
PHR: A Parallel Hierarchical Radiosity System with

Dynamic Load Balancing

Ali Kemal Sinop1, Tolga Abac�1�, �Umit Akku�s1y,

Attila G�ursoy2, U�gur G�ud�ukbay1

E-mail: kemalp@ug.bilkent.edu.tr, tolga.abaci@ep.ch, umita@microsoft.com,

agursoy@ku.edu.tr, gudukbay@cs.bilkent.edu.tr

1Dept. of Computer Eng., Bilkent University, 06800 Bilkent, Ankara, Turkey

2 Dept. of Computer Eng., Ko�c University, Rumeli Feneri Yolu, 34450 Sariyer,

Istanbul, Turkey

� Current Address: Virtual Reality Laboratory, Swiss Federal Institute of

Technology, 1015 Lausanne, Switzerland

y Current Address: One Microsoft Way, Building 40, O�ce 5260, Redmond WA

98052, USA

Correspondence Author: U�gur G�ud�ukbay

Tel: + 90 - 312 - 290 1386

Fax: + 90 - 312 - 266 4047

e-mail: gudukbay@cs.bilkent.edu.tr

Abstract. In this paper, we present a parallel system called PHR for comput-

ing hierarchical radiosity solutions of complex scenes. The system is targeted for

multi-processor architectures with distributed memory. The system evaluates and

subdivides the interactions level by level in a breadth �rst fashion, and the inter-

actions are redistributed at the end of each level to keep load balanced. In order

to allow interactions freely travel across processors, all the patch data is replicated

on all the processors. Hence, the system favors load balancing at the expense of

increased communication volume. However, the results show that the overhead of

communication is negligible compared with total execution time. We obtained a

speed-up of 25 for 32 processors in our test scenes.

Keywords: hierarchical radiosity, distributed memory architectures, load balancing

c 2003 Kluwer Academic Publishers. Printed in the Netherlands.

Sinop_et_al.tex; 10/12/2003; 16:53; p.1



2

1. Introduction

Synthesis of photo-quality images is a di�cult and time-consuming

computer graphics problem. Essentially, the problem involves exten-

sive simulation of the real-world light events such as reection of light

among surfaces. The ultimate goal is to develop a real-time interactive

photo-realistic image generator. However, to get high-quality images

utilizing state-of-the-art solutions, we have to wait for minutes even for

the simplest scenes consisting of tens of polygons.

One class of solutions is the radiosity approach [10]. Radiosity, which

is the basis of our work, can simulate area light sources with the un-

derlying assumption that only di�use reection takes place between

surfaces. Those surfaces that can be handled by radiosity algorithms

are called Lambertian surfaces, which are ideal di�use reectors. Hier-

archical radiosity is an improvement over traditional radiosity solutions

to overcome the computational limitations inherent in these solutions.

We propose a parallel implementation of the hierarchical radiosity

for distributed memory architectures. Recent work on this topic gener-

ally uses task stealing approaches to achieve a nearly linear speed-up,

but such approaches are not suitable for distributed memory architec-

tures where the initiation cost for message passing is high. Our work

relies on evaluating interactions one level at a time in each iteration.

When the processing of one level is �nished, the load of each processor

is computed and interactions are redistributed in order to keep load

balanced. To allow e�cient distribution of interactions, the scene ge-

ometry and patch information is duplicated in all of the processors

without signi�cant impact on the overall performance.

The rest of the paper is organized as follows. We discuss the re-

lated work on global illumination, hierarchical radiosity, and parallel

Sinop_et_al.tex; 10/12/2003; 16:53; p.2



3

implementation of the radiosity approach in Section 2. The parallel

algorithm that we propose for hierarchical radiosity utilizing collective

communication is described in Section 3. The details of representing

the patches for communication between processors, evaluating the in-

teractions, and load balancing process are described in this section.

The results of the performance experiments to measure the speed-ups

and the images produced using the implementation are presented in

Section 4. Conclusions are given in Section 5.

2. Related Work

2.1. Radiosity

The radiosity approach is based on thermodynamics and heat transfer.

Instead of heat, light energy is actually traveling between surfaces (or

patches). The approach proposes to exchange energies between surfaces

with respect to some con�guration parameters, such as visibility and

form factors. In fact, this corresponds to solving the global illumination

equation [14], which, in the special case where only di�use, opaque

surfaces are involved, takes the form of an integral equation of the

form below:

b(x) = e(x) + �d(x)

Z
�

dx0
cos �i cos �

0
o

�r2
v b(x0) (1)

where �d(x) gives the di�use reectance, e(x) gives the radiant emitted

ux density, b(x) gives the radiosity, v is the visibility function, and �

represents the whole set of surfaces in the scene. The visibility function

has the value of 1, if x and x0 are visible to each other, and 0, if they

Sinop_et_al.tex; 10/12/2003; 16:53; p.3



4

are occluded. The angle �i (or �j) relates the normal vector of element

i (or j) to the vector joining the two elements.

Calculation of this integral is done either by Monte-Carlo methods

or by discretizing the scene into n �nite elements [12]. E�cient solution

methods for this system include Gauss-Seidel, Jacobi, and specialized

methods such as progressive radiosity [5]. Besides, higher degree ele-

ments and Galerkin methods have been used to improve accuracy of

the solutions [13].

2.2. Hierarchical Radiosity

Hierarchical radiosity [11] is proposed to overcome the de�ciencies of

the progressive radiosity approach. It reduces computational require-

ments by careful error analysis. The idea behind hierarchical radiosity

is the same as the N-body problem solution [2]. These problems share

many similarities, mostly due to the similar nature of the interactions

between particles in the N-body problem and the interactions between

patches in the radiosity method. During the solution of the N-body

problem, interactions between separated object groups (clusters) are

computed as a single interaction. Hierarchical radiosity uses the same

idea and does not compute the interactions that do not a�ect the ac-

curacy of the whole image. However, it is important to note that while

the N-body algorithms construct the upper portion of the hierarchy

tree by forming groups of particles, the hierarchical radiosity algorithm

constructs the lower portion of the tree by subdividing the patches.

Hierarchical radiosity algorithm stated in [11] recursively subdivides

the initial patches, forming a quadtree, with respect to the form factor

estimations. After the form factors are calculated this way and stored

in a hierarchical structure, standard techniques of solving the radiosity

Sinop_et_al.tex; 10/12/2003; 16:53; p.4



5

system can be employed. In the variant of hierarchical radiosity to be

employed by our system, the BF -re�nement technique is used, which

takes into account the form factor estimations and the brightness val-

ues of the patches when performing subdivisions. This is essentially a

combination of the form factor estimation and solution processes.

In contrast to other radiosity approaches, hierarchical radiosity sub-

divides only some of the patches at the �nest resolution. Therefore,

the overall computational complexity of the algorithm is reduced from

O(n2) to O(n+ k2), where k is the number of input surfaces, and n is

the total number of resultant elements in an environment [6].

Hierarchical radiosity algorithm consists of three main steps, initial

linking, interaction evaluation and push-pull.

� Initial Linking: Before beginning the hierarchical radiosity solu-

tion, interactions between all initial patches in the scene are com-

puted. This step involves computing the form factor between every

patch pair. For this purpose, disk approximation method can be

used [18]:

Fij = vij
cos�icos�jAj

�r2ij +Ai

(2)

In this equation, Hij is the visibility function, �i and �j are the

angles between the element normals and the connections of their

centers, rij is the distance between the elements, and Ai and Aj

are the areas. The overall e�ect of area j on area i is built by

multiplying Fij by the outgoing energy from area j. The accuracy

of this method can be increased by �ring multiple rays.

� Interaction Evaluation: In this step, interactions for all of the

patches are evaluated. This involves computing the energy transfer

from patch i to j and vice versa. If the exchanged energy happens

Sinop_et_al.tex; 10/12/2003; 16:53; p.5



6

to be above some threshold, the patch with the larger area can be

subdivided in order to increase the accuracy of the solution. Sub-

division of a patch does not e�ect other interactions; they remain

between the same patches. Hence, interactions may be present in

all levels of a patch's hierarchy.

� Push-Pull: Since interactions exist at di�erent levels of a patch's

hierarchy and di�erent amounts of energy are accumulated at the

nodes, it is necessary to bring the whole tree structure into a

consistent state at the end of each iteration. This is achieved by

�rst propagating the energy of upper nodes to the leaf nodes and

then leading the total weighted energy of leaf nodes to the upper

ones.

At each iteration, the interactions of each patch are evaluated, re-

�ning the patches and interactions as necessary. When all patches are

done, the patch hierarchies are brought to a consistent state by push-

pull step. If the total energy change in the whole scene is above some

threshold, the iterations should continue, otherwise it is not necessary

to carry on the computation, hence we can output the energies of leaf

level nodes in the scene.

2.3. Parallelization of Radiosity

A parallel radiosity simulation system is proposed in [9], which uses

perceptually-based calculations to control simulation process. In this

work, a novel algorithm for computing radiosity solutions on DSM

architectures is described, which uses a queue based scheduling system

to process the sub-iterations { transfer of energy from a single source

to a subset of the scene's receiver patches { eliminating the need for

Sinop_et_al.tex; 10/12/2003; 16:53; p.6



7

processor synchronization between iterations of the algorithm. Another

parallel radiosity algorithm based on patch data circulation is proposed

for distributed memory architectures [1]. Their work uses a global cir-

culation scheme for parallel light distribution computations, reducing

the total volume of concurrent communication.

Parallelization of hierarchical radiosity, on the other hand, is more

challenging. The dynamic nature of the hierarchical radiosity algo-

rithm makes it very hard to equally distribute the computations on

numerous processors. Several approaches for parallel implementations

of hierarchical radiosity were proposed. The work of Sillion et al. [16]

demonstrated an extension to the hierarchical radiosity algorithms on

DSM (distributed shared memory) architectures, in which a main pro-

cess holds a queue of individual interactions, and when a processor

�nishes its job, it retrieves new interactions from this list, also en-

queuing any new interactions resulting from subdivisions. A nearly

perfect speed-up is obtained for some scenes (a speed-up of 39.4 on

40 processors), and good speed-ups are obtained in general (a speed-

up of 25.7 on 30 processors). However, the slower shared memory is

heavily used in this system, and the general computation process is

slowed-down.

Good speedups are achievable in parallel implementations of hier-

archical radiosity for shared memory architectures since hierarchical

radiosity computations contain many �ne grain sub tasks. However,

there are not much work achieving high performance on distributed

memory machines.

Funkhouser describes an algorithm in which multiple hierarchical

radiosity solvers work in parallel [7]. The set of polygons is distributed

over the workstations, where partial radiosity solutions are computed

for each part. Then, a master process collects and merges the solutions,

Sinop_et_al.tex; 10/12/2003; 16:53; p.7



8

iterating the process until convergence. For complex scenes, which can

not be duplicated on every processor, this approach is well suited. They

obtained a speed-up of 5.5 with eight SGI workstations for the Soda

Hall model. Bohn et al. [3] proposed a parallel hierarchical radiosity

algorithm on a Connection Machine 5, with a speed-up of 8.4 on 64

processors. Another work on cluster of PCs is reported in Sireli [17]. In

their work, each patch is assigned to a processor, and a representative

of the patch (proxy patch) exists in other processors if needed.

Another similar work was proposed in [15], in which the scene is

partitioned by a variant of K-means algorithm to allow the computation

of large indoor environments on distributed machines.

In a recent work [8], a parallel algorithm that uses spatial parti-

tioning of patches to processors to improve locality and asynchronous

calculation to hide latencies is presented. They report almost linear

speedup upto 64 processors on CrayT3E. When the data needed on

another processor, their algorithm initiates a request message to an-

other processor to get the data. Achieving similar performances on a

cluster of PC's with commodity networking would be di�cult because

of high startup costs of messages. We present a parallel algorithm more

suited to cluster computing and our results show that good speed-ups

are achievable.

3. A Parallel Algorithm for Hierarchical Radiosity Utilizing

Collective Communication

The major work done in hierarchical radiosity is the interactions be-

tween pair of patches that are visible to each other. Therefore, in-

teractions are the major units of computation to be distributed to

Sinop_et_al.tex; 10/12/2003; 16:53; p.8



9

processors. To calculate one interaction, a processor needs the current

radiosity values and geometric information of the two patches involved

in the interaction. A mapping of interactions to processors such that

reduced communication and balanced work among processors, hence,

is signi�cant for performance. One way to map interactions to proces-

sors can be done by assigning patches to processors and associating

interactions with the patches. The parallel algorithm presented here

distributes patches to processors and each processor is responsible for

handling interactions of its own patches (owner computes rule). If both

patches of an interaction is on the same processor, the interaction can

be calculated without any communication. Otherwise, the remote patch

information need to be communicated. Since the interaction pattern is

quite irregular, whatever the mapping is, there will always be many

across-processor interactions. If we let each interaction object to gather

the data it needs, then there will be many messages communicated and

possibly multiple messages for the same patch involved in more than

one interaction. In order to reduce number of messages and simplify the

design of interaction calculations, we represent a remote patch with a

special type of patch, called proxy patch [17]. We utilize collective com-

munication operations of MPI [4] to gather and scatter patches. The

use of proxy patches and collective communication operations decreases

the communication overhead.

3.1. Representing The Patches

Unlike other earlier parallel algorithms such as [7], the scene data is

not partitioned, instead every processor contains the information of the

whole scene with all patches. The amount of memory used for keeping

the patches is negligible compared with the amount required for holding

Sinop_et_al.tex; 10/12/2003; 16:53; p.9



10

the interactions. During the evaluations of interactions, a patch might

be divided into smaller patches. This patch could be a local patch or a

proxy patch. The newly created patches need to be given a handle that

is consistent across processors (another processor might divide its proxy

corresponding to the same patch). To globally identify the patches, each

���
���
���

���
���
���

00 00 00 00 00 00 00 00 00 00 00 01 10 11 01 00

Figure 1. An illustration for a sample hierarchy ID. The nodes in the above tree

denote patches.

patch is given a global patch ID. Global patch IDs consist of two parts:

root patch ID, and hierarchical information. The root patch IDs are

assigned in a straight-forward manner, during the distribution of the

initial geometry. However, the hierarchical information part is not so

simple, since it requires an encoding scheme that describes the position

of a patch in the hierarchy quad-tree. We have adopted a scheme where

the hierarchical information part of an ID (hierarchy ID) consists of

a sequence of two-bit groups. Each two-bit group is interpreted as a

child number, from zero to three. The left-most bit with the value of

one indicates the start of the hierarchy ID (An illustration of a 32-

Sinop_et_al.tex; 10/12/2003; 16:53; p.10



11

bit hierarchy ID is given in Figure 1). When read from left to right,

a hierarchy ID for a patch e�ectively describes the path that must

be followed starting from the root patch to �nd that patch. With this

scheme, some of the ID space remains unusable. However, the scheme is

easier to implement than most other schemes, and its simplicity results

in higher performance.

3.2. The Algorithm

The outline of the algorithm, which is carried out by all of the proces-

sors, is given below:

1. Broadcasting of initial geometry. The root processor reads the ini-

tial geometry from the input �le, and broadcasts the data to all of

the processors in the parallel system.

2. Trivial patch-to-processor assignment and initial linking. The initial

linking operation consists of the computation of form factors for ev-

ery possible interaction between the patches forming the initial ge-

ometry. Each processor is assigned an equal number of patches, and

computes the form factors for the interactions of its own patches.

It is possible that this phase be skipped if the user wishes to use

form factors saved from a previous execution on the same scene.

3. Re-assignment of patches to processors. In this phase, the root pro-

cessor gathers the form factors computed in the previous phase.

According to an initial distribution strategy speci�ed by the user,

it is determined by the root processor which patches are assigned

to which processor. Then, the processors are informed of which

patches they are assigned, and receive the appropriate set of form

factors.

Sinop_et_al.tex; 10/12/2003; 16:53; p.11



12

4. Computations and re�nements for an iteration. This phase is where

hierarchical radiosity computation takes place. Each processor goes

through its patches for evaluation of interactions. Evaluation of an

interaction consists of the computation of the ux between two

patches, and decision of whether to subdivide one of the patches

or not. If re�nement is to occur, then new interactions are created,

and the form factors for those interactions are computed. This step

takes the longest time to �nish, and strong load imbalances occur

at this step. To solve this problem, a new approach is proposed,

which will be discussed in the next section.

5. Sending back those proxies that were updated to their home pro-

cessors. Those proxies whose radiosity values were changed at the

current iteration are sent back to their homes. The local patches for

the proxies are created with the new value at their home processor

if they were previously non-existent, or their values are updated if

they were already there. This step features a total exchange between

all processors.

6. Push-and-pull phase. At each node the push-and-pull phase is exe-

cuted in order to bring the intensity values for local patches into a

consistent state.

7. Update of the proxy objects. This step is the inverse of step 5. To

bring the system into a completely consistent state before the start

of the new iteration, proxy patches should be updated with the

intensity values that were computed in the push-and-pull phase.

Similar to step 5, the proxy patches for the local patches are created

at their processors if necessary.

Sinop_et_al.tex; 10/12/2003; 16:53; p.12



13

8. Determine if there is a next iteration. In this phase, all processors

communicate to determine if there will be another iteration. If it

is decided that the system has already converged, there will be no

more iterations, and the algorithm stops.

3.3. Evaluating Interactions

This is the most time consuming part of the hierarchical radiosity.

In this step, each interaction is evaluated, and computing the energy

transfer between the patch pairs. Due to BF-re�nement criteria, if the

total exchanged energy exceeds a certain threshold, the patch with the

bigger area is subdivided. In each subdivision, four new interactions

are created, calculating the form-factors as necessary (Figure 2).

i

j

Figure 2. An illustration of the rays in the form factor calculation. Four of the

sixteen rays �red from patch i to patch j for the calculation of Fij are shown. For

each subarea on patch i, four rays are to be �red.

Sinop_et_al.tex; 10/12/2003; 16:53; p.13



14

Since, 16 rays are �red for each new interaction, subdividing the

interactions dominate the evaluation step. For load balancing, we dis-

tribute the interactions among processors. Since each processor has

the knowledge of all the patches, interactions can freely be exchanged

between processors.

In standard hierarchical radiosity algorithms, interactions are eval-

uated at a depth �rst search (DFS) fashion; �rst the interactions of a

patch is evaluated, and then the children's interactions are evaluated.

However, this kind of approach has an inherent nature for load imbal-

ance. An interaction, which is going to be subdivided to the maximum

allowed level, will be assigned to one processor and a serious imbalance

in the work-load will arise.

To overcome this problem, the interactions are evaluated in a breadth

�rst search (BFS) fashion; �rst, only 0th level interactions are evaluated,

and then 1st level interactions are evaluated, and so on. The algorithm

for evaluating the interactions is given in Algorithm 1.

In Algorithm 1, LoadBalance function distributes the interactions

across processors to ensure equal workload.

Sinop_et_al.tex; 10/12/2003; 16:53; p.14



15

Algorithm 1 Evaluating the interactions in allInteractions list,

initialized with the interactions from initial linking.

curInteractions empty list

for all interaction in allInteractions do

Evaluate interaction

if interaction should subdivide then

Remove interaction from allInteractions

Add interaction to prolificInteractions

end if

end for

while prolificInteractions not empty do

newInteractions empty list

LoadBalance(prolificInteractions) fprolificInteractions con-

tains the interactions that will subdivideg

for all interaction in prolificInteractions do

Subdivide interaction and its associated patches

for all newInteraction in children of interaction do

Evaluate newInteraction

if newInteraction should subdivide then

Add newInteraction to newInteractions

else

Add newInteraction to allInteractions

end if

end for

end for

prolificInteractions newInteractions

end while

Sinop_et_al.tex; 10/12/2003; 16:53; p.15



16

3.3.1. Cost Estimation

Although all interactions in the newInteractions are going to subdivide

for only one level at a time, still not all interactions require the same

processing power. However, predicting the cost of an interaction is very

di�cult. The time required for computing the form factor depends only

on the geometry of scene { how many triangle and octree intersection

tests are made, which is impossible prior to actually computing the

form factor.

To predict the cost of subdividing an interaction, we can use the

number of octree-node and triangle intersection tests performed for

calculating that interaction's form factor, weighted with its parent

interaction's cost by a certain factor, �c.

3.3.2. Load Balancing

In this section, we try to distribute the proli�c interactions among the

available processors such that the total amount of cost associated with

each processor is equal to a certain constant. This is done by each

processor in the following way:

1. Compute the work load. Each processor goes over its proli�c inter-

actions list, summing the cost of each interaction to determine its

own work-load.

2. Gather other processors' work loads. A total exchange of associated

work-loads between processors is done each processor so as to make

every processor aware of others' work loads.

3. Determine how much load will be sent to other processors. A pro-

cessor �rst computes the average load and declares each processor

as a sender (should send some interactions to balance loads) or

receiver. Then, the load each sender will send to each receiver is

Sinop_et_al.tex; 10/12/2003; 16:53; p.16



17

computed. Sender processors, sorted in descending order of their

loads, send their loads to the �rst receiver with the smallest load.

4. Distribute the interactions. After having computed the load to send

to each processor, sender processors distribute their interactions in

a round-robin fashion to the receiver processors.

Although in the steps 3 and 4, only an approximation for the load

distribution is employed, generally the load tends to be distributed

evenly, due to the high amount of interactions with varying costs.

4. Results

The Parallel Hierarchical Radiosity (PHR) system is implemented on

PC-clusters. using C++ Programming Language and Message Passing

Interface (MPI) for communication between processors.

4.1. Test Scenes

For performance testing, three models from Soda Hall1 are used. All

models are augmented with ceiling lights. These models are;

� Room #320 (6350 triangles)

� Room #380 (31933 triangles)

� Room #420 (18510 triangles)

1 Available at http://www.cs.berkeley.edu/~koer

Sinop_et_al.tex; 10/12/2003; 16:53; p.17



18

4.2. Measurements

The tests were carried on a Beowulf-cluster with 32 nodes. Each node

is installed with 1 GBytes of RAM and an Intel P4 2.0 GHz CPU. The

nodes are connected to each other with Fast Ethernet.

4.3. Timings and Speed-Ups

Table I shows the total running time for each test scene. In Figure 3, the

speed-ups obtained for each scene are shown according to the formulae

kn = T1=Tn. Two di�erent speed-up measurements are given for the

Room #380 test scene. Since the number of interactions are quite

high, the virtual memory is heavily used in 1-processor case, causing

abnormal speed-ups to be measured. Hence, we also show the speed-ups

according to the 4-processor case for this particular scene, kn = T4=Tn.

Table I. Timings for the test scenes (excluding initial linking stage).

Total Time (secs)

Processors Room 320 Room 380 Room 420

1 11506.4 7283.17 26871.6

4 2917.52 1382.74 6898.85

8 1548.05 737.04 3533

16 830.83 406.62 1894.23

24 583 302.43 1296.64

32 460 259.45 1012.3

In Table II, detailed timings for the test scenes are given. It can be

seen from Table II that the total time spent for migration is negligible

Sinop_et_al.tex; 10/12/2003; 16:53; p.18



19

0 4 8 12 16 20 24 28 32
Number of Processors

0.0

4.0

8.0

12.0

16.0

20.0

24.0

28.0

32.0

S
p

ee
d

-u
p

Ideal
Room320
Room380 (1)
Room380 (4)
Room420

Figure 3. Speed-up measurements for the test scenes

(<2 secs for all scenes). Besides, duplicating the whole scene on every

processor and making a total exchange in the gather and scatter phases

do not take signi�cant amount of time. However, the main issue is

still the load balancing, and the idle times constitute a big portion of

the time spent. The rendered images generated by our implementation

for the test scenes Room320, Room380, and Room420 are given in

Figures 4, 5, and 6, respectively.

Sinop_et_al.tex; 10/12/2003; 16:53; p.19



20

Table II. Detailed timings for the test scenes.

Detailed Timings (in secs)

Scene Processors Re�nement Idle Migration Gather Push Pull Scatter

1 11442.4 0 0.85 0.01 0.96 0

4 2803.08 93.78 1.29 7.32 0.21 8.30

Room 320 8 1422.96 92.33 0.7 12.40 0.12 16.35

16 710.12 86.36 0.66 14.14 0.06 16.86

24 475.57 64.22 0.63 17.32 0.04 21.83

32 350.83 54.23 0.61 20.44 0.03 30.68

1 6061.09 0 6.43 0.24 0.76 0

4 1266.34 79.51 1.09 6.8 0.16 7.5

Room 380 8 635.16 68.79 1.36 8.83 0.08 11.3

16 319.55 51.68 0.8 11.97 0.04 16.45

24 213.64 51.27 0.95 13.79 0.03 18.74

32 160.54 50.23 0.81 17.78 0.02 27.06

1 26377.1 0 1.12 0.1 1.99 0

4 6551.15 275.22 1.94 7.1 0.22 8.46

Room 420 8 3283.25 199.18 1.19 9.38 0.11 12.08

16 1646.79 200.07 0.83 12.87 0.05 19.52

24 1103.52 145.3 0.64 15.31 0.04 22.54

32 822.9 137.71 0.67 17.69 0.03 26.38

Sinop_et_al.tex; 10/12/2003; 16:53; p.20



21

Figure 4. Rendering of the test scene Room320

Sinop_et_al.tex; 10/12/2003; 16:53; p.21



22

Figure 5. Rendering of the test scene Room380

Sinop_et_al.tex; 10/12/2003; 16:53; p.22



23

Figure 6. Rendering of the test scene Room420

Sinop_et_al.tex; 10/12/2003; 16:53; p.23



24

5. Conclusion

Since hierarchical radiosity works on a huge and dynamic tree structure,

parallelizing it on distributed computers is a challenging problem. In

order to obtain good speed-ups, dynamic load balancing techniques

must be employed, but these techniques tend to require a lot of com-

munication.

The most time consuming phase of hierarchical radiosity solution is

the re�nement phase, in which new interactions are formed. Due to the

dynamic nature of algorithm, it is impossible to accurately predict how

much time will be spent on subdividing a particular interaction without

actually subdividing it. Hence, it is better to subdivide the interactions

one level at a time in a BFS manner to equally distribute the loads. At

the end of each level, the interactions, which are going to subdivide,

may be identi�ed and distributed (migrated) over processors to keep

load balanced.

Since the time needed to subdivide an interaction depends only on

the time needed to compute the form factor, which in turn depends on

the number of intersection tests, we can estimate the subdivision cost

of a particular interaction by counting the intersection tests performed

for calculating its own form factor.

Distributing interactions freely among processors require each pro-

cessor to have the entire information of the scene geometry and the

patches created so far. Our results show that doing this is not costly

compared to the time spent for re�nement. With 32 processors, a speed-

up of 25 is achievable, making hierarchical radiosity practical for large

scenes.

Sinop_et_al.tex; 10/12/2003; 16:53; p.24



25

References

1. Aykanat, C., T. C�ap�n, and B. �Ozg�u�c: 1996, `A Parallel Progressive Radiosity

Algorithm Based on Patch Data Circulation'. Computers & Graphics 20(2),

307{324.

2. Barnes, J. and P. Hut: 1986, `A Hierarchical O(N logN) Force-calculation

Algorithm'. Nature 324(4), 446{449.

3. Bohn, C.-A. and R. Garmann: 1995, `A Parallel Approach to Hierarchical

Radiosity'. In: V. Skala (ed.): Proc. of the Winter School of Computer Graphics

and CAD Systems'95. Plzen, Czech Republic, pp. 26{35.

4. Burns, G., R. Daoud, and J. Vaigl: 1994, `LAM: An Open Cluster Environment

for MPI'. In: Proc. of Supercomputing Symposium. pp. 379{386.

5. Cohen, M., S. Chen, J. Wallace, and D. Greenberg: 1988, `A Progressive Re-

�nement Approach to Fast Radiosity Image Generation'. In: ACM Computer

Graphics (Proc. of SIGGRAPH'88), Vol. 22. pp. 75{84.

6. Cohen, M. and J. Wallace: 1993, Radiosity and Realistic Image Synthesis.

Boston, MA: Academic Press Professional.

7. Funkhouser, T.: 1996, `Coarse-grained Parallelism for Hierarchical Radios-

ity using Group Iterative Methods'. In: ACM Computer Graphics (Proc. of

SIGGRAPH'96). pp. 343{352.

8. Garmann, R.: 1999, `On the Partitionability of Hierarchical Radiosity'. In:

Proc. of the 1999 IEEE Symp. on Parallel Visualization and Graphics. pp.

69 { 78.

9. Gibson, S.: 1999, `E�cient Radiosity Simulation using Perceptual Metrics and

Parallel Processing'. Ph.D. thesis, Department of Computer Science, University

of Manchester.

10. Goral, C., K. Torrance, D. Greenberg, and B. Battaile: 1984, `Modelling the

Interaction of Light Between Di�use Surfaces'. In: ACM Computer Graphics

(Proc. of SIGGRAPH'84), Vol. 18. pp. 213{222.

11. Hanrahan, P., D. Salzman, and L. Aupperle: 1991, `A Rapid Hierarchical Ra-

diosity Algorithm'. ACM Computer Graphics (Proc. of SIGGRAPH'91) 25(4),

197{206.

12. Heckbert, P.: 1992, `Finite Element Methods for Radiosity'. In: ACM

SIGGRAPH'92 Course Notes No. 18- Global Illumination. Chapt. 1, pp. 1{11.

Sinop_et_al.tex; 10/12/2003; 16:53; p.25



26

13. Heckbert, P. and J. Winget: 1991, `Finite Element Methods for Global

Illumination'. Technical Report CSD-91-643, University of California, Berkeley.

14. Kajiya, J.: 1986, `The Rendering Equation'. In: ACM Computer Graphics

(Proc. of SIGGRAPH'86). pp. 143{150.

15. Meneveaux, D. and K. Bouatouch: 1999, `Synchronisation and Load Balanc-

ing for Parallel Hierarchical Radiosity of Complex Scenes on a Heterogeneous

Computer Network'. Computer Graphics Forum 18(4).

16. Sillion, F. and J.-M. Hasenfratz: 2000, `E�cient Parallel Re�nement for Hier-

archical Radiosity on a DSM Computer'. In: Proc. of the Third Eurographics

Workshop on Parallel Graphics & Visualisation. Universitat de Girona, Spain.

17. Sireli, R. and A. G�ursoy: 1999, `Parallel Hierarchical Radiosity'. In: H. R.

Arabnia (ed.): Proc. of International Conference on Parallel and Distributed

Processing Techniques and Applications, PDPTA'99, Vol. III. pp. 1634{1640.

18. Wallace, J., K. Elmquist, and E. Haines: 1989, `A Ray Tracing Algorithm for

Progressive Radiosity'. In: J. Lane (ed.): ACM Computer Graphics (Proc. of

SIGGRAPH'89), Vol. 23. pp. 315{324.

Sinop_et_al.tex; 10/12/2003; 16:53; p.26


