
A DISTRIBUTED AND MEASUREMENT-BASED
FRAMEWORK AGAINST FREE RIDING IN

PEER-TO-PEER NETWORKS

Murat Karakaya, İbrahim Körpeoğlu and Özgür Ulusoy
Computer Engineering

Bilkent University Ankara, Turkey
{muratk,korpe,oulusoy}@cs.bilkent.edu.tr

Abstract. Peer-to-peer networks have attracted a significant amount
of interest as a popular and successful alternative to traditional client-
server networks for resource sharing and content distribution. However,
the existence of high degrees of free riding may be an important threat
against P2P networks. In this report, we propose a distributed method
with the aim of reducing the degree of free riding in P2P networks. We
primarily focus on locating free riders and taking actions against them.
We propose a model in which each peer monitors its neighbors, makes
decisions and takes appropriate actions. We specify three different free
riding types and their symptoms observable from neighboring peers. We
employ simple formulas to determine if a peer exhibits any kind of free
riding. The counter actions to be applied to free riders are defined. We
combine the mechanisms proposed to detect free riders and take appro-
priate actions in an Event-Condition-Action rule and a state diagram.
Furthermore, we describe possible attacks to the proposed mechanisms
and show how the system can handle them. By reducing the amount of
free riding in a P2P network, we expect to increase quality of service,
availability of content and services, robustness of the system, network
load balancing, and scalability of the network.

1 Introduction

Peer-to-peer (P2P) networks have attracted a significant amount of interest both in the
Internet community and in the academic world as a popular and successful alterna-
tive to traditional client-server networks for resource sharing and content distribution.
P2P networks are implemented as overlay networks on top of the existing Internet in-
frastructure. There have been many system proposals and applications in the main
functional areas of P2P paradigm such as data placement, file lookup, replication, etc.
Most of these efforts aim to provide efficient, effective and fast exchange of files between
peers. Although there are different architectural designs and applications for P2P file
sharing, in nearly all P2P systems files are stored at peers, searched through the P2P
network mechanisms, and exchanged directly between peers using the underlying net-
work mechanisms. In an ideal case, a file that is downloaded by a peer is automatically
opened for sharing with other peers. However, peers can, and frequently do, turn off
this property and stop sharing a downloaded file to economize on their own resources
such as bandwidth. Therefore, the primary property of P2P systems, the implicit or
explicit functional cooperation and resource contribution of peers, may fail and lead to
a situation called free riding.

As a P2P concept, free riding means exploiting P2P network resources (through

1

searching, downloading objects or using services) without contributing to the P2P net-
work at desirable levels. Researchers have observed the existence of high degrees of
free riding in P2P networks and they suggest that free riding may be an important
threat against the existence and efficient operation of P2P networks. Adar and Hu-
berman argue that “free riding leads to degradation of the system performance and
adds vulnerability to the system. If this trend continues copyright issues might become
moot compared to the possible collapse of such systems” [3]. Free riding is a serious
problem for commercial P2P systems that would like to charge the users for accessing
the resources and make profit in this way. If free riding can not be prevented, such
systems can not count on the altruistic contribution of all peers, as happens in today’s
free systems [5], to have a successful operation and use of the P2P network. In those
systems, to increase the system value to users by improving the number and variety of
the available files, some incentive schemes would be required.

There may be various reasons and motivations behind free riding. For example,
peers with a Network Address Translation (NAT) address may act as a free rider.
Bandwidth limitation would be another cause. Another reason would be the peers’
concern of sharing “bad” or “illegal” data on their own computers. Some peers may
concern about security if they share something.

Free riding may cause several negative side effects on P2P networks. In a free riding
environment, a small number of peers will serve for all other peers. Therefore, many
download requests will be directed towards these peers which may lead to scalability
problems [10]. Renewal of content or presenting interesting content may decrease in
time, thus the number of shared files may become limited or may grow very slowly.
Fault-tolerance property of P2P networks may be adversely affected due to the fact
that a very small portion of the peers provides most of the content1. This also leads to
a client-server like paradigm [11, 13] and decreases P2P network advantages. Quality of
search process may degrade due to increasing number of free riders in the search horizon.
As the peers age in the network, they begin not to find interesting files and may leave the
system for good with all the files that shared earlier [10, 6]. Moreover, the large number
of free riders and their queries will generate a great amount of P2P network traffic, which
may lead to degradation of P2P services. Furthermore, underlying available network
capacity and resources will be decreased by free riders, which will cause extra delay and
congestion to non-P2P traffic.

In this report, we propose two mechanisms to cope with free riding. The first mech-
anism primarily focuses on locating and detecting free riders, whereas the second one
deals with taking actions against them. We propose a model in which each peer mon-
itors its neighbors, makes decisions, and take actions accordingly. We make several
distinctions between free riders and contributors to enforce free riders to comply with
cooperation. As the first step of our work, we propose several design criteria which
should be met by any P2P system aiming to prevent free riding. Then, we specify three
free riding types and their symptoms observable from neighboring peers. We present
simple methods and formulas to determine if a peer exhibits any kind of free riding
activity. The counter actions which will be applied against free riders are also specified.
We then integrate the hints that suggest a peer to be free rider and the counter-actions
that can be applied to such a peer using a finite state diagram that shows the possi-
ble states and the transitions between them. We also represent the transitions using
an Event-Condition-Action (ECA) rule that enables automatic execution of counter-

11% of the peers provides 37% of the content [3].

2

actions upon updates and depending on the current conditions. We identify three
possible counter-actions that can be applied against a peer that is exhibiting free-riding
behavior.

The organization of the report is as follows. Sections 2 and 3 are devoted to the
related work and background, respectively. In Section 4, following the discussion of the
design criteria and performance metrics, the mechanisms for locating free riders and
taking actions against them are described. In the last part of this section, integration of
the proposed mechanisms in the form of a finite state machine (FSM) and an ECA rule
is presented. Section 5 discusses the possible attacks against the proposed mechanisms
by free riders. The conclusion is presented in Section 6.

2 Related Work

User traffic on Gnutella network is extensively analyzed in [3] and it is observed that
70% of peers do not share any file at all. Furthermore, 63% of the peers who share
some files do not respond to any queries. That is, they are sharing some files but
nobody is interested in them and therefore no queries are generated searching for these
files. Another interesting observation is that 25% of the peers provide 99% of the
whole content in the network. Adar and Huberman propose some ideas to prevent free
riding [3]. Two of these ideas are automatic replication of data in the network as in
FreeNet [14] and automatically sharing downloaded files as in Kazaa [16]. However,
the authors also point out the drawbacks and their concerns about the possibility of
practical use of these ideas. They propose to implement a market-based architecture
that allows a peer to exchange computer resources. However, they do not propose any
specific model or method for applying their ideas.

In a more recent work, Saroui et al. confirm that there is a large amount of free
riding in Gnutella network as well as in Napster [13]. Another interesting observation is
that 7% of the peers together provide more files than all of the other remaining peers.
The authors suggest that the system should not treat its peers equally, on the contrary
it should provide the right incentives and rewards for peers to provide and exchange
data.

In [10], Ramaswamy and Liu concentrate on how to prevent free riding. They
propose to calculate a utility function for each peer in order to estimate its usefulness
to all community. According to the result of the function, P2P network will permit a
peer to search and download a file or just reject its request. The function is based on
two parameters; the total size of the files downloaded and uploaded by the peer. The
difference of two values determines the utility of the user to the system. If the user
requests a file to download with a size less than the utility value, then it is permitted
to download. Otherwise, it is refused. There are two ways to increase the utility value,
either by uploading new files or by waiting for some time for a bonus utility value.
When a peer downloads a file, its utility is decreased by the amount of the size of the
downloaded file.

With the proposed method, free riders can not download files from the system if
the utility value is lower than the size of the requested file. However, there can be
some ways to walk around the utility values. For example, a user can share some
small files with fake names resembling popular file names. Other users can download
these files and the peer gets utility values for them. Moreover, the proposed method
depends on accurate information about peers which is provided by the peers themselves.
A P2P network depending on such a protocol can be misreported and cheated by

3

rewriting some malicious client programs. For example, KazaA P2P client program
[16] implements a method like the one proposed in [10] in order to prioritize users
request at the source peer. However, a modified version, Kazaa Lite [15], has been
released and it maliciously declares its user to be a “Supreme Being” which is the peer
with the highest participation level. Therefore, we think that this method can not fully
prevent free riding. Any method proposed to hinder free riding should be designed in
such a way that it should not solely depend on user-submitted information, or it should
create the right incentives for the peers to report accurate information [15]. This is
because, free riders may possibly not tell the truth about themselves, if they are not
given any incentive to do so2.

In a recent work [17], Vishnumurthy et al. suggest using a single scalar value, called
Karma, to evaluate a peer’s utility to a system like in [10]. Each peer has an account
consisting of Karma. When a peer uploads a file to a requesting peer, it gets some
amount of Karma from the requesting node. On the other hand, if it downloads, it
gives some amount of its Karma to source peer. The account of a peer is replicated
by a group of peers, called the bank-set, in order to ensure Karma against loose and
tampering. The transfer of Karma between peers is executed through bank-set of each
peer. The main difference from the work in [10] is that the utility value of a peer is not
stored at the peer itself but at some other peers.

However, to make the scheme work, a group of peers must be known to store Karma
value. Whenever a peer’s Karma changes, a predefined number of these peers should be
reachable. Therefore, the identification of the peers should be known and be permanent.
However, unstructured P2P networks do not support permanent and reliable identifi-
cation mechanisms. Thus, the prototype of the proposed scheme was implemented on
top of Pastry, which is a Distributed Hash Table (DHT), in other words a structured
P2P network.

In our work, we do not propose to use any scoring value for a peer’s utility to the
system. Therefore, we don’t have to bother with storing, retrieving, and saving a utility
value. At each peer, we just store the information about the neighbors’ messages which
are routed by the peer itself. Furthermore, we do not require the explicit cooperation
of any group of peers to make the system work. Each peer executes the same kind of
mechanisms alone and does not depend on any other peer’s cooperation. Our proposal
can be implemented on both types of P2P networks, that is structured and unstructured
networks.

3 Background

In this section, we describe some basic P2P systems concepts and protocols upon which
our approach and schemes are built. We focus on unstructured P2P networks like
Gnutella, because of their popularity and well-known protocols [4]. Unstructured P2P
networks have the distinct properties that can be summarized as [2]:

• no central coordination

• no central database

2For example, about 30% of the Napster users do not report their bandwidths or misreport with
less values [13]. Another example may be given from Seti@Home project [8]. Some peers modify their
client programs so that they appear to the system as if they were doing more work than what they
are actually doing. In this way, they abuse the scoring system and their names are displayed at the
top of computation units contributed list.

4

• no peer has a global view of the system

• global behavior emerges from local interactions

• all existing data and services should be accessible

• peers are autonomous

• peers and connections are unreliable

These features enabled unstructured P2P networks to be very successful, but also
brought some problems. Among the problems of such networks is the so-called reputa-
tion problem. In an unstructured P2P network such as Gnutella, peers interact with
unknown peers and have no information about their reputations. In other words, they
do not know to what extent they can trust the other peers and the data provided by
them. As a result, the detection of free rider peers and actions against them can not
be easily implemented. In this work, we propose a distributed and local solution which
does not require any persisting information about peers.

3.1 Probable Causes of Free Riding

The motivations and reasons behind free riding may be different. For example, peers
with a Network Address Translation (NAT) address may act as a free rider. Multiple
computers share the same domain of IPs through NAT. Therefore, if both peers are
using NAT-based IP, they cannot download files from each other. As stated in [3],
16% of observed peers are using NAT-based IP and this corresponds to about 2% of
the transactions. These peers cannot upload files and therefore they become free riders
even they share files.

Bandwidth limitation would be another cause. In the first sight, one may think that
peers have scarce bandwidth and so they do not want to share it by uploading files.
However, the analysis of network traffic [3] shows that there is no strong correlation
between bandwidth and free riding. That is, a peer with a large amount of bandwidth
has the same tendency to be a free rider as a peer with poor connection.

Another reason would be the peers’ concern of sharing “bad” or “illegal” data on
their own computers even they use them. Because, they do not want to be responsible
for the data item on any occasion of surveillance. In addition, peers may download
content, use it (watch, listen, read, etc.) and delete it immediately. For some types of
files such as videos, they do not need to refer to the same file more than once. Moreover,
peers may worry about their resources and do not want to share them. If they can use
the system for free, then they may not want to contribute anything to the system.

Some peers concern about security if they share something. Active cooperation
with P2P network might frighten peers. One important incentive would be the fact
that most of the existing P2P systems do not care about the active cooperation of the
peers. Protocols are designed as if each peer were volunteer to cooperate and each peer
contributes to the system equally. Therefore, in most P2P networks, all peers enjoy the
equal and same services even though some of them do not obey the expectations. Peers
neither benefit from sharing files to community nor face any loss from not serving.

3.2 Participation Levels

In general, free riding occurs as low or no participation of peers to P2P network. Par-
ticipation levels to P2P network can be classified as follows:

5

• Zero content contribution: Peers do not share any content.

• Uninteresting content contribution: Peers share some content but nobody searches
for them.

• Only replication: Peers share only downloaded content, and do not create new
content.

• Network traffic regulation: Peers may act as super peers which route queries
and provide integrity of the whole network. They do not necessarily contribute
content.

• Large number of replication: Some peers reserve large capacity for sharing files,
while they download less or no content.

• Original content contribution: Peers upload original and new content to network.
They can produce content by themselves or by just transferring new content. This
process can be legal or illegal.

• System design: Firms or individual programmers develop and distribute P2P
protocols and client programs. Even they seem to be unrelated to participation
level, they determine how the peers interact with the whole system. If the sys-
tem designers do not obey the existing system protocols or do not care about
cooperation and contribution of peers while developing P2P protocols and client
programs, there could not be any participation at all and free riding may exist in
all forms.

In our work, we aim to increase the participation level of any peer to reduce the amount
of free riding effects on the network. The participation types given above can be ob-
served as a single or combination of several.

4 Mechanisms Against Free Riding

We think that in order to reduce the amount of free riding and increase cooperation
among peers, availability of a set of mechanisms is required. Many existing P2P systems
have implicitly assumed the altruistically contribution of peers, however the reality is
different. We believe that in current P2P systems there are not enough incentives for
peers to participate and contribute. Therefore, we try to create an environment in which
peers will be monitored about their contributions to a P2P network and enforced to act
in more cooperation and to contribute to continue to use the services and resources of
the P2P network.

We are not attempting to eliminate all possible kinds of free riding from a P2P sys-
tem completely3. We are aiming to improve the situation and reduce the ill-effects of the
problem by increasing the participation levels of peers, and hence their contributions,
as much as possible.

3For example, the scope of our work does not aim promoting or enforcing new content contribution
by peers. We have two reasons for this. First, in reality it may be impractical to judge easily if a file
is new to the system or not. Second, it could not be possible for every peer to create and contribute
original content.

6

4.1 Design Criteria

While developing some mechanisms to prevent or diminish free riding, one should con-
sider several issues some of which are listed below:

• Simplicity: The actions observed and reactions to them should be simple to
implement and manage.

• Decentralism: Making decisions and taking actions should be executed in a
decentralized way.

• Cooperation: Besides decentralism, cooperation should be intensified with co-
ordination among peers.

• Low overhead: Methods should not cause much overhead. Non-free riders
should not devote much resources to prevent free riding.

• Abuse-proof: Peers may try to walk around mechanisms by misreporting their
status or implementing their own client programs. Mechanisms must not depend
on information provided by peers solely. Instead, mechanisms should depend on
P2P paradigm to collect information about peers.

• Fairness: Peers with low bandwidth connections may not contribute even they
are willing to do so. The peers with NAT-based IPs also behave like free riders.
Furthermore, there is an asymmetry between upload and download bandwidths for
most of the peers which results in better download speeds and quality compared
to uploads. For these reasons, mechanisms and policies applied against free riders
should be fair and smart enough to distinguish the peers which are not real free
riders.

4.2 Performance Metrics

As stated before, the aim of this work is to prevent the amount of free riding that can
occur in a P2P system to some degree. In this way, we are targeting to reduce free
riding occasions and their effects to the system performance. With that we can have
better performing P2P networks, where participation and contribution levels are high.

The performance improvement of a P2P system has to be measured by using some
metrics. We would like to use the following metrics to evaluate the performance of a
P2P system that applies our schemes to prevent and reduce free riding.

• Quality of Service: If possible, Quality of Service (QoS) for non-free riders should
be increased, while diminishing them for free riders. QoS parameters may be
specified as, search time, hit quality and quantity, and download time.

• Availability: We expect that by increasing the cooperation between peers for
eliminating free riding and by forcing free riders to contribute, availability of
content and services in P2P network can be increased. For example, a scheme
that could replicate popular items on free riders would increase hit ratio for those
items, even though the original content providers leave the system.

7

Descriptor Description Content
Ping Used to actively discover hosts on Nothing

the network. A servent receiving a Ping
descriptor is expected to respond
with one or more Pong descriptors.

Pong The response to a Ping. Includes the IP and port of responding host,
address of a connected Gnutella servent number and size of files shared
and information regarding the amount of
data it is making available to the
network.

Query The primary mechanism for searching Minimum speed requirement of the
the distributed network. A servent responding host;search string
receiving a Query descriptor will
respond with a QueryHit if a match is
found against its local data set.

QueryHit The response to a Query. This descriptor IP and port, speed of responding
provides the recipient with enough host; number of matching files
information to acquire the data and their indexed result set
matching the corresponding Query.

Push A mechanism that allows a firewalled Responding host id; file index;
servent to contribute file-based data IP and port of requesting peer
to the network.

Table 1: Gnutella Protocol Descriptors

• Load Sharing and Scalability: Content provider peers can be bottleneck to due
excessive search and download operations they are involved in. Via increased
cooperation in P2P system, the load on peers can be also shared by peers that
would otherwise be free riders. This will help the system to be a more scalable
so that larger number of search queries and download operations can be executed
on the system successfully.

• Robustness: Mechanisms against free riding can make a P2P network more robust
against disconnections and legal attacks, which will increase network population in
terms of available content and also in terms of number of nodes that are reachable.
This will expand the search horizon and will increase the hit ratio in search
operations.

4.3 Locating and taking actions against free riders

We propose a system in which every peer passively monitors the other peers. In the
proposed system, peers can be classified into two different roles (see Figure 1). In the
first type of role, a peer functions as a monitoring peer, PM , which monitors and records
the number of messages coming from and going to neighboring peers. The messages
are implemented with descriptors in Gnutella Protocol [4] (See Table 1), the protocol
upon which our solution is based. At the same time, each peer is a controlled peer, PC ,
which means that its messages are monitored and recorded by its neighboring peers.

By examining the messages from a neighbor, and compiling the information recorded
about the neighbor and its related messages, a monitoring peer may suspect a neigh-
boring peer to be a free rider. Then it can take counter actions against this suspected
peer (i.e. controlled peer).

8

Figure 1: Peers are in two roles: monitoring and controlled.

Symbol Description
QP Number of Query descriptors submitted by peer P.
RQP Number of Query descriptors routed by peer P.
TQP Number of Query descriptors routed towards peer P.
QHP Number of QueryHit descriptors submitted by peer P.
RQHP Number of QueryHit descriptors routed by peer P.
SQHP Number of QueryHit descriptors satisfying queries of peer P.
NP Number of Notify descriptors submitted for peer P.

Table 2: Observed Descriptors

4.3.1 Locating Free Riders

In order to determine if a PC is a free rider or not, we may exploit several clues that may
be derived from the behaviors of the neighbors. For each clue, we need to maintain some
information about each neighbor and its behaviors. Due to the small-world phenomena,
average number of neighbors is expected to be about 3-4 [7]. Therefore, this process
does not impose high overhead on peers.

The information that is maintained about neighbors of a peer consists of some
statistical counters which are presented in Table 2. These counters are updated when
messages are received from the neighbors and when messages are sent towards the
neighbors. The clues about the neighboring peers (if they are free riders or not, and
the types of free riding they exhibit if they are free riders) are derived from the values
of these counters.

One issue to consider is whether there exists enough time to collect information
and make decisions. It is known that in a P2P network, peers can join and leave the
system at any time. We can find some related work in the literature about the network
topology dynamics and peer characteristics of P2P applications. In [11], it is stated
that about 40% of the peers leave the Gunetella network in less than 4 hours, while
only 25% of the peers are alive for more than 24 hours. In another work [13], the
median session duration of both Napster and Gnutella clients is about 60 minutes. In
a similar work [6], 90% of average session lengths of Kazaa clients is found to be about
30 minutes. In summary, it can be assumed that peers stay connected long enough to
collect information about them and take necessary actions.

9

Another issue is whether a monitoring peer can snoop and monitor enough number
of messages that are coming from or going towards the neighboring peers. In [9], it
is reported that the average number of queries per second for three peers located at
different geographic locations is about 50. Also, about 30 query responses per second
are recorded. Query response ratio is ranging around 10%-12%. This shows that a peer
will have enough number of messages forwarded over itself to judge if a neighboring
peer is a free rider or not.

4.4 Free Riding Types

In the following discussion, we mention several possible free riding types and identify
some clues that can be used to detect them.

• A peer does not share anything at all or shares uninteresting files. It
may be observed that a neighboring peer does not return any QueryHit messages
to the queries that it receives. There may be two reasons for that: either the
peer does not have any files matching the queries, or the peer does not share any
files at all. To decide if a peer is a zero-content (or an uninteresting content)
contributor, whenever the monitoring peer initiates a search or routes a search
on behalf of another peers by sending a Query message to its neighbors, the
monitoring peer also increases the value of the respective TQ counters4 for its
neighbors. The monitoring peer also observes and counts the QueryHit messages
received from the neighboring peers. If the monitoring peer receives a QueryHit

message that has the IP address of one of its neighbors in it, the monitoring peer
increases the value of the QH counter maintained for that peer in the log table.
Receiving a QueryHit message originating from a neighboring peer indicates that
the neighboring peer is sharing an interesting file that is requested.

The monitoring peer then compares the values of TQ and QH counters maintained
for a neighboring peer, to decide if that peer is a free rider that is not sharing
any files (a non-contributor). More specifically, for this decision to be made,
the monitoring peer may compare the QH/TQ ratio against a threshold value
and decide that the neighbor is a free rider of type non-contributor if the ratio is
smaller than the threshold. Several different approaches for setting up a threshold
value may be proposed5. Below, we formulize the condition that is required to
judge if a neighboring peer is a free rider or not.

Furthermore, to remove the warm-up period and to obtain valid statistical infor-
mation we propose to use a threshold value for the number of forwarded Query

messages to the observed peer, τTQ. A monitoring peer start deciding about a
neighboring peer after this threshold.

if (TQP > τTQ) and (QHP

TQP
< τnon contributor) then

peer P is considered as a non-contributor

endif

4Different counter types used for locating free riders, including TQ, are described in Table 2.
5We may set up a constant value for unsatisfied query number, (TQP − QHP), e.g. 100. Or we

may use a time based threshold, e.g. 10 minutes. If there is no QueryHit message from the peer in
that period of time, we may treat this peer as non-contributor.

10

• A peer consumes more resource than that it shares. A monitoring peer
counts the QueryHit responses (QH) originated from its neighbors and successful
QueryHit messages (SQH) destined to and received by its neighbors. The com-
parison of these two numbers reveals if any of the neighboring peers consumes
more than it shares. More specifically, a threshold value, τconsumer, can be com-
pared against the ratio of these two numbers. If the ratio QH/SQH is smaller
than the threshold, a decision that the neighboring peer is a free-rider of type
consumer can be made.

if (TQP > τTQ) and (QHP

SQHP
< τconsumer) then

peer P is considered as a consumer

endif

• A peer drops others’ queries.

A monitoring peer counts Query and QueryHit messages forwarded by each of
its neighbors. If these two values are very low for a neighboring peer, it can be
assumed that the neighboring peer does not have enough connections or it drops
Query and/or QueryHit messages. τdropper is used as a threshold value. We call
this type of free rider as a dropper.

if (TQP > τTQ) and (RQP +RQHP

TQP
< τdropper) then

peer P is considered as a dropper

endif

4.4.1 Actions against Free Riders

If a peer identifies another peer as a free rider, it can take some counter-actions against
it. We specify three level of actions. Level 1 action is the least restrictive for the free
rider. Level 3 action is the most restrictive for the free rider.

• Level 1 Action: Decrementing TTL value: Normally, when a peer receives
a Query message from a neighboring peer, it first executes the search on local
files for a match, then the Query is forwarded to the other neighboring peers.
Before the Query message is forwarded, its TLL value is decremented by one. To
act against a suspected free rider, the monitoring peer can play with the TTL
value for Query messages that are received from the suspected peer, i.e. it can
decrement the TTL value by more than one before forwarding. In this way, the
search horizon of the free riding peer is narrowed down. This also reduces the
overhead that Query messages are imposing on the network. This counter-action
is applied to a peer that exhibits only one type of free riding, i.e. it is either a
non-contributor, or a dropper, or a consumer.

• Level 2 Action: Ignoring requests: A free rider can be punished by the
monitoring peer by ignoring the searches (i.e. the Query messages) originating
from that free riding peer. The Query messages originating from the free rider peer
can be partially or totally ignored. Ignoring a Query message means not searching
the local files for a match and not forwarding the Query any more. In other words,
the Query message is simply dropped. We can do this action parametric, so that
the probability of ignoring (dropping) the Query messages can be adaptive and

11

tunable. However, a monitoring peer should be careful about the origin of the
Query messages while dropping them. It has to drop only the messages that are
originated from a free riding peer6. This counter-action is applied to a peer that
is exactly exhibiting two types of free-riding (for example a peer that is both a
consumer and a dropper).

We expect that ignoring the requests of free riders (fully or partially) does not
only punish the free riders, but also improves the overall system performance.
If not controlled, Query messages may become a significant fraction of overall
network traffic. For example, as it is pointed out in [12], an 18 bytes of search
string in a Query message may cause 90 megabytes of data to be forwarded by
the P2P network peers. As another example, [1] states that total number of
messages including the responses triggered by a single Query message can be as
large as (assuming 4 connections per peer):

2 ∗
TTL∑

i=0

C ∗ (C − 1)i = 26240 (1)

In addition to these estimations, the network traffic measurement at the Uni-
versity of Wisconsin (http://wwwstats.net.wisc.edu) shows that P2P traffic (in
and out) constitutes 9.3% of the total campus traffic whereas http-based traffic is
about 52% in March 2004. Thus, P2P network traffic constitutes a considerable
bandwidth usage in the Internet.We believe that decreasing the number of queries
submitted by free riders may help improving the performance and scalability of
P2P networks and the underlying internet.

• Level 3 Action: Disconnecting from network: If a peer is sure that a
neighboring peer is a free rider that is exhibiting all types of free riding, the peer
may drop the connection with that peer. In that way, the peer saves its resources
which can later be allocated to another peer. The difference between ignoring (all
or partial) search request and disconnection is that, in the preceding method, if
any change in behavior of the peer is observed, the punishment can be cancelled.
However, when disconnection is executed, the disconnected peer should reconnect
to the system through a new peer.

4.5 Putting all together

In the previous sections we have discussed the clues to detect free riding types and
possible counter actions that can be taken against free riders. We now would like to
integrate them together using an ECA rule and a FSM. As described in section 4.4, a
free-riding peer can be a non-contributor, or a dropper, or a consumer, or a combination
of these. A neighboring peer can be also a good behaving peer, in which case it is not
a free-rider and it will not show any of the mentioned free riding types.

6This issue then becomes how to decide if received Query is originated at a free rider neighbor
or at some other peer. Usually, P2P protocols try to hide the identity of the originator of a Query
message [4]. So, we can not check the identify of the originator by looking to the content of the Query
message. However, we may exploit the TTL value of the request. If it is 7 (which is the value that
originator of the message sets), it means that the request is originated from the neighboring peer. If
it is less than 7, it is only forwarded by the neighboring peer.

12

As the first step towards a formal description, we will use three boolean variables
to denote if a neighboring peer is non-contributor, or a dropper, or a consumer or not.
We call these three boolean variables as N (for non-contributor), D (for dropper), and
C (for consumer). If the counter values maintained at the log table of the monitoring
peer indicate that the neighboring peer is a non-contributor, then N has the value 1,
otherwise it has the value 0. If counter values at the log table indicate that the peer is
a dropper, then D has the value 1, otherwise D has the value 0. If the counter values
indicate that the peer is a consumer, then C has the value 1, otherwise it has the value
0.

When the counters maintained for the neighboring peer P at the log table of the
monitoring peer change, the values of these variables (N, D, and C) may also change.
For example, if (QHP /TQP) ratio was first smaller than the respective threshold (i.e.
N = 1), and later becomes greater than that threshold, peer P becomes no longer a
non-contributor and the value of N changes from 1 to 0.

At any moment in time, depending on the counter values maintained in the log table
of a monitoring peer (and hence depending on the values of the above mentioned three
boolean variables) we may have one of the following eight conditions shown in Table 3
holding for a neighboring peer P.

N D C Condition
0 0 0 C0
0 0 1 C1
0 1 0 C2
0 1 1 C3
1 0 0 C4
1 0 1 C5
1 1 0 C6
1 1 1 C7

Table 3: Conditions

If, for example, condition C0 holds at a given time, that means there is no free-riding
at all at that time. If one of the conditions C1, C2, or C4 holds at a given time, that
means only one type of free riding is exhibited by the neighboring peer P. This means,
peer P is either a non-contributor, or a dropper, or a consumer. In other words, either
N, or D, or C has the value of 1, and the other two variables have the value of 0. If
one of the conditions C3, C5, or C6 holds at a given moment, that means the peer is
exhibiting exactly two types of free riding. In other words, both N and C, or both N
and D, or both D and C are 1. If condition C7 holds at a given moment, that means
the peer is showing all types of free riding, i.e. the peer is a consumer, a dropper, and
at the same time a non-contributor.

A monitoring peer may apply the appropriate counter-action policy against a neigh-
boring peer depending on the values of N, D, and C (i.e. depending on the current
condition defined by these three variables). Table 4 shows what action is to be taken
against the neighboring peer under which condition. If, for example, condition C0 holds,
there is no free-riding and therefore no counter-action is applied against the peer. If
one of the conditions C1, C2, or C4 holds, then the level 1 counter-action is applied. If
one of the conditions C3, C5, or C6 holds, then the level 2 counter actions is applied. If
condition C7 holds, the level 3 counter action is applied and the peer is disconnected.

We will represent each row at the above table with a state in the monitoring peer.
When there are updates on the log table counters, the state of the monitoring peer may

13

Conditions Action Level Action Description
C0 Level 0 No counter-action
C1,
or
C2,
or C4

Level 1 Reduce TTL by
more than 1

C3,
or
C5,
or C6

Level 2 Ignore Requests
Partially

C7 Level 3 Disconnect

Table 4: Conditions and Counter-Actions

change, since the condition may change. In each state (i.e. each row of table above)
we will apply a different counter-action to a peer. We have four states: S0, S1, S2, and
S3 (as shown in Table 5). When the monitoring peer is in state S0 for a neighboring
peer P, only the condition C0 may hold and no counter action is applied. When the
monitoring is in state S1, one of the conditions C1, C2, or C4 may hold, and the level
1 counter action is applied.

State Conditions Action Level
S0 C0 Level 0

S1

C1,
or
C2,
or C4

Level 1

S2

C3,
or
C5,
or C6

Level 2

S3 C7 Level 3

Table 5: States, Conditions, and Counter-Actions

If we state briefly, the level of counter action to be applied depends on the current
state. At state S1 the level 1 counter action is applied, at state 2 the level 2 counter
action is applied, and at state 3 the level 3 counter action is applied. We may have a
transition between two states when the condition (values of N, D, and C) changes upon
updates on the log table. The Figure 2 shows the whole state diagram that shows all
possible transitions. If, for example, the monitoring peer is in state S1 for a neighboring
peer and an update occurs on the log table that causes a new condition to appear, the
monitoring peer can make a transition to either the state S0, or the state S2, or the
state S3 depending on the new condition. If the new condition is C5, the new state
becomes S2; if the new condition is C7, then the new state becomes S3; if the new
condition is C0, then the new state becomes S0.

On the above state diagram, if the monitoring peer makes a transition towards
right, it means it is increasing the level of counter-action that is to be applied to the
neighboring peer. If the monitoring peer makes a transition towards left, it means that
it is decreasing the level of counter action that is to be applied to the neighboring peer.

14

C7

C7

C7

C3, C5, C6

S0 S1 S2 S3
C1, C2, C4

C1, C2, C4 C3, C5, C6

C0

C0

Figure 2: State diagram

We can express the transitions that a monitoring peer has to make upon an update
on the log table and a change on the condition using an ECA rule (Figures 3, 4, 5, 6).
Upon a transition, the monitoring peer moves to a new state where it applies a different
counter action policy towards the neighboring peer.

define rule StateTransition
on update log table(QHP , TQP , ...)
if (State == S0) then

Execute ConditionalAction-0
elseif (State == S1) then

Execute ConditionalAction-1
elseif (State == S2) then

Execute ConditionalAction-2
endif
endrule

Figure 3: ECA rule that governs the state transitions

5 Possible Attacks and Counter Measures

As pointed out in section 4.1, an important design issue for mechanisms against free
riding is having abuse-proof property. Aiming to investigate this issue, in this section
we discuss a list of possible counter attacks against free riding prevention mechanisms.
We also discuss how we can defend against those kind of attacks.

• Fake QueryHit Messages: A free rider can cheat its neighbors by replying to
some queries with QueryHit messages fraudulently as if it has the requested file.
But when the requesting peer asks for the file, it may just refuse the connection.
In this way it may seem to the network as it is serving well, since neighboring
peers may not be aware of unsuccessful download and cheating (download path
may be different than the Query and QueryHit paths). In the log tables of the
neighbors, the malicious provider may seem to be a non-free rider because of its
QueryHit replies.

Given the descriptors in Table 1, it may not be possible for a neighboring peer
to observe and perceive this kind of fake messages. Because, download occurs
between two peers outside the P2P network and there is no feedback mechanism
or reputation concept in unstructured P2P networks. To prevent this kind of

15

ConditionalAction-0:

if (Condition == C7) then
State = S3;

elseif (Condition == C1
∨ Condition == C2
∨ Condition == C4) then

State = S1;
elseif (Condition == C3

∨ Condition == C5
∨ Condition == C6) then

State = S2;
else

Do not change state
endif

Figure 4: Contitional Action 0

fake QueryHit messages, we propose to use a new descriptor (see Table 6). The
descriptor is used to report a malicious peer to its neighbor to inform that the
peer is believed to be a cheater. When a querying peer is refused by a responding
malicious peer during the attempt of the download, the querying peer may send a
Notify descriptor through the P2P network to reach the neighbor of the malicious
peer. To avoid an increase in the network traffic, the querying peer does not
broadcast the descriptor message. Instead, it forwards the descriptor to only one
neighbor which has delivered the QueryHit message, containing the IP of denying
peer. Any intermediate peer on the way to the last peer, forwards the Notify

message to only one neighboring peer based on the Query Descriptor Id. The
last peer is the neighbor of the suspected peer. It checks and logs the Notify

message and takes necessary actions against the suspected malicious peer. The
Query descriptors are stored in the network for some time to route QueryHit

descriptor in the same backward path. Therefore, we do not enforce to store new
information on the peers. However, the time for deleting records from routing
tables should be extended such that an unsuccessful download attempt can be
executed.

There could be some side effects of the proposed Notify descriptor. As stated
before, small number of peers provide large amounts of files in the system and
they are posed to heavy download traffic. Furthermore, some peers have very
limited upload bandwidth. These peers may refuse more connections when they
reach the maximum number of connections. If a download from such a peer can
not be initiated, submitting a Notify descriptor for this peer would be unfair
and incorrect. To hinder these kinds of false notifications, we propose to use a
ratio of the Notify messages to QueryHit messages for a given peer. If it exceeds
a predefined parameter, e.g. 80%, then proper actions can be taken against the
peer.

• Fake Files

16

ConditionalAction-1:

if (Condition == C0) then
State = S0;

elseif (Condition == C3
∨ Condition == C5
∨ Condition == C6) then

State = S2;
elseif (Condition == C7) then

State = S3;
else

Do not change state
endif

Figure 5: Conditional Action 1

Descriptor Description Content
Notify Used to report a suspected peer that Query Descriptor Id;

refused to upload the file it provided Suspected peer IP;File Index
in QueryHit descriptor in respond to
a given Query descriptor.

Table 6: New Protocol Descriptor

Free riders could share dummy files with popular names in order to cheat querying
peers. These files can be very small in size to incur upload overhead. In that way,
free rider peers can conceal themselves. We believe that this situation can be
prevented by using the Notify descriptor as proposed above.

6 Conclusion

In this work, we have proposed a distributed and measurement based method to reduce
the degree of free riding in unstructured P2P networks. We have first specified possible
free riding types and counter actions that can be taken against free riders. Then, we have
proposed mechanisms which can detect free riders and employ counter actions against
them. Furthermore, we have combined these mechanisms into a formal framework by
using an ECA rule and a finite state machine showing what kind of counter action is to
be applied under which condition. The mechanisms proposed for reducing the amount
of free riding meet the essential requirements of P2P paradigm, such as distributed
computing, anonymous connections, unreliable connections, and so on. We have also
proposed a new descriptor (a Notify message) to be used against the counter attacks
by malicious peers to the proposed mechanisms.

By reducing the amount of free riding in a P2P network, we expect also to increase
the quality of service that peers can get from the network, the availability of content
and services, the robustness of the system, the balance of the load on network peers
and elements, and the scalability of the network.

17

ConditionalAction-2:

if (Condition == C0) then
State = S0;

elseif (Condition == C1
∨ Condition == C2
∨ Condition == C4) then

State = S1;
elseif (Condition == C7) then

State = S3;
else

Do not change state
endif

Figure 6: Conditional Action 2

We are currently developing a simulation program to implement and evaluate the
proposed system and different mechanisms proposed to handle free riding problem in
P2P networks.

References

[1] Karl Aberer and Manfred Hauswirth. An overview of peer-to-peer information systems.
WDAS, 2002.

[2] Karl Aberer and Manfred Hauswirth. Peer-to-peer information systems: Concepts and
models, state-of-the-art, and future systems. 18th International Conference on Data
Engineering (ICDE), 2002.

[3] Eytan Adar and Bernardo A. Hu-
berman. Free riding on gnutella. http://www.firstmonday.dk/issues/issue5 10/adar/,
2000.

[4] Clip2. The gnutella protocol specification v0.4 (document revision 1.2).
http://www9.limewire.com/developer/gnutella protocol0.4.pdf, Jun. 2001.

[5] Philippe Golle, Kevin Leyton-Brown, and Ilya Mironov. Incentives for sharing in peer-
to-peer networks. Proceedings of the Electronic Commerce’01, 2001.

[6] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble, Henry M. Levy,
and John Zahorjan. Measurement, Modeling, and Analysis of a Peer-to-Peer File-Sharing
Workload. In the Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP-19), October 2003.

[7] M. Jovanovic, F.S. Annexstein, and K.A. Berman. Scalability issues in large peer-to-peer
networks - a case study of gnutella. Technical Report, University of Cincinnati, 2001.

[8] Leander Kahney. Cheaters bow to peer pressure.
http://www9.wired.com/news/tecnology/0,1282,41838,00.html, 2001.

[9] Evangelos P. Markatos. Tracing a large-scale Peer to Peer System: an hour in the life of
Gnutella, pages 65–74. In the Proceedings of the second IEEE International Symposium
on Cluster Computing and the Grid, May 2002.

[10] Lakshmish Ramaswamy and Ling Liu. Free riding: A new challenge to peer-to-peer
file sharing systems. 36th Annual Hawaii International Conference on System Sciences
(HICSS’03) - Track7,Big Island, Hawaii, January 2003.

[11] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the gnutella network: Prop-
erties of large-scale peer-to-peer systems and implications for system design. IEEE In-
ternet Computing Journal special issue on peer-to-peer networking, 6, 2002.

18

[12] Jordan Ritter. Why gnutella can’t scale. no, really.
http://www.darkridge.com/ jpr5/doc/gnutella.html, February 2001.

[13] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Measurement Study of
Peer-to-Peer File Sharing Systems. In the Proceedings of the Multimedia Computing
and Networking 2002 (MMCN’02), January 2002.

[14] FreeNet Web Site. http://www.freenet.com/, 2004.
[15] Kazaa Lite Web Site. http://www.k-lite.tk/, 2004.
[16] Kazaa Web Site. htpp://www.kazaa.com, 2004.
[17] Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gun Sirer. Karma: A secure

economic framework for p2p resource sharing. In Proceedings of the Workshop on the
Economics of Peer-to-Peer Systems, June 2003.

19

