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ABSTRACT

COMPARISON OF FOUR APPROXIMATING
SUBDIVISION SURFACE SCHEMES

Tekin Kabasakal
M.S. in Computer Engineering
Supervisor: Assist. Prof. Dr. Ugur Gudiikbay
August, 2002

The idea of subdivision surfaces was first introduced in 1978, and there are many
methods proposed till now. A subdivision surface is defined as the limit of repeated
recursive refinements. In this thesis, we studied the properties of approximating sub-
division surface schemes. We started by modeling a complex surface with splines that
typically requires a number of spline patches, which must be smoothly joined, making
splines burdensome to use. Unlike traditional spline surfaces, subdivision surfaces are
defined algorithmically. Subdivision schemes generalize splines to domains of arbitrary
topology. Thus, subdivision functions can be used to model complex surfaces without

the need to deal with patches.

We studied four well-known schemes Catmull-Clark, Doo-Sabin, Loop and the v/3-
subdivision. The first two of these schemes are quadrilateral and the other two are
triangular surface subdivision schemes. Modeling sharp features, such as creases, cor-
ners or darts, using subdivision schemes requires some modifications in subdivision
procedures and sometimes special tagging in the mesh. We developed the rules of v/3-
subdivision to model such features and compared the results with the extended Loop
scheme. We have implemented exact normals of Loop and v/3-subdivision since using

interpolated normals causes creases and other sharp features to appear smooth.

Keywords: computational geometry and object modeling, subdivision surfaces, Loop,

Catmull-Clark, Doo-Sabin, v/3-subdivision, modeling sharp features.
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OZET

DORT YAKLASIMSAL YUZEY ALT BOLUMLEME
YONTEMININ KARSILASTIRILMASI

Tekin Kabasakal
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Yoneticisi: Yrd. Dog. Dr. Ugur Giudiikbay
Agustos, 2002

Yiizey alt bolimleme fikri ilk olarak 1978 yilinda 6ne siirtilmiig ve o giinden beri bir
cok yontem ortaya konmugtur. Yiizey alt boliimleme, bir sinir degerine kadar kendi
kendini yineleyen bir iyilegtirme olarak tamimlanmaktadir. Bu aragtirmada yaklagimsal
yiizey alt boliimleme yontemlerinin Ozellikleri incelenmigtir. Karmagik yiizeylerin kama
egrileri ile modellenmesi, ¢ok sayida yivli kama yamasinin incelikle birlegtirilmesini
gerektirdiginden kullanilmalari zahmetlidir. Geleneksel yiizey kama yamalarinin tersine
yiizey alt bolimleme yontemleri iyi tanimlanmigtir ve karalidirlar. Yiizey boliimleme
yontemlerinin kama egrilerini diizensiz yapilara uygulanacak sekilde genellemesi, karma-

sik ylizeylerin yamalarla ugragsmadan modellenebilmesine imkan vermektedir.

Bu calismada, Catmull-Clark, Doo-Sabin, Loop ve v/3-boliimleme yéntemleri ince-
lenmigtir. Yontemlerden ilk ikisi dortgen, diger ikisi ticgen yuzeyler icin onerilmistir.
Yiizey boliimleme ile kirigiklar, kivrimlar ve biikiilme noktalar: gibi keskin hath ytizeyle-
rin modellenmesi yuzey bolimleme yontemlerinin dizenlenmesi ve agin isaretlenmesini
gerektirmektedir. v/3-béliimleme yonteminin kurallar: keskin hatli yiizeyleri modelleye-
cek gekilde geligtirilmig ve sonuclar: geligtirilmig Loop yonteminin sonuclari ile karsilagti-
rilmigtir. Ara kestirim normallerinin kullanilmasi keskin hatlarin yumusak goriinmesine
neden oldugundan Loop ve v/3-boliimleme yéntemlerinin kesin normal degerleri hesap-

lanarak kullanilmistir.

Anahtar Sozciikler: sayisal geometri ve nesne modelleme, ytizey alt bolumleme,

Loop, Catmull-Clark, Doo-Sabin, v/3-béliimleme, keskin hatlarin modellenmesi.
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Chapter 1

Introduction

1.1 Overview

Subdivision Surfaces have become a valuable tool in geometric modeling for Computer
Graphics (CG) and Computer Aided Geometric Design (CAGD). In recent years, sub-
division surfaces have received a lot of attention from both academics and industry pro-
fessionals. Movie industry professionals apply subdivision techniques to create complex
characters and to produce highly detailed, smooth animation. For example, in Geri’s
game from Pixar Animation Studios [4], Geri’s hands, head, jacket, and pants were
each modeled using a single subdivision surface. The high quality graphics, light maps,
and character animations in the game Quake 3 are very impressive. Although they
have done an excellent job in painting the textual details, most of the characters con-
sist of only several hundred triangles, which cannot capture highly detailed geometry.
Because of the recursive nature, subdivision naturally accommodates level-of-details
control through subdivision. This allowed the narrator of the game Quake 3 to spent

triangle budgets in regions where more details are needed by subdividing further.

The idea of subdivision surfaces is first introduced by Catmull and Clark [3], and
Doo and Sabin [5] independently in 1978. Unlike traditional spline surfaces, subdivision
surfaces are defined algorithmically. Simplicity, efficiency, and ease of implementation
are the main advantages of the subdivision surfaces. The shape of a subdivision surface

is determined by a structured mesh of control points and a set of subdivision rules
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prescribing a procedure for refining the mesh to a finer approximation. The subdivision
surface itself is defined as the limit of repeated recursive refinements. Subdivision
surfaces satisfy all the usual requirements for surface representation that the computer

graphics practitioners are confronted with.

A subdivision surface is the limit of a recursive refinement process. Starting with
an initial polygonal mesh of arbitrary topology, a subdivision scheme is used to gener-
ate a new mesh that is the initial mesh for the next refinement. A sample subdivision
surface is given in Figure 1.1. The repetitive application of this process will gener-
ate a sequence of polygonal meshes whose limit may be a smooth surface, assuming

appropriate conditions are satisfied.

Subdivision surfaces lie somewhere in between polygon meshes and patch surfaces,
and offer most of the best attributes of each. The well defined surface normal allows
them to be rendered smoothly without the faceted look of low polygon count polygonal
geometry, and they can represent smooth surfaces with arbitrary topology (with holes
or boundaries) without the restriction in patches where the number of columns and
rows has to be identical before two patches can be merged. Secondly, subdivision sur-
faces are constructed easily through recursive splitting and averaging: splitting involves
creating new faces by removing one old face, averaging involves taking a weighted av-
erage of neighboring vertices for the new vertices. Because the basic operations are so
simple, they are very easy to implement and efficient to execute. Besides, subdivision
naturally accommodates level-of-details control through adaptive subdivision because

of its recursive nature.

The simple splitting process usually starts from a coarse control mesh, iterating this
process several times will produce so-called semi-reqular meshes. A vertex is regular if it
has six neighbors (in triangle mesh) or four neighbors (in quadrilateral mesh). Vertices
which are not regular are called eztraordinary. Meshes that are coming from standard
modeling packages or 3D scanning devices usually do not have a regular structure,
hence there is a need to convert these irregular meshes into semi-regular meshes, a

process known as remeshing.

Recursive nature of subdivision surfaces lacks in modeling sharp features, such as
creases, corners and dart vertices. By making some modifications to the subdivision

rules and adding some new rules for special cases, this problem can be overcome and
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Figure 1.1: An example subdivision surface. (a) initial coarse mesh, (b) mesh after
first subdivision step, (c) mesh after second subdivision step.
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sharp features could be modeled.

The main focus of this work will be on implementing and comparing some subdivi-
sion schemes in a common framework, including sharp features on the triangular meshes

where one of the methods, v/3-subdivision, extended to represent sharp features.

1.2 The Organization of the Thesis

The organization of the thesis is as follows: In Chapter 2, we define the basic prin-
ciples behind subdivision, how subdivision rules are constructed; how their analysis
approached. We first define uniform B-spline surfaces and explain how we can extend
B-spline curves to B-spline surfaces. Then, subdividing a B-spline curve and extend-
ing the method to B-spline surfaces are shown. We take subdivision as a method for
defining curves and surfaces. Topological restrictions and computational difficulties of
B-splines are mentioned and how subdivision surfaces eliminate these disadvantages

are discussed.

In Chapter 3, the approximating subdivision schemes that we deal are introduced.
Their subdivision methods and smoothing rules are described with their normal calcu-
lations. Here, we also describe the developments we did for the V/3-subdivision scheme

rules to model sharp features and to calculate exact normals.

In Chapter 4, we discuss the implementation. First, we outline the underlying rea-
sons for choosing the corner lath data structure, and explain the chosen data structure.
Second, we briefly explain the implementation of the data structure and modifications
we did to manage subdivision and tagging knot spacings. Finally, we describe the algo-
rithms we have implemented in order to support each of the schemes. The main ideas

behind each of the implementations are mentioned here.

In Chapter 5, the results of applying the implemented subdivision surface schemes
to a variety of meshes and their behaviours at these mesh conditions are compared by
examining the images of rendered example surfaces. We highlight certain properties
of the schemes by examining a number of surfaces rendered using the implemented
Interface program. We base our comparisons on three criteria: smoothness of the

surfaces produced, computational work to be done, and modeling the sharp features.
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The sharp features are compared only for the triangular subdivision schemes.
Conclusions and future research directions are given in Chapter 6.

In Appendix A, the basis for the B-spline functions and curves are explained briefly.
We define the uniform B-spline basis functions and use them to construct piecewise
polynomial curves. We choose repeated convolution to derive B-splines, since, we can
see from it directly how splines can be generated through subdivision. Techniques for

analysis of subdivision surfaces are then examined.

To model objects using subdivision surfaces we have to use some utilities to support
input handling and the rendering of the modeled surfaces. The utilities except the
representation and manipulation of data, such as data formats supported, rendering

process of surfaces, etc., are discussed in Appendix B.



Chapter 2

B-spline and Subdivision Surfaces

2.1 B-spline Surfaces

Subdivision surface schemes are usually originated from spline curves and surfaces [18].
Splines are piecewise polynomial curves of some chosen degree. Uniform B-spline basis
functions are used to construct piecewise polynomial curves. B-splines can be derived in

many ways. One of them is repeated convolution and briefly explained in Appendix A.

B-spline curves can be extended to surfaces by some methods. Here, we will briefly
discuss tensor product B-spline surfaces and triangular box spline surfaces. Then,
we will expand our view on subdivision to define curves and surfaces as the limit of

repeated application of subdivision rules.

2.1.1 Tensor Product B-spline Surfaces

A surface representation can be obtained through the concept of a tensor product. We

start with a curve.
r(u) = ZFi(u)ci, (2.1)
i

where Fj(u) are some basis functions. Then, we move the curve while simultaneously

allowing it to alter shape. The motion and deformation in shape can be described by
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¢; where it is also a function of v as

¢i(v) =Y Gj(v)pij, (2.2)
J
where G(v) is another set of basis functions. This process swept out a surface, which

has the parameterization
r(u,v) = E E F;(u)Gj(v)pij, (2.3)
(]

The control points p;; can be organized in a mesh structure. For a finite surface, there
are a finite number of control points. The parameter values run over a rectangular

domain.

Replacing the arbitrary functions in above equation with B-spline functions pro-

duces tensor product B-spline surfaces.

(o) = Y 30 Ni(w)N; (0)pis 2.4)
i

The construction of tensor product B-spline surfaces indicates that subdivision of a
surface is closely related to subdivision of curves. We can apply the subdivision process

for B-spline curves in Equation A.20 to the control points ¢;.

Rules for subdivision surfaces can easily be described by masks. The mask is
supposed to be applied to all parts of the mesh and for each application a new control

point calculated using the coefficients in the masks.

2.1.2 Triangular Box Spline Surfaces

The spline surfaces considered in the previous section are defined on a rectangular pa-
rameter domain. It is also possible to define a spline surface over a regular triangulation

of the parameter plane.

Triangular splines can be defined by using the piecewise linear box spline, which is
a hexagonal pyramid with the apex at height 1. The higher degree splines are then can

be obtained through convolution along the three directions simultaneously.
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The triangular splines share many of the properties of B-splines. They have local
support, they are non zero, and their translates forms a partition which can be in any
of the three directions. It is possible to derive a subdivision equation for the triangular

splines similar to B-splines.

2.2 Curves and Surfaces Defined by Subdivision

In the previous chapter we examined subdivision of spline curves and surfaces. We
examined under repeated subdivision how the control polygon converged to the spline
curve and similar results can be shown for surfaces. The subdivision equation is geo-
metric interpretation of subdivision process: new control points are calculated by using
the old control points. This geometric approach provides the inspiration for using sub-

division to define curves and surfaces.

The problem is choosing coefficients for subdivision that converges to a smooth
curve or surface. In other words, given the averaging masks, what are the properties
of the limit curve/surface? This question includes determining, whether a limit object
exists, and, whether that object is smooth. And another problem is also identifying

those masks that allow the mesh approach to a limit curve or surface.

2.3 Arbitrary Topology Surface Schemes

In Section 2.1, we briefly described two types of surfaces —tensor product B-spline
surfaces and triangular box spline surfaces. For tensor product B-spline surfaces the
control mesh must be a regular quadrilateral grid, while for triangular box spline sur-
faces the control mesh must be a regular triangular mesh. This imposes a restriction

on the topology of the surface that can be modeled.

The topological restrictions on spline based surface modeling methods are overcame
with subdivision surfaces. The early subdivision surface schemes such as those proposed
by Doo and Sabin, Catmull and Clark, and Loop, generalize spline surface schemes to
arbitrary topology by specifying additional mask for irregular vertices in the control

mesh.
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An important property of subdivision surface schemes is that the number of irregu-
lar vertices and faces remains constant after first subdivision. As subdivision progresses
the irregular features are separated by larger patches of regular faces. This allows us
to analyze isolated irregular features. The limit position of the control point associated

with an irregular vertex is called an extraordinary point.

2.4 Classification of Subdivision Surface Schemes

In literature there are many known stationary subdivision schemes generating contin-
uous surfaces on arbitrary meshes. There are wholly different classes of subdivision
surfaces. At first glance the variety of existing schemes may appear confusing. On the

other hand the schemes can be classified straightforwardly based on four criteria

e Refinement rule: The refinement rule is an algorithm to produce a finer tiling
of the same type, from a given tiling. The most common refinement rules are the
face split and vertex split. The face split rule can be applied to both triangular and
quadrilateral meshes. Usually, each face is split into four faces of the same type
—in v/3-subdivision scheme faces split into three. The vertex-split rule can only
be applied to quadrilateral meshes. With this rule every vertex is split into four
new vertices. Subdivision schemes using the face split rules are called primal,
while schemes using the vertex split rules are called dual. See Figure 2.1 for face

split and vertex split refinement rules.

e Mesh type: Regular subdivision schemes act on regular control meshes. The
regular mesh should be homomorphic to a tiling of the plane. For regular meshes
it’s natural to use faces that are identical. If the faces are also required to be
regular polygons, there are only three possibilities: triangular, quadrilateral and
hexagonal tiling. Meshes consisting of hexagons are not very common and most
subdivision schemes operate on regular triangular or regular quadrilateral tiling.
These lead to two types of regular subdivision schemes: those defined for quadri-

lateral tilings and those defined for triangular tilings.

e Interpolating or approximating: A subdivision scheme is interpolating if all

control points in the original mesh are also the control points in all the meshes
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obtained through subdivision, otherwise the scheme is approximating. In inter-
polation control points defining the initial mesh are also the points of the limit
surface, which allows one to control it in an intuitive manner. This property also
allows some algorithms to be considerably simplified. Unfortunately, the quality
of these surfaces are not good as the quality of the surfaces produced by approx-
imating schemes, and these schemes do not converge to the limit surface as fast

as the approximating schemes.

e Smoothness: The order of continuity on the regular parts of the subdivision
surface depends on the scheme used. Most schemes produce C' or C? order
surfaces. The order of continuity near extraordinary points is usually lower than

that of regular parts of the surface.
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Figure 2.1: Face split and vertex split refinement rules. (a) quadrilateral face split, (b)
quadrilateral vertex split, (c) triangular 1-to-4 split, and (d) triangular 1-to-3 split.



Chapter 3

Approximating Subdivision

Schemes

As we have seen the subdivision schemes are a big family. In our study, we focused on
four different approximating stationary subdivision schemes. Two of them quadrilat-
eral and the other two triangular schemes. Modeling sharp features using subdivision
schemes make these schemes valuable. But this requires some modifications in sub-
division rules and tagging in the mesh. Loop subdivision scheme was extended by
Hoppe et al. [9] and further by Schweitzer [15]. We developed subdivision rules for
V/3-subdivision scheme [10] proposed by Leif Kobbelt to model sharp features.

The schemes considered in our work are categorized as follows:

V/3-subdivision: triangular, face split, approximating, C2.

Loop subdivision: triangular, face split, approximating, C2.

Doo-Sabin subdivision: quadrilateral, vertex split, approximating, C'.

Catmull-Clark subdivision: quadrilateral, face split, approximating, C2.

12
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3.1 +/3-Subdivision Scheme

V/3-subdivision scheme is an approximating face split scheme defined on triangular
meshes presented by Leif Kobbelt [10]. v/3-subdivision scheme generates C? surfaces
for regular control meshes. For arbitrary control meshes Kobbelt show that the limit
surface to be C? almost everywhere except for the extraordinary vertices (valence # 6)

where the smoothness is at least C1.

In v/3-subdivision scheme a 1-to-3 split operation performed for every triangle by
inserting a new vertex at its center. This introduces three new edges connecting the
new vertex to the surrounding old ones. In order to re-balance the valence of the
mesh vertices, every original edge that connects two old vertices flipped. Applying
this split operation to a uniform grid generates a (rotated and refined) uniform grid.
Applying the same refinement operator twice splits every original triangle into nine
subtriangles tri-adic split. When +/3-subdivision applied to arbitrary triangle meshes,
all newly inserted vertices have exactly valence six. The valence of old vertices are not
changed, also the number of extraordinary vertices stay the same during every step of

subdivision.

The stencil for the relaxation of the old vertices is the 1-ring neighborhood contain-
ing the vertex itself and its direct neighbors. The labelling of the vertices is shown in
Figure 3.1. For symmetry reasons the same weight is assigned to each neighbor. For a

vertex p, the relaxation is calculated by

n—1
«
S(p) = (1= cn)p+ =3 pis (3.1)
i=0
where the he value of «, is calculated as
n

9 7

4 — 2cos (2”) (32)

Ay =

where n is the valency of the vertex. The masks used for all types of vertices in

V/3-subdivision are shown in Figure 3.2.

V/3-subdivision has many benefits. First, it is very natural to subdivide triangular
faces at their center instead of splitting all three edges. Second, the v/3-refinement

is slower than the usual dyadic split operators since the number of vertices and faces
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Figure 3.1: Labeling control points for v/3-subdivision scheme. (a) face vertex, (b)
boundary vertex, (c) smooth or dart vertex, and (d) crease vertex.

increases by the factor of 3 instead of 4. Third, it enables a very simple implemen-
tation of adaptive refinement with no inconsistent intermediate state, and it’s easy
to implement. These properties makes v/3-subdivision refinement suitable for many

applications.

3.1.1 Piecewise Smooth Surfaces by \/3-Subdivision

Fitting smooth surfaces to non-smooth objects often produces unacceptable results.
Since the v/3-subdivision useful for many applications, we developed new subdivision
rules to accurately model objects with tangent discontinuities. These subdivision rules
produce commonly occurring sharp features that we call creases, corners and darts as

Hoppe et al. [9] did for the Loop scheme. A crease is a tangent line smooth curve
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along which the surface is C° but not C' or C?; a corner is a point where three or
more creases meet; finally a dart is a point of surface where a crease terminates. We

extended Kobbelt’s v/3-subdivision scheme [10] to model sharp features.

Evaluation of piecewise subdivision surfaces are done by the eigenvalue analysis. By
the way, Zorin at. al. [22] extended the work of Stam [17] by considering the subdivision
rules for piecewise smooth surfaces with boundaries depending on parameters. They
used a different set of basic vectors for evaluation, which, unlike eigenvectors, depend
continuously on the coefficients of the subdivision rule. The advantages of this approach
is that it becomes possible to define evaluation for parametric families of rules without
considering an excessive number of special cases and while improving the numerical

stability of calculations.

To model sharp features a subset L of edges in the initial mesh M is tagged as
sharp. We used a tagging facility as Hoppe et al. [9] and Sederberg et al. [16] did for
tagging vertices and edges in the control net, in order to determine which rule to use.
In the subdivision process, edges created from the refinement of the sharp edges are

marked as sharp.

Tangent plane continuity relaxed by modifying the smoothing rules across sharp
edges. To ensure surface to have a well-defined tangent-plane at each point along the
crease, subdivision rules at crease edges must be chosen very carefully. Similar attention

must be paid to the corner or dart vertices.

We classified vertices as smooth vertex, dart vertex, crease vertex and corner vertex
into four types. A smooth vertex is the one where the number of incident sharp edges is
zero, a dart vertex is the one where the number of incident sharp edges is one, a crease
vertex is the one where the number of incident sharp edges is two and a corner vertex
is the one where the number of incident sharp edges is more than two. Figure 3.2 shows

our subdivision masks.

We used two types of masks. A face vertex mask which does not depend on the
property of the vertices of the corresponding triangle. The vertex masks used for
smoothing the vertices on the sharp edges are chosen as explained above for smooth,

dart, crease, and corner vertices.
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Figure 3.2: Masks for the v/3-subdivision scheme. Double marked edges are the sharp
edges. (a) face vertex, (b) boundary vertex, (c) corner vertex, (d) smooth or dart
vertex, and (e) crease vertex.

3.1.1.1 Adapting Surface Smoothing Rules

Limiting points and tangent planes can be computed by using masks, as explained in
Section 2.1.1. These masks are determined by the eigen structure of the local subdivi-

sion matrices.

Smooth and dart vertices: In the case of smooth or dart vertices the local subdi-
vision matrices describe the whole region and every vertex in the 1-ring neighborhood

equally affects the vertex.

Crease vertices: Crease vertices modeled as two sided boundaries. This divides
subdivision matrix into two separate matrices each describing a smooth region of the

surface. To prevent gaps and cracks we choose to use only the vertices along the crease
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in 1-neighborhood of the vertex, to smooth the vertex.

Corner vertices: Corner vertices can also be treated as crease vertices where more
than two different regions to be smoothed by different separate decomposed matrices.

Corner vertices do not move during subdivision.

3.1.2 Normals of the v/3-Subdivision

In computer graphics the normal vectors of surfaces are used to calculate lighting effects.
The normal vectors of surfaces are usually calculated by interpolating the normals of
the faces joining at the vertex. But in the case of piecewise subdivision surfaces which
is piecewise smooth this approach will not suffice, since the interpolation will cause

creases and other sharp features to appear smooth.

As we mentioned in the previous Chapter, tangent planes can be computed by
using masks. Halstead et al. [7] show that the tangent vectors to the surfaces can be
computed using the two left eigen vectors of S, corresponding to the largest eigen value

as,

t1 = 0¥+ v+ ... +epl (3.3)

ty = 027)(1) + 03'03 + ...+ clvg (3.4)

For v/3-subdivision, ¢; = cos(2mi/n) and their cross product gives an exact normal to

the surface. The tangent masks in Figure 3.3 are derived by the Equation 3.3 and 3.4.

At the limit position of a smooth or dart vertex with valency n, the tangent space
is spanned by Equation 3.3. At the limit position of a crease vertex, the tangent along

the crease is

talong = P1 — Pn, (35)

where n is the crease valency, i.e. the number of edges between and including the two
edges marked as crease edges. The cross tangent vector depends on the valency. For a

valency 4 vertex it is

tacross = (pZ +p3)/2 - (pl + 2p0 +p3)/4- (3'6)
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Figure 3.3: Tangent masks for calculating the exact normals of the v/3-subdivision
scheme. (a), (b) smooth or dart vertex, (c), (d) corner vertex, and (e), (f) crease
vertex.
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For an extraordinary vertex with valency n > 4 it is

n
tacross = Zwipia (37)
i=1

where wy = w,, = sin (%) / (ZCOS (%) — 2) and w; = sin (ngll)) fort=2,...,n—1.

For n =2

tacross = p1L+p2 — 21007 (38)

At a corner vertex the tangent vectors are
t1 = p1 — po, (3.9)

t2 = Pn — Po. (3.10)

3.2 Loop Subdivision Scheme

The Loop subdivision scheme is a simple approximating face split scheme for triangular
meshes proposed by Charles Loop [12]. The scheme is based on the three-directional
box spline, which produces C? continuous surfaces over regular surfaces and C' at
extraordinary points. The scheme can be applied to arbitrary polygonal meshes, after
the mesh is converted to a triangular mesh. for example by triangulating each polygonal

face.

Hoppe et al. extended the scheme [9] to incorporate sharp features, such as, creases,
darts and corner points. Creases are smooth curves across which the surface is C°
continuous instead of C' or C? continuous. Corners are points where three or more

creases join. A dart is a crease that transitions into a smooth part of the surface.

Schweitzer [15] further extended the scheme with conical and cusp points where
the limit surface is C°. At a conical point, the space spanned by the limiting tangent

vectors has dimension three. At a cusp point, the tangent vectors become parallel.

Later the masks for Loop subdivision surface algorithm are modified by Loop [13]

to result in surfaces with bounded curvature and the convex hull property.
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The full set of masks for the Loop scheme including the described extensions are
shown in Figure 3.4. To implement this scheme there must be a facility for tagging

edges and vertices in the control net, in order to determine which rule to use.

Loop showed tangent plane continuity of the original scheme. Schweitzer [15] proved
C' continuity at extraordinary vertices up to valency 100 for the original scheme, and
also examined the behaviour of the extended scheme. Zorin [20] proved C'! continuity

at extraordinary vertices for all valences for the original scheme.

3.2.1 Normals of the Loop Scheme

In computer graphics the normal vectors of surfaces are used to calculate lighting
effects. In order to make a polygonal model look smooth the normal at a vertex is
usually computed by interpolating the normals of the faces joining at the vertex. For
the extended Loop scheme, this approach is not satisfactory, since the interpolation
will cause creases and other sharp features to appear smooth. One solution to this

problem is to use exact normals of the limit surface.

Usually the tangent vectors are used to compute a normal. The rules for computing

the tangent vectors of the Loop scheme are especial simple and can be obtained by

k-1

2me
1 = Z:cos & Pily (3.11)
1=0
k—1 .
2
te = sinﬂpi,l. (3.12)
1=0 k

These formulas can be applied to the control points at any subdivision level. The
normal obtained as the cross product #; x to can be interpreted geometrically. The
geometric nature of the normals obtained in this way suggests that they can be used
to compute approximate normals for other schemes. The exact normals require more
complicated expressions. Schweitzer [15] derived equations for the tangent vectors in

the extended scheme using eigen analysis. The equations are described in the sequel.

The labeling of the vertices is shown in Figure 3.5(a) for smooth, dart, conical, cusp
vertices and in Figure 3.5(b) for crease and corner vertices. The double edges are edges

marked as sharp.
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Figure 3.4: Masks for the Loop subdivision scheme. (a) smooth or dart vertex, (b)
conical vertex, (c) crease vertex, (d) corner or cusp vertex, (e) smooth edge, (f) ordinary
crease edge, and (g) special crease edge.
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Figure 3.5: Labeling of the 1-neighborhood of (a) a smooth, dart, conical or cusp
vertex, and (b) a crease or corner vertex.

At the limit position of a smooth or dart vertex with valency n, the tangent space
is spanned by Equation 3.12. At the limit position of a crease vertex, the tangent along

the crease is

talong = P1 — Pn, (313)

where n is the crease valency, i.e. the number of edges between and including the two

edges marked as crease edges.

The cross tangent vector depends on the valency. For a valency 4 vertex it is

tacross = (PZ +P3)/2 - (Pl + 2;00 +P3)/4- (314)

For an extraordinary vertex with valency n > 4 it is

n
tacross = Zwipia (315)
i=1

where w; = w,, = sin (%) / (2cos (%) — 2) and w; = sin (Wg:ll)) fori =2,...,n—1.

For n =2

tacross = P1 + P2 — 2po, (3'16)

while for n = 3 the eigen analysis fails because the subdivision matrix does not have
a complete set of eigen vectors. The solution is to use generalized eigen vectors, and
Schweitzer skipped this case. The Equation above assumes the neighbor vertices are

ordinary. If this is not the case, the equations can be applied, after subdividing once.
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At a corner vertex the tangent vectors are
t1 = p1 — po, (3.17)

t2 = pp — Po. (3.18)

At a conical point there is no tangent plane. At a cusp point the tangent plane

degenerates into a line, which is spanned by

t=po—(p1+...+pn)/n. (3.19)

3.3 Doo-Sabin Scheme

The Doo-Sabin subdivision scheme [5] is a generalization of uniform biquadratic tensor
product B-spline surfaces to arbitrary topology. It is an approximating vertex split
(dual) scheme. The subdivision is quite simple since there is only one mask used to
compute the new vertices. A special rule is required only for the boundaries. Figure 3.6
shows the general mask, which reduces to the ordinary mask for quadratic tensor
product B-spline when applied to a quadrilateral face. The coefficients are defined by
the equations g = 1/4 + 5/4k and o; = (3+200s (227”)) J4k for i = 1,... k — 1.
Another choice of coefficients proposed by Catmull and Clark: oy = 1/2+ 1/4k, oy =
a1 = 1/8 + 1/4k and «; = 1/4k for i = 2,...,k — 2. In the subdivision a new
face is created for every face, edge and vertex in the control mesh. After one step of
subdivision, every vertex has valence four, and the number of extraordinary faces does

not change in subsequent subdivisions.

Doo and Sabin initiated analysis of the Doo-Sabin scheme. Later Peters and
Reif [14] proved C*' continuity of a more general class of schemes of which Doo-Sabin

is a special case.

Sederberg et. al. [16], introduced features such as cusps, creases, and darts to model

sharp features with Doo-Sabin scheme.
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Figure 3.6: Doo-Sabin subdivision scheme masks. (a) regular vertex, (b) extraordinary
vertex, and (c) boundary vertex.

3.4 Catmull-Clark Scheme

The Catmull-Clark subdivision scheme [3] was proposed at about the same time as
the Doo-Sabin subdivision scheme. Catmull-Clark generalize uniform bicubic B-spline
surfaces to arbitrary topology. The masks shown in Figure 3.7 generate new face, edge
and vertex points. At extraordinary vertices, Figure 3.7(c), Catmull and Clark use the

; —1_ T =3 =1 i
coefficients o =1 — £, B8 = 5, v = 7, where n is the valency.

The Catmull-Clark scheme is an approximating face split, primal, scheme, splitting
each face with n sides into n quadrilaterals. After one step of subdivision all faces are
quadrilaterals. The number of vertices with valence other than four remains constant in
subsequent subdivisions. The masks in Figure 3.7 cannot be applied to control meshes

with irregular faces. To handle such meshes the rules are extended.

The rules of Catmull-Clark scheme are defined for meshes with quadrilateral faces.
Arbitrary polygonal meshes can be reduced to a quadrilateral mesh using a more general
form of Catmull-Clark rules [3].

e New face points are computed as the average of the control points associated with

the vertices in the original face.

e New edge points are computed as the average of the end points of the edge and
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the new face points for the two faces sharing the edge.

e New vertex points can be calculated as

I T R = R e
Py = =P+ 5> P+ 50 Pl (3:20)

Ball and Story [1] proved tangent plane continuity of the Catmull-Clark scheme.
Peters and Reif [14] proved C! continuity for valences up to 10,000. The scheme
produces surfaces that are C? continuous away from extraordinary vertices where they

are C1.

Sederberg et. al. [16], developed new subdivision rules for generating nun-uniform
subdivision surfaces of arbitrary topology with Catmull-Clark scheme. He introduced
features such as cusps, creases, and darts, while maintaining the same order of conti-
nuity as their counterparts. Havemann [8] did researches on the interactive display of
Ctmull-Clark surfaces. He used a three level caching strategy so that the display rou-
tine can make use of static geometry, but it can also efficiently handle moving control

vertices, and it even changes the connectivity of the control meshes.
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Figure 3.7: Masks for the Catmull-Clark subdivision scheme. (a) face vertex mask,
(b) edge vertex mask, (c) even vertex rule, (d) boundary odd vertex mask, and (e)

boundary even vertex mask.



Chapter 4

Implementation of Subdivision

Surfaces

4.1 Data Structures

One of the fundamental steps we had to cover before starting to implement any of the
subdivision algorithm was to design a suitable data structure. A major challenge is
to find a data structure that could handle the large and constantly changing data sets
involved in subdivision. The chosen structure should, besides representing the data in
its native form, also show the connectivity of the mesh in question, while keeping the

storage at minimum.

Specifically for our purposes it was important that the data structure could rep-
resent almost arbitrary meshes since we worked with different types of subdivision
schemes. The schemes operate on mesh types that consist of primarily either triangu-
lar or quadrilateral faces. It would be very impractical to have separate data structures
for the different mesh types, so an important criterion is the support for almost arbi-

trary meshes.

There are some restrictions on the meshes since we deal with subdivision. First, no
edge can be shared by more than two faces. Secondly, the faces sharing a vertex can

be ordered such that every two consecutive faces also share an edge. Thirdly, each face

27
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has an orientation and faces sharing an edge must have same orientation.

The connectivity of the mesh should be represented easily since these changes of-
ten during subdivision when new additional vertices are introduced and therefore a
new connectivity structure has been generated. A good implementation of connectiv-
ity also ensures easy traversal of the data structure. This is again important in our

implementation since we recur over the mesh when subdividing.

We have chosen to focus less on other interesting and important areas of a good
data structure such as computational cost and memory consumption, the reason being
that today’s computers can rather effortlessly support large data sets. Nevertheless,
our data structure still ensures that basic traversal of the mesh is reasonable efficient,

but there is certainly room for improvement in other areas of our implementation.

4.1.1 The Corner Lath Data Structure

We use the Corner Lath data structure proposed by Legakis et al. [11]. This data
structure is based on the Lath concept, illustrated in Figure 4.1. First, a link to the
vertex information associated with Lath; second, a link (the face-clockwise link) to a
lath that represents the next lath in a clockwise traversal of laths of the face that Lath
represents; and third, a link (the vertez-clockwise link) to the lath that is the next lath
in a clockwise traversal of the vertex that Lath represents are established. Here, the
lath elements are easily identified with each vertex-face pair. The edge identified with
each lath Lath is that edge bounded by the vertex of Lath and the vertex of the lath
identified by the face-clockwise link.

This data item can encapsulate the structure of the mesh, and is fairly easy to
implement. The lath is used to represent all the important element of a mesh namely
the vertices, edges, faces and the connectivity among them. Furthermore the lath
supports the development of a basic set of traversal functions that are used during

subdivision.

The article describes several variations of the lath. The one we choose is the corner
lath. This type of lath, like the others, is associated with exactly one vertex, one edge

and one face of the mesh. Each lath contains a link to the vertex, one to the lath
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/

Figure 4.1: The lath data element.

contained in the same face but in the counter-clockwise direction and one to the next
lath contained in a counter-clockwise traversal of the associated vertex. A visualization
of the corner lath data structure is shown in Figure 4.2. The two things that must be
stored are the laths and the vertices. The vertices contain the coordinates of the

associated control points.

By focusing on a large portion of the mesh two loops formed by the lath pointers
are easily identified. The first loop allows a counter-clockwise traversal of the laths in
a face and the second loop allows a counter-clockwise traversal of the laths around a
vertex. Applying simple functions that use the lath pointers to navigate it is possible

to traverse these loops. Given a lath L , the basic functions are,

e L.ccwv() — returns the lath that follows L in a counter-clockwise traversal

around the vertex that L points to.

e L.ccwf() — returns the lath that follows L in a counter-clockwise traversal of

the face that contains L .

e L.cwv() — returns the lath that follows L in a clockwise traversal around the

vertex that L points to. This can be computed either by using L.ccwv() until
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Figure 4.2: Corner lath data structure pointer loops. The continuous arrows show the
loop on a face while the dotted ones show the loop around the vertex.

the lath L.ccwv() equals L, or by using the sequence L.ccwf().ccwv().ccwf().

Special considerations have to be taken when working on the boundary.

e L.cwf()— returns the lath that follows L in a clockwise traversal around the
face that contains L . This can be computed either by using L.ccwf() until the
lath L.ccwf() equals L, or by using the sequence L.ccwv().ccwf().ccwv(). On

the boundary the second option will not work.

On the boundary, we should devote special care when traversing around a vertex
or in other words when switching from one face to another. The destination face might
not exist so this has to be clearly identified in the data structure. By storing a NULL
pointer in the vertex link of a lath, and checking whether such one exists or not, when

traversing the data structure.
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4.1.2 Implementing the Data Structure

Our implementation of the corner lath data structure is contained in a class. The basic
functions discussed above are implemented just described as member functions of the

class. Here is an outline of certain details differing form the above discussion.

During subdivision reversal from and to different levels arise. Consequently, a very
simple but an important extension to our implementation of the corner lath structure
is needed to connect the subdivision levels that arise during subdivision. Each lath
therefore has a pointer to a lath in the next subdivided level, which is accessed by the

function
e L.nextlevel()— returns the lath in the next subdivided level

To handle the non-uniform subdivision schemes discussed in Section 3.1 and 3.2
we need a special tagging of the vertices and edges. Biermann et. al. [2] also used
tags in the same manner as we did for modeling sharp features. For this reason, we
added two member variables to the lath class to store two knot spacings for the vertex
it points to. One knot spacing is associated with the edge between the vertex and its
counter-clockwise neighbor in the face, and the other knot spacing is associated with

the edge between the vertex and its clockwise neighbor in the face.

Recall that each edge has two knot spacings associated with it — one in each end of
the edge. Table 4.1 lists the available knot spacing values and their interpretation. If
a point has conflicting markings e.g. it is marked as both a conical and cusp point, the

rule used to, is determined by the precedence: corner, conical, cusp, dart/ordinary.

4.2 Implementation of Subdivision Schemes

This will describe the algorithms we have implemented in order to support each of the
schemes. The main ideas behind each of the implementations will be mentioned here.
Each of the schemes are implemented as a class that all inherited from a base class,

which enables us to switch methods at run time.
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Knot spacing value | Interpretation

0.0 Crease edge. The two knot spacings on the edge should
have the same value. A point is a dart if exactly one
edge emanating from its corresponding vertex is marked
as a crease. The dart vertex rule is identical to the same
value.

1.0 Ordinary edge. The two knot spacings on the edge should
have the same value.

2.0 Conical point. A point is conical if at least one edge ema-
nating from its corresponding vertex is marked as conical.

3.0 Cusp point. A point is cusp if at least one edge emanating
from its corresponding vertex is marked as cusp.

4.0 Corner point. A point is corner if at least one edge ema-
nating from its corresponding vertex is marked as corner.
or if there are more creases are incident upon a vertex.
The edge rule will treat edges marked as corners as though
they were marked as creases.

Table 4.1: Special knot spacing values for marking sharp features which are used in
MDL file fo