

ON-LINE NEW EVENT DETECTION AND
CLUSTERING USING THE CONCEPTS OF THE
COVER COEFFICIENT-BASED CLUSTERING

METHODOLOGY

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

by

Ahmet Vural

August, 2002

 ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Fazlı Can (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. Uğur Güdükbay

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Özgür Ulusoy

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray

 Director of Institute of Engineering and Science

 iii

ABSTRACT

ONLINE NEW EVENT DETECTION AND
CLUSTERING USING THE CONCEPTS OF THE
COVER COEFFICIENT-BASED CLUSTERING

METHODOLOGY

Ahmet Vural
M.S. in Computer Engineering

Supervisor: Prof. Dr. Fazlı Can
August, 2002

In this study, we use the concepts of the cover coefficient-based clustering

methodology (C3M) for on-line new event detection and event clustering. The

main idea of the study is to use the seed selection process of the C3M algorithm

for the purpose of detecting new events. Since C3M works in a retrospective

manner, we modify the algorithm to work in an on-line environment.

Furthermore, in order to prevent producing oversized event clusters, and to give

equal chance to all documents to be the seed of a new event, we employ the

window size concept. Since we desire to control the number of seed documents,

we introduce a threshold concept to the event clustering algorithm. We also use

the threshold concept, with a little modification, in the on-line event detection. In

the experiments we use TDT1 corpus, which is also used in the original topic

detection and tracking study. In event clustering and event detection, we use both

binary and weighted versions of TDT1 corpus. With the binary implementation,

we obtain better results. When we compare our on-line event detection results to

the results of UMASS approach, we obtain better performance in terms of false

alarm rates.

Keywords: Clustering, on-line event clustering, on-line event detection.

 iv

ÖZET

KAPLAMA KATSAYISI TABANLI KÜME
OLUŞTURMA METODOLOJİSİ KULLANARAK
ANINDA YENİ OLAY BELİRLEME VE KÜME

OLUŞTURMA

Ahmet Vural
Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Fazlı Can
Ağustos, 2002

Bu çalışmada, anında yeni olay belirlemek ve olay kümeleri oluşturmak amacıyla,

kaplama katsayısı tabanlı küme oluşturma metodolojisi (C3M) kavramları

kullanıldı. Çalışmanın ana teması, yeni olay belirlemek için C3M algoritmasının

tohum seçme işlemini kullanmaktır. C3M’in çalışma prensibi anında kümelemeye

uygun olmadığından, algoritmada değişiklikler yapıldı. Ayrıca, çok büyük olay

kümelerinin oluşumunu önlemek ve bütün dokümanlara, tohum olabilmeleri için

eşit şans tanımak amacıyla, pencere yöntemi kullanıldı. Tohum dokümanlarının

miktarını kontrol etmek maksadıyla, olay kümeleme işi için bir eşik kavramı

ortaya çıkarıldı. Bu kavramı, çok küçük değişikliklerle, yeni olay belirlemede de

kullanıldı. Deneyler esnasında, orjinal konu belirleme ve takip çalışmasında da

kullanılan TDT1 yığınından yararlanılmıştır. Yeni olay belirleme ve olay

kümeleme işlemlerinde TDT1 yığınının ağırlıklı ve düz uyarlamaları kullanıldı.

Düz uygulamalar için daha iyi sonuçlar elde edildi. Anında olay belirleme

alanındaki sonuçlar UMASS yaklaşımınınkilerle karşılaştırıldığında, yanlış alarm

oranları açısından daha iyi performans elde edilmiştir.

Anahtar Sözcükler: Kümeleme, anında olay kümelemesi, anında olay belirleme.

 v

ACKNOWLEDGEMENTS

I would like to express my special thanks and gratitude to Prof. Dr. Fazlı

Can, from whom I have learned a lot, due to his supervision, suggestions, and

support during this research.

 I am also indebted to Assoc. Prof. Dr. Özgür Ulusoy and Assist. Prof. Dr.

Uğur Güdükbay for showing keen interest to the subject matter and accepting to

read and review this thesis.

 I would like to thank to Turkish Armed Forces for giving this great

opportunity.

 I would like to thank all my colleagues and dear friends for their help and

support.

 vi

Anneme ve Ablalarıma.

 vii

Contents

1 Introduction ..1

1.1 Definitions ..1

1.2 Research Contributions ...3

1.3 Thesis Overview ...4

2 Related Work ..5

2.1 New Event Detection Approaches ...6

2.1.1 CMU Approach..7

2.1.2 The UMass Approach...8

2.1.3 Dragon System Approach...9

2.1.4 UPenn Approach .. 10

2.1.5 BBN Technologies' Approach .. 10

2.1.6 On-Line New Event Detection in a Multi-Resource Environment..... 11

2.2 Event Clustering Approaches .. 12

2.3 Document Clustering Approaches ... 14

2.3.2 Single-Pass Clustering.. 15

2.3.3 Cover Coefficient-based Clustering Methodology 16

3 Cover Coefficient-based Clustering Methodology: C3M............................. 17

4 Experimental Data and Evaluation Methods... 24

 viii

4.1 TDT Corpus.. 24

4.2 Evaluation... 26

4.2.1 Effectiveness Measures .. 26

4.2.1 Experimental Methodology .. 29

4.2.2 Preprocessing ... 29

5 On-Line Event Clustering... 31

5.1 Window Size... 31

5.2 Threshold Model... 34

5.3 The Algorithm .. 35

5.3.1 An Operational Example .. 36

5.4 Experimental Results .. 40

5.4.1 Results of Binary Implementation .. 40

5.4.2 Results of Weighted Implementation.. 42

6 On-Line New Event Detection .. 46

6.1 Window Size... 46

6.2 Threshold Model... 47

6.3 The Algorithm .. 48

6.3.1 An Operational Example .. 49

6.4 Experimental Results .. 51

6.4.1 Results of Binary Implementation .. 51

6.4.2 Results of Weighted Implementation.. 53

7 Conclusion and Future Work... 57

 ix

List of Figures

1.1 On-line new event detection, event tracking, event clustering and2

2.1 Single-pass clustering algorithm...8

2.2 UMASS new event detection algorithm. ..9

2.3 BBN new event detection algorithm. .. 11

2.4 New event detection and tracking algorithm... 11

3.1 C3M Algorithm. ... 18

3.2 Sample D Matrix.. 18

3.3 S and TS ′ matrixes derived from the D matrix of Figure 3.2. 20

3.4 Sample C matrix .. 20

3.5 Some properties of the C matrix. .. 22

4.1 Judged 25 events in TDT corpus. ... 25

4.2 An example document vector. .. 30

5.1 Event evolution; Oklahoma city bombing .. 33

5.2 On-line event clustering algorithm. .. 35

5.3 Final event clusters. ... 38

5.4 Effectiveness measure results for the example data. 39

5.5 Change of effectiveness measures vs. window size (binary). 41

 x

5.6 Change of performance (pfr)vs. window size. 42

5.7 Change of effectiveness measures vs. window size (weighted)............. 43

5.8 Change of performance (pfr) vs. window size. 44

5.9 Comparison of effectiveness measures (recall, precision, F1, miss). 45

5.10 Comparison of implementation performances (pfr). 45

6.1 On-line new event detection algorithm. .. 48

6.2 Effectiveness measure results for the example data. 50

6.3 Change of effectiveness measures vs. window size. 52

6.4 Change of performance vs. window size. ... 52

6.5 Change of effectiveness measures vs. window size. 54

6.6 Change of performance vs. window size. ... 54

6.7 Comparison of effectiveness measures (recall, precision, F1, miss). 55

6.8 Comparison of implementation performances.(pfr) 55

 xi

List of Tables

2.1 The summary of on-line new event detection approaches 12

4.1 Two-by-two contingency table for event clustering. 27

4.2 Two-by-two contingency table for event detection. 28

5.1 Distribution of the documents in time (window size in days)................. 32

5.2 Event clustering results according to six window sizes (binary)............. 40

5.3 Event clustering results according to six window sizes (weighted). 43

6.1 Final document labels. .. 50

6.2 On-line event detection results according to four windows (binary)....... 51

6.3 On-line new event detection results according to four windows............. 53

6.4 Comparison of on-line new event detection approaches. 56

6.5 Comparison of systems presented at the first TDT workshop. 56

 xii

List of Symbols and Abbreviations

iα : Alpha, reverse of row sum of D matrix.

kβ : Beta, reverse of column sum of D matrix.

iδ : Decoupling coefficient.

iψ : Coupling coefficient.

iP : Cluster seed power of document di.

P : Average seed power value.

C : Document-by-document (m × m) cover coefficient matrix whose

entries, cij values, indicate the probability of selecting any term of

document (di) from document (dj), where di and dj are the

members of D matrix.

C ′ : Term-by-term (n × n) cover coefficient matrix.

C3M : Cover Coefficient based Clustering Methodology .

CBR : Cluster-Based Retrieval.

CC : Cover Coefficient.

cij : The probability of selecting any term of di from dj..

CMU : Carnegie Mellon University.

D : Document–by-term matrix, contains document vectors.

diDate : The date of new coming document.

djDate : The date of the oldest document in the current window.

DRAGON : Dragon Systems.

FS : Full Search.

JGI : Journal of Graphics Institute.

 xiii

KNN : k Nearest Neighbour Algorithm.

LDC : Linguistic Data Consortium.

m : The number of documents in the database.

MUC : Message Understanding Conferences.

TDT : Topic Detection and Tracking.

tf× idf : Term Frequency times Inverse Document Frequency.

tgs : The average number of seed documents per term.

Tr : Threshold value.

UMASS : University of Massachusetts at Amherst.

WS : Window Size.

xd : The average number of distinct terms per document.

1

Chapter 1
Introduction
1.1 Definitions

We live in a quickly changing world. We do not have time to stop and rest for a

moment, if we do not want to miss the developments in the changing world. How

much can human being resist this stress? There should be a way to save our time

and our life. The computer can help, but it is not enough. In addition to

computer, an intelligent assistant system is desirable. This system should be able

to follow the current news, form of a content summary of a corpus for a quick

review, provide a temporal evolution of past events of interest, or detect new

events that demonstrate a significant content from any previously known events.

 In order to find a solution to this problem, a study called Topic Detection

and Tracking (TDT) Pilot Study project [2], which is the primary motivation of

this thesis, was initiated in 1997. The aim of TDT study was to explore the

modern way of finding and following new events in a stream of broadcast news

stories. At first, the study grouped the streaming news into related topic. During

evolution, the notion of “topic” improved and specified to “event.” In the TDT

study, “event” is defined as some unique thing that happens at some point in time.

The time property distinguishes event from the meaning of “topic,” which is

identified as: a seminal event along with all related events. Story, news and

CHAPTER 1. INTRODUCTION

2

document are the elements of event, and in this thesis, they are used in turn in

place of each other.

In TDT study, there are three tasks. The segmentation task aims to

segment a continuous stream of text into its element stories. The boundaries of

the news are identified. The detection task identifies stories that discuss new

events, which have not been previously reported. The tracking task links

incoming stories to the events known to the system. The user initially identifies

the classifier of a particular event. The diagram in Figure 1.1 depicts how these

tasks are accomplished.

Figure 1.1: On-line new event detection, event tracking, event clustering and

 segmentation process.

Figure 1.1 is a model to visualize the processes. There are four processes

depicted in the figure. Segmentation process identifies the boundaries of each

story in the streaming news. After this process is over, the stories are labeled by

the new event detection process, as discussing new event or not. The dark ovals

Segmenter
Event
tracking

News stream
Document labeled as seed and new event

User defined classifier

Segmented story

Cluster

Cluster seed

Event clustering results

Existing event

Event
clustering

New event
detection

Useless documents

Event tracking results
Cluster member

: User defined
 classifier.
: Existing event.

: Seed or new
 event.

CHAPTER 1. INTRODUCTION

3

in the diagram represent the new events in the data. We can apply one of the two

processes, the event tracking or the event clustering. The event tracking process

begins with the identification of a classifier, which is created from the contents of

the document specified by the user. The classifier is then used to make on-line

decisions about subsequent documents on the news stream. If the documents are

related to the classifier, they are labeled as relevant. Otherwise, they are useless.

The last process depicted in the figure is event clustering. Event clustering is an

unsupervised problem solving process where the goal is to automatically group

documents by events that may exist in the data. The significant difference from

event tracking method is that the latter needs training documents about each event

to formulate a classifier, while the former operates without training documents.

On the other hand, new event detection problem is also unsupervised because no

training documents are required for processing the data. However, different from

event clustering, the goal of new event detection is to separate documents that

discuss new events from documents discussing existing events.

1.2 Research Contributions

The previous works that most influenced our approach, to new event detection

and event clustering, are based on single-pass clustering [33] and Cover

Coefficient based Clustering Methodology (C3M) [8]. We use the concepts of the

cover coefficient-based clustering methodology (C3M) for on-line new event

detection and event clustering.

The C3M algorithm is seed based. We use the idea of using seed selection

process of C3M algorithm for event clustering and detecting new events. We aim

to select the initial stories of the events as seed documents, and group the follower

stories around selected seeds. Documents, which are selected as seed, are also

accepted by the system as the new events.

CHAPTER 1. INTRODUCTION

4

Since C3M works in retrospective environment, we modified the algorithm

to work in on-line manner by processing the documents sequentially, and one at a

time.

We introduce a window size concept to the algorithm. This prevents

oversized clusters, and gives equal chance to all documents to be a cluster seed.

We introduce a threshold concept for the seed selection process of event

clustering. With the help of threshold, we obtain acceptable performance. A

modified version of the threshold concept is also used for the task of on-line new

event detection.

We apply the algorithm to both binary and weighted version of the TDT1

corpus. We obtain better performance with binary implementation than weighted

implementation.

1.3 Thesis Overview

In the next chapter, we provide a brief overview of on-line event clustering and

on-line event detection. This chapter also covers the approaches of the

participants of TDT study and previous literature related to these topics. Chapter3

describes the C3M algorithm. We give the necessary information about this

algorithm, which are related to our approach. In Chapter 4, we describe the TDT1

corpus and the evaluation methodologies we used to explore our approach. We

present our solutions and results for the on-line event clustering and on-line new

event detection, in Chapters 5 and 6, respectively. Conclusion and possible future

extensions are presented in Chapter 7.

5

Chapter 2

Related Work

Whole story is initiated by Topic Detection and Tracking (TDT) Pilot Study

project [2]. TDT study is a DARPA-supported program to explore the modern

way of finding and following new events in a stream of broadcast news stories.

The TDT problem consists of three major tasks:

• The Segmentation Task: The segmentation task is defined to be the task of

segmenting a continuous stream of text into its element stories. It locates

the boundaries between neighboring stories, for all stories in the corpus.

In this thesis, we do not focus on this task, since the data used in

experiments are already segmented.

• The Detection Task: The goal of the task is to identify stories that discuss

new events, which have not been previously reported. For example, a

good new event detection system should aware the user to the first story

about a specific event such as a political crisis, or an earthquake in a

particular time and place. In addition, we introduce a method, which

clusters the stories in an on-line manner.

• The Tracking Task: The tracking task is defined to be the task of linking

incoming stories with events known to the system. An event is defined

CHAPTER 2. RELATED WORK

6

(“known”) by its relationship with stories that discuss the event. In the

tracking task a target event is given, and each successive story must be

classified as to whether or not it discusses the target event [32]. This task

is not covered in the scope of this study.

The TDT Pilot Study ran from September 1996 through October 1997 [2].

The primary participants were DARPA, Carnegie Mellon University (CMU),

Dragon Systems (DRAGON), and the University of Massachusetts (UMASS) at

Amherst. The approaches of the first participants and other researches are

covered in the next section.

The TDT study is proposed to explore techniques for detecting the

emergence of new topics and for tracking the re-emergence and evolution of them.

During the first portion of TDT study, the notion of a “topic” was modified to be

an “event,” meaning some unique thing that happens at some point in time. The

notion of an event differs from a broader category of event’s specificity. For

example, “Turkish Economic crisis in February, 2001” is an event, whereas

“crisis” in general is considered a class of events. Events might be unexpected,

such as the eruption of a volcano, or expected, such as a political election.

2.1 New Event Detection Approaches

New event detection is an unsupervised learning task consists of two subtasks:

retrospective detection and on-line detection. The former is about the discovery

of previously collected and unidentified events in a static data and the latter

attempts to identify the beginning of new events from live news streaming in real-

time. Both forms of detection do not have any previous knowledge of novel

events, but have permission to use historical data for training purposes [36].

The on-line new event detection has two modes of operation: immediate

and delayed. In immediate mode, system is a strict real-time application and it

identifies whether the current document contains a new event or not before

processing the next document. In delayed mode, decisions deferred for a pre-

CHAPTER 2. RELATED WORK

7

specified time interval. For example, the system may collect news throughout the

day and presents the results of detection task at the end of the day [24].

Since our detection system works in immediate mode, some approaches to

immediate mode of on-line new event detection are considered below.

2.1.1 CMU Approach

The CMU (Carnegie Mellon University) approach used conventional vector space

model to represent the documents and traditional clustering techniques in

information retrieval to represent the events [25]. A story is presented as a vector

whose dimensions are the stemmed unique terms in the corpus, and whose

elements are the term (word or phrase) weights in the story. In choosing a term

weighting system, low weights should be assigned to high-frequency words that

occur in many documents of a collection, and high weights to terms that are

important in particular documents but unimportant in the remainder of the

collection. They used the well-known term weighting system [25] tf× idf (Term

Frequency times Inverse Document Frequency) to assign weights to terms. As a

clustering algorithm, an incremental (single-pass) clustering algorithm with a time

window is used. The algorithm is given in Figure 2.1.

A cluster is represented using a prototype vector (or centroid), which is the

normalized sum of story vectors in the cluster. The SMART [27] retrieval engine

is embedded in the system. They used a clustering strategy with a detection

threshold that managed the minimum document cluster similarity score required

for the system to label the current document as containing a new event. They also

used a combining threshold to decide whether adding a document to an existing

cluster or not. By using a constant window size, they aimed to limit the number

of comparisons.

CHAPTER 2. RELATED WORK

8

1. Documents are processed sequentially.
2. The first document becomes the cluster representative of the first cluster.
3. Each subsequent document is matched against all cluster representatives.
4. A given document is assigned to a cluster according to some similarity

measure.When a document is assigned to a cluster, the representative for
that cluster is recomputed.

6. If a document fails a similarity test, it becomes a cluster representative of a
new cluster.

Figure 2.1: Single-pass clustering algorithm.

2.1.2 The UMass Approach

 UMASS solution to new event detection is related to the problem of on-line

document clustering. By clustering the streaming documents, and returning the

earliest document in each cluster to the user, UMASS aimed to find a solution to

new event detection problem. In this approach [22], they reevaluated some of the

well-known approaches to retrospective clustering and analyzed their

effectiveness in an on-line manner. For this purpose, a modified version of the

single-pass clustering algorithm is used for new event detection. As shown before

in Figure 2.1, this algorithm processes each new document on the stream

sequentially. In addition to this implementation, the new-event detection

algorithm was implemented by combining the ranked-retrieval mechanisms of

Inquery [17], a feature extraction and selection process based on relevance

feedback [1], and the routing architecture of InRoute [4]. The algorithm is

presented in Figure 2.2.

CHAPTER 2. RELATED WORK

9

1. Use feature extraction and selection techniques to build a query
representation to define the document's content.

2. Determine the query's initial threshold by evaluating the new document
with the query.

3. Compare the new document against previous queries in memory.

4. If the document does not trigger any previous query by exceeding its
threshold, the document contains a new event.

5. If the document triggers an existing query, the document is not containing
a new event.

6. (Optional) Add the document to the agglomeration list of queries it
triggered.

7. (Optional) Rebuild existing queries using the document.

8. Add new query to memory.
Figure 2.2: UMASS new event detection algorithm.

2.1.3 Dragon System Approach

The Dragon system used a language modeling approach of single word (unigram)

frequencies for cluster and document representations: their document

representation did not use tf× idf scores, as used in the UMASS system and the

CMU system. Dragon's cluster comparison methodology is based on the

KullbackLeibler distance measure [2]. They used a preprocessing step in which

an iterative k-means clustering algorithm was used to build 100 background

models (clusters) from an auxiliary corpus. Initially, the first story in the corpus is

defined as an initial cluster [2]. The remaining stories in the corpus are processed

sequentially; for each one, the “distance” to each of the existing clusters is

computed. In their decision process, a document is considered to contain a new

event when it is closer to a background model than to an existing story cluster.

As a modification, they introduced “decay term” to cause clusters to have

a limited existence in time. By adjusting the decay parameter and the overall

threshold the on-line detection system can be tuned.

CHAPTER 2. RELATED WORK

10

2.1.4 UPenn Approach

The UPenn approach used the single-link (nearest neighbor) clustering method to

characterize each event. This method begins with all stories in their own

singleton clusters. Two clusters are merged if the similarity between any story of

the first cluster and any story of the second cluster exceeds a threshold. As a

system parameter, a deferral period is defined to be the number of files (each

containing multiple stories) the system is allowed to process before it relates an

event with the stories contained in the files. To implement the clustering, the

UPenn approach takes the stories of each deferral period and creates an inverted

index. Then each story, in turn, is compared with all preceding stories (including

those from previous deferral periods). When the similarity metric for two stories

exceeds a threshold, their clusters are merged. The clusters of earlier deferral

periods cannot merge since they have already been reported. If a story cannot be

merged with an existing cluster, it becomes a new cluster, which means a new

event.

2.1.5 BBN Technologies' Approach

The BBN approach uses an incremental k-means algorithm in order to cluster the

stories. Although it is similar, the clustering algorithm they used is not precisely a

k-means algorithm, because the number of cluster, k is not given beforehand. For

every newcomer document, the algorithm tries to make appropriate changes and

modifications on the clusters, until no more change can be applied.

There are two types of metrics that are useful for the clustering algorithm:

“selection metric,” which is the maximum probability value of the BBN topic

spotting metric and “thresholding metric,” which is the binary decision metric to

add a story to a cluster. A score normalization method is used to produce

improved scores [35]. The algorithm, which is derived from Bayes' Rule, is

shown in Figure 2.3.

CHAPTER 2. RELATED WORK

11

1. Use the incremental clustering algorithm to process stories up to the end of
the current modifiable window.

2. Compare each story in the modifiable window with the old clusters to
determine whether each story should be merged with that cluster or used
as a seed for a new cluster.

3. Modify all the clusters at once according to the new assignments.
4. Iterate steps (2)-(3) until the clustering does not change.

Figure 2.3: BBN new event detection algorithm.

2.1.6 On-Line New Event Detection in a Multi-Resource

Environment
Kurt[20] used traditional vector space model to represent documents. In his MS

Thesis, the system assigns weights to terms by using tf× idf method. In order to

limit the similarity calculations between documents, time-penalty functionality

was added to the system [2, 36, 37]. In addition to novel threshold, which is very

similar with the one, used by Papka [22], another threshold, called “support

threshold,” is introduced in order to decrease the number of new event alarms. By

the help of this threshold, the number of false alarms can be decremented

enormously. The hypothesis was: If a new event is worth for alarming, it should

be supported by up-coming news in a short time. The algorithm is depicted in

Figure 2.4.

1. Prepare a vector space model of the document.

2. Remove the old documents that exceed the time window.
3. Calculate the similarities between the new document and existing

documents in the time window.

4. Calculate the decision score for the new document.

5. If the decision score is positive, then the document contains a new event.
Calculate support value.

6. If the decision score is negative, the document does not contain a new
event. Then, start event tracking process to find the similar stories.

7. If the support value of any event exceeds the support threshold, perform
alarm process.

8. Add the new document to the time window.

Figure 2.4: New event detection and tracking algorithm.

CHAPTER 2. RELATED WORK

12

The system works on k-Nearest Neighbor (kNN) Algorithm and it detects

new events on-line, and at the same time, it performs event-tracking process.

 A summary of on-line new event detection approaches is given in Table

2.1.

 CMU UMass Dragon UPenn BBN Kurt

Term

weight

Ltc version

of tf-idf

tf-idf N/A tf-idf Probabil-istic tf-idf

Document

represent-

ation

Vector-

space

model

Query

representation

N/A Vector

space

model

Vector space

model

Vector space

model

Event

represent-

ation

Single-

pass

clustering

single-pass

clustering

k-means

clustering

Nearest

neighbor

clustering

Incremental

k-means

clustering

No clustering

Similarity Cosine

similarity

Previous

queries run on

new document

Distance

between

document

to clusters

Cosine

similarity

Probabilistic

similarity

Cosine

similarity

Time

window

Used Used Used N/A N/A Used

Table 2.1: The summary of on-line new event detection approaches (N/A means

 no information is available).

2.2 Event Clustering Approaches

Event clustering is an unsupervised problem where the goal is to automatically

group documents by events that may exist in the data. The significant difference

from supervised methods is that the supervised clustering needs training

documents about each event to formulate a classifier, while the unsupervised

setting operates without training documents. On the other hand, new event

detection problem is also unsupervised because no training documents are

required for processing the data, however, different from event clustering, the goal

CHAPTER 2. RELATED WORK

13

of new event detection is to separate documents that discuss new events from

documents discussing existing events.

Most of the news classification research prior to Topic Detection and

Tracking (TDT) deals with classification problems using topics instead of events.

For example, Hayes et al. [16] describe a news organization system in which a

rule-based approach was used to group 500 news stories into six topics. The

filtering problem analyzed at the Text Retrieval Conferences [18], is another

example of topic-based news classification. However, some event-based research

has been reported prior to the first TDT workshop [24].

A data structure for news classification, called “Frames,” is introduced in

1975 by R. Schank. [29]. The frames are constructed manually and are coded for

a semantic organization of text extracted by a natural language parser. Frames

contain slots for structured text that can be organized at different semantic levels.

For example, frames can be coded to understand entire stories [15], or for

understanding the parts of a person's name [11].

A frame-based system that attempted to detect events on a newswire was

constructed by DeJong in 1979 [14]. He used pre-specified software objects

called sketchy scripts. Frames and scripts for general news events such as

“Vehicular Accidents”' and “Disasters” were constructed by hand. The goal of his

system was to predict which frame needed to be populated. This system was

working mainly as a natural language parser, but as a side effect, it decided

whether a document contains an event. However, it did not detect new events.

In 1997, Carrick and Watters introduced an application that matched news

stories to photo captions using a frame-based approach modeling proper nouns

[11]. They claimed that, when the extracted lexical features are used, their frame-

based approach was nearly as effective as using the same features in a word

matching approach. Another research related to frame-based representations on

news data are discussed at Message Understanding Conferences (MUC) [23].

In order to represent different aspects of the natural language parse, frames

can be used helpfully; however, as new types of events appear and existing events

CHAPTER 2. RELATED WORK

14

grow in a news environment, it is difficult to maintain the number of frames and

the details of their contents.

In general, the previous approaches to clustering were used in a

retrospective environment where all the documents were available to the process

before clustering begins. In his dissertation [22], Papka tested previous

approaches to document clustering and he evaluated their effectiveness for online

event clustering. He applied retrospective approaches to an online environment.

He reevaluated single-link, average-link, and complete-link hierarchical

agglomerative clustering strategies, but use them in a single-pass (incremental)

clustering context, in which a cluster is determined for the current document

before looking at the next document.

2.3 Document Clustering Approaches

Document clustering is an unsupervised process that groups documents similar to

each other. Since the clustering algorithm does not need any training instance or

any information describing the group, the problem of clustering is often known as

automatic document classification. Clustering has been studied extensively in the

literature [19], and the common element among clustering methods is a model of

word co-occurrence that is applicable to text classification problems in general.

By using this model, constructed clusters contain documents consist of words

common to most of the documents into that cluster. A historical account of

clustering research is given by van Rijsbergen [33], who also discusses cluster

similarity coefficients applied to simple word matching techniques. In another

research, Salton [25] discusses clustering approaches that use tf× idf

representations for text. In addition, Croft [12] introduced a probabilistically

based clustering algorithm, and several works have been presented, including by

TDT participants in the context of event clustering [2, 35].

Document clustering is also used for information retrieval purposes. The

goal of information retrieval system is to retrieve documents, which are relevant

to the query of a user. One of well-known query processing approach is cluster-

CHAPTER 2. RELATED WORK

15

based retrieval (CBR), which is a method for improving document retrieval in

terms of speed and effectiveness [27, 25]. There are many researches about CBR

[25, 28, 15, 33]. These approaches are based on the “cluster hypothesis,” which

states, “closely associated documents tend to be relevant to the same request,”

[33]. However, some databases do not obey this hypothesis, whereas some do

[34]. The results presented by Voorhees [34] as well as Croft [13] imply that some

collections and requests benefit from pre-clustering, while others do not.

Furthermore, according to Can [6], no CBR approach is better than full search

(FS), one of the well-known query processing approach, in terms of space and

time.

The previous work, which most influenced our approach to new event

detection and clustering, is based on single-pass clustering [33] and Cover

Coefficient based Clustering Methodology (C3M) [8]. In the remainder of this

section, a brief description of these methods is provided.

2.3.2 Single-Pass Clustering

Single-pass clustering or incremental clustering is an approach for creating

clusters on-line. The algorithm is discussed by van Rijsbergen [33] and depicted

before in Figure 2.1.

The single-pass algorithm sequentially processes documents using a pre-

specified order. The current document is compared to all existing clusters, and it

is merged with the most similar cluster if the similarity exceeds a certain

threshold, otherwise it starts its own cluster. The single-pass algorithm results in

faster processing than the agglomerative hierarchical clustering algorithm, even

though both approaches have an O(n2) asymptotic running time. The main

disadvantage of the single-pass method is that the effectiveness of the algorithm is

dependent on the order in which documents are processed. This is not a problem

in event clustering, because the order is fixed.

CHAPTER 2. RELATED WORK

16

2.3.3 Cover Coefficient-based Clustering Methodology

The C3M algorithm is a partitioning-type clustering algorithm, which means that

clusters cannot have common documents, and the algorithm operates in a single-

pass approach. The algorithm consists of three main parts:

• Select the cluster seeds; C3M is one of the nonhierarchical clustering

algorithms, and it is seed-based. The chosen seed must attract relevant

documents onto itself. To perform this issue, it must be calculated in a

multidimensional space that, how much seed document covers non-seeds

and what the amount of similarity is.

• Construct clusters; group the non-seed documents around the selected

seeds.

• Group documents into a ragbag cluster, which are not fit to any cluster.

C3M is covered in more details in the next chapter.

17

Chapter 3

Cover Coefficient-based

Clustering Methodology: C3M

As mentioned in the second chapter, one of the previous work that most

influences our approach to new event detection and clustering is based on Cover

Coefficient based Clustering Methodology (C3M) [8]. In the remainder of this

chapter, we explain this clustering method in more details.

 The C3M algorithm is a single-pass partitioning-type clustering algorithm,

which means that clusters cannot have common documents. The algorithm has

three parts, the first part determines the number of clusters and the cluster seeds,

the second part groups the non-seed documents around the selected seeds, and the

last part gathers the documents that are not fit to other clusters, into a ragbag

cluster. A brief description of the algorithm is shown in Figure 3.1.

The complexity of the algorithm is O(m × xd × tgs). In this expression, xd

is the average number of distinct terms per document, tgs is the average number of

seed documents per term, and m is the number of documents in the database [8].

CHAPTER3. COVER COEFFICIENT-BASED CLUSTERING METHODOLOGY

18

Figure 3.1: C3M Algorithm.

C3M is seed-based. The chosen seed must attract relevant documents onto

itself. To perform this complete operation, seed value must be calculated in a

multidimensional space with respect to the coverage of non-seed documents and

the amount of similarity. Using the cover coefficient (CC) concept, these

relationships are reflected in the C matrix. The algorithm constructs a C matrix

by using a D matrix that contains whole data before clustering begins, and it is a

document by term (m × n) matrix. A sample D matrix is shown below:

Figure3.2: Sample D Matrix.

 654321 tttttt

5

4

3

2

1

000101
110000
110001
001111
101001

d
d
d
d
d























C3M:

1. Determine number of clusters and cluster seeds.

2. Construct the clusters:

 i = 1;

 repeat;

 if di is not a cluster seed

 then

 begin;

 Find the cluster seed (if any) that maximally covers di; if there is

 more than one cluster seed that meets this condition, assign

 di to cluster whose seed power value is the greatest among

 the candidates;

 end;

 i = i+1;

 until i>m.

3. If there remain unclustered documents, group them into a ragbag cluster (some

 nonseed documents may not have any covering seed document).

CHAPTER3. COVER COEFFICIENT-BASED CLUSTERING METHODOLOGY

19

By definition of Can and Özkarahan [8]: “A D matrix that represents the

document database {d1, d2, ….dm} described by the index terms T={t1, t2, ….tn} is

given. The CC matrix, C, is a document-by-document matrix whose entries cij

(1 ≤ mji ≤,) indicate the probability of selecting any term of di from dj.”

In the Figure 3.2, each row indicates one document, and each column

indicates one individual term. To able to represent a document in D matrix, each

document must have at least one term and each term must appear at least in one

document. D matrix can be generated manually or automatically. On the other

hand C matrix is a document-by-document matrix whose entries, cij values,

indicate the probability of selecting any term of document (di) from document (dj),

where di and dj are the members of D matrix.

Two-phase experiment must be processed to generate C matrix. The C

matrix summarizes the results of two-phase experiment. At first phase the

algorithm chooses a term randomly from the terms of di, from the selected term

then it tries to draw dj. The sum of the probability values to select dj from di

forms cij, which is the member of C matrix. The best way to explain this issue is

using an analogy. It would be helpful to repeat the same analogy that is used by

Can and Özkarahan [8] about two-phase experiment: “Suppose we have many

urns and each urn contains balls of different colors. Then what is the probability

of selecting a ball of a particular color? To find this probability experimentally,

notice that first we have to choose an urn at random, and then we have to choose a

ball at random. In terms of the D matrix, what we have is the following: From

the terms (urns) of di, choose one at random. Each term appears in many

documents, or each urn contains many balls. From the selected term, try to draw a

ball of a particular color. What is the probability of getting dj, or what is the

probability of selecting a ball of a particular color? This is precisely the

probability of selecting any term of di from dj, since we are trying to draw the

selected term of di from dj at the second stage.”

If we consider iks is the event of first stage, and iks′ is the event of second

stage, then the probability P(iks , iks′) can be represented as P(iks)× P(iks′) [17].

CHAPTER3. COVER COEFFICIENT-BASED CLUSTERING METHODOLOGY

20

By using iks and D matrix, we can construct S probability matrix. Multiplying S

matrix with the transpose of S ′ (TS ′) forms the m-by-m C matrix. For example,

by using D matrix in Figure 3.2, constructed S and TS ′ matrixes are shown in

Figure 3.3.

S =























0002/102/1
2/12/10000
3/13/10003/1

004/14/14/14/1
3/103/1003/1

, TS ′ =























0002/104/1
3/12/10000
3/12/10004/1

002/12/114/1
3/102/1004/1

Figure 3.3: S and TS ′ matrixes derived from the D matrix of Figure 3.2.

 By multiplying the two matrixes in Figure 3.3, the C matrix, in Figure 3.4,

is constructed.























375.00.0125.0375.0125.0
0.0417.0417.00.0167.0

083.0277.0361.0083.0194.0
188.00.0063.0563.0188.0
083.0111.0194.0250.0361.0

Figure 3.4: Sample C matrix.

CHAPTER3. COVER COEFFICIENT-BASED CLUSTERING METHODOLOGY

21

Calculation of one element of the C matrix is shown below:

250.00
3
100

2
1

3
1

2
1010

4
1

3
1

*

12

6

1
2112

=×+×+×+×+×+×=

′=∑
=

c

ssc
k

kk

The entries of the C matrix can be defined as follows:

∑
=

′×=
n

k
kj

T
ikij ssc

1
 where jkkj

T ss ′=′

This equation can be rewritten as:

,
1
∑

=

×××=
n

k
jkkikiij ddc βα 1≤ mji ≤, (3.1)

Where; iα and kβ are the reciprocals of the thi row sum and the thk

column sum, respectively, as shown below:

1

1

−

=








= ∑

n

j
iji dα , 1 ≤ ,mi ≤ (3.2)

1

1

−

=








= ∑

m

j
jkk dβ , 1 ≤ ,nk ≤ (3.3)

Some properties [7] of the C matrix are depicted in Figure 3.5. The proofs

of properties 1-4 are given in [7] and [10]. The proof of property 5 is given in [9].

CHAPTER3. COVER COEFFICIENT-BASED CLUSTERING METHODOLOGY

22

1. For 0,0, >≤≤≠ iiiiij cccji (iiij cc > is possible for weighted D matrix).

2. 1...21 =+++ imii ccc (Sum of row i is equal to 1 for 1≤ mi ≤).

3. If non of the terms of di is used by the other documents, then iic =1;
otherwise, iic <1.

4. If ijc = 0, then jic = 0, and similarly, if ijc > 0, then jic > 0; but in general,

jiij cc ≠ .

5. iic = iic = ijc = jic iff di and dj are identical.

Figure 3.5: Some properties of the C matrix.

The diagonal values of the C matrix (iic) is called decoupling coefficient,

and is denoted with the symbol iδ . This measure shows how much the

documents is not related to the other documents. On the contrary, coupling

coefficient is calculated by using ith row off-diagonal entries sum, it is denoted

with the symbol iψ . This coefficient indicates the extent of coupling of di with

the other documents of the database. The concepts of decoupling and coupling

coefficients, iδ ′ and iψ ′ , are the counterparts of the same concepts defined for

documents.

iδ = iic : Decoupling coefficient of di.

iψ = 1 - iδ : Coupling coefficient of di.

By following a methodology similar to the construction of the C matrix, a

term-by-term (n × n)C ′ matrix of size n by n can be formed for index terms. C ′

has the same properties with C matrix. As with the C matrix, the C ′ matrix

summarizes the results of a two-stage experiment in a term-wise manner. C ′

matrix can be defined as follows:

∑
=

×××=′
m

k
kjkkiiij ddc

1
αβ

1≤ nji ≤, (3.4)

CHAPTER3. COVER COEFFICIENT-BASED CLUSTERING METHODOLOGY

23

As mentioned before, the C3M Algorithm is seed based. In order to select

seed documents, cluster seed power for all documents is calculated, by using the

following formula:

∑
=

××=
n

j
ijiii dP

1
ψδ (3.5)

This equation is used for binary D matrix, which means that; if the term

occurs in the document, the term frequency is taken as 1, it is taken as 0

otherwise. iδ provides the separation of clusters, iψ provides the connection

among the documents within a cluster, and summation provides normalization.

For weighted matrix, a modified version of cluster seed power formula is used:

∑
=

′×′×××=
n

j
jjijiii dP

1
)(ψδψδ (3.6)

After cluster seed power applied to the documents, the document that has

highest seed power is selected as candidate. Because this procedure can produce

identical seeds, to eliminate these false seeds, a threshold value is used. All

documents are sorted by their seed power values, so that identical documents are

grouped into the sorted list. If the value, which is obtained by comparing their C

matrix values is smaller than threshold value then it means that we have a false

seed. For each false seed, another document from the sorted list is considered.

This process can be applied on-line with some modifications. In the on-

line clustering environment, each document is analyzed sequentially and is either

placed into an existing cluster or initiates a new cluster and thus becomes a cluster

seed. In our approach we do not have falsified seeds, thus we do not apply false

seed elimination process. How the concepts of C3M algorithm applied to on-line

clustering and on-line event detection is the subject of Chapters 5 and 6,

respectively.

24

Chapter 4

Experimental Data and
Evaluation Methods

4.1 TDT Corpus

In our experiments, we used TDT1 corpus, which is also used by the participants

of TDT pilot study. In order to support the TDT study effort, Linguistic Data

Consortium (LDC) has developed this corpus using text and transcribed speech.

TDT1 covers the documents containing news from July 1, 1994 to June 30, 1995

and includes 15,863 stories. About half of the data is taken from Reuter’s

newswire and half from CNN broadcast news transcripts. The transcripts were

produced by the Journal of Graphics Institute (JGI). The stories in this corpus are

arranged in chronological order, are structured in SGML format that has a size of

53,563 KB, and are available on the LDC web page (http://www.ldc.upenn.edu/).

A set of 25 target events has been chosen from TDT1 to support the TDT

study effort. These events include both expected and unexpected events. They

are described in some detail in documents provided as part of the TDT Corpus.

The TDT corpus was completely interpreted with respect to these events, so that

each story in the corpus is appropriately flagged for each of the target events

CHAPTER4. EXPERIMENTAL DATA AND EVALUATION METHODS

25

discussed in it. There are three possible flag values: YES (the story discusses the

event), NO (the story does not discuss the event), and BRIEF (the story mentions

the event only briefly, or merely references the event without discussion; less than

10% of the story is about the event in question). Flag values for all events are

available in the file “tdt-corpus judgments” with stories.

The average document contains 460 (210 unique) single-word features

after stemming and removing stop-words. The names of all 25 events chosen

from the TDT1 Corpus are listed in Figure 4.1.

Figure 4.1: Judged 25 events in TDT corpus.

1. Aldrich Ames spy case
2. The arrest of 'Carlos the Jackal'
3. Carter in Bosnia

4. Cessna crash on White House lawn
5. Salvi clinic murders

6. Comet collision with Jupiter
7. Cuban refugees riot in Panama

8. Death of Kim Jong II
9. DNA evidence in OJ trial

10. Haiti ousts human rights observers
11. Hall's helicopter down in N. Korea

12. Flooding in Humble, Texas
13. Breyer's Supreme Court nomination

14. Nancy Kerrigan assault
15. Kobe Japan earthquake

16. Detained U.S. citizens in Iraq
17. New York City subway bombing

18. Oklahoma City bombing

CHAPTER4. EXPERIMENTAL DATA AND EVALUATION METHODS

26

The judgments were obtained by two independent groups of assessors and

then reconciled to form a set of final judgments. Documents were judged on a

ternary scale to be irrelevant, to have content relevant to the event, or to contain

only a brief mention of the event in a generally irrelevant document. We use 1124

relevant documents in the experiments after eliminating briefs and overlaps.

4.2 Evaluation

4.2.1 Effectiveness Measures

It is desirable to have one measure of effectiveness for cross system comparisons.

Unfortunately, no measure uniquely determines the overall effectiveness

characteristics of a classification system. Several definitions for single valued

measures have emerged, and are reviewed by van Rijsbergen [33]. One

widespread approach is to evaluate text classification using F1 Measure [21],

which is a combination of recall and precision and it is defined later.

Since there does not exist an agreed upon single valued metric that

uniquely captures the accuracy of a system, it is often the case that two or more

measures are needed, and efforts to define combination measures do not

necessarily lead to an applicable measure of usefulness. In what follows, we

assume usefulness is a function of user satisfaction with the classification

effectiveness of a system. In practice, usefulness is constantly changing; one

system can be useful for some particular purpose, while it would be useless for

others. For example, consider two systems: a car alarm and a radar system for an

aircraft guiding a missile. Car alarm system may sound occasionally, especially

when it is set to oversensitive. It may be acceptable to sound occasionally when

no theft event exists, but if an alarm does not sound during an actual theft, this

means that the system is useless. In other words, the owner of the car has a low

tolerance for false alarms and no tolerance for misses. On the other hand, radar

CHAPTER4. EXPERIMENTAL DATA AND EVALUATION METHODS

27

system has a different usefulness function. It may be tolerable for the system to

miss a target, but a false targeting may cause a disaster. With these requirements

in mind, without inventing another measure, we report several effectiveness

measures, which have been previously used for the analysis of text classification

experiments.

Text classification effectiveness is often based on two measures. It is

common for information retrieval experiments to be evaluated in terms of recall

and precision, where recall measures how well the system retrieves relevant

documents and classify them correctly, and precision measures how well the

system distinguishes relevant documents from irrelevant ones in the set of

retrieved group. In addition, F1 measure [21] is used, which is the combination of

recall and precision. In TDT, and the work described here, system error rates are

used to evaluate text classification. These errors are system misses and false

alarms. The accuracy of a system improves when both types of errors approaches

to zero. In new event detection, misses occur when the system does not detect a

new event, and false alarms occur when the system indicates a document contains

a new event when in truth it does not. In addition to system error rates, we report

performance (pfr), which is based on the Euclidean distance average miss rate and

false alarm rate from the origin.

The methods for calculating the effectiveness measures for on-line event

clustering, and on-line new event detection are summarized below using modified

version of Swets’s [31] two-by-two contingency table (Tables 4.1 and 4.2):

 Relevant Non-Relevant

Retrieved a b

Not Retrieved c d

Table 4.1: Two-by-two contingency table for event clustering.

CHAPTER4. EXPERIMENTAL DATA AND EVALUATION METHODS

28

Where the retrieved documents in the table are those that have been

classified by the system as positive instances of an event, and the relevant

documents are those that have been manually judged relevant to an event.

 New is True Old is True

System Predicted New a b

System Predicted Old c d

Table 4.2: Two-by-two contingency table for event detection.

Assuming S represents the set of retrieved documents, and S ′ represents

the set of not retrieved documents, then:

a = number of documents in S discussing new events,

b = number of documents in S not discussing new events,

c = number of documents in S ′ discussing new events,

d = number of documents in S ′ not discussing new events;

By using the two-by-two contingency table, we can derive the

effectiveness measures as follows:

Recall =
ca

aR
+

= , (4.1)

Precision =
ba

aP
+

= , (4.2)

F1 Measure =
RP

PR
+

2 , (4.3)

Miss Rate =
ac

cM
+

= , (4.4)

False Alarm Rate =
db

bFA
+

= , (4.5)

Distance from Origin = 22 FM + , (4.6)

Performance (pfr) = 100 - Distance from Origin. (4.7)

CHAPTER4. EXPERIMENTAL DATA AND EVALUATION METHODS

29

 The difference between event clustering and new event detection about

effectiveness calculations is that; for the former, two-by-two contingency table is

formed for each cluster that is selected as the best cluster for that event, and the

overall system effectiveness is calculated by taking the averages of each measure.

For the later, there is only one contingency table formed, and the effectiveness

measures are computed by using Table 4.2.

 In the experiment results, effectiveness measures are given as rates, except

the performance (pfr).

4.2.1 Experimental Methodology

The experiments of both event detection and event clustering are executed on a

personal computer, which has Intel Pentium 550 Mhz. Central Processor Unit

(CPU) and has 128 MB of main memory.

It is considered that a time gap between bursts of topically similar stories

is often an indication of different events. It is also experienced that events are

typically reported in a brief time window (e.g., 1-4 weeks) [22]. These

determinations in mind, we applied a time windowing in days to limit the size of

comparisons. We see that time windowing influenced the CPU time. In other

words, evaluating more days results with more CPU time.

4.2.2 Preprocessing

In the preprocessing phase, we eliminate stop words from the corpus by the help

of a pre-constructed stop word list. This list consists of terms like (a, an, and, the)

that are fatal importance to the structure of English grammar (stop word list is

attached to the appendix part). In order to able to find the terms, which have the

same root, we apply Porter’s stemming algorithm [30] to the corpus. We get

stemmed word list consists of 72,034 terms and phrases. At the same time, we

CHAPTER4. EXPERIMENTAL DATA AND EVALUATION METHODS

30

construct the document vectors in the format of <docno, termno, termfrequency>

as shown in Figure 4.2. We get 15,863 document vectors containing this format.

DOC1: 1:1:2:1:3:1:4:1:5:1:6:1:7:1:8:1

DOC2: 9:1:10:1:11:1:12:1:13:1

DOC3: 3:1:6:1:15:1:16:1:17:1

DOC4: 6:1:16:1:17:1

DOC5: 2:1:3:1:4:1:5:1:7:1:8:1:17:1

.

.

DOCn:

Figure 4.2: An example document vector.

 This structure is used during both on-line event clustering and on-line

event detection experiments.

31

Chapter 5

On-Line Event Clustering

In this chapter, we focus on the problem of on-line mode of event clustering. We

introduce a new algorithm as a solution to the problem, with the help of C3M

algorithm.

5.1 Window Size

In our experiments, we add window size concept to the algorithm. This

prevents producing oversized clusters, and gives equal chance to all documents to

be a cluster seed. When we analyze the distribution of documents for a particular

event, we determine that the most of the documents for an event ends in a few

days from the first occurrence of that event. There are exceptions for some

events, which lasts for the most days of the year. For example, events 9, 22, 25,

listed in Table 5.1, do not follow this tendency. The details are shown in Table

5.1.

In Table 5.1, number of documents are counted for the first 10, 20, 30, 40

days of each event, and for the whole life of that particular event, that is; from the

first occurrence to the last story about that event. The table summarizes that,

stories about most of the events appear in first 30 or 40 days. At the end of the

CHAPTER 5. ON-LINE EVENT CLUSTERING

32

table, total number of documents shows a trend that the most significant window

sizes are these two day-periods.

No. of Documents in Window
Events

Event
Life in
Days Life 40 30 20 10

1. Aldrich Ames spy case 96 8 6 5 3 2

2. The arrest of “Carlos the Jackal” 30 10 10 10 9 7

3. Carter in Bosnia 49 30 29 29 27 25

4. Cessna crash on White House lawn 2 14 2 2 2 2

5. Salvi clinic murders 60 41 34 34 33 33

6. Comet collision with Jupiter 121 45 44 44 44 6

7. Cuban refugees riot in Panama 3 2 2 2 2 2

8. Death of Kim Jong II 317 56 45 44 41 36

9. DNA evidence in OJ trial 376 114 29 12 7 4

10. Haiti ousts human rights observers 3 12 12 12 12 12

11. Hall's helicopter down in N. Korea 20 97 97 97 97 50

12. Flooding in Humble, Texas 8 22 22 22 22 22

13. Breyer's Supreme Court nomination 80 7 6 6 6 5

14. Nancy Kerrigan assault 180 2 1 1 1 1

15. Kobe Japan earthquake 127 84 82 81 81 74

16. Detained U.S. citizens in Iraq 54 44 33 32 29 11

17. New York City subway bombing 8 24 24 24 24 24

18. Oklahoma City bombing 45 273 261 249 226 215

19. Pentium chip flaw 9 4 4 4 4 4

20. Quayle's lung clot 9 12 12 12 12 12

21. Serbians down F16 10 65 65 65 65 65

22. Serb's violation of Bihac safe area 130 90 1 1 1 1

23. Faulkner's admission into the Citadel 180 7 4 4 3 3

24. Crash of US Air flight 427 140 39 37 37 36 35

25. World Trade Center bombing 360 22 1 1 1 1

Total number of documents: - 1124 863 832 790 654

Table 5.1: Distribution of the documents in time (window size in days).

CHAPTER 5. ON-LINE EVENT CLUSTERING

33

This distribution of documents is depicted in more details for a specific

event (event number 18). It has the maximum number of related stories (273)

among 25 events. Figure 5.1, is borrowed from Papka [22], illustrates the window

size concept. In this figure, we see that the most of the news about “Oklahoma

city bombing” appeared between the days of 293 and 305 (in the fist ten days).

After the second week of first occurrence of the event, it is observed that the

amount of streaming news is reduced. Most of the events in TDT1 corpus behave

as the event seen in this figure.

Figure 5.1: Event evolution; Oklahoma city bombing (adapted from Papka[22])

This tendency in mind, we use a window size concept, in order to improve

the performance of the system. The hypothesis is that; limiting the number of

documents, by processing only the documents in predetermined window size

would help to improve the effectiveness of the system. This hypothesis is verified

for events following the same tendency. However, as a disadvantage, the miss

rate of the system is increased dramatically for the events, which do not follow the

common trend.

 In order to improve the performance, Papka [22] used time windowing in

his system. The main motivation of his approach is that documents closer

together on the stream are more likely to discuss similar events than documents

further apart on the stream. As depicted in Figure 5.1, when a significant new

CHAPTER 5. ON-LINE EVENT CLUSTERING

34

event occurs there are usually several related documents in the initial days. Over

time, coverage of old events is displaced by events that are more recent. Different

from our approach, Papka integrated time in the thresholding model.

5.2 Threshold Model

In the seed selection process, we apply a threshold model, which varies from

document to document. For on-line clustering subject, we aimed to find a way of

putting a threshold in front of the documents, to make the decision of flagging as

seed. Without thresholding all the documents in the corpus would be a seed, and

this would produce number of clusters equals to the number of documents in the

corpus. This is not a desired situation for event clustering. On the other hand,

when a greater value is used as a threshold, the system would give unproductive

results; in other words, the miss rate of the system would be unacceptable. Thus,

we want an appropriate number of clusters for each individual event. It is

acceptable for the system to produce at least one representative cluster for each

event; while doing this the system must classify the related stories into that

clusters. In other words, we don’t desire weak or empty clusters (without member

except the seed). As a solution, we use a threshold concept, by computing the

average P value for documents in the scope of predetermined window size, and

compare this value to the iP value of new coming document. The expression of

threshold Tr is given below:

 Tr = ∑
∈windowd

i
i

P / (No. of documents in window) (5.1)

The idea behind this approach is that; iP value is a sign for a document

how the document is different from the others, if this value can exceed the average

P value, this means that the particular document reviews a different story, and it

deserves to be a seed of a new cluster.

CHAPTER 5. ON-LINE EVENT CLUSTERING

35

5.3 The Algorithm
The on-line event-clustering algorithm constructs the cluster structure by

processing document vectors sequentially in a sing-pass manner; a simple

example of the document vector structure is given in Figure 4.2. The algorithm is

shown in Figure 5.2.

When a document (say di) arrives, the update process begins if the

difference between the dates of the oldest document and the youngest one exceeds

the pre-determined window size. In the update process, system deletes the old

documents until the date difference falls under the value of window size. If the

deleted document is a seed of a cluster, the whole cluster is deleted after

computing its effectiveness. However, the members of the deleted cluster, which

do not exceed the window size, remain in the system and they are used in the

For each new coming document di;

1. let dj= oldest document

2. if diDate– djDate* ≥ predetermined window size (WS)

repeat;

 delete dj

 if dj is seed

 delete cluster started by dj

 dj= oldest document in WS

 until diDate– djDate < WS

3. calculate the seed power value iP

4. determine the threshold (Tr)

5. if iP ≥ Tr

 label the document as seed and initiate a new cluster

 else

 if there exists any cluster

 calculate cij value to decide which cluster it is attached

 else

 put the document in a ragbag cluster

(*) djDate = 0 if there is no previous document in the window.

Figure 5.2: On-line event clustering algorithm.

CHAPTER 5. ON-LINE EVENT CLUSTERING

36

computation of β values. For the next step, the seed power (iP) of the document

di, and then the threshold for the same document are calculated. If seed power

value of the document, exceeds the threshold, then it is labeled as a new seed, and

a new cluster is initiated. Otherwise, the similarity calculations are done. That is;

the similarities between the document and the previous seed documents are

computed, and the document is classified as a member of the cluster of the seed

document, which constitutes the maximum similarity with the current document

di. If there is no cluster formed, or all clusters are deleted during the update

process, the document is put in a ragbag cluster.

In Figure 5.2, diDate and djDate demonstrate the date of new coming

document and the date of the oldest document in the window size respectively.

Ragbag cluster is a cluster that gathers the non-seed documents, which have no

common terms with current seeds, or there is no cluster introduced in the window

size.

Different from C3M algorithm, in on-line event clustering algorithm, once

a document is determined as a seed, it stays as seed until it leaves the system.

Recall that in C3M algorithm, when a document joins to a cluster it may influence

the centroid of that cluster. This is not the point in our clustering strategy.

Because the idea is that when a document is selected as a seed document, then the

only information to pull the other documents is the seed document itself. When a

document is selected as a seed, it always remains the same and it is used as the

cluster centroid.

5.3.1 An Operational Example

Generation of Clusters

To make the algorithm more understandable, we give an example using

the sample D matrix of Chapter 3. Assume that the system receives the

CHAPTER 5. ON-LINE EVENT CLUSTERING

37

documents one at a time, and d1, d2 and d5 discuss the same event while d3 and d4

discusses a different event (actually we have two events).

When d1 arrives:

 1δ =1 => 1ψ = 0 => 1P = 1 × 0 × 3 = 0

 Tr = 0
1
0 =

 1P = Tr => d1 is flagged as seed and it forms Cluster-1.

When d2 arrives:

 2δ = 0.75 => 2ψ = 0.25 => 2P = 0.75 × 0.25 × 4 = 0.75

 Tr = 38.0
2

75.00 =+

 2P > Tr => d2 is flagged as seed and it forms Cluster-2.

When d3 arrives:

 3δ = 0.61 => 3ψ = 0.39 => 3P = 0.61 × 0.39 × 3 = 0.71

 Tr = 49.0
3

71.075.00 =++

 3P > Tr => d3 is flagged as seed and it forms Cluster-3.

When d4 arrives:

 4δ = 0.41 => 4ψ = 0.59 => 4P = 0.41 × 0.59 × 2 = 0.48

 Tr = 49.0
4

48.071.075.00 =+++

 4P < Tr => cij values must be calculated for d4 as illustrated before

in Chapter 3, and classified with the seed document that has the highest similarity

with cij.

By using Equations 3.1, 3.2, and 3.3:

CHAPTER 5. ON-LINE EVENT CLUSTERING

38

2
1

4 =α and
3
1,

2
1

65 == ββ => then;

()

42.0
12
51

3
111

2
110000

2
1

0000000
2
1

17.0
6
11

3
1100000

2
1

43

42

41

==





 ××+××++++×=

=+++++×=

==





 ××+++++×=

c

c

c

d4 goes to Cluster-3,

since the similarity value between d4 and d3 is more than the others.

When d5 arrives:

 5δ = 0.38 => 5ψ = 0.62 => 5P = 0.38 × 0.62 × 2 = 0.47

 Tr = 48.0
5

49.048.071.075.00 =++++

 5P < Tr => cij values must be calculated for d5.

By following the same procedure:

12.0
38.0
12.0

53

52

51

=
=
=

c
c
c

d5 goes to Cluster-2.

The clusters are shown in Figure 5.3.

 Cluster-1 Cluster-2 Cluster-3
+ : Cluster seed.

* : Member document relevant to the event started by the cluster seed.

: Member document not related to the event started by the cluster seed.

Figure 5.3: Final event clusters.

In Figure 5.3, the seed documents, the relevant members, and non-relevant

members are represented by the symbols (+, *, and #) respectively. In order to

d1

+

 d2

dn +

d5 *

d3

+

d4 *

CHAPTER 5. ON-LINE EVENT CLUSTERING

39

show false alarm measure, an extra document dn is added to Cluster-2

intentionally.

Calculation of Effectiveness Measures

In the effectiveness process, for each event, we choose the best cluster from the

clusters related to the same event, note that the cluster seed determines the related

event of the corresponding cluster. The best cluster is the one that contains the

maximum number of the stories of the related event. For example, consider that

clusters 1 and 2 contain the documents discussing the same event; Cluster-2 is

chosen as the best cluster, because it contains more number of relevant elements.

Cluster 3 is the only cluster related to the next event; therefore, we include it in

our computations. Performance is computed with the help of measures covered in

Chapter 4. The results are given in Figure 5.4. Window size notion is not applied

to this sample data, because it is very small when compared to the data used in our

experiments.

 Relevant Non-Relevant

Retrieved 2 1

Not Retrieved 1 2

Two-by-two contingency table for Cluster-2

 Relevant Non-Relevant

Retrieved 2 0

Not Retrieved 0 4

Two-by-two contingency table for Cluster-3
With the help of effectiveness measures that covered in Chapter 4:

 Recall Precision F1 Miss False Alarm

Cluster-2 0.67 0.67 0.67 0.33 0.33

Cluster-3 1 1 1 0 0

Pooled Avg. 0.84 0.84 0.84 0.17 0.17

System performance.

Figure 5.4: Effectiveness measure results for the example data.

CHAPTER 5. ON-LINE EVENT CLUSTERING

40

5.4 Experimental Results

We obtain two sets of experimental results, one set for binary D matrix and one

set for weighted. For the first set, the system takes the term frequencies of

document vectors as binary, in other words if a particular term exists in the vector

the system takes its term frequency as 1, it is taken as 0 otherwise. In order to

calculate the iP value, equation (3.5) is used. For the second set, the system

incorporates the actual term frequencies into equation (3.6). For example, if a

term appears in a document 10 times, term frequency (dij) is taken as 10.

5.4.1 Results of Binary Implementation

For obtaining binary implementation results, we execute the algorithm six times

for six different window sizes. The idea behind this execution method is that; we

aim to see the impact of different window sizes to the effectiveness results. For

each window size, the best clusters are chosen, and pooled average of

effectiveness results, containing all 25 events, is computed. These results are

depicted in Table 5.2.

EVENT CLUSTERING (BINARY)

W-Size
Recall

%
Precision

%
F1
%

Miss
%

F-Alarm

% Performance(pfr)
15 25 75 35 75 0.8 25
20 27 77 37 73 0.8 27
25 28 75 38 72 0.6 28
30 30 73 39 70 0.7 30
35 31 73 39 69 0.8 31
40 29 70 37 71 0.7 29

Table 5.2: Event clustering results according to six window sizes (binary).

In Table 5.2, we observe that; while window size expands, the probability

of retrieving relevant documents improves, in other words recall improves, until a

CHAPTER 5. ON-LINE EVENT CLUSTERING

41

peak point of this improvement, which is the window size of 35. The

experiments, after this point for windows 40, 45 and 50, show that the

performance (prf) suffers. On the contrary, general trend of precision is negative,

since the number of retrieved documents increases with the increase of window

size. The performance(pfr) measure has the same trend with recall, and it shows

that the best performance(pfr) is obtained with the window size 35. Change of

effectiveness measures and change of performances (pfr) in terms of different

window sizes are illustrated in Figures 5.5 and 5.6.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

15 20 25 30 35 40

Window Size

Recall
Precision
F1
Miss

Figure 5.5: Change of effectiveness measures vs. window size (binary).

In the experiments of binary implementation, one of the events, “Cuban

refugees riot in Panama,” which has the event number of 7, cannot be clustered,

because the documents of this event cannot be chosen as seed. For this reason,

while computing the pooled averages, the effect of this event to the results reflects

in a negative way. If we execute the same experiments neglecting that particular

event, we observe an improvement of 7% and 4% in terms of recall and precision

respectively.

CHAPTER 5. ON-LINE EVENT CLUSTERING

42

22
23
24
25
26
27
28
29
30
31

15 20 25 30 35 40

Window Size

Pe
rf

or
m

an
ce

 (p
fr

)

Figure 5.6: Change of performance (pfr) vs. window size.

 In Figure 5.6, it is shown that the performance (pfr) improves with the

growing size of window. We obtain the best performance (pfr) with window size

35. After this point, since the number of seed documents appeared in the same

window increases, the previous seeds and the current seeds are presented in the

same window. In other words, the seed documents from the previous event

interfere with the seed documents of the current event. This gives an alternative

to non-seed documents to join different clusters. For this reason, 35-day window

size is selected as the optimum window size for the system.

5.4.2 Results of Weighted Implementation

We follow the same procedure with the binary implementation to obtain the

results of weighted version. Different from binary, we use actual term frequencies

while computing seed power values and similarities.

In Table 5.3, we observe usually the similar results with binary

implementation. The window size 35 is again detected as the best choice for the

system in terms of miss rate and Performance (pfr).

CHAPTER 5. ON-LINE EVENT CLUSTERING

43

EVENT CLUSTERING (WEIGHTED)

W-Size
Recall

%
Precision

%
F1
%

Miss
%

F-Alarm
% Performance(pfr)

15 26 81 36 74 0.6 26
20 27 82 39 73 0.5 27
25 27 85 39 73 0.4 27
30 28 87 40 72 0.3 28
35 29 76 38 71 0.3 29
40 28 73 36 72 0.5 28

Table 5.3: Event clustering results according to six window sizes (weighted).

Change of measures (recall, precision, F1 and miss) and change of

performance(pfr)s in terms of different window sizes are illustrated in Figure 5.7

and Figure 5.8.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

15 20 25 30 35 40

Window Size

Recall

Precision

F1

Miss

Figure 5.7: Change of effectiveness measures vs. window size (weighted).

In the experiments of binary implementation, recall that one of the events,

“Cuban refugees riot in Panama,” which has the event number of 7, cannot be

clustered, because the documents of this event cannot be chosen as seed. In the

situation of weighted implementation, because of the effect of actual term

frequencies, the system selects one of its two documents as seed. The reason is

that; the number of term used in the document is more than the average number of

term frequencies in that particular window size. Therefore, the seed power of the

document (TDT007817) exceeds the threshold value. With this progress, all the

CHAPTER 5. ON-LINE EVENT CLUSTERING

44

events have a representative cluster, which is a desired situation. However, as a

side affect, the number of clusters is grown by 10% according to the binary

version. For this reason, the weaker clusters are produced by the system when

comparing to the clusters of the binary implementation, and this decreases the

effectiveness.

24

25

26

27

28

29

30

15 20 25 30 35 40

Window Size

Pe
rf

or
m

an
ce

(p
fr

)

Figure 5.8: Change of effectiveness measures vs. window size.

 In Figure 5.8, results are generally similar to the binary version of the

implementations. The best Performance(pfr) is once more obtained with window

size 35.

 Comparisons of binary and weighted versions of the implementation of the

algorithm are depicted in Figures 5.9 and 5.10.

Improvement in F1 measure is the effect of precision, because extra

clusters retrieve irrelevant documents, from the other cluster point of view, as well

as retrieving relevant ones. This reduces the number of members in the clusters,

and the amount of recall, nevertheless it increases precision value.

CHAPTER 5. ON-LINE EVENT CLUSTERING

45

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Recall Precision F1 Miss

BinAvg
WAvg

Figure 5.9: Comparison of effectiveness measures (recall, precision, F1, miss).

22

23

24

25

26

27

28

29

30

31

15 20 25 30 35 40

Window Size

Pe
rf

or
m

an
ce

(p
fr

)

Binary
Weighted

Figure 5.10: Comparison of implementation performances (pfr).

 In Figure 5.10, the average values of performance (pfr) with respect to six

window sizes is shown for both binary and weighted implementations of the

system. Weighted version has an advantage of producing clusters for all the

events that are identified before. In spite of this advantage over binary one,

producing weak clusters decreases the overall performance (pfr) of the system.

46

Chapter 6

On-Line New Event Detection

In this chapter, we focus on the problem of on-line new event detection. We use

the same algorithm, which is used before for the problem of on-line event

clustering, with some modifications.

6.1 Window Size

To support the on-line new event detection task, we again use the window size

concept. We aim to prevent the effects of previously detected events. That is,

recall from the previous chapter that each cluster is the representative of a

different event; it means that each seed document is the sign of new event

detection process indirectly. Therefore, we want to find a way to detect the first

story of each event as a cluster seed, without constructing any clusters. By

adjusting the window size, the chance of the documents to be seed can be

changed, since each document in window has an effect on the decision of

selecting the current processed document as a seed.

CHAPTER 6. ON-LINE NEW EVENT DETECTION

47

Different from on-line event clustering, in this task, when a narrower

window is chosen, the performance improves because of the usage of a different

threshold model, which is covered in the next section.

6.2 Threshold Model

In the desired on-line new event detection system, the number of seed documents

should be equal to the number of events, and in addition, each event should be

represented with a seed. Within the context of new event detection, our previous

threshold model yields huge number of seeds. This situation is unacceptable,

since it causes a dramatic decrease in terms of precision. To provide an

acceptable precision value while increasing recall, we modify the previous

threshold model. In the threshold concept, which is used for on-line event

clustering, initially we compute the average P value for documents in the scope

of predetermined window, and then we compare this value to the iP value of new

coming document. Different from this method, in the initial step, the average P

value is computed for only the current seed documents, the seeds in the scope of

window (in order to not miss the very first document and to prevent errors, we

take the number of seed documents as 1 if there is no seed in the system). Then

we use this value as the threshold for the document that processed at that time.

 Tr = ∑
∈windowd

i
i

P / (No. of seed documents in window) (6.1)

When a document exceeds this threshold, it is flagged as a seed document,

and it becomes a candidate new event. Because, the seed power value of the new

event should be greater than the average seed power value of the seed documents

in the window. This means that, the particular document reviews a different story,

and it deserves to be a seed, in other words a new event.

CHAPTER 6. ON-LINE NEW EVENT DETECTION

48

6.3 The Algorithm

Different from the on-line event clustering algorithm, the task of on-line new

event detection algorithm is to flag the current document in the stream as new or

old event. For this purpose, we modify the previous algorithm. Since we do not

need the clusters at the end, we exclude the clustering phase. That is, if a

document cannot exceed the threshold, the similarity computations for

classification of the document are excluded in the on-line new event detection

algorithm. With the modification in thesholding model, we aim to produce an

acceptable number of seeds, in which each event has only one representative seed

document. The algorithm is shown in Figure 6.1 and is explained with an

example in the next section.

For each new coming document di;

1. Let dj = the oldest document in window,
2. if diDate– djDate* ≥ predetermined window size (WS)

repeat
 delete dj

 dj = the oldest document in window
 until diDate– djDate < (WS)

3. calculate the seed power value iP

4. calculate threshold Tr (let Tr=0 if there is no previous seed)

5. if iP ≥ Tr

 label the document as seed and as a new event

 else
 label the document as an old event

(*) djDate = 0 if there is no previous document in the window.

Figure 6.1: On-line new event detection algorithm.

CHAPTER 6. ON-LINE NEW EVENT DETECTION

49

6.3.1 An Operational Example

Selection of new events

We use the same sample D matrix of Chapter 3. Assume that, the system

receives the documents one at a time, and d1 and d3 discuss the new event while

d2, d4 and d5 discusses old events (actually we have two events).

When d1 arrives:

 1δ =1 => 1ψ = 0 => 1P = 1 × 0 × 3 = 0

 Tr = 0
1
0 =

 1P = Tr => d1 is flagged as seed and new event.

When d2 arrives:

 2δ = 0.75 => 2ψ = 0.25 => 2P = 0.75 × 0.25 × 4 = 0.75

 Tr = 75.0
1
75.0 =

 2P = Tr => d2 is flagged as seed and new event.

When d3 arrives:

 3δ = 0.61 => 3ψ = 0.39 => 3P = 0.61 × 0.39 × 3 = 0.71

 Tr = 38.0
2

75.00 =+

 3P > Tr => d3 is flagged as seed and new event.

When d4 arrives:

 4δ = 0.41 => 4ψ = 0.59 => 4P = 0.41 × 0.59 × 2 = 0.48

 Tr = 49.0
3
46.1

3
71.075.00 ==++

 4P < Tr => Label the document as old.

CHAPTER 6. ON-LINE NEW EVENT DETECTION

50

When d5 arrives:

 5δ = 0.38 => 5ψ = 0.62 => 5P = 0.38 × 0.62 × 2 = 0.47

 Tr = 49.0
3

71.075.00 =++

 5P < Tr => Label the document as old.

 The results of prediction of the system, obtained at the end of the whole

process, are shown in Table 6.1.

System Prediction

New Old

d1 d4

d2 d5

d3 -

Table 6.1: Final Document Labels.

Calculation of effectiveness measures

In the effectiveness process, we use the information given in Table 6.1. Two-by-

two contingency table in Table 4.2 is used for effectiveness calculations.

Performance is computed with the help of measures covered in Chapter 4. The

results are given in Figure 6.2. Window size notion is not applied to this sample

data, because it is very small when compared to the data used in real experiments.

 New is True Old is True

System Predicted New 2 1

System Predicted Old 0 2

Two-by-two contingency table for Cluster-2
With the help of effectiveness measures that covered in Chapter 4:

 Recall Precision F1 Miss False Alarm

Performance 1 0.67 0.80 0 0.33

System performance.

Figure 6.2: Effectiveness measure results for the example data.

CHAPTER 6. ON-LINE NEW EVENT DETECTION

51

6.4 Experimental Results

We apply two sets of experiments for on-line event detection as we do for event

detection before. The way we follow is similar to one that explained at the

beginning of Section 5.4.

6.4.1 Results of Binary Implementation

For obtaining binary implementation results, we execute the new event detection

algorithm for four different window sizes. The idea behind this execution method

is that; we aim to see the impact of different window sizes to the effectiveness

results. For each window size, we compute the effectiveness measures as

explained in Section 6.3. The results are obtained without any deletion or

skipping of any event. These results are depicted in Table 6.2.

Table 6.2: On-line event detection results according to four windows (binary).

Different from the event clustering results, we observe that narrowing the

window increases the performance of the system. There are some reasons: a

number of first coming documents have high seed power values, these values

reduce the chance of later document to be selected as seed. In wider windows, the

effects of these first seeds reach documents, which are quite faraway from these

seeds in terms of time. In addition narrowing the window size decreases the

probability of occurrence of documents, which are outside of the determined 25

events. This gives more chance to new events to be selected as seed, at the same

time, to be detected as new events.

EVENT DETECTION (BINARY)

W-Size
Recall

%
Precision

%
F1
%

Miss
%

F-Alarm
% Performance(pfr)

5 56 50 53 44 1.27 56
10 44 65 52 56 0.5 44
15 36 75 49 64 0.3 36
20 24 75 36 76 0.2 24

CHAPTER 6. ON-LINE NEW EVENT DETECTION

52

In Table 6.2, in brief; using narrower window affects the performance in a

positive way. On the contrary, precision improves with wide windows, since the

number of documents, labeled as new, decreases with the increase of window

size. This also decreases the number of false alarms. The performance (pfr)

measure has the same trend with recall, and it shows that the best performance

(pfr) is obtained with the narrowest window, which is 5. Change of measures

(recall, precision, F1, miss) and change of performances (pfr) in terms of different

window sizes are illustrated in Figures 6.3 and 6.4.

0%
10%
20%
30%
40%
50%
60%
70%
80%

5 10 15 20

Window Size

Recall
Precision
F1
Miss

Figure 6.3: Change of effectiveness measures vs. window size.

0

10

20

30

40

50

60

5 10 15 20

Window Size

Pe
rf

or
m

an
ce

 (p
fr

)

Figure 6.4: Change of performance (pfr) vs. window size.

CHAPTER 6. ON-LINE NEW EVENT DETECTION

53

 In Figure 6.4, it is shown that the performance decreases with wide

windows. We obtain the best performance with window size 5. For this reason,

5-day window size is selected as the optimum window size for on-line new event

detection.

6.4.2 Results of Weighted Implementation

We follow the same procedure with the binary implementation to obtain the

results of weighted version. Different from binary, we use actual term frequencies

while computing seed power values and similarities. The results of weighted

implementation are shown in Table 6.3.

Table 6.3: On-line new event detection results according to four windows.

In Table 6.3, we observe usually the similar results with weighted

implementation. The significant point is that, precision and false alarm values are

better than the binary implementation, while the recall values are lower. This is

because, for the case of binary implementation, system selects more number of

seeds than the number of seeds for weighted case. This increases the probability

of false alarms; the system determines more candidate documents. Less number

of documents decreases the probability of false labels, for example, system labels

a document contains a new event, when in truth it does not. This reduction

improves the precision while recall suffers. Furthermore, the system gives less

false alarm reaction. The window size 5 is again detected as the best choice for

the system in terms of miss rate and performance. Change of effectiveness

measures and change of performances in terms of different window sizes are

illustrated in Figures 6.5 and 6.6.

EVENT DETECTION (WEIGHTED)

W-Size
Recall

%
Precision

%
F1
%

Miss
%

F-Alarm
% Performance(pfr)

5 48 63 55 52 0.6 48
10 36 75 49 64 0.2 36
15 28 78 41 72 0.4 28
20 16 100 28 84 0.0 16

CHAPTER 6. ON-LINE NEW EVENT DETECTION

54

0%

20%

40%

60%

80%

100%

120%

5 10 15 20

Window Size

Recall
Precision
F1
Miss

Figure 6.5: Change of effectiveness measures vs. window size.

0

10

20

30

40

50

60

5 10 15 20

Window Size

Pe
rf

or
m

an
ce

(p
fr

)

Figure 6.6: Change of performance vs. window size.

 In Figure 6.6, results are generally similar to the binary version of the

implementations. The best performance is once more obtained with window 5.

 Comparisons of binary and weighted versions of the implementation of the

algorithm are depicted in Figures 6.7 and 6.8. The binary implementation results

are better than weighted implementation, except the precision and the false alarm

values. As mentioned before, when the on-line new event detection system uses

weighted values, it selects less number of seeds as candidate new events, and this

CHAPTER 6. ON-LINE NEW EVENT DETECTION

55

reduction in the number of documents, also decreases the probability of false

alarms.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Recall Precision F1 Miss

BinAvg
WAvg

Figure 6.7: Comparison of effectiveness measures (recall, precision, F1, miss).

0

10

20

30

40

50

60

5 10 15 20

Window Size

Pe
rf

or
m

an
ce

(p
fr

)

Binary
Weighted

Figure 6.8: Comparison of implementation performances.

 In Figure 6.8, the values of performance(pfr) with respect to four window

sizes is shown for both binary and weighted implementations of the system.

The comparison of binary and weighted implementation to the UMASS

approach is shown in Table 6.4. The values of UMASS are barrowed from Papka

[22]. These values are the best performances of the UMASS approach and we

compare them to our best results of both binary and weighted implementation.

CHAPTER 6. ON-LINE NEW EVENT DETECTION

56

System Corpus Miss

%

False Alarm

%

Recall

%

Precision

%

F1

UMASS TDT1 40 1.27 60 52 0.56

Binary TDT1 44 1.27 56 50 0.53
Weighted TDT1 52 0.6 48 63 0.55

Table 6.4: Comparison of on-line new event detection approaches.

 In Table 6.4, the UMASS approach has better performance results than our

system, but the UMASS approach gives twice false alarms than our system, when

compared to weighted implementation.

 The results of on-line new event detection approaches in TDT study are

shown in Table 6.5. These are the pooled average of 11-pass methodology. Since

only 25 events were judged, this evaluation method is introduced by TDT study in

order to expand the number of trials. But the actual effectiveness values are the

reflection of the task without using 11-pass method. In other words, the actual

system performance is the performance that determined in the 0-pass, without

skiping any document of any event.

System Miss

%

False Alarm

%

Recall

%

Precision

%

F1

UMASS 50 1.34 50 45 0.45

CMU 59 1.43 41 38 0.39
DRAGON 58 3.47 42 21 0.28

Table 6.5: Comparison of systems presented at the first TDT workshop.

 In Table 6.5, the UMASS approach has the best results among the other

approaches. Since we do not have the 0-pass values of CMU and DRAGON

approaches, we just compare our system performance to the UMASS approach

values.

57

Chapter 7

Conclusion and Future Work

In this thesis, we implement and evaluate alternative solutions to on-line new

event clustering and on-line event detection problems. The results presented in

this work are based on problem definitions, evaluation methodologies, and data

developed by the topic detection and tracking (TDT) project.

The previous approaches to clustering are usually based on retrospective

solutions, where all the data are available before clustering begins. In order to

find a way to on-line classification, we use the concepts of the C3M algorithm in

an online environment, in which a cluster is determined for the current document

before looking at the next document. For this reason, we introduce an algorithm

that works in a single-pass manner, where the documents are processed

sequentially, one at a time. We use the seed selection process of C3M for

detecting new events. A document detected as new, is also used as the seed of a

cluster. In order to obtain the best performance, we aim to select the initial stories

of the events as seed documents, and group the following stories around the

selected seeds. Furthermore, to prevent producing oversized event clusters, and to

give equal chance to all documents to be the seed of a new event, we employ the

window size concept. The main motivation of this approach is that; documents

closer together on the stream are more likely to discuss similar events than

CHAPTER 7. CONCLUSION AND FUTURE WORK

58

documents further apart on the stream. In our experiments, we aim to see the

impact of different window sizes to the effectiveness results. For this purpose, we

execute the event clustering and on-line new event detection algorithms for each

window. In event clustering experiments, we observe that, the performance

improves with the growing size of window until a point, which is the window size

of 35 (days) in our case. After this point, since the number of documents

increases with the wider window size, the old seeds and the new seeds co-exist in

the same window. Accordingly, the seed documents of the previous events

interfere with the seed documents of the new events. This provides many

different clusters to non-seed documents to join and decreases the system

performance. In event detection experiments, the best window size observed 5.

Different from the event clustering results, we detect that, narrowing the window

increases the performance of the event detection system.

Since we desire to control the number of seed documents, we introduce a

threshold concept to the event clustering algorithm. We also use the threshold

concept, with a little modification, in the on-line new event detection.

We use both binary and weighted versions of TDT1 corpus, and compare

the results of both cases to each other. For the binary case, the system takes the

term frequencies of document vectors (document vectors are created from TDT1,

and they are stemmed and cleaned of stop-words), as binary, in other words if a

particular term exists in the vector, the system takes its term frequency as 1, it is

taken as 0 otherwise. On the contrary, for the weighted implementation, if a term

appears in a document 10 times; its term frequency is taken as 10. Our results

indicate that, for the case of binary event clustering, between 25%-30% of the

documents of the predetermined events are classified by the system correctly. We

obtain better results for binary implementation for event clustering over weighted

case. As an advantage of weighted implementation, the system produces at least

one cluster for each event, which is a desired situation. However, as a side affect,

the number of clusters increases by 10% with respect to the binary version.

CHAPTER 7. CONCLUSION AND FUTURE WORK

59

 For the case of on-line new event detection, we use the same concepts that

are used for the event clustering. According to our experimental results for binary

case, we detect between 24%-56% of the documents discussing new events at

relatively low false alarm rates of 0.2%-1.3%. Again, we obtain better results for

the binary implementation, except the precision and false alarm rate. The false

alarm rate of weighted implementation is 54% better than the binary case. This is

because, for the case of binary implementation, system labels more documents as

new. More documents increase the probability of false labels, for example,

system labels a document as new event, when in truth it is not a new event.

Selecting more documents as new, improves the recall value but produces a

weaker false alarm rate.

Different from the event clustering results, in the on-line event detection

case, we observe that narrowing the window size improves the performance of the

system. Using narrower window limits the influence of old seeds to the new

coming events. Since the first seeds have higher seed power values, this affects

the threshold Tr. Accordingly, this high Tr value reduces the chance of new

documents to be selected as a seed. When we use a wider window size, the

effects of these first seeds reach documents, which are quite far away from these

seeds in terms of time. Narrowing the window size decreases the probability of

co-existence of relevant documents with non-relevant ones. This gives more

possibility to new events to be selected as seed.

When we don’t use the window size concept, in the case of event

clustering, the system uses 40% more CPU time, since the number of documents,

processed in a particular window size, is smaller than the whole corpus. We

obtain less number of clusters (33% of the binary implementation with the

window 35) without using window concept. This means that, the first coming

documents, which have higher seed power values, enhance the average seed

power value (avgP). This reflects directly to the threshold value (Tr). Since the

system could not eliminate these kinds of documents without determining a

window size, they attract most of the stories in the corpus and construct fat and

CHAPTER 7. CONCLUSION AND FUTURE WORK

60

ineffective clusters. By the help of window size concept, we give equal chance to

each document to be selected as seed. In the case of new event detection, without

using window size concept, we obtain the worst results, which have the

performance (prf) of 8. This is because, without eliminating powerful seed

documents (documents that have high seed power value) from the system, desired

documents cannot exceed the threshold, so that they are not labeled as seed.

Our results are relatively close to the results of TDT study, however, the

accuracy of our approach, even at optimal parameter settings, is far from perfect.

One of the reasons is that, our system is based on the word co-occurrences, which

means that document similarities are computed based on the term similarities.

However, this approach is insufficient for some events. As the event progresses,

many of its properties are either not initially known, or are assumed to be known

by the user, and therefore they are not necessarily clear in news text. For

example, for the event 15, about the earthquake in Kobe, Japan, this referred to

the event as “the worst disaster in Japan’s history,’’ with no explicit mention of

Kobe or the fact that the story was about an earthquake. These kinds of stories

reduce the effectiveness of the system. In order to prevent this, lexical chaining

can be incorporated with our system.

 In order to obtain better event clustering and new event detection

accuracy, the same work can be repeated in the retrospective environment, for this

purpose the original C3M algorithm can be used.

61

Bibliography

[1] Allan, J., Incremental Relevance Feedback for Information Filtering, In

Proceedings of ACM SIGIR, 270-278, 1996.

[2] Allan, J., Carbonell, J., Doddington, G., Yamron, J. and Yang, Y., Topic

Detection and Tracking Pilot Study Final Report, In Proceedings of the

DARPA Broadcast News Transcription and Understanding Workshop,

February, 1998.

[3] Allan, J., Ballesteros, L., Callan, J. and Croft, W., Recent Experiments

with Inquery, In Proceedings of TREC-4, pages 49-63, 1995.

[4] Callan, J. Document ltering with Inference Networks, In Proceedings of

the 19th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 262-269, 1996.

[5] Callan, J., Croft, W. and Broglio, J., TREC and TIPSTER Experiments

with INQUERY. Information Processing & Management, 31(3):327-343,

1994.

[6] Can, F., On the Efficiency of Best Match Cluster Searches, Information

Processing & Management, Vol.30, No.3, pp. 343-361, 1994.

BIBLIOGRAPHY

62

[7] Can, F. A New Clustering Schema and It’s Use in an Information

Retrieval System Incorporating the Support of a Database Machine, Ph. D.

dissertation, Dept. of Computer Engineering, Middle East Technical

Univ., Ankara, Turkey, 1985.

[8] Can, F. and Ozkarahan, E.A., Concepts and Effectiveness of the Cover

Coefficient-based Clustering Methodology for Text Databases, ACM

Transactions on Database Systems, 15(4): 483-517, 1990.

[9] Can, F. and Ozkarahan, E. A., Effectiveness Assessment of The Cover

Coefficient-based Clustering Methodology, working paper 89-002, Dept.

of System Analysis, Miami Univ., Oxford, Ohio, Oct. 1989.

[10] Can, F. and Ozkarahan, E. A., A Clustering Scheme, In the Proceedings of

the 16 th Annual International ACM-SIGIR Conference. ACM, New York,

1983, pp, 115 – 121.

[11] Carrick, C. and Watters, C., Automatic Association of News Items, Infor-

mation Processing & Management, 33(5): 615-632, 1997.

[12] Croft, W.B., A Model of Cluster Searching Based on Classification,

Information Systems, 5(3): 189-195, 1980.

[13] Croft, W.B., and Harper, D. J., Using Probabilistic Models of Document

Retrieval without Relevance Information, Journal of Documentation, 5(3):

285-295, 1979.

[14] DeJong, G., Prediction and Substantiation: A New Approach to Natural

Language Processing, Cognitive Science, 3: 251-273, 1979.

BIBLIOGRAPHY

63

[15] Goldman, R. P., A Probabilistic Approach to Language Understanding,

Ph.D. Thesis, Brown University, 1990.

[16] Hayes, P.J., Knecht, L.E. and Cellio, M.J., A News Story Categorization

System, In Proceedings of the 2nd Conference on Applied Natural

Language Process (1988), reprinted in Readings in Information Retrieval,

K. Sparck Jones and P. Willet editors, Morgan Kaufmann Publishing, San

Francisco, CA, pp. 518- 526, 1997.

[17] Hodges, J. L. and Lehmann, E. L., Basic Concepts of Probability and

Statistics, Holden Day in San Francisco, CA., 1964.

[18] Hull, D., In Proceedings of Text Retrieval Conferences (TREC6), NIST

Special Publication, pp. 45-67, 1998.

[19] Jain, A. K., Dubes, R. C., Algorithms for Clustering Data, Prentice Hall,

Upper Saddle River, NJ, 1988.

[20] Kurt, H., On-Line New Event Detection and Tracking in A Multi-

Resource Environment, MS. Thesis, Bilkent University, 2001.

[21] Lewis, D. and Gale, W., A Sequential Algorithm for Training Text

Classifiers, In Proceedings of ACM SIGIR, 313, 1994.

[22] Papka, R., On-line New Event Detection, Clustering, and Tracking, Ph. D.

Thesis, University of Massachusetts at Amherst, September 1999.

[23] Proceedings of Message Understanding Conferences, Morgan Kaufmann,

1988.

BIBLIOGRAPHY

64

[24] Proceedings of the TDT Workshop, University of Maryland, College Park,

MD, October 1997 (Unpublished).

[25] Salton, G., Automatic Text Processing: The Transformation, Analysis and

Retrieval of Information by Computer, Reading, MA: Addison-Wesley,

1989.

[26] Salton, G., Dynamic Information and Library Processing, Englewood

Cliffs, NJ: Prentice-Hall, 1975.

[27] Salton, G., Relevance Feedback and Optimization of Retrieval

Effectiveness, in The Smart System - Experiments in Automatic

Document Processing, Prentice -Hall, Englewood Cliffs, N.J., pp. 324-

336, 1971.

[28] Salton, G. and McGill, M.J., Introduction to Modern Information

Retrieval, New York, McGraw-Hill, 1983.

[29] Schank, R., Conceptual Information Processing, Elsevier, North Holland,

New York, 1975.

[30] Sparck, Jones, Karen, and Peter Willet, 1997, Readings in Information

Retrieval, San Francisco: Morgan Kaufmann.

[31] Swets, J., Measuring the Accuracy of Diagnostic Systems, Science,

240:1285-1293, 1988.

[32] The Topic Detection and Tracking (TDT) Pilot Study Evaluation Plan,

Version 2.8, October 97.

BIBLIOGRAPHY

65

[33] van Rijsbergen, C. J., Information retrieval, 2nd ed., London: Butterworths,

1979.

[34] Voorhees, E. M., The Effectiveness and Efficiency of Agglomerative

Hierarchical Clustering in Document Retrieval, Ph. D. Thesis, Cornell

University, Ithaca, NY, 1986.

[35] Walls, F., Jin, H. Sista, S. and Schwartz, R., Topic Detection in Broadcast

News, In Proceedings of the DARPA Broadcast News Workshop, pp. 193-

198, 1999.

[36] Yang, Y., Carbonell, J., Brown, R., Pierce, T., Archibald, B. and Liu, X.,

Learning Approaches for Detecting and Tracking News Events, IEEE

Intelligent Systems, 14(4):32-43, 1999.

[37] Yang, Y., Pierce, T. and Carbonell, J., A Study on Retrospective and On-

Line Event Detection, In Proceedings of the 21st Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 28-36, 1998.

66

Appendix

The stop-word list that used for cleaning the TDT1 corpus is given in the sequel.

a
about
above
according
across
added
adding
after
afterwards
again
against
albeit
all
almost
alone
along
already
also
although
always
am
among
amongst
an
and
another
any
anybody
anyhow
anyone
anything
anyway

anywhere
apart
are
around
as
at
av
b
be
became
because
become
becomes
becoming
been
before
beforehand
behind
being
below
beside
besides
between
beyond
both
but
by
c
can
cannot
canst
certain

cf
choose
contrariwise
cos
could
cu
d
day
do
does
doesn
doing
dost
doth
double
down
dual
during
e
each
either
else
elsewhere
enough
et
etc
even
ever
every
everybody
everyone
everything

everywhere
except
excepted
excepting
exception
exclude
excluding
exclusive
f
far
farther
farthest
few
ff
first
for
formerly
forth
forward
from
front
further
furthermore
furthest
g
get
go
h
had
halves
hardly
has

hast
hath
have
he
hence
henceforth
her
here
hereabouts
hereafter
hereby
herein
hereto
hereupon
hers
herself
him
himself
hindmost
his
hither
hitherto
how
however
howsoever
i
ie
if
in
inasmuch
inc

APPENDIX

67

include
included
including
indeed
indoors
inside
insomuch
instead
into
inward
inwards
is
it
its
itself
j
just
k
kg
kind
km
l
last
latter
latterly
less
lest
let
like
little
ltd
m
many
may
maybe
me
meantime
meanwhile
might
more
moreover
most
mostly
mr
mrs
ms
much
must
my
myself
n
namely
need
neither
never

nevertheless
next
no
nobody
none
nonetheless
noone
nope
nor
not
nothing
notwithstanding
now
nowadays
nowhere
o
of
off
often
ok
on
once
one
only
onto
or
other
others
otherwise
ought
our
ours
ourselves
out
outside
over
own
p
per
perhaps
plenty
provide
q
quite
r
rather
really
reuter
reuters
round
s
said
sake
same
sang

save
saw
see
seeing
seem
seemed
seeming
seems
seen
seldom
selves
sent
several
shalt
she
should
shown
sideways
since
slept
slew
slung
slunk
smote
so
some
somebody
somehow
someone
something
sometime
sometimes
somewhat
somewhere
spake
spat
spoke
spoken
sprang
sprung
stave
staves
still
such
supposing
t
than
that
the
thee
their
them
themselves
then
thence

thenceforth
there
thereabout
thereabouts
thereafter
thereby
therefore
therein
thereof
thereon
thereto
thereupon
these
they
this
those
thou
though
thrice
through
throughout
thru
thus
thy
thyself
till
to
together
too
toward
towards
u
ugh
unable
under
underneath
unless
unlike
until
up
upon
upward
upwards
us
use
used
using
v
very
via
vs
w
want
was
we

week
well
were
what
whatever
whatsoever
when
whence
whenever
whensoever
where
whereabouts
whereafter
whereas
whereat
whereby
wherefore
wherefrom
wherein
whereinto
whereof
whereon
wheresoever
whereto
whereunto
whereupon
wherever
wherewith
whether
whew
which
whichever
whichsoever
while
whilst
whither
who
whoa
whoever
whole
whom
whomever
whomsoever
whose
whosoever
why
will
wilt
with
within
without
worse
worst
would
wow

APPENDIX

68

x
y
ye
year
yet
yippee
you
your
yours
yourself
yourselves
z

