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Abstract 
In most of the real-world domains, benefit and costs of classifications can be dependent on 
the characteristics of individual examples. In such cases, there is no static benefit matrix 
available in the domain and each classification benefit is calculated separately. This 
situation, called feature dependency, is evaluated in the framework of our newly proposed 
classification algorithm Benefit Maximizing classifier with Feature Intervals (BMFI) that 
uses feature projection based knowledge representation. This new approach has been 
evaluated over bank loan applications and experimental results are presented. 
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1 Introduction 

Cost-sensitive classification branch of machine learning deals with non-uniform costs 
of classifications and aims to provide realistic learning models that are suitable for real-
world applications. One important characteristic of a cost-sensitive domain is its sensitivity 
to differing costs of misclassifications. However, most of the studies in the cost-sensitive 
learning literature ignore the fact that these costs may not be homogeneous and can be 
dependent on individual examples. Consider the loan grant scheme: When a customer does 
not repay the credit amount he is granted, the bank loses the entire loan amount. On the 
other hand, if the bank refuses a good customer who is likely to pay the money back, the 
bank loses the interest amount that is proportional to the loan amount. This situation can be 
illustrated with the so-called benefit matrix shown in Table 1. Here “approve” means to 
grant the loan amount and “deny” means to reject the customer’s request for loan. The term 
f(x) in benefit table denotes the amount requested by customer x. Obviously, in such a 
situation, bank officials should be more careful with the high amount requests, because 
losses and gains will be much higher. This is also what the officials do in real world. For 
example, when a customer’s request for $10000 is approved and he has defaulted, the 
benefit of the bank is -$10000, whereas in another application of the same case, if the loan 
amount is $100, the loss will be much lower, i.e., -$100. So, the benefit of the bank from 
each application is dependent on the loan amount feature of the application. Such a 
situation is an example of feature-dependent benefits in a domain. 

This non-homogeneity in benefit and cost of classifications introduce a new dimension 
to the optimal classification problem. Classifiers should make decisions so as to maximize 
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the total benefit achieved in the result of the classification process. This sort of 
classification is different than the regular classification process. Instances are evaluated 
individually and depending on the relative importance of outcomes, a decision is made 
uniquely for each instance. 

Table 1: Benefit matrix for a loan application domain where benefits are dependent on 
individual instances 

 
 
 
 

Domains in which benefits can be feature-dependent can be categorized as follows: 

- Financial Domains: As described above, in loan applications, benefits can be functions 
of the amount queried. In fraud detection of transaction problems, benefits are functions 
of transaction magnitudes. Moreover, in bankruptcy datasets, benefits might be 
represented as the size of the bank in dollars. Donation amount prediction as in 
KDD’98 Cup is another example domain for instance-dependent benefit amounts [1]. 

- Medical Diagnosis Domains: Benefits of classification can be based on the age of the 
patients. The younger the patient, the more effective a medication can be in some 
circumstances. Additionally, there may be temporal parameters associated with 
patient’s health from which benefit functions can be estimated. 

- Temporal Domains: In domains where benefits of decisions change over time, it would 
be more appropriate to specify f(x)’s in the benefit table as functions of time. For 
example, in geo-scientific predictions, like predicting earthquakes, natural disasters, 
time of prediction is a vital component and the benefit of prediction mostly depends on 
this parameter. The earlier the prediction is, the more precautions can be taken.  

- Spatial Domains: Benefits can be represented as measures of distances in domains 
where the locality of prediction is important. In weather predictions for instance, the 
accuracy in the area of rainfall is important, and can be a functional parameter for 
degree of benefit.     

In this study, we have analyzed an example domain, namely bank-loans domain, in 
which benefits are dependent on the amount of loan feature of individual instances. We 
present a naive approach that is incorporated into the feature projection method within the 
framework of BMFI algorithm. The paper is organized as follows: In Section 2, we present 
the related work in this area. In Section 3, we give the fundamentals of benefit 
maximization problem. Section 4 introduces our benefit maximization algorithm BMFI 
together with a brief presentation of feature intervals concept. In section 5, experimental 
results of BMFI in feature-dependent bank-loans data is presented. Section 6 concludes our 
discussion and outlines future research directions. 

 Actual class 
Prediction approve deny 
approve 0.5f(x) - f(x) 

deny - 0.5f(x) 0 
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2 Related Work 

In the literature of cost-sensitive learning, there are few studies that have included 
feature-dependent aspects of cost matrices. Fawcett et al. are among the first ones who 
incorporated feature-dependent costs in their classification problem [5]. In cellular phone 
cloning fraud detection, they used a variable cost matrix based on the fraudulent airtime.  

In the credit card fraud detection domain, Chan et al. [2] represented the cost model in 
terms of overheads, which are equivalent to operational costs that are needed for each 
investigation and transaction amounts of instances. If the amount of transaction is smaller 
than the overhead, the net gain will be lower even if that transaction is fraudulent, so it is 
not worthwhile to make an investigation. They have examined the effects of cost-based 
sampling, which samples instances in proportion to their transaction amount ratios, but 
their concluded performance is not much different from random sampling.  

Recently, Hollmen et al. [6] have examined feature-dependency and pointed out that 
there is an indisputable area of applications in which cost matrices of functions should be 
used instead of fixed cost matrices.  They present a cost model and decision function based 
on Bayesian formulation. Posterior probabilities they use are obtained by a Hidden Markov 
model (HMM). The observed variables are assumed to be conditionally dependent on a 
discrete hidden variable in the HMM structure. Their input-dependent cost model exhibits 
promising results in terms of profit performance, when compared to cost-neutral and fixed-
cost approaches in fraud detection of telecommunications domain. However, Hollmen et al. 
note that this approach is favorable when the input-dependent cost model is easily 
formulated.  

Elkan [3] asks the question “What will happen if instance-dependent costs C(i,j,x) are 
unknown for some labels i and j, for some training examples x?”. Such situations occur 
when costs are functions of features that are dependent on the class label, such as charity 
donation amounts, and are practically impossible to be known beforehand.  The method 
Zadronzy et al. use to predict instance-dependent cost amounts is least-squares multiple 
linear regression [11]. By looking at the examples in the training set, the costs for test 
instances are predicted. Simple methods are used for probability and cost estimations. More 
sophisticated regression methods for cost estimation are likely to give more satisfactory 
improvements on this issue. 

3 Benefit Maximization Problem 

Recent research in machine learning has used the terminology of costs when dealing 
with misclassifications. However, those studies mostly lack the information that correct 
classifications may have different interpretations. Besides implying no cost, accurate 
labeling of instances may result in gains. Elkan points out the importance of these gains [4]. 
He states that doing accounting in terms of benefits is commonly preferable because there 
is a natural baseline from which all benefits can be measured, and thus, it is much easier to 
avoid mistakes. 
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Benefit concept is more appropriate to real world situations, since net flow of gain is 
more accurately denoted by benefits. If a prediction is profitable from the decision agent’s 
point of view, its benefit is said to be positive. Otherwise, it is negative, which is the same 
as cost of wrong decision. To incorporate this natural knowledge of benefits to cost-
sensitive learning, we have used benefit matrices. 
Definition: B=[bij] is a n×m benefit matrix of domain D if n equals to the number of 

prediction labels, m equals to the number of possible class labels in D and bij’s are such that  
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Here, bij represents the benefit of classifying an instance of true class j as class i. The 
structure of the benefit matrix is similar to that of the cost matrix, with the extension that 
entries can either have positive or negative values. In addition, diagonal elements should be 
non-negative values, ensuring that correct classifications can never have negative benefits. 

Given a benefit matrix B, the optimal prediction for an example x is the class i that 
maximizes expected benefit (EB) defined as 

∑ ×=
j

ijbxjPixEB )|(),(   (2) 

where P(j|x) is the probability that x has true class j, The total expected benefit of the 
classifier model M over the whole test data is  

 ∑ ∑∑==
∈x x j
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where C is the set of possible class labels in the domain. 

4 BMFI with Feature-dependent Voting 

As shown in [8], feature intervals classification is a rapid, user-friendly method that 
produces very effective results when compared to well-known classification algorithms. 
For this reason, we have chosen to extend its predictive power to involve benefit 
knowledge. 

In a particular classification problem, given the training dataset which consists of p 
features, an instance x can be thought as a point in a p-dimensional space with an associated 
class label xc. It is represented as a vector of nominal or linear feature values together with 
its associated class label, i.e., <x1,x2,..,xp,xc>. Here, xf represents the value of the fth feature 
of instance x. If we consider each feature separately, and take x’s projection onto each 
feature dimension, then we can represent x by the combination of its feature projections. 

 Training process of BMFI algorithm is given in Fig. 1. In the beginning, for each 
feature f, all training instances are sorted with respect to their value for f. This sort 
operation is identical to forming projections of the training instances for each feature f. A 
point interval is constructed for each projection. Initially, lower and upper bounds of the 
interval are equal to the f value of the corresponding training instance. If the f value of a 
training instance is unknown, it is simply ignored. If there are several point intervals with 
the same f value, they are combined into a single point interval by adding the class counts. 
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At the end of point interval construction, vote for each class label is assigned by a 
predefined voting method. 

train(TrainingSet, BenefitMatrix) 
begin 
     for each feature f 
          sort(f, TrainingSet)  
          interval_list←make_point_intervals(f,TrainingSet) 
          for each interval i in interval_list 
            votei(c)← voting_method (i,f,BenefitMatrix) 
           if f is linear 
          interval_list←generalize(interval_list,BenefitMatrix) 
end. 

Fig. 1. Training stage of BMFI algorithm.. 

The voting method we use here is expected benefit voting (EBV) which is basically 
founded on optimal prediction approximation given by Eq. (2) and makes direct use of the 
benefit matrix. EBV casts votes to class c in interval I according to the following 
formulation: 

∑
∈

×=
Ck

ck IkPbIcEBV )|(),(  (4) 

P(k|I) is the estimated probability that an instance falling to interval I will have the true 
class k, and is calculated as  

)(
)|(

kclassCount
N

IkP k=  (5) 

In feature projection concept, each feature is assumed to be an independent unit of 
knowledge and they individually contribute to voting with equal prediction power. 
However, in feature-dependent conditions, the dependent variable would have some effect 
on decision of other feature dimensions as well. For this reason, it is not very 
straightforward to incorporate feature dependency concerns to an autonomous environment 
like feature projections. In this study, we handle feature dependency on the dependent 
variable’s dimension only. Fig. 2 summarizes the routine followed in feature-dependent 
voting scheme.  

assign_dependent_votes (interval_list, f )  
begin 
for each i in interval_list do 
 if f is a dependent variable 
 /* take average of dependent value in the interval */ 
       avg ← average(i.upper , i.lower) 
       votei(c) ← EBV(i,f,BenefitMatrix)×avg 
 else  
      votei(c) ← EBV(i,f,BenefitMatrix) 
end. 

Fig. 2: Algorithm for assigning feature-dependent votes  
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After the initial assignment of votes, point intervals are generalized to form range 
intervals, in order to eliminate redundancy and avoid overfitting. The generalization 
process is illustrated in Fig. 3. Here, merge_condition() is a comparison function that 
evaluates relative properties of each interval and returns true if sufficient level on similarity 
between those intervals is reached. 

generalize (interval_list) 
begin 

      I← first interval in interval_list 
      while I is not empty do 
      I’ is the interval after I 
       I” is the interval after I’ 
       if merge_condition(I,I’,I”) is true 
   then merge I’(and/or I”) into I 
      else I←I’ 

end. 

Fig. 3 Generalization of intervals step 

Besides adding more prediction power to the algorithm, proper generalization of 
intervals reduces the number of intervals, and by this way, decreases the classification time. 

In this work, we have used three interval-join methods. The first one, called, SF (same 
frequent) joins two consecutive intervals if the most frequently occurring instances are of 
the same class. The second method, SB (same beneficial) joins two consecutive intervals if 
they have the same beneficial class. A class c is the beneficial class of an interval i iff for 
∀j∈C and j ≠ c ∑

∈ix
cxB ),( ≥ ∑

∈ix
jxB ),( . If the beneficial classes of two consecutive intervals are 

the same, then it can be more profitable to unite them into a single interval. Third method, 
HC (high confidence) combines three consecutive intervals to a single one, when the 
middle interval has less confidence on its votes than the other two. The confidence of an 
interval is measured as the difference between benefits of the most beneficial class and 
second beneficial class. All these three interval generalization methods are applied in the 
presented order. 

After the prediction model is constructed on the training data, it is time to classify 
previously unseen data. The classification (querying) process of the BMFI algorithm is 
given in Fig. 4. BMFI classification stage is very similar to that of CFI [7] and it involves a 
voting scheme where each feature acts as an independent unit and casts its vote for the 
particular instance’s class.  

The process starts by initializing the votes of each class label to zero. If the value of the 
query instance q for a feature f, i.e., qf is unknown (missing), then that feature does not 
involve in the voting process. Rather than altering the characteristics of the instance (i.e., by 
assigning average quantities for unknown feature values), simply ignoring that feature 
dimension is a more natural and straightforward way of handling missing values. If qf is 
known, then the interval I into which qf falls is searched. If the qf does not fall in any 
interval of f, then again, the feature f does not participate in the voting. If an interval I is 
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found that covers the qf value, then the votes of that particular interval are the votes it casts 
in the overall voting operation. Once all features have completed casting their votes, the 
class that received the highest amount of the votes is predicted as the class of the query 
instance q. 

classify (q) /* q: query instance to be classified */ 
begin 
    /* initialize total votes */ 
    for each class c  
     vc← 0 
    /*go over each feature dimension and sum up votes */ 
    for each feature f 

if qf is known 
      I ← search_interval(f, qf) 
  for each class c 
     vc ← vc + interval_vote( I, c) 
    /* predicted class is the one with the maximum votes */ 
    prediction← arg maxc (vc) 
    return prediction 
end. 

Fig. 4: Classification phase of BMFI 

When querying examples using a constant benefit table, the total benefit is calculated by 
simply adding up the corresponding benefit matrix entry for each test instance. In that case, 
each type of classification, e.g. classifying i as j, has identical revenue. On the other hand, if 
a feature dependent benefit table is available in the domain, for each query example there is 
a different benefit gained and this benefit is the functional form of feature values identified 
in the table. For each instance in the test set, these functional measures are summed up to 
calculate the total resultant benefit. 

5 Experimental Results 

Cost-sensitive algorithms cannot be evaluated by the standard classification accuracy 
metric, since the aim in this problem is to maximize the total benefit rather than to 
minimize the quantity of errors made. A simple representation that reflects the precision of 
classification in terms of benefit is benefit accuracy. 

Definition: Benefit accuracy of a classification model M in domain D over the instance set 
S is the normalized ratio of gained benefit to the maximum possible benefit, i.e., 

)(minB-)(maxB
)(minB -)(Benefit)(AccuracyBenefit 

DD

DD
D SS

SM,SM,S =   

Here, BenefitD(M,S) is the benefit obtained by model M on domain D, minBD(S) and 
maxBD(S)  is the minimum and maximum benefit obtainable in domain D respectively. 
That is, minBD(S) is the total benefit achievable when all the test instances are classified as 
the worst wrong case. Similarly, maxBD(S) is obtained when all instances in S are classified 
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correctly. When BenefitD(M,S) is equal to the minimum benefit possible, then benefit 
accuracy of the model is 0. Correspondingly, when it equals the maximum benefit possible, 
then benefit accuracy is 1, as expected. In other words, this metric maps the obtained 
benefit to [0,1] range as in the case of conventional predictive accuracy. To be more 
specific, benefit accuracy is the general form of classical predictive accuracy. When the 
diagonal elements of the benefit matrix are one and non-diagonal elements are all zero, i.e., 
all types of classifications have equal importance and there is no cost for misclassifications, 
then benefit accuracy equals predictive accuracy used in comparison of error-based 
classifiers.  

It should be noted that benefit accuracy metric not only compares relative benefits of 
two classifiers, but also indicates the algorithm’s efficiency over a particular domain. For 
this reason, we have chosen to evaluate our algorithm mainly with regards to benefit 
accuracy. The accuracy results presented in this study are the average benefit accuracies 
achieved when 10-fold cross validation is utilized over the entire datasets. By this process, 
it is guaranteed that the training sets are disjoint and each instance in the whole dataset is 
classified exactly once. Resultant benefit accuracy is the average of the accuracy values of 
these 10 runs. 

Bank-loans data is a direct application area for feature-dependency. The raw form of 
this dataset has been compiled by a private Turkish bank. We have preprocessed it by 
eliminating redundant data and missing attribute values. The entire raw dataset consists of 
more than 24000 instances. In this study, we have investigated a small, yet representative 
portion of it, consisting 1443 instances. In the literature of machine learning, this data has 
been investigated initially in [10]. There are 13 attributes in the domain, 7 of them are 
linear and 6 are categorical. The intention is to predict whether a customer is likely to pay 
the loan back or not. 

If the benefit matrix is assigned so as to indicate the net cash flow in the bank with 
respect to granted loans, then for each customer, there will be a different benefit dependent 
on the amount requested. This situation can be formulated with the benefit matrix as 
follows:  

   Actual class 
Prediction Repay Default 

Repay r×la -la 
Default -r×la 0 

Here, r is the interest rate that the bank utilizes (logically, 0<r<1) and la is the loan 
amount that the customer requests. According to this matrix, if the money is granted and 
customer pays the loan back, then net money gain from the bank’s perspective is r×la. If 
money is not granted to a good customer who will pay it back, the bank loses r×la amount 
of profit. On the contrary, if the loan is granted but the customer does not pay it back, then 
the bank loses the entire loan amount. The net cash flow is 0 when no money is given to a 
bad customer who will actually default. 

Fig. 5 illustrates the benefit accuracy of BMFI and its change with respect to interest 
rate that the bank uses for loan applications. In this chart, the results indicate that the lower 
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the interest rate, the higher benefit accuracy BMFI acquires. Since most of the Turkish 
banks apply a combined interest policy with an interest rate around 0.08 per month, then we 
can say that overall accuracy of BMFI on bank-loans domain is approximately 0.78.  

bank-loans
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Fig. 5: Change in benefit accuracy with respect to interest rate in bank-loans domain 

As the interest rate increases in this experiment, the ratio of importance between classes 
decreases and this causes a decrease in the performance of BMFI, since it is already 
observed that BMFI performs better when the benefit ratio between classes becomes higher 
[9]. 

6 Conclusions and Future Work 

In the context of this study, we have dealt with situations when benefits are 
heterogeneous and dependent on the values of the features. This feature-dependency 
problem has been investigated using our newly proposed classification algorithm called 
Benefit Maximizing classifier with Feature Intervals (BMFI). BMFI uses the predictive 
power of feature projections concept and tries to maximize the total benefit gained for each 
single instance in consideration. We have tested feature-dependency aspect of BMFI over a 
recently constructed dataset, bank-loans data. We have achieved promising results in this 
domain. 

As future work, benefit maximization system can be extended to include the feature 
costs. In order to accomplish this, feature selection mechanisms that are sensitive to 
individual costs of features can be utilized. This will make the classification algorithm more 
comprehensive and applicable in real-world domains. In addition, the situation where 
benefits are not known beforehand can be examined. Furthermore, this sort of benefit 
maximization research can be extended to handle incremental datasets.  
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