
BENEFIT MAXIMIZATION IN CLASSIFICATION ON FEATURE 
PROJECTIONS 

 
H. Altay Güvenir 
Bilkent University 

Computer Engineering Department, Ankara 
Turkey 

 
 
Abstract 
 
In some domains, the cost of a wrong classification may 
be different for all pairs of predicted and actual classes. 
Also the benefit of a correct prediction is different for 
each class. In this paper, a new classification algorithm, 
called BCFP (for Benefit Maximizing Classifier on 
Feature Projections), is presented. The BCFP classifier 
learns a set of classification rules that will predict the 
class of a new instance with maximum benefit or 
minimum cost. BCFP represents a concept in the form of 
feature projections on each feature dimension separately. 
Classification in the BCFP algorithm is based on a voting 
among the individual predictions made on each feature. A 
genetic algorithm is used to select the relevant features. 
The performance of the BCFP algorithm is evaluated in 
terms of accuracy. As a case study, the BCFP algorithm is 
applied to the problem of diagnosis of gastric carcinoma. 
A lesion can be an indicator of one of nine different levels 
of gastric carcinoma. The benefit of correct classification 
of early levels is much more than that of late cases. Also, 
the cost of wrong classifications is different for all classes. 
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1. Introduction 
 
Classical classification algorithms aim to maximize the 
number of correct classifications, or, in other words, 
minimize the number of incorrect classifications. 
However, in some domains, the cost of a wrong 
classification is different for each predicted/actual class 
pair. Also the benefit of correct prediction is different for 
each class. In this paper we propose an inductive 
classification learning algorithm, called Benefit 
Maximizing Classifier on Feature Projections (BCFP). 
BCFP is based on a knowledge representation technique, 
called feature projections, which has been successfully 
employed in CFP [1]. As a case study, we show its 
application to a medical dataset to diagnose the gastric 
tumors. 

 
The input to the BCFP training algorithm is a set of 
training instances. Learning from the training examples, 
BCFP constructs a representation of the classification 
knowledge inherent in these examples. This knowledge is 
represented as the projections of the training dataset as 
feature intervals on each feature dimension separately. For 
each feature dimension, projection points with similar 
characteristics are grouped into intervals. Therefore, an 
interval is a generalization that represents a set of feature 
values that yield the same classifications. Classification in 
the BCFP algorithm is based on a voting mechanism 
among the individual predictions made on each feature. 
Since each feature participates independently of the 
others, both in learning and classification, BCFP enables 
an easy and natural way of handling missing feature 
values by simply ignoring them. 
 
Other machine learning algorithms using feature 
projection based knowledge representation were 
successfully applied to medical domains. For example, an 
expert system named DES was implemented for 
differential diagnosis of erythemato-squamous diseases in 
dermatology [2] based on the VFI (Voting Feature 
Intervals) technique [3]. These classification systems, 
however, are not designed for cost-sensitive classification 
domains. Therefore they do not work on domains, where 
the benefit of correct classification is different for each 
class; also the cost of wrong classification is different for 
all pairs of predicted and actual classes. 
 
The next section presents the BCFP algorithm. Section 3 
describes the gastric carcinoma domain, and presents the 
results of the application of the BCFP algorithm to the 
gastric carcinoma domain. Also the BCFP algorithm is 
compared with the performance of the medical students 
specializing on gastroenterology. Finally, the last section 
concludes with some remarks and suggestions for feature 
work. 
 
2. The BCFP algorithm 
 
The BCFP algorithm is the classification cost sensitive 
version of the feature projection based classification 
algorithms family [1]. In the following subsections, the 



knowledge representation used in the BCFP algorithm, 
training, and classification algorithms will be explained 
through a simple example. Then, the feature selection 
using a genetic algorithm will be described. 
 
2.1 Knowledge Representation 
 
Each training example is represented by a vector of 
nominal (discrete) or linear (continuous) feature values 
plus the class label. The BCFP classification algorithm 
represents a concept description by a set of feature 
intervals. An interval is either a range or a point interval. 
A range interval is a set of consecutive values of a given 
feature, whereas a point interval is defined as a single 
feature value. 
 
For range intervals, lower and upper bounds of the range 
value and the votes for each class are maintained. For 
point intervals, on the other hand, the lower and upper 
values are the same. Therefore, an interval is represented 
as a vector, whose first two elements store the lower and 
upper bounds and the remaining elements correspond to 
the votes for each class, as shown below:  
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Here, k is the number of classes in the domain, and Vi 
represents the vote of the interval for class Ci. 
 
2.2 Training 
 
The training process of the BCFP algorithm is shown in 
Fig. 1. For each feature f, all training instances are sorted 
with respect to their values for f, forming their projections 
on f. A point interval is constructed for each projection. 
The lower and upper bounds of the interval are equal to 
the value of feature f in the corresponding training 
instance. Given the normalized benefit table NB, the vote 
Vp of a class p is initialized as 
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Here N is the total number of instances in the interval, Nc 
is the number of class c instances in the interval, and 
NB[p,c] is the normalized benefit of classifying a class c 
instance as p. In other words, Vp is the average benefit to 
be gained by classifying all the instances in that interval 
as class p. If no instances of class p have been observed in 
that interval, then the vote for class p is 0. In order for an 
equal voting power for each interval, during querying, the 
votes of an interval are normalized later, so that  
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If the f value of a training instance is unknown 
(represented by “?"), it is simply ignored for this feature f. 
Then, only for linear features, BCFP tries to generalize 
the point intervals. Consecutive point intervals whose 

highest votes are for the same class are joined, forming 
range intervals.  

An indecisive interval, which distributes its vote among 
all classes evenly, is uninteresting and it should be 
removed. We call a rule decisive if the standard deviation 
of its votes is above a minimum threshold, called smin. The 
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equal to the standard deviation when the interval casts 0 
votes for one class, and distributes its vote evenly among 
all other classes. 

train (TrainingSet):  
begin  
 for each feature f 
  /*  sort TrainingSet with respect to f * /  
  sort (f, TrainingSet)  
  /*  construct a list of point * / 
  interval_list �  make_intervals (f, TrainingSet)  
  if f is linear  
   /*  join adjacent point intervals to form  
       range intervals * / 
   interval_list �  join_interval(interval_list)  
end. 
 
join_interval (interval_list)  
begin  
 I = first interval in interval_list  
 while I is not empty do  
  I’  is the interval following I  
  if beneficial_class(I) = beneficial_class(I’ )  
   /*  beneficial_class of an interval is the class 
with the highest votes * / 
   merge I’  into I 
  else I �  I’   
end. 

Fig. 1. Training algorithm of BCFP. 
 

An example training data set and the corresponding 
feature intervals constructed by the BCFP algorithms are 
shown in Fig. 2. The example domain consists of three 
features, namely f1, f2, and f3, the first two of which are 
linear and the last one is a nominal feature. The nominal 
feature f3 can take values from the set { A, B, C} . The 
class labels are C1, C2, and C3. There are seven training 
instances in this example. Training algorithm forms three 
intervals on the feature f1, two of which are range 
intervals. The first interval on f1, spans the value range 
[1,3], and it votes only for the C1 class. 
 
2.3 Classification 
 
The classification (querying) process in the BCFP 
algorithm is given in Fig. 3. The process starts by 
initializing the votes of each class to zero. The 
classification operation includes a separate pre-
classification step on each feature.  
 



Fig. 2. Feature intervals formed for a sample training set. 

The pre-classification on feature f involves a search for 
the interval on feature dimension f into which qf falls, 
where qf is the value of the query instance q for feature f. 
If that value is unknown (missing), then that feature does 
not participate in the voting. Hence, the features 
containing missing values are simply ignored. 
 
If the qf value is known, the interval I into which qf falls is 
searched. If the qf value does not fall in any interval on f, 
then again the feature f does not participate in the voting, 
which means that that value for the feature f has not been 
observed in the training set. If an interval I is found that 
includes the qf value, then the votes of I are the votes that 
f casts in the voting. Since the sum of the votes of an 
interval is normalized to 1 during the training, each 
feature has an equal power in the voting.  
 
Finally, the class that receives the highest amount of votes 
is returned as the predicted class of the query instance q. 
Although a single class returned as the prediction of the 
query instance, the votes received by each class are also 
made available to the user, so that the level of the 
confidence of this prediction can be measured. The benefit 
accuracy of the classification is obtained directly from the 
normalized benefit table. If the actual class of q is qc, and 
the predicted class is p, then the accuracy is NB[p, qc]. 
Note that the classical definition of predictive accuracy, as 
the ratio of number of correct classifications over the total 
number of test instances, is a special case obtained by 
setting all the diagonal entries of the NB table to 1, and all 
other entries to 0. Therefore, in the rest of the paper, the 
term accuracy will be used to refer the benefit accuracy. 

classify(q): /*  q: query instance to be classified * /  
begin  
 /*  initialize total votes * / 
 for each class c vote[c] = 0  
 for each feature f  
  if qf value is known  
   I = search_interval(f; qf) 
   if I is not empty 
    for each class c  
     vote[c] = vote[c] +  interval_vote(I ; c)  
 return the class c, such that vote[c] is maximum. 
end. 

Fig. 3. Classification in the BCFP algorithm. 

Continuing on the example in Fig. 2, consider the 
classification of a query instance q=<2,5,C>. The 
intervals corresponding to the query instance are shown in 
Fig. 4. The total votes for classes C1, C2 and C3 are 1, 1.6 
and 0.4, respectively. The C2 class received the highest 
amount of votes. Therefore, C2 is the predicted class of 
that query instance. The confidence of this prediction is 
1.6 / (1+1.6+0.4) = 53%.  

Query <2, 5, C> 
Feature: f1, q1=2, I1 = <1,3,1,0,0> 
Feature: f2, q2=5, I2 = <5,6,0,1,0> 
Feature: f3, q3=C, I3 = <C,C,0,0.6,0.4> 
Total votes: <1, 1.6, 0.4> 
Prediction: C2 

Fig. 4. Classification example on the sample data set. 

 
2.4 Feature Selection using a Genetic 
Algorithm 
 
The performance and of classification is sensitive to the 
choice of the features used to construct the classifier. A 
natural and safe approach in inductive machine learning is 
to provide all available features, and let the machine 
learning system to determine and use only the relevant 
ones in classification. The problem of identifying the 
relevant subset of features in the data is called feature 
subset selection. Exhaustive evaluation of possible feature 
subsets is usually infeasible in practice because of the 
large amount of computational effort required. Genetic 
algorithms offer an attractive approach to find near-
optimal solutions to such optimization problems [4]. 
 
A genetic algorithm attempts to find a good solution to the 
problem by genetically breeding a population of 
individuals over a series of generations. Each individual 
in the population represents a candidate solution to the 
given problem. The genetic algorithm transforms a 
population of individuals, each with an associated fitness 
value, into a new generation of the population using 
reproduction, crossover, and mutation [5]. 
 
We have coupled the BCFP algorithm with a genetic 
algorithm using the wrapper approach for feature subset 
selection [6]. A gene in the chromosome represents each 

Training Set: 
<1,0,B,C1> 
<4,5,A,C2> 
<3,0,B,C1> 
<4,0,C,C2> 
<7,1,C,C3> 
<4,6,A,C2> 
<5,3,?,C3> 

Normalized 
Benefit Table: 
 1   0.5  0 
0.25  1  0.5 
 0    0   1 

<A,A,0,1,0> 

<4,4,0,1,0> 

<0,0,0.625,0.375,0> 

1 2 3 4 5 6 7 8 

f1 
(linear) 

f2 
(linear) 

f3 
(nominal) 

0 1 2 3 4 5 6 7 

A   B   C 

<1,3,1,0,0> <5,7,0,0,1> 

<1,3,0,0,1> <5,6,0,1,0> 

<B,B,1,0,0> <C,C,0,0.6,0.4> 



feature. Therefore, the chromosome size is equal to the 
number of features. The genetic algorithm used with 
BCFP employed a two-way crossover operation. The 
fitness of a chromosome is computed as the 10-fold cross-
validation accuracy of the BCFP algorithm. In the 
experiments, the population size was 500. The probability 
of crossover and probability of mutation were pc = 0.9, 
and pm = 0.001, respectively. The genetic algorithm was 
run for 500 generations. 
 
3. A Case Study: The Gastric Carcinoma 
Domain 
 
Cancer of the stomach, also called gastric cancer, is a 
disease in which cancer (malignant) cells are found in the 
tissues of the stomach. Sometimes cancer can be in the 
stomach for a long time and can grow very large before it 
causes any symptoms. In the early stages of the stomach 
cancer, a patient may have indigestion and stomach 
discomfort, a bloated feeling after eating, mild nausea, 
loss of appetite, or heartburn. In more advanced stages of 
cancer of the stomach, the patient may have blood in the 
stool, vomiting, weight loss, or pain in the stomach. 
Stomach cancer is difficult to detect in its early stages 
because its early symptoms are absent or mild. 
Unfortunately, this is a highly aggressive cancer and 
overall survival rate is very low. The chance of recovery 
(prognosis) and the choice of treatment depend on the 
stage of the cancer, whether it is just in the stomach or if it 
has spread to other places, and the patient's general state 
of health.  
 
According to a report published by the Gastroenterology 
department of the Ankara University School of Medicine, 
the stomach cancer is the second most frequent type of 
cancer in men, and the third one in women [7].  
 
3.1 The Stomach 
 
The stomach is separated into upper, middle and lower 
portions. When the cancer infiltration (penetration) is 
limited in one of the three main portions, this is expressed 
by indicating C (Fundus, upper part), M (Body, middle 
part) and A (Antrum, lower part). The other possible 
locations are E (Esophagus) and D (duodenum). The 
cancer tumor placement also identified by the cross-
sectional positioning.  
 
3.2 Classification of Gastric Cancers 
 
If there are symptoms of cancer, a physician will usually 
order an upper gastrointestinal x-ray or he may also look 
inside the stomach with a gastroscope. This procedure is 
called gastroscopy, and it is useful in the detection of 
most stomach cancers. According to the Japanese 
Gastroenterological Endoscopy Society, based on the 
visual inspection of the mucosal surface of the patient’s 
stomach, gastric cancers are classified mainly into three 

categories as shown in Table 1. They are Early Gastric 
Cancers (EGC) and Advanced Gastric Cancers (AGC) 
and the remaining ones which cannot be included to these 
categories [8]. 

Table 1. Classification of Gastric Cancers. 
Type Classification 
Type 0 Early Gastric Cancer (EGC) 
Type 1 
Type 2 
Type 3 
Type 4 

Advanced Gastric Cancer (AGC) 

Type 5 The cancers that cannot be included under any of 
the above types 

 
Early gastric cancer is defined as gastric cancer confined 
to the mucosa or submucosa, regardless of the presence or 
absence of lymph node metastasis as shown in Table 2 
[9]. 

Table 2. Types of early gastric carcinoma. 
Type Properties 
I  Exophytic, protruded 
IIa Superficially elevated 
IIb Even, flat 
IIc Superficially depressed 
III  Excavated 
 
On the other hand, in advanced gastric cancers, as defined 
by Bormann, the tumor is invaded into the proper muscle 
layer beyond the stomach [10]. Moreover, knowledge of 
these types permits a preliminary assessment of tumor 
spread. According to Bormann Classification AGC’s are 
divided into four groups, Bormann I, Bormann II, 
Bormann III, and Bormann IV. 
 
3.3 The Gastric Carcinoma Data Set 
 
The Gastric Carcinoma data set used in this paper consists 
of 285 gastric cancer records. These recordings consist of 
209 male and 67 female (9 missing sex information) 
patients with age ranging from 26 to 85. 
 
3.3.1 Classes 
 
The cancers that are classified in this domain are labeled 
as C1 through C9 as Early I (C1), Early IIa (C2), Early IIb 
(C3), Early IIc (C4), Early III (C5), BI (C6), BII (C7), 
BIII (C8), and BIV (C9). The data set contains 174 early 
and 111 advanced gastric cancer patients. The distribution 
of the record set among the diseases is shown in Table 3. 
3.3.2 Features 
 
Patient records collected for diagnosis and prognosis 
typically contain values of clinical and histopathological 
investigations. The features used in this domain are 
represented as a vector of 68 features. Seven of these 
features are linear valued and the others are categorical. 



The data set contains 970 missing feature values, which 
means that 5% of the data set is missing. 
 

Table 3. The distribution of classes in the data set. 

Type Class 
Number of 

Patients 
Early Gastric Cancers  174 

Early I  C1 3 
Early IIa  C2 55 
Early IIb  C3 7 
Early IIc  C4 103 
Early III  C5 6 

Advanced Gastric Cancers  111 
BI  C6 6 
BII  C7 17 
BIII  C8 69 
BIV  C9 19 

TOTAL  285 
 
3.3.3 Benefits and Costs 
 
An important characteristic of the gastric carcinoma data 
set is that the benefit of correct classification depends on 
the class value. In this domain, benefit of correct 
classification of an early stage of a tumor is more than 
that of a later stage. For an incorrect classification, 
depending on the predicted and actual class values, a 
different cost is incurred. If the predicted class label is 
similar to the actual class, still a benefit is obtained. All 
this information is provided as a benefit table. The benefit 
table used in this experiment is given in Table 4. Positive 
values indicate benefits, while negative values indicate 
costs. The entry B[p,a] represents the benefit of predicting 
class p when the actual class is a. According to this table, 
classifying a C1 instance correctly provides 18 units of 
benefit, while classifying a C9 instance correctly provides 
only 5 units of benefit. On the other hand, predicting a C1 
instance as C6 incurs 4 units of cost. However, incorrectly 
classifying a C7 instance as a similar class C6 still 
provides 2 units of benefit. 
 
The benefit and cost values are difficult to measure and 
most of the time they are subjective. The amount of 
benefits and costs can be measured according to a 
combination of many criteria. In medical domains, the 
most important one is the possibility of saving the 
patient’ s life; the earlier the diagnosis, the longer survival. 
Other criteria may include the cost and the alternatives of 
the treatment procedure, which are inverse proportional 
with the benefit. 
 
The entries of the benefit table can be set up using any 
measuring unit meaningful to the domain experts. In order 
to eliminate the effects of the measuring unit chosen, the 
BCFP algorithm initially normalizes the entries of the 
benefit table to the [0,1] range, so that the benefit of a 
correct classification is always 1, and the benefit of the 
most costly prediction is always 0.  
 

Table 4. Benefits table for the gastric carcinoma domain. 
Negative values indicate costs. 
 Actual Class 
Prediction C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 18 6 6 6 -1 -10 -12 -15 -20 
C2 10 15 12 12 4 -8 -10 -13 -15 
C3 10 12 15 12 4 -8 -10 -13 -15 
C4 10 12 12 15 4 -8 -10 -13 -15 
C5 5 7 7 7 10 -3 -8 -11 -13 
C6 -4 -3 -3 -3 -1 8 2 1 -1 
C7 -6 -5 -5 -5 -3 4 7 4 2 
C8 -12 -10 -10 -10 -8 1 3 6 3 
C9 -20 -15 -15 -15 -11 -6 1 3 5 

 
3.4 Results 
 
The BCFP algorithm and the accompanying genetic 
algorithm for feature selection have been implemented 
and experimented on the gastric carcinoma domain. In 
measuring the performance of the BCFP algorithm we 
used 10-fold cross-validation accuracy. This technique 
ensures that the training sets are disjoint, and each 
instance in the data set is classified exactly once. 
 
Using all of the 68 features of the data set, the BCFP 
algorithm achieved 85.7% accuracy. However, the feature 
selection algorithm chose only 32 of the 68 features as 
relevant for a beneficial classification. With the selected 
set of features the BCFP algorithm achieved 94.3% 
accuracy. Some of the rules induced by the BCFP 
algorithm are shown in Fig. 5. The numbers following the 
class labels indicate the votes of each corresponding class.  

Fig. 5. Sample rules induced by BCFP. 
 
The rules constructed by the BCFP algorithm are easy to 
be verified by experts. According to these rules, if the 
depth of the lesion is 1 (mucosa) or 2 (sub mucosa), then 
it is more likely that the case is an early gastric cancer; 
while if the depth is 4 (subserosa) or 5 (serosa) then 
advanced gastric cancer is more certain. If the lesion has a 

If 1 �  depth � 2 then 
 C1/0.14 C2/0.18 C3/0.17 C4/0.18 

 C5/0.14 C6/0.08 C7/0.07 C8/0.04 C9/0 

If depth = 3 then  

 C1/0 C2/0.13 C3/0 C4/0.14 C5/0 C6/0 

 C7/0.37 C8/0.36 C9/0 

If 4 �  depth � 5 then C1/0 C2/0.04 
 C3/0 C4/0.05 C5/0.07 C6/0.19 C7/0.22 

 C8/0.23 C9/0.20 

If flower bed app = Present then 

 C1/0 C2/1 C3/0 C4/0 C5/0 C6/0 C7/0 

 C8/0 C9/0 

if infiltrated ulcer = Present then 

 C1/0 C2/0 C3/0 C4/0.06 C5/0 C6/0 

 C7/0.32 C8/0.33 C9/0.29 

If erosion = Present then C1/0.24 

 C2/0.32 C3/0 C4/0.29 C5/00 C6/0 

 C7/0.15 C8/0 C9/0 



flower bed appearance, then it is certainly Early IIa. On 
the other hand, if the infiltrated ulcer is present, then the 
case is either BII, BIII or BIV. The other rules can be 
interpreted in the similar manner. 
 
In order to see how difficult it is to make a prediction with 
high benefits, we have conducted an experiment with 16 
fellows on internal medicine. The students were shown 
only the data set that was used by the BCFP algorithm. As 
a group, the fellows’ accuracy was 63%. This indicates 
that making accurate decision in the diagnosis of the 
gastric carcinoma is quite difficult. 
 
4 .Conclusions 
 
In this paper, a new classification algorithm, called BCFP, 
has been developed and applied to the diagnosis of gastric 
carcinoma tumors. The BCFP algorithm aims to maximize 
the benefit of classification, reducing the cost of possible 
misclassifications. It uses the feature projections based 
knowledge representation. 
 
The feature projections based knowledge representation 
allows the BCFP algorithm to process each feature 
separately. The missing feature values of instances are 
simply ignored, and only the known values are used both 
in training and querying. The classification model is 
constructed only using the known feature values of the 
training instances. Also the class of a query instance is 
predicted by considering only the given values of the 
features. This feature of the BCFP algorithm makes it 
robust to missing feature values. Another advantage of 
using the feature projections as the knowledge 
representation is that the constructed rules are based on a 
single feature and an associated set of values. Therefore, 
the rules are simple and easy to be verified by a human 
expert. The rules constructed for the gastric carcinoma 
dataset have been verified and found to be correct by the 
expert gastro-enterologists. 
 
The BCFP algorithm is applicable, in particular, to 
concepts where each feature, independent of the other 
features, can be used in the classification. One might think 
that this requirement may limit the applicability of BCFP, 
since in some domains the features might be dependent on 
each other. Holte has pointed out that the most real-world 
classification tasks are such that their attributes can be 
considered independently of each other [12]. 
 
The BCFP algorithm achieved very good accuracy on the 
gastric carcinoma dataset. The result was even better than 
the medical students specializing on internal medicine. 
This showed us that the differential diagnosis of gastric 
carcinoma classes is quite difficult even for medical 
doctors. We used a genetic algorithm for selecting the 
relevant features. With selected features the BCFP 
algorithm achieved excellent classification accuracy. 
 

The BCFP algorithm constructs a rule for each interval 
formed by the projections of training instances on 
features. The votes of an interval to the class labels are 
based on the number of training instances with that class 
value falling in that interval, and the entries of the benefit 
table. A rule which gives similar votes to each class does 
not make any difference in the final classification of the 
query instance. Such a rule is usually uninteresting to the 
domain expert. Therefore it can be discarded from the 
model. As a future work we plan to develop a system that 
can measure the interestingness of a rule constructed by 
the BCFP algorithm. Selecting only the interesting rules 
may provide a domain expert with some pointers for 
further experiments and research ideas. 
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