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ABSTRACT 
 

ONLINE NEW EVENT DETECTION AND 
CLUSTERING USING THE CONCEPTS OF THE 
COVER COEFFICIENT-BASED CLUSTERING 

METHODOLOGY 
 

Ahmet Vural 
M.S. in Computer Engineering 

Supervisor: Prof. Dr. Fazlı Can 
August, 2002 

 

In this study, we use the concepts of the cover coefficient-based clustering 

methodology (C3M) for on-line new event detection and event clustering.  The 

main idea of the study is to use the seed selection process of the C3M algorithm 

for the purpose of detecting new events.  Since C3M works in a retrospective 

manner, we modify the algorithm to work in an on-line environment.  

Furthermore, in order to prevent producing oversized event clusters, and to give 

equal chance to all documents to be the seed of a new event, we employ the 

window size concept.  Since we desire to control the number of seed documents, 

we introduce a threshold concept to the event clustering algorithm.  We also use 

the threshold concept, with a little modification, in the on-line event detection.  In 

the experiments we use TDT1 corpus, which is also used in the original topic 

detection and tracking study.  In event clustering and event detection, we use both 

binary and weighted versions of TDT1 corpus.  With the binary implementation, 

we obtain better results.  When we compare our on-line event detection results to 

the results of UMASS approach, we obtain better performance in terms of false 

alarm rates.  

Keywords: Clustering, on-line event clustering, on-line event detection.
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ÖZET 
 

KAPLAMA KATSAYISI TABANLI KÜME 
OLUŞTURMA METODOLOJİSİ KULLANARAK 
ANINDA YENİ OLAY BELİRLEME VE KÜME 

OLUŞTURMA  
 

Ahmet Vural 
Bilgisayar Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Fazlı Can 
Ağustos, 2002 

 

Bu çalışmada, anında yeni olay belirlemek ve olay kümeleri oluşturmak amacıyla, 

kaplama katsayısı tabanlı küme oluşturma metodolojisi (C3M) kavramları 

kullanıldı.  Çalışmanın ana teması, yeni olay belirlemek için C3M algoritmasının 

tohum seçme işlemini kullanmaktır.  C3M’in çalışma prensibi anında kümelemeye 

uygun olmadığından, algoritmada değişiklikler yapıldı.   Ayrıca, çok büyük olay 

kümelerinin oluşumunu önlemek ve bütün dokümanlara, tohum olabilmeleri için 

eşit şans tanımak amacıyla, pencere yöntemi kullanıldı.  Tohum dokümanlarının 

miktarını kontrol etmek maksadıyla, olay kümeleme işi için bir eşik kavramı 

ortaya çıkarıldı.  Bu kavramı, çok küçük değişikliklerle, yeni olay belirlemede de 

kullanıldı.  Deneyler esnasında, orjinal konu belirleme ve takip çalışmasında da 

kullanılan TDT1 yığınından yararlanılmıştır.  Yeni olay belirleme ve olay 

kümeleme işlemlerinde TDT1 yığınının ağırlıklı ve düz uyarlamaları kullanıldı.  

Düz uygulamalar için daha iyi sonuçlar elde edildi.  Anında olay belirleme 

alanındaki sonuçlar UMASS yaklaşımınınkilerle karşılaştırıldığında, yanlış alarm 

oranları açısından  daha iyi performans elde edilmiştir. 

 

Anahtar Sözcükler: Kümeleme, anında olay kümelemesi, anında olay belirleme.
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Chapter 1 
Introduction  
1.1 Definitions 
 

We live in a quickly changing world.  We do not have time to stop and rest for a 

moment, if we do not want to miss the developments in the changing world.  How 

much can human being resist this stress?  There should be a way to save our time 

and our life.  The computer can help, but it is not enough.  In addition to 

computer, an intelligent assistant system is desirable.  This system should be able 

to follow the current news, form of a content summary of a corpus for a quick 

review, provide a temporal evolution of past events of interest, or detect new 

events that demonstrate a significant content from any previously known events. 

 In order to find a solution to this problem, a study called Topic Detection 

and Tracking (TDT) Pilot Study project [2], which is the primary motivation of 

this thesis, was initiated in 1997.   The aim of TDT study was to explore the 

modern way of finding and following new events in a stream of broadcast news 

stories.   At first, the study grouped the streaming news into related topic.  During 

evolution, the notion of “topic” improved and specified to “event.”  In the TDT 

study, “event” is defined as some unique thing that happens at some point in time.  

The time property distinguishes event from the meaning of “topic,” which is 

identified as: a seminal event along with all related events.  Story, news and 
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document are the elements of event, and in this thesis, they are used in turn in 

place of each other. 

In TDT study, there are three tasks.  The segmentation task aims to 

segment a continuous stream of text into its element stories.  The boundaries of 

the news are identified.  The detection task identifies stories that discuss new 

events, which have not been previously reported.  The tracking task links 

incoming stories to the events known to the system.  The user initially identifies 

the classifier of a particular event.  The diagram in Figure 1.1 depicts how these 

tasks are accomplished.   

 

 

 
 

  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 1.1: On-line new event detection, event tracking, event clustering and  

        segmentation process. 
 
Figure 1.1 is a model to visualize the processes.  There are four processes 

depicted in the figure.  Segmentation process identifies the boundaries of each 

story in the streaming news.  After this process is over, the stories are labeled by 

the new event detection process, as discussing new event or not.  The dark ovals 
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in the diagram represent the new events in the data.  We can apply one of the two 

processes, the event tracking or the event clustering.  The event tracking process 

begins with the identification of a classifier, which is created from the contents of 

the document specified by the user.  The classifier is then used to make on-line 

decisions about subsequent documents on the news stream.  If the documents are 

related to the classifier, they are labeled as relevant.  Otherwise, they are useless.  

The last process depicted in the figure is event clustering.  Event clustering is an 

unsupervised problem solving process where the goal is to automatically group 

documents by events that may exist in the data.  The significant difference from 

event tracking method is that the latter needs training documents about each event 

to formulate a classifier, while the former operates without training documents. 

On the other hand, new event detection problem is also unsupervised because no 

training documents are required for processing the data.  However, different from 

event clustering, the goal of new event detection is to separate documents that 

discuss new events from documents discussing existing events. 

1.2 Research Contributions 
 

The previous works that most influenced our approach, to new event detection 

and event clustering, are based on single-pass clustering [33] and Cover 

Coefficient based Clustering Methodology (C3M) [8].  We use the concepts of the 

cover coefficient-based clustering methodology (C3M) for on-line new event 

detection and event clustering. 

The C3M algorithm is seed based.  We use the idea of using seed selection 

process of C3M algorithm for event clustering and detecting new events.  We aim 

to select the initial stories of the events as seed documents, and group the follower 

stories around selected seeds.  Documents, which are selected as seed, are also 

accepted by the system as the new events. 
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Since C3M works in retrospective environment, we modified the algorithm 

to work in on-line manner by processing the documents sequentially, and one at a 

time. 

We introduce a window size concept to the algorithm.  This prevents 

oversized clusters, and gives equal chance to all documents to be a cluster seed. 

We introduce a threshold concept for the seed selection process of event 

clustering.  With the help of threshold, we obtain acceptable performance.  A 

modified version of the threshold concept is also used for the task of on-line new 

event detection. 

We apply the algorithm to both binary and weighted version of the TDT1 

corpus.  We obtain better performance with binary implementation than weighted 

implementation. 

1.3 Thesis Overview 
 

In the next chapter, we provide a brief overview of on-line event clustering and 

on-line event detection.  This chapter also covers the approaches of the 

participants of TDT study and previous literature related to these topics.  Chapter3 

describes the C3M algorithm.  We give the necessary information about this 

algorithm, which are related to our approach.  In Chapter 4, we describe the TDT1 

corpus and the evaluation methodologies we used to explore our approach.  We 

present our solutions and results for the on-line event clustering and on-line new 

event detection, in Chapters 5 and 6, respectively.  Conclusion and possible future 

extensions are presented in Chapter 7. 
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Chapter 2 
 

Related Work  
 

Whole story is initiated by Topic Detection and Tracking (TDT) Pilot Study 

project [2].   TDT study is a DARPA-supported program to explore the modern 

way of finding and following new events in a stream of broadcast news stories.   

The TDT problem consists of three major tasks: 

• The Segmentation Task: The segmentation task is defined to be the task of 

segmenting a continuous stream of text into its element stories.  It locates 

the boundaries between neighboring stories, for all stories in the corpus.  

In this thesis, we do not focus on this task, since the data used in 

experiments are already segmented. 

• The Detection Task: The goal of the task is to identify stories that discuss 

new events, which have not been previously reported.  For example, a 

good new event detection system should aware the user to the first story 

about a specific event such as a political crisis, or an earthquake in a 

particular time and place. In addition, we introduce a method, which 

clusters the stories in an on-line manner. 

• The Tracking Task: The tracking task is defined to be the task of linking 

incoming stories with events known to the system.  An event is defined 



CHAPTER 2. RELATED WORK   

 

6

(“known”) by its relationship with stories that discuss the event.  In the 

tracking task a target event is given, and each successive story must be 

classified as to whether or not it discusses the target event [32].  This task 

is not covered in the scope of this study. 

The TDT Pilot Study ran from September 1996 through October 1997 [2].  

The primary participants were DARPA, Carnegie Mellon University (CMU), 

Dragon Systems (DRAGON), and the University of Massachusetts (UMASS) at 

Amherst.  The approaches of the first participants and other researches are 

covered in the next section.  

The TDT study is proposed to explore techniques for detecting the 

emergence of new topics and for tracking the re-emergence and evolution of them.  

During the first portion of TDT study, the notion of a “topic” was modified to be 

an “event,” meaning some unique thing that happens at some point in time.  The 

notion of an event differs from a broader category of event’s specificity.  For 

example, “Turkish Economic crisis in February, 2001” is an event, whereas 

“crisis” in general is considered a class of events.  Events might be unexpected, 

such as the eruption of a volcano, or expected, such as a political election. 

2.1 New Event Detection Approaches  
 

New event detection is an unsupervised learning task consists of two subtasks: 

retrospective detection and on-line detection.  The former is about the discovery 

of previously collected and unidentified events in a static data and the latter 

attempts to identify the beginning of new events from live news streaming in real-

time.  Both forms of detection do not have any previous knowledge of novel 

events, but have permission to use historical data for training purposes [36]. 

The on-line new event detection has two modes of operation: immediate 

and delayed.  In immediate mode, system is a strict real-time application and it 

identifies whether the current document contains a new event or not before 

processing the next document.  In delayed mode, decisions deferred for a pre-
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specified time interval.  For example, the system may collect news throughout the 

day and presents the results of detection task at the end of the day [24].  

Since our detection system works in immediate mode, some approaches to 

immediate mode of on-line new event detection are considered below.  

2.1.1 CMU Approach  
 

The CMU (Carnegie Mellon University) approach used conventional vector space 

model to represent the documents and traditional clustering techniques in 

information retrieval to represent the events [25].  A story is presented as a vector 

whose dimensions are the stemmed unique terms in the corpus, and whose 

elements are the term (word or phrase) weights in the story.  In choosing a term 

weighting system, low weights should be assigned to high-frequency words that 

occur in many documents of a collection, and high weights to terms that are 

important in particular documents but unimportant in the remainder of the 

collection.  They used the well-known term weighting system [25] tf× idf (Term 

Frequency times Inverse Document Frequency) to assign weights to terms.  As a 

clustering algorithm, an incremental (single-pass) clustering algorithm with a time 

window is used.  The algorithm is given in Figure 2.1.  

A cluster is represented using a prototype vector (or centroid), which is the 

normalized sum of story vectors in the cluster.  The SMART [27] retrieval engine 

is embedded in the system.  They used a clustering strategy with a detection 

threshold that managed the minimum document cluster similarity score required 

for the system to label the current document as containing a new event.  They also 

used a combining threshold to decide whether adding a document to an existing 

cluster or not.  By using a constant window size, they aimed to limit the number 

of comparisons.  
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1. Documents are processed sequentially. 
2. The first document becomes the cluster representative of the first cluster. 
3. Each subsequent document is matched against all cluster representatives. 
4. A given document is assigned to a cluster according to some similarity 

measure.When a document is assigned to a cluster, the representative for 
that cluster is recomputed. 

6. If a document fails a similarity test, it becomes a cluster representative of a 
new cluster. 

Figure 2.1: Single-pass clustering algorithm. 

 

2.1.2 The UMass Approach 
 

 UMASS solution to new event detection is related to the problem of on-line 

document clustering.  By clustering the streaming documents, and returning the 

earliest document in each cluster to the user, UMASS aimed to find a solution to 

new event detection problem.  In this approach [22], they reevaluated some of the 

well-known approaches to retrospective clustering and analyzed their 

effectiveness in an on-line manner.  For this purpose, a modified version of the 

single-pass clustering algorithm is used for new event detection.  As shown before 

in Figure 2.1, this algorithm processes each new document on the stream 

sequentially.  In addition to this implementation, the new-event detection 

algorithm was implemented by combining the ranked-retrieval mechanisms of 

Inquery [17], a feature extraction and selection process based on relevance 

feedback [1], and the routing architecture of InRoute [4].  The algorithm is 

presented in Figure 2.2. 
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1. Use feature extraction and selection techniques to build a query 
representation to define the document's content.  

2. Determine the query's initial threshold by evaluating the new document 
with the query.  

3. Compare the new document against previous queries in memory.  

4. If the document does not trigger any previous query by exceeding its 
threshold, the document contains a new event.  

5. If the document triggers an existing query, the document is not containing 
a new event.  

6. (Optional) Add the document to the agglomeration list of queries it 
triggered.  

7. (Optional) Rebuild existing queries using the document.  

8. Add new query to memory. 
Figure 2.2: UMASS new event detection algorithm. 

 

2.1.3 Dragon System Approach  
 

The Dragon system used a language modeling approach of single word (unigram) 

frequencies for cluster and document representations: their document 

representation did not use tf× idf scores, as used in the UMASS system and the 

CMU system.  Dragon's cluster comparison methodology is based on the 

KullbackLeibler distance measure [2].  They used a preprocessing step in which 

an iterative k-means clustering algorithm was used to build 100 background 

models (clusters) from an auxiliary corpus.  Initially, the first story in the corpus is 

defined as an initial cluster [2].  The remaining stories in the corpus are processed 

sequentially; for each one, the “distance” to each of the existing clusters is 

computed.  In their decision process, a document is considered to contain a new 

event when it is closer to a background model than to an existing story cluster.  

As a modification, they introduced “decay term” to cause clusters to have 

a limited existence in time.  By adjusting the decay parameter and the overall 

threshold the on-line detection system can be tuned.  
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2.1.4 UPenn Approach  
 

The UPenn approach used the single-link (nearest neighbor) clustering method to 

characterize each event.  This method begins with all stories in their own 

singleton clusters.  Two clusters are merged if the similarity between any story of 

the first cluster and any story of the second cluster exceeds a threshold.  As a 

system parameter, a deferral period is defined to be the number of files (each 

containing multiple stories) the system is allowed to process before it relates an 

event with the stories contained in the files.  To implement the clustering, the 

UPenn approach takes the stories of each deferral period and creates an inverted 

index.  Then each story, in turn, is compared with all preceding stories (including 

those from previous deferral periods).  When the similarity metric for two stories 

exceeds a threshold, their clusters are merged.  The clusters of earlier deferral 

periods cannot merge since they have already been reported.  If a story cannot be 

merged with an existing cluster, it becomes a new cluster, which means a new 

event. 

 

2.1.5 BBN Technologies' Approach  
 

The BBN approach uses an incremental k-means algorithm in order to cluster the 

stories.  Although it is similar, the clustering algorithm they used is not precisely a 

k-means algorithm, because the number of cluster, k is not given beforehand.  For 

every newcomer document, the algorithm tries to make appropriate changes and 

modifications on the clusters, until no more change can be applied.  

There are two types of metrics that are useful for the clustering algorithm: 

“selection metric,” which is the maximum probability value of the BBN topic 

spotting metric and “thresholding metric,” which is the binary decision metric to 

add a story to a cluster.  A score normalization method is used to produce 

improved scores [35].  The algorithm, which is derived from Bayes' Rule, is 

shown in Figure 2.3. 
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1. Use the incremental clustering algorithm to process stories up to the end of 
the current modifiable window.  

2. Compare each story in the modifiable window with the old clusters to 
determine whether each story should be merged with that cluster or used 
as a seed for a new cluster.  

3. Modify all the clusters at once according to the new assignments.  
4. Iterate steps (2)-(3) until the clustering does not change.  

Figure 2.3: BBN new event detection algorithm. 

2.1.6 On-Line New Event Detection in a Multi-Resource 

Environment  
Kurt[20] used traditional vector space model to represent documents.  In his MS 

Thesis, the system assigns weights to terms by using tf× idf method.  In order to 

limit the similarity calculations between documents, time-penalty functionality 

was added to the system [2, 36, 37].  In addition to novel threshold, which is very 

similar with the one, used by Papka [22], another threshold, called “support 

threshold,” is introduced in order to decrease the number of new event alarms.  By 

the help of this threshold, the number of false alarms can be decremented 

enormously.  The hypothesis was: If a new event is worth for alarming, it should 

be supported by up-coming news in a short time. The algorithm is depicted in 

Figure 2.4. 

1. Prepare a vector space model of the document. 

2. Remove the old documents that exceed the time window. 
3. Calculate the similarities between the new document and existing 

documents in the time window. 

4. Calculate the decision score for the new document.  

5. If the decision score is positive, then the document contains a new event. 
Calculate support value. 

6. If the decision score is negative, the document does not contain a new 
event.  Then, start event tracking process to find the similar stories.  

7. If the support value of any event exceeds the support threshold, perform 
alarm process.  

8. Add the new document to the time window.  

Figure 2.4: New event detection and tracking algorithm. 
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The system works on k-Nearest Neighbor (kNN) Algorithm and it detects 

new events on-line, and at the same time, it performs event-tracking process. 

 A summary of on-line new event detection approaches is given in Table 

2.1. 

 CMU  UMass  Dragon  UPenn  BBN  Kurt 

Term 

weight 

Ltc version 

of tf-idf 

tf-idf N/A tf-idf Probabil-istic tf-idf 

Document 

represent-

ation 

Vector-

space 

model  

Query 

representation 

N/A Vector 

space 

model 

Vector space 

model 

Vector space 

model 

Event 

represent-

ation 

Single-

pass 

clustering  

single-pass 

clustering 

k-means 

clustering 

Nearest 

neighbor 

clustering 

Incremental 

k-means 

clustering 

No clustering 

Similarity  Cosine 

similarity 

Previous 

queries run on 

new document 

Distance 

between 

document 

to clusters 

Cosine 

similarity 

Probabilistic 

similarity 

Cosine 

similarity 

Time 

window 

Used Used Used N/A N/A Used 

Table 2.1: The summary of on-line new event detection approaches (N/A means  

        no information is available). 

2.2 Event Clustering Approaches  
 

Event clustering is an unsupervised problem where the goal is to automatically 

group documents by events that may exist in the data.  The significant difference 

from supervised methods is that the supervised clustering needs training 

documents about each event to formulate a classifier, while the unsupervised 

setting operates without training documents.  On the other hand, new event 

detection problem is also unsupervised because no training documents are 

required for processing the data, however, different from event clustering, the goal 
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of new event detection is to separate documents that discuss new events from 

documents discussing existing events. 

Most of the news classification research prior to Topic Detection and 

Tracking (TDT) deals with classification problems using topics instead of events.  

For example, Hayes et al. [16] describe a news organization system in which a 

rule-based approach was used to group 500 news stories into six topics.  The 

filtering problem analyzed at the Text Retrieval Conferences [18], is another 

example of topic-based news classification.  However, some event-based research 

has been reported prior to the first TDT workshop [24].  

A data structure for news classification, called “Frames,” is introduced in 

1975 by R. Schank. [29].  The frames are constructed manually and are coded for 

a semantic organization of text extracted by a natural language parser.  Frames 

contain slots for structured text that can be organized at different semantic levels.  

For example, frames can be coded to understand entire stories [15], or for 

understanding the parts of a person's name [11].  

A frame-based system that attempted to detect events on a newswire was 

constructed by DeJong in 1979 [14].  He used pre-specified software objects 

called sketchy scripts.  Frames and scripts for general news events such as 

“Vehicular Accidents”' and “Disasters” were constructed by hand.  The goal of his 

system was to predict which frame needed to be populated.  This system was 

working mainly as a natural language parser, but as a side effect, it decided 

whether a document contains an event.  However, it did not detect new events. 

In 1997, Carrick and Watters introduced an application that matched news 

stories to photo captions using a frame-based approach modeling proper nouns 

[11].  They claimed that, when the extracted lexical features are used, their frame-

based approach was nearly as effective as using the same features in a word 

matching approach.  Another research related to frame-based representations on 

news data are discussed at Message Understanding Conferences (MUC) [23]. 

In order to represent different aspects of the natural language parse, frames 

can be used helpfully; however, as new types of events appear and existing events 
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grow in a news environment, it is difficult to maintain the number of frames and 

the details of their contents. 

In general, the previous approaches to clustering were used in a 

retrospective environment where all the documents were available to the process 

before clustering begins.  In his dissertation [22], Papka tested previous 

approaches to document clustering and he evaluated their effectiveness for online 

event clustering.  He applied retrospective approaches to an online environment.  

He reevaluated single-link, average-link, and complete-link hierarchical 

agglomerative clustering strategies, but use them in a single-pass (incremental) 

clustering context, in which a cluster is determined for the current document 

before looking at the next document. 

2.3 Document Clustering Approaches 
 

Document clustering is an unsupervised process that groups documents similar to 

each other.  Since the clustering algorithm does not need any training instance or 

any information describing the group, the problem of clustering is often known as 

automatic document classification.  Clustering has been studied extensively in the 

literature [19], and the common element among clustering methods is a model of 

word co-occurrence that is applicable to text classification problems in general. 

By using this model, constructed clusters contain documents consist of words 

common to most of the documents into that cluster.  A historical account of 

clustering research is given by van Rijsbergen [33], who also discusses cluster 

similarity coefficients applied to simple word matching techniques.  In another 

research, Salton [25] discusses clustering approaches that use tf× idf 

representations for text.  In addition, Croft [12] introduced a probabilistically 

based clustering algorithm, and several works have been presented, including by 

TDT participants in the context of event clustering [2, 35].  

Document clustering is also used for information retrieval purposes.  The 

goal of information retrieval system is to retrieve documents, which are relevant 

to the query of a user.  One of well-known query processing approach is cluster-
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based retrieval (CBR), which is a method for improving document retrieval in 

terms of speed and effectiveness [27, 25].  There are many researches about CBR 

[25, 28, 15, 33].  These approaches are based on the “cluster hypothesis,” which 

states, “closely associated documents tend to be relevant to the same request,” 

[33].  However, some databases do not obey this hypothesis, whereas some do 

[34]. The results presented by Voorhees [34] as well as Croft [13] imply that some 

collections and requests benefit from pre-clustering, while others do not.  

Furthermore, according to Can [6], no CBR approach is better than full search 

(FS), one of the well-known query processing approach, in terms of space and 

time. 

The previous work, which most influenced our approach to new event 

detection and clustering, is based on single-pass clustering [33] and Cover 

Coefficient based Clustering Methodology (C3M) [8].  In the remainder of this 

section, a brief description of these methods is provided. 

2.3.2 Single-Pass Clustering  
 

Single-pass clustering or incremental clustering is an approach for creating 

clusters on-line.  The algorithm is discussed by van Rijsbergen [33] and depicted 

before in Figure 2.1.  

The single-pass algorithm sequentially processes documents using a pre-

specified order.  The current document is compared to all existing clusters, and it 

is merged with the most similar cluster if the similarity exceeds a certain 

threshold, otherwise it starts its own cluster.  The single-pass algorithm results in 

faster processing than the agglomerative hierarchical clustering algorithm, even 

though both approaches have an O(n2) asymptotic running time.  The main 

disadvantage of the single-pass method is that the effectiveness of the algorithm is 

dependent on the order in which documents are processed.  This is not a problem 

in event clustering, because the order is fixed. 
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2.3.3 Cover Coefficient-based Clustering Methodology 
 

The C3M algorithm is a partitioning-type clustering algorithm, which means that 

clusters cannot have common documents, and the algorithm operates in a single-

pass approach.  The algorithm consists of three main parts: 

• Select the cluster seeds; C3M is one of the nonhierarchical clustering 

algorithms, and it is seed-based.  The chosen seed must attract relevant 

documents onto itself.  To perform this issue, it must be calculated in a 

multidimensional space that, how much seed document covers non-seeds 

and what the amount of similarity is.  

• Construct clusters; group the non-seed documents around the selected 

seeds. 

• Group documents into a ragbag cluster, which are not fit to any cluster.  

C3M is covered in more details in the next chapter. 
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Chapter 3 
 

Cover Coefficient-based 

Clustering Methodology: C3M 
 
As mentioned in the second chapter, one of the previous work that most 

influences our approach to new event detection and clustering is based on Cover 

Coefficient based Clustering Methodology (C3M) [8].  In the remainder of this 

chapter, we explain this clustering method in more details. 

 The C3M algorithm is a single-pass partitioning-type clustering algorithm, 

which means that clusters cannot have common documents.  The algorithm has 

three parts, the first part determines the number of clusters and the cluster seeds, 

the second part groups the non-seed documents around the selected seeds, and the 

last part gathers the documents that are not fit to other clusters, into a ragbag 

cluster.  A brief description of the algorithm is shown in Figure 3.1. 

The complexity of the algorithm is O(m ×  xd ×  tgs).  In this expression, xd 

is the average number of distinct terms per document, tgs is the average number of 

seed documents per term, and m is the number of documents in the database [8]. 
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Figure 3.1: C3M Algorithm. 

C3M is seed-based.  The chosen seed must attract relevant documents onto 

itself.  To perform this complete operation, seed value must be calculated in a 

multidimensional space with respect to the coverage of non-seed documents and 

the amount of similarity.  Using the cover coefficient (CC) concept, these 

relationships are reflected in the C matrix.  The algorithm constructs a C matrix 

by using a D matrix that contains whole data before clustering begins, and it is a 

document by term (m ×  n) matrix.  A sample D matrix is shown below: 

 

 

 

 

 

 

Figure3.2: Sample D Matrix. 
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C3M: 

1. Determine number of clusters and cluster seeds. 

2. Construct the clusters: 

 i = 1; 

     repeat; 

    if di is not a cluster seed 

      then 

     begin; 

     Find the cluster seed (if any) that maximally covers di; if there is     

     more  than one cluster seed that meets this condition, assign 

     di to cluster whose seed power value is the greatest among 

     the candidates; 

  end; 

       i = i+1; 

 until i>m. 

3. If there remain unclustered documents, group them into a ragbag cluster (some 

   nonseed documents may not have any covering seed document). 
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By definition of Can and Özkarahan [8]: “A D matrix that represents the 

document database {d1, d2, ….dm} described by the index terms T={t1, t2, ….tn} is 

given.  The CC matrix, C, is a document-by-document matrix whose entries cij 

(1 ≤  mji ≤, ) indicate the probability of selecting any term of di from dj.” 

In the Figure 3.2, each row indicates one document, and each column 

indicates one individual term.  To able to represent a document in D matrix, each 

document must have at least one term and each term must appear at least in one 

document.  D matrix can be generated manually or automatically.  On the other 

hand C matrix is a document-by-document matrix whose entries, cij values, 

indicate the probability of selecting any term of document (di) from document (dj), 

where di and dj are the members of D matrix.  

Two-phase experiment must be processed to generate C matrix.  The C 

matrix summarizes the results of two-phase experiment.  At first phase the 

algorithm chooses a term randomly from the terms of di, from the selected term 

then it tries to draw dj.  The sum of the probability values to select dj from di 

forms cij, which is the member of C matrix.  The best way to explain this issue is 

using an analogy.  It would be helpful to repeat the same analogy that is used by 

Can and Özkarahan [8] about two-phase experiment:  “Suppose we have many 

urns and each urn contains balls of different colors.  Then what is the probability 

of selecting a ball of a particular color?  To find this probability experimentally, 

notice that first we have to choose an urn at random, and then we have to choose a 

ball at random.  In terms of the D matrix, what we have is the following:  From 

the terms (urns) of di, choose one at random.  Each term appears in many 

documents, or each urn contains many balls.  From the selected term, try to draw a 

ball of a particular color.  What is the probability of getting dj, or what is the 

probability of selecting a ball of a particular color? This is precisely the 

probability of selecting any term of di from dj, since we are trying to draw the 

selected term of di from dj at the second stage.” 

If we consider iks is the event of first stage, and iks′ is the event of second 

stage, then the probability P( iks , iks′ ) can be represented as P( iks )×  P( iks′ ) [17]. 
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By using iks  and D matrix, we can construct S probability matrix. Multiplying S 

matrix with the transpose of S ′  ( TS ′ ) forms the m-by-m C matrix. For example, 

by using D matrix in Figure 3.2, constructed S and TS ′ matrixes are shown in 

Figure 3.3. 
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0002/104/1
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002/12/114/1
3/102/1004/1

 

Figure 3.3: S and TS ′  matrixes derived from the D matrix of Figure 3.2. 

 

 By multiplying the two matrixes in Figure 3.3, the C matrix, in Figure 3.4, 

is constructed.  
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375.00.0125.0375.0125.0
0.0417.0417.00.0167.0

083.0277.0361.0083.0194.0
188.00.0063.0563.0188.0
083.0111.0194.0250.0361.0

 

Figure 3.4: Sample C matrix. 
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Calculation of one element of the C matrix is shown below: 
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The entries of the C matrix can be defined as follows: 

 

∑
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This equation can be rewritten as: 

 

,
1
∑

=

×××=
n

k
jkkikiij ddc βα  1≤  mji ≤,                   (3.1) 

 

Where; iα  and kβ  are the reciprocals of the thi row sum and the thk  

column sum, respectively, as shown below:  
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Some properties [7] of the C matrix are depicted in Figure 3.5.  The proofs 

of properties 1-4 are given in [7] and [10].  The proof of property 5 is given in [9]. 
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1. For 0,0, >≤≤≠ iiiiij cccji ( iiij cc >  is possible for weighted D matrix). 

2. 1...21 =+++ imii ccc  (Sum of row i is equal to 1 for 1≤  mi ≤ ). 

3. If non of the terms of di is used by the other documents, then iic =1; 
otherwise, iic <1. 

4. If ijc = 0, then jic = 0, and similarly, if ijc > 0, then jic > 0; but in general, 

jiij cc ≠ . 

5. iic  = iic  = ijc = jic  iff di and dj are identical. 

Figure 3.5: Some properties of the C matrix. 

 

The diagonal values of the C matrix ( iic ) is called decoupling coefficient, 

and is denoted with the symbol iδ .  This measure shows how much the 

documents is not related to the other documents.  On the contrary, coupling 

coefficient is calculated by using ith row off-diagonal entries sum, it is denoted 

with the symbol iψ .  This coefficient indicates the extent of coupling of di with 

the other documents of the database.  The concepts of decoupling and coupling 

coefficients, iδ ′  and iψ ′ , are the counterparts of the same concepts defined for 

documents. 

iδ  = iic      : Decoupling coefficient of di. 

iψ  = 1 - iδ : Coupling coefficient of di. 

By following a methodology similar to the construction of the C matrix, a 

term-by-term (n ×  n)C ′  matrix of size n by n can be formed for index terms.  C ′  

has the same properties with C matrix.  As with the C matrix, the C ′  matrix 

summarizes the results of a two-stage experiment in a term-wise manner.  C ′  

matrix can be defined as follows: 
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1≤  nji ≤,         (3.4) 
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As mentioned before, the C3M Algorithm is seed based.  In order to select 

seed documents, cluster seed power for all documents is calculated, by using the 

following formula: 

 

∑
=

××=
n

j
ijiii dP

1
ψδ           (3.5) 

This equation is used for binary D matrix, which means that; if the term 

occurs in the document, the term frequency is taken as 1, it is taken as 0 

otherwise.  iδ  provides the separation of clusters, iψ  provides the connection 

among the documents within a cluster, and summation provides normalization. 

For weighted matrix, a modified version of cluster seed power formula is used: 

 

∑
=

′×′×××=
n

j
jjijiii dP

1
)( ψδψδ         (3.6) 

After cluster seed power applied to the documents, the document that has 

highest seed power is selected as candidate. Because this procedure can produce 

identical seeds, to eliminate these false seeds, a threshold value is used.  All 

documents are sorted by their seed power values, so that identical documents are 

grouped into the sorted list.  If the value, which is obtained by comparing their C 

matrix values is smaller than threshold value then it means that we have a false 

seed.  For each false seed, another document from the sorted list is considered.  

This process can be applied on-line with some modifications.  In the on-

line clustering environment, each document is analyzed sequentially and is either 

placed into an existing cluster or initiates a new cluster and thus becomes a cluster 

seed.  In our approach we do not have falsified seeds, thus we do not apply false 

seed elimination process.  How the concepts of C3M algorithm applied to on-line 

clustering and on-line event detection is the subject of Chapters 5 and 6, 

respectively.
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Chapter 4 
 

Experimental Data and 
Evaluation Methods 
 

4.1 TDT Corpus 
 

In our experiments, we used TDT1 corpus, which is also used by the participants 

of TDT pilot study.  In order to support the TDT study effort, Linguistic Data 

Consortium (LDC) has developed this corpus using text and transcribed speech. 

TDT1 covers the documents containing news from July 1, 1994 to June 30, 1995 

and includes 15,863 stories.  About half of the data is taken from Reuter’s 

newswire and half from CNN broadcast news transcripts.  The transcripts were 

produced by the Journal of Graphics Institute (JGI).  The stories in this corpus are 

arranged in chronological order, are structured in SGML format that has a size of 

53,563 KB, and are available on the LDC web page (http://www.ldc.upenn.edu/). 

 

A set of 25 target events has been chosen from TDT1 to support the TDT 

study effort.  These events include both expected and unexpected events.  They 

are described in some detail in documents provided as part of the TDT Corpus. 

The TDT corpus was completely interpreted with respect to these events, so that 

each story in the corpus is appropriately flagged for each of the target events 
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discussed in it.  There are three possible flag values: YES (the story discusses the 

event), NO (the story does not discuss the event), and BRIEF (the story mentions 

the event only briefly, or merely references the event without discussion; less than 

10% of the story is about the event in question).  Flag values for all events are 

available in the file “tdt-corpus judgments” with stories.  

 

The average document contains 460 (210 unique) single-word features 

after stemming and removing stop-words.  The names of all 25 events chosen 

from the TDT1 Corpus are listed in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Judged 25 events in TDT corpus. 

 

1.   Aldrich Ames spy case 
2.   The arrest of 'Carlos the Jackal' 
3.   Carter in Bosnia 

4.   Cessna crash on White House lawn 
5.   Salvi clinic murders 

6.   Comet collision with Jupiter 
7.   Cuban refugees riot in Panama 

8.   Death of Kim Jong II 
9.   DNA evidence in OJ trial 

10. Haiti ousts human rights observers 
11. Hall's helicopter down in N. Korea 

12. Flooding in Humble, Texas 
13. Breyer's Supreme Court nomination 

14. Nancy Kerrigan assault 
15. Kobe Japan earthquake 

16. Detained U.S. citizens in Iraq 
17. New York City subway bombing 

18. Oklahoma City bombing 
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The judgments were obtained by two independent groups of assessors and 

then reconciled to form a set of final judgments.  Documents were judged on a 

ternary scale to be irrelevant, to have content relevant to the event, or to contain 

only a brief mention of the event in a generally irrelevant document.  We use 1124 

relevant documents in the experiments after eliminating briefs and overlaps. 

 

4.2 Evaluation 
 

4.2.1 Effectiveness Measures 
 

It is desirable to have one measure of effectiveness for cross system comparisons. 

Unfortunately, no measure uniquely determines the overall effectiveness 

characteristics of a classification system.  Several definitions for single valued 

measures have emerged, and are reviewed by van Rijsbergen [33].  One 

widespread approach is to evaluate text classification using F1 Measure [21], 

which is a combination of recall and precision and it is defined later. 

Since there does not exist an agreed upon single valued metric that 

uniquely captures the accuracy of a system, it is often the case that two or more 

measures are needed, and efforts to define combination measures do not 

necessarily lead to an applicable measure of usefulness.  In what follows, we 

assume usefulness is a function of user satisfaction with the classification 

effectiveness of a system.  In practice, usefulness is constantly changing; one 

system can be useful for some particular purpose, while it would be useless for 

others.  For example, consider two systems: a car alarm and a radar system for an 

aircraft guiding a missile.  Car alarm system may sound occasionally, especially 

when it is set to oversensitive.  It may be acceptable to sound occasionally when 

no theft event exists, but if an alarm does not sound during an actual theft, this 

means that the system is useless.  In other words, the owner of the car has a low 

tolerance for false alarms and no tolerance for misses.  On the other hand, radar 
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system has a different usefulness function.  It may be tolerable for the system to 

miss a target, but a false targeting may cause a disaster.  With these requirements 

in mind, without inventing another measure, we report several effectiveness 

measures, which have been previously used for the analysis of text classification 

experiments.  

Text classification effectiveness is often based on two measures.  It is 

common for information retrieval experiments to be evaluated in terms of recall 

and precision, where recall measures how well the system retrieves relevant 

documents and classify them correctly, and precision measures how well the 

system distinguishes relevant documents from irrelevant ones in the set of 

retrieved group.  In addition, F1 measure [21] is used, which is the combination of 

recall and precision.  In TDT, and the work described here, system error rates are 

used to evaluate text classification.  These errors are system misses and false 

alarms.  The accuracy of a system improves when both types of errors approaches 

to zero.  In new event detection, misses occur when the system does not detect a 

new event, and false alarms occur when the system indicates a document contains 

a new event when in truth it does not.  In addition to system error rates, we report 

performance (pfr), which is based on the Euclidean distance average miss rate and 

false alarm rate from the origin. 

The methods for calculating the effectiveness measures for on-line event 

clustering, and on-line new event detection are summarized below using modified 

version of Swets’s [31] two-by-two contingency table (Tables 4.1 and 4.2):  

 

 Relevant Non-Relevant 

Retrieved a b 

Not Retrieved  c d 

Table 4.1: Two-by-two contingency table for event clustering. 
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Where the retrieved documents in the table are those that have been 

classified by the system as positive instances of an event, and the relevant 

documents are those that have been manually judged relevant to an event.  

 New is True Old is True 

System Predicted New a b 

System Predicted Old c d 

Table 4.2: Two-by-two contingency table for event detection. 

Assuming S represents the set of retrieved documents, and S ′  represents 

the set of not retrieved documents, then: 

a = number of documents in S discussing new events,  

b = number of documents in S not discussing new events,  

c = number of documents in S ′  discussing new events,  

d = number of documents in S ′  not discussing new events;  

 

By using the two-by-two contingency table, we can derive the 

effectiveness measures as follows:  

Recall = 
ca

aR
+

= ,           (4.1) 

Precision = 
ba

aP
+

= ,         (4.2) 

F1 Measure = 
RP

PR
+

2 ,          (4.3) 

Miss Rate = 
ac

cM
+

= ,          (4.4) 

False Alarm Rate = 
db

bFA
+

= ,         (4.5) 

Distance from Origin = 22 FM + ,        (4.6) 

Performance (pfr) = 100 - Distance from Origin.      (4.7) 
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 The difference between event clustering and new event detection about 

effectiveness calculations is that; for the former, two-by-two contingency table is 

formed for each cluster that is selected as the best cluster for that event, and the 

overall system effectiveness is calculated by taking the averages of each measure.  

For the later, there is only one contingency table formed, and the effectiveness 

measures are computed by using Table 4.2. 

 In the experiment results, effectiveness measures are given as rates, except 

the performance (pfr). 

 

4.2.1 Experimental Methodology 
 

The experiments of both event detection and event clustering are executed on a 

personal computer, which has Intel Pentium 550 Mhz. Central Processor Unit 

(CPU) and has 128 MB of main memory.  

It is considered that a time gap between bursts of topically similar stories 

is often an indication of different events.  It is also experienced that events are 

typically reported in a brief time window (e.g., 1-4 weeks) [22].  These 

determinations in mind, we applied a time windowing in days to limit the size of 

comparisons.  We see that time windowing influenced the CPU time.  In other 

words, evaluating more days results with more CPU time. 

 

4.2.2 Preprocessing 
 

In the preprocessing phase, we eliminate stop words from the corpus by the help 

of a pre-constructed stop word list.  This list consists of terms like (a, an, and, the) 

that are fatal importance to the structure of English grammar (stop word list is 

attached to the appendix part).  In order to able to find the terms, which have the 

same root, we apply Porter’s stemming algorithm [30] to the corpus.  We get 

stemmed word list consists of 72,034 terms and phrases.  At the same time, we 



CHAPTER4. EXPERIMENTAL DATA AND EVALUATION METHODS   

 

30

construct the document vectors in the format of <docno, termno, termfrequency> 

as shown in Figure 4.2.  We get 15,863 document vectors containing this format.  

 

 

DOC1: 1:1:2:1:3:1:4:1:5:1:6:1:7:1:8:1 

DOC2: 9:1:10:1:11:1:12:1:13:1 

DOC3: 3:1:6:1:15:1:16:1:17:1 

DOC4: 6:1:16:1:17:1 

DOC5: 2:1:3:1:4:1:5:1:7:1:8:1:17:1 

. 

. 

DOCn:  . . . . . . . . . . .  

Figure 4.2: An example document vector. 

 

 This structure is used during both on-line event clustering and on-line 

event detection experiments. 



31 

 

 

 

 

Chapter 5 
 

On-Line Event Clustering  
 

In this chapter, we focus on the problem of on-line mode of event clustering.  We 

introduce a new algorithm as a solution to the problem, with the help of C3M 

algorithm. 

 

5.1 Window Size 
 

In our experiments, we add window size concept to the algorithm.  This 

prevents producing oversized clusters, and gives equal chance to all documents to 

be a cluster seed.  When we analyze the distribution of documents for a particular 

event, we determine that the most of the documents for an event ends in a few 

days from the first occurrence of that event.  There are exceptions for some 

events, which lasts for the most days of the year.  For example, events 9, 22, 25, 

listed in Table 5.1, do not follow this tendency.  The details are shown in Table 

5.1. 

In Table 5.1, number of documents are counted for the first 10, 20, 30, 40 

days of each event, and for the whole life of that particular event, that is; from the 

first occurrence to the last story about that event.  The table summarizes that, 

stories about most of the events appear in first 30 or 40 days. At the end of the 
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table, total number of documents shows a trend that the most significant window 

sizes are these two day-periods. 

No. of Documents in Window  
Events 

Event 
Life in 
Days Life 40 30 20 10 

1. Aldrich Ames spy case 96 8 6 5 3 2 

2. The arrest of “Carlos the Jackal” 30 10 10 10 9 7 

3. Carter in Bosnia 49 30 29 29 27 25 

4. Cessna crash on White House lawn 2 14 2 2 2 2 

5. Salvi clinic murders 60 41 34 34 33 33 

6. Comet collision with Jupiter 121 45 44 44 44 6 

7. Cuban refugees riot in Panama 3 2 2 2 2 2 

8. Death of Kim Jong II 317 56 45 44 41 36 

9. DNA evidence in OJ trial 376 114 29 12 7 4 

10. Haiti ousts human rights observers 3 12 12 12 12 12 

11. Hall's helicopter down in N. Korea 20 97 97 97 97 50 

12. Flooding in Humble, Texas 8 22 22 22 22 22 

13. Breyer's Supreme Court nomination 80 7 6 6 6 5 

14. Nancy Kerrigan assault 180 2 1 1 1 1 

15. Kobe Japan earthquake 127 84 82 81 81 74 

16. Detained U.S. citizens in Iraq 54 44 33 32 29 11 

17. New York City subway bombing 8 24 24 24 24 24 

18. Oklahoma City bombing 45 273 261 249 226 215

19. Pentium chip flaw 9 4 4 4 4 4 

20. Quayle's lung clot 9 12 12 12 12 12 

21. Serbians down F16 10 65 65 65 65 65 

22. Serb's violation of Bihac safe area 130 90 1 1 1 1 

23. Faulkner's admission into the Citadel 180 7 4 4 3 3 

24. Crash of US Air flight 427 140 39 37 37 36 35 

25. World Trade Center bombing 360 22 1 1 1 1 

Total number of documents: - 1124 863 832 790 654

Table 5.1: Distribution of the documents in time (window size in days). 
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This distribution of documents is depicted in more details for a specific 

event (event number 18).  It has the maximum number of related stories (273) 

among 25 events.  Figure 5.1, is borrowed from Papka [22], illustrates the window 

size concept.  In this figure, we see that the most of the news about “Oklahoma 

city bombing” appeared between the days of 293 and 305 (in the fist ten days).  

After the second week of first occurrence of the event, it is observed that the 

amount of streaming news is reduced.  Most of the events in TDT1 corpus behave 

as the event seen in this figure. 

 

Figure 5.1: Event evolution; Oklahoma city bombing (adapted from Papka[22]) 

 

This tendency in mind, we use a window size concept, in order to improve 

the performance of the system.  The hypothesis is that; limiting the number of 

documents, by processing only the documents in predetermined window size 

would help to improve the effectiveness of the system.  This hypothesis is verified 

for events following the same tendency.  However, as a disadvantage, the miss 

rate of the system is increased dramatically for the events, which do not follow the 

common trend. 

 In order to improve the performance, Papka [22] used time windowing in 

his system.  The main motivation of his approach is that documents closer 

together on the stream are more likely to discuss similar events than documents 

further apart on the stream.  As depicted in Figure 5.1, when a significant new 
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event occurs there are usually several related documents in the initial days.  Over 

time, coverage of old events is displaced by events that are more recent.  Different 

from our approach, Papka integrated time in the thresholding model. 

5.2 Threshold Model 
 

In the seed selection process, we apply a threshold model, which varies from 

document to document.  For on-line clustering subject, we aimed to find a way of 

putting a threshold in front of the documents, to make the decision of flagging as 

seed.  Without thresholding all the documents in the corpus would be a seed, and 

this would produce number of clusters equals to the number of documents in the 

corpus.  This is not a desired situation for event clustering.  On the other hand, 

when a greater value is used as a threshold, the system would give unproductive 

results; in other words, the miss rate of the system would be unacceptable.  Thus, 

we want an appropriate number of clusters for each individual event.  It is 

acceptable for the system to produce at least one representative cluster for each 

event; while doing this the system must classify the related stories into that 

clusters.  In other words, we don’t desire weak or empty clusters (without member 

except the seed).  As a solution, we use a threshold concept, by computing the 

average P  value for documents in the scope of predetermined window size, and 

compare this value to the iP  value of new coming document.  The expression of 

threshold Tr is given below: 

 Tr = ∑
∈windowd

i
i

P / (No. of documents in window)                                    (5.1) 

The idea behind this approach is that; iP  value is a sign for a document 

how the document is different from the others, if this value can exceed the average 

P  value, this means that the particular document reviews a different story, and it 

deserves to be a seed of a new cluster. 
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5.3 The Algorithm 
The on-line event-clustering algorithm constructs the cluster structure by 

processing document vectors sequentially in a sing-pass manner; a simple 

example of the document vector structure is given in Figure 4.2.  The algorithm is 

shown in Figure 5.2. 

When a document (say di) arrives, the update process begins if the 

difference between the dates of the oldest document and the youngest one exceeds 

the pre-determined window size.  In the update process, system deletes the old 

documents until the date difference falls under the value of window size.  If the 

deleted document is a seed of a cluster, the whole cluster is deleted after 

computing its effectiveness.  However, the members of the deleted cluster, which 

do not exceed the window size, remain in the system and they are used in the  

For each new coming document di; 

1. let dj= oldest document 

2. if diDate– djDate* ≥  predetermined window size (WS) 

repeat; 

  delete dj 

  if dj  is seed 

   delete cluster started by dj 

  dj= oldest document in WS 

 until diDate– djDate  < WS 

3. calculate the seed power value iP  

4. determine the threshold (Tr) 

5. if iP ≥ Tr 

 label the document as seed and initiate a new cluster 

      else 

 if there exists any cluster  

  calculate cij value to decide which cluster it is attached 

 else 

  put the document in a ragbag cluster 

(*) djDate = 0 if there is no previous document in the window. 

Figure 5.2: On-line event clustering algorithm. 
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computation of β  values.  For the next step, the seed power ( iP ) of the document  

di, and then the threshold for the same document are calculated.  If seed power 

value of the document, exceeds the threshold, then it is labeled as a new seed, and 

a new cluster is initiated. Otherwise, the similarity calculations are done.  That is; 

the similarities between the document and the previous seed documents are 

computed, and the document is classified as a member of the cluster of the seed 

document, which constitutes the maximum similarity with the current document 

di.  If there is no cluster formed, or all clusters are deleted during the update 

process, the document is put in a ragbag cluster. 

In Figure 5.2, diDate and djDate demonstrate the date of new coming 

document and the date of the oldest document in the window size respectively. 

Ragbag cluster is a cluster that gathers the non-seed documents, which have no 

common terms with current seeds, or there is no cluster introduced in the window 

size.  

Different from C3M algorithm, in on-line event clustering algorithm, once 

a document is determined as a seed, it stays as seed until it leaves the system.  

Recall that in C3M algorithm, when a document joins to a cluster it may influence 

the centroid of that cluster.  This is not the point in our clustering strategy.  

Because the idea is that when a document is selected as a seed document, then the 

only information to pull the other documents is the seed document itself.  When a 

document is selected as a seed, it always remains the same and it is used as the 

cluster centroid. 

 

5.3.1 An Operational Example 
 

Generation of Clusters 

 

To make the algorithm more understandable, we give an example using 

the sample D matrix of Chapter 3.  Assume that the system receives the 
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documents one at a time, and d1, d2 and d5 discuss the same event while d3 and d4 

discusses a different event (actually we have two events). 

When d1 arrives: 

   1δ =1 => 1ψ  = 0 => 1P  = 1 ×  0 ×  3 = 0 

  Tr   = 0
1
0 =  

  1P  = Tr => d1 is flagged as seed and it forms Cluster-1. 

When d2 arrives: 

   2δ = 0.75 => 2ψ  = 0.25 => 2P  = 0.75 ×  0.25 ×  4 = 0.75 

  Tr   = 38.0
2

75.00 =+  

  2P  > Tr => d2 is flagged as seed and it forms Cluster-2. 

When d3 arrives: 

   3δ = 0.61 => 3ψ  = 0.39 => 3P  = 0.61 ×  0.39 ×  3 = 0.71 

  Tr   = 49.0
3

71.075.00 =++  

  3P  > Tr => d3 is flagged as seed and it forms Cluster-3. 

When d4 arrives: 

   4δ = 0.41 => 4ψ  = 0.59 => 4P  = 0.41 ×  0.59 ×  2 = 0.48 

  Tr   =  49.0
4

48.071.075.00 =+++  

  4P < Tr => cij values must be calculated for d4 as illustrated before 

in Chapter 3, and classified with the seed document that has the highest similarity 

with cij. 

 

By using Equations 3.1, 3.2, and 3.3: 
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d4  goes to Cluster-3, 

since the similarity value between d4 and d3 is more than the others.  

When d5 arrives: 

   5δ = 0.38 => 5ψ  = 0.62 => 5P  = 0.38 ×  0.62 ×  2 = 0.47 

  Tr   = 48.0
5

49.048.071.075.00 =++++  

  5P  < Tr => cij values must be calculated for d5. 

By following the same procedure: 

12.0
38.0
12.0

53

52

51

=
=
=

c
c
c

 
d5  goes to Cluster-2. 

The clusters are shown in Figure 5.3. 

 

 

  
 

      Cluster-1    Cluster-2     Cluster-3 
+ : Cluster seed. 

* : Member document relevant to the event started by the cluster seed. 

# : Member document not related to the event started by the cluster seed. 

Figure 5.3: Final event clusters. 

In Figure 5.3, the seed documents, the relevant members, and non-relevant 

members are represented by the symbols (+, *, and #) respectively.  In order to 

d1 

+ 

          d2

#  dn  + 

d5 *

d3 

+ 

d4 * 
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show false alarm measure, an extra document dn is added to Cluster-2 

intentionally. 

Calculation of Effectiveness Measures 

In the effectiveness process, for each event, we choose the best cluster from the 

clusters related to the same event, note that the cluster seed determines the related 

event of the corresponding cluster.  The best cluster is the one that contains the 

maximum number of the stories of the related event.  For example, consider that 

clusters 1 and 2 contain the documents discussing the same event; Cluster-2 is 

chosen as the best cluster, because it contains more number of relevant elements. 

Cluster 3 is the only cluster related to the next event; therefore, we include it in 

our computations.  Performance is computed with the help of measures covered in 

Chapter 4.  The results are given in Figure 5.4. Window size notion is not applied 

to this sample data, because it is very small when compared to the data used in our 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 Relevant Non-Relevant 

Retrieved 2 1 

Not Retrieved  1 2 

Two-by-two contingency table for Cluster-2 

 Relevant Non-Relevant 

Retrieved 2 0 

Not Retrieved  0 4 

Two-by-two contingency table for Cluster-3 
With the help of effectiveness measures that covered in Chapter 4: 

 Recall Precision F1 Miss False Alarm 

Cluster-2 0.67 0.67 0.67 0.33 0.33 

Cluster-3 1 1 1 0 0 

Pooled Avg. 0.84 0.84 0.84 0.17 0.17 

System performance. 

Figure 5.4: Effectiveness measure results for the example data. 
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5.4 Experimental Results 
 

We obtain two sets of experimental results, one set for binary D matrix and one 

set for weighted.  For the first set, the system takes the term frequencies of 

document vectors as binary, in other words if a particular term exists in the vector 

the system takes its term frequency as 1, it is taken as 0 otherwise.  In order to 

calculate the iP  value, equation (3.5) is used.  For the second set, the system 

incorporates the actual term frequencies into equation (3.6).  For example, if a 

term appears in a document 10 times, term frequency (dij) is taken as 10.  

 

5.4.1 Results of Binary Implementation 
 

For obtaining binary implementation results, we execute the algorithm six times 

for six different window sizes.  The idea behind this execution method is that; we 

aim to see the impact of different window sizes to the effectiveness results.  For 

each window size, the best clusters are chosen, and pooled average of 

effectiveness results, containing all 25 events, is computed.  These results are 

depicted in Table 5.2.  

 

EVENT CLUSTERING (BINARY) 

W-Size
Recall 

% 
Precision

% 
F1 
% 

Miss 
% 

 
F-Alarm

% Performance(pfr)
15 25 75 35 75 0.8 25 
20 27 77 37 73 0.8 27 
25 28 75 38 72 0.6 28 
30 30 73 39 70 0.7 30 
35 31 73 39 69 0.8 31 
40 29 70 37 71 0.7 29 

Table 5.2: Event clustering results according to six window sizes (binary). 

 

In Table 5.2, we observe that; while window size expands, the probability 

of retrieving relevant documents improves, in other words recall improves, until a 
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peak point of this improvement, which is the window size of 35.  The 

experiments, after this point for windows 40, 45 and 50, show that the 

performance (prf) suffers.  On the contrary, general trend of precision is negative, 

since the number of retrieved documents increases with the increase of window 

size.  The performance(pfr) measure has the same trend with recall, and it shows 

that the best performance(pfr) is obtained with the window size 35.  Change of 

effectiveness measures and change of performances (pfr) in terms of different 

window sizes are illustrated in Figures 5.5 and 5.6. 

 

0%
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20%
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40%
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60%
70%
80%
90%

15 20 25 30 35 40

Window Size

Recall
Precision
F1
Miss

 

Figure 5.5: Change of effectiveness measures vs. window size (binary). 

  

In the experiments of binary implementation, one of the events, “Cuban 

refugees riot in Panama,” which has the event number of 7, cannot be clustered, 

because the documents of this event cannot be chosen as seed.  For this reason, 

while computing the pooled averages, the effect of this event to the results reflects 

in a negative way.  If we execute the same experiments neglecting that particular 

event, we observe an improvement of 7% and 4% in terms of recall and precision 

respectively.   
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Figure 5.6: Change of performance (pfr) vs. window size. 

 In Figure 5.6, it is shown that the performance (pfr) improves with the 

growing size of window.  We obtain the best performance (pfr) with window size 

35.  After this point, since the number of seed documents appeared in the same 

window increases, the previous seeds and the current seeds are presented in the 

same window.  In other words, the seed documents from the previous event 

interfere with the seed documents of the current event.  This gives an alternative 

to non-seed documents to join different clusters.  For this reason, 35-day window 

size is selected as the optimum window size for the system. 

 

5.4.2 Results of Weighted Implementation 
 

We follow the same procedure with the binary implementation to obtain the 

results of weighted version.  Different from binary, we use actual term frequencies 

while computing seed power values and similarities. 

  

In Table 5.3, we observe usually the similar results with binary 

implementation.  The window size 35 is again detected as the best choice for the 

system in terms of miss rate and Performance (pfr). 
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EVENT CLUSTERING (WEIGHTED) 

W-Size
Recall 

% 
Precision

% 
F1 
% 

Miss 
% 

F-Alarm 
% Performance(pfr) 

15 26 81 36 74 0.6 26 
20 27 82 39 73 0.5 27 
25 27 85 39 73 0.4 27 
30 28 87 40 72 0.3 28 
35 29 76 38 71 0.3 29 
40 28 73 36 72 0.5 28 

Table 5.3: Event clustering results according to six window sizes (weighted). 
 

Change of measures (recall, precision, F1 and miss) and change of 

performance(pfr)s in terms of different window sizes are illustrated in Figure 5.7 

and Figure 5.8. 
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Figure 5.7: Change of effectiveness measures vs. window size (weighted). 

 

In the experiments of binary implementation, recall that one of the events, 

“Cuban refugees riot in Panama,” which has the event number of 7, cannot be 

clustered, because the documents of this event cannot be chosen as seed.  In the 

situation of weighted implementation, because of the effect of actual term 

frequencies, the system selects one of its two documents as seed.  The reason is 

that; the number of term used in the document is more than the average number of 

term frequencies in that particular window size.  Therefore, the seed power of the 

document (TDT007817) exceeds the threshold value.  With this progress, all the 
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events have a representative cluster, which is a desired situation.  However, as a 

side affect, the number of clusters is grown by 10% according to the binary 

version.  For this reason, the weaker clusters are produced by the system when 

comparing to the clusters of the binary implementation, and this decreases the 

effectiveness.  
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Figure 5.8: Change of effectiveness measures vs. window size. 

 

 In Figure 5.8, results are generally similar to the binary version of the 

implementations.  The best Performance(pfr) is once more obtained with window 

size 35.  

 Comparisons of binary and weighted versions of the implementation of the 

algorithm are depicted in Figures 5.9 and 5.10.   

Improvement in F1 measure is the effect of precision, because extra 

clusters retrieve irrelevant documents, from the other cluster point of view, as well 

as retrieving relevant ones.  This reduces the number of members in the clusters, 

and the amount of recall, nevertheless it increases precision value.  
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Figure 5.9: Comparison of effectiveness measures (recall, precision, F1, miss). 
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Figure 5.10: Comparison of implementation performances (pfr). 
 

 In Figure 5.10, the average values of performance (pfr) with respect to six 

window sizes is shown for both binary and weighted implementations of the 

system.  Weighted version has an advantage of producing clusters for all the 

events that are identified before.  In spite of this advantage over binary one, 

producing weak clusters decreases the overall performance (pfr) of the system. 



46 

 

 

 

 

Chapter 6 
 

On-Line New Event Detection  
 

In this chapter, we focus on the problem of on-line new event detection.  We use 

the same algorithm, which is used before for the problem of on-line event 

clustering, with some modifications. 

 

6.1 Window Size 
 

To support the on-line new event detection task, we again use the window size 

concept.  We aim to prevent the effects of previously detected events. That is, 

recall from the previous chapter that each cluster is the representative of a 

different event; it means that each seed document is the sign of new event 

detection process indirectly.  Therefore, we want to find a way to detect the first 

story of each event as a cluster seed, without constructing any clusters.  By 

adjusting the window size, the chance of the documents to be seed can be 

changed, since each document in window has an effect on the decision of 

selecting the current processed document as a seed. 
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Different from on-line event clustering, in this task, when a narrower 

window is chosen, the performance improves because of the usage of a different 

threshold model, which is covered in the next section. 

 

6.2 Threshold Model 
 

In the desired on-line new event detection system, the number of seed documents 

should be equal to the number of events, and in addition, each event should be 

represented with a seed.  Within the context of new event detection, our previous 

threshold model yields huge number of seeds.  This situation is unacceptable, 

since it causes a dramatic decrease in terms of precision.  To provide an 

acceptable precision value while increasing recall, we modify the previous 

threshold model.  In the threshold concept, which is used for on-line event 

clustering, initially we compute the average P  value for documents in the scope 

of predetermined window, and then we compare this value to the iP  value of new 

coming document.  Different from this method, in the initial step, the average P  

value is computed for only the current seed documents, the seeds in the scope of 

window (in order to not miss the very first document and to prevent errors, we 

take the number of seed documents as 1 if there is no seed in the system).  Then 

we use this value as the threshold for the document that processed at that time.  

 Tr = ∑
∈windowd

i
i

P / (No. of seed documents in window)                                    (6.1) 

When a document exceeds this threshold, it is flagged as a seed document, 

and it becomes a candidate new event.  Because, the seed power value of the new 

event should be greater than the average seed power value of the seed documents 

in the window.  This means that, the particular document reviews a different story, 

and it deserves to be a seed, in other words a new event. 
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6.3 The Algorithm 
 

Different from the on-line event clustering algorithm, the task of on-line new 

event detection algorithm is to flag the current document in the stream as new or 

old event.  For this purpose, we modify the previous algorithm.  Since we do not 

need the clusters at the end, we exclude the clustering phase.  That is, if a 

document cannot exceed the threshold, the similarity computations for 

classification of the document are excluded in the on-line new event detection 

algorithm.  With the modification in thesholding model, we aim to produce an 

acceptable number of seeds, in which each event has only one representative seed 

document.  The algorithm is shown in Figure 6.1 and is explained with an 

example in the next section. 

For each new coming document di; 

1. Let dj = the oldest document in window, 
2. if diDate– djDate* ≥  predetermined window size (WS) 

repeat 
  delete dj  

  dj = the oldest document in window 
 until diDate– djDate  < (WS) 

3. calculate the seed power value iP  

4. calculate threshold Tr (let Tr=0 if there is no previous seed) 

5. if iP ≥ Tr 

 label the document as seed and as a new event 

     else 
 label the document as an old event 

 
(*) djDate = 0 if there is no previous document in the window. 

Figure 6.1: On-line new event detection algorithm. 
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6.3.1 An Operational Example 
 

Selection of new events 

We use the same sample D matrix of Chapter 3.  Assume that, the system 

receives the documents one at a time, and d1 and d3 discuss the new event while 

d2, d4 and d5 discusses old events (actually we have two events). 

When d1 arrives: 

   1δ =1 => 1ψ  = 0 => 1P  = 1 ×  0 ×  3 = 0 

  Tr   = 0
1
0 =  

  1P  = Tr => d1 is flagged as seed and new event.  

When d2 arrives: 

   2δ = 0.75 => 2ψ  = 0.25 => 2P  = 0.75 ×  0.25 ×  4 = 0.75 

  Tr   = 75.0
1
75.0 =  

  2P  = Tr => d2 is flagged as seed and new event. 

When d3 arrives: 

   3δ = 0.61 => 3ψ  = 0.39 => 3P  = 0.61 ×  0.39 ×  3 = 0.71 

  Tr   = 38.0
2

75.00 =+  

  3P  > Tr => d3 is flagged as seed and new event. 

When d4 arrives: 

   4δ = 0.41 => 4ψ  = 0.59 => 4P  = 0.41 ×  0.59 ×  2 = 0.48 

  Tr   = 49.0
3
46.1

3
71.075.00 ==++

 

  4P < Tr => Label the document as old.  



CHAPTER 6. ON-LINE NEW EVENT DETECTION   

 

50

When d5 arrives: 

   5δ = 0.38 => 5ψ  = 0.62 => 5P  = 0.38 ×  0.62 ×  2 = 0.47 

  Tr   = 49.0
3

71.075.00 =++  

  5P  < Tr => Label the document as old.  

 The results of prediction of the system, obtained at the end of the whole 

process, are shown in Table 6.1. 

System Prediction

New Old 

d1 d4 

d2 d5 

d3 - 

Table 6.1: Final Document Labels. 

Calculation of effectiveness measures 

In the effectiveness process, we use the information given in Table 6.1.  Two-by-

two contingency table in Table 4.2 is used for effectiveness calculations. 

Performance is computed with the help of measures covered in Chapter 4. The 

results are given in Figure 6.2. Window size notion is not applied to this sample 

data, because it is very small when compared to the data used in real experiments. 

 

 

 

 

 

 

 

 New is True Old is True 

System Predicted New 2 1 

System Predicted Old 0 2 

Two-by-two contingency table for Cluster-2 
With the help of effectiveness measures that covered in Chapter 4: 

 Recall Precision F1 Miss False Alarm 

Performance 1 0.67 0.80 0 0.33 

System performance. 

Figure 6.2: Effectiveness measure results for the example data. 
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6.4 Experimental Results 
 

We apply two sets of experiments for on-line event detection as we do for event 

detection before.  The way we follow is similar to one that explained at the 

beginning of Section 5.4. 

6.4.1 Results of Binary Implementation 
 

For obtaining binary implementation results, we execute the new event detection 

algorithm for four different window sizes.  The idea behind this execution method 

is that; we aim to see the impact of different window sizes to the effectiveness 

results.  For each window size, we compute the effectiveness measures as 

explained in Section 6.3.  The results are obtained without any deletion or 

skipping of any event.  These results are depicted in Table 6.2.  

Table 6.2: On-line event detection results according to four windows (binary). 

 

Different from the event clustering results, we observe that narrowing the 

window increases the performance of the system.  There are some reasons: a 

number of first coming documents have high seed power values, these values 

reduce the chance of later document to be selected as seed.  In wider windows, the 

effects of these first seeds reach documents, which are quite faraway from these 

seeds in terms of time.   In addition narrowing the window size decreases the 

probability of occurrence of documents, which are outside of the determined 25 

events.  This gives more chance to new events to be selected as seed, at the same 

time, to be detected as new events.   

EVENT DETECTION (BINARY) 

W-Size 
Recall 

% 
Precision

% 
F1 
% 

Miss 
% 

F-Alarm
% Performance(pfr) 

5 56 50 53 44 1.27 56 
10 44 65 52 56 0.5 44 
15 36 75 49 64 0.3 36 
20 24 75 36 76 0.2 24 
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In Table 6.2, in brief; using narrower window affects the performance in a 

positive way.  On the contrary, precision improves with wide windows, since the 

number of documents, labeled as new, decreases with the increase of window 

size.  This also decreases the number of false alarms.  The performance (pfr) 

measure has the same trend with recall, and it shows that the best performance 

(pfr) is obtained with the narrowest window, which is 5. Change of measures 

(recall, precision, F1, miss) and change of performances (pfr) in terms of different 

window sizes are illustrated in Figures 6.3 and 6.4. 
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Figure 6.3: Change of effectiveness measures vs. window size. 
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Figure 6.4: Change of performance (pfr) vs. window size. 
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 In Figure 6.4, it is shown that the performance decreases with wide 

windows.  We obtain the best performance with window size 5.  For this reason, 

5-day window size is selected as the optimum window size for on-line new event 

detection. 

6.4.2 Results of Weighted Implementation 
 

We follow the same procedure with the binary implementation to obtain the 

results of weighted version.  Different from binary, we use actual term frequencies 

while computing seed power values and similarities.  The results of weighted 

implementation are shown in Table 6.3. 

Table 6.3: On-line new event detection results according to four windows. 

In Table 6.3, we observe usually the similar results with weighted 

implementation.  The significant point is that, precision and false alarm values are 

better than the binary implementation, while the recall values are lower.  This is 

because, for the case of binary implementation, system selects more number of 

seeds than the number of seeds for weighted case.  This increases the probability 

of false alarms; the system determines more candidate documents.  Less number 

of documents decreases the probability of false labels, for example, system labels 

a document contains a new event, when in truth it does not.  This reduction 

improves the precision while recall suffers.  Furthermore, the system gives less 

false alarm reaction.  The window size 5 is again detected as the best choice for 

the system in terms of miss rate and performance. Change of effectiveness 

measures and change of performances in terms of different window sizes are 

illustrated in Figures 6.5 and 6.6. 

EVENT DETECTION (WEIGHTED) 

W-Size 
Recall 

% 
Precision

% 
F1 
% 

Miss 
% 

F-Alarm 
% Performance(pfr) 

5 48 63 55 52 0.6 48 
10 36 75 49 64 0.2 36 
15 28 78 41 72 0.4 28 
20 16 100 28 84 0.0 16 
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Figure 6.5: Change of effectiveness measures vs. window size. 
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Figure 6.6: Change of performance vs. window size. 

 

 In Figure 6.6, results are generally similar to the binary version of the 

implementations.  The best performance is once more obtained with window 5.  

 Comparisons of binary and weighted versions of the implementation of the 

algorithm are depicted in Figures 6.7 and 6.8.  The binary implementation results 

are better than weighted implementation, except the precision and the false alarm 

values.  As mentioned before, when the on-line new event detection system uses 

weighted values, it selects less number of seeds as candidate new events, and this 
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reduction in the number of documents, also decreases the probability of false 

alarms.    
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Figure 6.7: Comparison of effectiveness measures (recall, precision, F1, miss). 
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Figure 6.8: Comparison of implementation performances. 

 

 In Figure 6.8, the values of performance(pfr) with respect to four window 

sizes is shown for both binary and weighted implementations of the system.   

The comparison of binary and weighted implementation to the UMASS 

approach is shown in Table 6.4.  The values of UMASS are barrowed from Papka 

[22].  These values are the best performances of the UMASS approach and we 

compare them to our best results of both binary and weighted implementation. 



CHAPTER 6. ON-LINE NEW EVENT DETECTION   

 

56

System Corpus Miss

% 

False Alarm

% 

Recall

% 

Precision 

% 

F1 

UMASS TDT1 40 1.27 60 52 0.56 

Binary TDT1 44 1.27 56 50 0.53 
Weighted TDT1 52 0.6 48 63 0.55 

Table 6.4: Comparison of on-line new event detection approaches. 

 

 In Table 6.4, the UMASS approach has better performance results than our 

system, but the UMASS approach gives twice false alarms than our system, when 

compared to weighted implementation. 

 The results of on-line new event detection approaches in TDT study are 

shown in Table 6.5.  These are the pooled average of 11-pass methodology.  Since 

only 25 events were judged, this evaluation method is introduced by TDT study in 

order to expand the number of trials.  But the actual effectiveness values are the 

reflection of the task without using 11-pass method.  In other words, the actual 

system performance is the performance that determined in the 0-pass, without 

skiping any document of any event. 

 

System Miss

% 

False Alarm

% 

Recall

% 

Precision 

% 

F1 

UMASS 50 1.34 50 45 0.45 

CMU 59 1.43 41 38 0.39 
DRAGON 58 3.47 42 21 0.28 

Table 6.5: Comparison of systems presented at the first TDT workshop. 

 

 In Table 6.5, the UMASS approach has the best results among the other 

approaches.  Since we do not have the 0-pass values of CMU and DRAGON 

approaches, we just compare our system performance to the UMASS approach 

values. 
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Chapter 7 
 

Conclusion and Future Work  
 

 

In this thesis, we implement and evaluate alternative solutions to on-line new 

event clustering and on-line event detection problems.  The results presented in 

this work are based on problem definitions, evaluation methodologies, and data 

developed by the topic detection and tracking (TDT) project.  

The previous approaches to clustering are usually based on retrospective 

solutions, where all the data are available before clustering begins.  In order to 

find a way to on-line classification, we use the concepts of the C3M algorithm in 

an online environment, in which a cluster is determined for the current document 

before looking at the next document.  For this reason, we introduce an algorithm 

that works in a single-pass manner, where the documents are processed 

sequentially, one at a time.  We use the seed selection process of C3M for 

detecting new events.  A document detected as new, is also used as the seed of a 

cluster.  In order to obtain the best performance, we aim to select the initial stories 

of the events as seed documents, and group the following stories around the 

selected seeds.  Furthermore, to prevent producing oversized event clusters, and to 

give equal chance to all documents to be the seed of a new event, we employ the 

window size concept.  The main motivation of this approach is that; documents 

closer together on the stream are more likely to discuss similar events than 
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documents further apart on the stream.  In our experiments, we aim to see the 

impact of different window sizes to the effectiveness results.  For this purpose, we 

execute the event clustering and on-line new event detection algorithms for each 

window.  In event clustering experiments, we observe that, the performance 

improves with the growing size of window until a point, which is the window size 

of 35 (days) in our case.  After this point, since the number of documents 

increases with the wider window size, the old seeds and the new seeds co-exist in 

the same window.  Accordingly, the seed documents of the previous events 

interfere with the seed documents of the new events.  This provides many 

different clusters to non-seed documents to join and decreases the system 

performance.  In event detection experiments, the best window size observed 5.  

Different from the event clustering results, we detect that, narrowing the window 

increases the performance of the event detection system. 

Since we desire to control the number of seed documents, we introduce a 

threshold concept to the event clustering algorithm.  We also use the threshold 

concept, with a little modification, in the on-line new event detection.  

We use both binary and weighted versions of TDT1 corpus, and compare 

the results of both cases to each other. For the binary case, the system takes the 

term frequencies of document vectors (document vectors are created from TDT1, 

and they are stemmed and cleaned of stop-words), as binary, in other words if a 

particular term exists in the vector, the system takes its term frequency as 1, it is 

taken as 0 otherwise. On the contrary, for the weighted implementation, if a term 

appears in a document 10 times; its term frequency is taken as 10.  Our results 

indicate that, for the case of binary event clustering, between 25%-30% of the 

documents of the predetermined events are classified by the system correctly. We 

obtain better results for binary implementation for event clustering over weighted 

case.  As an advantage of weighted implementation, the system produces at least 

one cluster for each event, which is a desired situation.  However, as a side affect, 

the number of clusters increases by 10% with respect to the binary version.  
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 For the case of on-line new event detection, we use the same concepts that 

are used for the event clustering.  According to our experimental results for binary 

case, we detect between 24%-56% of the documents discussing new events at 

relatively low false alarm rates of 0.2%-1.3%.  Again, we obtain better results for 

the binary implementation, except the precision and false alarm rate.  The false 

alarm rate of weighted implementation is 54% better than the binary case.  This is 

because, for the case of binary implementation, system labels more documents as 

new.  More documents increase the probability of false labels, for example, 

system labels a document as new event, when in truth it is not a new event.  

Selecting more documents as new, improves the recall value but produces a 

weaker false alarm rate.  

Different from the event clustering results, in the on-line event detection 

case, we observe that narrowing the window size improves the performance of the 

system.  Using narrower window limits the influence of old seeds to the new 

coming events. Since the first seeds have higher seed power values, this affects 

the threshold Tr. Accordingly, this high Tr value reduces the chance of new 

documents to be selected as a seed.  When we use a wider window size, the 

effects of these first seeds reach documents, which are quite far away from these 

seeds in terms of time.  Narrowing the window size decreases the probability of 

co-existence of relevant documents with non-relevant ones. This gives more 

possibility to new events to be selected as seed. 

When we don’t use the window size concept, in the case of event 

clustering, the system uses 40% more CPU time, since the number of documents, 

processed in a particular window size, is smaller than the whole corpus. We 

obtain less number of clusters (33% of the binary implementation with the 

window 35) without using window concept.  This means that, the first coming 

documents, which have higher seed power values, enhance the average seed 

power value ( avgP ).  This reflects directly to the threshold value (Tr).  Since the 

system could not eliminate these kinds of documents without determining a 

window size, they attract most of the stories in the corpus and construct fat and 
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ineffective clusters.  By the help of window size concept, we give equal chance to 

each document to be selected as seed.  In the case of new event detection, without 

using window size concept, we obtain the worst results, which have the 

performance (prf) of 8.  This is because, without eliminating powerful seed 

documents (documents that have high seed power value) from the system, desired 

documents cannot exceed the threshold, so that they are not labeled as seed.  

Our results are relatively close to the results of TDT study, however, the 

accuracy of our approach, even at optimal parameter settings, is far from perfect. 

One of the reasons is that, our system is based on the word co-occurrences, which 

means that document similarities are computed based on the term similarities.  

However, this approach is insufficient for some events. As the event progresses, 

many of its properties are either not initially known, or are assumed to be known 

by the user, and therefore they are not necessarily clear in news text.  For 

example, for the event 15, about the earthquake in Kobe, Japan, this referred to 

the event as “the worst disaster in Japan’s history,’’ with no explicit mention of 

Kobe or the fact that the story was about an earthquake.  These kinds of stories 

reduce the effectiveness of the system.  In order to prevent this, lexical chaining 

can be incorporated with our system.   

 In order to obtain better event clustering and new event detection 

accuracy, the same work can be repeated in the retrospective environment, for this 

purpose the original C3M algorithm can be used. 
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Appendix 
 

 

The stop-word list that used for cleaning the TDT1 corpus is given in the sequel. 

a 
about 
above 
according 
across 
added 
adding 
after 
afterwards 
again 
against 
albeit 
all 
almost 
alone 
along 
already 
also 
although 
always 
am 
among 
amongst 
an 
and 
another 
any 
anybody 
anyhow 
anyone 
anything 
anyway 
 

anywhere 
apart 
are 
around 
as 
at 
av 
b 
be 
became 
because 
become 
becomes 
becoming 
been 
before 
beforehand 
behind 
being 
below 
beside 
besides 
between 
beyond 
both 
but 
by 
c 
can 
cannot 
canst 
certain 
 

cf 
choose 
contrariwise 
cos 
could 
cu 
d 
day 
do 
does 
doesn 
doing 
dost 
doth 
double 
down 
dual 
during 
e 
each 
either 
else 
elsewhere 
enough 
et 
etc 
even 
ever 
every 
everybody 
everyone 
everything 
 

everywhere 
except 
excepted 
excepting 
exception 
exclude 
excluding 
exclusive 
f 
far 
farther 
farthest 
few 
ff 
first 
for 
formerly 
forth 
forward 
from 
front 
further 
furthermore 
furthest 
g 
get 
go 
h 
had 
halves 
hardly 
has 
 

hast 
hath 
have 
he 
hence 
henceforth 
her 
here 
hereabouts 
hereafter 
hereby 
herein 
hereto 
hereupon 
hers 
herself 
him 
himself 
hindmost 
his 
hither 
hitherto 
how 
however 
howsoever 
i 
ie 
if 
in 
inasmuch 
inc 
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include 
included 
including 
indeed 
indoors 
inside 
insomuch 
instead 
into 
inward 
inwards 
is 
it 
its 
itself 
j 
just 
k 
kg 
kind 
km 
l 
last 
latter 
latterly 
less 
lest 
let 
like 
little 
ltd 
m 
many 
may 
maybe 
me 
meantime 
meanwhile 
might 
more 
moreover 
most 
mostly 
mr 
mrs 
ms 
much 
must 
my 
myself 
n 
namely 
need 
neither 
never 
 

nevertheless 
next 
no 
nobody 
none 
nonetheless 
noone 
nope 
nor 
not 
nothing 
notwithstanding 
now 
nowadays 
nowhere 
o 
of 
off 
often 
ok 
on 
once 
one 
only 
onto 
or 
other 
others 
otherwise 
ought 
our 
ours 
ourselves 
out 
outside 
over 
own 
p 
per 
perhaps 
plenty 
provide 
q 
quite 
r 
rather 
really 
reuter 
reuters 
round 
s 
said 
sake 
same 
sang 
 

save 
saw 
see 
seeing 
seem 
seemed 
seeming 
seems 
seen 
seldom 
selves 
sent 
several 
shalt 
she 
should 
shown 
sideways 
since 
slept 
slew 
slung 
slunk 
smote 
so 
some 
somebody 
somehow 
someone 
something 
sometime 
sometimes 
somewhat 
somewhere 
spake 
spat 
spoke 
spoken 
sprang 
sprung 
stave 
staves 
still 
such 
supposing 
t 
than 
that 
the 
thee 
their 
them 
themselves 
then 
thence 
 

thenceforth 
there 
thereabout 
thereabouts 
thereafter 
thereby 
therefore 
therein 
thereof 
thereon 
thereto 
thereupon 
these 
they 
this 
those 
thou 
though 
thrice 
through 
throughout 
thru 
thus 
thy 
thyself 
till 
to 
together 
too 
toward 
towards 
u 
ugh 
unable 
under 
underneath 
unless 
unlike 
until 
up 
upon 
upward 
upwards 
us 
use 
used 
using 
v 
very 
via 
vs 
w 
want 
was 
we 
 

week 
well 
were 
what 
whatever 
whatsoever 
when 
whence 
whenever 
whensoever 
where 
whereabouts 
whereafter 
whereas 
whereat 
whereby 
wherefore 
wherefrom 
wherein 
whereinto 
whereof 
whereon 
wheresoever 
whereto 
whereunto 
whereupon 
wherever 
wherewith 
whether 
whew 
which 
whichever 
whichsoever 
while 
whilst 
whither 
who 
whoa 
whoever 
whole 
whom 
whomever 
whomsoever 
whose 
whosoever 
why 
will 
wilt 
with 
within 
without 
worse 
worst 
would 
wow 
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x 
y 
ye 
year 
yet 
yippee 
you 
your 
yours 
yourself 
yourselves 
z 

    

 

 


