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Abstract. Classification learning is an important research topic in machine learning and data 
mining disciplines. In our study, CUFP (Classification by Using Feature Projections), a 
feature projection-based incremental classification-learning algorithm, was developed and 
tested on real world data sets, giving promising results. The training phase of CUFP 
constructs points and determines the counts of the training instances of each class at each 
point in the case of nominal feature projections. For linear feature projections, gaussian 
probability density functions are constructed for each class. In the classification phase, each 
feature projection distributes its vote among possible classes. The vote vectors of features are 
used according to some vote evaluation types and the query instance’s class is predicted. 

1   Introduction 

Classification learning is an important research topic in machine learning and data mining 
disciplines. Feature projection-based classification learning algorithms assume feature 
independence and somehow combine the classification results coming from each 
individual feature projection. The previous feature projection-based approaches presented 
in [1, 2, 4] constructed different models on feature projections and achieved successful 
results. These success stories motivated us to design CUFP (Classification by Using 
Feature Projections), a new feature projection-based technique. 
 

The previous models constructed point (for nominal features) and range (for 
linear features) intervals to represent the training data. On a point interval, distribution of 
the training instances on this interval to classes is determined. On a range interval, the 
interval may keep the distribution of the training instances on this interval to classes as in 
the case of point intervals, leading this interval to be a heterogeneous one. However, it is 
also possible to construct homogeneous range intervals where each such interval consists 
of some training instances of the same class. If the range intervals are of type 
homogeneous, it is highly probable that most of those intervals overlap. The work 
presented in [4] develops overlapping homogeneous range intervals to represent the 
training data. The heterogeneous range intervals never overlap, but they may have a 
border between each other. The works presented in [1] and [2] construct heterogeneous 



range intervals that do and do not have borders between consecutive intervals, 
respectively. 

 
The CUFP approach differs from the existing ones by constructing gaussian 

probability density functions for each class, rather than constructing range intervals, on 
each linear feature projection. Although the probability of the training data to exhibit a 
gaussian distribution is low, we make such an assumption and obtain reasonable 
experimental results. 

 
In the literature, there are incremental but not feature projections based 

classification-learning algorithms [5, 6]. In the case of feature projections based 
approaches, incremental learning is possible only in the models using homogeneous 
range intervals. In CUFP, on any linear feature projection the probability density 
functions of classes range from  –∞ to +∞. Therefore, CUFP can be thought of using 
always overlapping homogeneous range intervals whose beginning values are all –∞ and 
ending values are all –∞. The number of such range intervals is obviously the number of 
classes. CUFP learns the concept description incrementally. 

 
In feature projection-based approaches, each feature projection presents a vote 

vector holding the vote values given to classes when predicting the class of a query 
instance. The sum of the vote values is always 1 and the content of the vote vector is 
highly related to where the query instance falls into on each feature projection. When 
computing the final vote for some class c, the votes given to class c by all of the features 
are summed up. In CUFP, we not only use this technique but also employ the below three 
new techniques while computing the final votes. 

 
a) Select highest “class c” vote between feature projections to be the final vote for 

class c. 
b) Select median “class c” vote between feature projections to be the final vote for 

class c. 
c) Use the number of feature projections that distributed the highest vote to class c 

as the final vote for class c. 
 
These new techniques were inspired from the work presented in [3]. In their 

study, the authors state some weak points of Naïve Bayesian Classifier, make some 
simplifying assumptions to get rid of these weaknesses and obtain similar techniques to 
‘a’, ‘b’ and ‘c’. However, they make use of the posterior probabilities of the classes rather 
than the votes distributed among the classes as in the case of CUFP. In [3], authors work 
on combining predictions of different classifiers where each classifier represents a given 
pattern by a distinct measurement vector. On the other hand, in CUFP, each feature 
projection is treated as a unique classifier representing a given pattern by the projected 
value on the associated feature. 



The organization of the paper is as follows: Section 2 describes the training phase 
of CUFP. Section 3 is devoted to the classification in CUFP. Section 4 gives empirical 
results based on real world data sets and we conclude. 

2   Training in CUFP 

The training phase of CUFP, given in Figure 1, is achieved incrementally. On a nominal 
feature, concept description (model) is trained as the set of points and the counts of the 
training instances of each class at each point. On the other hand, on a linear feature, 
concept description is trained as the normal (gaussian) probability density functions for 
all classes. 
 

In the training phase, if a newly added training instance t has a known value for a 
feature f (tf is not missing), the model is updated incrementally for the projection on f as 
follows: 
 

For a nominal feature f, find_point (f, tf) procedure tries to find tf in the current 
concept description belonging to f. If tf is found at a point p, then point_train_data_count 
[f, p, s] is incremented, assuming that the training instance is of class s. If tf is not found, 
then a new point p’ is constructed and point_train_data_count [f, p’, class] is initialized 
to 1 for class = s, and to 0 for class = others. 
 

For a linear feature f, if a training instance t of class s is examined, we let the 
previous training instances that are of class s and that have known f values to construct a 
set P and let µf,s and σf,s to be the mean and the standard deviation of the f values of these 
instances in P, respectively. Then, µf,s and σf,s are updated incrementally and the gaussian 
probability density function for class s on feature f is redetermined. Updating σf,s 

incrementally requires µ2
f,s to be updated incrementally, as well. If t is the first training 

instance of class s on a feature projection f, σf,s and the probability density function for 
class s on feature f become undefined. The density function may also become undefined 
if σf,s is zero. 
 

Training can better be explained by looking at the sample data set in Figure 2. 
The data set consists of ten training instances and one query instance. It includes one 
nominal (f1) and one linear (f2) feature. Nominal feature takes two values ‘A’ and ‘B’, 
whereas linear feature takes some integer values. Furthermore, there are two possible 
classes: ‘c1’ and ‘c2’. The linear feature is assumed to have gaussian probability density 
functions for both classes. The data set does not include any missing feature values. In 
Figure 3, concept description learned from ten training instances on two features are 
given. 



CUFPtrain (t)      /* t: newly added training instance */ 
begin 
   let s be the class of t 
   let others be the remaining classes 
   if Training Data = {t} 
      for each feature f and class c 
         train_data_count[f][c] = 0 
 
   for each feature f 
      if tf is not missing 
         train_data_count[f][s]++ 
 
   for each feature f  
      if f is nominal and tf is not missing 
         p = find_point(f,tf) 
         if such a p exists  
            point_train_data_count [f,p,s]++ 
         else  /* add new point for f */ 
            add a new point p’ 
            point_train_data_count [f,p’,s] = 1 
            point_train_data_count [f,p’,others] = 0 
 
      else if f is linear and tf is not missing 
        if train_data_count[f][s] = 1 
           µf,s = tf,  µf,others = 0 
           µ2f,s = tf2,  µ2f,others = 0 
           σf,s = Undefined 
           norm_density_func.f,s= Undefined 
        else 
           n = train_data_count[f][s] 
           µf,s = (µf,s * (n-1) + tf) / n 
           µ2f,s = (µ2f,s * (n-1) + t2f) / n 

           σf,s = ))(µ(µ
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end. 

Figure 1. Incremental train in CUFP 



 
Figure 2. Sample data set 

 

 

 
Figure 3. Concept description learned for the sample data set 

3   Classification in CUFP 

In the classification phase, each feature projection, independent of each other, issues a 
vote vector for the query instance q. Different vote evaluation types are used to obtain the 



final votes for classes. The class with the highest vote is predicted to be the class of the 
query instance. 
 

Classification phase of CUFP is shown in Figure 4. The query instance is 
projected on all features and each feature issues a vote vector. On all feature projections, 
the classification starts by giving a zero vote for each class. If qf is missing, the 
classification process on f terminates, otherwise it proceeds according to the type of the 
features. 
 

For a nominal feature f, find_point (f, qf) procedure is used to search whether qf 
exists in the f projection of the training instances. If qf is found at a point p then for 
classes c such that there exists at least one training instance of class c and having a 
known value on feature f, this feature gives votes for class c as shown in the below 
equation and then these votes are normalized to ensure equal voting power among 
features. If qf is not found, the classification process on f terminates. 
 

feature_vote [f, c] = 
]][[

][

cf _counttrain_data

cp,f, ntn_data_coupoint_trai
 

(1) 

 
It is important to note that ‘100 * feature_vote [f, c]’ gives the percentage of the 

class c training instances with known f values that fall into the point p on feature 
projection f.  
 

For a linear feature f, feature vote for class c is computed if σf,c is defined and 
different than zero. If there exists at least one class c where σf,c is defined and different 
than zero, the votes are again normalized to ensure equal voting power among features. 
The feature votes, if possible, are computed as given in equation 2.  
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In the above equation, e 2
cf,2σ

2)cf,µf(q

cf, 2πσ

1
−

−
, gives the domain value of the 

gaussian probability density function of class c training instances on feature projection f 
for x = qf. The equation, itself, gives the area between the x-axis and the probability 
density function between x = qf and x = qf + ∆x when ∆x goes to zero. It is apparent that 
‘100 * feature_vote [f, c]’ gives the percentage of the class c training instances with 



known f values that fall into the point p on feature projection f. It is also apparent that 
feature votes are all zero. However, normalization process handles this seemingly 
problematic situation. 
 

Upon each feature issues a vote vector, the final votes are determined according 
to the vote evaluation types. Figure 5 explains these types and the computation of the 
final votes briefly. Finally, if there exists exactly one class c that received the highest 
vote, that class is predicted to be the class of the query instance q. Otherwise, no 
prediction is made. 
 

The querying phase can be better explained by using the sample data set and the 
corresponding model shown in Figure 2 and 3. The query instance is shown as <A, 8>. 
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Set of votes given to c1 = {0,67, 0,78} 
Set of votes given to c2 = {0,33, 0,22} 
 

If the vote evaluation type is chosen to be “Sum Votes of Feature Projections” : 
final_vote[c1] = 0.67 + 0.78 = 1.45 
final_vote[c2] = 0.33 + 0.22 = 0.55 
 

Query instance is predicted to be of class c1. 



CUFPquery(q, Vote_Eval_Type)         /* q: query instance*/ 
begin 
      
   for each feature f 
 
      for each class c 
         feature_vote[f,c] = 0 
 
      if f is nominal and qf is not missing 
 
           p = find_point(f,qf) 
           if such a p exists 
              for each class c 
                 if (train_data_count[f][c] ≠ 0) 

                    feature_vote[f,c] = 
]][[

][

cf_counttrain_data

cp,f,ntn_data_coupoint_trai   

              normalize_feature_votes(f) 

              /* such that 1][ =∑
c
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      else if f is linear and qf is not missing 
 
         for each class c satisfying (σf,c ≠ 0) and 
                                     (σf,c ≠ Undefined) 
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         if ∃ c such that (σf,c ≠ 0) and (σf,c ≠ Undefined) 
            normalize_feature_votes(f) 
 
   for each class c 
      Determine Final Vote(Vote_Eval_Type, c) 
 
   if there exists exactly one class c such that 

                  final_vote[c] = ][_max
#

1
ivotefinal

Classes

i=
 

         classify q as “class c” 
   else 
         do not classify q 
end.   

Figure 4. Classification in CUFP 

 



Determine Final Vote (Vote_Eval_Type, c)          
begin 

   for each class c 

      final_vote [c] = 0 

   if Vote_Eval_Type is “Sum Votes of Feature Projections”

 final_vote [c] = ∑
=

Features

cftefeature_vo
#

1f

]  , [  

   else if Vote_Eval_Type is “Select Highest Vote Between 
Feature Projections” 

    final_vote [c] = ],[ cftefeature_vomax
Features#

1f =
 

   else if Vote_Eval_Type is “Select Median Vote Between Feature 
Projections” 

 final_vote [c] = ],[ cftefeature_vomedian
Features#

1f =
 

   else if Vote_Eval_Type is “Use Number of Feature Projections 
on Which Highest Vote is Obtained” 

 for each feature f 

   if feature_vote [f , c] = ],[ cftefeature_vomax
Classes#

1c=
 

     final_vote [c]++ 
end. 

Figure 5. Final Vote Determination in CUFP 

4   Experimental Results 

CUFP and the Naïve Bayesian Classifier were tested on eleven real world 
classification data sets, using leave-one-out cross validation. In Naïve Bayesian 
Classifier, the overall posterior probability is computed by multiplying the 
individual posterior probabilities. So, although Naïve Bayesian seems to be a bit 
better than the CUFP, there is always a risk of having a zero overall posterior 
probability just because of a single zero posterior probability on some feature f. In 
CUFP, feature vote concept is used instead of the posterior probabilities of 
classes. The elements of the set of votes given by the features to a class are never 
multiplied by each other. So, CUFP is a non-risky classifier. 



Table 1. Accuracy of Classifications with Leave-One-Out Cross Validation 

Data Set Sum Votes of 
Feature 

Projections 

Select 
Highest Vote 

Between 
Feature 

Projections 

Select 
Median Vote 

Between 
Feature 

Projections 

Use Number 
of Feature 
Projections 
on Which 

Highest Vote 
is Obtained 

Naive 
Bayesian 
Classier 

bcancerw 96,14 93,28 94,13 94,13 95,99 
cleveland 82,84 69,64 82,18 82,45 83,5 
diabetes 75 71,48 71,48 75,61 75,26 
echocardio 71,62 75,68 75,68 75 78,38 
horse 76,09 82,34 70,71 65 77,99 
hungarian 84,35 75,51 81,29 83,39 84,98 
iris 95,33 96 92 94,78 95,33 
sonar 68,75 58,65 70,67 70,94 67,31 
thyroid 97,21 92,09 98,14 98,52 96,74 
vote 88,67 93,33 87,33 89,55 89 
wine 94,38 90,45 90,45 86,39 97,19 
Average 
Accuracy 84,58 81,68 83,1 83,25 85,61 

5   Conclusion  

In this work CUFP, a new feature projection-based, incremental classification-learning 
algorithm was developed giving promising experimental results. It differs from the 
existing feature projection based approaches by using gaussian probability density 
functions rather than range intervals for linear features. It also differs by using three new 
vote evaluation types in addition to the classical type of summing up the corresponding 
votes coming from the features for some class c. 
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