
Reputation-Based Trust Management for P2P Networks

Ali Aydın Selçuk Ersin Uzun Mark Reşat Pariente
Department of Computer Engineering

Bilkent University
Ankara, 06800, Turkey

selcuk@cs.bilkent.edu.tr, {euzun,resat}@ug.bilkent.edu.tr

Abstract

The open and anonymous nature of a P2P network
makes it an ideal medium for attackers to spread mali-
cious content. In this paper, we describe a reputation-
based trust management protocol for P2P networks
where users rate the reliability of parties they deal
with, and share this information with their peers. The
protocol helps establishing trust among good peers as
well as identifying the malicious ones.

Results of various simulation experiments show that
the proposed system can be highly effective in prevent-
ing the spread of malicious content in P2P networks.

1 Introduction

A peer-to-peer (P2P) network is a computer network
that does not have fixed clients and servers but a num-
ber of peer nodes that function as both clients and
servers to the other nodes in the network. Although
in general any networking technology that uses this
model can be considered as P2P, such as the NNTP
protocol used for transferring Usenet news or a wire-
less ad hoc network, the term is most frequently used
to refer to file sharing networks over the Internet, such
as Gnutella, FastTrack, and Napster. In this paper, we
also focus on P2P file sharing systems and use the term
“P2P” mostly to refer to this particular application of
the more general concept.

By the nature of its architecture, a P2P file sharing
system provides an open, unrestricted environment for
content sharing. However, this openness also makes it
an ideal environment for attackers to spread malicious
content such as the VBS.Gnutella worm [11].

Reputation-based systems are used to establish trust
among members of on-line communities where parties
with no prior knowledge of each other use the feed-
back from their peers to assess the trustworthiness of
the peers in the community [10]. One well-known such
system is the rating scheme used by the eBay on-line
auction site [6].

In this paper, we propose a reputation-based, dis-
tributed trust architecture for P2P networks to iden-
tify malicious peers and to prevent the spreading of
malicious content. The protocol is based on the query-
response architecture of the first generation P2P net-
works and is suitable for operation in a Gnutella- or
Kazaa-like system.

The protocol we propose is described in Section 2.
The rationale for its design is discussed in Section 3.
Security extensions on the basic protocol are discussed
in Section 4. Results of the simulation experiments
testing the protocol’s effectiveness are presented in
Section 5. Earlier protocols with a similar scope and
their differences from our proposal are discussed in
Section 6. Section 7 concludes the paper with a dis-
cussion of the future work necessary for a practical
deployment.

2 The Basic Protocol

A query in a P2P file sharing system typically returns
many different versions of the queried resource, among
which some may be malicious. The aim of our proto-
col is to distinguish the malicious responses from be-
nign ones, using the reputation of the peers providing
each version. Since in P2P networks a central server is
typically not available, our protocol relies on the P2P
infrastructure to obtain the necessary reputation infor-
mation when it is not locally available at the querying
peer.

In this section, we give a high-level description of
the basic protocol. The rationale for the design choices
are explained in the next section and certain exten-
sions on the basic protocol are discussed in Section 4.

2.1 Resource Query

A query message is sent out by a peer to search for a
resource with the specified properties. The query mes-
sage includes, among other fields, the query ID num-
ber, denoted by qID, which is a counter value main-
tained by each peer to identify the queries it issues.

1

The response messages sent by the peers with the
requested resource includes, among other fields,

• ID of the querying peer (QID),

• ID of the responding peer (RID),

• query ID number (qID),

• a one-way hash of the file being offered.

The whole response message is hashed and signed by
the responder. Here, the hash of the message signed
by the responder serves the function of a challenge in a
challenge-response authentication protocol. Inclusion
of the (QID, RID, qID) triple in the challenge guaran-
tees its freshness against replay attacks.1 Inclusion of
the rest of the message in the signature is for integrity
protection. The one-way hash of the file being offered
is included in the response to enable the querier to
identify different versions of the file and to group the
identical ones together, which will be used to assess
the trust level of each version.

2.2 Trust Assessment

Upon receiving the responses to its query, the querier
groups them according to the file hash values contained
in the messages, and a trust score is calculated for each
group according to the reputation of the peers who
provided that response. If the querier has previous
information on a sufficient number of the peers who
provide a file version, the trust score for that version
is calculated from the local trust ratings. Otherwise, a
group of peers who provide the file but were not known
previously are selected and a trust query for them is
issued. The responses to the trust query are weighed
according to the credibility ratings of the respondents
and a trust score for that file version is calculated. At
the end, the trust scores of the different versions are
compared and the one with the highest trust score is
selected for download.

The trust evaluation function used for the calcula-
tion of the trust scores is described in detail in Sec-
tion 2.4.

2.3 Trust Records and Ratings

In our system, the outcomes of past transactions are
stored in trust vectors, maintained by the peers that
make the download. Every peer maintains a trust vec-
tor for every other peer it has dealt with in the past.

Trust vectors are constant-length, binary vectors
of � bits, where � is typically 8, 16, or 32. A 1 bit

1If the wrapping of the qID counter is a concern here, the
hash of the whole query message can be included in the response
as well.

represents an honest transaction, a 0 represents a dis-
honest one. An integer variable accompanies each vec-
tor, specifying the number of significant bits in it. The
result of a new transaction is written at the most sig-
nificant bit, shifting the present bits to the right. The
process is illustrated in Figure 1.

Trust vector: 11010000
of significant bits: 4

�

genuine download
from B Trust vector: 11101000

of significant bits: 5

Figure 1: Peer A’s update of its trust vector on B after
an honest transaction. In this example � = 8.

A trust vector with m significant bits is read as an
m-bit integer and divided by 2m for conversion into a
scalar trust rating in the [0, 1) interval.2 A separate
distrust rating is also computed from the complement
of the trust vector, for reasons explained in Section 3.
An example computation of the trust and distrust rat-
ings is shown in Figure 2.

Trust vector: 11101000
of significant bits: 5 =⇒ Trust rating = (11101000)2

25 = 0.90625

Distrust rating = (00010000)2
25 = 0.0625

Figure 2: Computation of the trust and distrust ratings
from the trust vector.

Throughout the trust evaluation process, the cri-
terion of minimum distrust is given priority in trust
comparisons over maximum trust. The most trustwor-
thy peer in a group is taken to be the one with the
highest trust rating among those who have the lowest
rating of distrust.

2.4 The Trust Evaluation Function

When responses in regard to a resource query arrives,
the querying peer organizes them into groups accord-
ing to the file hash value they offer, each group corre-
sponding to a different version of the resource queried.
A trust score for each version is then calculated from
the trust rating of the peers offering it as follows:

The threshold θT specifies the number of peers to
be considered for a version’s trust calculation. For a
group of peers G, we use the notation known(G) for
denoting the set of peers in G about whom a trust
record is available locally, and unknown(G) for G −
known(G). We denote the cardinalities of these sets
by nk(G) = |known(G)| and nu(G) = |unknown(G)|.

2Here, the use of 2m as the divisor instead of 2m − 1 enables
distinguishing among the straight-1 trust vectors according to
the length m, favoring longer all-honest histories over shorter
ones.

2

The trust score for a group G is calculated lo-
cally if there is sufficient local information; that is, if
nk(G) ≥ θT . First, the peers in known(G) are sorted
by their trust rating, according to the min-distrust-
max-trust criterion. The highest ranking θT peers
are selected and the signatures on their responses are
verified. Provided that all signatures are verified cor-
rectly,3 the trust and distrust score of the file version
offered by G is determined as the average of the trust
and distrust ratings of the selected peers.

If there is not sufficient information on G (i.e.,
nk(G) < θT), then a set of θT − nk(G) random peers
in unknown(G), denoted by queried(G), are selected
to be queried about.4 The signatures on these peers’
messages are verified and a trust query bearing their
IDs is issued. Upon the arrival of the responses to this
query, a queried trust rating is calculated for each peer
in queried(G). The trust and distrust score of the file
version offered by G is determined as the average of
the trust and distrust ratings of the peers in known(G)
and queried(G).

At the end of the evaluation, the file versions are
sorted by their trust scores, according to the min-
distrust-max-trust criterion, and the highest ranking
one is selected for download.

At this point, it would be wise to have another
safety check on the trust score of the file to be down-
loaded since a file offered only by malicious peers may
be the highest ranking one, probably due to the lack
of any alternative versions. A possible threshold here
can be to allow the download of only those files with
a higher trust score than distrust. Or, as a safer al-
ternative, only the download of those files with a zero
distrust score may be allowed, which would not be
too restrictive given that the neighborhoods are suffi-
ciently large.

2.5 The Trust Query Process

As mentioned above, a trust query is issued when there
is not enough local information about the peers who
offer a file. The contents of a trust query message is
similar to that of an ordinary resource query message,
and the responses are authenticated in the same fash-
ion.

The credibility of the responses is evaluated ac-
cording to the past records of the respondents. The
results of the past references of a peer are recorded in
binary credibility vectors. These vectors are managed
very similarly to the trust vectors: A 1 represents a

3If a selected peer’s signature fails the verification, it is re-
placed by the next highest ranking peer in known(G) and the
average is calculated accordingly.

4If nu(G) < θT − nk(G), then all peers in unknown(G) are
selected.

good reference in the past, a 0 represents a bad one.
The vectors are maintained as �-bit variables and are
converted into scalar credibility ratings in [0, 1) by di-
vision by 2m , where m is the number of significant
bits. A discredibility rating is computed accordingly
from the complement of the credibility vector.

The threshold θC specifies the number of responses
to be considered in a queried trust calculation. When
the responses to a trust query arrives, the querying
peer sorts the responses by the credibility rating of
their senders. Among them, the highest ranking θC

responses are selected.5 The signatures on the selected
responses are verified.

The main piece of information contained in a trust
query response is the respondent’s trust and distrust
ratings for the queried peer. Once the responses for the
calculation are selected and authenticated, the queried
trust rating is calculated as the average of the trust rat-
ings in these messages, weighted by the net credibility
ratings of their senders, where the responses with a
higher discredibility than credibility are left our of the
calculation. That is, if peer A issued a trust query
on peer B, and the responses of peers R1, R2, . . . , Rk,
k ≤ θC , qualify for consideration, where Ri’s trust
rating for B is ti and A’s credibility and discredibil-
ity ratings for Ri are ci and di respectively, then A’s
queried trust score on B is

∑k
i=1(ci − di)ti

k
. (1)

The queried distrust rating is calculated in the same
fashion, using the respondents’ distrust ratings of B.

The operation of the trust query and evaluation
protocol is illustrated in Figure 3.

2.6 File Download

Once the file version to be downloaded is decided, one
or more peers who provided that response are selected
according to QoS or some other criteria—but not ac-
cording to the peer’s trust ratings which would result
in the overloading of the trusted peers—and the file is
downloaded from the selected peers.

It is possible that a peer who provided the right
hash in a file query was in fact malicious and that it
will send the malicious file if selected for download.
The correctness of the hash can be checked once the
file is downloaded completely, but then the attacker
will have succeeded at least in wasting the bandwidth
of the querier. Moreover, if multiple sources are used
for the download, which is a common way of download-
ing large files, a hash mismatch detected after the file

5If there are fewer than θC responses in total, all responses
are selected.

3

Figure 3: An illustration of the trust evaluation protocol. In response to a file query, three different replies are received
among which the querier is interested in the first two. A trust comparison among these two versions follows. In this
process, sufficient information is not available locally on the providers of the second version. Hence, a trust query is
issued for peer x4. At the end of the calculations, the first version turns out to be the one with a better trust score and
will be downloaded from some subset of the peers {x1, x2, x3}.

download will not identify the malicious source, pos-
sibly ruining the reputation of the honest peers along
with that of the malicious ones. To prevent this po-
tential threat, we describe a two-level hash scheme in
Section 4.3 which detects falsely reported hashes early
in the download.

2.7 Update of Trust and Credibility Rat-
ings

After the file download is complete, a user is asked
to judge the file as benign or malicious. If it is rated
benign, the trust rating of the peer(s) from whom the
file is downloaded is upgraded. Otherwise, the rating
of the peer who sent the malicious content and the
rating of those who contributed to its selection are
downgraded. The difference between the two cases is

4

due to the following fact: A malicious peer may well
offer a right hash during a query in the hope of being
selected and, if selected, sends the malicious content.
Therefore, merely a reference for a good file is not
sufficient for upgrade of the trust rating. On the other
hand, if a downloaded file turns out to be malicious,
all peers who offered that file can be assumed to be
malicious.

The update of the credibility ratings is slightly
more complex: A peer’s credibility rating is updated
at the end of a file download if that peer has given
an authenticated opinion on a peer whose trust rating
ended up being updated as the result of that download.

A credit rating update’s direction (i.e., its being
negative or positive) is determined according to the
opinion given and the direction of the trust rating that
is updated: If a peer’s trust rating is upgraded and
some peer gave a positive opinion on that peer, or
if both the trust rating update and the opinion were
negative, then the credibility of the referring peer is
upgraded. Otherwise, it is downgraded.

Another important point here is how an opinion is
classified as “positive” or “negative”. Since the dis-
trust rating has priority in evaluation over the trust
rating, an opinion with a non-zero distrust rating is
considered a negative one. An opinion with a posi-
tive trust rating with zero distrust on the other hand,
which implies a trust rating of 0.5 or higher, is consid-
ered a positive opinion.

3 Design Rationale

3.1 Basic Trust Evaluation Process

The idea of using the feedback from other peers to
assess the trustworthiness of a resource/peer is a fun-
damental characteristic of reputation systems [10]. In
our protocol, this process is carried out in a distributed
fashion due to the lack of a centralized server in P2P
systems in general.

In our trust rating calculations, opinions of peers
are weighted by their trustworthiness. Moreover, the
evaluation is restricted to a few (θT or θC) most trusted
responses. This has the purpose of preventing some
low-trust responses discrediting a reliable resource/peer
supported by sufficiently many trusted peers, as well
as limiting the number of responses to be authenti-
cated, which, unless restricted in number, can be a
performance bottleneck.

A special feature of our trust evaluation function
is the separate treatment of the distrust ratings. Al-
though both the trust and distrust ratings are derived
from the same trust vectors, handling the distrust rat-
ings separately has the additional feature of not letting

a dishonest dealing be erased easily by a few honest
transactions, which closely models real-life trust rela-
tions where a single dishonest transaction in someone’s
history is a more significant indicator than several hon-
est transactions.

An important factor to be considered in reputation-
based systems is temporal adaptivity; that is the abil-
ity to respond rapidly to changing behavioral patterns.
Our trust rating design with binary vectors makes an
efficient exponential aging scheme with an aging fac-
tor of 0.5. Besides, implementing the aging scheme by
fixed-length registers rather than floating point arith-
metic has the desirable feature of enabling peers to
cleanse their history by doing a certain amount of hon-
est community service after a bad deed. Note that
this service must be done to the same person who was
cheated, and hence a bad transaction on record will
take some time to be erased completely. The num-
ber of faithful transactions required to cleanse a bad
record is determined by the length of the trust vector,
�. If it takes a considerable amount of time to have two
transactions happen between the same pair of users,
� = 8 could be a reasonable choice. Higher values of
� could be preferred for highly active systems or in
systems where cheating is considered a major offense.

3.2 Queried Trust Evaluation

A fundamental decision in our design was to use a cred-
ibility rating system separate from the trust ratings.
The main risk of using the trust ratings for credibility
evaluation comes from coordinated attacks where some
malicious peers do as much faithful public service as
they can and build a strong reputation, and then use
their credibility for supporting others who spread ma-
licious content. Having separate trust and credibility
rating systems precludes such attacks.

One aspect different in the treatment of the cred-
ibility and the trust ratings is the way they are used
when ranking the file or trust query responses. The
trust ratings are ranked by the min-distrust-max-trust
criterion whereas the credibility ratings are ranked sim-
ply by the rating values. This difference is due to the
difference in the significance of a negative entry on
the vectors: A negative entry on Alice’s trust vector
for Bob is due to a problematic file served by Bob
in the past. On the other hand, a negative entry on
Alice’s credibility vector for Bob does not necessarily
imply a wrongdoing on Bob’s part but may simply be
due to Alice and Bob’s having different experiences
with a third peer Charlie who may be demonstrat-
ing inconsistent behavior, possibly with the specific
aim of creating discredibility among good peers. It

5

is due to this difference in reliability6 that the re-
sponses to a trust query are ranked by the credibil-
ity ratings alone, instead of using a min-discredibility-
max-credibility ranking.7

Like the safety check discussed at the end of Sec-
tion 2.4 against the low-trust responses that may enter
into the top θT in the local trust evaluation, we decided
that the top θC responses in a trust query should be
evaluated only if they have a credibility rating higher
than discredibility. Accordingly, the factor for weight-
ing the trust query responses in Equation (1) is taken
as the net credibility ratings, ci − di, rather than the
credibility ratings alone.

3.3 File Download and Update of the
Ratings

Once the file version to be downloaded is decided, the
peer to download it from is selected randomly among
those who offered that version without regard to the
trust ratings. This way of selection has the desirable
feature of enabling new peers to build a reputation as
well as not overloading the trusted peers.

We have already explained in Section 2 why the
update of trust ratings after a download is limited to
the peers from whom the file was downloaded and, in
case the file was malicious, to those who were authenti-
cated references for the file. The main reason was that
we could not decide conclusively about the other peers
involved. It is due to the same reason that the cred-
ibility ratings are updated only for those peers who
are authenticated references for someone whose trust
rating is updated as a result of the download.

Note that, in a trust query, the top θC responses
are authenticated regardless of their net credibility rat-
ing’s being positive or negative, despite the fact that
the responses with a negative rating would not be used
in the calculations. This is necessary to give the peers
with a zero or negative net credibility rating a chance
to upgrade their ratings. Otherwise, if such an oppor-
tunity were not present, it would not be possible for
the new peers to build a credibility, and the credibility
system would be totally useless. Similarly, it would
not be possible for the good peers who have somehow
got a negative entry on their credibility history to turn
their ratings to positive again.

6Here, it may be argued that since the credibility ratings are
not as reliable as the trust ratings, it would be better to use
the trust ratings in their place. Even though the trust ratings
may indeed be better against uncoordinated attacks, they would
be useless when attackers coordinate as discussed earlier in this
section.

7Otherwise, established good peers with a high credibility
but a tiny discredibility caused by some inconsistent peer would
be ranked lower than a newcoming peer with no credibility or
discredibility.

4 Security Extensions

In the section, we discuss extensions on the basic pro-
tocol to provide secure and reliable trust information
in the presence of active attackers.

4.1 Key Management

Our system makes use of digital signatures for authen-
tication of critical messages. The core trust issue in
public key systems is to ascertain that a public key
received on-line indeed belongs to the claimed party.
The classical solution to this problem is by trusted cer-
tification authorities, which may not be an option in
the P2P systems that are totally decentralized. On the
other hand, most P2P systems are pseudonym-based
systems, where the question is to bind the public keys
to pseudonyms, not to real-life identities. A natural
solution here is to make the public key of a peer also
its pseuodnym. That is, in an RSA-based system for
example, the public exponent-modulus pair (e, n) can
be taken as the pseudonym of the entity using it.8 In
such a system, there will be no question of the public
key’s authenticity when the trust information from a
certain pseudonym is to be verified.

4.2 Denial of Service Protection

The requirement of responding to every relevant query
with a digital signature is likely to be an excessive bur-
den on the peers. Moreover, it can easily be exploited
for denial of service attacks by attackers continually
issuing many high-match queries. To protect against
this threat, a puzzle scheme is used adding an extra
round to the protocol: In the initial response, the file
hash is sent without any signature. Instead, the re-
sponding peer includes a puzzle to be solved by the
querier, such as finding a string whose MD5 output
matches a certain value [2], which should be answered
correctly before a signature is issued. Then the query-
ing peer decides on which file versions he is genuinely
interested in and solves the puzzles of a limited number
of the respondents for each version.

4.3 Avoiding Fake File Downloads

Another avenue of attack for sending malicious files is
to provide the hash of a benign file during the query-
response process but, if selected as the download source,
to send the malicious file during the download. Such
attacks can be detected if the hash of a downloaded
file is checked before opening. However, the time and
bandwidth of the downloader would be wasted, which

8If the pseudonyms are desired to be of uniform length such
as an ID number, a one-way hash of the public key can be used.

6

is exactly the purpose of certain attacks such as the
“decoy files” [3].

A more effective protection is to compare the hash
of the blocks of the file while the download is in progress.
Merkle hash trees [9] provide a solution of this sort. An
alternative hash scheme is also possible that is more
suitable for our protocol. In this alternative scheme,
the hash of a file is computed in two stages: First, the
file is divided into segments of a certain size and the
hash of each segment is computed separately; then the
hash of the file is computed as the hash of these seg-
ment hashes. The only computational overhead of this
method is the extra hash computation over the seg-
ment hashes, which would be insignificant given that
the segments sizes are reasonably large. We believe
that a segment size in the 100KB–1MB range is a rea-
sonable choice for most P2P networks.

Our trust evaluation protocol can be made to work
with this new hashing scheme by a simple modifica-
tion: Once the file version for download is selected,
the querier contacts one of the peers who provided the
selected hash and requests the detailed hash of the file.
Upon receiving the response and verifying its correct-
ness, the peer proceeds to download the file, possibly
from multiple sources. During the download, the hash
is checked after every downloaded segment and the
connection is canceled if a mismatch occurs.

Note that if an attacker sends the fake segment
later in the download to delay detection, the benign
segments downloaded until that point can be used
without any problem, saving the time and bandwidth
spent.

4.4 The Problem of Free Riders

A problem with a quite different theme but which may
nevertheless benefit from our architecture is the prob-
lem of “free riders”; that is, the peers who use the
P2P system only to download content but do not serve
to other peers. Many users of Kazaa-like file sharing
systems use the system as free riders. To tackle this
problem and to discourage free riding, some systems
determine the priority of the service reception of a peer
according to the amount of service the peer has pro-
vided in the past. However, this service information is
typically provided by the software of the client peer,
which is easily hacked to always send the highest pos-
sible value. Alternatively, centralized solutions have
been proposed where a server is used to keep track of
the amount of service provided and received by each
peer (e.g., [4, 7]); but this may not be a possible option
for the P2P systems that are totally decentralized.

Our trust record system provides a natural dis-
tributed infrastructure that can also be used to assess

the service level of a peer: At the time of a download,
the priority of the download is determined according
to the number of 1s in the trust vector the server peer
maintains for the client peer. When the local informa-
tion is insufficient, a trust query can be issued and a
“service score” can be calculated from some top few
responses. Here, unlike in the trust score calculation,
the ranking of the responses should not be based solely
on the credibility of the sources—the most credible
respondents may possibly have not received any ser-
vice from the client peer. Instead, a combination of
the credibility ratings and the provided service scores
should be used.

5 Simulation Experiments

We tested the performance of our protocol with simu-
lations on various attack scenarios. Although it is not
possible to exhaust all potential attack types, testing
the protocol with a variety of attacks gives an idea on
the effectiveness of the protocol. The types of attack-
ers considered in the simulations are,

• naive, who responds to every query with a mali-
cious version of the requested file

• hypocritical, who acts like a reliable peer most of
the time but occasionally tries to send a mali-
cious file

• collaborative, who collaborate with each other in
trust queries, expressing a positive opinion for
malicious peers and a negative opinion for others

• pseudospoofing, who change their pseudonym pe-
riodically to escape recognition—these attackers
are the hardest to detect and their prevention is
possible only after honest peers build a sufficient
level of trust among themselves

• pseudospoofing with collaborators, where the pseu-
dospoofing peers are supported by a group of
“collaborators” who normally act as trustworthy
peers and build trust in their communities, but
give their strongest support to their malicious
peers when they receive a relevant trust query.9

The simulated P2P networks operate with a Gnutella-
like decentralized routing structure. Every peer is
linked to a certain number of neighbors, and a query

9This attack scenario is more meaningful then collaborators
alone, since for malicious support in trust queries to be effective,
the peer to receive the support must have a clean history in its
neighborhood, hence must be changing its identity periodically.
Otherwise, that peer would have been identified as malicious
and the support to be given in trust queries would be irrelevant,
as observed in Figure 5.

7

message issued by a peer is propagated over these links
for a certain number of hops specified by the TTL.
The simulations are run with the following common
parameters:

number of peers: 1000
number of distinct files: 1000

number of files each peer initially holds: 10
number of links per peer: 3

TTL: 3
ratio of malicious peers: 1–10%

length of trust vector: 8 bits

Here, the number of peers and files in the network are
determined according to the capacity of our system.
The number of connections per peer and the TTL are
chosen to make the area covered by a peer’s reach-
able neighborhood a reasonable fraction of the whole
network—about 2% in this case. 10% malicious ra-
tio represents a high concentration of malicious peers,
whereas 1% is the scenario that is probably closer to
a real-life situation.

In a simulation run, regular users make file requests
periodically, according to a uniform distribution. If
the requested file is available locally, no further ac-
tion is taken. Otherwise, a resource query message
is issued, and the protocol proceeds as described in
Section 2. Malicious peers may also issue file queries,
basically for obtaining genuine files to be used for con-
fidence building. Malicious peers are limited to their
databases to send genuine file responses, but they are
free to respond to any query maliciously.

It has been observed that the user behavior in P2P
file sharing systems show a Zipf-like distribution where
users can be grouped into several categories according
to their interests, and within each category there are a
few highly popular files along with a large number of
less popular ones [8]. Our simulations can be expected
to give better results when run with a Zipf distribution
since positive correlation among users’ behavior would
result in a more rapid trust establishment among the
users in the same category. We preferred to stick to
the uniform distribution which favors our protocol the
least, since the file requests in a uniform distribution
can come from anywhere in the domain and in our
system it is only the attackers who are able to respond
to all queries unrestrictedly.

5.1 Simulation Results

Results of our simulations are shown in Figures 4–8,
where the metrics used to evaluate the performance
are:

Φ1: Ratio of malicious downloads among all down-
loads

Φ2: Success ratio of malicious attempts (i.e.,
the ratio of malicious downloads to malicious re-
sponses given)

In the figures, every point shows the value of the statis-
tics measured since the last plotted point (i.e., not cu-
mulative), and the progress of the system is shown in
terms of the total number of file downloads.

Throughout the simulations, we take θT = θC , de-
noted by θ. The inter-query time, or iqt, is the average
time between two consecutive file queries of a peer and
is used as the basic unit of the simulation time.

The main characteristics demonstrated by the ex-
periments can be summarized as follows:

• The protocol is quite effective in preventing the
malicious downloads and can reduce the attacks’
effectiveness to zero within a short time depend-
ing on the sophistication of the attackers.

• A large degree of protection can be obtained by
just evaluating one most trusted response, i.e.,
θ = 1. Setting θ = 2 helps against sophisticated
attackers. The gain from θ > 2 appears to be
negligible.

• The protocol is similarly effective for both 1%
and 10% malicious peer density.

8

0

0.5

1

10000 20000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(a) Φ1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10000 20000

Φ
2

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(b) Φ2

Figure 4: Simulation results for the naive attacker type. The attackers are identified and inhibited rapidly. The
performance does not depend on θ.

0

0.5

1

10000 20000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(a) Φ1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10000 20000

Φ
2

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(b) Φ2

Figure 5: Simulation results for the collaborator attacker type. Their performance is only marginally better than the
naive attackers for reasons discussed earlier in this section. (That is, for the support to be given in trust queries to be
effective, the peer to receive the support must have a clean history.) A more effective attack scenario can be seen in
Figure 8 where collaboration is carried out in coordination with pseudospoofing.

9

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(a) Φ1, for Ψ = 0.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

400000 800000

Φ
2

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(b) Φ2, for Ψ = 0.1.

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(c) Φ1, for Ψ = 0.25.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

400000 800000

Φ
2

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(d) Φ2, for Ψ = 0.25.

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(e) Φ1, for Ψ = 0.5.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

400000 800000

Φ
2

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(f) Φ2, for Ψ = 0.5.

Figure 6: Simulation results for the hypocritical attackers who try to send a malicious file after a certain number of
honest uploads. The parameter Ψ specifies the dishonesty rate of the attackers. (E.g., for Ψ = 0.1, an attacker tries to
send a malicious file after every nine honest uploads.) The results show that detection of the hypocritical attackers take
longer than other attacker types, but their level of effectiveness is also significantly lower. Among the Ψ values tested,
the best attack performance is obtained for Ψ = 0.5

10

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(a) Φ1, for p = 50.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

400000 800000

Φ
2

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(b) Φ2, for p = 50.

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(c) Φ1, for p = 100.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

400000 800000

Φ
2

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(d) Φ2, for p = 100.

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(e) Φ1, for p = 200.

0

0.002

0.004

0.006

0.008

0.01

0.012

400000 800000

Φ
2

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(f) Φ2, for p = 200.

Figure 7: Simulation results for the pseudospoofing attackers who adopt a new identity periodically. The parameter p
specifies the period of the identity change. (E.g., for p = 100, an attacker adopts a new identity at every 100 iqt.) This
attacker type is the hardest to detect and prevent. Nevertheless, their ability to spread malicious content converges to
zero as good peers get to know each other and build trust among themselves.

11

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(a) Φ1, for p = 50.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

400000 800000

Φ
2

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(b) Φ2, for p = 50.

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(c) Φ1, for p = 100.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

400000 800000

Φ
2

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(d) Φ2, for p = 100.

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(e) Φ1, for p = 200.

0

0.002

0.004

0.006

0.008

0.01

0.012

400000 800000

Φ
2

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(f) Φ2, for p = 200.

Figure 8: Simulation results for the pseudospoofing attackers with collaborators. Here, 1–10% pseudospoofing malicious
peers try to spread malicious content where another 10% of the peers are collaborators who normally act as trustworthy
peers and build confidence in their communities, but give their full support to the pseudospoofing malicious peers in
trust queries—the 10% collaborator ratio, which is probably too high to be realistic, is chosen to guarantee the presence
of at least one collaborator in the neighborhood of every pseudospoofing attacker in order to make the attacks more
effective. This attack type is somewhat more effective than pseudospoofing alone, but their effectiveness also converge
to zero as good peers build trust with each other.

12

6 Comparison to Related Ear-
lier Work

A number of protocols have been proposed recently for
reputation-based trust management in P2P systems.
In this section, we discuss them briefly in comparison
to our protocol.

One of the earliest works in this area is the proto-
col by Aberer and Despotovic [1] which aims to iden-
tify dishonest peers by a complaint-based system. A
shortcoming of this protocol is that it maintains only
the negative feedbacks, providing no means for a trust-
worthy peer to be distinguished from a newcomer. The
trust evaluation is also rather simplistic, classifying ev-
ery peer either as trustworthy or untrustworthy. More-
over, maintenance of a “P-Grid” architecture is re-
quired on top of the existing P2P structure.

A more interesting protocol is the EigenTrust scheme
proposed by Kamvar et al. [8], which is based on eval-
uating the trust information provided by the peers ac-
cording to their trustworthiness (i.e., using the trust
ratings for credibility). The evaluation process is based
on a rather interesting normalization assumption: The
trust ratings held by a peer are normalized such that
their sum equals 1. Although this normalization has
interesting properties mathematically—the resulting
trust matrix becomes a Markov matrix and the global
trust rating computation converges to the principal
eigenvector of that matrix (hence the name EigenTrust)—
it has less desirable consequences securitywise: By
this normalization, significant trust information is lost:
E.g., if there are n identical trust ratings in the database,
the normalized value of them will be 1/n whether the
original values were the highest possible ratings or the
lowest; or, a single non-zero rating in the database will
always be normalized to 1, regardless of its value.

A protocol that specifically addresses the issue of
computing a trust score for the alternative file versions
obtained in a query is described in a recent paper by
Damiani et al. [5]. Although similar to our proposal in
scope, this protocol is different in some major aspects:

• The protocol goes through four phases of mes-
sage exchanges before the download can start:
Resource query, voting (similar to our trust query),
verification of the votes, verification of the hash
of the file selected for download.

• The voting and vote verification protocols have
no cryptographic authentication and relies on
the IP addresses for the messages’ authenticity,
making them vulnerable to active attacks.

• The votes are evaluated without any considera-
tion of the credibility or trustworthiness of the
voters.

• No quantitative trust metric is specified to be
used for choosing among alternative files for down-
load.

An important contribution of [5] is the idea of main-
taining reputations for resources as well as for peers,
which we discussed in Section 7.

A study with a rather different but nevertheless
relevant scope is a recent paper of Xiong and Liu [12]
on trust evaluation in P2P e-commerce communities.
The paper emphasizes two points for P2P reputation
systems:

• In a rating scheme, the complaints, or any other
opinions for that matter, should be evaluated ac-
cording to the credibility of their providers.

• A peer’s behavior in different contexts should be
evaluated differently. (E.g., feedbacks from small
and large transactions should be weighted differ-
ently, according to the size of the transaction.)

The paper does not deal with the specifics of the func-
tions and protocols for trust evaluation. However, they
do simulations with an experimental rating scheme
modified from the scheme in [1] based on P-Grids.

7 Final Considerations

Improvements are possible on the basic protocol to
make it more efficient. For example, a timer mech-
anism can be used to detect and remove the trust
vectors belonging to peers that are no longer active.
Trust queries can be made more efficient by combin-
ing all IDs to be queried into a single query message,
reducing the number of query and response messages
to be handled.

Although the protocol maintains �-bit trust and
credibility vectors, it might be more suitable to use
only part of that information for different purposes.
For example, when evaluating trust responses that come
from peers, it may be more desirable to take only the
most recent few transactions into account.

A potential improvement on the basic protocol may
be realized by preserving the hashes of the malicious
files downloaded. These hashes can later be used to
send a warning to the querying peer when a relevant
query is received. This idea was originally proposed
in [5] in a similar context. Our protocol can be en-
hanced to include this feature with the following mod-
ifications: The warning messages received in a query
are grouped along with the normal responses accord-
ing to their file hash value. If selected into the top
θT for trust evaluation, a warning message’s trust and

13

distrust ratings are reversed in the trust score calcu-
lation, contributing a significant distrust factor to the
average.

The limitations of our protocol must also be noted.
Being a reputation-based protocol, our system in the
end relies on the judgment of its users. Therefore,
it can be effective only against attacks that are dis-
cernible by the user. Nevertheless, many attacks in
P2P systems fall into this category, such as the com-
mon decoy files attacks [3].

Another point to note is that our protocol does
not distinguish between malicious peers and the peers
that spread malicious content due to their carelessness,
which we believe is the right way to deal with careless
peers from a practical point of view. Besides, a careless
peer always has the ability to improve its reputation
by serving a sufficient number of good files once it
corrects its attitude.

Our protocol is designed to be compatible with
most first generation P2P systems. However, certain
optimizations would be needed to obtain the best per-
formance when integrating it with a specific system.
For example, in a Gnutella-like network where a peer’s
connections are changed constantly to provide rapid
distribution of the content across the network, building
a reliable reputation base can take too long and a ma-
licious peer can escape recognition for a long time due
to the constantly changing neighborhood. In such a
system, a connection scheme where some of the neigh-
bors of a peer change continually for content distri-
bution and others, which are possibly determined by
a longest prefix match on the ID, remain relatively
stable for trust management, could be more effective
for faster trust establishment. More detailed simula-
tions that consider this kind of specifics of the network
where the protocol is to be deployed, and with a more
sophisticated modeling of the attackers according to
the network’s possible vulnerabilities, would be needed
to get a more realistic evaluation of the proposed ar-
chitecture for deployment in an actual system.

Acknowledgments

We would like to thank Ezhan Karaşan for kindly let-
ting us use the Information Networks Lab’s high per-
formance workstation for our simulations.

References

[1] K. Aberer and Z. Despotovic. Managing trust in a
peer-2-peer information system. In Ninth interna-
tional conference on information and knowledge
management (CIKM). 2001.

[2] T. Aura, P. Nikander, and J. Leiwo. DOS-
resistant authentication with client puzzles. In
Security Protocols, 8th International Workshop.
Springer-Verlag, 2000.

[3] BBC-Online. Record industry spoofs net pirates.
http://news.bbc.co.uk/2/hi/entertainment/-
2093931.stm.

[4] B. Cohen. Incentives build robustness in BitTor-
rent. In Workshop on Economics of Peer-to-Peer
Systems. 2003.

[5] E. Damiani, D. C. di Vimercati, S. Paraboschi,
P. Samarati, and F. Violante. Reputation-based
approach for choosing reliable resources in peer-
to-peer networks. In Proc. of the 9th ACM Con-
ference on Computer and Communications Secu-
rity. 2002.

[6] EBay. http://www.ebay.com.

[7] M. Gupta, P. Judge, and M. Ammar. A reputa-
tion system for peer-to-peer networks. In Proc. of
NOSSDAV’03. 2003.

[8] S. D. Kamvar, M. T. Schlosser, and H. Garcia-
Molina. The eigentrust algorithm for reputation
management in P2P networks. In Proc. of the
Twelfth International World Wide Web Confer-
ence (WWW2003). 2003.

[9] R. Merkle. Protocols for public key cryptosys-
tems. In Proceedings of the 1980 IEEE Sympo-
sium on Security and Privacy. 1980.

[10] P. Resnickand, R. Zeckhauserand, E. Friedman,
and K. Kuwabara. Reputation systems. Commu-
nications of the ACM, 43(12), 2000.

[11] Symantec. http://securityresponse.symantec.com/-
avcenter/venc/data/vbs.gnutella.html.

[12] L. Xiong and L. Liu. A reputation-based trust
model for peer-to-peer ecommerce communities.
In IEEE Conference on E-Commerce (CEC’03).
2003.

14

