regular control meshes. For arbitrary control meshes Kobbelt show that the limit

surface to be C2 almost everywhere except for the extraordinary vertices (valence 6= 6)

where the smoothness is at least C1.

In
p
3-subdivision scheme a 1-to-3 split operation performed for every triangle by

inserting a new vertex at its center. This introduces three new edges connecting the

new vertex to the surrounding old ones. In order to re-balance the valence of the

mesh vertices, every original edge that connects two old vertices
ipped. Applying

this split operation to a uniform grid generates a (rotated and re�ned) uniform grid.

Applying the same re�nement operator twice splits every original triangle into nine

subtriangles tri-adic split. When
p
3-subdivision applied to arbitrary triangle meshes,

all newly inserted vertices have exactly valence six. The valence of old vertices are not

changed, also the number of extraordinary vertices stay the same during every step of

subdivision.

The stencil for the relaxation of the old vertices is the 1-ring neighborhood contain-

ing the vertex itself and its direct neighbors. The labelling of the vertices is shown in

Figure 3.1. For symmetry reasons the same weight is assigned to each neighbor. For a

vertex p, the relaxation is calculated by

S(p) = (1� �n)p+
�n

n

n�1X
i=0

pi; (3.1)

where the he value of �n is calculated as

�n =
4� 2 cos

�
2�
n

�
9

; (3.2)

where n is the valency of the vertex. The masks used for all types of vertices in
p
3-subdivision are shown in Figure 3.2.

p
3-subdivision has many bene�ts. First, it is very natural to subdivide triangular

faces at their center instead of splitting all three edges. Second, the
p
3-re�nement

is slower than the usual dyadic split operators since the number of vertices and faces

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 14

p 4 p n−2

p n−1

p 1p 2

p 3 p 0

p n−2 p 2

p 1
p 0p n−1

p n−1

p 0 p n−2

p 2p 1
p 2

p 1

p 0

q

(b)(a)

(c) (d)

Figure 3.1: Labeling control points for
p
3-subdivision scheme. (a) face vertex, (b)

boundary vertex, (c) smooth or dart vertex, and (d) crease vertex.

increases by the factor of 3 instead of 4. Third, it enables a very simple implemen-

tation of adaptive re�nement with no inconsistent intermediate state, and it's easy

to implement. These properties makes
p
3-subdivision re�nement suitable for many

applications.

3.1.1 Piecewise Smooth Surfaces by
p
3-Subdivision

Fitting smooth surfaces to non-smooth objects often produces unacceptable results.

Since the
p
3-subdivision useful for many applications, we developed new subdivision

rules to accurately model objects with tangent discontinuities. These subdivision rules

produce commonly occurring sharp features that we call creases, corners and darts as

Hoppe et al. [9] did for the Loop scheme. A crease is a tangent line smooth curve

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 15

along which the surface is C0 but not C1 or C2; a corner is a point where three or

more creases meet; �nally a dart is a point of surface where a crease terminates. We

extended Kobbelt's
p
3-subdivision scheme [10] to model sharp features.

Evaluation of piecewise subdivision surfaces are done by the eigenvalue analysis. By

the way, Zorin at. al. [22] extended the work of Stam [17] by considering the subdivision

rules for piecewise smooth surfaces with boundaries depending on parameters. They

used a di�erent set of basic vectors for evaluation, which, unlike eigenvectors, depend

continuously on the coeÆcients of the subdivision rule. The advantages of this approach

is that it becomes possible to de�ne evaluation for parametric families of rules without

considering an excessive number of special cases and while improving the numerical

stability of calculations.

To model sharp features a subset L of edges in the initial mesh M0 is tagged as

sharp. We used a tagging facility as Hoppe et al. [9] and Sederberg et al. [16] did for

tagging vertices and edges in the control net, in order to determine which rule to use.

In the subdivision process, edges created from the re�nement of the sharp edges are

marked as sharp.

Tangent plane continuity relaxed by modifying the smoothing rules across sharp

edges. To ensure surface to have a well-de�ned tangent-plane at each point along the

crease, subdivision rules at crease edges must be chosen very carefully. Similar attention

must be paid to the corner or dart vertices.

We classi�ed vertices as smooth vertex, dart vertex, crease vertex and corner vertex

into four types. A smooth vertex is the one where the number of incident sharp edges is

zero, a dart vertex is the one where the number of incident sharp edges is one, a crease

vertex is the one where the number of incident sharp edges is two and a corner vertex

is the one where the number of incident sharp edges is more than two. Figure 3.2 shows

our subdivision masks.

We used two types of masks. A face vertex mask which does not depend on the

property of the vertices of the corresponding triangle. The vertex masks used for

smoothing the vertices on the sharp edges are chosen as explained above for smooth,

dart, crease, and corner vertices.

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 16

1/3 1/3

1/3

q

(a)

4/27

19/27

4/27

(b)

0

00

0

0 0

1

(c)

(d)

1−α

α α

αα

αα nn

n

nn

n n 4/274/27 19/27

(e)

Figure 3.2: Masks for the
p
3-subdivision scheme. Double marked edges are the sharp

edges. (a) face vertex, (b) boundary vertex, (c) corner vertex, (d) smooth or dart

vertex, and (e) crease vertex.

3.1.1.1 Adapting Surface Smoothing Rules

Limiting points and tangent planes can be computed by using masks, as explained in

Section 2.1.1. These masks are determined by the eigen structure of the local subdivi-

sion matrices.

Smooth and dart vertices: In the case of smooth or dart vertices the local subdi-

vision matrices describe the whole region and every vertex in the 1-ring neighborhood

equally a�ects the vertex.

Crease vertices: Crease vertices modeled as two sided boundaries. This divides

subdivision matrix into two separate matrices each describing a smooth region of the

surface. To prevent gaps and cracks we choose to use only the vertices along the crease

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 17

in 1-neighborhood of the vertex, to smooth the vertex.

Corner vertices: Corner vertices can also be treated as crease vertices where more

than two di�erent regions to be smoothed by di�erent separate decomposed matrices.

Corner vertices do not move during subdivision.

3.1.2 Normals of the
p
3-Subdivision

In computer graphics the normal vectors of surfaces are used to calculate lighting e�ects.

The normal vectors of surfaces are usually calculated by interpolating the normals of

the faces joining at the vertex. But in the case of piecewise subdivision surfaces which

is piecewise smooth this approach will not suÆce, since the interpolation will cause

creases and other sharp features to appear smooth.

As we mentioned in the previous Chapter, tangent planes can be computed by

using masks. Halstead et al. [7] show that the tangent vectors to the surfaces can be

computed using the two left eigen vectors of Sn corresponding to the largest eigen value

as,

t1 = c1v
0
1 + c2v

0
2 + : : :+ cnv

0
n (3.3)

t2 = c2v
0
1 + c3v

0
2 + : : :+ c1v

0
n (3.4)

For
p
3-subdivision, ci = cos(2�i=n) and their cross product gives an exact normal to

the surface. The tangent masks in Figure 3.3 are derived by the Equation 3.3 and 3.4.

At the limit position of a smooth or dart vertex with valency n, the tangent space

is spanned by Equation 3.3. At the limit position of a crease vertex, the tangent along

the crease is

talong = p1 � pn; (3.5)

where n is the crease valency, i.e. the number of edges between and including the two

edges marked as crease edges. The cross tangent vector depends on the valency. For a

valency 4 vertex it is

tacross = (p2 + p3)=2 � (p1 + 2p0 + p3)=4: (3.6)

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 18

c 3

c 5 c n

c 1c 4

c 2c 3

t 1 t 2

c 2 c 1

c n

c n−1c 4

0 0

0 1

0

00

0 −11

0

0

0

0

0

−1

1

00

−1 0

(a) (b)

(c) (d)

(e) (f)

n−1

n−2 2

10ω ω

ωω

ω

Figure 3.3: Tangent masks for calculating the exact normals of the
p
3-subdivision

scheme. (a), (b) smooth or dart vertex, (c), (d) corner vertex, and (e), (f) crease

vertex.

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 19

For an extraordinary vertex with valency n > 4 it is

tacross =
nX

i=1

!ipi; (3.7)

where !1 = !n = sin
�

�
n�1

�
=
�
2 cos

�
�

n�1

�
� 2

�
and !i = sin

�
�(i�1)
n�1

�
for i = 2; : : : ; n� 1.

For n = 2

tacross = p1 + p2 � 2p0; (3.8)

At a corner vertex the tangent vectors are

t1 = p1 � p0; (3.9)

t2 = pn � p0: (3.10)

3.2 Loop Subdivision Scheme

The Loop subdivision scheme is a simple approximating face split scheme for triangular

meshes proposed by Charles Loop [12]. The scheme is based on the three-directional

box spline, which produces C2 continuous surfaces over regular surfaces and C1 at

extraordinary points. The scheme can be applied to arbitrary polygonal meshes, after

the mesh is converted to a triangular mesh. for example by triangulating each polygonal

face.

Hoppe et al. extended the scheme [9] to incorporate sharp features, such as, creases,

darts and corner points. Creases are smooth curves across which the surface is C0

continuous instead of C1 or C2 continuous. Corners are points where three or more

creases join. A dart is a crease that transitions into a smooth part of the surface.

Schweitzer [15] further extended the scheme with conical and cusp points where

the limit surface is C0. At a conical point, the space spanned by the limiting tangent

vectors has dimension three. At a cusp point, the tangent vectors become parallel.

Later the masks for Loop subdivision surface algorithm are modi�ed by Loop [13]

to result in surfaces with bounded curvature and the convex hull property.

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 20

The full set of masks for the Loop scheme including the described extensions are

shown in Figure 3.4. To implement this scheme there must be a facility for tagging

edges and vertices in the control net, in order to determine which rule to use.

Loop showed tangent plane continuity of the original scheme. Schweitzer [15] proved

C1 continuity at extraordinary vertices up to valency 100 for the original scheme, and

also examined the behaviour of the extended scheme. Zorin [20] proved C1 continuity

at extraordinary vertices for all valences for the original scheme.

3.2.1 Normals of the Loop Scheme

In computer graphics the normal vectors of surfaces are used to calculate lighting

e�ects. In order to make a polygonal model look smooth the normal at a vertex is

usually computed by interpolating the normals of the faces joining at the vertex. For

the extended Loop scheme, this approach is not satisfactory, since the interpolation

will cause creases and other sharp features to appear smooth. One solution to this

problem is to use exact normals of the limit surface.

Usually the tangent vectors are used to compute a normal. The rules for computing

the tangent vectors of the Loop scheme are especial simple and can be obtained by

t1 =
k�1X
i=0

cos
2�i

k
pi;1; (3.11)

t2 =
k�1X
i=0

sin
2�i

k
pi;1: (3.12)

These formulas can be applied to the control points at any subdivision level. The

normal obtained as the cross product t1 x t2 can be interpreted geometrically. The

geometric nature of the normals obtained in this way suggests that they can be used

to compute approximate normals for other schemes. The exact normals require more

complicated expressions. Schweitzer [15] derived equations for the tangent vectors in

the extended scheme using eigen analysis. The equations are described in the sequel.

The labeling of the vertices is shown in Figure 3.5(a) for smooth, dart, conical, cusp

vertices and in Figure 3.5(b) for crease and corner vertices. The double edges are edges

marked as sharp.

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 21

β

β α β

β

ββ

δ

δ δ

δγ

δδ

0 0

1/86/81/8

0 0

0 0

1

0 0

1/8

3/8 3/8

0

1/2 1/2 3/8

0

5/8

(a) (b)

(c) (d)

(e) (f) (g)

001/8

00

Figure 3.4: Masks for the Loop subdivision scheme. (a) smooth or dart vertex, (b)

conical vertex, (c) crease vertex, (d) corner or cusp vertex, (e) smooth edge, (f) ordinary

crease edge, and (g) special crease edge.

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 22

p n−2p 4

p n−1

p 1p 2

p 3 p 0 p n−1

p n−2 p 2

p 1
p 0

(a) (b)

Figure 3.5: Labeling of the 1-neighborhood of (a) a smooth, dart, conical or cusp

vertex, and (b) a crease or corner vertex.

At the limit position of a smooth or dart vertex with valency n, the tangent space

is spanned by Equation 3.12. At the limit position of a crease vertex, the tangent along

the crease is

talong = p1 � pn; (3.13)

where n is the crease valency, i.e. the number of edges between and including the two

edges marked as crease edges.

The cross tangent vector depends on the valency. For a valency 4 vertex it is

tacross = (p2 + p3)=2 � (p1 + 2p0 + p3)=4: (3.14)

For an extraordinary vertex with valency n > 4 it is

tacross =
nX

i=1

!ipi; (3.15)

where !1 = !n = sin
�

�
n�1

�
=
�
2 cos

�
�

n�1

�
� 2

�
and !i = sin

�
�(i�1)
n�1

�
for i = 2; : : : ; n� 1.

For n = 2

tacross = p1 + p2 � 2p0; (3.16)

while for n = 3 the eigen analysis fails because the subdivision matrix does not have

a complete set of eigen vectors. The solution is to use generalized eigen vectors, and

Schweitzer skipped this case. The Equation above assumes the neighbor vertices are

ordinary. If this is not the case, the equations can be applied, after subdividing once.

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 23

At a corner vertex the tangent vectors are

t1 = p1 � p0; (3.17)

t2 = pn � p0: (3.18)

At a conical point there is no tangent plane. At a cusp point the tangent plane

degenerates into a line, which is spanned by

t = p0 � (p1 + : : :+ pn)=n: (3.19)

3.3 Doo-Sabin Scheme

The Doo-Sabin subdivision scheme [5] is a generalization of uniform biquadratic tensor

product B-spline surfaces to arbitrary topology. It is an approximating vertex split

(dual) scheme. The subdivision is quite simple since there is only one mask used to

compute the new vertices. A special rule is required only for the boundaries. Figure 3.6

shows the general mask, which reduces to the ordinary mask for quadratic tensor

product B-spline when applied to a quadrilateral face. The coeÆcients are de�ned by

the equations �0 = 1=4 + 5=4k and �i =
�
3 + 2 cos

�
2i�
k

��
=4k for i = 1; : : : ; k � 1.

Another choice of coeÆcients proposed by Catmull and Clark: �0 = 1=2 + 1=4k, �1 =

�k�1 = 1=8 + 1=4k and �i = 1=4k for i = 2; : : : ; k � 2. In the subdivision a new

face is created for every face, edge and vertex in the control mesh. After one step of

subdivision, every vertex has valence four, and the number of extraordinary faces does

not change in subsequent subdivisions.

Doo and Sabin initiated analysis of the Doo-Sabin scheme. Later Peters and

Reif [14] proved C1 continuity of a more general class of schemes of which Doo-Sabin

is a special case.

Sederberg et. al. [16], introduced features such as cusps, creases, and darts to model

sharp features with Doo-Sabin scheme.

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 24

3/16 9/16

3/161/16

n−2

3

n−1

0

12

3/41/4α

α

αα

α

α

(a) (b) (c)

Figure 3.6: Doo-Sabin subdivision scheme masks. (a) regular vertex, (b) extraordinary

vertex, and (c) boundary vertex.

3.4 Catmull-Clark Scheme

The Catmull-Clark subdivision scheme [3] was proposed at about the same time as

the Doo-Sabin subdivision scheme. Catmull-Clark generalize uniform bicubic B-spline

surfaces to arbitrary topology. The masks shown in Figure 3.7 generate new face, edge

and vertex points. At extraordinary vertices, Figure 3.7(c), Catmull and Clark use the

coeÆcients � = 1� 7
4n
, � = 3

2n
,
 = 1

4n
where n is the valency.

The Catmull-Clark scheme is an approximating face split, primal, scheme, splitting

each face with n sides into n quadrilaterals. After one step of subdivision all faces are

quadrilaterals. The number of vertices with valence other than four remains constant in

subsequent subdivisions. The masks in Figure 3.7 cannot be applied to control meshes

with irregular faces. To handle such meshes the rules are extended.

The rules of Catmull-Clark scheme are de�ned for meshes with quadrilateral faces.

Arbitrary polygonal meshes can be reduced to a quadrilateral mesh using a more general

form of Catmull-Clark rules [3].

� New face points are computed as the average of the control points associated with

the vertices in the original face.

� New edge points are computed as the average of the end points of the edge and

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 25

the new face points for the two faces sharing the edge.

� New vertex points can be calculated as

P
j+1
0 =

k � 2

k
P

j
0 +

1

k2

k�1X
i=0

P
j
i;1 +

1

k2

k�1X
i=0

P
j+1
i;2 (3.20)

Ball and Story [1] proved tangent plane continuity of the Catmull-Clark scheme.

Peters and Reif [14] proved C1 continuity for valences up to 10,000. The scheme

produces surfaces that are C2 continuous away from extraordinary vertices where they

are C1.

Sederberg et. al. [16], developed new subdivision rules for generating nun-uniform

subdivision surfaces of arbitrary topology with Catmull-Clark scheme. He introduced

features such as cusps, creases, and darts, while maintaining the same order of conti-

nuity as their counterparts. Havemann [8] did researches on the interactive display of

Ctmull-Clark surfaces. He used a three level caching strategy so that the display rou-

tine can make use of static geometry, but it can also eÆciently handle moving control

vertices, and it even changes the connectivity of the control meshes.

CHAPTER 3. APPROXIMATING SUBDIVISION SCHEMES 26

1/2 1/2 1/8 3/4 1/8

(d) (e)

1/161/16

3/8 3/8

1/161/16

1/41/4

1/4 1/4

/n

/n /n /n

/n

/n/n/n

/nγ

α

β γ

γ

β

γ

β β

β(a)

(b)

(c)

Figure 3.7: Masks for the Catmull-Clark subdivision scheme. (a) face vertex mask,

(b) edge vertex mask, (c) even vertex rule, (d) boundary odd vertex mask, and (e)

boundary even vertex mask.

Chapter 4

Implementation of Subdivision

Surfaces

4.1 Data Structures

One of the fundamental steps we had to cover before starting to implement any of the

subdivision algorithm was to design a suitable data structure. A major challenge is

to �nd a data structure that could handle the large and constantly changing data sets

involved in subdivision. The chosen structure should, besides representing the data in

its native form, also show the connectivity of the mesh in question, while keeping the

storage at minimum.

Speci�cally for our purposes it was important that the data structure could rep-

resent almost arbitrary meshes since we worked with di�erent types of subdivision

schemes. The schemes operate on mesh types that consist of primarily either triangu-

lar or quadrilateral faces. It would be very impractical to have separate data structures

for the di�erent mesh types, so an important criterion is the support for almost arbi-

trary meshes.

There are some restrictions on the meshes since we deal with subdivision. First, no

edge can be shared by more than two faces. Secondly, the faces sharing a vertex can

be ordered such that every two consecutive faces also share an edge. Thirdly, each face

27

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 28

has an orientation and faces sharing an edge must have same orientation.

The connectivity of the mesh should be represented easily since these changes of-

ten during subdivision when new additional vertices are introduced and therefore a

new connectivity structure has been generated. A good implementation of connectiv-

ity also ensures easy traversal of the data structure. This is again important in our

implementation since we recur over the mesh when subdividing.

We have chosen to focus less on other interesting and important areas of a good

data structure such as computational cost and memory consumption, the reason being

that today's computers can rather e�ortlessly support large data sets. Nevertheless,

our data structure still ensures that basic traversal of the mesh is reasonable eÆcient,

but there is certainly room for improvement in other areas of our implementation.

4.1.1 The Corner Lath Data Structure

We use the Corner Lath data structure proposed by Legakis et al. [11]. This data

structure is based on the Lath concept, illustrated in Figure 4.1. First, a link to the

vertex information associated with Lath; second, a link (the face-clockwise link) to a

lath that represents the next lath in a clockwise traversal of laths of the face that Lath

represents; and third, a link (the vertex-clockwise link) to the lath that is the next lath

in a clockwise traversal of the vertex that Lath represents are established. Here, the

lath elements are easily identi�ed with each vertex-face pair. The edge identi�ed with

each lath Lath is that edge bounded by the vertex of Lath and the vertex of the lath

identi�ed by the face-clockwise link.

This data item can encapsulate the structure of the mesh, and is fairly easy to

implement. The lath is used to represent all the important element of a mesh namely

the vertices, edges, faces and the connectivity among them. Furthermore the lath

supports the development of a basic set of traversal functions that are used during

subdivision.

The article describes several variations of the lath. The one we choose is the corner

lath. This type of lath, like the others, is associated with exactly one vertex, one edge

and one face of the mesh. Each lath contains a link to the vertex, one to the lath

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 29

face_clockwise
vertex_clockwiseL

Figure 4.1: The lath data element.

contained in the same face but in the counter-clockwise direction and one to the next

lath contained in a counter-clockwise traversal of the associated vertex. A visualization

of the corner lath data structure is shown in Figure 4.2. The two things that must be

stored are the laths and the vertices. The vertices contain the coordinates of the

associated control points.

By focusing on a large portion of the mesh two loops formed by the lath pointers

are easily identi�ed. The �rst loop allows a counter-clockwise traversal of the laths in

a face and the second loop allows a counter-clockwise traversal of the laths around a

vertex. Applying simple functions that use the lath pointers to navigate it is possible

to traverse these loops. Given a lath L , the basic functions are,

� L.ccwv() | returns the lath that follows L in a counter-clockwise traversal

around the vertex that L points to.

� L.ccwf() | returns the lath that follows L in a counter-clockwise traversal of

the face that contains L .

� L.cwv() | returns the lath that follows L in a clockwise traversal around the

vertex that L points to. This can be computed either by using L.ccwv() until

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 30

Figure 4.2: Corner lath data structure pointer loops. The continuous arrows show the

loop on a face while the dotted ones show the loop around the vertex.

the lath L.ccwv() equals L, or by using the sequence L.ccwf().ccwv().ccwf().

Special considerations have to be taken when working on the boundary.

� L.cwf()| returns the lath that follows L in a clockwise traversal around the

face that contains L . This can be computed either by using L.ccwf() until the

lath L.ccwf() equals L, or by using the sequence L.ccwv().ccwf().ccwv(). On

the boundary the second option will not work.

On the boundary, we should devote special care when traversing around a vertex

or in other words when switching from one face to another. The destination face might

not exist so this has to be clearly identi�ed in the data structure. By storing a NULL

pointer in the vertex link of a lath, and checking whether such one exists or not, when

traversing the data structure.

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 31

4.1.2 Implementing the Data Structure

Our implementation of the corner lath data structure is contained in a class. The basic

functions discussed above are implemented just described as member functions of the

class. Here is an outline of certain details di�ering form the above discussion.

During subdivision reversal from and to di�erent levels arise. Consequently, a very

simple but an important extension to our implementation of the corner lath structure

is needed to connect the subdivision levels that arise during subdivision. Each lath

therefore has a pointer to a lath in the next subdivided level, which is accessed by the

function

� L.nextlevel()| returns the lath in the next subdivided level

To handle the non-uniform subdivision schemes discussed in Section 3.1 and 3.2

we need a special tagging of the vertices and edges. Biermann et. al. [2] also used

tags in the same manner as we did for modeling sharp features. For this reason, we

added two member variables to the lath class to store two knot spacings for the vertex

it points to. One knot spacing is associated with the edge between the vertex and its

counter-clockwise neighbor in the face, and the other knot spacing is associated with

the edge between the vertex and its clockwise neighbor in the face.

Recall that each edge has two knot spacings associated with it { one in each end of

the edge. Table 4.1 lists the available knot spacing values and their interpretation. If

a point has con
icting markings e.g. it is marked as both a conical and cusp point, the

rule used to, is determined by the precedence: corner, conical, cusp, dart/ordinary.

4.2 Implementation of Subdivision Schemes

This will describe the algorithms we have implemented in order to support each of the

schemes. The main ideas behind each of the implementations will be mentioned here.

Each of the schemes are implemented as a class that all inherited from a base class,

which enables us to switch methods at run time.

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 32

Knot spacing value Interpretation

0.0 Crease edge. The two knot spacings on the edge should

have the same value. A point is a dart if exactly one

edge emanating from its corresponding vertex is marked

as a crease. The dart vertex rule is identical to the same

value.

1.0 Ordinary edge. The two knot spacings on the edge should

have the same value.

2.0 Conical point. A point is conical if at least one edge ema-

nating from its corresponding vertex is marked as conical.

3.0 Cusp point. A point is cusp if at least one edge emanating

from its corresponding vertex is marked as cusp.

4.0 Corner point. A point is corner if at least one edge ema-

nating from its corresponding vertex is marked as corner.

or if there are more creases are incident upon a vertex.

The edge rule will treat edges marked as corners as though

they were marked as creases.

Table 4.1: Special knot spacing values for marking sharp features which are used in

MDL �le format.

4.2.1
p
3-Subdivision Scheme

Subdivision

The
p
3-subdivision works on triangular meshes and the �rst assumption of the scheme

is that it is applied to meshes consisting of entirely triangles. The implemented scheme

extends Kobbelt's [10] scheme with the sharp features such as crease edge, or corner,

cusp or dart points. Again the knot spacing markings are used in here as explained in

Section 4.1.2.

The
p
3-subdivision process is implemented in the same recursive style as the other

schemes. The recursion, traverses vertices in the mesh building the subdivided 1-ring

neighbourhood of each vertex, and connecting these at the end of recursion.

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 33

The order of events when processing a single vertex is outlined below and illustrated

in Figure 4.3.

1. If the vertex has already been processed, nothing is done.

2. It is checked whether the vertex is on the boundary of the mesh. If so pointers

to the clockwise most and counter-clockwise most laths are saved.

3. The control points of the neighbor vertices are checked and the knot spacings are

inspected to determine the type of vertex rule to use.

4. The new vertex point is calculated by selecting the appropriate vertex rule based

on the �ndings in the previous step.

5. A new point is calculated for each triangle adjacent to the vertex. The midpoints

of the triangles are calculated as the average of the corner vertices of the triangle.

6. If the triangle has a counter-clockwise mate with respect to the vertex being

processed edge
ipping is done. If not or if these triangles are marked as crease

then the boundary rule is applied.

7. If the subdivision level being processed is an odd level the knots pacing on the

counter-clockwise vertex of the triangle and if it is on the boundary or a crease

edge then boundary rule is applied.

8. The triangles comprising the 1-neighbourhood of the start vertex on the subdi-

vided level are constructed and connected. The knot spacings on the original

edges are inherited by the corresponding edges on the subdivided level.

9. Connections from the coarser mesh to the newly generated laths in the next level

are made.

10. The subdivision procedure is applied recursively to all the neighboring vertices.

11. The �nal step is making the connections between the newly generated triangles

with the corresponding one of the old vertices.

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 34

(c)(a) (b)

(d) (e) (f)

Figure 4.3: Illustration of
p
3-subdivision, upper row odd and bottom row even subdi-

vision steps. (a)new face vertices, (b) new faces (c) old edges
ipped, (d) new face and

boundary vertices, (e) new faces, and (f) old edges
ipped.

Normals

When
p
3-subdivision surfaces with creases and special points are visualized, the use

of interpolated polygonal normals is unsatisfactory as in the case of Loop, since this

will tend to smooth out these features. To get the correct visual appearance, the exact

normals of the limit surface are used instead. The equations for calculating the exact

normals were given in Section 3.1.2.

4.2.2 Loop Subdivision Scheme

Subdivision

The Loop subdivision scheme works on triangular meshes so the �rst assumption for

the implementation of the scheme is that it is applied to meshes consisting entirely

triangles. If this assumption is not satis�ed for a model, it must be triangulated before

subdividing.

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 35

We implemented extended Loop [9] scheme with facilities for creating crease edges,

cusp, conical, corner and dart points as discussed in Section 3.2. These features are

marked in the data structure as special knot spacings.

The Loop scheme subdivision process is implemented in the same recursive fash-

ion as the other schemes. The recursion traverses vertices in the mesh, building the

subdivided 1-neighbourhood of each vertex, and connecting these at the end of the

recursion.

The order of events when processing a single vertex is outlined below and illustrated

in Figure 4.4.

1. If the vertex has already been processed, nothing is done.

2. It is checked whether the vertex is on the boundary of the mesh. If so pointers

to the clockwise most and counter-clockwise most laths are saved and regular

valence for the vertex is recorded as 4.

3. The control points of the neighbor vertices are collected and the knot spacings

are inspected to determine the type of vertex rule to use.

4. The new vertex point is calculated by selecting the appropriate vertex rule based

on the �ndings in the previous step.

5. A new point is calculated for each edge emanating from the vertex. The vertex

at the opposite end of the edge is inspected to �nd its valence and check whether

it is a corner. The edge rule is selected based on the �ndings.

6. The triangles comprising the 1-neighbourhood of the start vertex on the subdi-

vided levels are constructed and connected. The knot spacings on the original

edges are inherited by the corresponding edges on the subdivision level.

7. The subdivision procedure is applied recursively to all the neighboring vertices.

8. The 1-neighbourhood triangle patches are connected within every old triangle.

These are the triangles at the center of the original triangles.

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 36

(a) (b)

Figure 4.4: Illustration of Loop subdivision. (a) new edge vertices, and (b) new faces.

Normals

When Loop surfaces with creases and special points are visualized, the use of inter-

polated polygonal normals is unsatisfactory since this will tend to smooth out these

features. To get the correct visual appearance, the exact normals of the limit sur-

face are used instead. The equations for calculating the exact normals were given in

Section 3.2.1.

4.2.3 Doo-Sabin Subdivision Scheme

Subdivision

As mentioned in Section 3.3 the Doo-Sabin scheme is relatively easy to use and im-

plement. There is essentially only one mask that is applied to all faces in the control

mesh. The subdivision process is illustrated in Figure 4.5 and includes the following

steps.

1. If the vertex has already been processed, nothing is done.

2. The �rst step in the re�nement calculates the new face vertices. In general it takes

each vertex of each face in the mesh and applies the mask shown in Figure 3.6 in

Section 3.3 to calculate the new vertex. (See Figure 4.5(a)).

3. Then the generated vertices are connected to form the new faces inside the old

faces. (See Figure 4.5(b)).

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 37

(a) (b)

(d)(c)

Figure 4.5: Illustration of Doo-Sabin subdivision. (a) new vertices are calculated, (b)

new faces are constructed, (c) the faces across the edges are connected, and (d) the

faces around faces are connected.

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 38

4. Connections from the coarser mesh to the newly created laths in the next level

are made.

5. The subdivision procedure is applied recursively to all the neighboring faces.

6. New faces are constructed for each edge in the old face by connecting the four

new vertices adjacent to an old edge. The new faces are connected to the faces

constructed in step 3. (See Figure 4.5(c)).

7. The �nal step is to construct a new face for each vertex in the old mesh by

connecting the new vertices adjacent to each old vertex. These new faces are

connected to the faces constructed in steps 3 and 6. (See Figure 4.5(d)).

Normals

We did not implement the exact normals of the limit surface as in Loop or
p
3-subdi-

vision. Instead, we use interpolated polygonal normals on each vertex.

4.2.4 Catmull Clark Scheme

Subdivision

The procedure for subdividing a mesh with the Catmull-Clark masks is a little more

complicated than the case of Doo-Sabin. This is because a 2-neighborhood is necessary

to calculate the new points. There are three types of new points: face points, edge

points, and vertex points. The newly generated points then have to be connected in a

proper way. the following shows the order of events in the Catmull-Clark scheme and

the accompanying �gures help to clarify each step. Our implementation can also work

on irregular polygons as shown in Figure 4.6(a).

1. If the vertex has already been processed, nothing is done.

2. The new face points are calculated in this step. That is we circle our vertex and

generate a new face point for each face containing the vertex. The face point is

the average of all the original points de�ning the face. If we hit the boundary

and can not circle any further, we start the recursive subdivision here on the next

counter-clockwise vertex. (See Figure 4.6(a)).

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 39

(d)(c)

(a) (b)

Figure 4.6: Illustration of Catmull-Clark subdivision. (a) new face points calculated,

(b) new edge points calculated, (c) new vertex points calculated, and (d) new points

are connected to construct the new faces.

CHAPTER 4. IMPLEMENTATION OF SUBDIVISION SURFACES 40

3. The new edge points are calculated by averaging the end points of the edge and

the newly computed face points in the two faces sharing the edge. The end points

are placed on level j and the newly created face points are on level j + 1; so we

are using two levels. (See Figure 4.6(b)).

4. The new center points can be calculated in di�erent ways but we use the formula

F
n
+ 2E

n
+

(n�3)V
n

, where F is the average of the new face points of all faces adjacent

to old vertex V . E is the average of the midpoints of all edges incident upon the

old vertex V , and n is the valency of V (See Figure 4.6(c)).

5. The faces surrounding the newly created center vertex are created by using the

new edge and face vertices. Each face consist of the new center vertex, the two

new adjacent edge vertices and the face vertex created in each face.

6. The subdivision procedure is recursively applied to all the neighboring vertices.

7. The new faces around each vertex are connected to each other as a �nal step.

The result of the scheme is seen in Figure 4.6(d). It should be noted that the

re�ned mesh only contains faces with four edges regardless of the structure of the

original mesh.

Normals

We did not implement the exact normals of the limit surface as in Loop or
p
3-subdi-

vision. Instead, we use interpolated polygonal normals on each vertex.

Chapter 5

Subdivision Surfaces Examples

and Analysis

This chapter compares discussed subdivision schemes by applying to a variety of meshes

and examining images of example surfaces rendered. Smoothness of the surfaces pro-

duced, computational work to be done, and modeling the sharp features can be thought

of the areas of comparison. Smoothness of the surfaces and computational cost com-

parison done for considered four subdivision schemes. Instead, we compare the sharp

features only for the triangular subdivision schemes { Loop,
p
3-subdivision {, since we

just implemented sharp features with these schemes.

5.1 Comparing Smoothness of Produced Surfaces

Figure 5.1 shows surfaces generated by the
p
3-subdivision, Loop, Doo-Sabin and

Catmull-Clark subdivision schemes from a common control mesh in the shape of a

cube. It can be easily distinguished that Catmull-Clark and Doo-Sabin produces more

pleasing surfaces than that of produced by Loop or
p
3-subdivision which are more

asymmetric. The reason for this is that the cube had to be triangulated �rst before

applying these schemes. The triangulation has some implications; �rstly it raises the

valency of the original vertices, possibly making them irregular, secondly the new ver-

tices inserted will be irregular unless the face is a hexagon, and thirdly, the triangles

41

CHAPTER 5. SUBDIVISION SURFACES EXAMPLES AND ANALYSIS 42

(a) (b)

(c) (d)

Figure 5.1: Results of applying various subdivision schemes to a cube. (a)
p
3-

subdivision, (b) Loop subdivision, (c) Doo-Sabin subdivision, and (d) Catmull-Clark

subdivision. The control mesh is the unit cube drawn in wire frame.

will be
at with a very small angle at one side while having a large one on the other

side. Ideally, the triangulation should not increase the number of irregular features and

all triangles should have approximately equal angels.

Figure 5.2 shows surfaces generated by the schemes from a common control mesh

in the shape of a tetrahedron. Notice how much the mesh shrinks under Loop, Fig-

ure 5.2(b). Also a noticeable shrinkage can be seen in
p
3-subdivision, Figure 5.2(a),

and Catmull-Clark, Figure 5.2(d), but slightly less than the Loop scheme. All the

cube and tetrahedron �gures show that, the shrinkage is a characteristic feature of

approximating schemes. Shrinkage increases while the number of the polygons in the

CHAPTER 5. SUBDIVISION SURFACES EXAMPLES AND ANALYSIS 43

(a) (b)

(c) (d)

Figure 5.2: Results of applying various subdivision schemes to a tetrahedron. (a)
p
3-

subdivision, (b) Loop subdivision, (c) Doo-Sabin subdivision, and (d) Catmull-Clark

subdivision. The control mesh is the tetrahedron drawn in wire frame.

coarse mesh decreases, that is for small meshes, the resulting surface is likely to oc-

cupy much smaller volume than the original control mesh. Besides, Figure 5.3 shows

that for suÆciently smooth coarse meshes, di�erent schemes produce virtually undis-

tinguishable results. Upper row of the Figure 5.3 illustrates the surfaces produced from

the same coarse mesh of Venus sculpture and the bottom row illustrates the surfaces

produced from the same coarse mesh of head of Mr. Spock by the algorithms we had

implemented. A careful analysis will show that, there are little di�erences between

the outputs. Another thing to notice in Figure 5.2 is that the shape of the control

polyhedron can be recognized in the Doo-Sabin surface while getting less degree in the

Loop and
p
3-subdivision surfaces, while Catmull-Clark bears no resemblance.

CHAPTER 5. SUBDIVISION SURFACES EXAMPLES AND ANALYSIS 44

(a) (b) (c) (d)

Figure 5.3: Applying various schemes to a suÆciently smooth mesh produce similar

results. (a)
p
3-subdivision, (b) Loop, (c) Doo-Sabin, and (d) Catmull-Clark.

5.2 Comparing Computational Cost of the Schemes

Performance of di�erent subdivision schemes can be evaluated by examining the number

of the polygons computed per time unit. The absolute values are naturally highly

dependent on the speci�cations of the computer used. We have done our experiments on

a 800 Mhz. Pentium III double processor system with 1 GB RAM and a GForce 3 Video

Adapter with OpenGL support, running Linux OS. Sample measurements showing the

number of polygons processed per second are listed in Table 5.1.

Figure 5.5 shows the results of applying
p
3-subdivision and Loop schemes to a

decimated Stanford bunny. The original Stanford bunny was decimated with Michael

Garland's [6] QSlim 2.0 surface simplification tool. All the other models used

in our experiments are also simpli�ed with the same tool. The original Stanford Bunny

and the simpli�ed one are shown in Figure 5.5(a) and (b) respectively. It should

be noted in Figure 5.5(c),(d),(e) and (f) that how
p
3-subdivision scheme produces

CHAPTER 5. SUBDIVISION SURFACES EXAMPLES AND ANALYSIS 45

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.4: Models which are used in our experiments. (a) distcap, (b) cow, (c) man-

nequin, (d) dragon, (e) pelican, (f) crocodile, (g) cat, (h) bones, and (i) oilpump.

CHAPTER 5. SUBDIVISION SURFACES EXAMPLES AND ANALYSIS 46

MESHES
p
3-Subdiv. Loop Doo-Sabin Catm.-Clark

Mannequin(34,567) 58.736,8 86.260,9 61.347,9 50.207,0

Oil-Pump(20,544) 59.328,0 83.638,6 59.671,4 48.391,3

Bunny(69,451) 60.391,3 82.578,5 58.936,4 49.248,3

Cat(8,976) 61.072,7 81.118,5 59.736,4 51.521,4

Dragon(9,832) 68.945,0 90.074,2 61.983,0 48.717,3

Pelican(25,080) 63.319,3 82.119,2 63.580,0 50.508,6

Bones(4,204) 59.327,4 84.925,2 61.936,7 49.729,4

Dist-Cup(14,880) 58.554,2 86.084,7 59.385,7 46.596,8

Crocodile(34,404) 62.694,1 83.527,6 62.589,5 51.060,0

Crater(65,467) 58.521,4 83.129,7 58.156,0 46.983,4

Cow(5,804) 63.361,2 83.976,9 61.432,7 49.267,3

Table 5.1: Polygons processed per second for implemented di�erent subdivision surface

schemes.

approximately the same smoothness as the Loop subdivision scheme with a noticeable

less number of triangles.

The reason for the comparatively high performance of the
p
3-subdivision and Loop

schemes are that constructing triangles is faster than constructing quadrilaterals in our

data structure. Besides, in the construction of the subdivided control mesh triangles

generally have to be connected to three neighbors, while quadrilaterals have four neigh-

bors. By the way, for a given number of vertices a triangular scheme will have twice as

many polygons as a quadrilateral mesh. This makes triangular schemes slightly slower

than the quadrilateral schemes in total computational time.

The number of the masks used also important from the point of performance. By

the increase of the number of the masks work to be done to decide which mask to be

use and the calculations for the masks gets complex and time consuming. There is a

trade of between obtaining more smooth surfaces by using more masks and rules and

computation time. The smaller masks can explain the superiority of the Doo-Sabin

over Catmull-Clark scheme.

It should be emphasized that when we started our implementation, our aim was cor-

rectness rather than speed. A fully optimized implementation would yield substantially

higher polygon frequencies.

CHAPTER 5. SUBDIVISION SURFACES EXAMPLES AND ANALYSIS 47

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Applying the Loop and the
p
3-subdivision to a simpli�ed bunny mesh.

(a) original bunny(69,451) (b) decimated bunny(5,000), (c) after one Loop subdi-

vision(20,000), (d) after one
p
3-subdivision (15,000), (e) after two Loop subdivi-

sion(80,000), and (f) after two
p
3-subdivision (45,000).

CHAPTER 5. SUBDIVISION SURFACES EXAMPLES AND ANALYSIS 48

5.3 Comparing Sharp Features Produced by Triangular

Schemes

Usually, it is necessary to have more control over the surface than it is o�ered by

the uniform schemes. The most useful feature is to create creases and corners. One

approach to modeling such features is to make the control mesh denser around the

features. From the point of implementation this solution is not satisfactory, since it

increases the amount of memory needed to store the control mesh and the time spent

on subdividing the mesh. Another solution to this problem is using tagged meshes and

introducing additional subdivision rules. By the way, introducing new rules makes the

implementation more complicated.

The extended Loop scheme and extended
p
3-subdivision scheme has a very intu-

itive way of introducing creases and similar features, however they are less
exible, for

example they can not produce semi-sharp features. This could be remedied by intro-

ducing additional subdivision rules and extending the tagging for the data structure.

Obviously, introducing more rules makes the implementation more complicated and

less eÆcient. Pixar Animation Studios use a variant of the Catmull-Clark with rules

for creases [4]. They produced semi-sharp creases, �rst applying the sharp crease rule

a number of times and then applying an interpolation of the sharp and smooth rule.

The results of using tagging by the extended
p
3-subdivision scheme and extended

Loop scheme can be seen in Figure 5.6. The surfaces on the �rst and third rows are pro-

duced by extended
p
3-subdivision scheme while the surfaces on the second and fourth

row are produced by extended Loop subdivision scheme. All the surfaces are generated

from the same initial mesh given in Figure 5.6(a) as wireframe and Figure 5.6(b) as

smooth shaded surface. Figure 5.6(c) and (d) shows the surfaces generated without

using any knot spacings by
p
3-subdivision and Loop scheme respectively. The surfaces

in Figure 5.6(e) and (f) are generated by marking the outer and inner side edges of

the front face as crease. Notice the front face surface that is only smoothed along the

sides.
p
3-subdivision shrinks more than Loop scheme while producing creases. The

surfaces in Figure 5.6(g) and (h) are generated by marking the inner side vertices of

the front face as corner vertices, while marking the outer side vertices of the front face

as corner vertices produces the surfaces in Figure 5.6(i) and (j). Notice the sharpness

of the surfaces along the creases between corner points. Figure 5.6(g) and (h) show

CHAPTER 5. SUBDIVISION SURFACES EXAMPLES AND ANALYSIS 49

that, extended
p
3-subdivision scheme produces more realistic surfaces than that of

extended Loop scheme, in the case of marking the inner side vertices as corner. In

extended Loop subdivision the corner points goes deep into the surface. The surfaces

in Figure 5.6(k) and (l) are generated by marking the bottom face outer side vertices

as corner vertices.

The surfaces in Figure 5.6 shows that by using the developed
p
3-subdivision and

extended Loop subdivision we can control the behavior of the surface by using the

speci�ed taggings. This gives us the
exibility of obtaining di�erent surfaces from the

same coarse mesh and produce more realistic looking surfaces.

For the
p
3-subdivision and Loop subdivision we have implemented calculation of

exact normals of the limit surfaces. Figure 5.7 illustrates the di�erences between using

interpolated normals and exact normals. The same mesh rendered using both interpo-

lating and exact normals. The right ones are rendered by using exact normals and the

left ones with interpolating normals. The sharpness of the creases and corner points

can not be distinguished clearly in the surfaces obtained by using interpolated normals.

The top row, Figure 5.7(a) and (b), hill �gure, contains two creases. One is on

the front hill from the bottom near corner to the top of the hill and the other one is

between the hills. The ending point of the crease at the top of the hill is a dart point

and the smoothness can be distinguished in both surfaces. High polygon frequency

decreases the e�ect of using exact normals while rendering but a careful eye would

catch the sharpness di�erence between the hills. On the middle row, Figure 5.7(c) and

(d), a surface containing corner and crease rendered and the di�erence is very clear.

The bottom row, Figure 5.7(e) and (f), also shows a surface with the sides of the inner

hole are creases and seems smooth with the interpolated normals. With exact normals

the sharpness of the creases is emphasized and can be distinguished clearly.

Additionally, the exact normals make the approximation to the surface look better,

so it may be possible to save some subdivision steps.

CHAPTER 5. SUBDIVISION SURFACES EXAMPLES AND ANALYSIS 50

(a) (c) (e)

(b) (d) (f)

(g) (i) (k)

(h) (j) (l)

Figure 5.6: Example sharp features produced by using extended
p
3-subdivision scheme

and extended Loop subdivision scheme. The surfaces on the �rst and third rows are

produced by extended
p
3-subdivision scheme while the surfaces on the second and

fourth row are produced by extended Loop subdivision scheme.

CHAPTER 5. SUBDIVISION SURFACES EXAMPLES AND ANALYSIS 51

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: A�ect of using exact normals vs. interpolating normals. Surfaces on the

left, (a), (c), (e) are rendered by using interpolated normals, and on the right, (b), (d),

and (f) are rendered using exact normals.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Recently, subdivision surfaces has gained considerably interest in computer graphics

research community. Mathematical concepts behind them are extended to produce

limit surfaces required for many applications regardless of the topology. Support for

the varying topology makes the subdivision surfaces very useful. The well-known spline

surfaces have the major drawback of being limited by the topology of the surface.

We discuss the topological restrictions of B-spline based surface representations.

Topological restrictions and computational diÆculties of B-splines are mentioned and

how subdivision surfaces eliminates these disadvantages are discussed. The subdivision

schemes generalize spline surfaces to arbitrary topology by specifying additional masks

for irregular vertices and faces in the control mesh. Then, four di�erent subdivision

schemes that we choose to implement, namely Doo-Sabin, Catmull-Clark, Loop and
p
3-subdivision, are brie
y explained.

Next, we discuss our implementation of these four subdivision schemes. Since the

corner-lath data structure handles various mesh topologies, we choose this data struc-

ture. It allows us to traverse a mesh in an intuitive and eÆcient manner based on the

mesh topology. Then, we brie
y explain the implementation of discussed subdivision

schemes in a step by step manner.

52

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 53

Then, the implemented subdivision surface schemes are compared. Discussed sub-

division schemes are compared by generating a variety of meshes using them and ex-

amining images of example surfaces rendered. We highlight certain properties of the

schemes by examining a number of surfaces rendered using the implemented Interface

program.

Brie
y, the advantages of subdivision surfaces are: Subdivision surfaces are simple

methods for describing complex surfaces. They are constructed easily through recursive

splitting and averaging: splitting involves creating new faces by removing old ones

and averaging involves taking a weighted average of neighboring vertices for the new

vertices. They are easy to implement and eÆcient to execute. The well de�ned surface

normals allows them to be rendered smoothly without the faceted look of low polygon

count polygonal geometry. They can represent smooth surfaces with arbitrary topology

(with holes or boundaries). Subdivision surfaces are de�ned algorithmically and they

guaranties a smoothness degree. Subdivision naturally accommodates level-of-details

control through adaptive subdivision because of its recursive nature. The diÆculties

faced with subdivision are intuitive speci�cation, parameterization of the surfaces, and

getting intersections of surfaces or attaching them together.

As a result of our experiments, we can say, it is not possible to appoint the best

subdivision scheme. For a given application the choice of the scheme must depend

on the type of the control mesh, and requirement for smoothness and performance.

For applications requiring higher speed but low surface quality, the Doo-Sabin scheme

can be a good choice. In some applications Catmull-Clark and Loop schemes can be

candidates with their C2 continuity on regular meshes. The slower increase of the mesh

complexity and the suitability for adaptive re�nement makes
p
3-subdivision scheme a

good candidate for practical and industrial applications.

In the computer aided geometric design community, the popularity of the sub-

division surfaces increases rapidly to make subdivision surfaces one of the modeling

primitives.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 54

6.2 Future Work

Although, many researches and studies done to �nd out the properties and behaviour of

subdivision surface schemes, still there are many questions and properties to explore.

One of the search topic can be the modi�cation of the smoothing rules to lead to

more smooth surfaces especially for the newly proposed schemes. Another search topic

can be �nding out a suitable data structure that could handle the large and constantly

changing data sets involved in subdivision, keeping the storage, traverse and data access

time minimum.

Detecting and processing sharp features of surfaces o�ers new
exibilities in mod-

eling. Automatic detection of the topological type of the surface, and the presence

and location of sharp features for the arbitrary meshes is still an open question and

can be studied in detail. In addition to our extensions to
p
3-subdivision scheme, new

subdivision rules can be developed to model wider variety of sharp features such as,

conical or cusp points or more then two darts ending at a vertex, etc.

Obtaining semi-sharp features, while modeling an object with subdivision, is also

an open question to explore for all subdivision schemes. Some methods proposed

use interpolation of sharp and non-sharp state of surfaces. Finding out eÆcient and

practical ways to produce semi-sharp and sharp features for subdivision schemes would

probably make these modeling tools one of the modeling primitives.

Bibliography

[1] Ball, A.A. and Story, D.J.T., Conditions for tangent plane continuity over recur-

sively generated B-spline surfaces. ACM Transactions on Graphics , Vol. 7, No. 2,

pp. 83-102, 1998.

[2] Biermann, H., Levin, A. and Zorin, D., Piecewise smooth subdivision surfaces

with normal control. ACM Computer Graphics (SIGGRAPH'2000 Proceedings)

pp. 113-120, 2000.

[3] Catmull, E. and Clark, J., Recursively generated B-spline surfaces on arbitrary

topological meshes. Computer Aided Design, Vol. 10, No. 6, pp. 350-355, 1978.

[4] Derose, T., Kass, M., and Troung, T., Subdivision surfaces in character animation.

ACM Computer Graphics (SIGGRAPH'98 Proceedings), pp. 85-94, 1998.

[5] Doo, D. and Sabin, M., Behaviour of recursive subdivision surfaces near extraor-

dinary points. Computer Aided Design, Vol. 10, No. 6, pp. 356-360, 1978.

[6] Garland, M. and Heckbert, P.S., Surface simpli�cation using quadric error metrics.

ACM Computer Graphics (SIGGRAPH'97 Proceedings), pp. 44-52, 1997.

[7] Halstead, M., Kass, M., and Derose, T., EÆcient fair interpolation using Catmull-

Clark surfaces. ACM Computer Graphics (SIGGRAPH'93 Proceedings), pp. 35-44,

1993.

[8] Havemann, S., Interactive rendering of Catmull/Clark surfaces with crease edges.

The Visual Computer, Vol. 18, pp. 286-298, 2002.

55

BIBLIOGRAPHY 56

[9] Hoppe, H., Derose, T., Ducchamp, T., Halstead, M., Jin, H., McDonald, J.,

Schweitzer, J., and Stuetzle, W., Piecewise smooth subdivision surface recon-

struction. ACM Computer Graphics (SIGGRAPH'94 Proceedings), pp. 295-302,

1994.

[10] Kobbelt, L.,
p
3-Subdivision. ACM Computer Graphics (SIGGRAPH'2000 Pro-

ceedings), pp. 103-112, 2000.

[11] Legakis, J., MacKraken, R., and Joy, K.I., Data structures for un-

structured meshes. Technical Report, CSE-97-6, Department of Com-

puter Science, University of California, Davis, 1997, (available at

http://www.cs.umd.edu/class/fall2000/cmsc725/mesh-paper.pdf).

[12] Loop, C., Smooth subdivision surfaces based on triangles. Master Thesis, Depart-

ment of Mathematics, University of Utah, 1987.

[13] Loop, C., Bounded curvature triangle mesh subdivision with convex hull property

The Visual Computer, Vol. 18, pp. 316-325, 2002.

[14] Peters, J. and Reif, U., Analysis of algorithms generalizing B-spline subdivision.

SIAM Journal on Numerical Analysis, Vol. 35, No. 2, pp. 728-748, 1998.

[15] Schweitzer, J., Analysis and application of subdivision surfaces. Ph.D. Thesis,

Department of Computer Sciences and Engineering, University of Washington,

1996.

[16] Sederberg, T. W., Zheng, J., Sewel, D., and Sabin, M., Non-uniform recur-

sive subdivision surfaces. ACM Computer Graphics (SIGGRAPH'98 Proceedings),

pp. 387-394, 1998.

[17] Stam, J., Exact evaluation of Catmull-Clark subdivision surfaces at arbi-

trary parameter values. ACM Computer Graphics (SIGGRAPH'98 Proceedings),

pp. 395-404, 1998.

[18] Stam, J., On subdivision schemes generalizing uniform B-spline surfaces of arbi-

trary degree Computer Aided geometric Design, Vol. 18, pp. 383-396, 2002.

[19] Warren, J. and Weimer, H., Subdivision methods for geometric design: A construc-

tive approach. The Morgan Kaufmann Series in Computer Graphics and Geometric

Modeling, October 2001.

BIBLIOGRAPHY 57

[20] Zorin, D., Stationary subdivision and multiresolution surface representation. Ph.D.

Thesis, California Institute of Technology, 1997.

[21] Zorin, D., Schroder, P. Subdivision for modeling and animation. ACM Computer

Graphics SIGGRAPH Course Notes, 2000.

[22] Zorin, D., Evaluation of piecewise smooth subdivision surfaces The Visual Com-

puter, Vol. 18, pp. 299-315, 2002.

Appendix A

B-spline Curves and Surfaces

Splines are piecewise polynomial curves of some chosen degree. In this chapter, we

de�ne the uniform B-spline basis functions and use them to construct piecewise poly-

nomial curves. There are many ways to derive B-splines. Here, we choose repeated

convolution since we can see from it directly how splines can be generated through

subdivision.

A.1 Continuous and Discrete Convolution

We begin by de�ning convolution and present some properties of convolutions we will

need in the following sections.

De�nition 1 : The continuous convolution of functions f(t) and g(t), is de�ned

as

f(t)
 g(t) =

Z
f(s)g(t� s)ds (A.1)

The functions Ui(t) = U(t � i) are translates of U(t). By construction, these

functions are 1 between i and i+ 1 A degree zero B-spline is the sum of translates of

U(t).

f(t) =
X
i

piUi(t) (A.2)

58

APPENDIX A. B-SPLINE CURVES AND SURFACES 59

This B-spline is uniform since the breaks between each pair of adjacent constant func-

tions are evenly spaced.

The piecewise constant functions over half-integers, quarter-integers, etc, are dilates

of U(t).

U
j
i (t) = U(2jt� i): (A.3)

The following theorem shows how convolution e�ects dilates and translates.

Theorem 1 : Let f(t), g(t), and h(t) be functions and let m(t) = f(t)
 g(t) be the

continuous convolution of f(t) and g(t), then

f(t)
 (g(t) + h(t)) = f(t)
 g(t) + f(t)
 h(t) linearity (A.4)

f(t� i)
 g(t� k) = m(t� i� k) time shift (A.5)

f(2t)
 g(2t) =
1

2
m(2t) time scaling (A.6)

Proof : Substituting the de�nition of convolution and using simple properties of

integration proves these identities. Linearity;

f(t)
 (g(t) + h(t)) =

Z
f(s) (g(t� s) + h(t� s)) ds

=

Z
f(s)g(t� s)ds+

Z
f(s)h(t� s)ds

= f(s)
 g(t) + f(s)
 h(t)

time shifting;

g(t� i)
 h(t� j) =

Z
g(s� i)h(t � j � s)ds =

Z
g(s)h(t � i� j � s)ds

=

Z
g(s)h(t� s)ds = g(t)
 h(t)

= m(t) = m(t� i� j);

where we can change variables s = s� i and t = t� i� j

APPENDIX A. B-SPLINE CURVES AND SURFACES 60

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

N 0 (t) N 1 (t)

N 2 (t) N 3 (t)

Figure A.1: Graph of a B-spline function of degree zero, one, two and three.

time scaling;

g(2t)
 h(2t) =

Z
g(2s)h(2(t � s))ds =

1

2

Z
g(s)h(2t � s)ds

=
1

2
g(2t)
 h(2t) =

1

2
m(2t);

where s = 2s.

The next theorem shows that convolution raises the degree of di�erentiability.

Theorem 2 : If f(t) is a Ck continuous function then U(t)
 f(t) is a Ck+1

continuous function.

Proof : Using the de�nition of convolution and U(t) a direct calculation gives

U(t)
 f(t) =

Z
U(s)f(t� s)ds =

Z 1

0
f(t� s)ds

= �
Z t�1

t

f(s)ds =

Z t

t�1
f(s)ds;

with s = t� s. The theorem then follows from the fact that the di�erentiability of the

last integral is one higher than that of f(t).

APPENDIX A. B-SPLINE CURVES AND SURFACES 61

We now turn to the discrete convolution of sequences.

De�nition 2 : Let a and b sequences, then the discrete convolution of a and b is

a sequence, c, with elements

ck = (a
 b)k =
X

i+j=k

aibj: (A.7)

Certain properties of discrete convolution can conveniently be expressed in terms of

generating functions. The generating function of a sequence, a, is the unique polynomial

function, A(t), given by

A(t) =
X
k

akt
k: (A.8)

It is easy to verify that the generating function of the sequence c in de�nition 2 can

be written as

C(t) = A(t)B(t); (A.9)

where A(t) and B(t) are the generating functions for the sequences a and b, respectively.

When we write the function, f(t), in terms of its dilates we get the equation of form

f(t) =
X
i

cif(2t� i); (A.10)

These equations are called subdivision equations or re�nement equations. The fol-

lowing theorem provides the link between subdivision equations and discrete convolu-

tion.

Theorem 3 : Let h(t) = f(t)
g(t) be the continuous convolution of two functions,

f(t) and g(t), that both satisfy subdivision equations

f(t) =
X
i

aif(2t� i) (A.11)

g(t) =
X
j

bjg(2t � j): (A.12)

Then, h(t) satis�es a similar subdivision equation

h(t) =
X
k

ckh(2t� k);

APPENDIX A. B-SPLINE CURVES AND SURFACES 62

where ck =
P

i+j=k
1
2
aibj =

1
2
(a
 b)k.

Proof : By the linearity of continuous convolution (Theorem 1)

h(t) = f(t)
 g(t) =

 X
i

aif(2t� i)

!

0
@X

j

bjg(2t � j)

1
A

=
X
i

X
j

(aibjf(2t� i)
 g(2t � j)):

From Theorem 1 we also have f(2t� i)
 g(2t� j) = 1
2
h(2t� i� j). Inserting this

in the sum we get

h(t) =
X
i

X
j

�
1

2
aibjh(2t� i� j)

�
=
X
k

X
i+j=k

1

2
aibjh(2t� k)

=
X
k

ckh(2t� k);

where ck =
P

i+j=k
1
2
aibj .

Comparing the de�nition of the generating function with the elements in the se-

quence c in Theorem 3 we see that the generating function of c is C(t) = 1
2
A(t)B(t).

A.2 B-spline Functions

Given a uniform knot vector, i.e. a vector

T 0 =
h
� � � ; t0

�2; t
0
�1; t

0
0; t

0
1; t

0
2; � � �

i
;

where the knots ti are equally spaced and ti < ti+1, we de�ne the characteristic function

U(t) is

U(t) =

8<
: 1 if t00 � t < t01

0 otherwise

Subdivision of f(t) involves expressing f(t) in terms of �ner and �ner dilates of

U(t).

f(t) =
X
i

p
j
iU

j
i (t): (A.13)

APPENDIX A. B-SPLINE CURVES AND SURFACES 63

If U j(t) denotes the row vector whose ith entry is U
j
i (t), then in vector form

f(t) = U j(t)pj : (A.14)

This process is possible due to the fact that U(t) can be expressed in terms of its dilates.

The functions

U(2t) = 1 for 0 � t <
1

2
and

U(2t� 1) = 1 for
1

2
� t < 1

so;

U(t) = U(2t) + U(2t� 1):

This relation is a subdivision formula for U(t). More generally,

U
j
i (t) = U

j+1
2i (t) + U

j+1
2i+1(t): (A.15)

In terms of matrices,

U j(t) = U j+1(t)S; (A.16)

where S is the matrix whose entries (2i; i) and (2i+1; i) are 1 and 0 otherwise. A �nite

portion of S (rows -4 to 3 and columns -4 to 3) is,

0
BBBBBBBBBBBBBBBBB@

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

1
CCCCCCCCCCCCCCCCCA

S is the subdivision matrix associated with this process. If the initial set of coeÆ-

cients p0 are just p then substituting into Equation A.14 yield the relation

pj+1 = pjS: (A.17)

Application of the subdivision matrix S to pi produces a new set of coeÆcients pj+1.

APPENDIX A. B-SPLINE CURVES AND SURFACES 64

Higher degree B-splines can be de�ned in a variety of ways. Perhaps the simplest

de�nition is through convolution.

A B-spline basis function of degree n;Nn(t) satis�es

Nn(t) =
nO

i=0

U(t) (A.18)

If n = 0, then N0(t) = U(t), if n = 1, then N1(t) = U(t)
 U(t), and so on.

A few important properties of these functions are

� N(t) is piecewise polynomial function of degree n.

� The support of N(t) lies between 0 and n+ 1.

� N(t) is a Cn�1 function (Theorem 2).

� The sum of the translates of N(t) is the function 1.

� N(t) is non-negative everywhere.

For example, in the case of N1(t) we get

N1(t) = N0(t)
N0(t)

= (N0(2t) +N0(2t� 1))
 (N0(2t) +N0(2t� 1))

= N0(2t)
N0(2t) +N0(2t)
N0(2t� 1) +

N0(2t� 1)
N0(2t) +N0(2t� 1)
N0(2t� 1)

=
1

2
N1(2t) +

1

2
N1(2t� 1) +

1

2
N1(2t� 1) +

1

2
N1(2t� 1� 1)

=
1

2
(N1(2t) + 2N1(2t� 1) +N1(2t� 2))

=
1

21

2X
k=0

0
@ 2

k

1
AN1(2t� k)

APPENDIX A. B-SPLINE CURVES AND SURFACES 65

Replacing several factors of U(2t) by U(2t � 1) yields various translates of N(2t).

Therefore, there must exist constant sk such that

N(t) =
X

skN(2t� k) (A.19)

For dilates and translates of N(t), the subdivision formula is

N
j
i (t) =

X
skN

j+1
2i+k(t): (A.20)

In matrix notation, the basis functions are related by

N j(t) =
X

N j+1(t)S; (A.21)

where S is the matrix whose S2i+k;ithe entry is sk and zero otherwise. The column

vectors of control points pj and pj+1 are related by

pj+1 = Spi: (A.22)

In Equation A.22 the subdivision process is expressed as the repeated application

of a �xed subdivision matrix to a set of coeÆcients For B-splines, another view is

possible in terms of discrete convolution. By De�nition 2 multiplication of generating

functions is equivalent to convolving their associated coeÆcient sequences. In terms of

the de�nition of discrete convolution

C(z) = A(z)B(z): (A.23)

Discrete convolution can be used to derive the subdivision formula for the continu-

ous convolution of two basis functions. Using the Theorem 2, the subdivision formula

for the B-spline basis functionN(t) of degree n can be derived. The subdivision formula

for U(t) is

U(t) = U(2t) + U(2t� 1):

If the generating function for this subdivision formula is 1 + z. By Theorem 2, the

generating function N(z) associated with the subdivision formula of Equation A.19 is

N(z) =
1

2n
(1 + z)n+1: (A.24)

APPENDIX A. B-SPLINE CURVES AND SURFACES 66

−1 0 1

−1 0 1

−2 2

4
1

4 6
1

Figure A.2: Invariant neighborhood of cubic B-splines

A.3 Analysis of B-spline Curves

A.3.1 Invariant Neighborhood

One of the important question related to subdivision is which control point a�ect a

given part of the limit curve or how curve changes when we change the position of a

control point. One way to answer this question is to look at the support of the basis

functions. . The knot vector and the degree determine the support of the B-spline

functions. For the B-spline of degree k, the support is k+1 consecutive knot intervals.

Let's consider cubic B-spline subdivision. Suppose we want to �nd the control points

needed to de�ne the limit curve on the intervals next to the origin in the interval [�1; 1].
Figure A.2 shows that we need 5 control points at the coarsest level to reach any point

of the limit curve. At each level we need one more control point on the outside of the

interval [�1; 1], in order to continue on the next subdivision level. So for the cubic

APPENDIX A. B-SPLINE CURVES AND SURFACES 67

B-splines the size of invariant neighborhood is 5.

A.3.2 Eigen Analysis

An eigenvector x of the matrix M is a non-zero vector such that Mx = �x, where � is

a scalar value. � is called as the eigenvalue corresponding to the right eigenvector x.

Let's assume a subdivision matrix S with the size nxn and has the real eigenvectors

x0; x1; � � � ; xn�1, with corresponding real eigenvalues �0; �1; � � � ; �n�1. These eigenvec-
tors forms a basis, where eigenvalues satis�es �0 � �1 � � � � � �n�1. For example in

the case of cubic B-splines where n = 5

(�0; �1; �2; �3; �4) = (1;
1

2
;
1

4
;
1

8
;
1

8
)

(x0; x1; x2; x3; x4) =

0
BBBBBBBB@

1 �1 1 1 0

1 �1
2

2
11

0 0

1 0 �1
11

0 0

1 1
2

2
11

0 0

1 1 1 0 1

1
CCCCCCCCA

Given these eigenvectors we have

S(x0; x1; x2; x3; x4) = (x0; x1; x2; x3; x4)

0
BBBBBBBB@

�0 0 0 0 0

0 �1 0 0 0

0 0 �2 0 0

0 0 0 �3 0

0 0 0 0 �4

1
CCCCCCCCA

SX = XD

X�1SX = D:

The rows of xi of X1 are called left eigenvectors. Some subdivision schemes like 4

point, not have all complete set of real eigenvalues or eigenvectors and, this causes

some technical diÆculties. We will ignore these degeneracies and assume that we have

a complete set of eigenvectors. A control point can be written in the basis formed by

APPENDIX A. B-SPLINE CURVES AND SURFACES 68

the eigenvectors for some coeÆcients ai, as

p =
n�1X
i=0

aixi

Then Equation A.22 can be written in terms of the eigenvectors

pj+1 = Spi = S
n�1X
i=0

aixi

=
n�1X
i=0

aiSxi by linearity of S

=
n�1X
i=0

ai�ixi

and applying S j-times yields

pj = Sjp0 =
n�1X
i=0

ai�
j
ixi

A.3.3 Convergence Analysis

A subdivision procedure S is convergent, if there exist a unique limit point p such that

lim
i!1

xi = p

The Sjx0 in Equation A.25 guides us while examining the convergence. If �0 > 1

then the Equation A.25 would grow without bound as j increased and subdivision

would not be convergent. Consequently, the Equation Sjx0 converge at all, since all

the eigenvalues must be smaller or equal to 1. Warren [19] show that only a single

eigenvalue may have magnitude 1. A result of this analysis is that we can compute the

limit position directly in the eigen basis as

p1(0) = limj!1S
jp0 = limj!1

n�1X
i=0

ai�
j
ixi = a0

since all the eigenvalues j�ij � 1.

Consequently, for our subdivision matrix S the following characteristics desired,

APPENDIX A. B-SPLINE CURVES AND SURFACES 69

� the eigenvectors should form a basis;

� the �rst eigenvalue �0 should be 1;

� the second eigenvalue �1 should be less than 1;

� all other eigenvalues should be less than �1.

Appendix B

Utilities

To model objects using subdivision surfaces we have to use some utilities to support

input handling and the rendering of the modeled surfaces.

B.1 The Readers

Since we also need to access data and use it in a graphical platform to render the

surfaces two di�erent readers are implemented to access two di�erent types of data

formats. The data formats are chosen in the light of the structure of the meshes in

hand and ease of implementation. The data formats usually describes the vertices and

their associated coordinates, the faces and the connections between the faces.

B.1.1 SMF File Format Speci�cations

This format is designed for the description of 3D geometric models. It describes a

single object; it does not describe viewing parameters, scene hierarchies, or anything

else. An SMF �le is a text �le consisting of a series of lines. Each line is interpreted

independently and in sequence. A line may have one of the following three forms:

(1) Entirely whitespace

These lines are completely ignored.

70

APPENDIX B. UTILITIES 71

(2) A comment line, beginning with the character '#'

These lines are also ignored.

(3) A command line of the form: <op> <arg>

The �rst token on the line is interpreted as a command name. The remaining

tokens are arguments to the command; their interpretation is command-dependent.

Tokens are whitespace-separated character sequences.

An SMF �le consist of two or three sections. The �rst section speci�es the vertices

in the control mesh. It is initiated with the character v at the beginning of every line.

Each subsequent line should be of the form

v x coord y coord z coord

The vertex number must be an integer, while the coordinates are real numbers. Within

a given scope, vertices are implicitly numbered starting from 1 (NOT 0). The �elds in

a line are separated by spaces.

The second section speci�es the faces in the control mesh. It is initiated by the

character f at the beginning of every line. A face is de�ned by a line of the form

f vnum1 vnum2 ...vnumn

where vnumi is the number of the vertex de�ned in the previous section. The vertices

should be listed in a counter-clockwise order to give the correct orientation of the face.

The third, optional, section speci�es the attribute values. For specifying the sharp

features the lines are initiated with the string Edge at the beginning. Each line is of

the form

Edge fnum1 fnum2 fsharpg

where fnum1 and fnum2 are both faces de�ned in the previous section of the �le. The

edge shared by these two vertices are marked as sharp.

A simple example of an SMF �le is given in Figure B.1. All the reading process for

the SMF �le is contained in a class.

APPENDIX B. UTILITIES 72

Model for testing SMF reader

SMF 1.0

vertices 13

faces 14

v 0.141979 -0.558788 0.929668

v 0.185852 -0.513599 0.829234

v 0.267333 -0.55719 0.822234

v 0.212088 -0.614101 0.948711

v 0.351817 -0.586426 0.907718

v 0.316137 -0.6334 0.977069

v 0.514369 -0.661343 0.929047

v 0.47456 -0.702343 1.020183

v 0.541247 -0.65971 1.038447

v 0.214357 -0.423649 0.837115

v 0.303229 -0.443924 0.832159

v 0.378885 -0.501011 0.915211

v 0.53383 -0.599934 0.934419

f 1 2 4

f 3 4 2

f 3 5 6

f 4 3 6

f 6 5 8

f 7 8 5

f 8 7 9

f 2 10 11

f 3 2 11

f 3 12 5

f 11 12 3

f 5 13 7

f 12 13 5

f 7 13 9

Edge 1 2 {sharp}

Edge 2 3 {sharp}

Edge 3 4 {sharp}

Edge 2 4 {sharp}

Figure B.1: A sample SMF �le

APPENDIX B. UTILITIES 73

B.1.2 MDL File Format Speci�cations

An MDL �le consist of three of four sections each initiated with a text string. The

�rst section speci�es the vertices in the control mesh. It is initiated with the string

vertices. Each subsequent line should be of the form

vnum x coord y coord z coord

The vertex number vnum, must be an integer, while the coordinates are real numbers.

The �elds in a line are separated by spaces.

The second section speci�es the faces in the control mesh. It is initiated by the

string faces. A face is de�ned by a line of the form

fnum vnum1 vnum2 ...vnumn

where fnum is a number identifying the face and vnumi is the number of the vertex

de�ned in the previous section. The vertices should be listed in a counter-clockwise

order to give the correct orientation of the face.

The third section speci�es the connections between faces. It is initiated with the

string connections. Each line is of the form

fnum1 fnum2

where fnum1 and fnum2 are both faces de�ned in the previous section of the �le. The

two faces must share two vertices in the same orientation.

The fourth optional section speci�es the knot spacings for edges in the control

polygon. It is initiated by the string knotspacings. The knot spacings are given by a

line

fnum cwkspc1 ccwkspc1 cwkspc2 ccwkspc2 ...cwkspcn ccwkspcn

giving the knot spacings for face number fnum. There are two knot spacings for each

vertex one for the clockwise edge and the other for the counter-clockwise edge.

APPENDIX B. UTILITIES 74

Model for testing MDL reader

Hexagon.mdl

vertices 8

faces 8

vertices

1 -2.0 0.0 0.0

2 0.0 0.0 0.0

3 2.0 0.0 0.0

4 -1.0 -2.0 1.0

5 1.0 -2.0 1.0

6 -1.0 2.0 1.0

7 1.0 2.0 1.0

8 0.0 4.0 0.0

9 0.0 -4.0 0.0

faces

1 1 4 2

2 4 5 2

3 5 3 2

4 3 7 2

5 7 6 2

6 6 1 2

7 4 9 5

8 7 8 6

connections

1 2

2 3

3 4

4 5

5 6

6 1

5 8

2 7

knotspacings

1 0.0 1.0 1.0 1.0 1.0 0.0

2 4.0 1.0 1.0 1.0 1.0 4.0

3 1.0 1.0 1.0 0.0 0.0 1.0

4 0.0 1.0 1.0 1.0 1.0 0.0

5 1.0 1.0 1.0 4.0 4.0 1.0

6 4.0 1.0 1.0 0.0 0.0 4.0

Figure B.2: A sample MDL �le

APPENDIX B. UTILITIES 75

A simple example of an MDL �le is given in Figure B.2. All the reading process for

the MDL �le is contained in a class.

B.2 Rendering Process

We have used OpenGL to render the models on the screen. The user interface is

developed by glow 1.0.4 API takes control of the OpenGL routines. We initialize

the OpenGL to control the graphics window, set up the proper projections, lighting

and material properties. There are two routines for drawing surfaces: wireframe and

smooth-shaded.

