
 
 

Interactive Rule Interestingness Learning* 
 

Tolga Aydın and H.Altay Güvenir 
 

Bilkent University  
Department of Computer Engineering 

 
 Bilkent, 06800 Ankara, TURKEY 

{atolga, guvenir}@cs.bilkent.edu.tr 
 

Abstract. Data mining is the efficient discovery of patterns in large databases, 
and classification rules are perhaps the most important type of patterns in data 
mining applications. However, the number of such classification rules is generally 
too huge that selection of interesting ones among all discovered rules becomes 
an important task. In this paper, factors related to the interestingness of a rule are 
investigated and some new factors are proposed. Following this, an interactive 
rule interestingness-learning algorithm (IRIL) is developed to automatically label 
the classification rules either as “interesting” or “uninteresting” with limited user 
participation. In our study, VFPI (Voting Feature Point Intervals), a feature 
projection based concept description learning and classification algorithm, is also 
developed in the framework of IRIL. Being specific to our concerns, VFPI takes 
the rule interestingness factors as features and is used to learn the rule 
interestingness concept and to classify the unlabeled classification rules. The 
success of the previously developed feature projection based learning and 
classification techniques encouraged us to develop VFPI. The empirical results 
based on TCMB (Central Bank of Turkish Republic) data set give promising 
results. 
Keywords: rule interestingness, voting, feature projection based classification  

1. Introduction 

Data mining is the efficient discovery of patterns, as opposed to data itself, in large 
databases [5].  Patterns in the data can be represented in many different forms, 
including classification rules, association rules, clusters, sequential patterns, time 
series, contingency tables, and others [6]. However, the number of discovered 
patterns is usually too big such that the user analyzing the patterns is generally 
interested in a subset of them. Therefore, selection of interesting patterns seems 
to be an important research topic. 
In this paper, we concentrate on the patterns represented by the classification 
rules and develop an interactive rule interestingness-learning algorithm (IRIL) to 
automatically classify these rules or to select the interesting ones, with limited user 
participation. In our study, VFPI (Voting Feature Point Intervals), a feature 
projection based concept description learning and classification algorithm, was 
also developed in the framework of IRIL. Being specific to our concerns, VFPI 
takes the rule interestingness factors as features and is used to learn the rule 
interestingness concept and to classify the unlabeled classification rules. On the 
other hand, BCFP (Benefit Maximizing Classification using Feature Projections) 
classification rules learning algorithm [8] was employed to obtain the rules whose 
interestingness labels will be determined. In our previous related study [9], 
Quinlan’s C4.5/C5.0 [7], an industrial quality decision tree and classification rule 

                                                           
* This project is supported by TUBITAK (Scientific and Technical Research Council of Turkey) under Grant 

101E044. 

 1

mailto:guvenir}@cs.bilkent.edu.tr


 
 

induction technique, had been used. BCFP learns probabilistic classification rules, 
whereas C4.5/C5.0 learns single-class predicting classification rules. Actually, 
C4.5/C5.0, BCFP and VFPI are all concept description learning and classification 
algorithms. 
The interestingness issue has been an important problem ever since the beginning 
of data mining research [2]. There are many factors contributing to the 
interestingness of a discovered pattern [2, 3, 4]. Some of them are coverage, 
confidence, support, completeness, unexpectedness and actionability. The first 
four factors are objective and the last two factors are subjective. Objective 
interestingness factors can be measured independently of the user. However, 
subjective interestingness factors are not user-independent. The value of a 
subjective interestingness factor may vary among users and even for the same 
user analyzing the discovered pattern at different times.  
An objective interestingness measure is constructed by combining a proper subset 
of the objective interestingness factors in a suitable way. For example, objective 
interestingness factor x can be multiplied by the square of the objective 
interestingness factor y to obtain an objective interestingness measure of the form 
xy2.  It is also possible to use an objective interestingness factor x alone as an 
objective interestingness measure. (e.g. Confidence) Discovered patterns having 
Confidence ≥ threshold may be regarded as “interesting”. Although the user 
determines the threshold, this is regarded as limited user participation and the 
interestingness measure is still assumed to be objective. 
The existing subjective interestingness measures in the literature are constructed 
upon unexpectedness and actionability factors. Assuming the discovered pattern 
to be a classification rule induced from a data set (domain), the user figures out 
the unexpected, expected, actionable and/or inactionable rule templates (a rule 
template consists of the specific features of the domain under study and their 
associated specific ranges of values) at the beginning. The rules are then 
compared with these templates. The rules having high matching values with 
unexpected and/or actionable templates are usually selected as the subjectively 
interesting rules. 
Both types of interestingness measures have some drawbacks. A particular 
objective interestingness measure that is suitable for one domain may not be 
suitable for another domain. On the other hand, in the case of subjective 
interestingness measures, rule templates may be difficult to express. There are 
two reasons for this: As the number of features of a data set (domain) increases, 
the rule templates may become quite complex to express. Furthermore, even if the 
rule templates are not complex, the user may not be well in expressing his 
expectations/knowledge in computer languages. It would be better if the rule 
templates were determined automatically. The second drawback of a subjective 
interestingness measure is the necessity of expressing the rule templates in terms 
of the features of the domain. Therefore, for each domain, we need to deal with 
different features. It would be better to have rule templates that are expressed 
independent of the features of the domain. The third drawback of a subjective 
interestingness measure is that rules are compared with the rule templates that 
address the unexpectedness and/or actionability issues. Interestingness is 
assumed to depend on these two issues. However, it would be better if we had 
rule templates that dealt with the interestingness issue directly and if we benefited 

 2



 
 

from unexpectedness and actionability as two of the factors used to express the 
rule templates. That is, interestingness of a pattern may depend on different 
factors and is not fixed to just unexpectedness and actionability issues. 
The idea of rule templates that are automatically determined, independent of the 
features of the domain and directly related with the interestingness issue 
motivated us to design IRIL (Interactive Rule Interestingness Learning) algorithm 
that learns a concept description (here concept description takes the form of rule 
templates), a subjective interestingness measure. To ensure that rule templates 
are independent of the features of the domain, factors related with the rule 
interestingness issue were used to construct the templates. For the time being, 
some existing and newly developed objective interestingness factors that have the 
capability to determine the interestingness of rules were used to construct these 
templates. That is, these objective interestingness factors took the role of the 
features, on which the rule templates were previously defined, of the domain. 
However, the interestingness factors are not just limited to the objective ones. We 
can also use the subjective interestingness factors.  
Furthermore, the rule templates used in IRIL are directly related with the rule 
interestingness issue. That is, a rule template gives characteristics of either 
interesting or uninteresting rules.  
Lastly, rule templates used in the literature are figured out at the beginning, and 
input rules to be labeled are compared with these templates. However, in IRIL, this 
is not the case. The rule templates are determined or learned automatically rather 
than expressing them manually at the beginning. Input rules are still compared 
with these templates. But, an input rule is labeled if the rule templates make 
labeling with high certainty. If the labeling or classification certainty factor is not 
sufficient, user is asked to classify the rule manually. The user looks at the 
interestingness factors (current version of IRIL includes only some existing and 
newly developed objective interestingness factors) and labels the rule accordingly. 
In IRIL, rule templates are learned or updated incrementally by using the 
interestingness labels of the rules that are on demand given either as “interesting” 
or “uninteresting” by the user. That is, our rule interestingness-learning algorithm is 
interactive. 
In this paper, we deal with classification rules that were obtained using BCFP 
classification rules learning algorithm on TCMB data set. This data set includes 
information about 25632 companies that were given credit by the central bank. 
These classification rules are classified (labeled) either as interesting or 
uninteresting by the IRIL algorithm that is the focus of this paper. 
TCMB Data set is described in section 2. Section 3 is devoted to the classification 
rules induced by the BCFP algorithm on TCMB data set. This section also explains   
how a rule set is constructed from the classification rules, including the knowledge 
representation, interestingness labels and the rule interestingness factors of this 
rule set. Section 4 deals with the new IRIL algorithm, explaining the VFPI (Voting 
Feature Point Intervals) feature projection based concept description learning and 
classification algorithm developed in the framework of IRIL, vote evaluation 
strategies, the general execution of IRIL and experimental results on TCMB data 
set. We conclude the paper with some remarks and suggestions for future study. 

 3



 
 

2. Central Bank of Republic of Turkey (TCMB) Data Set 

TCMB data set includes information related to the companies that were given 
credit by the central bank. The data set includes 164 determining features, 159 of 
which take linear and 5 of which take nominal values, and one target feature. 
Some of the determining features are shown in Table 1. The target feature takes 
two possible values: “SUCCEED” (The company paid back the credit to the central 
bank) and “FAIL” (The company could not pay back the credit). TCMB data set is a 
comprehensive set consisting of 25632 instances. 

3. Rules belonging to the TCMB Data Set 

We used BCFP benefit maximizing, feature projection based classification rules 
learning algorithm on TCMB data set and obtained 184 classification rules. These 
rules were used to evaluate the success of IRIL interactive rule interestingness-
learning algorithm. Any classification rule learned by BCFP distributes its votes 
among possible target feature values such that the sum of votes is one. Therefore, 
rules of BCFP are probabilistic rather than concrete.  
The aim of the study presented in this paper is to select the interesting rules from 
the set of learned classification rules. This selection problem is modeled as a new 
classification problem and a rule set is produced for the given rules. There are a 
total of 184 instances in this rule set, where an instance is constructed for each 
corresponding rule. Each instance is represented by a vector whose components 
are the interestingness label of the corresponding rule and the interestingness 
factor values having the potential to determine the interestingness of the 
corresponding rule. The knowledge representation, the interestingness label 
concept and the interestingness factors used in the representation of the instances 
are explained in detail in the following section. 

3.1 Knowledge Representation 

IRIL tries to classify the corresponding rules of the rule set automatically according 
to their interestingness. Therefore, it performs a second level of data mining and 
makes learning of learning. 
Each such classification rule produced by BCFP is in the form of If (Aj op value) 
(then)  (SUCCEED: voteSUCCEED, FAIL: voteFAIL) and produces just one instance. 
Here, Ai is any feature of the TCMB data set (such as Cari Oran, Likidite Oranı …), 
op ∈ {=, ≠, <, ≤, >, ≥}, value is either a real number or string. The target feature 
value that takes the highest vote becomes the major class of that classification 
rule. The instance produced by the corresponding rule is shown by a vector 
consisting of linear or nominal determining feature values and a target feature 
value, just as every instance of any data set. However, as opposed to an ordinary 
data set, features of an instance in our rule set are in fact rule interestingness 
factors some of which were developed throughout the study presented in this 
paper. Each feature carries information about a specific property of the 
corresponding rule. On the other hand, the target feature value of the instance 
denotes the interestingness label of the associated rule.  
 

 4



 
 

Table 1. Some features of TCMB data set. 
` Name of Feature Type Code Name of Feature Type 
F1 Borsa Nominal F35 CalismaSermayesiDevirHizi Linear
F2 YilKurtar Linear F36 NetCalismaSermayesiDevirHizi Linear
F3 Sector Nominal F37 MaddiDuranVarlikDevirHizi Linear
F4 OzKaynak Nominal F38 DuranVarlikDevirHizi Linear
F5 NetSermaye Nominal F39 OzKaynaklarDevirHizi Linear
F6 DonemKar Nominal F40 AktifDevirHizi Linear
F7 Yil Linear F41 NetKarOzKaynaklarOrani Linear
F8 CariOran Linear F42 VergiOncesiKarOzKaynaklarOrani Linear
F9 LikiditeOrani Linear F43 FaizVeVergiOncesiKarPasifTorani Linear
F10 NakitOrani,Stoklar Linear F44 NetKarAktifToplamiOrani Linear
F11 StoklarDönenVarliklarOrani Linear F45 FaaliyetKariFaaliyetin 

GerceklestirilmesindeKulvarlikOrani 
Linear

F12 AktifToplamiOrani Linear F46 BirikmeliKarlilikOrani Linear
F13 StokBagimlilikOrani Linear F47 FaaliyetKariNetSatislarOrani Linear
F14 KisaVadeliAlacaklarDönen 

VarliklarOrani 
Linear F48 BrütSatisKariNetSatislarOrani Linear

F15 KisaVadeliAlacaklarAktif 
ToplamiOrani 

Linear F49 NetKarNetSatislarOrani Linear

F16 YabanciKaynaklarToplamiAktif 
ToplamiOrani 

Linear F50 SatilanMalinMaliyetiNetSatislarOrani Linear

F17 OzKaynaklarAktifToplamiOrani Linear F51 FaaliyetGiderleriNetSatislarOrani Linear
F18 OzKaynaklarYabanciKaynaklar 

ToplamiOrani 
Linear F52 FaizGiderleriNetSatislarOrani Linear

F19 KisaVadeliYabanciKaynaklarPasif 
ToplamiOrani 

Linear F53 FaizVeVergiOncesiKarFaiz 
GiderleriOrani 

Linear

F20 UzunVadeliYabanciKaynaklarPasif 
ToplamiOrani 

Linear F54 NetKarVeFaizGiderleriFaiz 
GiderleriOrani 

Linear

F21 UzunVadeliYabanciKaynaklarDevamli 
SermayeOrani 

Linear F55 BankaKredileriNetSatislar Linear

F22 MaddiDuranVarliklarOzKaynaklarOrani Linear F56 BrütSatisKariAktifToplami Linear
F23 MaddiDuranVarliklarUzunVadeliYabanci 

KaynaklarOrani 
Linear F57 CabukDegerlerAktifToplami Linear

F24 DuranVarliklarYabanciKaynaklar 
ToplamiOrani 

Linear F58 CabukDegerlerNetSatislar Linear

F25 DuranVarliklarOzKaynaklarOrani Linear F59 CabukDegerlerStoklar Linear
F26 DuranVarliklarDevamliSermayeOrani Linear F60 DönenVarliklarYabanciKaynakToplami Linear
F27 KisaVadeliYabanciKaynaklarYabanci 

KaynaklarToplamiOrani 
Linear F61 DuranVarliklarAktifToplami Linear

F28 BankaKredileriAktifToplamiOrani Linear F62 FaaliyetKariAktifToplami Linear
F29 KisaVadeliBankaKredileriKisaVadeli 

YabanciKaynaklaOrani 
Linear F63 FaaliyetKariNetIsletmeSermayesi Linear

F30 BankaKredileriYabanciKaynaklar 
ToplamiOrani 

Linear F64 FaaliyetKariOzKaynaklar Linear

F31 DönenVarliklarAktifToplamiOrani Linear F65 FaizGiderleriYabanciKaynakToplami Linear
F32 MaddiDuranVarliklarAktifToplamiOrani Linear F66 FaizGiderleriHazirDegerler 

MenkulKiymetler 
Linear

F33 StokDevirHizi Linear F67 FaizVeVergiOncesiKarDuranVarliklar Linear
F34 AlacakDevirHizi Linear F68 FaizVeVergiOncesiKarNetSatislar Linear

 

3.2 Interestingness Labels 

There are two possible interestingness labels for each rule: “interesting” and 
“uninteresting”. While running and evaluating the accuracy performance of the IRIL 

 5



 
 

algorithm for the classification rules of the TCMB data set, the user classified each 
rule either as “interesting” or “uninteresting”. 

3.3 Rule Interestingness Factors 

Rule set, like all data sets, has some determining features. And each feature 
corresponds to one of the rule interestingness factors some of which were 
developed in the framework of this study. There are 13 features (factors) used and 
Table 2 shows the names and the possible values taken by these features for 
TCMB data set. Among these features, ten are of linear and three are of nominal 
type. The rule set does not include any missing feature value. 
Any rule learned by the BCFP algorithm distributes its vote, 1, among “SUCCEED” 
and “FAIL”. However, the target feature value that takes the highest vote becomes 
the major class of that classification rule and this constitutes the instance’s first 
feature’s value in the rule set. For instance, if a rule learned from the TCMB data 
set has “FAIL” as the major class, the value of the first feature of the instance 
associated with that rule becomes “FAIL”. 
  
Table 2. Features of the rule set. 
Feature Values  

Major Class SUCCEED, FAIL  

Major Class Frequency [0, 1]  

Rule Size 1 

Confidence with respect to Major Class [0, 1]  

Coverage [0, 1]  

Support with respect to Major Class [0, 1]  

Completeness with respect to Major Class [0, 1]  

Zero Voted Class Count 0, 1 

Standard Deviation of Class Votes ≥ 0 

Major Class Vote (0.5, 1]  

Minor Class Vote [0, 0.5)  

Decisive TRUE, FALSE 

Strong Decisive TRUE, FALSE 

 
Below one of the rules produced by BCFP algorithm for the TCMB data set is 
given: 
Rule 79: 

If FaizGiderleriHazırDeğerlerMenkulKıymetler ≥ 27.25  

Then ( ) Major Class = “FAIL” (“SUCCEED”: 0.28, “FAIL”: 0.72) 

 6



 
 

  
The user labeled this rule as “uninteresting”. And the associated instance of this 
rule is constructed as follows: 
Major Class = “FAIL” 

Major Class Frequency = 0.022784 

Rule Size = 1 

Confidence with respect to Major Class = 0.038069 

Coverage = 0.057389 

Support with respect to Major Class = 0.002185 

Completeness with respect to Major Class = 0.095890 

Zero Voted Class Count = 0 

Standard Deviation of Class Votes = 0.185522 

Major Class Vote = 0.718633 

Minor Class Vote = 0.281367 

Decisive = “FALSE” 

Strong Decisive = “TRUE” 

Interestingness Label = “uninteresting” 
Among the features shown above, Major Class Frequency gives the ratio of the 
instances of the data set that have “FAIL”, the value of the first feature of the 
instance associated with Rule 79, as the target feature value. Rule Size feature 
shows the number of conditions in the antecedent part of the rule. For a rule 
shown as If (A op value) (then)  Major Class = B: 
n: total number of instances in the data set 
|A|: number of instances satisfying the rule antecedent in the data set 
|B|: number of instances having B as the target feature value in the data set 
|A&B|: number of instances satisfying both by the rule antecedent and consequent 
in the data set 
According to this information, other feature values of an instance of the rule set are 
determined as follows: 
Confidence with respect to Major Class = |A&B| / |A| 

Coverage = |A| / n 

Support with respect to Major Class = |A&B| / n 

Completeness with respect to Major Class = |A&B| / |B| 

Zero Voted Class Count feature gives the number of target feature values that 
were given a zero vote by the rule. For the case of TCMB data set, this feature will 
either be 0 or 1 since we have two values for the target feature, namely 
“SUCCEED” and “FAIL”. Standard Deviation of Class Votes is the standard 
deviation of the votes of the all target feature values. Furthermore, Major Class 
and Minor Class features give the vote amount of the target feature value that 
received the highest and lowest vote, respectively. 

 7



 
 

The last two features take boolean values. A rule is decisive (Decisive = “TRUE”) if 
the standard deviation of the votes is greater than smin, whose definition is given 
below: 

smin =
alueCountetFeatureVT)alueCountetFeatureVT arg1arg −(

1  

If a rule distributes its vote, 1, evenly among all possible target feature values, 
then the standard deviation of the votes becomes zero and the rule becomes 
extremely undecisive. This is the worst vote distribution that can happen. The next 
worst vote distribution is obtained if exactly one target feature value takes a zero 
vote, and the all vote is distributed evenly among the remaining target feature 
values. The standard deviation of the votes that will occur in such a scenario is 
called smin. 
Lastly, if the difference of the two highest votes is greater than 

alueCountetFeatureVT arg
1 , then the rule is said to be strongly decisive (Decisive = 

“TRUE”). 

4. IRIL Algorithm 

IRIL (Interactive Rule Interestingness Learning) is an interactive, feature projection 
based rule interestingness-learning algorithm. Rules produced by any rule-learning 
algorithm (In our study, BCFP was chosen as the rule learning algorithm) are 
taken as input rules, and IRIL tries to classify these rules automatically according 
to their interestingness.  

4.1 Learning Concept Description by the VFPI Algorithm 

VFPI (Voting Feature Point Intervals) is a feature projection based concept 
description learning and classification algorithm developed in our study. It is used 
to learn the rule interestingness concept and to classify the unlabeled rules.  
The learning phase of VFPI, given in Figure 1, is achieved incrementally. On a 
nominal feature, concept description is shown as the set of point intervals and the 
number of instances from each possible target feature value (In our TCMB case, 
from “interesting” and “uninteresting” interestingness labels) at each point interval. 
On the other hand, on a linear feature, concept description is shown as the set of 
infinite point intervals and the normal (gaussian) probability density functions for all 
target feature values (In our TCMB case, for both interestingness labels). Concept 
descriptions on linear features differ from our previous study presented in [9]. We 
were using VFI (Voting Feature Intervals) concept description learning and 
classification algorithm, in which concept description on a linear feature was 
shown as the set of range intervals and the number of instances from each 
possible target feature value at each range interval. However, in this paper, it is 
assumed that the instance space of each target feature value has a normal 
probability density function. 
 

 8



 
 

VFPItrain ( t )    /* t: training instance added into the training set */ 
begin 
 let c be the class of t 
 let others be the remaining classes 
 
 if training set = {t}  /* if t is the 1st training instance, initialize class counts */ 
  for each class a 
   class_count [ a ] = 0 
 
 class_count [ c ] = class_count [ c ] + 1 
  
 for each feature f  
   
  if f is nominal 
 
   i = find_point_interval(f, tf) 
 
   if such an i exists   /* if tf value is observed in the training set */ 
    point_interval_class_count [ f, i, c ] = point_interval_class_count [ f, i, c ] + 1 
 
   else    /* add new point interval for the nominal feature f */ 
    let k be the point_interval_count [ f ] 
    k = k + 1 
    point_interval class_count [ f, k, c ] = 1 
    point_interval_class_count [ f, k, others ] = 0 
             
  else if f is linear   /* update normal density function parameters for c */ 
 
   if training set = {t}  
    µf, c = tf     
    µf, others = 0 
    µ2

f, c = tf
2     

    µ2
f, others = 0 

  
   else 
    µf, c = (µf, c * (class_count[c]-1) + tf) / class_count[c] /* update µf, c */ 
    µ2

f, c = (µ2
f, c * (class_count[c]-1) + tf

2) / class_count[c] /* update µ2
f, c */ 

    update σf, c    /* the details are omitted here */ 
    

 return normal density functions (for linear features) and point intervals (for nominal features) 
end. 

Figure 1. Incremental train in VFPI. 
 
For a nominal feature f, find_point_interval (f, tf) procedure tries to find the training 
instance’s value at feature f (tf) in the concept description belonging to f. If tf is 
found in a point interval i, then point_interval_class_count [f, i, c] is incremented by 
1, assuming that the training instance has target feature value c. If tf is not found in 
any point intervals, then a new point interval n is constructed and 
point_interval_class_count [f, n, class] is initialized to 1 for class = c, and to 0 for 
all other possible target feature values (for all class ≠ c). In our study, feature 
values used in VFPI are the interestingness factor values computed for the 

 9



 
 

classification rules, and target feature takes only two values. That is, using the 
above terminology, class = “interesting” or class = “uninteresting”. 
For a linear feature f, if a training instance t having target feature value c is 
examined, we let the previous training instances having class = c to construct a set 
P and let µf, c and σf, c to be the mean and the standard deviation of the values of 
the instances in P on feature projection f, respectively. Then, µf, c and σf, c are 
updated incrementally so that the previous training instances’ values on f need not 
be stored anywhere. Being able to update σf, c incrementally requires µ2

f, c to be 
updated incrementally, too. This can easily be understood by looking at the below 
formula, which is a rearranged form of standard deviation calculation to be suitable 
for incremental update: 

σf, c = )2
c  f,

2
c f, )(µ(µ

1]c  [ tclass_coun
]c  [ tclass_coun

−
−

 

When a training instance t of class c comes in hand, the below three 
computations are made incrementally, also leading to the incremental update of 
standard deviation. 
class_count [ c ] = class_count [ c ] + 1 

µf, c = 
]c  [ tclass_coun

t1)]c  [ nt(class_cou*µ fc f, +−
 

µ2
f, c = 

]c  [ tclass_coun
t1)]c  [ nt(class_cou*µ fc f,

2 2+−  

If the training instance t is the first training instance, concept description 
parameters are initialized as follows: 

µf, class = tf  (if class = c)     

µf, class = 0  (if class ≠ c) 

µ2
f, class = tf2 (if class = c)  

µ2
f, class = 0 (if class ≠ c) 

For just one training instance, it is not possible to compute standard deviation. 
Following these required updates, normal probability density functions for all target 
feature values are computed. Since we make interestingness analysis and just 
have two interestingness labels, two such functions are obtained as follows: 

e erestingf

erestingffq

2
int,2

2)int,(

ginterestinf, 2πσ
1

σ

µ−
−

   (qf  ∈ (-∞, +∞)) 

e erestingunf

erestingunffq

2
int,2

2)int,(

inguninterestf, 2πσ
1

σ

µ−
−

  (qf  ∈ (-∞, +∞)) 

For a better understanding of concept description learning, let us look at the 
sample data set in Figure 2. 

 10



 
 

 

 
Figure 2. Sample data set. 
 
This data set consists of 10 training instances, having one nominal (f1) and one 
linear  (f2) feature. Nominal feature takes just two values “A” and “B”, whereas 
linear feature takes some integer values. Furthermore, target feature takes two 
possible values: “interesting” and “uninteresting”. In Figure 3, concept descriptions 
learned at both features are shown.  
 

 
Figure 3. Concept description learned for the sample data set. 
 

 11



 
 

For the nominal feature, there are two point intervals. The point interval “B” 
includes 3 instances of class “interesting” and 4 instances of class “uninteresting”. 
That is: 
point_interval classcount [ f1, B, interesting ]  = 3 
point_interval classcount [ f1, B, uninteresting ]  = 4 
For the linear feature, normal probability density functions are constructed. 

4.2 Classification in the VFPI Algorithm 

Classification phase of VFPI algorithm is shown in Figure 4. The query instance is 
projected on all features and each feature gives votes for each possible target 
feature values. If a feature is not ready to classification process, it gives zero, 
otherwise gives normalized votes. Normalization ensures that each feature has the 
same weight in classifying the query instances. However, if a feature is not ready, 
it does not involve in the classification process, therefore need not give normalized 
votes. 
The criterion for a feature to be ready or not to be ready for the classification 
process was developed to ensure that we do not need any warm-up training 
instances, used in our previous study [9], anymore. For a feature to be ready for 
the classification process, it should have at least two different values for each 
target feature value. For example, if we look at the data set in Figure 2, f2 linear 
feature has five different values for “interesting” (1, 2, 5, 10, 14), and again five 
different values for “uninteresting” (7, 13, 20, 25, 30), so this feature is ready. On 
the other hand, f1 nominal feature has two different values for “interesting” (A, B), 
and again two different values for “uninteresting” (A, B), so this feature is ready, 
too. In the given example, it is just by chance to have same number of different 
values for each target feature value (Like five different values for “interesting” and 
“uninteresting”, or two different values for “interesting” and “uninteresting”). 
The classification in the VFPI starts by giving a zero vote for each target feature 
value (for each class) on each feature dimension. The features that are not ready 
do not participate in the classification process. The participating features are 
handled according to their type. For a nominal feature f, find_point_interval (f, qf) 
procedure is used to search whether qf (query instance q’s value on feature f) 
exists in the set of point intervals. If qf is found in a point interval i, feature f gives 
votes for each target feature value as shown below, and then these votes are 
normalized to ensure equal voting power among features. 

feature_vote [f, c] = 
]c  [ tclass_coun

]c i,f, [ _countrval_classpoint_inte  

In the above equation, we divide the number of class c instances on point interval i 
of feature f by the number of total class c training instances to increase the vote 
given to minor class. 
 

 12



 
 

VFPIquery(q )      /* q: query instance*/ 
begin 
 for each feature f 
  for each class c   
   feature_vote [ f, c ] = 0     /* vote of feature f for class c */ 
 
  if feature_ready_for_query_process (f) 
 
   if f is nominal 
    i = find_point_interval (f, qf) 
    if such an i exists   /* if qf value is observed in the training set */ 
     for each class c 

      feature_vote [ f, c ] = 
][

][
ctclass_coun

ci,f,_countrval_classpoint_inte   

     normalize_feature_votes (f)   /* such that 1],[_ =∑ c
cfvotefeature */ 

 
   else if f is linear 
    for each class c 

     feature_vote [ f, c ] = lim ∆x → 0 e cf

cffq

2
,2

2),(

cf, 2πσ
1

σ

µ−
−

∆x 

    normalize_feature_votes (f)    /* such that 1],[_ =∑ c
cfvotefeature */ 

 
 return feature_vote [ f, c ] for each f, c pair  
end. 

Figure 4. Classification in the VFPI. 

 
For a linear feature f, each target feature value (class) gets the vote given in the 
below equation. These votes are then normalized, too. 

feature_vote [f, c] = lim ∆x → 0 e cf

cffq

2
,2

2),(

cf, 2πσ
1

σ

µ−
−

∆x  

Assuming that a random variable x has the normal probability density function 

 f (x) = e
x

22

2)(

2πσ
1

σ

µ−
−

, let f (a) = b, where a, b are real numbers. Then in the 

distribution of the random variable x, the ratio of the x = “a” values is not “b”, but  
“b lim ∆x → 0 ∆x” which is actually 0. This can lead us to think that feature_vote [f, c] 

will be zero for all classes and there will be a 
0
0  situation in the vote normalization 

process. However, since “lim ∆x → 0 ∆x” term appears both in the numerator and the 
denominator, they cancel each other and no problem occurs. 
Classification process can be better explained by an example. We use the data set 
in Figure 2, learned concept description in Figure 3 and the query instance shown 
by the <A, 8> vector. Query instance’s positions on both features are shown in 
Figure 3. 

 13



 
 

feature_vote [ f1, interesting ] = 
5
2  =0.4 

feature_vote [ f1, uninteresting ] = 
5
1  =0.2 

normalized_feature_vote [ f1, interesting ] = 
2.04.0

4.0
+

 = 0.67 

normalized_feature_vote [ f1, uninteresting ]  = 
2.04.0

2.0
+

 = 0.33 

feature_vote [ f2, interesting ] = lim ∆x → 0 e 25.5*2

2)4.68(

2π5.5
1 −

−
 ∆x 

    = 0.07 lim ∆x → 0 ∆x 

feature_vote [ f2, uninteresting ] = lim ∆x → 0 e 219.9*2

2)198(

2π9.19
1 −

−
 ∆x 

   =  0.02 lim ∆x → 0 ∆x 

normalized_feature_vote [ f2, interesting ] = 
x limx lim

x lim
xx

x

∆+∆
∆

→∆→∆

→∆

00

0

02.007.0
07.0  = 0.78 

normalized_feature_vote [ f2, uninteresting ] = 
x limx lim

x lim
xx

x

∆+∆
∆

→∆→∆

→∆

00

0

02.007.0
02.0  

 = 0.22 
The example consists of two classes “interesting” and “uninteresting”. Class 
“interesting” takes the set of votes {0.67, 0.78}, and class “uninteresting” takes the 
set of votes {0.33, 0.22}. The way these votes are used to predict a class for the 
query instance depends on the vote evaluation strategy, which will be explained in 
the next section. The classification phase of VFPI just gives the votes of all 
possible feature-class pairs. 

4.3 Vote Evaluation Strategies 

The classification phase of VFPI concludes by presenting votes of each feature for 
all possible classes. In choosing the vote evaluation strategies, we were inspired 
by Kittler J., and Hatef M.’s study on combining classifiers [10] and used 
Select_Best_Feature_Votes, Select_Median_Feature_Votes and 
Use_Majority_Voting that were studied in their paper along with 
Sum_Feature_Votes and Use_Given_Feature strategies that we developed 
ourselves. The study presented in [10] investigates the ways the predictions of 
different classifiers are combined to classify a query instance. The authors point 
out the weak points of Naïve Bayesian approach, so they make some assumptions 
to get rid of these weaknesses and explain the prediction-combining techniques 
that result from these assumptions. Our previous study presented in [9] had only 
used the Sum_Feature_Votes vote evaluation strategy. 
Figure 5 shows the Classify procedure that makes use of vote evaluation 
strategies and the classification phase of VFPI algorithm (VFPIquery). Other feature 

 14



 
 

projection based classification algorithms, rather than VFPI, in which each feature 
distributes votes among possible classes, can also be used here. For a target 
feature value (class) c, the strategies work as follows: 
 
Classify ( q, vote evaluation strategy )   /* q: query instance*/ 
begin 
 VFPIquery (q) 
 
 for each class (target feature value) c 
  final_vote [c] = 0 
 
 Cf  = -1 
 
 if  vote evaluation strategy is Sum_Feature_Votes 
  for each class (target feature value) c 

   final_vote [c] =  ∑
=

Features#

1f
] c f, [ tefeature_vo

 
 else if  vote evaluation strategy is Select_Best_Feature_Votes 
  for each class (target feature value) c 

   final_vote [c] =  ],[_max
#

1
cfvotefeature

Features

f =

   
 else if  vote evaluation strategy is Select_Median_Feature_Votes 
  for each class (target feature value) c 

   final_vote [c] =  ],[_
#

1
cfvotefeaturemedian

Features

f =

   
 else if  vote evaluation strategy is Use_Majority_Voting 
  for each class (target feature value) c 
   for each feature f 

    if feature_vote [f , c] =  ],[_max
#

1
cfvotefeature

Classes

c=

     final_vote [c] = final_vote [c] + 1 
 
 else if  vote evaluation strategy is Use_Given_Feature 
  for each class (target feature value) c 
   final_vote [c] = feature_vote [given_feature, c] 
 
 for each class (target feature value) c 

  if   <  final_vote [c]  =  ][_min
#

1
ivotefinal

Classes

i=
][_max

#

1
ivotefinal

Classes

i=

   label (classify) q as “class c” with a certainty factor Cf 
  
 return Cf 
end.    

Figure 5. Classification with vote evaluation techniques. 
 
Sum_Feature_Votes sums all features’ votes for class c. 
Select_Best_Feature_Votes finds the highest vote for class c among all features. 

 15



 
 

Select_Median_Feature_Votes sorts the votes given for class c by all features, 
and takes the median vote for class c. 
Use_Majority_Voting employs a second level voting. It initializes the final vote for 
class c to 0, and then examines the features one by one. If class c takes the 
highest vote on a feature, final vote for class c is incremented by 1. Otherwise, it 
remains the same. 
Use_Given_Feature takes the vote of the given feature for class c. In our TCMB 
rule set (also a data set, but different from TCMB data set), Support with respect to 
Major Class was chosen as the given feature (actually a rule interestingness 
factor). 
The above processes are repeated for all class values. If there exists a class c that 
gets the highest vote and there also exists at least one other class that gets a 
lower vote than c, then class c is predicted to be the class of the query instance. 
The certainty factor of the classification (Cf) is computed as follows: 

Cf = 
∑

=

Classes

i

ifinalvote

cfinalvote
#

1

][

][  

If no prediction is made, certainty factor is taken as “–1” to indicate this situation. 
In the previous section’s example, “interesting” class had {0.67, 0.78}, and 
“uninteresting” class had {0.33, 0.22} as the sets of votes from two determining 
features. Now, using Sum_Feature_Votes vote evaluation strategy, query instance 
is labeled as “interesting”. 
final vote [interesting] = 0.67 + 0.78 = 1.45 
final vote [uninteresting]= 0.33 + 0.22 = 0.55 

The certainty factor of the classification is 
0.551.45

1.45
+

 = 72% 

4.4 General Execution of IRIL Algorithm 

IRIL algorithm, shown in Figure 6, needs three input parameters: 
a) R (The set of classification rules induced by the BCFP benefit maximizing, 
feature projection based rule induction algorithm) 
b) MinCt (Minimum certainty threshold) 
c) vote evaluation strategy 
IRIL algorithm tries to classify (in our case, tries to determine the interestingness 
label) the rules in R. If the certainty factor of the classification (Cf) is bigger than 
the minimum certainty threshold (MinCt) for a query rule r, this rule is inserted into 
the successfully classified rules set (Rs). Otherwise, two situations are possible: 
either the concept description is not able to classify r (Cf = -1), or the concept 
description’s classification (prediction of r’s interestingness label) is not of sufficient 
strength. If Cf  < MinCt, rule r is presented, along with its computed thirteen 
interestingness factor values (such as Coverage, Rule Size, Decisive …), to the 
user for classification. The core point is that user is expected to classify, or label, 
the rule r by analyzing only the given interestingness factor values of the 

 16



 
 

corresponding rule. Any other criterion in labeling the rules would degrade the 
accuracy performance of IRIL. Also if the user himself labels a rule, the certainty 
factor of this labeling will be 100% by nature. Such a rule (actually the instance 
holding the newly determined interestingness label and the interestingness factor 
values of this rule) is then inserted into the training rule set Rt and the concept 
description is reconstructed incrementally. In the implementation of IRIL, VFPI was 
used as the concept-learning algorithm. That is, ReconstructConceptDescription 
procedure, in Figure 6, is in fact the training phase of the VFPI algorithm, shown in 
Figure 1. Other feature projection based concept description learning algorithms, 
rather than VFPI, can also be used to reconstruct (update) the concept description. 
 
IRIL ( R, MinCt , vote evaluation strategy) 
begin 
 Rt ∅  
 Rs  ∅ 
  
 repeat  
  for each rule r ∈R 
    
   Cf Classify (r, vote evaluation strategy) 
   
   if  Cf  < MinCt 
    ask the user to classify r 
    set Cf of  this classification to 1 
    insert r into Rt 
    ReconstructConceptDescription (r) 
 
   else 
    add r into Rs 
 
   remove r from R   
   

  for each rule r ∈  Rs 
 
   Cf Classify (r, vote evaluation strategy) 
 
   if  Cf  < MinCt 
    remove r from Rs 
    add r into R 
  
 until R is empty 
 
 output rules in Rs  
end. 

Figure 6. IRIL algorithm. 
 
All of the rules of the set R are labeled either automatically by the classification 
algorithm (In this paper, we developed and used VFPI), or manually by the user. 
User participation leads rule interestingness learning process to be an interactive 
one. When the number of instances in the training set increases, the concept 
description learned tends to be more powerful and reliable. When the labeling of 

 17



 
 

the rules ends, the rules in Rs are relabeled by the latest version of the concept 
description. Because, for instance, any rule r that was previously classified as 
“interesting” with a sufficient certainty factor by a weak version of the concept 
description may now be labeled as “interesting” with an insufficient certainty factor 
or possibly be labeled as “uninteresting” by the latest and the most reliable version 
of the concept description. Such rules are excluded from Rs and inserted into R. 
The cycle is repeated until R gets empty and IRIL concludes by presenting the 
labeled rules in Rs. The rules in Rs are labeled either as “interesting” or 
“uninteresting” with a certainty factor greater than the minimum certainty threshold. 
If the user is only interested in the interesting rules, then the rules of Rs labeled as 
“interesting” may be presented in a sorted order by the certainty factor to the user 
alone. 
The concept description in the framework of IRIL is constructed incrementally by 
the training phase of the VFPI algorithm. The previous training instances are not 
reused to update the concept description when a new training instance comes. 
Generally, the incremental and the batch versions of an algorithm lead to different 
results. However, VFPI that we developed in this study does not suffer from this 
and constructs exactly the same concept descriptions for both incremental and 
batch versions. 
In our previous study in [9], warm-up rules were being used to initialize the 
concept description. However, the number of the warm-up rules was hard to 
determine. Also, even if we determined the warm-up rule count, there must have 
been a balance between the number of rules labeled by the user as “interesting” 
and the number of rules labeled by the user as “uninteresting”. Ensuring this 
balance was not enough, either. It was possible for an interestingness factor (a 
feature) always to predict the same interestingness label for the query rules. 
Therefore, we gave up using such rules and developed interestingness factors’ 
readiness criterion for the classification process in this study. Any interestingness 
factor does not involve in the voting process until it is ready. It becomes ready 
when the user classifies sufficient number of rules manually and as a 
consequence; the resulting concept description becomes more reliable and 
powerful.  

4.5 Experimental Results 

IRIL (Interactive Rule Interestingness Learning) algorithm was developed and 
used to label the 184 rules obtained by employing BCFP (Benefit Maximizing 
Classifier Using Feature Projections) classification rules learning algorithm on 
TCMB data set. Since IRIL is an interactive algorithm, it certainly needed some 
user participation throughout the classification (labeling) process. However, after 
the execution of IRIL, we forced the user to label the rules that were successfully 
classified by IRIL to measure the accuracy of the algorithm on TCMB data set. The 
user, who is also an expert in The Central Bank, labeled 67 rules (36.41%) as 
“interesting” and 117 rules (63.59%) as “uninteresting”. Forcing the user to classify 
the induced rules may not be feasible all the time. Because, many data mining 
applications will result in a huge number of classification rules and for these many 
classification rules, accuracy measurement will not be possible. However, 
accuracy values of the rule interestingness-learning algorithm on small sets, and 
on small portions of the large sets are assumed to reflect the power and reliability 
of this algorithm. Besides, development of an interactive rule interestingness 

 18



 
 

algorithm aims to keep the user participation low and to label the huge number of 
classification rules automatically.  
In our experiments, we used three different minimum certainty threshold (MinCt) 
values and gave the corresponding results in Table 3, Table 4 and Table 5. 
 
Table 3. Results for IRIL (MinCt  : 51%). 

 Sum Feature 
Votes 

Select Best 
Feature 
Votes 

Select 
Median 
Feature 
Votes 

Use Majority 
Voting 

Use 
“Support” 
Feature 

Number of rules 184 184 184 184 184 

Number of rules 
classified 

automatically with 
high certainty 

154 163 172 158 172 

Number of rules 
predicted as 

“INTERESTING” 
with high certainty 

50 58 28 50 72 

Number of rules 
classified by user 

30 21 12 26 12 

User participation 16% 11% 6% 14% 6% 

User participation 
among interesting 

rules 

21% 9% 3% 7% 3% 

User participation 
among 

uninteresting 
rules 

14% 13% 8% 18% 8% 

Overall Accuracy 98% 97% 71% 92% 92% 

Accuracy among 
interesting rules 

94% 93% 34% 81% 95% 

Accuracy among 
uninteresting 

rules 

100% 99% 94% 100% 91% 

Recall of 
“INTERESTING” 

94% 93% 34% 81% 95% 

Precision of 
“INTERESTING” 

100% 98% 78% 100% 86% 

 

 19



 
 

Table 4. Results for IRIL (MinCt  : 53%). 
 Sum Feature 

Votes 
Select Best 

Feature 
Votes 

Select 
Median 
Feature 
Votes 

Use Majority 
Voting 

Use 
“Support” 
Feature 

Number of rules 184 184 184 184 184 

Number of rules 
classified 

automatically with 
high certainty 

128 156 171 158 158 

Number of rules 
predicted as 

“INTERESTING” 
with high certainty 

36 54 56 50 57 

Number of rules 
classified by user 

56 
 

28 13 26 26 

User participation 30% 15% 7% 14% 14% 

User participation 
among interesting 

rules 

42% 15% 4% 7% 6% 

User participation 
among 

uninteresting 
rules 

24% 15% 8% 18% 19% 

Overall Accuracy 98% 98% 73% 92% 96% 

Accuracy among 
interesting rules 

92% 95% 58% 81% 90% 

Accuracy among 
uninteresting 

rules 

100% 100% 82% 100% 100% 

Recall of 
“INTERESTING” 

92% 95% 58% 81% 90% 

Precision of 
“INTERESTING” 

100% 100% 66% 100% 100% 

 

 20



 
 

Table 5. Results for IRIL (MinCt  : 55%). 
 Sum Feature 

Votes 
Select Best 

Feature 
Votes 

Select 
Median 
Feature 
Votes 

Use Majority 
Voting 

Use 
“Support” 
Feature 

Number of rules 184 184 184 184 184 

Number of rules 
classified 

automatically with 
high certainty 

112 135 171 158 157 

Number of rules 
predicted as 

“INTERESTING” 
with high certainty 

28 36 56 50 57 

Number of rules 
classified by user 

72 49 13 26 27 

User participation 39% 27% 7% 14% 15% 

User participation 
among interesting 

rules 

54% 42% 4% 7% 6% 

User participation 
among 

uninteresting 
rules 

31% 18% 8% 18% 20% 

Overall Accuracy 97% 98% 73% 92% 96% 

Accuracy among 
interesting rules 

90% 92% 58% 81% 90% 

Accuracy among 
uninteresting 

rules 

100% 100% 82% 100% 100% 

Recall of 
“INTERESTING” 

90% 92% 58% 81% 90% 

Precision of 
“INTERESTING” 

100% 100% 66% 100% 100% 

 
For example, let us analyze the 2nd column of Table 3 that has the results for the 
Sum_Feature_Votes vote evaluation strategy. The user classifies 30 rules with 
100% certainty, and 154 rules are classified automatically with certainty factors 
greater than the minimum certainty threshold. User participation, which is the ratio 
of the rules classified by the user, is 16% in the classification process. This ratio is 
a general one, however, it is also possible to compute the user participation 
among actually interesting and actually uninteresting rules. According to the 
results of the 2nd column of Table 3, the user classifies 21% of the 67 interesting 
and 14% of the 117 uninteresting rules. In the classification process, it is always 
desired that rules are generally classified automatically, and user participation 
among interesting rules, uninteresting rules and as a whole is low.  
However, accuracy values of the automatic classifications of IRIL also play an 
important role. If we look at the results of the 2nd column of Table 3, accuracy 

 21



 
 

values are measured as 98%, 94% and 100% for the whole rules in Rs (overall 
accuracy), for the actually interesting rules in Rs (accuracy among interesting 
rules) and for the actually uninteresting rules in Rs (accuracy among uninteresting 
rules), respectively. It is important for the three accuracy values to be close to 
each other. For instance, if the above three accuracy values were 65%, 20% and 
75%, respectively, we would easily claim that IRIL made biased classifications in 
favor of “uninteresting” class. Because, accuracy among uninteresting rules is too 
high, whereas accuracy among interesting rules is too low. Furthermore, 117 of 
the rules (63.59%) are uninteresting, and we could label all the rules as 
“uninteresting” without using IRIL that would result in an accuracy value of 63.59%, 
which is very close to the overall accuracy of 65%. In the experiments, all the vote 
evaluation strategies are generally successful, except for the 
Select_Median_Feature_Votes strategy especially for MinCt = 51%. 
As mentioned in the previous sections, IRIL need not present all the rules in Rs, 
but only the rules automatically labeled as “interesting”. This causes IRIL to be an 
“interesting rules learning” algorithm. In this case, the following criteria may need 
to be evaluated: 

Recall (“interesting”) = 
ginterestinactually  are andlly automatica classified are that rules#
ginterestinactually  are and g"interestin" as classified are that rules#  

Precision (“interesting”) = 
g"interestin" as classified are that rules #

ginterestinactually  are and g"interestin" as classified are that rules #  

In our experiments, all the vote evaluation strategies except 
Select_Median_Feature_Votes achieved high Recall and Precision values and 
became successful. Select_Median_Feature_Votes gave low Recall value for 
MinCt = 51% and showed an average performance in terms of Recall and 
Precision criteria for the other minimum certainty thresholds. 
If we analyze Table 3, Table 4 and Table 5, classification accuracies are quite high 
for all strategies except for the Select_Median_Feature_Votes strategy even for 
low MinCt values. For this strategy, average accuracy performance is obtained. 
IRIL algorithm, whose learned concept description is a subjective interestingness 
measure, is also compared with an objective interestingness measure, namely 
Confidence. It is assumed that rules having confidence value greater than 75% are 
interesting, whereas the remaining ones are uninteresting. The accuracy of this 
objective measure is found to be 65%, a quite low accuracy value when compared 
to IRIL’s results. 
In the process of labeling the rules, user participation increases in proportion to the 
MinCt. Select_Median_Feature_Votes, Use_Majority_Voting, and 
Use_Given_Feature, which uses Support_with_respect_to_Major_Class 
interestingness factor as the given feature, rule evaluation strategies have the 
smallest user participation ratios. Also in these mentioned strategies, user 
participation increases the least in proportion to the MinCt, when compared to the 
other strategies. 
If we evaluate the user participation, accuracy of prediction of the interestingness 
labels, Recall and the Precision criteria altogether, the best two strategies are 
found to be Use_Majority_Voting, and Use_Given_Feature, which uses 
Support_with_respect_to_Major_Class interestingness factor as the given feature. 

 22



 
 

However, requiring the user to select a feature (in our study, an interestingness 
factor) in classification process is not desired, leading Use_Majority_Voting to be 
the best rule evaluation strategy in IRIL algorithm. 

5. Conclusion and Future Work 

IRIL feature projection based, rule interestingness learning algorithm was 
developed and tested on TCMB data set, giving promising results. It is an 
interactive algorithm whose constructed concept description is actually a new 
subjective interestingness measure in the literature. The concept description 
differs among the users analyzing the same domain. That is, IRIL determines the 
important rule interestingness factors for a given domain subjectively. 
In the framework of IRIL, a new concept description learning and classification 
algorithm, namely VFPI (Voting Feature Point Intervals), was also developed. It is 
inspired by VFI (Voting Feature Intervals) algorithm [1]. However, there are major 
differences such as incremental training, concept descriptions learned on linear 
features and the readiness criterion of features to participate in the classification 
process. The usage of feature projection based approaches is preferred because 
of their success in the previous studies and their ease of interpretability. 
As future work, other concept description learning and classification algorithms 
other than VFPI can be developed. These need not be feature projection based 
algorithms, which would lead IRIL to be an interestingness-learning algorithm that 
isn’t feature projection based. On the other hand, other objective and subjective 
rule interestingness factors may be investigated and used as the features of the 
rule sets. Finally, different and bigger data sets can be used to obtain more 
reliable experimental results, assuming that those data sets yield sufficient number 
of classification rules. If the number of classification rules gets too much, the 
developed rule interestingness factors may be insufficient and may require to use 
some rule pruning techniques, which may also be considered as a research topic.  

 23



 
 

References: 
 

[1] Güvenir, H.A., and Demiröz, G., “Classification by voting feature intervals” 
Proceedings of 9th European Conference on Machine Learning, 1997, 85-92. 

[2] Frawely, W.J., Piatetsky-Shapiro, G., and Matheus, C.J., “Knowledge discovery in 
databases: an overview” Knowledge Discovery in Databases, AAAI/MIT Press, 1991, 
1-27. 

[3] Major, J.A., and Mangano, J.J., “Selecting among rules induced from a hurricane 
database” Proceedings of AAAI Workshop on Knowledge Discovery in Databases, 
1993, 30-31. 

[4] Piatetsky-Shapiro, G., and Matheus, C.J., “The interestingness of deviations” 
Proceedings of AAAI Workshop on Knowledge Discovery in Databases, 1994, 25-36.  

[5] 5- Fayyad, U., Shapiro, G., and Smyth, P., “From data mining to knowledge 
discovery in databases” AI Magazine 17(3), 1996, 37-54. 

[6] 6- Hilderman, R.J., and Hamilton, H.J., “Knowledge discovery and interestingness 
measures: a survey” Technical Report, Department of Computer Science, University of 
Regina, 1999. 

[7] Quinlan, J.R., “C4.5: program for machine learning” Morgan Kaufmann, 1992. 
[8] Güvenir, H.A., “Benefit Maximization in Classification on Feature Projections” 

Proceedings of the 3rd IASTED International Conference on Artificial Intelligence and 
Applications (AIA’03), Malaga, Spain (Sept. 8-10, 2003), 424-429. 

[9] Güvenir, H.A., and Aydın, T., “Feature Projection Based Rule Classification” 
Proceedings of the 12th Turkish Symposium on Artificial Intelligence and Neural 
Networks (TAINN’2003), Çanakkale, Turkey (July 2-4, 2003), 652-661. 

[10] Kittler, J., Hatef, M., Duin, R.P.W., and Matas, J., “On Combining Classifiers”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, 1998, 226-239. 

 

 24


	Introduction
	Central Bank of Republic of Turkey (TCMB) Data Set
	Rules belonging to the TCMB Data Set
	Knowledge Representation
	Interestingness Labels
	Rule Interestingness Factors

	IRIL Algorithm
	Learning Concept Description by the VFPI Algorithm
	Classification in the VFPI Algorithm
	Vote Evaluation Strategies
	General Execution of IRIL Algorithm
	Experimental Results

	Conclusion and Future Work

