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Abstract 

There is a great need for classification methods that 
can properly handle asymmetric cost and benefit 
constraints of classifications. In this study, we aim to 
emphasize the importance of classification benefits 
by means of a new classification algorithm, Benefit 
Maximizing classifier with Feature Intervals (BMFI) 
that uses feature projection based knowledge 
representation. Empirical results show that BMFI 
has promising performance compared to recent cost-
sensitive algorithms in terms of benefit gained. 

1  Introduction 
Classical machine learning applications 

try to reduce the quantity of the error and 
usually ignore the quality of errors. 
However, in real-world applications, the 
nature of the error is very crucial. Further 
the benefit of correct classification may not 
be the same for all classes. Cost-sensitive 
classification research addresses this 
imperfection and evaluates the effects of 
predictions rather than simply measuring 
the predictive accuracy. By incorporating 
cost knowledge to the process of 
classification, the effectiveness of the 
algorithms in real-world situations can be 
evaluated more rationally. In cost-sensitive 
learning, there can be various types of costs 
such as cost of collecting data, cost of 
acquiring features and cost of 
misclassifications [9]. In this study, we 
concentrate on costs of misclassifications 
and try to minimize that cost, by 
maximizing the total benefit gained during 
the process of classification. 

Within this framework, we propose a 
new cost-sensitive classification technique 
that uses the predictive power of feature 
projection method previously proposed in 
[5]. In this approach, called Benefit 
Maximizing classifier with Feature 

Intervals (BMFI for short), voting 
procedure has been changed to impose the 
cost-sensitivity property. Generalization 
techniques are implemented to avoid 
overfitting and to eliminate redundancy. 
BMFI has been tested over several 
benchmark datasets and a number of real-
world datasets that we have compiled.  

The rest of the paper is organized as 
follows: In Section 2, benefit maximization 
problem is addressed. Section 3 gives the 
algorithmic descriptions of BMFI algorithm 
along with the details of feature intervals 
concept, voting method and generalizations. 
Experimental evaluation of BMFI is 
presented in Section 4. Finally, Section 5 
reviews the results and presents future 
research directions on this subject. 

2 Benefit Maximization Problem 
Recent research in machine learning has 

used the terminology of costs when dealing 
with misclassifications. However, those 
studies mostly lack the information that 
correct classifications may have different 
interpretations. Besides implying no cost, 
accurate labeling of instances may entail 
indisputable gains. Elkan points out the 
importance of these gains [3]. He states that 
doing accounting in terms of benefits is 
commonly preferable because there is a 
natural baseline from which all benefits can 
be measured, and thus, it is much easier to 
avoid mistakes. 

Benefit concept is more appropriate to 
real world situations, since net flow of gain 
is more accurately denoted by benefits 
attained. If a prediction is profitable from 
the decision agent’s point of view, its 
benefit is said to be positive. Otherwise, it 
is negative, which is the same as cost of 
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wrong decision. To incorporate this natural 
knowledge of benefits to cost-sensitive 
learning, we have used benefit matrices. 

Definition: B=[bij] is a n×m benefit 
matrix of domain D if n equals to the 
number of prediction labels, m equals to the 
number of possible class labels in D and 
bi j’ s are such that  
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Here, bij represents the benefit of 
classifying an instance of true class j as 
class i. The structure of the benefit matrix is 
similar to that of the cost matrix, with the 
extension that entries can either have 
positive or negative values. In addition, 
diagonal elements should be non-negative 
values, ensuring that correct classifications 
can never have negative benefits. 

Given a benefit matrix B, the optimal 
prediction for an example x is the class i 
that maximizes expected benefit (EB) 
defined as �
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where P(j|x) is the probability that x has 
true class j, The total expected benefit of the 
classifier model M over the whole test data 
is  � � �
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where C is the set of possible class labels in 
the domain. 

3 Benefit Maximization with 
Feature Intervals 

As shown in [6], feature intervals based 
classification is a fast and accurate method, 
and the rules it learns are easy for humans 
to verify. For this reason, we have chosen to 
extend its predictive power to involve 
benefit knowledge. 

In a particular classification problem, 
given the training dataset which consists of 
p features, an instance x can be thought as a 
point in a p-dimensional space with an 
associated class label xc. It is represented as 
a vector of nominal or linear feature values 
together with its associated class label, i.e., 
<x1,x2,..,xp,xc>. Here, xf represents the value 

of the fth feature of the instance x. If we 
consider each feature separately, and take 
x’s projection onto each feature dimension, 
then we can represent x by the combination 
of its feature projections.  

train(TrainingSet, BenefitMatrix) 
begin 
  for each feature f 
     sort(f, TrainingSet)  
     i_list � make_point_intervals(f,TrainingSet) 
    for each interval i in i_list 
      votei(c) �  voting_method (i,f,BenefitMatrix) 
      if f is linear 
         i_list � generalize(i_list,BenefitMatrix) 
end. 

Fig. 1. Training stage of BMFI algorithm 

Training process of BMFI algorithm is 
given in Fig. 1. In the beginning, for each 
feature f, all training instances are sorted 
with respect to their value for f. This sort 
operation is identical to forming projections 
of the training instances for each feature f. 
A point interval is constructed for each 
projection. Initially, lower and upper 
bounds of the interval are equal to the f 
value of the corresponding training 
instance. If the f value of a training instance 
is unknown, it is simply ignored. If there 
are several point intervals with the same f 
value, they are combined into a single point 
interval by adding the class counts. At the 
end of point interval construction, vote for 
each class label is determined by one of two 
voting methods. 

The first one is the voting method of CFI 
algorithm [5], called VM1 in our context. 
VM1 can be formulated as follows: 
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where Nc is the number of instances that 
belong to class c in interval I and 
classCount(c) is the total number of 
instances of class c in the entire training set. 
This voting method favors the prediction of 
minority class in proportion to its 
occurrence in the interval. 

The second voting method, called VM2, 
is basically founded on optimal prediction 
approximation given by Eq. (2) and makes 
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direct use of the benefit matrix. VM2 casts 
votes to class c in interval I as �

∈
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P(k|I) is the estimated probability that an 
instance falling to interval I will have the 
true class k, and is calculated as  
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After the initial assignment of votes, 
intervals are generalized in order to 
eliminate redundancy and avoid overfitting. 
The generalization process is illustrated in 
Fig. 2. Here, merge_condition() is a 
comparison function that evaluates relative 
properties of each interval and returns true 
if sufficient level on similarity between 
those intervals is reached. 

generalize (interval_list) 
begin 
  I �  first interval in interval_list 
  while I is not empty do 
     I’  is the interval after I 
     I”  is the interval after I’  
     if merge_condition(I,I’ ,I” ) is true 
 then merge I’ (and/or I” ) into I 
     else I � I’  
end. 

Fig. 2 Generalization of intervals step 

Besides adding more prediction power to 
the algorithm, proper generalization reduces 
the number of intervals, and by this way, 
decreases the classification time. 

In this work, we have experimented with 
three interval joining methods. The first 
one, called, SF (same frequent) joins two 
consecutive intervals if the most frequently 
occurring class of both are the same. The 
second method, SB (same beneficial) joins 
two consecutive intervals if they have the 
same beneficial class. A class c is the 
beneficial class of an interval i iff for ∀j∈C 
and cj ≠ , �
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beneficial classes of two consecutive 
intervals are the same, then it can be more 
profitable to unite them into a single 
interval. The third method, HC (high 
confidence) combines three consecutive 

intervals into a single one, when the middle 
interval has less confidence on its votes than 
the other two. The confidence of an interval 
is measured as the difference between 
benefits of the most beneficial class and 
second beneficial class. 

The choice of voting method to be used 
depends on the characteristics of the 
domain. Based on our empirical results, we 
propose to use VM1 voting together with 
SF, SB and HC techniques when the correct 
classification of the minority class is more 
beneficial than the other classes. On the 
contrary, when the benefit matrix is not 
correlated with the distribution, VM2 can 
be employed together with SB and HC to 
boost up the benefit performance. 
Experimental results presented in Section 4 
are achieved by using this general rule-of-
thumb. 

4 Experimental Results 
For evaluation purposes, we have used 
benchmark datasets from UCI ML 
Repository [1]. These data sets do not have 
predefined benefit matrices, so we formed 
their benefit matrices in the following 
manner. In binary datasets, one class is 
assumed to be more important to predict 
correctly than the other by a constant 
benefit ratio, b. We have tested our 
algorithm by using five different benefit 
ratio values 2, 5, 10, 20, 50 and benefit 
matrix of the format 

   Actual Class 
Prediction C0 C1 

C0 1 -b 
C1 -1 b 

Note that when b is equal to 1, the problem 
reduces to the classical classification 
problem. 

Further, we have compiled four new 
datasets. Their benefit matrices have been 
defined by experts of each domain. For 
more information about the datasets and 
benefit matrices the reader is referred to [7]. 

We have compared BMFI with 
MetaCost [2] and CostSensitiveClassifier of 
Weka [4] on well-known base classifiers 
which are Naive Bayesian Classifier, C4.5 
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decision tree learner and VFI [6]. Table 1 
presents the list of these algorithms with 
their base classifiers (note that J4.8 is 
Weka’s implementation of C4.5 in Java). 

Table 1 List of cost-sensitive algorithms evaluated 

Name Description 
MetaNB MetaCost on Naive Bayes 
MetaJ48 MetaCost on J4.8 
C1NB CostSensitiveClassifier with 

reweighting on Naive Bayes 
C2NB CostSensitiveClassifier with direct 

minimization on Naive Bayes 
C1J48 CostSensitiveClassifier with 

reweighting on J4.8 
C2J48 CostSensitiveClassifier with direct 

minimization on J4.8 
C1VFI CostSensitiveClassifier with 

reweighting on VFI 
C2VFI CostSensitiveClassifier with direct 

minimization on VFI 
 
MetaCost is a wrapper algorithm that 

takes a base classifier and makes it sensitive 
to costs of classification [2]. It operates 
with a bagging logic beneath and learns 
multiple classifiers on multiple bootstrap 
replicates of the training set. MetaCost has 
become a benchmark for comparing cost-
sensitive algorithms. Further, we have 
compared our algorithm with two cost 
sensitive classifiers provided in Weka. The 
first method uses reweighting of training 
instances in order to make its internal 
classifier cost-sensitive [8]. The second 
method requires its internal classifier to be a 
distribution-based classifier and makes 
direct cost-minimization based on 
probability distributions. We call these two 
classifiers C1 and C2, respectively. 

Experimental results are presented in 
Table 2. In this table, results of binary 
datasets are benefit per instance values for 
b=10. Benefit per instance values are 
calculated by dividing the total benefit 
achieved in the end of classification to the 
number of instances. All results are 
recorded by using 10-fold cross validation. 

As the results demonstrate, BMFI 
algorithm is very successful in most of the 
domains and remarkably comparable to 
other algorithms in all of the domains. In 
ionosphere, liver, sonar, bankruptcy and 
lesion domains, BMFI attains the maximum 
benefit per instance value. In the remaining 
datasets its performance is very high and 
comparable to other algorithms. We have 
observed that benefit achieved is highly 
dependent on the nature of the domain, i.e., 
the benefit matrix information, the 
distribution of class instances, etc, as 
expected. 

In addition, it is worthwhile to note that 
BMFI outperforms cost-sensitive versions 
of its base classifier VFI (C1VFI and 
C2VFI). This observation suggests that 
using benefit knowledge inside the 
algorithm itself is more effective than 
wrapping a meta-stage around to transform 
it into a cost-sensitive classifier. 

In binary datasets, we observed that the 
success of BMFI increases as the benefit 
ratio increases. This is an important 
highlight of the BMFI algorithm and is 
mostly due to its high sensitivity to benefit 
of classifications. This aspect of BMFI has 
been illustrated with the results of pima-
diabetes dataset given in Table 3. 

 

Table 2 Comparative evaluation of BMFI with wrapper cost-sensitive algorithms. The entries are benefit per 
instance values. Best results are shown in bold. 

domain C Instances MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI
breast-cancer 2 699 4.0 3.8 4.0 4.0 3.9 3.7 3.7 2.8 3.89 (VM1)
pima-diabetes 2 768 2.8 2.8 3.0 2.7 2.9 2.5 -1.5 2.8 2.73 (VM1)

ionosphere 2 351 5.7 6.5 6.1 6.0 6.5 5.7 6.4 6.1 6.5 (VM2)
liver disorders 2 345 5.3 5.3 5.2 5.4 5.4 4.4 4.3 5.3 5.38 (VM2)

sonar 2 208 3.3 4.6 4.5 4.0 4.6 3.3 0.0 4.0 4.87 (VM2)
bank-loans 2 1443 -0.8 -0.4 -0.9 -0.6 0.1 -0.5 -1.2 -2.8 -0,1 (VM1)
bankruptcy 2 1444 7.8 7.5 7.7 7.4 7.5 7.3 7.7 7.8 7.89 (VM1)

dermatology 6 366 7.5 7.2 7.5 7.5 7.2 7.3 6.9 5.6 7.38 (VM2)
lesion 9 285 8.7 7.8 8.9 9.0 7.8 7.7 6.4 4.0 8.98 (VM1)
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Table 3: Benefit per instance values of pima-diabetes dataset when differing benefit ratios are used. Best results 
are shown in bold. 

b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI 

2 0.5 0.6 0.7 0.6 0.6 0.6 0.0 0.0 0.5

5 1.2 1.2 1.5 1.3 1.2 1.2 -0.5 1.1 1.2

10 2.8 2.8 3.0 2.7 2.9 2.5 -1.5 2.8 2.7

20 5.8 5.8 6.2 6.1 6.1 5.6 -3.3 6.3 6.3

50 16.6 16.2 16.2 16.6 16.3 14.7 -9.0 16.7 16.8

5 Conclusions and Future Work 
In this study, we have focused on the 
problem of making predictions when the 
outcomes have different benefits associated 
with them. We have implemented a new 
algorithm, namely BMFI that uses the 
predictive power of feature intervals 
concept in maximizing the total benefit of 
classifications. We make direct use of 
benefit matrix information provided to the 
algorithm in tuning the prediction so that 
the resultant benefit gain is maximized. 

BMFI has been compared to MetaCost 
and two other cost-sensitive classification 
algorithms provided in Weka. These 
generic algorithms are wrapped over NBC, 
C4.5 and VFI. The results show that BMFI 
is very effective in maximizing the benefit 
per instance values. It is more successful in 
domains where the prediction of a certain 
class is particularly important. Empirical 
results we obtained also show that using 
benefit information directly in the algorithm 
itself is more effective than using a meta-
stage around the base classifier.  

In benefit maximization problem, we 
have observed that individual 
characteristics of the datasets influence 
results significantly, due to the extreme 
correlation between cost-sensitivity and 
class distributions.  

As future work, feature-dependent 
domains can be explored in depth and 
feature-dependency aspect of BMFI can be 
improved. Benefit maximization can be 
extended to include the feature costs. 
Feature selection mechanisms that are 
sensitive to individual costs of features can 
be utilized. In addition, benefit 
maximization research can be extended to 

handle incremental datasets, as in the case 
of active learning.  
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