
HUMAN MOTION CONTROL USING

INVERSE KINEMATICS

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Aydemir MEMİŞOǦLU

August, 2003

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Bülent Özgüç (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Uğur Güdükbay (Co-supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray
Director of the Institute

ii

ABSTRACT

HUMAN MOTION CONTROL USING

INVERSE KINEMATICS

Aydemir MEMİŞOǦLU

M.S. in Computer Engineering

Supervisors: Prof. Dr. Bülent Özgüç

and Assist. Prof. Dr. Uğur Güdükbay

August, 2003

Articulated figure animation receives particular attention of the computer graph-

ics society. The techniques for animation of articulated figures range from simple

interpolation between keyframes methods to motion-capture techniques. One of

these techniques, inverse kinematics, which is adopted from robotics, provides

the animator the ability to specify a large quantity of motion parameters that

results with realistic animations. This study presents an interactive hierarchical

motion control system used for the animation of human figure locomotion. We

aimed to develop an articulated figure animation system that creates movements

using motion control techniques at different levels, like goal-directed motion and

walking. Inverse Kinematics using Analytical Methods (IKAN) software, which

was developed at the University of Pennsylvania, is utilized for controlling the

motion of the articulated body using inverse kinematics.

Keywords: kinematics, inverse kinematics, articulated figure, motion control,

spline, gait.

iii

ÖZET

TERS KİNEMATİK YÖNTEMİ KULLANILARAK İNSAN

HAREKETİNİN KONTROLÜ

Aydemir MEMİŞOǦLU

Bilgisayar Mühendisliği Bölümü, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. Bülent Özgüç

ve Yrd. Doç. Dr. Uğur Güdükbay

Ağustos, 2003

Eklemli vücutların animasyonu bilgisayar grafiği alanında en fazla ilgi çeken

konulardan biridir. Eklemli vücutların animasyonu için geliştirilen teknikler,

anahtar resimler arasında ara değer kestirimi metodlarından hareket yakalama

tekniklerine kadar geniş bir yelpaze oluşturmaktadır. Bu tekniklerden biri

olan ve robotbilimden uyarlanan ters kinematik yöntemi, canlandırıcıya birçok

hareket parametresini tanımlayabilme imkanını vererek gerçekçi bir animasyona

olanak sağlamaktadır. Bu çalışmada, insan vücudunun yürüme hareketi için kul-

lanılan etkileşimli bir hiyerarşik hareket kontrol sistemi anlatılmaktadır. Ayrıca,

çalışma kapsamında, hedefe yönelik hareket ve yürüme gibi değişik seviyelerde

hareket kontrol teknikleri kullanılarak, eklemli vücut canlandırması yapan bir

sistem geliştirilmiştir. Eklemli vücudun hareketini ters kinematik yöntemi kulla-

narak kontrol etmek için, Pennsylvania Üniversitesi’nde geliştirilen IKAN yazılım

paketinden yararlanılmıştır.

Anahtar kelimeler: kinematik, ters kinematik, eklemli vücut, hareket kontrolü,

eğri, yürüyüş.

v

ACKNOWLEDGMENTS

I am gratefully thankful to my supervisors Prof. Dr. Bülent Özgüç and As-

sist. Prof. Dr. Uğur Güdükbay for their supervision, guidance, and suggestions

throughout the development of this thesis.

I would also like to give special thanks to my thesis committee member Prof.

Dr. Özgür Ulusoy for his valuable comments.

I would also like to thank Şahin Yeşil for his invaluable support.

vii

Contents

1 INTRODUCTION 1

1.1 Organization of the Thesis . 3

2 RELATED WORK 5

2.1 Body Models . 5

2.1.1 H-Anim 1.1 Specification 7

2.2 Kinematics . 10

2.2.1 Forward Kinematics . 10

2.2.2 Inverse Kinematics . 12

2.2.3 Discussion . 15

2.3 Dynamics . 16

2.3.1 Forward Dynamics . 16

2.3.2 Inverse Dynamics . 17

2.3.3 Discussion . 18

2.4 Motion Capture . 18

viii

2.4.1 Discussion . 19

2.5 Motion Control . 19

2.5.1 Interpolation Control . 20

3 ARTICULATED FIGURE MODELING 23

3.1 XML Based Model . 23

4 MOTION CONTROL 29

4.1 Low-Level Control of Motion . 30

4.2 Human Walking Behaviour . 37

5 IKAN 44

5.1 Motion of the Skeleton . 44

5.2 Implementation Details . 47

6 EXPERIMENTAL RESULTS 50

6.1 Visual Results . 50

6.2 Performance Analysis . 58

7 CONCLUSION 59

APPENDICES 61

A HUMAN MODEL IN XML FORMAT 61

ix

A.1 Document Type Definition (DTD) of Human Model 61

A.2 XML Formatted Data of Human Model 62

B CLASS DIAGRAMS 65

B.1 Hbody Package . 65

B.2 HBodyIK Package . 70

B.3 Curve Package . 73

C THE SYSTEM AT WORK 77

C.1 Overview . 77

C.1.1 The Main Menu . 79

C.1.2 The Motion Control Toolbox 79

C.1.3 The Keyframe Editor . 80

C.1.4 The Viewing Area . 82

BIBLIOGRAPHY 83

x

List of Figures

2.1 A manipulator with three degrees of freedom (reprinted from [41]). 7

2.2 H-Anim Specification 1.1 hierarchy (reproduced from [36]). 9

2.3 Denavit-Hartenberg Notation (adopted from [16]). 11

3.1 A portion of humanoid data in XML format. 24

3.2 Level of articulations: a) level of zero, b) level of one, c) level of

two, and d) level of three. 25

3.3 Left and top view of the skeleton. 26

3.4 UML class diagram of the Hbody package. 27

4.1 A piecewise continuous cubic-spline interpolation of n + 1 control

points. 31

4.2 Parametric point function P (u) for a Hermite-spline section. . . . 32

4.3 Parametric point function P (u) for a Cardinal-spline section. . . . 32

4.4 UML class diagram of the Curve package. 34

xi

4.5 Intervals of equal parametric length (outlined arrowheads) do

not correspond to equal intervals of arclength (black arrowheads)

(reprinted from [41]). 36

4.6 Locomotion cycle for bipedal walking (adopted from [32]). 38

4.7 Walking gaits: (a) compass gait, (b) pelvic tilt, (c) plantar flexion,

(d) pelvic rotation, (e) stance leg inflexion, and (f) lateral pelvic

displacement (reprinted from [41]). 40

4.8 Velocity curve of a) left ankle and b) right ankle. 43

4.9 Distance curve of a) left ankle and b) right ankle. 43

5.1 Example arm showing the selection of projection and positive axis

(reprinted from [15]). 46

5.2 UML class diagram for IKAN classes that is used in our system. 47

5.3 The joint orientations for the end-effector positioning for the right

arm and the left foot. 49

6.1 Front view of the walking articulated figure. 51

6.2 Side view of the walking articulated figure. 52

6.3 Top view of the walking articulated figure. 53

6.4 Skinned human model walking behavior. 54

6.5 Goal-directed motion of the arm of the articulated figure. 56

6.6 Goal-directed motion of the leg of the articulated figure. 57

C.1 Top level user interface of the system. 78

xii

C.2 The motion control toolbox . 80

C.3 The keyframe editor . 81

C.4 The viewing area . 82

xiii

List of Tables

B.1 Humanoid attributes . 65

B.2 Humanoid methods . 66

B.3 Node attributes . 66

B.4 Node methods . 67

B.5 Joint attributes . 67

B.6 Joint methods . 68

B.7 Segment attributes . 68

B.8 Segment methods . 68

B.9 Site methods . 69

B.10 HALChain attributes . 70

B.11 HALChain methods . 70

B.12 Arm attributes . 71

B.13 Arm methods . 71

B.14 Leg attributes . 72

xiv

B.15 Leg methods . 72

B.16 Curve Attributes . 73

B.17 Curve Methods . 74

B.18 CubicSpline Attributes . 74

B.19 CubicSpline Methods . 75

B.20 CardinalSpline Attributes . 75

B.21 CardinalSpline Methods . 75

B.22 Line Methods . 76

xv

To my family. . .

Chapter 1

INTRODUCTION

Today computer graphics has reached to a point where computer generated im-

ages has become almost indistinguishable from the real scenes. Nevertheless,

animating the objects in a realistic manner is still difficult, particularly as object

models become more complex. As a result, the specification and control of mo-

tion for computer animation became one of the principal areas of research within

computer graphics community.

One area which receives particular attention is figure animation. Research

in this area focuses on generating realistic articulated figures, and designing

and controlling their movements. There are many applications in which virtual

humans are involved; from special effects in film industry to virtual reality and

video games. However, the human motion created by the artists is not always

realistic and the reasons that prevent the realism increase the difficulty of the

task.

During fifteen years period in the study of human motion, many techniques

based on kinematics, dynamics, biomechanics, and robotics was developed by

the researchers. The task was very complicated but the interest for this area

has never decreased. It was used in several application, such as robotics, art,

1

entertainment, education, and biomedical researches and the type of application

in which walking motions is used, determined the constraints that the model has

to solve. On the one hand, video games or virtual reality applications require the

minimization of the ratio between the computation cost and capabilities of the

model. However, for biomedical researches, the important constraint is that the

model must be realistic and the animation of the model should obey the physical

laws. Therefore, the models are designed and animated according to the specific

application area in which they are applied. It is possible to classify the animation

of the models into three main groups:

• procedural methods based on kinematic animation,

• dynamic methods based on dynamics constraints, and

• motion capture methods.

In this study, we aimed to develop an articulated figure animation system that

creates movements using low-level motion control techniques, goal-oriented ani-

mation, and high-level motion control techniques like walking. Inverse kinematic

techniques were used mainly for creating new movements.

The articulated figure is modelled using Extensible Markup Language (XML)

data format. The hierarchy of joints and segments of human skeleton and their

naming conventions are adopted from the Humanoid Animation (H-Anim) 1.1

Specification. Besides, the elements of the XML data is organized as they are

corresponding to the nodes of the H-Anim structure. However, since the whole

hierarchy defined in H-Anim 1.1 Specification is redundant for our system, a

simplified version of the hierarchy is implemented. The resulting framework is

suitable for modeling various articulated structures like humans, robots and etc.

This study solves the motion controlling of the articulated figure by a low-

level control of motion using kinematic methods. We characterized this low-level

2

motion control by using spline-driven animation techniques. Besides, a high-level

walking system, which is based on low-level techniques, is introduced.

Smooth motions are generated using spline-driven animation techniques. A

class of cubic splines, Cardinal splines, is preferred due to their less calculation

and memory requirements and capability for local control over the shape. Cardi-

nal splines are used in generating the paths for pelvis, ankle, and wrist motions,

which are considered as position curves. In addition, a velocity curve or distance

curve for each object is produced that enables us changing the behavior of the

motion. Arclength parameterization of the spline method is used in order to

determine the position of each object along the position curve at each frame. All

of these are the components of our low-level animation system.

By using this low-level system, a high-level motion mechanism for walking

is implemented. In walking motion, the limb trajectories and joint angles are

computed automatically using some parameters like locomotion velocity, size of

walking step, the time elapsed during double-support, rotation, tilt, and lateral

displacement of pelvis.

Inverse kinematics is heavily used in our system. Inverse Kinematics us-

ing Analytical Methods (IKAN) software package, which was developed at the

University of Pennsylvania, is used to compute the desired limb positions.

1.1 Organization of the Thesis

The thesis is organized as follows: Chapter 2 reviews computer animation tech-

niques and discusses their applicability in the articulated figure animation. In

Chapter 3, the articulated figure modeling approach that is used in our study

is discussed. Chapter 4 focuses on low-level and high-level motion control tech-

niques in our system. Chapter 5 deals with the capabilities of IKAN software,

3

and the usage of this tool in our study. Chapter 6 gives the performance re-

sults of the implementation. Chapter 7 presents conclusions and future research

areas. In Appendix A, the human model in XML format that is used in our

system is described. Appendix B focuses on class diagrams and implementation

details. Lastly, Appendix C gives information about the application and its user

interface.

4

Chapter 2

RELATED WORK

This chapter summarizes the computer animation techniques for articulated fig-

ure animation in general. It depicts the human figure modeling techniques and

the advantages and disadvantages of basic motion control techniques for figure

animation. Moreover a summary is given about the background work in human

walking.

The work involved in the animation of human motion, could simply be divided

into three major steps: modeling the basic structure (skeleton), motion of the

skeleton, and creation of the body appearance. In this chapter, related work

including the figure modeling and control of the motion of the skeleton will be

given.

2.1 Body Models

One of the main problem in human character animation is the model structure.

What kind of model we will use. It is clear that building a physically realistic

model as possible as a real human character is the main goal. The ideal, computer

generated character should consider the accurate positioning of human limbs

5

during motion, the skin where muscles and tissue deforms during the movement,

expressive facial expressions, realistic modeling of hair, and etc. However these

are all research topics in their own right.

The basic approach to this problem is to start with structuring the skeleton

part of human and then, adding the muscle, skin, hair and other layers to that

structure. Skeleton layer, muscle layer, and skin layer are the most common

ones. This layered modeling technique is heavily used in human modeling field

of computer graphics [14]. In that approach, motion control techniques are just

applied on the skeleton layer and this simplifies the challenging work because

there is no need to think about the details of the model.

Modeling the articulated skeleton is the trivial part of the human body model-

ing. Skeleton can be represented as a collection of simple rigid objects connected

together by joints. The joints are arranged in a hierarchical structure to model

human like structures. These models, called articulated bodies, can be more or

less complex. The number and the hierarchy of joints and limbs and the degrees

of freedoms (DOF) of joints determine the complexity of model. Degree of free-

dom of a joint is the independent position variables that are necessary to specify

the state of the joint (see Figure 2.1). The joints can rotate in one, two, or three

orthogonal directions. The number of these orthogonal directions determines

DOF of a joint. A human skeleton may have many DOFs. However, when the

number of DOFs increases, the mathematics of the structure, which is used for

controlling the joints, becomes more complex. Besides, some restrictions such

as limiting the rotation angle of that in each of the rotation directions, provide

more simplified solutions.

6

Figure 2.1: A manipulator with three degrees of freedom (reprinted from [41]).

2.1.1 H-Anim 1.1 Specification

Modeling the basic structure of the articulated figure is the trivial part of the

challenging work. However, a challenge arises when human model needs to be in-

terchangeable. A standard should exist among the people who deal with human

modeling, so that interchangeable humanoids can be created. The Humanoid

Animation Working Group of Web3D Consortium developed the Humanoid An-

imation (H-Anim) specification for this purpose. They specified the way of defin-

ing humanoid forms and behaviors in standard Extensible 3D Graphics/Virtual

Reality Modeling Language (X3D/VRML). In the scope of their flexibility goal,

no assumptions are made about the types of application that will use humanoids.

Their simplicity goal guided them to focus specifically on humanoids, instead of

trying to deal with arbitrary articulated figures.

Human body consists of a number of segments (such as the forearm, hand,

foot) that are connected to each other by joints (such as the elbow, wrist and

ankle). The H-Anim structure contains a set of nodes to represent the hu-

man body. The nodes are Joint, Segment, Site, Displacer, and Humanoid.

7

Joint nodes represent the joints of human body and they are arranged in a

strictly defined hierarchy. They may contain other Joint and Segment nodes.

Segment nodes represent a portion of the body connected to a joint. They may

contain Site and Displacer nodes. Site nodes are used for placing cloth and

jewelry. Besides, Site nodes can be used as end-effectors for inverse kinematics

applications. Displacer nodes are simply grouping nodes, allowing the program-

mer to identify a collection of vertices as belonging to a functional group for ease

of manipulation. Humanoid node stores information about the model. It acts

as a root node for the body hierarchy and stores all the references to Joint,

Segment, and Site nodes. The basic structure of human body model is built

by using these nodes in a H-Anim file. In addition, a H-Anim compliant human

body is modeled “at rest” position. At that position, all the joint angles are zero

and humanoid faces the +z direction, with +y being up and +x to the left of

the humanoid according to right hand coordinate system. The complete body

hierarchy with joints and their associated segments, and naming conventions for

H-Anim Specification is given in Figure 2.2.

8

Figure 2.2: H-Anim Specification 1.1 hierarchy (reproduced from [36]).

9

2.2 Kinematics

Kinematic methods, which originate from field of robotics, is one of the ap-

proaches used in motion specification and control. Animation of the skeleton

can be performed by changing the orientations of joints by time. Motion control

is the management of the transformations of the joints by time. Kinematics is

the study of motion by considering the position, velocity, and acceleration. It

does not emphasize on the underlying forces that produces the motion. forward

and inverse kinematics are the two main categories of kinematic animation.

2.2.1 Forward Kinematics

Although articulated figures are constructed from a few number of segments,

we should deal with much number of degrees of freedoms. There are many

motion parameters that should be controlled to have the desired effect on a simple

character. Forward kinematics is the way of setting the such motion parameters,

like position and orientation of skeleton, at specific times. By directly setting the

rotations at joints, and giving a global transformation to the root joint, different

poses can be handled. The motion of the end-effector (in the case of arm, the

hand) is determined by indirect manipulations of transformations in root joint

of skeleton, and rotations at shoulder and elbow joints. Mathematically, forward

kinematics is expressed as

x = f(Θ) (2.1)

That is, given Θ, derive x. In case of the leg, given the rotation angles of knee

and hip, the position of the foot is calculated by using the positions and rotations

of the hip and knee.

In order to work on the articulated figures, a matrix representation, which

will define the rotation and orientations, should exist. Denavit and Hartenberg

10

were the first who developed a notation, called DH notation, to represent the

matrix formulation for kinematics of articulated chains [16]. DH notation is a

link based notation where each link is represented by four parameters; Θ, d, a,

and α (see Figure 2.3). For a link, Θ is the joint angle, d is the distance from the

origin, a is the offset distance, and α is the offset angle. The relations between

the links are represented by 4× 4 matrices.

Figure 2.3: Denavit-Hartenberg Notation (adopted from [16]).

Moreover, Sims and Zeltzer [35] proposed a more intuitive method, called

axis-position (AP) representation. In this approach, the position of the joint,

the orientation of the joint and the pointers to joint’s child nodes are considered

to represent the articulated figure.

In forward kinematics, after the orientation matrix of each joint is calculated,

the final position of end-effector is found by multiplying the matrices in the same

manner as computing graphics transformation hierarchies.

11

2.2.2 Inverse Kinematics

Inverse kinematics is a more high-level approach. It is sometimes called as

“goal-directed motion”. Given the positions of end-effectors only, the inverse

kinematics solves the position and orientation of all the joints in the hierarchy.

Mathematically, it is expressed as

Θ = f−1(x) (2.2)

That is, given x, derive Θ.

Inverse kinematics was mostly used in the robotics. The studies in this area

are then adapted to the computer animation. Contrary to forward kinematics,

inverse kinematics provides direct control over the movement of the end-effector.

On the other hand the inverse kinematic problems are difficult to solve where, in

forward kinematics, the solution is found easily by multiplying local transforma-

tion matrices of joints in a hierarchical manner. The inverse kinematics problems

are non-linear and for a given position x there may be more than one solution

for Θ.

Mainly, there are two approaches to solve inverse kinematics problem: Nu-

merical and analytical methods.

2.2.2.1 Numerical Methods

The most common solution method for the non-linear problem stated in Equa-

tion 2.2 is based on the linearization of the problem by means of its current

configuration [49]. When we linearize the problem the joint velocities and the

end-effector velocity will be related by:

ẋ = J(Θ)Θ̇ (2.3)

12

As it is denoted in the Equation 2.3, the relation is expressed by the Jacobian

matrix:

J =
δf

δΘ
(2.4)

This matrix relates the changes in the joint variables (δf) with the changes in

the position of the end-effector (δΘ) in an m × n manner, where m is the joint

variables count and n is the dimensions of the end-effector vector.

When we invert the Equation 2.3 we reach the formula:

Θ̇ = J−1(Θ)ẋ (2.5)

So it is clear that given the inverse of Jacobian, computing the changes in the

joint variables due to the change in the end-effector position is trivial. We can

develop an iterative algorithm for the solution of this inverse kinematic problem.

Each iteration computes the ẋ value by using actual and goal position vectors of

end-effector. The iteration continues till the goal position of the end-effector is

reached. However, in order to compute the joint velocities, (Θ̇) we must find the

J(Θ) value for each iteration.

At each iteration, we are trying to determine the end-effector frame move-

ments with respect to joint variable changes. The frame movements are denoted

by the columns of the Jacobian matrix J, and for a given joint variable vector

(Θ), determined by the position (P(Θ)) and orientation (O(Θ)). So, the Jacobian

column entry for the ith joint is:

Ji =




δPx/δΘi

δPy/δΘi

δPz/δΘi

δQx/δΘi

δQy/δΘi

δQz/δΘi




(2.6)

13

These entries can be calculated as follows: Every joint i in the system trans-

lates along or rotates above a local axis ui. If we denote the transformation

matrix between local frames and world frames as Mi, the normalized transfor-

mation of the local joint axis will be:

axisi = uiMi (2.7)

By using Equation 2.7, we can calculate the Jacobian entry either for a translating

joint by:

Ji =




[axisi]
T

0

0

0




(2.8)

or for a rotating entry by:

Ji =


 [(p− ji)× axisi]

T

(axisi)
T


 (2.9)

At that point, we want to state that linearization solution makes an assump-

tion that the Jacobian matrix is invertible (both square and non-singular), while

this is not the case in general. In case of redundancy and singularities of the ma-

nipulator, the problem is more difficult to solve and new approaches are needed.

2.2.2.2 Analytical Methods

In contrast with the numerical methods, analytical methods find solutions in

most cases. We can classify the analytical methods into two groups; closed-

form or algebraic elimination based methods [15]. Closed-form method specifies

the joint variables by a set of closed-form equations and generally applies to

six degree of freedom systems with special kinematic structure. On the other

hand, in algebraic elimination based method, the joint variables are denoted by

14

a system of multivariable polynomial equations. Generally, the degree of these

polynomials are greater than four. That is why, algebraic elimination methods

still require numerical solutions. In general, analytical methods are more likely

than the numerical ones because analytical methods find all solutions and are

faster and more reliable.

2.2.3 Discussion

The main advantages of kinematics are as follows: Firstly the motion quality is

based on the model and the animator’s capability. The second advantage is the

low cost of the computations. On the other hand in both kinematic methods,

the animator still spends lots of time in order to produce movement. In other

words, the methods can not produce movement in a dynamic manner by means

of the physical laws as in the real world. Moreover, the interpolation process of

the algorithms leads to loss of realism in the animation.

When we reviewed the literature we saw that Chadwick et al. had used inverse

kinematics in creating keyframes [14]. Welman investigates the inverse kinemat-

ics in detail and describes the constrained inverse kinematic figure manipulation

techniques [42]. Badler et al. also proposed an inverse kinematic algorithm in

order to constraint the positions of the body parts during animation [2]. In addi-

tion, Girard and Maciejewski [18] and Sims and Zeltzer [35] generated leg motion

by means of inverse kinematics. Their systems are composed of two stages: In

the first stage, foot trajectories are specified, and in the second one, the inverse

kinematic algorithm computes the leg joint angles during movement of the feet.

15

2.3 Dynamics

Physical laws heavily affect the realism of a walking motion. In this sense,

dynamics approaches may be used for animating walking models. But these

approaches require more physical constraints such as center of mass, total mass

and inertia. Fundamental principles of dynamics are originated from Newton’s

laws and can be stated by following:

f = m× Ẍ (2.10)

where f represents the force applied to an object, m is its mass and Ẍ denotes the

second derivative of the position vector X with respect to time. The dynamics

methods can be classified in two main parts: the forward dynamics and the

inverse dynamics.

2.3.1 Forward Dynamics

Basically, forward dynamics considers applying forces on the objects. These

forces can be applied automatically or by the animator. The motion of the

object is then computed by solving the equations of the motion for the object as

a result of these forces. Wilhelm gives a brief summary of rigid body animation

by means of forward dynamics methods [45]. Although the method works well

with a rigid body, the simulation of articulated figures by forward dynamics

is more complicated. Because, the equations of motion for articulated bodies

must also handle the interaction between the body parts. This extension in the

equation makes the control hardly difficult. Nevertheless, more than fifteen years

ago, Virya system tried to simulate an articulated figure by forward dynamics

methods [43]. This attempt was followed by many others [1, 46].

16

The main drawback of the forward dynamic simulation is that, not having

an accurate control mechanism makes the method useful for the tasks in which

initial values are known.

2.3.2 Inverse Dynamics

In the contrary, inverse dynamics is a goal oriented method in which forces

needed for a motion are computed automatically. Although the inverse dynamics

applications are rarely used in computer animation, Barzel and Barr [7] were the

first users of the method. They generated a model composed of objets which are

geometrically related. This relations are presented by constraints that are used

to denote forces on a object. These forces animate the figure directed to a goal in

which all the constraints are satisfied. The Manikin system proposed by Forsey

and Wilhelm [17] also animated articulated model by means of inverse dynamics.

The system computes the needed forces when a new goal position for the figure

is specified. An other approach was introduced by Isaac and Cohen [24] which

was called as Dynamo system and based on keyframed kinematics and inverse

dynamics. This method is an example of combination of dynamic simulation and

kinematic control. Ko also developed a real-time algorithm for animating human

locomotion using inverse dynamics, balance and comfort control [26].

All the studies stated above describes the motion of a figure by considering

geometric constraints. On the other hand, researchers developed some inverse

dynamics solutions based on non-geometric constraints. Brotman and Netravali

[9], Girard [19] and Lee et al. [29] are some examples of these researchers.

17

2.3.3 Discussion

The composition of the anatomical knowledge with the inverse dynamics ap-

proach generates more realistic motion. This composite system can also handle

the interaction of the model with the environment. That is why, this method

is useful for virtual reality applications. However, dynamic techniques are com-

putationally costly than the kinematic techniques and hardly used in interactive

animation tools.

Using purely a direct dynamics system or an inverse dynamics system has

problems. To have the desired motion and use high level control, hybrid solutions

should be applied. The need for the combination of forward and inverse dynamics

is discussed in [30].

2.4 Motion Capture

Since dynamics simulation could not solve all animation problems, new ap-

proaches were introduced. One of these methods animates virtual models by

using human motion data generated by motion capture techniques. It is mainly

used in the film and computer games industries.

Parallel to the technological developments, the movement of an real actor

can be captured by using magnetic or optical technologies. The 3D positions

and orientations of the points located on the human body are stored, and this

data is then used in animation to map into a model. Realistic motion generation

in a very short time and with high details is the main advantage of that method.

Moreover, with additional computations, the 3D motion data is adapted to new

morphology. Motion blending and motion warping are the two techniques to

obtain different kind of motions.

18

Motion blending needs different characteristic motions. It just interpolates

between the parameters of motions. It has the advantage of low computation

cost. Motion warping techniques take the motion trajectories and change the

motion by modifying these trajectories. But the method suffers from the same

problem of kinematic or procedural animation techniques. Since these modifica-

tions can not handle dynamics effects, it is impossible to ensure that resulting

motions are realistic.

In their studies, Bruderlin and Williams [12] worked on signal processing

techniques in order to alter existing motions. Unuma et al. [40] generated human

figure animations by using Fourier expansions on the available motions.

2.4.1 Discussion

In contrast with the procedural and kinematic techniques, motion modification

techniques provide the usage of real-life motion data for animating the figures.

This results with the advantage of obtaining natural and realistic looking motion

in an enhanced production speed. On the other hand, this method is not an

convenient method when we want to modify the motion captured data. The

realism can be lost in large changes of captured data.

2.5 Motion Control

The parameters of objects should be determined at each frame when a character

is animated by using kinematic methods. However, determining the parameters

explicitly at each frame, even for a simple motion, is not trivial. The solution

for this problem is to specify a series of keyframe poses at different frames. Fol-

lowing this approach, an animator only needs to specify the parameters at the

19

keyframes. Parameter values for the intermediate frames, called in-betweens, be-

tween two keyframes are obtained by interpolating the joint parameters between

those keyframes. Then, successively displaying each intermediate pose gives the

entire animation of the figure [31].

Another problem arises when searching a suitable interpolation method. Lin-

ear interpolation is the simplest method to generate intermediate poses, but

it gives unsatisfactory motion. Due to the discontinues first derivatives in the

interpolated joint angles, the method generates a robotic motion. Therefore,

obtaining more continuous velocity and acceleration requires the usage of higher

order interpolation methods like piecewise splines. Keyframe interpolation is

explained in [20, 22, 34, 38].

2.5.1 Interpolation Control

Intermediate values produced by interpolation, generally does not satisfy the

animator. Therefore, the interpolation process should be kept under control

[28]. For just a single DOF, the intermediate values constitute a trajectory

curve which passes through the keyframes values. Interpolating spline along

with the keyframed values at both end determines the shape of the trajectory.

An interactive tool that shows the shape of a trajectory and enables an animator

to change the shape, can be useful. After a trajectory is defined, traversing it

at a varying rate can improve the quality of the movement. Some parameterized

interpolation methods controlling the shape of a trajectory and the rate at which

the trajectory is traversed have been suggested.

An interpolation technique which relies on a generalized form of piecewise

cubic Hermite splines was described by Kochanek and Bartels [27]. At the

keyframes, the magnitude and direction of tangent vectors (tangent to the tra-

jectory) are controlled by adjusting continuity, tension and bias. Changing the

20

direction of the tangent vectors, locally, controls the shape of the curve when it

passes through a keyframe. On the other hand, the rate of change of the interpo-

lated value around the keyframe is controlled by changing the magnitude of the

tangent vector. Some animation effects such as action follow through and exag-

geration [28] can be obtained by setting the parameters. This method does not

have the ability to adjust the speed along the trajectory without changing the

trajectory itself because three parameters used in the spline formulation influence

the shape of the curve.

Steketee and Badler [37] offered a double interpolant method in which timing

control is separated from the trajectory itself. Similar to the previous method, a

trajectory is a piecewise cubic spline that passes through the keyframed values.

In addition, the trajectory curve is sampled with a second spline curve. By this

way, the parametric speed at which the trajectory curve is traversed is controlled.

Unfortunately, there is no one-to-one relation between actual speed in the geo-

metric sense and parametric speed. Therefore, desired velocity characteristic is

obtained via a trial-and-error process.

A way to obtain more intuitive control over the speed is to reparameterize the

trajectory curve by arc length. This approach provides a direct relation between

parametric speed and geometric speed. An animator can be provided an intuitive

mechanism to vary speed along the trajectory by allowing him to sketch a curve

that represents distance over time [6].

In the traditional animation, key animation frames are drawn by experienced

animators and intermediate frames are completed by less experienced animators.

In this manner, keyframe based approach and traditional animation are analo-

gous. The problem with the keyframe based animation is that it is not good at

skeleton animation. The number of DOF is one of the main problems. When

the number of DOF is high, an animator has to specify too many parameters for

even a single key pose. It is inevitable that controlling the motion by changing

21

lots of trajectory curves is a very hard process. The intervention of the animator

should be at low levels, may be some control at joints.

Another problem arises due to the hierarchical structure of the skeleton. Since

the positions of all other objects depend on the position of the root joint, the

animator hardly determines the positional constraints in keyframe pose creation.

The problem can be solved by specifying a new root joint and reorganizing the

hierarchy but it is rarely useful. Interpolation process also suffers from the hi-

erarchical structure of the skeleton. You can not calculate the the correct foot

positions at the intermediate frames by only interpolating joint rotations.

22

Chapter 3

ARTICULATED FIGURE

MODELING

Although modeling the basic structure of the articulated figure is the trivial part

of human modeling, challenges can arise when there is no standard for this. H-

Anim 1.1 Specification is mainly used as a standard for human body modeling

[36]. This standard defines the geometry and the hierarchical structure of the

human body.

A simple XML data format to represent the human skeleton is defined by

conforming the hierarchy of joints and segments of human body and their naming

conventions used in the H-Anim 1.1 Specification. XML provided us an excellent

method for describing and defining the skeleton data due to its structured and

self-descriptive format.

3.1 XML Based Model

To make an introduction to the XML data format that we adopted for articulated

figure modeling, a portion of the XML data for the human figure used is given in

23

Figure 3.1. The complete human figure in XML format is given in Appendix A.2.

The Document Type Definition (DTD) of the human body representation that

is used in XML format that defines humanoid is presented in Appendix A.1.

Figure 3.1: A portion of humanoid data in XML format.

The nodes in H-Anim 1.1 Specification (Humanoid, Joint and Segment) are

used as elements in XML to construct a hierarchy that corresponds to the skele-

ton. In this format, the following attributes are used for joint nodes. center

attribute is used for positioning the associated element. name attribute speci-

fies the name of associated element. ulimit and llimit attributes are used for

setting the upper and lower limits for the joint angles, respectively.

Although the data format stated above can be used for representing the full

skeleton specified in the H-Anim standard, we do not need completely define all

the joints in our application. The complete hierarchy is too complex for most of

24

the applications. For example, in real-time applications such as games, there is

no need to use the full set of joints. A simplified hierarchy will be more suitable

for most of the games. Fortunately, in H-Anim 1.1 Specification document, four

“Levels of Articulation” that contain the subsets of the joints are suggested. The

body dimensions and level of articulations are suggested for information only and

are not specified by the H-Anim standard. Behind the simplicity goal, one other

reason for suggesting level of articulations is the compatibility. Conforming to a

level of articulation, the animators could share their animations and humanoids

to the same (or higher) level of articulation. After dissecting the level of articula-

tion, a more simplified version of “Level of Articulation Two” seems appropriate

for our work. Because, “Level of Articulation One” represents a typical low-end

real-time 3D hierarchy and it does not contain information about the spine. Be-

sides, the shoulder complex is not much detailed. On the other side, “Level of

Articulation Two” represents much information that is needed about spine, skull

and hands. “Level of Articulation Three” represents the full H-Anim hierarchy.

Figure 3.2: Level of articulations: a) level of zero, b) level of one, c) level of two,
and d) level of three.

25

A front and left view of the skeleton corresponding to the XML based model

in Appendix A.2 is represented in Figure 3.3.

Figure 3.3: Left and top view of the skeleton.

Moreover, a framework is implemented to parse the skeleton data and con-

struct an abstract skeleton data type. C++ is used for the implementation of the

system. All the classes are grouped in a package, named Hbody. The Hbody pack-

age contains the following classes: Humanoid, Joint, Segment, Site, and

Node.

26

The Hbody package supports the creation and manipulation of the body struc-

ture defined by a file in XML format that conforms to the DTD given in Appendix

A.1. A simple XML parser, TinyXml [39], is used to parse the XML data.

The UML class diagram is shown in Figure 3.4 to graphically illustrate the

classes hierarchy for the system implementation.

Figure 3.4: UML class diagram of the Hbody package.

Humanoid class is used to define the abstract data type humanoid. It stores in-

formation (such as author, copyright, gender of humanoid, etc) about humanoid.

It can act as a group of hierarchical nodes. It also stores references to all Joints,

Segments, and Site nodes in a vector structure for quick access to nodes. Briefly,

Humanoid class serves as a wrapper for the humanoid.

Node class is the base class for the classes Joint, Segment and Site. This

class stores a list of child nodes which is needed to define the hierarchy. Joint

and Segment classes are used to define the joints and segments in human body

structure. Site class is used as an end-effector for inverse kinematics. Joint,

Segment and Site classes inherit the members and functionality of base class

Node. So, all these classes can take part in the hierarchical structure constructed

by using Node objects.

27

This package can be used to represent various articulated structures, like

humans, animals and robots, since it is designed and implemented in a generic

way.

28

Chapter 4

MOTION CONTROL

The control of human motion has always been a challenging problem in computer

animation. Numerous studies in fields such as biomechanics, robotics, animation,

ergonomics, and psychology are integrated to have realistic human motion control

techniques. The motion control can be classified in two categories according to

the level of abstraction that specifies the motion; low-level and high-level systems.

A low-level system needs to specify the motion parameters (such as position,

angles, forces, and torques) manually. In a high-level animation system, motion

is specified by abstract terms such as “walk”, “run”, “grab that object”, “walk

happily”, etc. At higher levels, the low level motion planning and control tasks

are done by the machine. The animator just changes some parameters to obtain

different kind of solutions. This study especially focuses on the low-level control

of motion using kinematic methods. Spline-driven animation techniques are used

to specify the characteristics of the motion. In addition, a high-level walking

animation mechanism that make use of these low-level techniques are described.

29

4.1 Low-Level Control of Motion

In the study, spline-driven animation method is used as a low-level control mecha-

nism. In this technique, motion characteristics of an object are specified by using

splines. The trajectories of limbs (paths of pelvis, ankles in a human walking

animation) in a human motion are controlled by splines. Besides, using a conven-

tional keyframing technique the joint angles over time are determined by splines.

Since splines are smooth curves, they can be used in interpolation of smooth mo-

tions in space. Moving an object along a smooth path is supplied with smooth

spline curves.

There are several different kinds of splines that are used for different kind of

purposes in graphics applications. Cubic splines are one of them that have been

extensively used. Since they require less calculations and memory and allow local

control over the shape of the curve, cubic splines are the mostly preferred ones.

We can use these splines not only in setting up paths for object motions but

also in designing object shapes. One other advantage is that, compared with the

lower-order polynomials it is more flexible for modeling arbitrary curve shapes

[23].

For a set of control points, cubic splines are generated by a piecewise poly-

nomial curve that passes through every control points. We can denote the curve

with:

pk = (xk, yk, zk), k = 0, 1, 2, ..., n (4.1)

The cubic spline generated from these control points is presented in Figure

4.1. The parametric cubic polynomial that is to be fitted between each pair of

control points is represented by followings:

30

pk
pk+1

pnp0

p1

p2 …

…

Figure 4.1: A piecewise continuous cubic-spline interpolation of n + 1 control
points.




xu

yu

zu


 =




axu
3 + bxu

2 + cxu + dx

ayu
3 + byu

2 + cyu + dy

azu
3 + bzu

2 + czu + dy


 , (0 ≤ u ≤ 1) (4.2)

One class of cubic splines, natural cubic splines, is one of the first spline curves

to be developed for needs of computer animation. This curve is a mathematical

representation of the original drafting spline. It has C2 continuity because, the

formulation of these splines requires two adjacent curve section to have the same

first and second parametric derivatives. Beyond the advantage of being a mathe-

matical model for drafting spline, natural cubic splines have a big drawback that

they do not allow local control. That means changing the position of any control

point results with a alteration in the entire curve.

Hermite spline is another class of cubic splines that is represented by an

interpolating cubic polynomial with a specified tangent at each control point [5].

Contrary with the natural cubic splines, Hermite splines provide local control

because each curve section is only related with its endpoints. A sample Hermite

curve section is illustrated in Figure 4.2.

Although Hermite polynomials can be useful for some digitizing applications,

for most computer graphic applications, it is preferable to generate spline curves

without requiring input values for curve slopes or other geometric constraints.

Detailed information about Hermite splines can be found in [23].

31

Figure 4.2: Parametric point function P (u) for a Hermite-spline section.

Like Hermite splines, Cardinal splines interpolates piecewise cubics with spec-

ified endpoint tangents at the boundary of each curve section with an exception

that Cardinal splines does not require the values for the endpoint tangents. In-

stead, the value of the slope of a control point is calculated from the coordinates

of the two adjacent points.

Figure 4.3: Parametric point function P (u) for a Cardinal-spline section.

A Cardinal spline section is specified with four consecutive control points.

The middle two points are the endpoints and the other two are used to calculate

the slope of the endpoints. As it is seen in the Figure 4.3, if we present the

parametric cubic point function for the curve section between control points Pk

and Pk+1 with P (u) then, the boundary conditions for the Cardinal spline section

is formulated by the following equations:

32

P (0) = pk,

P (1) = pk+1,

P ′(0) =
1

2
(1− t)(pk+1 − pk−1),

P ′(1) =
1

2
(1− t)(pk+2 − pk),

(4.3)

where parameter t, tension parameter, controls how loosely or tightly the Car-

dinal spline fits the control points. When t=0, this class of curves are named as

Catmull-Rom splines, or Overhauser splines [13].

We can generate the boundary conditions formulation as:

Pu =
[
u3 u2 u 1

]
·MC ·




pk−1

pk

pk+1

pk+2




, (4.4)

where the Cardinal matrix is:

MC =




−s 2− s s− 2 s

2s s− 3 3− 2s −s

−s 0 s 0

0 1 0 0




, s =
(1− t)

2
, (4.5)

where t is the tension parameter.

One other cubic spline class is the Kochanek-Bartels splines, which is an

extension of the Cardinal splines. Kochanek-Bartels splines include two addi-

tional parameters in order to have the flexibility in adjusting the shape of the

curve sections. Kochanek-Bartel splines are especially designed for modeling the

animation paths.

33

In our system we used Cardinal splines, which are very powerful and have

controllable input control points fitting mechanism with a tension parameter.

The UML class diagram of the implemented curve classes is shown in Figure 4.4

that graphically illustrates the classes.

Figure 4.4: UML class diagram of the Curve package.

The paths for pelvis, ankle and wrist motions are specified using Cardinal

spline curves. These are considered as position curves. Besides, a velocity curve

is specified independently for each object. Thus, just affecting the velocity curve,

characteristics of the motion can be changed. Steketee and Badler were the first

to recognizing this powerful method [37]. They called this velocity curve as

“kinetic spline”. The method is called “double interpolant” method. Kinetic

spline may also be interpreted as a distance curve. Given a distance curve or

velocity curve, velocity curve or distance curve can be easily calculated.

Our application makes use of the “double interpolant” by enabling the user to

specify a position spline and a kinetic spline. The kinetic spline, Velocity curve,

V(t), is commonly used as the motion curve. However, V(t) can be integrated to

determine distance curve, S(t). These curves are represented in two-dimensional

space for easy manipulation. Position curve is a three-dimensional curve in space,

34

through which the object moves. Control of motion involves editing the position

and kinetic splines. In our application velocity curves, and distance curves are

straight lines and Cardinal splines, respectively. Line, which graphically depicts

a straight line, and CardinalSpline classes in Figure 4.4 are used to represent

the curves.

Furthermore, a problem arises while moving an object along a given position

spline because of the parametric nature of cubic splines. Suppose we had a

velocity curve and a position curve to control the motion. We can find the

distance travelled at a given time by having the integral of the velocity curve

with respect to time. Now we must find a point along the position spline, where

the computed distance is mapped.

If we formulate the problem; we have a path specified by a spline Q(u),

(0 ≤ u ≤ 1) and we are looking for a set of points along the spline such that,

the distance travelled along the curve between consecutive frames is constant.

Basically, these points can be computed by evaluating Q(u) at equal values of

u. But this requires the parameter u to be proportional to the arclength, the

distance travelled along the curve. Unfortunately, this is not the case in general.

In the special cases where the parameter is proportional to arclength, the spline

is said to be parameterized by arclength. Figure 4.5 illustrates a spline with 10

points of equal intervals of u and 10 points located at equal intervals of arclength.

As it is seen from the figure, without the arclength parameter an object can

hardly move with a uniform speed along a spline. This arclength problem can

be solved by using the arclength parameterization of spline curve [21, 41].

Cardinal spline curves provide the required functionality for motion control.

They can be constructed with a few set of control points and can be manipulated

easily. Having these advantages, a motion control system is implemented in

which the animator constructs the position and kinetic splines for the joints

ankle, wrist and pelvis. Figures 4.8 and 4.9 illustrate the distance and velocity

35

Figure 4.5: Intervals of equal parametric length (outlined arrowheads) do not
correspond to equal intervals of arclength (black arrowheads) (reprinted from
[41]).

curves that utilizes the CardinalSpline and Line classes. In Figures 6.2 and

6.3, the position curve that utilizes the CardinalSpline class is shown. The

animator interactively shapes the curves, and view the resulting animation in real

time. Double interpolant method enables the animator to change characteristics

of the motion independently. This can be done by editing different curves that

correspond to the position in 3D space, distance, and velocity curves independent

from each other. However, the result of change in kinetic spline curve should be

controlled in the position curve in order to have the desired motion.

After constructing the position curves for end effectors like wrist and ankles,

goal-directed motion control technique is used to determine the joint angles of

shoulder, hip, elbow and knee over time. Using a inverse kinematics method

to determine the position and orientation of upper joints along the hierarchy

really simplifies the control of motion. The animator only moves the end-effector

and the orientations of other links in the hierarchy are computed by inverse

kinematics.

In addition, our system enables the user to define the joint angles which

are not computed by the inverse kinematics program. Using a conventional

keyframing technique, the joint angles over time can be specified by the user.

Cardinal splines are used to have a smooth interpolation of joint angles.

36

In this fashion, the system provides a low-level animation system to the user

in which one can obtain any kind of motion by specifying a set of spline curves

for position, distance and joint angles over time. Besides, our application enable

the user to save and load, and animate the defined motions. The user interface

of the application is described in Appendix C.

Furthermore, using these low-level techniques, a high-level motion mechanism

for walking is provided which is explained in the following section.

4.2 Human Walking Behaviour

Most of work in motion control has aimed to provide high level controls to pro-

duce complex motions like walking. Kinematics and dynamic approaches for hu-

man locomation are described by many researchers [4, 8, 10, 11, 19, 25, 44, 48].

Many approaches are introduced for the animation of human walking. A survey

of human walking is given in [32].

In our system walking motion can be controlled using kinematic approaches in

high level by allowing the user to specify a few number of locomotion parameters.

Specifying the straight travelling path on flat ground without obstacles and the

speed of locomotion, our system generates the walking automatically, by com-

puting the 3D path information and the low-level kinematics parameters of body

elements. Furthermore, some extra parameters such as the size of walking step,

the time elapsed during double-support, rotation, tilt, and lateral displacement

of pelvis can be adjusted by the user to have a different walking motion.

Walking is a smooth, symmetric motion in which the body, feet, and hands

move rhythmically in the required direction with a speed. Basically, it can be

characterized as the succession of phases separated by the state of foots because,

the feet drive the main part of the animation. During walking, foot has contact

37

with the ground (footstrikes) and leaves the ground (takeoffs) successively. The

stride is defined as the walking cycle in which four footsrikes and takeoff events

occur. The part of this cycle, which is between the takeoffs of the two feet, is

called a step. In this concept, the phases for each leg can be classified into two

phases: The stance and the swing phases. The stance phase is the period of

support. The swing phase is the non-support phase. In the locomotion cycle,

each leg pass through both the stance and swing phases. In the cycle, there is

also a period of time where both of the legs are in contact with the ground. The

phase is called as double-support. The phases of walking cycle can be seen in

Figure 4.6

double

support

Single support

(left)

right swing

left swing
left stance

right stance

50%
0%
 100%

Single support

(right)

double

support

states

phases

l
FS
 r
FS
 l
TO
r
TO
 l
FS

Figure 4.6: Locomotion cycle for bipedal walking (adopted from [32]).

Furthermore, walking has some special characteristics. One foot is in contact

with the ground at all times and for a period both of the feet are in contact

with the ground. In addition the motion is cyclic. These characteristics of

walking really simplify the control mechanism. However, natural human walking

animation is a challenging problem. The kinematics nature of walking should

be more dissected for a realistic walking motion. For this purpose, Saunders et

al. defined a set of gait determinants, which mainly describe the movement

of pelvis motion [33]. These determinants are compass gait, pelvic rotation,

38

pelvic tilt, stance leg flexion, planar flexion of the stance angle, and lateral pelvic

displacement.

39

Figure 4.7: Walking gaits: (a) compass gait, (b) pelvic tilt, (c) plantar flexion,
(d) pelvic rotation, (e) stance leg inflexion, and (f) lateral pelvic displacement
(reprinted from [41]).

40

1. Compass gait (Figure 4.7(a)) The legs remain straight, moving in parallel

planes. The pelvis moves in a series of arcs whose radius is determined by

the leg length.

2. Pelvic rotation (Figure 4.7(d)) Allowing the pelvis to rotate about a vertical

axis through its center enables the length of the step to be increased and

the arc to be flattened. Saunders et al. quote ±3 degrees for the amplitude

of this motion.

3. Pelvic tilt (Figure 4.7(b)) If the pelvis is allowed to tilt as well as rotate

the arc of its trajectory can be further flattened. In practice the hip on

the ‘swing’ side of the walk falls below the hip on the ‘stance’ side. This

lowering occurs immediately after the end of the double support phase and

the ‘toe-off’ of the swing leg. Introducing a pelvic tilt necessarily involves

a knee flexion of the swing leg.

4. Stance leg flexion (Figure 4.7(e)) The next elaboration is stance leg flexion

where the pelvic trajectory arc is further flattened.

5. Plantar flexion of the stance angle (Figure 4.7(c)) The transition between

the double support phase and the swing phase is made smoother if the

angle of the stance leg moves down just prior to toe-off. This means that

the foot must flex with respect to the shin.

6. Lateral pelvic displacement (Figure 4.7(f)) Normal walking involves dis-

placement of the pelvis from side to side, as the weight is transferred from

one limb to another [41].

In our system, compass gait, pelvic rotation, pelvic tilt, and lateral pelvic

displacement is considered. In pelvic rotation, pelvis rotates about the body to

the left and the right, relative to the walking direction. Saunders et al. quote 3

degrees for the amplitude in a normal walking gait. In normal walking, the hip

of the swing leg falls slightly below the hip of the stance leg. This event occurs

41

for the side of swing leg, after the end of the double support phase. 5 degrees

is considered for the amplitude of pelvis tilt. In lateral pelvic displacement,

the pelvis moves from side to side. Immediately after the double support, the

weight is transferred from center to the stance leg. So, a pelvis moves alternately

during a normal walking. Moreover, individual gait variations can be obtained

by determining the parameters of these pelvis activities. Our system enables the

user to specify these parameters and observe the walking animation carefully.

The main parameters of walking behavior are the velocity and step length.

Walking can have different variations by changing these parameters. However,

experimental results show that these parameters are somehow related. Inman

et al. [33] related the walking speed to walking cycle time and Bruderlin and

Calvert [10] stated the correct time durations for a locomotion cycle. Based on

the experimental works on walking, the followings can be stated:

velocity = stepLength× stepFrequency (4.6)

stepLength = 0.004× stepFrequency × bodyHeight (4.7)

Experimental data shows that maximum value of stepFrequency is 182 steps per

minute. Time for a cycle can be calculated from the step frequency:

tcycle = 2× tstep =
2

stepFrequency
(4.8)

Using the Figure 4.6, time for double support (tds) and and the single support

phases can be calculated using the formula :

tstep = tstance− tds (4.9)

tstep = tswing + tds (4.10)

Based on the experimental results tds is calculated as [33]:

tds = (−0.0016× stepFrequency + 0.2908)× tcycle (4.11)

Although tds could be calculated automatically if the stepFrequency is given, it

is sometimes convenient to redefine tds to have walking animations with various

characteristics.

42

By utilizing the groups of formula, which define the kinematics of walking,

a velocity curve (time vs. velocity) is constructed for the left and right ankles.

Figure 4.8 is shown to graphically illustrate the velocity of left and right ankles

versus time. The distance curves shown in Figure 4.9 are automatically generated

using the velocity curves. Ease-in, ease-out effect which is generated by speed

up and slow down of the ankles can be seen on distance curves.

Figure 4.8: Velocity curve of a) left ankle and b) right ankle.

Figure 4.9: Distance curve of a) left ankle and b) right ankle.

In conclusion, a high-level walking motion is obtained in our system by using

the parameters like walking speed, time elapsed during double support phase,

and gait determinant parameters like pelvis rotation, pelvis tilt, and lateral dis-

placement. Figures in Chapter 6.1 illustrate the obtained walking motion.

43

Chapter 5

IKAN

5.1 Motion of the Skeleton

Our system uses the kinematics based methods for motion control. Forward

and inverse kinematics are two main approaches in kinematic animation. Our

work focuses on the analytical inverse kinematics methods in which, the goal

orientations are specified and the position or rotation of joints are computed by

using analytical methods. Moving a hand to grab an object or placing the foot

to a desired position requires the usage of inverse kinematics methods.

In our study, we used an inverse kinematics package, called IKAN. IKAN

is a complete set of inverse kinematics algorithms for an anthropomorphic arm

or leg. It uses a combination of analytic and numerical methods to solve gen-

eralized inverse kinematics problems including position, orientation, and aiming

constraints. IKAN methodology is explained in [15].

IKAN provided us the required functionality to control the arm and leg of

human model. For the arm, with the goal of putting the wrist in the desired

44

location, IKAN computed the joint angles for the shoulder and elbow. In the

case of leg, rotation angles for hip and knee is calculated.

IKAN’s methodology is constructed on a 7 DOF fully revolute open kinematic

chain with two spherical joints connected by a single revolute joint. Although

the primary work is on the arm, the methods are suitable for a leg because, the

kinematic chain of leg is similar to the kinematic chain of the arm. In the arm

model, the spherical joints with 3 DOFs are shoulder and wrist; the revolute

joint with 1 DOF is elbow. In the leg model, the spherical joints with 3 DOFs

are hip and ankle; the revolute joint with 1 DOF is knee.

The details of how we incorporated IKAN with our work is as follows. Ex-

plaining the details for an arm will unravel the solution for the leg. Because, leg

and arm are both considered being similar human arm-like (HAL) chains, only

some parameters change in the case of leg.

First of all, the right-handed coordinate system illustrated in Figure 5.1 is

assumed at all the joints (shoulder, elbow, and wrist in the case of the arm).

The elbow is considered as to be parallel to the length of the body at rest

condition. The z-axis is from elbow to wrist. The y-axis is perpendicular to z-axis

and it is the axis of rotation for elbow. The x-axis is pointing away from the body

along the frontal plane of the body. The x, y, and z axes form a right-handed

coordinate system.

Similar coordinate systems are assumed at the shoulder and at the wrist. The

projection axis is always along the limb and the positive axis points away from the

body perpendicular to the frontal plane of the body. The projection axis differs

for left and right arm. Wrist to elbow and elbow to shoulder transformations

are calculated since they are needed to initialize the SRS object in IKAN. The

initialization process is as follows:

45

Figure 5.1: Example arm showing the selection of projection and positive axis
(reprinted from [15]).

SRS ikSolver(T, S, a, p);

where T is the elbow to shoulder transformation matrix, S is the wrist to elbow

transformation matrix, a is the projection axis, and p is the positive axis for the

arm. z-axis and x-axis are used as parameters for projection axis and positive

axis, respectively for the left HAL chains of left arm and left leg. Negative

z-axis and x-axis are used as parameters for projection axis and positive axis,

respectively for the right HAL chains of right arm and right leg.

46

5.2 Implementation Details

We reused the functionality provided in the C++ classes of JackPlugin, which

is distributed in the IKAN package as an example source for the usage of basic

IK classes. Actually, the classes of JackPlugin do not have a good object ori-

ented structure. In that package the class Limb has the main functionality. We

reused almost the whole functionality of the class Limb in our class HALChain.

We stated a better object-oriented structure to take the advantage of object-

oriented paradigm. C++ class structure, data encapsulation, inheritance, and

polymorphism mechanism provided us much more cleaner and easier-to maintain

code, and it allowed easier extensions. The class diagram in Figure 5.2 depicts

the structure.

Figure 5.2: UML class diagram for IKAN classes that is used in our system.

The attributes and operations of the classes are given in Appendix B. The

terms R1-joint, R-joint, R2-joint are used extensively. They are the joints in

a HAL chain. In the case of the arm, R1-joint refers to shoulder where R-joint

refers to the elbow and R2-joint refers to the ankle.

47

The arm is initialized with a Humanoid object and the name of the shoulder,

elbow and wrist joints. In this initialization part, the transformation matrices (T

and S) are computed and the inverse kinematics solver (SRS object) is initialized.

The methods setGoalPos, solverJoint are the main operations of the

HALChain class. Call to the wrapper method setGoalPos is delegated to the

functional class SRS. setGoalPos function sets the goal position for the end-

effector. If the goal is feasible, the swievel angle of R-joint (elbow or knee) is

calculated and the rotation matrix for the R-joint is computed using the swievel

angle. Besides, if the upper and lower joint angle limits are specified, the valid

angle ranges in which the R-joint can swievel is calculated. In solveRJoint

method, the largest valid range is selected and the swievel angle, which is the

middle value of this range, is used. Using this swievel angle value, the rotation

matrix of R1-joint is computed by utilizing the SRS object’s solveR1 method.

By the way, the position of the R-joint can be calculated by SRS’s AngleToPos

method, but it is not needed in our application, after the rotation matrices of R1

and R-joints appeared. Through this brief explanation it can be inferred that,

the goal position is calculated relative to the R1-joint, because the R1-joint does

not need to be static. Besides, after the rotation matrices are found, they need

to be transformed into the global coordinate system. For example, in a inverse

kinematics application such as walking animation, the pelvis and the ankle is

always moving. There exists many goal positions. In each intermediate step, the

goal position is first calculated relative to the pelvis. The orientation matrices

of the pelvis and knee are calculated in local coordinate system. Then, they are

transformed into the global coordinates.

The end-effectors positions and the orientations of joints can be seen in Figure

5.3. From the knowledge of end-effectors, the joint angles are found automati-

cally.

48

Figure 5.3: The joint orientations for the end-effector positioning for the right
arm and the left foot.

49

Chapter 6

EXPERIMENTAL RESULTS

6.1 Visual Results

Figures 6.1, 6.2 and 6.3 illustrate the front, side and top views of the high-level

walking behavior produced by our system.

The position curves seen in Figures 6.1, 6.2 and 6.3 are the trajectories of

limbs, left ankle, right ankle and pelvis. These position curves and the velocity

curves in Figures 4.8 of each limb are generated automatically by our system.

The gait determinants compass gait, pelvic rotation, pelvic tilt, and lateral pelvic

displacement are considered. Pelvis rotation is seen in Figure 6.1. Pelvic tilt can

be seen in Figure 6.3. Lateral pelvic displacement and compass gait can be seen

in Figures 6.2 and 6.3. Skinned human model walking behavior can be seen in

Figure 6.4 [47].

50

Figure 6.1: Front view of the walking articulated figure.

51

Figure 6.2: Side view of the walking articulated figure.

52

Figure 6.3: Top view of the walking articulated figure.

53

Figure 6.4: Skinned human model walking behavior.

54

Goal-directed motion of the arm and the leg of the articulated figure can be

shown in Figures 6.5 and 6.6, respectively. The orientation of elbow (in case of

arm) and knee (in case of leg) is computed by the inverse kinematics package

IKAN.

55

Figure 6.5: Goal-directed motion of the arm of the articulated figure.

56

Figure 6.6: Goal-directed motion of the leg of the articulated figure.

57

6.2 Performance Analysis

We have successfully applied inverse kinematics algorithms for animating human

walking, goal-directed motion and other user-defined motions of an articulated

model. For this purpose we developed a user-friendly system. The major com-

putation in our algorithms is the inverse kinematics method used in computing

joint angles of the lower extremities. The IKAN Software is applied in our sys-

tem to minimize the inverse kinematics computations. Since IKAN is based on

a well designed, optimized and low level C library, it provides the required per-

formance for solving inverse kinematic problems. Thus, real-time simulation can

be easily achieved. We have tested our system on a Pentium-IV 1400 MHz (256

MB RAM) with 32MB Nvidia RIVA TNT2 graphics card and successfully com-

puted a huge performance of an average of 397 frames/sec. The results also show

that the computational complexity of the system is independent of how complex

the motion is. However, some extra cost can be added when path planning is

adopted to the system.

58

Chapter 7

CONCLUSION

This study introduces a motion control mechanism that works in a hierarchical

manner and enables the user to generate different types of human motions in

real-time. The system uses an articulated figure that is modeled based on the

H-Anim 1.1 Specification.

At high level, the animator can produce basic locomotion by specifying some

parameters, like locomotion velocity, size of walking step, the time elapsed during

double-support, rotation, tilt, and lateral displacement of pelvis, and etc. These

parameters are presented by paths that are generated based on piecewise cubic

polynomial curves. These curves include some control points that allow the

user to adjust the shape of the curve. At that point, we want to emphasize that

defining the trajectories for limbs in a human figure for complex realistic motions

is not an easy task. We generated these limb trajectories by observing the real

human walking.

However, this high-level motion mechanism for walking requires low-level

techniques. Actually, in this study most of the work is especially based on the

low-level control of motion using kinematic methods. In this technique, motion

characteristics of an object are specified by using splines. Spline curves provided

59

the required functionality for the motion control of the articulated figure. They

can be constructed with a few set of control points and can be manipulated

easily. The paths for pelvis, ankle and wrist motions are specified using these

spline curves. However, these curves only determine the positions of some joints.

The motion of the whole articulated structure is generated by means of inverse

kinematic techniques. IKAN software package, developed at the University of

Pennsylvania, is utilized for this purpose. IKAN allowed us to easily control the

arms and legs of our human figure.

As a result, by using these techniques realistic human motions can be suc-

cessfully simulated in real time. In the system, there are some areas that needs

further improvements. For example, more control parameters for high-level mo-

tions can be added in order to generate personalized human motions or motions

with emotions like “walking happily”, “walking sad”. Besides, sophisticated

motion planning and path generation mechanisms can be adopted to generate

motions in an environment with obstacles. Another possible improvement of our

system is to integrate the kinematics methods with dynamics methods. Using

two approaches we can simulate more realistic animations. For example, we can

animate a heavily loaded human while walking up the stairs. Besides, a model

walking in water or through a strong wind can be realistically modelled by this

hybrid method.

60

Appendix A

HUMAN MODEL IN XML

FORMAT

A.1 Document Type Definition (DTD) of Hu-

man Model

<!ELEMENT Humanoid (author, name, center, Joint*)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT center (#PCDATA)>

<!ATTLIST center value CDATA #REQUIRED>

<!ELEMENT Joint (Joint*, Segment*, Site*)>

<!ATTLIST Joint name CDATA #REQUIRED>

<!ATTLIST Joint center CDATA #REQUIRED>

<!ATTLIST Joint limitx CDATA #IMPLIED>

<!ATTLIST Joint limity CDATA #IMPLIED>

<!ATTLIST Joint limitz CDATA #IMPLIED>

<!ELEMENT Segment EMPTY>

61

<!ATTLIST Segment name CDATA #REQUIRED>

<!ATTLIST Segment mass CDATA #IMPLIED>

<!ELEMENT Site EMPTY>

<!ATTLIST Site center CDATA #REQUIRED>

<!ATTLIST Site name CDATA #REQUIRED>

A.2 XML Formatted Data of Human Model

<?xml version="1.0" ?>

<Humanoid>

<author>Aydemir Memisoglu</author>

<name>Little</name>

<center value="0.0000 0.0000 0.0000" />

<Joint name="HumanoidRoot" center="0.1296 0.0000 -3.8563">

<Joint name="sacroiliac" center="0.0075 0.0000 -4.2920">

<Joint name="l_hip" center="-0.0005 -0.4446 -4.2920"

limitx="-1.00 2.00" limity="-1.40 2.90"

limitz="-1.40 1.30">

<Joint name="l_knee" center="0.1441 -0.4446 -2.2778"

limity="-3.00 0.00">

<Joint name="l_ankle" center="-0.3444 -0.4446 -0.3070">

<Joint name="l_midtarsal" center="0.1722 -0.4446 -0.0005"/>

</Joint>

</Joint>

</Joint>

<Joint name="r_hip" center="0.0136 0.4446 -4.2920"

limitx="-1.00 2.00" limity="-1.40 2.90"

limitz="-1.40 1.30">

<Joint name="r_knee" center="0.1488 0.4446 -2.2993"

62

limity="-3.00 0.00">

<Joint name="r_ankle" center="-0.3585 0.4446 -0.3332">

<Joint name="r_midtarsal" center="0.1722 0.4446

0.0000" />

</Joint>

</Joint>

</Joint>

</Joint>

<Joint name="vl5" center="-0.3632 -0.0000 -4.8458">

<Joint name="vt6" center="-0.3744 -0.0000 -6.2893">

<Joint name="vt1" center="-0.2811 -0.0000 -6.7971">

<Joint name="vc4" center="-0.1393 -0.0000 -7.1298">

<Joint name="skullbase" center="0.0104 -0.0000

-7.3858" />

</Joint>

<Joint name="r_sternoclavicular" center="-0.2544 0.3248

-6.6328">

<Joint name="r_acromioclavicular" center="-0.2877 0.3912

-6.4830">

<Joint name="r_shoulder" center="-0.2521 0.8925 -6.5425"

limitx="-1.00 3.00" limity="-1.70 3.10"

limitz="-1.00 1.30">

<Joint name="r_elbow" center="-0.5892 1.9601 -6.3165"

limity="0.00 3.00">

<Joint name="r_wrist" center="-0.2611 2.9274

-6.1421"/>

</Joint>

</Joint>

</Joint>

63

</Joint>

<Joint name="l_sternoclavicular" center="-0.2652 -0.3838

-6.5804">

<Joint name="l_acromioclavicular" center="-0.2984 -0.4502

-6.4779">

<Joint name="l_shoulder" center="-0.2811 -0.9496 -6.5280"

limitx="-1.00 3.00" limity="-1.70 3.10"

limitz="-1.00 1.30">

<Joint name="l_elbow" center="-0.4192 -0.9426 -5.1151"

limity="0.00 3.00">

<Joint name="l_wrist" center="-0.3728 -0.9285 -3.8543"/>

</Joint>

</Joint>

</Joint>

</Joint>

</Joint>

</Joint>

</Joint>

</Joint>

</Humanoid>

64

Appendix B

CLASS DIAGRAMS

B.1 Hbody Package

class Humanoid

This class serves as a container for the Joint, Segment, and Site nodes. After
constructing a Humanoid object, the programmer refers the joints using the
public methods if this class.

Attribute Type Notes

joints protected: vector<Node*> container for Joint nodes
segments protected: vector<Node*> container for Segment nodes
sites protected: vector<Node*> container for Site nodes
humanoidRoot protected: Node* root node

Table B.1: Humanoid attributes

65

Method Type Notes

Humanoid () public: constructor
getRoot () public: Node* returns the root Node
getNodeByName public: Node* returns the Node with the given name
(char*)
setRelTransform public: void traverse the node hierarchy and set the
ToParents () relative transformation matrix of nodes

according to their parent nodes
saveToXMLFile(char*) public: void save the structure of the humanoid

to a file in XML format
loadXMLFile(char*) public: void parse the given XML file and construct

a humanoid structure
draw (int) public abstract: display the humanoid using the

void OpenGL API with given properties
...

Table B.2: Humanoid methods

class Node

Node is the base class for other classes Joint, Segment, and Site. It serves
as a node in the humanoid tree structured hierarchy and provides the basic
functionality like identification, positioning, accessing parent and child nodes.

Attribute Type Notes

type protected: NodeType type of the Node (Joint, Segment, or Site)
name protected: char name of the Node
parent protected: Node* pointer to the parent Node
children protected: vector<Node*> container for the children of the Node
matrix protected: Matrix4& global matrix of the Node

used for positioning and orientation

Table B.3: Node attributes

66

Method Type Notes

Node (NodeType, char*, public: construct a Node object with given
Vector3&) type and name at specified position
getName () public const: get the name of the Node

char*
getType () public: NodeType get type of the Node
addChildren (Node*) public abstract: add a child Node to the Node

void
getChildren () public abstract: get the children of the Node

vector<Node*>&
removeChildren (Node*) public abstract: remove the specified child Node

void
setParent (Node*) public: void set the parent of this Node
getParent () public: Node* get a pointer to the parent Node
getGlobal () public: mlMatrix4& get global matrix of the Node
setGlobal () public: mlMatrix4& set global matrix of the Node
...

Table B.4: Node methods

class Joint

Extends: Node

This class is the main node in the hierarchy of the Humanoid structure. Upper
and lower limits for the joint angles on axis x, y, z can be determined. Because
it inherits from Node, it also uses the functionality of class Node.

Attribute Type Notes

ulimit protected: float[3] upper limits for the joint angles
llimit protected: float[3] lower limits for the joint angles

Table B.5: Joint attributes

67

Method Type Notes

Joint (char*, Vector3&) public: construct a Joint object with given
name at specified position

updateChildren public abstract: update the global matrix of
Globals () void children according to their relative

transformation matrix
setLimits (Joint::Axis, public abstract: set the lower upper limits for
float,float) void the specified axis
getUpperLimit public abstract: get the upper limit angle for the
(Joint::Axis) float given axis (in radian)
getLowerLimit public abstract: get the lower limit angle for
(Joint::Axis) float the given axis (in radian)
hasLimit (Joint::Axis) public abstract: return true if joint has limits

bool for the given axis

Table B.6: Joint methods

class Segment

Segment class is used to define the segments in human body structure. It has a
bounding box and mass. The has simple functionality with get and set methods
for the bounding box and mass information of the Segment. It has also the
functionality of the class Node.
Extends: Node

Attribute Type Notes

bboxCenter protected: Vector3 bounding box center
bboxSize protected: Vector3 bounding box dimensions
centerOfMass protected: Vector3 center of mass of the Segment
mass protected: float mass of the Segment

Table B.7: Segment attributes

Method Type Notes

Segment (char*, Vector3&, public: construct a Segment object with given
Vector3&, Vector3&, float) name, bounding box, and mass information
...

Table B.8: Segment methods

68

class Site

Site class is used to represent the Site nodes in Humanoid structure. It has also
the functionality of the class Node.
Extends: Node

Method Type Notes

Site (char*, Vector3&) public: construct a Site node with given name
at specified position

...

Table B.9: Site methods

69

B.2 HBodyIK Package

class HALChain

HALChain is an abstract class which provides almost all the functionality for
the inverse kinematics solution of a human arm like chain. The class has the
functionality of the class Limb used in JackPlugin software. The internal methods
of the class are not listed. It uses the main IKAN class SRS to solve the positional
goals for end-effectors wrist in case of arm and ankle in case of leg.

Attribute Type Notes

ikSolver protected: the main IKAN SRS object to solve the inverse
SRS kinematics problem

...

Table B.10: HALChain attributes

Method Type Notes

HALChain() public: construct a HALChain object
setGoal public abstract: set the goal position for the
(Matrix4&) int end-effector of the chain
solveRJoint () public : find the orientation for the

void R joint, elbow (in case of arm) or
knee (in case of leg)

Table B.11: HALChain methods

70

class Arm

Arm class has the functionality of the class HALChain. Given a position goal for
the end-effector wrist joint, it computes the orientation of shoulder and elbow
joints. It has also simple set and get methods to access the shoulder, elbow,
and wrist joints and relative transformation matrices. The classes LeftArm and
RightArm, the attributes and functionality of which are not listed, are simple
Arm classes with different projection axis, and positive direction axis.
Extends: HALChain

Attribute Type Notes

shoulder protected: Joint* pointer to shoulder Joint
elbow protected: Joint* pointer to elbow Joint
wrist protected: Joint* pointer to wrist Joint
elbowToShoulder protected: mlMatrix4 elbow to shoulder transformation
wristToElbow protected: mlMatrix4 wrist to elbow transformation

Table B.12: Arm attributes

Method Type Notes

Arm () public: construct an Arm object
init (Humanoid*, public: void initialize the Arm object and set the
char*, char*, char*) Humanoid and joint names for shoulder,

elbow, and wrist
getProjection public abstract get the projection axis for the arm
Axis() const: float*
getPositive public abstract get the projection axis for the arm
DirectionAxis() const: float*
setGoal(Vector3&) public: int set a goal position for the wrist joint
...

Table B.13: Arm methods

71

class Leg

Arm class has the functionality of the class HALChain. Given a position goal for
the end-effector ankle joint, it computes the orientation of hip and knee joints.
It has also simple set and get methods to access the hip, knee, and ankle joints
and relative transformation matrices. The classes LeftLeg and RightLeg, the
attributes and functionality of which are not listed, are simple Leg classes with
different projection axis, and positive direction axis.
Extends: HALChain

Attribute Type Notes

hip protected: Joint* pointer to hip joint
knee protected: Joint* pointer to knee joint
ankle protected: Joint* pointer to ankle joint
kneeToHip protected: mlMatrix4 knee to hip transformation
ankleToKnee protected: mlMatrix4 ankle to knee transformation

Table B.14: Leg attributes

Method Type Notes

Leg () public: construct an Leg object
init(Humanoid*, public: initialize the Leg object and set the Humanoid
char*, char*, char*) void and joint names for hip, knee, and ankle
getProjection public abstract get the projection axis for the leg
Axis() const: float*
getPositive public abstract get the projection axis for the leg
DirectionAxis() const: float*
setGoal (Matrix4&) public: int set a goal position for the ankle joint
..

Table B.15: Leg methods

72

B.3 Curve Package

class Curve

Curve class is the base class to represent the cubic splines and straight lines. The
classes CubicSpline and Line inherits from this class. Curve class has also some
methods to rotate, move all of the control points.

Attribute Type Notes
knots protected: knots (control points) of the curve

vector<Vector3>

Table B.16: Curve Attributes

73

Method Type Notes
Curve public: construct a Curve object with given knots
(vector<Vector3>&)
eval (float) pure given parameter u, return the position

public abstract:
Vector3

getLength () pure get length of the curve
public abstract:
float

getLength (int, int) pure get length of the curve between given
public abstract: knots
float

arcLength (float) pure given the distance travelled along curve,
public abstract: return the position
Vector3

getKnots () public: return the vector of knots
vector<Vector3>&

insertKnot public: void inserts a knot at specified index
(int, Vector3&)
addKnot (Vector3&) public: void adds a knot to the end
draw () public abstract: display curve using OpenGL API

void
...

Table B.17: Curve Methods

class CubicSpline

This class is the base class to represent the cubic splines. Cardinal spline is a
type of cubic spline.
Extends: Curve

Attribute Type Notes
basisMatrix protected: Matrix4 basis Matrix which is needed to compute

the points of curve
numOfGrains protected: int number of grains of the CubicSpline

Table B.18: CubicSpline Attributes

74

Method Type Notes
CubicSpline public: construct a CubicSpline object with given
(vector<Vector3>, int) knots and parameter number of grains
...

Table B.19: CubicSpline Methods

class CardinalSpline

This class is used to represent the Cardinal splines. Cardinal splines are used
to as position, distance and orientation (rotation about axis x, y, z) curves in
our human motion control system. CardinalSpline class is a concrete class, so
the abstract methods of the base classes CubicSpline, and Curve like arcLength,
getLength, etc. are implemented.
Extends: CubicSpline

Attribute Type Notes
tension protected: float tension parameter of the spline

Table B.20: CardinalSpline Attributes

Method Type Notes
CardinalSpline public: construct a CardinalSpline object from
(vector<Vector3>, the given vector of knots, and parameters
int, float) number of grains and tension
eval (float) public: Vector3 given the parameter u, return the position
getLength () public: float get length of the curve
getLength (int, int) public: float get length of the curve between given

knots
arcLength (float) public: Vector3 given the distance travelled along curve,

return the position
draw () public : void display curve using OpenGL API

...

Table B.21: CardinalSpline Methods

75

class Line
This class is used to represent straight lines. Lines are used to represent the
velocity curves of ankles and pelvis in our system to control human walking.
Line is a concrete class, so the abstract methods of the base class Curve like
arcLength, getLength, etc. are implemented.
Extends: Curve

Method Type Notes
Line public: construct a line from the given knots
(vector<Vector3>)
eval (float) public: Vector3 given the parameter u, return the position
getLength () public: float get length of the line
getLength (int, int) public: float get length of the line between given

knots
arcLength (float) public: Vector3 given the distance travelled along line,

return the position
...

Table B.22: Line Methods

76

Appendix C

THE SYSTEM AT WORK

In this part we introduce the user interface and functionality of our system. The

system is implemented by Aydemir Memişoǧlu and Mehmet Şahin Yeşil [47]. Mo-

tion control part is implemented by Aydemir Memişoǧlu using inverse kinematics

based on analytical methods. Realistic rendering using a multi-layered human

model that consists of skeleton, muscles and skin is implemented by Mehmet

Şahin Yeşil.

C.1 Overview

Our application is Single Document Interface (SDI) application implemented

using Visual C++ 6.0 and Microsoft Foundation Classes (MFC). The graphics

display API OpenGL is used. The top level user interface of the system is seen

in Figure C.1. The elements on the interface can be mainly divided into four

parts:

• The Main Menu: This consists of menu bar and toolbar. It basically allows

the user to control the application.

77

• The Motion Control Toolbox: This toolbox allows user to control the skele-

ton and and generate new motions. It consists of two panels: Skeleton and

Motion.

• The Keyframe Editor: This editor allows user to generate curves for dis-

tance, joint angles in order to characterize the motion of the articulated

figure.

• The Viewing Area: The viewing area has quad view layout with the front,

top, side, and perspective views of the 3D environment.

Figure C.1: Top level user interface of the system.

78

C.1.1 The Main Menu

The main menu part of the program consists of the menu bar and the other tool-

bars. The menu bar includes “File”, “View”, “Motion”, “Snapshot” and “Help”

subitems and provides the general functionalities like creating and opening an

object model, changing the user interface options, and creating a new motion or

loading an existing one. The user also can start, stop, pause and step by step

play the loaded animation by using the toolbar. The “Snapshot” menu item and

the toolbar gives user the opportunity to take the snapshots of the animation.

C.1.2 The Motion Control Toolbox

Motion control toolbox includes two panels (see Figure C.2). The first panel,

skeleton panel contains skeletal information of the articulated figure. On the

upper part of the panel, the hierarchical structure of the skeleton is illustrated

in a MFC tree control. The node part of the panel shows the position and

orientation information of the selected joint. These values of the joint can also

be modified by the user and the changes will be directly adopted to the figure

on the viewing area.

On the other hand, the motion panel of the motion control toolbox allows the

user to make modifications on the position curves of the end-effector (ankles and

wrists) and root joints of the structure. These modification results with different

types of motion. The upper part of the motion panel enables the user to select

the desired joint, and types of control for a joint. The user can add and delete

joint to control or update the types of control for the selected controlled joint

by using ‘Add / Set’ and ‘Delete’ buttons. Selected joints will be listed on the

‘controlled joints’ listbox and the position curve of the joint will be also drawn

on the viewing area. Properties of the position curve of the selected joint can

be seen on the position curve part of the panel. These properties are mainly

79

Figure C.2: The motion control toolbox

denoted by the control points. The user can either change the position of an

existing control point or insert a new one. All these impacts will directly affect

the figure drawn on the viewing area.

C.1.3 The Keyframe Editor

Keyframe editor toolbox will be displayed for a selected joint when one of the

controlled joints is double-clicked. While the motion panel includes the controls

80

for manipulating the position curve of a joint, the keyframe editor provides the

functionality for editing the distance and orientation curves of the joint. The

distance curve specifies the distance travelled over time. The rotation curves

specify the rotations about x, y, and z axes applied over time. The editor will

only include the curves that are selected in the motion panel. As it is seen

on Figure C.3, the keyframe editor wants you to select the curve to be edited.

When the curve is selected, it will be drawn on the right frame of the editor.

The curve can be edited at this frame by changing the positions of the control

points and the changes can be followed on the viewing area. New control points

can be added using the right mouse button and holding the ctrl key. Control

points can be deleted using right mouse button and holding the ctrl key. A

green line, which can be positioned along the x-axis (axis representing time),

enables the user to examine the pose of articulated figure at specified time. This

enables the user to interactively manipulate the curve and see the effects at any

time by positioning the green line on x-axis using mouse. The user can also

set the tension parameter of the curves which are Cardinal splines. All these

functionalities provide the opportunity to create different motions easily.

Figure C.3: The keyframe editor

81

C.1.4 The Viewing Area

The viewing area of the system includes four view layout; top, front, side, and

perspective (see Figure C.4). The user can either select and view one of the

layouts or use all of them. Zooming and view point change operations can be

performed in each frame by using mouse and keyboard keys. Using left mouse

button and holding the ctrl key, the user can rotate the figure in 3D space. The

figure can be translated using the right mouse button and holding the ctrl key.

Zooming can be done using just the right mouse button.

Figure C.4: The viewing area

82

Bibliography

[1] Armstrong, W., Green, M., “The dynamics of articulated rigid bodies for

purpose of animation”, The Visual Computer, No. 1, pp. 231-240, 1985.

[2] Badler, N., Manoochehri, K., Walters, G., “Articulated figure positioning by

multiple constraints ”, IEEE Computer Graphics and Applications, Vol. 7,

No. 6, pp. 28-38, 1987.

[3] Badler, N., Phillips, C., Zhao, J., “Interactive real-time articulated figure

manipulation using multiple kinematic constraints”, Proceedings 1990 Sym-

posium on Interactive 3D Graphics, pp. 245-250, 1990.

[4] Badler, N., Phillips, C., B. and Webber, B., L., Simulating Humans: Com-

puter Graphics, Animation, and Control, Oxford University Press, Oxford,

1999.

[5] Bartels, R., Beatty, J., C. and Barsky, B., A., An Introduction to Splines for

Use in Computer Graphics and Geometric Modeling, Morgan Kaufmann,

Los Alamos CA, 1987.

[6] Bartels, R., Hardke, I., “Speed adjustment for keyframe interpolation”, Pro-

ceedings of Graphics Interface, pp. 14-19, 1989.

[7] Barzel, R., Barr, A., H., “A modeling system based on dynamics”, ACM

Computer Graphics (Proceedings of SIGGRAPH’88), pp. 179-188, Addison

Wesley, July 1988.

83

[8] Bezault, L., Boulic, R., Magnenat-Thalmann, N., and Thalmann, D., “An

interactive tool for the design of human free-walking trajectories”, Proceed-

ings of Computer Animation’92, pp. 87-104.

[9] Brotman, N., Netravali, A., “Motion interpolation by optimal control”,

ACM Computer Graphics 22(4) (Proceedings of SIGGRAPH’88), pp. 309-

315, August 1988.

[10] Bruderlin, A., Calvert, T., W., “Goal-directed dynamic animation of human

walking”, ACM Computer Graphics 23 (Proceedings of SIGGRAPH’89),

pp. 233-242, 1989.

[11] Bruderlin, A., Calvert, T., W., “Interactive animation of personalized hu-

man locomation”, ACM Computer Graphics 29(4) (Proceedings of SIG-

GRAPH’93), pp. 17-23, 1993.

[12] Bruderlin, A., William, L., “Motion signal procession”, Graphics Interface

1993, pp. 97-104, 1993.

[13] Catmull E., Rom, R., A Class of Local Interpolating Splines Computer Aided

Geometric Design, edited by Robert E. Barnhill and Richard F. Riesenfeld,

Academic Press, San Francisco, 1974.

[14] Chadwick, J., Haumann, D. Parent, R., “Layered construction for de-

formable animated characters”, ACM Computer Graphics 23(3) (Proceed-

ings of SIGGRAPH’89), pp. 243-252, July 1989.

[15] Deepak, T., Goswami, A., Badler, N., “Real-time inverse kinematics tech-

niques for anthropomorphic limbs”, Graphical Models, Vol. 62, No. 5,

pp. 353-388, September 2000.

[16] Denavit, J. and Hartenberg, R.S., “A kinematics notation for lower-pair

mechanisms based on matrices”, Journal of Applied Mechanics, Vol. 22,

No. 2, pp. 215-221, June 1995.

84

[17] Forsey, D., Wilhelm, J., “Techniques for interactive manipulation of artic-

ulated bodies using dynamic analysis”, Proceedings of Graphics Interface,

pp. 8-15, 1988.

[18] Girard, M., Maciejewski, A., “Computational modeling for computer gen-

eration of legged figures”, ACM Computer Graphics 19(3) (Proceedings of

SIGGRAPH’85), pp. 263-270, 1985.

[19] Girard, M., Making Them Move: Mechanics, Control and Animation of Ar-

ticulated Figures, edited by N. Badler, B. Barsky and D. Zeltzer, Chapter 10,

pp. 209-229, Morgan-Kaufmann Publishers Inc., San Mateo, Ca., 1991.

[20] Gomez, “Twixt: A 3D animation system”, ACM Computer Graphics 19(3)

(Proceedings of SIGGRAPH’85), pp. 291-298, March 1985.

[21] Guenter, B., Parent, R., “Computing the arclength of parametric curves”,

IEEE Computer Graphics and Applications, 10(3), pp. 72-8, May 1990.

[22] Hanrahan, P., Sturman, D., “Interactive animation of parametric models”,

The Visual Computer, Vol. 1, pp. 260-266, July 1987.

[23] Hearn, D., Baker, M., P., Computer Graphics 2nd edition, C version,

Prentice-Hall, New York, 1997.

[24] Isaacs, P., M., Cohen, M., F., “Controlling dynamic simulation with kine-

matic constraints, behavior functions and inverse dynamics”, ACM Com-

puter Graphics (Proceedings of SIGGRAPH’87), pp. 215-224, Addison Wes-

ley, July 1987.

[25] Ko, H., “Kinematic and dynamic techniques for analyzing, predicting, and

animating human locomotion”, PhD Thesis, Department of Computer and

Information Science, University of Pennsylvania, 1994.

85

[26] Ko, H., Badler, N., “Animating human locomotion in real-time using inverse

dynamics”, IEEE Computer Graphics and Applications, Vol. 16, No. 2,

pp. 50-59, 1996.

[27] Kochanek, D., Bartels, R., “Interpolating splines with local tension, con-

tinuity, and bias control”, ACM Computer Graphics 18(3) (Proceedings of

SIGGRAPH’84), pp. 33-41, 1984.

[28] Lasseter, J., “Principles of traditional animation applied to 3D computer an-

imation”, ACM Computer Graphics 21(4) (Proceedings of SIGGRAPH’87),

pp. 35-44, July 1987.

[29] Lee, P., Wei, S., Zhao, J., Badler, N., “Strength guided motion”, ACM

Computer Graphics 24(4) (Proceedings of SIGGRAPH’90), pp. 253-262,

1990.

[30] Loizidou, S., Clapworthy, J., “Legged locomotion using HIDDS”, Models and

Techniques in Computer Animation, edited by Nadia Magnenat Thalmann

and Daniel Thalmann, Springer-Vefiag, Tokyo, 1993.

[31] Mahmud, S., K., “Animation of human motion: An interactive tool”, MS.

Thesis, Bilkent University, Department of Computer Engineering and Infor-

mation Science, 1991.

[32] Multon, F., France, L., Cani-Gasguel, P. and Debunne, G., “Computer an-

imation of human walking: A survey”, Journal of Visualization and Com-

puter Animation, Vol. 10, pp. 39-54, 1999.

[33] Saunders, J., B., Inman, V., T. and Eberhart, H., D., “The major deter-

minants in normal and pathological gait”, Journal of Bone Joint Surgery,

35-A(3), pp. 543-58, 1953.

[34] Shoemake, K., “Animating rotation with quaternion curves”, ACM

Computer Graphics 19(3) (Proceedings of SIGGRAPH’85), pp. 245-254,

July 1985.

86

[35] Sims, K., Zeltzer, D., “A figure editor and gait controller for task level

animation”, SIGGRAPH Course Notes #4: Synthetic Actors: The Impact

of Artificial Intelligence and Robotics on Animation, pp. 164-181, 1988.

[36] Specification of a Standard VRML Humanoid, Version 1.1,

“http://h-anim.org”.

[37] Steketee, J., Badler, N., “Parametric keyframe interpolation incorporating

kinetic adjustment and phrasing control”, ACM Computer Graphics 19(3)

(Proceedings of SIGGRAPH’85), pp. 255-262, July 1985.

[38] Stern, G., “BBOP - a program for 3-dimensional animation”, Nicograph

Proceedings, pp. 403-404, 1983.

[39] TinyXML, “http://www.grinninglizard.com/tinyxml”.

[40] Unuma, M., Anjyo, K., Tekeuchi, R., “Fourier principles for emotion-based

human figure animation”, ACM Computer Graphics 29(4) (Proceedings of

SIGGRAPH’95), pp. 91-96, 1995.

[41] Watt, A., Watt, M., Advanced Animation and Rendering Techniques, ACM

Press, New York, 1992.

[42] Welman, C., “Inverse kinematics and geometric constraints for articulated

figure manipulation”, MS. Thesis, Simon Fraser University, School of Com-

puting Science, 1993.

[43] Wilhelms, J., “Virya - a motion control editor for kinematic and dynamic

animation”, Proceedings of Graphics Interface, pp. 141-146, 1986.

[44] Wilhelms, J., “Towards automatic motion control”, IEEE Computer Graph-

ics and Applications, 7(4), pp. 11-12, 1987.

87

[45] Wilhelms, J., Making Them Move: Mechanics, Control and Animation of

Articulated Figures, edited by N. Badler, B. Barsky and D. Zeltzer, Chap-

ter 13, pp. 265-280, Morgan-Kaufmann Publishers Inc., San Mateo, Ca.,

1991.

[46] Wyvill, B., Chilmar, M. and Herr C., “A simple model of animation”, SIG-

GRAPH Course Notes: Synthetic Actors: The Impact of Artificial Intelli-

gence and Robotics in Animation , 1988.

[47] Yeşil, M. Ş., “Realistic Rendering of a Multi-Layered Human Body Model”,

MS. Thesis, Department of Computer Engineering, Bilkent University, Au-

gust 2003.

[48] Zeltzer, D., “Motor control techniques for figure animation”, IEEE Com-

puter Graphics and Applications, Vol. 2, No. 9, pp. 53-59, 1982.

[49] Zhao, J., Badler, N., “Inverse kinematics positioning using nonlinear pro-

gramming for highly articulated figures”, ACM Transactions on Graphics,

Vol. 13, No. 4, pp. 313-336, 1994.

88

