
 1

Maximizing Benefit of Classifications Using Feature
Intervals

Nazlı

�
kizler and H. Altay Güvenir

Bilkent University, Department of Computer Engineering

{inazli,guvenir}@cs.bilkent.edu.tr

Abstract

There is a great need for classification methods that
can properly handle asymmetric cost and benefit
constraints of classifications. In this study, we aim to
emphasize the importance of classification benefits
by means of a new classification algorithm, Benefit
Maximizing classifier with Feature Intervals (BMFI)
that uses feature projection based knowledge
representation. Empirical results show that BMFI
has promising performance compared to recent cost-
sensitive algorithms in terms of benefit gained.

1 Introduction
Classical machine learning applications

try to reduce the quantity of the error and
usually ignore the quality of errors.
However, in real-world applications, the
nature of the error is very crucial. Further
the benefit of correct classification may not
be the same for all classes. Cost-sensitive
classification research addresses this
imperfection and evaluates the effects of
predictions rather than simply measuring
the predictive accuracy. By incorporating
cost knowledge to the process of
classification, the effectiveness of the
algorithms in real-world situations can be
evaluated more rationally. In cost-sensitive
learning, there can be various types of costs
such as cost of collecting data, cost of
acquiring features and cost of
misclassifications [9]. In this study, we
concentrate on costs of misclassifications
and try to minimize that cost, by
maximizing the total benefit gained during
the process of classification.

Within this framework, we propose a
new cost-sensitive classification technique
that uses the predictive power of feature
projection method previously proposed in
[5]. In this approach, called Benefit
Maximizing classifier with Feature

Intervals (BMFI for short), voting
procedure has been changed to impose the
cost-sensitivity property. Generalization
techniques are implemented to avoid
overfitting and to eliminate redundancy.
BMFI has been tested over several
benchmark datasets and a number of real-
world datasets that we have compiled.

The rest of the paper is organized as
follows: In Section 2, benefit maximization
problem is addressed. Section 3 gives the
algorithmic descriptions of BMFI algorithm
along with the details of feature intervals
concept, voting method and generalizations.
Experimental evaluation of BMFI is
presented in Section 4. Finally, Section 5
reviews the results and presents future
research directions on this subject.

2 Benefit Maximization Problem
Recent research in machine learning has

used the terminology of costs when dealing
with misclassifications. However, those
studies mostly lack the information that
correct classifications may have different
interpretations. Besides implying no cost,
accurate labeling of instances may entail
indisputable gains. Elkan points out the
importance of these gains [3]. He states that
doing accounting in terms of benefits is
commonly preferable because there is a
natural baseline from which all benefits can
be measured, and thus, it is much easier to
avoid mistakes.

Benefit concept is more appropriate to
real world situations, since net flow of gain
is more accurately denoted by benefits
attained. If a prediction is profitable from
the decision agent’s point of view, its
benefit is said to be positive. Otherwise, it
is negative, which is the same as cost of

BU-CE-0301

 2

wrong decision. To incorporate this natural
knowledge of benefits to cost-sensitive
learning, we have used benefit matrices.

Definition: B=[bij] is a n×m benefit
matrix of domain D if n equals to the
number of prediction labels, m equals to the
number of possible class labels in D and
bi j’ s are such that

����
≠<
=≥

=
jib

ji
b

ii
ij if

 if0
 (1)

Here, bij represents the benefit of
classifying an instance of true class j as
class i. The structure of the benefit matrix is
similar to that of the cost matrix, with the
extension that entries can either have
positive or negative values. In addition,
diagonal elements should be non-negative
values, ensuring that correct classifications
can never have negative benefits.

Given a benefit matrix B, the optimal
prediction for an example x is the class i
that maximizes expected benefit (EB)
defined as �

×=
j

ijbxjPixEB)|(),((2)

where P(j|x) is the probability that x has
true class j, The total expected benefit of the
classifier model M over the whole test data
is � � �

==
∈x x j

i j
Ci

M bxjPixEBEB)|(),(maxarg (3)

where C is the set of possible class labels in
the domain.

3 Benefit Maximization with
Feature Intervals

As shown in [6], feature intervals based
classification is a fast and accurate method,
and the rules it learns are easy for humans
to verify. For this reason, we have chosen to
extend its predictive power to involve
benefit knowledge.

In a particular classification problem,
given the training dataset which consists of
p features, an instance x can be thought as a
point in a p-dimensional space with an
associated class label xc. It is represented as
a vector of nominal or linear feature values
together with its associated class label, i.e.,
<x1,x2,..,xp,xc>. Here, xf represents the value

of the fth feature of the instance x. If we
consider each feature separately, and take
x’s projection onto each feature dimension,
then we can represent x by the combination
of its feature projections.

train(TrainingSet, BenefitMatrix)
begin
 for each feature f
 sort(f, TrainingSet)
 i_list � make_point_intervals(f,TrainingSet)
 for each interval i in i_list
 votei(c) � voting_method (i,f,BenefitMatrix)
 if f is linear
 i_list � generalize(i_list,BenefitMatrix)
end.

Fig. 1. Training stage of BMFI algorithm

Training process of BMFI algorithm is
given in Fig. 1. In the beginning, for each
feature f, all training instances are sorted
with respect to their value for f. This sort
operation is identical to forming projections
of the training instances for each feature f.
A point interval is constructed for each
projection. Initially, lower and upper
bounds of the interval are equal to the f
value of the corresponding training
instance. If the f value of a training instance
is unknown, it is simply ignored. If there
are several point intervals with the same f
value, they are combined into a single point
interval by adding the class counts. At the
end of point interval construction, vote for
each class label is determined by one of two
voting methods.

The first one is the voting method of CFI
algorithm [5], called VM1 in our context.
VM1 can be formulated as follows:

)(
),(1

cclassCount

N
IcVM c= (4)

where Nc is the number of instances that
belong to class c in interval I and
classCount(c) is the total number of
instances of class c in the entire training set.
This voting method favors the prediction of
minority class in proportion to its
occurrence in the interval.

The second voting method, called VM2,
is basically founded on optimal prediction
approximation given by Eq. (2) and makes

 3

direct use of the benefit matrix. VM2 casts
votes to class c in interval I as �

∈

×=
Ck

ck IkPbIcVM)|(),(2 (4)

P(k|I) is the estimated probability that an
instance falling to interval I will have the
true class k, and is calculated as

)(
)|(

kclassCount

N
IkP k= (5)

After the initial assignment of votes,
intervals are generalized in order to
eliminate redundancy and avoid overfitting.
The generalization process is illustrated in
Fig. 2. Here, merge_condition() is a
comparison function that evaluates relative
properties of each interval and returns true
if sufficient level on similarity between
those intervals is reached.

generalize (interval_list)
begin
 I � first interval in interval_list
 while I is not empty do
 I’ is the interval after I
 I” is the interval after I’
 if merge_condition(I,I’ ,I”) is true
 then merge I’ (and/or I”) into I
 else I � I’
end.

Fig. 2 Generalization of intervals step

Besides adding more prediction power to
the algorithm, proper generalization reduces
the number of intervals, and by this way,
decreases the classification time.

In this work, we have experimented with
three interval joining methods. The first
one, called, SF (same frequent) joins two
consecutive intervals if the most frequently
occurring class of both are the same. The
second method, SB (same beneficial) joins
two consecutive intervals if they have the
same beneficial class. A class c is the
beneficial class of an interval i iff for ∀j∈C
and cj ≠ , �

∈ix
cxB),(���

∈ix
jxB),(. If the

beneficial classes of two consecutive
intervals are the same, then it can be more
profitable to unite them into a single
interval. The third method, HC (high
confidence) combines three consecutive

intervals into a single one, when the middle
interval has less confidence on its votes than
the other two. The confidence of an interval
is measured as the difference between
benefits of the most beneficial class and
second beneficial class.

The choice of voting method to be used
depends on the characteristics of the
domain. Based on our empirical results, we
propose to use VM1 voting together with
SF, SB and HC techniques when the correct
classification of the minority class is more
beneficial than the other classes. On the
contrary, when the benefit matrix is not
correlated with the distribution, VM2 can
be employed together with SB and HC to
boost up the benefit performance.
Experimental results presented in Section 4
are achieved by using this general rule-of-
thumb.

4 Experimental Results
For evaluation purposes, we have used
benchmark datasets from UCI ML
Repository [1]. These data sets do not have
predefined benefit matrices, so we formed
their benefit matrices in the following
manner. In binary datasets, one class is
assumed to be more important to predict
correctly than the other by a constant
benefit ratio, b. We have tested our
algorithm by using five different benefit
ratio values 2, 5, 10, 20, 50 and benefit
matrix of the format

 Actual Class
Prediction C0 C1

C0 1 -b
C1 -1 b

Note that when b is equal to 1, the problem
reduces to the classical classification
problem.

Further, we have compiled four new
datasets. Their benefit matrices have been
defined by experts of each domain. For
more information about the datasets and
benefit matrices the reader is referred to [7].

We have compared BMFI with
MetaCost [2] and CostSensitiveClassifier of
Weka [4] on well-known base classifiers
which are Naive Bayesian Classifier, C4.5

 4

decision tree learner and VFI [6]. Table 1
presents the list of these algorithms with
their base classifiers (note that J4.8 is
Weka’s implementation of C4.5 in Java).

Table 1 List of cost-sensitive algorithms evaluated

Name Description
MetaNB MetaCost on Naive Bayes
MetaJ48 MetaCost on J4.8
C1NB CostSensitiveClassifier with

reweighting on Naive Bayes
C2NB CostSensitiveClassifier with direct

minimization on Naive Bayes
C1J48 CostSensitiveClassifier with

reweighting on J4.8
C2J48 CostSensitiveClassifier with direct

minimization on J4.8
C1VFI CostSensitiveClassifier with

reweighting on VFI
C2VFI CostSensitiveClassifier with direct

minimization on VFI

MetaCost is a wrapper algorithm that

takes a base classifier and makes it sensitive
to costs of classification [2]. It operates
with a bagging logic beneath and learns
multiple classifiers on multiple bootstrap
replicates of the training set. MetaCost has
become a benchmark for comparing cost-
sensitive algorithms. Further, we have
compared our algorithm with two cost
sensitive classifiers provided in Weka. The
first method uses reweighting of training
instances in order to make its internal
classifier cost-sensitive [8]. The second
method requires its internal classifier to be a
distribution-based classifier and makes
direct cost-minimization based on
probability distributions. We call these two
classifiers C1 and C2, respectively.

Experimental results are presented in
Table 2. In this table, results of binary
datasets are benefit per instance values for
b=10. Benefit per instance values are
calculated by dividing the total benefit
achieved in the end of classification to the
number of instances. All results are
recorded by using 10-fold cross validation.

As the results demonstrate, BMFI
algorithm is very successful in most of the
domains and remarkably comparable to
other algorithms in all of the domains. In
ionosphere, liver, sonar, bankruptcy and
lesion domains, BMFI attains the maximum
benefit per instance value. In the remaining
datasets its performance is very high and
comparable to other algorithms. We have
observed that benefit achieved is highly
dependent on the nature of the domain, i.e.,
the benefit matrix information, the
distribution of class instances, etc, as
expected.

In addition, it is worthwhile to note that
BMFI outperforms cost-sensitive versions
of its base classifier VFI (C1VFI and
C2VFI). This observation suggests that
using benefit knowledge inside the
algorithm itself is more effective than
wrapping a meta-stage around to transform
it into a cost-sensitive classifier.

In binary datasets, we observed that the
success of BMFI increases as the benefit
ratio increases. This is an important
highlight of the BMFI algorithm and is
mostly due to its high sensitivity to benefit
of classifications. This aspect of BMFI has
been illustrated with the results of pima-
diabetes dataset given in Table 3.

Table 2 Comparative evaluation of BMFI with wrapper cost-sensitive algorithms. The entries are benefit per
instance values. Best results are shown in bold.

domain C Instances MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI
breast-cancer 2 699 4.0 3.8 4.0 4.0 3.9 3.7 3.7 2.8 3.89 (VM1)
pima-diabetes 2 768 2.8 2.8 3.0 2.7 2.9 2.5 -1.5 2.8 2.73 (VM1)

ionosphere 2 351 5.7 6.5 6.1 6.0 6.5 5.7 6.4 6.1 6.5 (VM2)
liver disorders 2 345 5.3 5.3 5.2 5.4 5.4 4.4 4.3 5.3 5.38 (VM2)

sonar 2 208 3.3 4.6 4.5 4.0 4.6 3.3 0.0 4.0 4.87 (VM2)
bank-loans 2 1443 -0.8 -0.4 -0.9 -0.6 0.1 -0.5 -1.2 -2.8 -0,1 (VM1)
bankruptcy 2 1444 7.8 7.5 7.7 7.4 7.5 7.3 7.7 7.8 7.89 (VM1)

dermatology 6 366 7.5 7.2 7.5 7.5 7.2 7.3 6.9 5.6 7.38 (VM2)
lesion 9 285 8.7 7.8 8.9 9.0 7.8 7.7 6.4 4.0 8.98 (VM1)

 5

Table 3: Benefit per instance values of pima-diabetes dataset when differing benefit ratios are used. Best results
are shown in bold.

b MetaNB MetaJ48 C1NB C2NB C1J48 C2J48 C1VFI C2VFI BMFI

2 0.5 0.6 0.7 0.6 0.6 0.6 0.0 0.0 0.5

5 1.2 1.2 1.5 1.3 1.2 1.2 -0.5 1.1 1.2

10 2.8 2.8 3.0 2.7 2.9 2.5 -1.5 2.8 2.7

20 5.8 5.8 6.2 6.1 6.1 5.6 -3.3 6.3 6.3

50 16.6 16.2 16.2 16.6 16.3 14.7 -9.0 16.7 16.8

5 Conclusions and Future Work
In this study, we have focused on the
problem of making predictions when the
outcomes have different benefits associated
with them. We have implemented a new
algorithm, namely BMFI that uses the
predictive power of feature intervals
concept in maximizing the total benefit of
classifications. We make direct use of
benefit matrix information provided to the
algorithm in tuning the prediction so that
the resultant benefit gain is maximized.

BMFI has been compared to MetaCost
and two other cost-sensitive classification
algorithms provided in Weka. These
generic algorithms are wrapped over NBC,
C4.5 and VFI. The results show that BMFI
is very effective in maximizing the benefit
per instance values. It is more successful in
domains where the prediction of a certain
class is particularly important. Empirical
results we obtained also show that using
benefit information directly in the algorithm
itself is more effective than using a meta-
stage around the base classifier.

In benefit maximization problem, we
have observed that individual
characteristics of the datasets influence
results significantly, due to the extreme
correlation between cost-sensitivity and
class distributions.

As future work, feature-dependent
domains can be explored in depth and
feature-dependency aspect of BMFI can be
improved. Benefit maximization can be
extended to include the feature costs.
Feature selection mechanisms that are
sensitive to individual costs of features can
be utilized. In addition, benefit
maximization research can be extended to

handle incremental datasets, as in the case
of active learning.

References
[1] Blake C. L. and Merz C. J. 1998. UCI repository of
machine learning databases. University of California,
Irvine, Department of Information and Computer
Sciences,.
[http://www.ics.uci.edu/~mlearn/MLRepository.html].

[2] Domingos P. 1999. Metacost: A general method for
making classifiers cost-sensitive. In Proceedings of the
International Conference on Knowledge Discovery and
Data Mining, pages 155-64, San Diego, CA.

[3] Elkan C. 2001. The Foundations of Cost-Sensitive
Learning. In Proceedings of the Seventeenth International
Joint Conference on Articial Intelligence.

[4] Frank E. et al. 2000. Weka 3 - Data Mining with
Open Source Machine Learning Software in Java. The
University of Waikato.
[http://www.cs.waikato.ac.nz/~ml/weka].

[5] Güvenir H. A. 2001. Detection of abnormal ECG
recordings using feature intervals. In Proceedings of the
Tenth Turkish Symposium on Artificial Intelligence and
Neural Networks, pages 265-274.

[6] Güvenir H. A, Demiröz G., and Ilter N. 1998.
Learning differential diagnosis of erythemato-squamous
diseases using voting feature intervals. Artificial
Intelligence in Medicine, 13(3):147-165.

[7] � kizler N. 2002. Benefit Maximizing Classification
Using Feature Intervals Technical Report BU-CE-0208,
Bilkent Univesity.

[8] Ting K.M. 2002. An instance weighting method to
induce cost-sensitive trees. IEEE Transactions on
Knowledge and Data Engineering, 14(3):659-665.

[9] Turney P. 2000. Types of cost in inductive concept
learning. In Workshop on Cost-Sensitive Learning at the
Seventeenth International Conference on Machine
Learning (WCSL at ICML-2000), pages 15-21, Stanford
University, California.

