
Incremental Classification Learning by Using Feature
Projections

Tolga Aydın, and Halil Altay Güvenir

Department of Computer Engineering
Bilkent University,

Ankara, 06800, Turkey

Abstract. Classification learning is an important research topic in machine learning and data
mining disciplines. In our study, CUFP (Classification by Using Feature Projections), a
feature projection-based incremental classification-learning algorithm, was developed and
tested on real world data sets, giving promising results. The training phase of CUFP
constructs points and determines the counts of the training instances of each class at each
point in the case of nominal feature projections. For linear feature projections, gaussian
probability density functions are constructed for each class. In the classification phase, each
feature projection distributes its vote among possible classes. The vote vectors of features are
used according to some vote evaluation types and the query instance’s class is predicted.

1 Introduction

Classification learning is an important research topic in machine learning and data mining
disciplines. Feature projection-based classification learning algorithms assume feature
independence and somehow combine the classification results coming from each
individual feature projection. The previous feature projection-based approaches presented
in [1, 2, 4] constructed different models on feature projections and achieved successful
results. These success stories motivated us to design CUFP (Classification by Using
Feature Projections), a new feature projection-based technique.

The previous models constructed point (for nominal features) and range (for
linear features) intervals to represent the training data. On a point interval, distribution of
the training instances on this interval to classes is determined. On a range interval, the
interval may keep the distribution of the training instances on this interval to classes as in
the case of point intervals, leading this interval to be a heterogeneous one. However, it is
also possible to construct homogeneous range intervals where each such interval consists
of some training instances of the same class. If the range intervals are of type
homogeneous, it is highly probable that most of those intervals overlap. The work
presented in [4] develops overlapping homogeneous range intervals to represent the
training data. The heterogeneous range intervals never overlap, but they may have a
border between each other. The works presented in [1] and [2] construct heterogeneous

range intervals that do and do not have borders between consecutive intervals,
respectively.

The CUFP approach differs from the existing ones by constructing gaussian

probability density functions for each class, rather than constructing range intervals, on
each linear feature projection. Although the probability of the training data to exhibit a
gaussian distribution is low, we make such an assumption and obtain reasonable
experimental results.

In the literature, there are incremental but not feature projections based

classification-learning algorithms [5, 6]. In the case of feature projections based
approaches, incremental learning is possible only in the models using homogeneous
range intervals. In CUFP, on any linear feature projection the probability density
functions of classes range from –∞ to +∞. Therefore, CUFP can be thought of using
always overlapping homogeneous range intervals whose beginning values are all –∞ and
ending values are all –∞. The number of such range intervals is obviously the number of
classes. CUFP learns the concept description incrementally.

In feature projection-based approaches, each feature projection presents a vote

vector holding the vote values given to classes when predicting the class of a query
instance. The sum of the vote values is always 1 and the content of the vote vector is
highly related to where the query instance falls into on each feature projection. When
computing the final vote for some class c, the votes given to class c by all of the features
are summed up. In CUFP, we not only use this technique but also employ the below three
new techniques while computing the final votes.

a) Select highest “class c” vote between feature projections to be the final vote for

class c.
b) Select median “class c” vote between feature projections to be the final vote for

class c.
c) Use the number of feature projections that distributed the highest vote to class c

as the final vote for class c.

These new techniques were inspired from the work presented in [3]. In their

study, the authors state some weak points of Naïve Bayesian Classifier, make some
simplifying assumptions to get rid of these weaknesses and obtain similar techniques to
‘a’, ‘b’ and ‘c’. However, they make use of the posterior probabilities of the classes rather
than the votes distributed among the classes as in the case of CUFP. In [3], authors work
on combining predictions of different classifiers where each classifier represents a given
pattern by a distinct measurement vector. On the other hand, in CUFP, each feature
projection is treated as a unique classifier representing a given pattern by the projected
value on the associated feature.

The organization of the paper is as follows: Section 2 describes the training phase
of CUFP. Section 3 is devoted to the classification in CUFP. Section 4 gives empirical
results based on real world data sets and we conclude.

2 Training in CUFP

The training phase of CUFP, given in Figure 1, is achieved incrementally. On a nominal
feature, concept description (model) is trained as the set of points and the counts of the
training instances of each class at each point. On the other hand, on a linear feature,
concept description is trained as the normal (gaussian) probability density functions for
all classes.

In the training phase, if a newly added training instance t has a known value for a
feature f (tf is not missing), the model is updated incrementally for the projection on f as
follows:

For a nominal feature f, find_point (f, tf) procedure tries to find tf in the current
concept description belonging to f. If tf is found at a point p, then point_train_data_count
[f, p, s] is incremented, assuming that the training instance is of class s. If tf is not found,
then a new point p’ is constructed and point_train_data_count [f, p’, class] is initialized
to 1 for class = s, and to 0 for class = others.

For a linear feature f, if a training instance t of class s is examined, we let the
previous training instances that are of class s and that have known f values to construct a
set P and let µf,s and σf,s to be the mean and the standard deviation of the f values of these
instances in P, respectively. Then, µf,s and σf,s are updated incrementally and the gaussian
probability density function for class s on feature f is redetermined. Updating σf,s

incrementally requires µ2
f,s to be updated incrementally, as well. If t is the first training

instance of class s on a feature projection f, σf,s and the probability density function for
class s on feature f become undefined. The density function may also become undefined
if σf,s is zero.

Training can better be explained by looking at the sample data set in Figure 2.
The data set consists of ten training instances and one query instance. It includes one
nominal (f1) and one linear (f2) feature. Nominal feature takes two values ‘A’ and ‘B’,
whereas linear feature takes some integer values. Furthermore, there are two possible
classes: ‘c1’ and ‘c2’. The linear feature is assumed to have gaussian probability density
functions for both classes. The data set does not include any missing feature values. In
Figure 3, concept description learned from ten training instances on two features are
given.

CUFPtrain (t) /* t: newly added training instance */
begin
 let s be the class of t
 let others be the remaining classes
 if Training Data = {t}
 for each feature f and class c
 train_data_count[f][c] = 0

 for each feature f
 if tf is not missing
 train_data_count[f][s]++

 for each feature f
 if f is nominal and tf is not missing
 p = find_point(f,tf)
 if such a p exists
 point_train_data_count [f,p,s]++
 else /* add new point for f */
 add a new point p’
 point_train_data_count [f,p’,s] = 1
 point_train_data_count [f,p’,others] = 0

 else if f is linear and tf is not missing
 if train_data_count[f][s] = 1
 µf,s = tf, µf,others = 0
 µ2f,s = tf2, µ2f,others = 0
 σf,s = Undefined
 norm_density_func.f,s= Undefined
 else
 n = train_data_count[f][s]
 µf,s = (µf,s * (n-1) + tf) / n
 µ2f,s = (µ2f,s * (n-1) + t2f) / n

 σf,s =))(µ(µ
1n

n 2
 sf,

2
 sf, −

−

 if σf,s = 0
 norm_density_func.f,s= Undefined
 else

 norm_density_func.f,s= e sf

sfx

sf, 2 πσ

1
2

,2

2),(

σ

µ−
−

 normal density functions for linear features
 return point trainining data counts for nominal
 features
end.

Figure 1. Incremental train in CUFP

Figure 2. Sample data set

Figure 3. Concept description learned for the sample data set

3 Classification in CUFP

In the classification phase, each feature projection, independent of each other, issues a
vote vector for the query instance q. Different vote evaluation types are used to obtain the

final votes for classes. The class with the highest vote is predicted to be the class of the
query instance.

Classification phase of CUFP is shown in Figure 4. The query instance is
projected on all features and each feature issues a vote vector. On all feature projections,
the classification starts by giving a zero vote for each class. If qf is missing, the
classification process on f terminates, otherwise it proceeds according to the type of the
features.

For a nominal feature f, find_point (f, qf) procedure is used to search whether qf
exists in the f projection of the training instances. If qf is found at a point p then for
classes c such that there exists at least one training instance of class c and having a
known value on feature f, this feature gives votes for class c as shown in the below
equation and then these votes are normalized to ensure equal voting power among
features. If qf is not found, the classification process on f terminates.

feature_vote [f, c] =
]][[

][

cf _counttrain_data

cp,f, ntn_data_coupoint_trai

(1)

It is important to note that ‘100 * feature_vote [f, c]’ gives the percentage of the

class c training instances with known f values that fall into the point p on feature
projection f.

For a linear feature f, feature vote for class c is computed if σf,c is defined and
different than zero. If there exists at least one class c where σf,c is defined and different
than zero, the votes are again normalized to ensure equal voting power among features.
The feature votes, if possible, are computed as given in equation 2.

feature_vote [f, c] = lim ∆x
�

0 ∫
∆+ −

−
xq

q
cf

cffq

cf,

f

f

e
2πσ

1
2

,2

2),(

σ

µ

dx

(2)

In the above equation, e 2
cf,2σ

2)cf,µf(q

cf, 2πσ

1
−

−
, gives the domain value of the

gaussian probability density function of class c training instances on feature projection f
for x = qf. The equation, itself, gives the area between the x-axis and the probability
density function between x = qf and x = qf + ∆x when ∆x goes to zero. It is apparent that
‘100 * feature_vote [f, c]’ gives the percentage of the class c training instances with

known f values that fall into the point p on feature projection f. It is also apparent that
feature votes are all zero. However, normalization process handles this seemingly
problematic situation.

Upon each feature issues a vote vector, the final votes are determined according
to the vote evaluation types. Figure 5 explains these types and the computation of the
final votes briefly. Finally, if there exists exactly one class c that received the highest
vote, that class is predicted to be the class of the query instance q. Otherwise, no
prediction is made.

The querying phase can be better explained by using the sample data set and the
corresponding model shown in Figure 2 and 3. The query instance is shown as <A, 8>.

feature_vote[f1, c1] =
5

2
 = 0,4

feature_vote[f1, c2] =
5

1
 = 0,2

normalized_feature_vote[f1, c1] =
0,20,4

0,4

+
= 0,67

normalized_feature_vote[f1, c2] =
0,20,4

0,2

+
= 0,33

feature_vote[f2, c1] = lim∆x
�

0 ∫
∆+ −−x

dxe
8

8

5,5*2

)4,68(
2

2

25,5

1

π
 = lim∆x

�
0 0,07∆x

feature_vote[f2, c2] = lim∆x
�

0 ∫
∆+ −−x

dxe
8

8

19,9*2

)198(
2

2

219,9

1

π
 = lim∆x

�
0 0,02∆x

normalized_feature_vote [f2, c1] = lim∆x
�

0
xx

x

∆+∆

∆

02,007,0

07,0
 = 0,78

normalized_feature_vote [f2, c2] = lim∆x
�

0
xx

x

∆+∆

∆

02,007,0

02,0
 = 0,22

Set of votes given to c1 = {0,67, 0,78}
Set of votes given to c2 = {0,33, 0,22}

If the vote evaluation type is chosen to be “Sum Votes of Feature Projections” :
final_vote[c1] = 0.67 + 0.78 = 1.45
final_vote[c2] = 0.33 + 0.22 = 0.55

Query instance is predicted to be of class c1.

CUFPquery(q, Vote_Eval_Type) /* q: query instance*/
begin

 for each feature f

 for each class c
 feature_vote[f,c] = 0

 if f is nominal and qf is not missing

 p = find_point(f,qf)
 if such a p exists
 for each class c
 if (train_data_count[f][c] ≠ 0)

 feature_vote[f,c] =
]][[

][

cf_counttrain_data

cp,f,ntn_data_coupoint_trai

 normalize_feature_votes(f)

 /* such that 1][=∑
c

cf,tefeature_vo */

 else if f is linear and qf is not missing

 for each class c satisfying (σf,c ≠ 0) and
 (σf,c ≠ Undefined)

 feature_vote[f,c] = lim∆x
�
0= ∫

∆+ −
−

xq

q

2
cf,2σ

2)cf,µf(q

cf,

f

f

e
2πσ

1
dx

 if ∃ c such that (σf,c ≠ 0) and (σf,c ≠ Undefined)
 normalize_feature_votes(f)

 for each class c
 Determine Final Vote(Vote_Eval_Type, c)

 if there exists exactly one class c such that

 final_vote[c] =][_max
#

1
ivotefinal

Classes

i=

 classify q as “class c”
 else
 do not classify q
end.

Figure 4. Classification in CUFP

Determine Final Vote (Vote_Eval_Type, c)
begin

 for each class c

 final_vote [c] = 0

 if Vote_Eval_Type is “Sum Votes of Feature Projections”

 final_vote [c] = ∑
=

Features

cftefeature_vo
#

1f

] , [

 else if Vote_Eval_Type is “Select Highest Vote Between
Feature Projections”

 final_vote [c] =],[cftefeature_vomax
Features#

1f =

 else if Vote_Eval_Type is “Select Median Vote Between Feature
Projections”

 final_vote [c] =],[cftefeature_vomedian
Features#

1f =

 else if Vote_Eval_Type is “Use Number of Feature Projections
on Which Highest Vote is Obtained”

 for each feature f

 if feature_vote [f , c] =],[cftefeature_vomax
Classes#

1c=

 final_vote [c]++
end.

Figure 5. Final Vote Determination in CUFP

4 Experimental Results

CUFP and the Naïve Bayesian Classifier were tested on eleven real world
classification data sets, using leave-one-out cross validation. In Naïve Bayesian
Classifier, the overall posterior probability is computed by multiplying the
individual posterior probabilities. So, although Naïve Bayesian seems to be a bit
better than the CUFP, there is always a risk of having a zero overall posterior
probability just because of a single zero posterior probability on some feature f. In
CUFP, feature vote concept is used instead of the posterior probabilities of
classes. The elements of the set of votes given by the features to a class are never
multiplied by each other. So, CUFP is a non-risky classifier.

Table 1. Accuracy of Classifications with Leave-One-Out Cross Validation

Data Set Sum Votes of
Feature

Projections

Select
Highest Vote

Between
Feature

Projections

Select
Median Vote

Between
Feature

Projections

Use Number
of Feature
Projections
on Which

Highest Vote
is Obtained

Naive
Bayesian
Classier

bcancerw 96,14 93,28 94,13 94,13 95,99
cleveland 82,84 69,64 82,18 82,45 83,5
diabetes 75 71,48 71,48 75,61 75,26
echocardio 71,62 75,68 75,68 75 78,38
horse 76,09 82,34 70,71 65 77,99
hungarian 84,35 75,51 81,29 83,39 84,98
iris 95,33 96 92 94,78 95,33
sonar 68,75 58,65 70,67 70,94 67,31
thyroid 97,21 92,09 98,14 98,52 96,74
vote 88,67 93,33 87,33 89,55 89
wine 94,38 90,45 90,45 86,39 97,19
Average
Accuracy 84,58 81,68 83,1 83,25 85,61

5 Conclusion

In this work CUFP, a new feature projection-based, incremental classification-learning
algorithm was developed giving promising experimental results. It differs from the
existing feature projection based approaches by using gaussian probability density
functions rather than range intervals for linear features. It also differs by using three new
vote evaluation types in addition to the classical type of summing up the corresponding
votes coming from the features for some class c.

References

1. Güvenir, H.A., and Demiröz, G., “Classification by voting feature intervals” Proceedings of 9th

European Conference on Machine Learning, 1997, 85-92.
2. Güvenir, H.A., “Benefit Maximization in Classification on Feature Projections” Proceedings of the

3rd IASTED International Conference on Artificial Intelligence and Applications (AIA’03), Malaga,
Spain (Sept. 8-10, 2003), 424-429.

3. Kittler, J., Hatef, M., Duin, R.P.W., and Matas, J., “On Combining Classifiers” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 20, 1998, 226-239.

4. Güvenir, H.A., and Koç, H.G., “Concept Representation with Overlapping Feature Intervals”
Cybernetics and Systems, vol.29, 1998.

5. Mandziuk, J., and Shastri, L., “Incremental class learning – an approach to longlife and scalable
learning” IEEE International Conference on Neural Networks, vol. 2, 1999.

6. Diehl, C.P., and Cauwenberghs, G., “SVM Incremental Learning, Adaptation and Optimization”
International Joint Conference on Neural Networks, Portland OR, July 2003.

