
METADATA-BASED AND PERSONALIZED
WEB QUERYING

a dissertation submitted to

the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Selma Ayşe Özel

January, 2004

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Özgür Ulusoy (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Erol Arkun

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. Nihan Kesim Çiçekli

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assist. Prof. Dr. Uğur Güdükbay

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Enis Çetin

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

iii

ABSTRACT

METADATA-BASED AND PERSONALIZED WEB
QUERYING

Selma Ayşe Özel

Ph.D. in Computer Engineering

Supervisor: Prof. Dr. Özgür Ulusoy

January, 2004

The advent of the Web has raised new searching and querying problems. Key-

word matching based querying techniques that have been widely used by search

engines, return thousands of Web documents for a single query, and most of these

documents are generally unrelated to the users’ information needs. Towards the

goal of improving the information search needs of Web users, a recent promising

approach is to index the Web by using metadata and annotations.

In this thesis, we model and query Web-based information resources using

metadata for improved Web searching capabilities. Employing metadata for

querying the Web increases the precision of the query outputs by returning seman-

tically more meaningful results. Our Web data model, named “Web information

space model”, consists of Web-based information resources (HTML/XML docu-

ments on the Web), expert advice repositories (domain-expert-specified metadata

for information resources), and personalized information about users (captured

as user profiles that indicate users’ preferences about experts as well as users’

knowledge about topics). Expert advice is specified using topics and relationships

among topics (i.e., metalinks), along the lines of recently proposed topic maps

standard. Topics and metalinks constitute metadata that describe the contents of

the underlying Web information resources. Experts assign scores to topics, met-

alinks, and information resources to represent the “importance” of them. User

profiles store users’ preferences and navigational history information about the

information resources that the user visits. User preferences, knowledge level on

topics, and history information are used for personalizing the Web search, and

improving the precision of the results returned to the user.

We store expert advices and user profiles in an object relational database

iv

v

management system, and extend the SQL for efficient querying of Web-based in-

formation resources through the Web information space model. SQL extensions

include the clauses for propagating input importance scores to output tuples, the

clause that specifies query stopping condition, and new operators (i.e., text sim-

ilarity based selection, text similarity based join, and topic closure). Importance

score propagation and query stopping condition allow ranking of query outputs,

and limiting the output size. Text similarity based operators and topic closure

operator support sophisticated querying facilities. We develop a new algebra

called Sideway Value generating Algebra (SVA) to process these SQL extensions.

We also propose evaluation algorithms for the text similarity based SVA direc-

tional join operator, and report experimental results on the performance of the

operator. We demonstrate experimentally the effectiveness of metadata-based

personalized Web search through SQL extensions over the Web information space

model against keyword matching based Web search techniques.

Keywords: metadata based Web querying, topic maps, user profile, personal-

ized Web querying, Sideway Value generating Algebra, score management, text

similarity based join.

ÖZET

METADATAYA DAYALI VE KİŞİSELLEŞTİRİLMİŞ
WEB SORGULAMASI

Selma Ayşe Özel

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Özgür Ulusoy

Ocak, 2004

Web’in gelişimi ile beraber, bilgiye erişim ve sorgulamada yeni problemler or-

taya çıkmıştır. Çoğunlukla arama motorları tarafından kullanılan anahtar söz

karşılaştırmaya dayalı sorgulama yöntemleri tek bir sorgu için binlerce Web bel-

gesi getirmekte ve bu belgelerin çoğu kullanıcıların bilgi ihtiyaçları ile ilgisiz ol-

maktadır. Web kullanıcılarının bilgi arama ihtiyaçlarını iyileştirmek amacına

yönelik olarak, son umut verici yaklaşım Web’in metadata ve ek açıklama kul-

lanılarak dizinlenmesidir.

Bu tezde, Web arama yeteneklerini iyileştirmek için, Web’deki bilgi kaynakları

metadata kullanılarak modellenmekte ve sorgulanmaktadır. Web sorgulamasının

metadata kullanılarak yapılması, daha anlamlı sorgu sonuçlarının üretilmesini

sağlamaktadır. “Web bilgi uzayı modeli” adını verdiğimiz Web veri modeli, Web

tabanlı bilgi kaynaklarından (Web üzerindeki HTML/XML formundaki belgeler-

den), uzman öneri veritabanlarından (bilgi kaynakları için alan uzmanı tarafından

hazırlanmış metadatadan), ve kullanıcılarla ilgili kişiselleştirilmiş bilgiden (kul-

lanıcıların uzmanlarla ilgili tercihleri ve konular hakkındaki bilgi seviyesini be-

lirleyen kullanıcı profillerinden) oluşmaktadır. Uzman önerisi, yakın zamanda

önerilmiş olan konu haritaları standardı doğrultusunda, konular ve konular

arasındaki ilişkiler (metalink’ler) kullanılarak tanımlanmaktadır. Konular ve

konular arasındaki ilişkiler, Web’deki bilgi kaynaklarının içeriğini tanımlayan

metadata’yı oluştururlar. Uzmanlar, konulara, konular arasındaki ilişkilere

ve bilgi kaynaklarına onların önem derecesini belirten sayısal değerler verir-

ler. Kullanıcı profilleri kullanıcıların tercihlerini ve kullanıcıların ziyaret et-

tikleri bilgi kaynaklarını içeren tarihçeyi saklamaktadırlar. Kullanıcı tercihleri,

konular üzerindeki bilgi seviyeleri ve Web dolaşım tarihçesi Web’deki aramayı

vi

vii

kişiselleştirmek ve kullanıcıya döndürülen sonucun duyarlılığını arttırmak için

kullanılır.

Uzman önerileri ve kullanıcı profilleri nesneye dayalı ilişkisel veritabanında

saklanmakta ve Web tabanlı bilgi kaynaklarını Web bilgi uzayı modeli kullanarak

etkin şekilde sorgulayabilmek için SQL dili genişletilmektedir. SQL uzantıları,

girdi önem değerlerinin çıktı kayıtlarına iletimini sağlayan yantümceleri, sorguyu

durdurma koşulunu tanımlayan yantümceyi ve yeni işleçleri (metin benzerliğine

dayalı seçim, metin benzerliğine dayalı birleşim, ve konu kapsamı) içerir. Önem

değerinin iletimi ve sorguyu durdurma koşulu sorgu çıktısının sıralanmasını ve

çıktı boyutunun sınırlandırılmasını sağlar. Metin benzerliğine dayalı işleçler ve

konu kapsamı işleci karmaşık sorgulama olanaklarını desteklemektedir. Bu SQL

eklentilerini işleyebilmek amacıyla “Yan Değer üreten Cebir” adı verilen yeni bir

cebir geliştirilmiştir.

Yan değer üreten cebir tanımlandıktan sonra, metin benzerliğine dayalı yönlü

birleştirme işlecinin algoritması ve bu işlecin performansı üzerine olan deney-

sel sonuçlar sunulmaktadır. Tüm bunlara ek olarak, Web bilgi uzayı modeli

üzerinde SQL eklentileri kullanılarak yapılan metadataya dayalı kişiselleştirilmiş

Web sorgulamasının etkinliği, anahtar söz karşılaştırmaya dayalı Web arama

teknikleri ile karşılaştırmalı olarak gösterilmiştir.

Anahtar sözcükler : metadataya dayalı Web sorgulaması, konu haritaları, kul-

lanıcı profili, kişiselleştirilmiş Web sorgulaması, Yan Değer üreten Cebir, değer

yönetimi, metin benzerliğine dayalı birleştirme.

Acknowledgement

First of all, I am deeply grateful to my supervisor Prof. Dr. Özgür Ulusoy, for

his invaluable suggestions, support, and guidance during my graduate study, and

for encouraging me a lot in my academic life. It was a great pleasure for me to

have a chance of working with him.

I would like to address my special thanks to Prof. Dr. Gültekin Özsoyoğlu and

Prof. Dr. Z. Meral Özsoyoğlu, for their revisions and support, which invaluably

contributed to this thesis.

I would like to thank Prof. Dr. Erol Arkun, Assoc. Prof. Dr. Nihan Kesim

Çiçekli, Assist. Prof. Dr. Uğur Güdükbay, and Prof. Dr. Enis Çetin for reading

and commenting this thesis. I would also like to acknowledge the financial support

of Bilkent University, TÜBİTAK under the grant 100U024, and NSF (of the USA)

under the grant INT-9912229.

I am grateful to my colleague İ. Sengör Altıngövde, for his cooperation during

this study. I would also like to thank my friends Rabia Nuray, Berrin-Cengiz

Çelik for their friendship and moral support.

Above all, I am deeply thankful to my parents, my husband Assist. Prof. Dr.

A. Alper Özalp and also his parents, who supported me in each and every day.

Without their everlasting love and encouragement, this thesis would have never

been completed.

viii

To my family

ix

Contents

1 Introduction 1

1.1 Summary of the Contributions . 6

1.2 Organization of the Thesis . 7

2 Background and Related Work 8

2.1 Related Standards . 8

2.1.1 XML . 8

2.1.2 Topic Maps . 10

2.1.3 RDF . 13

2.2 Query Languages for Information Extraction from the Web 14

2.2.1 Web Query Languages . 14

2.2.2 Topic Maps and RDF based Query Languages 17

2.3 Top-k Query Processing . 18

3 Web Information Space Model 20

3.1 Information Resources . 20

x

CONTENTS xi

3.2 Expert Advice Model . 21

3.2.1 Topic Entities . 22

3.2.2 Topic Source Reference Entities 23

3.2.3 Metalink Entities . 24

3.3 Personalized Information Model: User Profiles 26

3.3.1 User Preferences . 26

3.3.2 User Knowledge . 28

3.4 Creation and Maintenance of Expert Advice Repositories and User

Profiles . 29

3.4.1 Creation and Maintenance of Metadata Objects for a Subnet 29

3.4.2 Creation and Maintenance of User Profiles 34

4 SQL Extensions and SVA Algebra 37

4.1 SQL Extensions . 37

4.2 Sideway Value Generating Algebra 39

4.2.1 Similarity Based SVA Selection Operator 40

4.2.2 Similarity Based SVA Join Operator 43

4.2.3 Similarity Based SVA Directional Join Operator 45

4.2.4 SVA Topic Closure Operator 48

4.2.5 Other SVA Operators . 53

4.3 Extended SQL Queries with User Profiles 54

CONTENTS xii

5 Similarity Based SVA Directional Join 57

5.1 The Similarity Measure . 59

5.2 Text Similarity Based Join Algorithms 61

5.3 Text Similarity Based SVA Directional Join Algorithms 64

5.3.1 Harman Heuristic . 69

5.3.2 Quit and Continue Heuristics 69

5.3.3 Maximal Similarity Filter 70

5.3.4 Other Improvements . 71

5.4 Experimental Results . 72

5.4.1 Tuple Comparisons . 73

5.4.2 Disk Accesses . 75

5.4.3 Accuracy of the Early Termination Heuristics 79

5.4.4 Memory and CPU Requirements 80

5.5 Discussion . 82

6 Performance Evaluation 84

6.1 Performance Evaluation Criteria 85

6.2 Metadata Databases Employed in the Experiment 88

6.2.1 Stephen King Metadata Database 88

6.2.2 DBLP Bibliography Metadata Database 90

6.3 Queries . 91

CONTENTS xiii

6.3.1 Queries Involving SVA Operators 92

6.3.2 Queries without Any SVA Operators 103

6.4 Experimental Results . 105

7 Conclusions and Future Work 116

Bibliography 119

Appendix 127

A Extended SQL Queries Used in Experiments 127

A.1 Queries Involving SVA Operators 127

A.2 Queries Not Involving SVA Operators 133

List of Figures

1.1 Metadata model for DBLP Bibliography domain defined by an

expert. 4

3.1 A subset of DTD for XML documents in the DBLP Bibliography

site. 30

3.2 Example XML document . 31

3.3 User preference specification form 35

4.1 Logical query tree for Example 4.1. 41

4.2 Similarity based SVA selection algorithm 42

4.3 Logical query tree for Example 4.2. 44

4.4 Logical query tree for Example 4.3. 47

4.5 Logical query tree for Example 4.5 49

4.6 SVA topic closure algorithm . 52

4.7 Logical query tree for Example 4.6. 54

4.8 Logical query tree for Example 4.7. 56

xiv

LIST OF FIGURES xv

5.1 The IINL algorithm. 66

5.2 Inverted index structure. 67

5.3 Number of tuple comparisons required by the HHNL algorithm for

different k values. 74

5.4 Number of tuple comparisons required by the HVNL, WHIRL and

IINL algorithms for different k values. 75

5.5 Number of disk accesses performed by all the similarity join algo-

rithms for different k values. 77

5.6 Number of disk accesses performed by the early termination heuris-

tics for different k values. 77

6.1 Query tree for query1 . 93

6.2 Query tree for query 2 . 95

6.3 Query tree for query 3 . 97

6.4 Query tree for query 4 . 99

6.5 Query tree for query 5 . 101

6.6 Full and best precision of the outputs for queries involving SVA

operators. 107

6.7 Useful and objective precision of the outputs for queries involving

SVA operators. 108

6.8 Full and best precision of the outputs for queries not involving SVA

operators and run over the Stephen King metadata database. . . . 111

6.9 Useful and objective precision of the outputs for queries not in-

volving SVA operators and run over the Stephen King metadata

database. 112

LIST OF FIGURES xvi

6.10 Full and best precision of the outputs for queries not involving SVA

operators and run over the DBLP Bibliography metadata database. 113

6.11 Useful and objective precision of the outputs for queries not involv-

ing SVA operators and run over the DBLP Bibliography metadata

database. 114

A.1 Query tree for S. King query 1 . 128

A.2 Query tree for S. King query 2 . 129

A.3 Query tree for S. King query 3 . 131

A.4 Query tree for S. King query 4 . 132

A.5 Query tree for S. King query 5 . 133

List of Tables

3.1 Topic instances for the XML Document in Figure 3.2 32

3.2 Topic source reference instances for the XML Document in Figure 3.2 32

3.3 AuthoredBy metalink instances for the XML Document in Figure 3.2 32

3.4 Navigational history information for user John Doe 36

3.5 Topic knowledge for user John Doe 36

5.1 The effect of accumulator bound for the continue heuristic on the

number of tuple comparisons and disk accesses made, and the ac-

curacy of the join operation. 79

5.2 Statistical data for the L and R relations obtained from the DBLP

Bibliography data. 81

6.1 Relevance score values . 87

6.2 Importance score scales for publications. 91

6.3 Running time for the queries involving SVA operators (in seconds) 109

xvii

Chapter 1

Introduction

Due to the property of being easily accessible from everywhere, the World Wide

Web has become the largest resource of information that consists of huge volumes

of data of almost every kind of media. However, due to the large size of the Web

data, finding relevant information on the Web becomes like searching for a needle

in a haystack.

The growing amount of information on the Web has lead to the creation of

new information retrieval techniques, such as high quality human maintained

indices e.g., Yahoo!, and search engines. At the moment, 85% of the Internet

users are reported to be using search engines [43] because of the fact that human

maintained lists cover only popular topics, are subjective, expensive to build and

maintain, slow to improve, and can not cover all topics. Search engines, on the

other hand, are based on automatic indexing of Web pages with various refine-

ments and optimizations (such as ranking algorithms that make use of links, etc).

Yet, the biggest of these engines cannot cover more than 40% of the available Web

pages [10], and even worse some advertisers intentionally mislead them to gain

people’s attention [17]. Consequently, the need for better search services to re-

trieve the most relevant information is increasing, and to this end, a more recent

and promising approach is indexing the Web by using metadata and annotations.

After the proposal of the XML (eXtensible Markup Language) [16] as a data ex-

change format on the Web, several frameworks such as semantic Web effort [12],

1

CHAPTER 1. INTRODUCTION 2

RDF (Resource Description Framework) [73], and topic maps [13, 14, 71] to model

the Web data in terms of metadata objects have been developed. Metadata based

indexing increases the precision of the query outputs by returning semantically

more meaningful query results.

Our goal in this thesis is to exploit metadata (along the lines of recently

proposed topic maps), XML and the DBMS (Database Management System)

perspective to facilitate the information retrieval for arbitrarily large Web por-

tions. We describe a “Web information space” data model for metadata-based

modeling of a subnet1. Our data model is composed of:

• Web-based information resources that are XML/HTML documents.

• Independent expert advice repositories that contain domain expert-specified

description of information resources and serve as metadata for these re-

sources. Topics and metalinks are the fundamental components of the ex-

pert advice repositories. Topics can be anything (keyword, phrase, etc.)

that characterizes the data at an underlying information resource. Met-

alinks are relationships among topics.

• Personalized information about users, captured as user profiles, that con-

tain users’ preferences as to which expert advice they would like to follow,

and which to ignore, etc., and users’ knowledge about the topics that they

are querying.

We assume that our data model can be stored in a commercial object rela-

tional DBMS, and we extend the SQL (Structured Query Language) with some

specialized operators (e.g., topic closure, similarity based selection, similarity

based join, etc.) to query the Web resources through the Web information space

model. We illustrate the metadata-based querying of the Web resources with an

example.

1We make the practical assumption that the modeled information resources do not span
the Web; they are defined within a set of Web resources on a particular domain, which we
call subnets, such as the TREC Conference series sites [80], or the larger domain of Microsoft
Developers Network sites [61].

CHAPTER 1. INTRODUCTION 3

Example 1.1 Assume that a researcher wants to see the list of all papers and

their sources (i.e., ps/pdf/HTML/XML files containing the full text of the papers)

which are located at the DBLP (Database and Logic Programming) Bibliography

[51] site, and are prerequisite papers for understanding the paper “DMQL: A

Data Mining Query Language for Relational Databases” by Jiawei Han et al.

[38]. Presently, such a task can be performed by extracting the titles of all

papers that are cited by Han et al.’s paper and intuitively eliminating the ones

that do not seem like prerequisites for understanding the original paper. Once

the user manually obtains a list of papers (possibly an incomplete list), he/she

retrieves each paper one by one, and examines them to see if they are really

prerequisites or not. If the user desires to follow the prerequisite relationship in a

recursive manner, then he/she has to repeat this process for each paper in the list

iteratively. Clearly, the overall process is time inefficient. Instead, let’s assume

that an expert advice (i.e., metadata) is provided for the DBLP Bibliography

site. In such a metadata model, “research paper”, “DMQL: A Data Mining Query

Language for Relational Databases”, and “J. Han” would be designated as topics,

and Prerequisite and ResearchPaperOf are relationships among topics (referred

to as topic metalinks). For each topic, there would be links to Web documents

containing “occurrences” of that topic (i.e., to DBLP Bibliography pages), called

topic sources. Then, the query can be formulated over this metadata repository,

which is typically stored in an object-relational DBMS, and the query result is

obtained (e.g., the prerequisite paper is “Mining Sequential Patterns” by Agrawal

et al. [3]). Figure 1.1 shows the metadata objects employed in this example for

the DBLP Bibliography Web resources.

In Example 1.1, we assume that an expert advice repository on a particular

domain (e.g., DBLP Bibliography site) is provided by a domain expert either

manual or in (semi)automated manner. It is also possible that different expert

advice repositories may be created for the same set of Web information resource(s)

to express varying viewpoints of different domain experts. Once it is formed, the

expert advice repository captures valuable and lasting information about the Web

resources even when the information resource changes over time. For instance,

the expert advice repository given in Example 1.1 stores the ResearchPaperOf

CHAPTER 1. INTRODUCTION 4

http://www.informatik.uni-trier.de/
~ley/db/indices/a-tree/h/Han:Jiawei.html

http://www.informatik.uni-trier.de
/~ley/db/conf/icde/AgrawalS95.html

Mining
Sequential
Patterns

 J.Han
DMQL: A Data Mining
Query Language for RDB ResearchPaperOf

Metadata

Actual information
resources

Prerequisite

http://www.informatik.uni-trier.de/
~ley/db/conf/dmkd/HanFWKZ96.html

Figure 1.1: Metadata model for DBLP Bibliography domain defined by an expert.

relationship between two topics, “J. Han” and his research paper, which is a

valuable and stable information even when the corresponding DBLP Bibliography

resources for the paper or author are not available any more.

As we deal with querying Web resources, and ranking of query outputs appears

frequently in Web-based applications, we assume that experts assign importance

scores (or sideway values) to the instances of topics, metalinks, and sources that

appear in their advices. We employ the scores of expert advice objects to generate

scores for query output objects, which are then used to rank the query output.

Example 1.2 Consider the expert advice and the query given in Example 1.1.

Assume that the query poser wants to see the list of top-10 topic important

research papers that are prerequisites to the paper “DMQL: A Data Mining

Query Language for Relational Databases” by J. Han et al. In this case, the

importance scores assigned by the expert to the papers and Prerequisite metalink

instances are used to rank the query output. Let’s assume that the expert assigns

scores 1 to the paper “DMQL: A Data Mining Query Language for Relational

Databases”, 0.9 to “Mining Sequential Patterns”, and 0.7 to the Prerequisite

metalink instance (“Mining Sequential Patterns” is Prerequisite to “DMQL: A

Data Mining Query Language for Relational Databases”). Then, the revised topic

importance score of the paper “Mining Sequential Patterns” is 1*0.9*0.7 which

equals 0.63. And, the output of the query is ranked with respect to the revised

importance scores. We discuss score assignment and score management issues in

CHAPTER 1. INTRODUCTION 5

more detail in subsequent chapters of this thesis.

Our SQL extensions, designed to facilitate metadata-based Web querying,

also allow approximate text similarity comparisons as the majority of the Web

consists of text documents, and experts assign arbitrary names to the topics in the

metadata that they generate for a subnet. To support text similarity comparisons

in the queries, we develop text similarity based selection and join operators which

are not provided in standard SQL. Text similarity based selection is used when

the query poser does not know the exact names for the topics that he/she is

looking for. Text similarity based join operator is employed to integrate and

query multiple expert advice databases from different sources.

In this thesis, we study text similarity based join operator in more detail,

since the join operator is more crucial than the selection operator, has more

application domains, and the optimization techniques that we benefit from during

the processing of the join operator is also applicable to the selection operator. We

propose an algorithm for text similarity based join operator and show through

experimental evaluations that our algorithm is more efficient than the previously

proposed algorithms in the literature in terms of number of tuple comparisons

and disk accesses made during the join operation. We also incorporate some

short cut evaluation techniques from the Information Retrieval domain, namely

Harman [39], quit [63], continue [63], and maximal similarity filter [69] heuristics,

for reducing the amount of similarity computations performed during the join

operation.

Finally, we experimentally evaluate the performance of the metadata-based

Web querying by running some test queries over two different metadata databases.

One of the expert advice repositories contains metadata about famous horror

novelist Stephen King and his books, the other includes metadata for all research

papers located at the DBLP Bibliography site. The Stephen King metadata

is created manually by a domain expert by browsing hundreds of documents

about Stephen King on the Web. The DBLP Bibliography metadata, on the

other hand, is generated semi-automatically by a computer program. For both

metadata databases, we demonstrate that the proposed Web data model and

CHAPTER 1. INTRODUCTION 6

the SQL extensions, used for querying the Web, lead to higher quality results

compared to the results produced by a typical keyword-based searching. We also

observe that employing user preferences and user knowledge during the query

processing further improves the precision of the query outputs.

1.1 Summary of the Contributions

The main contributions of this thesis can be summarized as follows:

• A metadata model making use of XML and topic maps paradigm is de-

scribed for Web resources.

• A framework to express user profiles and preferences in terms of these meta-

data objects is presented.

• An algebra and query processing algorithms that extend SQL for querying

expert advice repositories with some specific operators (similarity based

selection, join, etc.) are presented.

• Query processing algorithms that employ short-cut evaluation techniques

from the Information Retrieval domain for the similarity based join operator

are proposed.

• An experimental evaluation of metadata-based search as compared to key-

word based search is provided. In the experiment, we employ two expert

advice databases; one of them is manually created and the other one is

semi-automatically generated. This also allows us to compare the query

output precision of manually generated metadata with semi-automatically

generated one.

CHAPTER 1. INTRODUCTION 7

1.2 Organization of the Thesis

We provide the background and related work in Chapter 2 where the related

standards XML, RDF, and topic maps, the Web query languages, metadata-based

Web querying efforts (e.g., semantic Web), and top-k query processing issues are

summarized. Chapter 3 is devoted to the description of our Web information

space model and the discussion on practical issues to create and maintain expert

advice repositories and user profiles. We present SQL extensions along with new

operators and their query processing algorithms in Chapter 4. In Chapter 5, we

discuss the text similarity based join operator in more detail, and experimentally

evaluate all the join algorithms presented in this thesis. Chapter 6 includes

the performance evaluation experiments of the metadata-based Web search. We

conclude and point out future research directions in Chapter 7. Finally, we give

the extended SQL statements of the queries that are employed in the performance

evaluation experiments in Appendix A.

Chapter 2

Background and Related Work

In our metadata-based Web querying framework, we first exploit the DTDs of

information resources on the Web that are XML files, to generate the metadata

database along the lines of the topic map standard. We then store the metadata

in an object relational DBMS, and extend the SQL with specialized operators

(i.e., textual similarity based selection, textual similarity based join, and topic

closure) and score management facilities to query the metadata database, and

provide effective Web searching.

As background and related work to our study, we summarize the related stan-

dards XML, topic maps, and RDF in Section 2.1, discuss the Web query languages

and other metadata-based querying proposals in Section 2.2, and present previous

score management proposals along with ranked query evaluation in Section 2.3.

2.1 Related Standards

2.1.1 XML

As the size of the World Wide Web has been increasing extraordinarily, the abil-

ities of HTML have become insufficient for the requirements of Web technology.

8

CHAPTER 2. BACKGROUND AND RELATED WORK 9

HTML is limited for the new Web applications, because HTML does not allow

users to specify their own tags or attributes in order to semantically qualify their

data, and it does not support the specification of deep structures needed to rep-

resent database schemas or object oriented hierarchies [15]. To address these

problems, the eXtensible Markup Language (XML) was developed by an XML

Working Group, organized by the World Wide Web Consortium (W3C) in 1996,

as a new standard that supports data exchange on the Web.

Like HTML, XML is also a subset of SGML. However, HTML was designed

specifically to describe how to display the data on the screen. XML, on the other

hand, was designed to describe the content of the data, rather than presentation.

XML differs from HTML in three major respects. First of all, XML allows new

tags to be defined at will. In XML, structures can be nested to arbitrary depth,

and finally an XML document can contain an optional description of its grammar

[1]. XML data is self-describing, and therefore, it is possible for programs to

interpret the XML data [78].

The structure of XML documents are described by DTDs (Document Type

Definition), and they could be considered as schemas for XML documents. The

structure of an XML document is specified by giving the names of its elements,

sub-elements, and attributes in its associated DTD [78]. DTDs are not only used

for constraining XML documents, but can also be used in query optimization

for XML query languages [74], and efficient storage [27] and compression [54] of

XML documents.

Relational, object-relational, and object databases can be represented as XML

data [1]. However, XML data has a different structure from these traditional data

models in the sense that XML data is not rigidly structured and it can model

irregularities that cannot be modeled by relational or object oriented data [26].

For example, in XML data, data items may have missing elements or multiple

occurrences of the same element; or elements may have atomic values in some

data items and structured values in others; and as a result of this, collection of

elements can have heterogeneous structure. In order to model and store XML

data, Lore’s XML data model [35], ARANEUS Data Model (ADM) [57], and

CHAPTER 2. BACKGROUND AND RELATED WORK 10

a storage language STORED [27] have been proposed. Besides, the authors in

[77, 78] describe how to store XML files in relational databases. For storing XML

files in relational tables, first the schemas for relational tables are extracted from

the DTD of the XML files, and then each element in the XML files is inserted as

one or multiple tuples to the relational tables.

2.1.2 Topic Maps

Topic maps standard is a metadata model for describing data in terms of topics,

associations, occurrences and other specific constructs [13]. In other words, a

topic map is a structured network of hyperlinks above an information pool [42].

In such a network, each node represents a named topic and links among them

represent their relationships (associations) [72]. Thus, a topic map can be basi-

cally seen as an SGML (or XML) document in which different element types are

used to represent topics, occurrences of topics and relationships between topics.

In this respect, the key concepts can be defined as follows [6, 13, 71, 72]:

Topic: A topic represents anything; a person, a city, an entity, a concept, etc.

For example, in the context of computer science, a topic might represent

subjects such as “Database Management Systems”, “XML”, “Computer

Engineering Department”, or “Bilkent University” (anything about com-

puter science). What is chosen as topic highly depends on the needs of the

application, the nature of the information, and the uses to which the topic

map will be put.

Topic Type: Every topic has one or more types, which are a typical class-

instance relation and they are themselves defined as topics. Therefore,

“Database Management Systems” would be a topic of type subject, “XML”

a topic type of markup language or subject, “Computer Engineering De-

partment” of type academic department, and “Bilkent University” of type

university. Topic types subject, markup language, academic department,

and university are also topics.

CHAPTER 2. BACKGROUND AND RELATED WORK 11

Topic Name: Each topic has one or more names. The topic map standard [42]

includes three types of names for a topic that are base name, display name,

and sort name. For the topic “Bilkent University”, the base name and the

sort name could be “Bilkent U.”, and the display name would be “Bilkent

University”.

Topic Occurrence: A topic occurrence is a link to a resource (or more than one

resource) that is relevant to the subject that the topic represents. Occur-

rence(s) of a topic can be an article about the topic in a journal, a picture

or video depicting the topic, a simple mention of the topic in the context

of something else, etc. Topic occurrences are generally outside of the topic

map, and they are “pointed at” using an addressing mechanism such as

XPointer. Occurrences may be of any different types (e.g., article, illustra-

tion, mention, etc.) such that each type is also a topic in the topic map, and

occurrence types are supported in the topic map standard by the concept

of the occurrence role.

Topic Association: An association describes the relationship between two or

more topics. For instance, “XML” is a subject in “Database Management

Systems”, “Database Management Systems” is a course in “Computer En-

gineering Department”, etc. Each association is of a specific association

type. In the examples, is a subject in, is a course in are association types.

Each associated topic plays a role in the association. In the relationship

“Database Management Systems” is a course in “Computer Engineering

Department”, those roles might be course and department. The association

type and association role type are both topics.

Scope and Theme: Any assignment to a topic is considered valid within certain

limits, which may or may not be specified explicitly. The validity limit of

such an assignment is called its scope, which is defined in terms of topics

called themes. The limit of validity of the relation “Database Management

Systems” is a course in “Computer Engineering Department” may be the

fall semesters. So, the scope of this relation is “Fall”, and the theme is

“graduate courses”.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Public Subject: This is an addressable information resource which unambigu-

ously identifies the subject of topic in question. As an example, the public

subject for the topic “XML” may be the Web address of the document

[84] which defines the “XML” standard officially. Public subject for a topic

is used when two or more topic maps are merged. As the topic names as-

signed to a topic may differ from one topic map to other, to identify whether

two topics having different names are the same topics or not, their public

subjects are compared.

The basic motivation behind topic maps was the need to be able to merge

indexes belonging to different document collections [71]. However, topic maps are

also capable of handling tables of contents, glossaries, thesauri, cross references

etc. The power of topic maps as navigational tools comes from the fact that they

are topic-oriented and they utilize an index which encapsulates the structure

of the underlying knowledge (in terms of topics, associations and other related

notions); whereas search engines simply use (full-text) index which can not model

the semantic structure of the information resources over which it is constructed

[67, 72]. Thus, topic maps are the solution for query posers who want fast access

to selected information in a given context.

As it is mentioned above, topic maps are a kind of semantic index over the

information resources, and the occurrences of topics are just links to actual in-

formation resources which are outside of the topic map. This allows a separation

of information into two domains: the metadata domain (topics and associations)

and the occurrence (document) domain [68, 71]. The metadata domain itself is

a valuable source of information and it can be processed without regard for the

topic occurrences. Thus, it is possible that different topic maps can be created

over the same set of information resources, to provide different views to users [71].

Also, topic maps created by different authors (i.e., information brokers) may be

interchanged and even merged. In [79] a publicly available source codes, and

in [64] a commercial tool for creating and navigating topic maps are presented.

Thus, an information broker can design topic maps and sell them to information

provider or link them to information resources and sell them to end-users [72].

CHAPTER 2. BACKGROUND AND RELATED WORK 13

2.1.3 RDF

RDF (Resource Description Framework) [73] is another technology for processing

metadata, and it is proposed by the World Wide Web Consortium (W3C). RDF

allows descriptions of Web resources to be made available in machine understand-

able form. One of the goals of RDF is to make it possible to specify semantics

for data based on XML in a standardized, interoperable manner. The basic RDF

data model consists of three object types [73]:

Resources: Anything being described by RDF expressions is called resource.

A resource may be a Web page (e.g., “http://cs.bilkent.edu.tr/courses/-

cs351.html”), or a part of a Web page (e.g., a specific HTML or XML

element within the document source), or a whole collection of pages (e.g.,

an entire Web site). A resource may also be an object that is not directly

accessible via the Web (e.g., a printed journal).

Properties: A property is a specific characteristic or attribute used to describe

a resource. Each property has a specific meaning that defines the types of

resources it can describe, and its relationship with other properties.

Statements: A specific resource together with a named property and the value

of that property for that resource is called an RDF statement. These three

parts of a statement are called, the subject, the predicate, and the object,

respectively. The object of a statement (i.e., the property value) can be

another resource or it can be a literal. In RDF terms, a literal may have

content that is XML markup but is not further evaluated by the RDF pro-

cessor. As an example consider the sentence “Engin Demir is the creator of

the resource http://cs.bilkent.edu.tr/courses/cs351.html”. The subject (re-

source) of this sentence is http://cs.bilkent.edu.tr/courses/cs351.html, the

predicate (property) is “creator” and the object (literal) is “Engin Demir”.

Thus, the RDF data model provides an abstract, conceptual framework for

defining and using metadata, as the topic maps data model does. And, both RDF

and topic maps use the XML encoding as its interchange syntax. However, one

CHAPTER 2. BACKGROUND AND RELATED WORK 14

difference of RDF from topic maps is that RDF annotates directly the information

resources; topic maps, on the other hand, create a semantic network on top of

the information resources. RDF is centered on resources, while topic maps on

topics [56]. Although topic maps and RDF are different standards, the main goal

of both of them is the same, and current research includes the integration and

interoperability of the two proposals [34, 49, 65].

2.2 Query Languages for Information Extrac-

tion from the Web

As the size and usage of the Web increase, the problem of searching the Web for

a specific information becomes an important research issue. As a solution to this

problem, a number of query languages (e.g., WebSQL, W3QL, WebLog, StruQL,

FLORID, TMQL, RQL, etc.) have been proposed.

2.2.1 Web Query Languages

In [31], a comprehensive survey for querying the Web using database-style query

languages is provided. The query languages WebSQL, W3QL, and WebLog, as

their names imply were designed specifically for querying the Web.

WebSQL is a high level SQL like query language developed for extracting

information from the Web [8]. WebSQL models the Web as a relational database

that is composed of two virtual relations: Document and Anchor [31]. Document

relation has one tuple for each document in the Web, and consists of url, title, text,

type, length, and modif attributes, where url is the Uniform Resource Locator

(URL) for the Web document and it is the primary key of the relation since URL

can uniquely identify a relation; title is the title of the Web document, text is

the content or whole document, type of a document may be HTML, Postscript,

image, audio, etc., length is the size of the document, and modif is the last

modification date. All attributes are character strings, and except the URL, all

CHAPTER 2. BACKGROUND AND RELATED WORK 15

other attributes can be null. Anchor relation has one tuple for each hypertext link

in each document in the Web, and it consists of base, href, and label attributes

where base is the URL of the Web document containing the link, href is the

referred document, and label is the link description [58].

A WebSQL query consists of select-from-where clauses and it starts query-

ing with a user specified URL given in the from clause, and follows interior, local,

and/or global hypertext links in order to find the Web documents that satisfy

the conditions given in the where clause. A hypertext link is said to be inte-

rior if the destination is within the source document, local if the destination and

source documents are different but located on the same server, and global if the

destination and the source documents are located on different servers. Arrow-like

symbols are used to denote these hypertext links. For example 7→ denotes an

interior link, → denotes a local link, ⇒ represents a global link, and = is used

for an empty path. Path regular expressions are formed by using these arrow-like

symbols with concatenation (.), alternation (|), and repetition (*).

The below query

select d.url, d.title

from Document d such that

“http://www.cs.toronto.edu” = | → | →→ d

where d.title contains “database”

starting from the Department of Computer Science home page of the Univer-

sity of Toronto, lists the URL and title of each Web document that are linked

through paths of length two or less containing only local links, and having the

string “database” in their title.

WebSQL can also be used for finding broken links in a page, defining full text

index based on the descriptive text, finding references from documents in other

servers, and mining links [8].

WebOQL is another language that has been proposed for querying the Web.

CHAPTER 2. BACKGROUND AND RELATED WORK 16

Unlike WebSQL, WebOQL not only models hypertext links between Web doc-

uments, but it also considers the internal structure of the Web documents [7].

The main data structure of WebOQL is hypertree. A hypertree is a represen-

tation of a structured document containing hyperlinks. Hypertrees are ordered

arc-labeled trees with two types of arcs, internal and external. Internal arcs are

used to represent structured objects (Web documents) and external arcs are used

to represent hyperlinks among objects. Arcs are labeled with records.

A set of related hypertrees forms a web2. A WebOQL query maps hyper-

trees or webs into other hypertrees or webs, and consists of select-from-where

clauses. In WebOQL queries, navigation patterns are used to specify the struc-

ture of the paths that must be followed in order to find the instances for variables.

Navigation patterns are regular expressions whose alphabet is the set of predi-

cates over records. WebOQL can simulate all nested relational algebra operators,

and can create and manipulate web [7].

Several other languages have also been proposed in order to query the Web.

W3QL [44, 45], WebLog [50], and WQL [53] are among these query languages.

W3QL and WQL are similar to WebSQL, however WebLog uses deductive rules

instead of the SQL-like syntax.

StruQL [30] is a query language of STRUDEL, which is a system for imple-

menting data intensive Web sites. A StruQL query can integrate information

from multiple data sources, and produce a new Web site according to the content

and structure specification given in the query.

FLORID [40, 55] is another Web query language that is based on F-logic.

FLORID provides a powerful formalism for manipulating semistructured data in

a Web context. However, it does not support the construction of new Webs as a

result of computation; the result is always a set of F-logic objects.

All the Web query languages mentioned in this section try to model and query

the Web as a whole by considering the inter document link structures, however

our work is distinguished from these proposals in that we focus on querying a

2A web is a data structure used in WebOQL, and it consists of a set of related hypertrees.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

subset of the Web on a specific domain (i.e., subnet) by employing a metadata

database over the subnet.

2.2.2 Topic Maps and RDF based Query Languages

TMQL [46] is a topic map query language designed specifically to query the

topic and association entities, not the topic occurrences of topic maps. TMQL

is an extension of SQL in a way that it handles the topic map data structure.

The input and output of a TMQL query are both topic maps. tolog [33] is

another language to query the topic maps. tolog is inspried from Prolog, and it

has the same querying power with TMQL. However, tolog operates on a higher

level of abstraction than the TMQL, and may perform operations that would be

exceedingly difficult in TMQL.

The basic idea behind the TMQL is similar to that of our work in the sense

that both proposals extend the SQL to query the topic maps. The difference

is that our SQL extensions are more sophisticated such that we have designed

specialized operators; “text similarity based selection” and “text similarity based

join” to support IR-style text similarity based operations, and “topic closure” to

allow useful queries that can not be formed in any other Web querying framework.

We also include score management to SQL which is not supported in TMQL. The

topic map query language tolog does not support our specialized operators and

score management facility too.

Semantic Web [12] is an RDF schema-based effort to define an architecture

for the Web, with a schema layer, logical layer, and a query language. The

Semantic Web Workshop [28] contains various proposals and efforts for adding

semantics to the Web. In [56], a survey on Semantic Web related knowledge

representation formalisms (i.e., RDF, topic maps, and DAML+OIL [41]) and

their query languages are presented. Among those query languages, RQL is the

one supporting more features than the other proposals.

RQL is developed in the context of C-Web project [22] which is an effort to

CHAPTER 2. BACKGROUND AND RELATED WORK 18

support information sharing within the specific Web communities (e.g., in Com-

merce, Culture, Health). The main design goals of the project include (i) creation

of conceptual models (schema), which could be carried out by knowledge engineers

and domain experts and exported in RDF syntax, (ii) publishing information re-

sources using the terminology of conceptual schema, and (iii) enabling community

members to query and retrieve the published information resources. The query-

ing facilities are provided by the language RQL. RQL relies on a formal graph

model that enables the interpretation of superimposed resource descriptions. It

adapts the functionality of XML query languages to RDF and it extends this

functionality by uniformly querying both ontology and data.

In WebSemantics (WS) system [62], an architecture is provided to publish and

describe data sources for structured data on the WWW along with a language

based on WebSQL [58] for discovering resources and querying their metadata.

The basic ideas and motivation of C-Web project and WebSemantics are quite

similar to our work, but the approaches for modeling, storing and querying the

metadata differ. Our metadata model basically relies on topic maps data model

which we store in a commercial object relational DBMS, and query through SQL

extensions. Our specialized operators and score management functionality are

not supported in C-Web and WebSemantics.

2.3 Top-k Query Processing

As we bring score management functionality to SQL in order to limit the cardi-

nality of the output, and rank the output with respect to their score, our work is

also related to the top-k query processing which has been investigated by many

database researchers recently. Carey et al. performed one of the earliest studies

on ranked query processing [18]. In that work, an SQL extension, “stop after”

clause that enables query writers to control the query output size is proposed.

After everything else specified in the query are performed, the stop after clause

retains only the first n tuples in the result set. If the “order by” clause is also

specified in the query, then only the first n tuples according to this ordering are

CHAPTER 2. BACKGROUND AND RELATED WORK 19

returned as the query output. In [19], more recent strategies are presented for

efficient processing of the “stop after” operator.

In another related work, Chaudhuri et al. developed a technique for evaluating

a top-k selection query by translating it into a single range query [21]. In that

work, n-dimensional histograms are employed to map a top-k selection query

consisting of n attributes to a suitable range query. Fagin et al. were also

interested in finding top-k matching objects to a given query [29].

Several algorithms for top-k join operator are presented in [11, 20, 66]. The

problem of optimizing and executing multi-join queries is considered in [11]. Nat-

sev et al. examined the problem of incremental joins of multiple ranked data sets

with arbitrary user-defined join predicates on input tuples [66]. It is assumed

in their work that, they are given m streams of objects (relations) ordered on a

specific score attribute for each object, and a set of p arbitrary predicates defined

on object attributes. A valid join combination includes exactly one object from

each stream subject to join predicates. Each combination is evaluated through

a monotone score aggregation function, and the k join combinations having the

highest scores are returned as output. Similarly, Chang et al. present an algo-

rithm for evaluating ranked top-k queries with expensive predicates [20]. They

also describe a join algorithm that outputs the top-k joined objects having the

highest scores.

The text similarity based directional join operator of our work is different from

all the above top-k join proposals in the sense that, it joins each tuple from one

relation with k tuples from the other relation having the highest scores (similar-

ity). The output size of the top-k join operators, on the other hand, is at most k.

In our text similarity based directional join operator, we consider similarity of the

join attributes as the join predicate, while the top-k join operators employ more

general join predicates. Also, all the top-k query processing algorithms assume

that the objects (tuples) in all relations are sorted with respect to a score value,

however our join algorithm does not require input relations be sorted.

Chapter 3

Web Information Space Model

In this chapter, we present our Web information space model, which is used to

provide metadata-based modeling of subnets. The Web information space model

was first introduced in [5, 6]. The model is composed of information resources on

the Web, expert advice repositories, and personalized information about users.

3.1 Information Resources

Information resources are Web-based documents containing data of any type

such as bulk text in various formats (e.g., ascii, postscript, pdf, etc.), images

with different formats (e.g., jpeg), audio, video, audio/video, etc. In this thesis,

we assume that information resources are in the form of XML/HTML documents,

however, our model allows any kind of media to be information resources as long

as metadata about them are provided.

We name an information resource in which a particular topic occurs as topic

source. For example, the ps/pdf document containing the full text of the paper

“DMQL: A Data Mining Query Language for Relational Databases” constitutes

a topic source for the topic of type PaperName and having topic name “DMQL:

20

CHAPTER 3. WEB INFORMATION SPACE MODEL 21

A Data Mining Query Language for Relational Databases”. Also, all other doc-

uments that cite this PaperName topic in ACM Portal Web site [2] constitute

a topic source for this topic. For XML-based information resources, we assume

that a number of topic source attributes are defined within the XML document

(using XML element tags) such as LastUpdated, Author, and MediaType

attributes, etc.

The metadata about the data contained in topic sources are stored in expert

advice repositories. Also, the expert advice repository, discussed next, has an

entity, called “topic source reference”, which contains (partial) information about

a topic source (such as its Web address, etc).

3.2 Expert Advice Model

In our Web information space model, expert advices are metadata that describe

the contents of associated information resources. Each domain expert models a

subnet (a set of information resources in a particular domain) in terms of

• topic entities,

• topic source reference entities, and

• metalinks (i.e., metalink types, signatures and instances).

Our expert advice model is in fact a subset of the topic map standard [42],

however, we extend the standard with some additional attributes associated to

topic, topic source reference and metalink entities. We discuss the similarities

and differences between our expert advice model and the topic map standard

wherever appropriate in the subsequent sections.

Expert advice repositories are stored in a traditional object-relational DBMS

such that, there is a table for topics, topic source references, and each metalink

type. We assume that, expert advice repositories are made available by the associ-

ated institutions (e.g., DBLP Bibliography Web site) to be used for sophisticated

CHAPTER 3. WEB INFORMATION SPACE MODEL 22

querying purposes. Besides, independent domain experts (i.e., information bro-

kers [72]) could also publish expert advice repositories for particular subnets on

their Web sites as a (probably feed) service. We briefly discuss a semi-automated

means of creating such expert advice repositories in Section 3.4, after we describe

the properties of the model in detail. In [5, 47, 52], detailed discussion on creation

and maintenance of expert advice repositories is provided.

3.2.1 Topic Entities

A topic entity represents anything; a person, a city, a concept, etc. as in the topic

map standard discussed in Chapter 2. In our expert advice model, topic entity

has T(opic-)Name, T(opic-)Type, T(opic-)Domain (scope), Roles, etc. at-

tributes as specified in the topic map standard (see Chapter 2). In our model,

topics also have the following additional attributes which are not supported in

topic map standard.

T(opic-)Author attribute defines the expert (name or id or simply a URL that

uniquely identifies the expert) who authors the topic.

T(opic-)MaxDetailLevel. Each topic can be represented by a topic source in

the Web information resource at a different detail level. Therefore, each

topic entity has a maximum detail level attribute. Let’s assume that levels

1, 2 and 3 denote levels “beginner”, “intermediate”, and “advanced”. For

the “data mining” domain, for example, a source for topic “association

rule mining” can be at a beginner (i.e., detail level 1) level, denoted by

“Association Rule Mining1” (e.g., “Apriori Algorithm”). Or, it may be at

an advanced (say, detail level n) level of “Association Rule Miningn” (e.g.,

“association rule mining based on image content”). Note the convention

that topic x at detail level i is more advanced (i.e., more detailed) than

topic x at detail level j when i>j.

T(opic-)Id. Each topic entity has a T(opic-)Id attribute, whose value is an

artificially generated identifier, internally used for efficient implementation

purposes, and not available to users.

CHAPTER 3. WEB INFORMATION SPACE MODEL 23

T(opic-)SourceRef. Each topic entity has a T(opic-)SourceRef attribute which

contains a set of Topic-Source-Reference entities as discussed in the next

subsection.

T(opic-)Importance-Score. Each topic entity has a T(opic)-Importance-Score

attribute whose value represents the “importance” of the topic. An impor-

tance score is a real number in the range [0, 1], and it can also take its value

from the set {No, Don’t-Care}. The importance score is a measure for the

importance of the topic, except for the cases below.

1. When the importance value is “No”, for the expert, the metadata

object is rejected (which is different from the importance value of zero

in which case the object is accepted, and the expert attaches a zero

value to it). In other words, metadata objects with importance score

“No” are not returned to users as query output.

2. When the importance value is “Don’t-Care”, the expert does not care

about the use of the metadata object (but will not object if the other

experts use it), and chooses not to attach any value to it.

Experts assign importance scores to topics in manual/semi-automated/auto-

mated manner, which is discussed in Section 3.4.1.

The attributes (TName, TType, TDomain, TAuthor) constitute a key for

the topic entity. And, the TId attribute is also a key for topics. The topic entity

that we describe in this section is very similar to the one specified in the topic

map standard, however our topic entity has extra attributes (e.g., TMaxDe-

tailLevel, TImportance-Score) which do not exist in the topic map standard,

and these attributes play important role for efficient Web querying as we discuss

in Chapter 4.

3.2.2 Topic Source Reference Entities

A T(opic-)S(ource-)Ref(erence), also an entity in the expert advice model, con-

tains additional information about topic sources. This entity is similar to the

CHAPTER 3. WEB INFORMATION SPACE MODEL 24

topic occurrence entity in the topic map standard; the difference is, we extend

topic source reference entity with the following attributes:

Topics (set of Tid values) attribute that represents the set of topics for which

the referenced source is a topic source.

Web-Address (URL) of the topic source.

Start-Marker (address) indicating the exact starting address of the topic

source relative to the beginning of the information resources (e.g.,

http://MachineLearning.org/DataMining#Apriori).

Detail-Level (sequence of integers). Each topic source reference has a detail

level describing how advanced the level of the topic source is for the corre-

sponding topic.

Other possible attributes of topic source reference entities include S(ource)-

Importance-Score, Mediatype, Role and Last-Modified.

3.2.3 Metalink Entities

Topic Metalinks represent relationships among topics. For instance, “DMQL: A

Data Mining Query Language for Relational Databases” is ResearchPaperOf “J.

Han”, “Y. Fu”, “W. Wang”, “K. Koperski”, and “O. Zaine” represents a metalink

instance between a research paper and a set of authors. In topic map standard

topic metalinks are called topic associations. As topic metalinks represent rela-

tionships among topics, not topic sources, they are “meta” relationships, hence

our choice of the term “metalink”. Metalinks have the following attributes which

are different from the attributes of topic associations.

M(etalink-)Type represents the type of the relationship among the topics.

In the example, “DMQL: A Data Mining Query Language for Relational

Databases” is ResearchPaperOf “J. Han”, “Y. Fu”, “W. Wang”, “K. Kop-

erski”, and “O. Zaine”, the metalink type is ResearchPaperOf.

CHAPTER 3. WEB INFORMATION SPACE MODEL 25

M(etalink-)Signature serves as a definition for a particular metalink type,

and includes the name given to the metalink type and the topic types of

topics that are related with this metalink type. For instance, the signature

“ResearchPaperOf (E): research paper → SetOf (researcher)” denotes that

according to the expert E, the ResearchPaperOf metalink type can hold

between topics of types “researcher” and “research paper”.

Ant(ecedent)-Id is the topic-id(s) of topic(s) that is on the left hand side of

a metalink instance. For the above metalink instance, Ant-Id is the topic

id for the topic “DMQL: A Data Mining Query Language for Relational

Databases”.

Cons(equent)-Id is the topic-id(s) of topic(s) that is on the right hand side of

a metalink instance. For the above metalink instance, Cons-Id is the set of

topic ids for the topics “J. Han”, “Y. Fu”, “W. Wang”, “K. Koperski”, and

“O. Zaine”.

Metalink entities also have other attributes such as M(etalink-)Domain,

M(etalink-)Id, and M(etalink-)Importance-Score as described for

topic entities.

There may be other metalink types. For instance, Prerequisite is a metalink

type with the signature Prerequisite(E): SetOf (topic) → SetOf (topic). The

metalink instance “Apriori Algorithm2”→ Prerequisite “Association Rule Mining

from Image Data1” states that “Understanding of the topic “Apriori Algorithm”

at level 2 (or higher) is the prerequisite for understanding the topic “Association

Rule Mining from Image Data” at level 1”. Yet another metalink relationship can

be the RelatedTo relationship that states, for example, that the topic “association

rule mining” is related to the topic “clustering”. SubTopicOf and SuperTopicOf

metalink types together represent a topic composition hierarchy. As an example,

the topic “information retrieval” is a super-topic (composed) of topics “indexing”,

“text similarity comparison”, “query processing”, etc. The topic “inverted index”

is a sub-topic of “indexing” and “ranked query processing”. Thus any relationship

involving topics deemed suitable by an expert in the field can be a topic metalink.

CHAPTER 3. WEB INFORMATION SPACE MODEL 26

3.3 Personalized Information Model: User Pro-

files

The user profile model maintains for each user his/her preferences about experts,

topics, sources, and metalinks as well as the user’s knowledge about topics. Thus,

our personalized information model consists of two components: user preferences,

and user knowledge.

3.3.1 User Preferences

In our Web information space model, we employ user preference specifications,

along the lines of Agrawal and Wimmers [4]. The user U specifies his/her prefer-

ences as a list of Accept-Expert, T(opic)-Importance etc. statements, as shown

in Example 3.1. Essentially, these preferences indicate in which manners the ex-

pert advice repositories can be employed while querying underlying information

resources. In this sense, they may affect the query processing strategies for, say, a

query language or a higher-level application that operates on the Web information

space model.

In particular, the Accept-Expert statement captures the list of expert advice

repositories (their URLs) that a user relies and would like to use for querying.

Next, T(opic)-Importance and S(ource)-Importance statements allow users to

specify a threshold value to indicate that only topics, or topic sources with greater

importance scores than this threshold value are going to be used during query

processing and included in the query outputs. Furthermore, the users can express

(through Reject-T and Reject-S statements) that they don’t want a topic with a

particular name, type, etc., or a topic source at a certain location to be included

in the query outputs, regardless of their importance scores. Finally, when there

are more than one expert advice repositories it is possible that different experts

assign different importance scores to the same metadata entities. In this case,

the score assignments are accepted in an ordered manner as listed by the Accept-

Expert statement. We illustrate user preferences with an example.

CHAPTER 3. WEB INFORMATION SPACE MODEL 27

Example 3.1 Assume that we have three experts www.information-

retrieval.org (E1), www.IR-research.org (E2), and www.AI-resources.org (E3).

The user John-Doe is a researcher on information retrieval and specifies the fol-

lowing preferences:

Accept-Expert(John-Doe) = {E1, E2}
T-Importance(John-Doe) = {(E1, 0.9), (E2, 0.5)}
S-Importance(John-Doe) = {(E1, 0.5)}
Reject-T(John-Doe) = {(E2, TName= “*image*”)}
Reject-S(John-Doe) = {Web-Address= www.hackersalliance.org}

We assume that the user preferences are practically stored in an object-

relational DBMS, in this example; preferences are shown as a list of statements for

the sake of comprehensibility. The first preference states that Prof. Doe wants to

use expert advice repositories E1 and E2 to query the underlying Web resources,

but not E3 (which includes metadata about irrelevant resources to his research

area). The second and third clauses further constrain that only topics and sources

with importance values greater than the specified threshold values should be re-

turned as query output. For instance, a topic from repository E1 will be retrieved

only if its importance score is greater than 0.9. The fourth preference expresses

that Prof. Doe does not want to see any topics that include the term “image” in

its name from the repository E2, as he is only interested in text retrieval issues.

The fifth one forbids any resource from the site www.hackersalliance.org to be

included in any query outputs. Finally, if there is a conflict in the importance

scores assigned to a particular topic or source by experts E1 and E2, then, first,

advices of E1 and then only non-conflicting advices from E2 are accepted. For

example, assume that the topic “text compression” has the importance score 0.9

in E1 and “No” in E2. Then, the topic “text compression” is included in the

query results, since the conflicting advice from E2 is not considered. As another

example, assume that expert E1 assigns importance score of “Don’t Care” for

topic “distributed query processing” and expert E2 assigns 0.6 importance score

for that topic. Then, the topic is included in the query results, given that E1 does

not care whether the topic is included or not, but E2 assigns the importance score

CHAPTER 3. WEB INFORMATION SPACE MODEL 28

of 0.6, which is greater than the threshold value specified in the T-Importance

statement.

3.3.2 User Knowledge

For a given user and a topic, the knowledge level of the user on the topic is a

certain detail level of that topic. The knowledge level on a topic cannot exceed

the maximum detail level of the topic. The set U-Knowledge(U) = {(topic,

detail-level-value)} contains users’ knowledge on topics in terms of detail levels.

While expressing user knowledge, topics may be fully defined using the three

key attributes TName, TType and TDomain, or they may be partially specified

in which case the user’s knowledge spans a set of topics satisfying the given

attributes. We give an example.

Example 3.2 Assume that the user John-Doe knows topics with names “in-

verted index” at an expert (3) level, and “data compression” at a beginner (1)

level, specified as

U-Knowledge(John-Doe) = {(TName = “inverted index”, 3), (TName =

“data compression”, 1)}

Besides detail levels, we also keep the following history information for each

topic source that the user has visited: Web addresses (URLs) of topic sources,

their first/last visit dates and the number of times the source has been visited.

The information on user’s knowledge can be used during query processing, in

order to reduce the size of the information returned to the user. We discuss

query processing issues under user preferences and user knowledge in Chapter

4, along with Web query examples. In the absence of a user profile, the user is

assumed to know nothing about any topic, i.e., the user’s knowledge level about

all topics is zero.

CHAPTER 3. WEB INFORMATION SPACE MODEL 29

3.4 Creation and Maintenance of Expert Advice

Repositories and User Profiles

In this section, we briefly discuss how the expert advice repositories and user

profiles are constructed and maintained in order to demonstrate that metadata-

based Web querying through our Web information space model is practically

applicable.

3.4.1 Creation and Maintenance of Metadata Objects for

a Subnet

With the fast increase in the amount of data on the Web, numerous tools for

data extraction from the Web have been developed. A data extraction tool (e.g.,

wrapper) mines (meta)data from a given set of Web pages according to some

mapping rules, and populates a (meta)data repository [48]. Such tools are gen-

erally based on several techniques such as machine learning, natural language

processing, ontologies, etc. In [48], Laender et al. provide a survey for wrappers

and they categorize them with respect to techniques employed during the data

extraction.

The first step of creating metadata repositories is determining the topic and

metalink types for the application domain. This is carried on by the domain

experts either in a totally manual manner or by making use of thesauri or available

ontologies. The second and more crucial step is discovering mapping rules to

extract metadata from the actual Web resources, and this may involve techniques

from machine learning, data mining, etc. (see [32, 83, 48] as examples). In this

thesis, as we focus on metadata-based querying of subnets rather than the whole

Web, the creation and maintenance of metadata repositories is an attainable

task. Moreover, the advent of the XML over the Web can further facilitate

such automated processes and allow constructing tools that will accurately and

efficiently gather metadata for arbitrarily large subnets, with least possible human

intervention.

CHAPTER 3. WEB INFORMATION SPACE MODEL 30

For the performance evaluation experiments presented in Chapter 6, we cre-

ated a metadata repository (namely, DBLP Bibliography metadata database)

in a semi-automated manner by exploiting the DTD of the XML information

resources. Essentially, we mapped topics and metalinks to the elements and at-

tributes of DTD. Then, a Web robot traversed all the documents conforming to

this DTD and populated the repository. To illustrate this semi-automated ap-

proach, consider the DTD given in Figure 3.1 for the DBLP Bibliography archive,

which contains bibliographic information for computer science research papers.

<!ELEMENT dblp (article|inproceedings|proceedings|book|...)*>

<!ENTITY % field "author|editor|title|booktitle|year|

address|journal|URL">

<!ELEMENT article (%field;)*>

<!ELEMENT inproceedings (%field;)*>

<!ELEMENT proceedings (%field;)*>

<!ELEMENT author (#PCDATA)>

<!ELEMENT editor (#PCDATA)>

<!ELEMENT address (#PCDATA)>

...

Figure 3.1: A subset of DTD for XML documents in the DBLP Bibliography site.

According to this DTD, a dblp element may be an article (i.e., journal arti-

cle), proceedings (i.e., conference proceeding), inproceedings (i.e., conference

paper), a book, etc., and each of these elements may contain fields like author,

editor, title, etc. Considering the DBLP DTD, a topic of type PaperName

can be extracted by following the element tag path dblp.inproceedings.title,

and getting the value between <title> and </title> tags, a topic of type

AuthorName can be extracted from the path dblp.inproceedings.author,

etc. Two topics t1 and t2 have AuthoredBy relationship between each other,

if topic type of t1 is PaperName, and topic type of t2 is AuthorName, and

both topics are extracted from the same inproceedings element instance. Sim-

ilarly, topic source for a PaperName topic is extracted by following the path

CHAPTER 3. WEB INFORMATION SPACE MODEL 31

<?xml version="1.0"?>

<!DOCTYPE dblp SYSTEM "dblp.dtd">

<dblp>

<inproceedings key="...">

<title>DMQL: A Data Mining Query Language for

Relational Databases</title>

<author>J. Han</author>

<author>Y. Fu</author>

<author>W. Wang</author>

<author>K. Koperski</author>

<author>O. Zaiane</author>

<pages>...</pages>

<booktitle>DMKD</booktitle>

<year>1996</year>

<crossref>conf/dmkd/</crossref>

<url>http://www.informatik.uni-trier.de/

∼ley/db/conf/dmkd/HanFWKZ96.html</url>
</inproceedings>

</dblp>

Figure 3.2: Example XML document

dblp.inproceedings.URL.

As an example, consider the XML document in Figure 3.2, which confirms

to the DBLP DTD and contains bibliographic information about a conference

paper. According to the above mapping rules, the metadata entities presented in

Table 3.1 through Table 3.3 are extracted.

During the metadata creation, a domain expert also attaches importance

scores to these metadata entities for providing more sophisticated querying facili-

ties. Adding importance scores to topics, their sources and metalinks enriches the

Web information space model by allowing query output ranking and size control.

A query output is ranked with respect to metadata importance scores and limited

to the highest-ranked topics/sources to save query processing time and improve

the quality of query results as we discuss in the subsequent chapters.

Importance scores are attached to metadata entities in different forms:

CHAPTER 3. WEB INFORMATION SPACE MODEL 32

Table 3.1: Topic instances for the XML Document in Figure 3.2
TId TName TType TDomain TImp-

Score
T01 DMQL: A Data Mining

Query Language for Rela-
tional Databases

Paper
Name

Conference
Paper

0.9

T02 DMKD-1996 Journal
Conference
and Year

Computer
Science

0.9

T03 DMKD Journal
Conference
Org

Computer
Science

0.9

T04 1996 Publication
Date

- -

T05 J. Han Author
Name

Computer
Science

1

T06 Y. Fu Author
Name

Computer
Science

1

T07 W. Wang Author
Name

Computer
Science

1

T08 K. Koperski Author
Name

Computer
Science

1

T09 O. Zaiane Author
Name

Computer
Science

1

Table 3.2: Topic source reference instances for the XML Document in Figure 3.2
TId URL SImp-Score
T01 http://www.informatik.uni-trier.de

/∼ley/db/conf/dmkd/HanFWKZ96.html
1

Table 3.3: AuthoredBy metalink instances for the XML Document in Figure 3.2
MId Ant-Id Cons-Id MDomain MImp-

Score
M01 {T05, T06, T07, T08, T09} T01 Computer Science 1

CHAPTER 3. WEB INFORMATION SPACE MODEL 33

• Open form [4]: For each metadata object in the repository, an expert

manually assigns an importance score. As an example, we may have

Imp(E.Topics, TName=“DMQL: A Data Mining Query Language for Rela-

tional Databases”, TType=“PaperName”, TDomain=“Conference Paper”)

= 0.9 where Imp() denotes (a constant) importance score function and

E.Topics denotes the topics table of the expert advice repository created by

the expert E. This statement expresses that the domain expert assigns the

importance score of 0.9 to the topic (paper) “DMQL: A Data Mining Query

Language for Relational Databases” in the “Conference Paper” domain.

• Closed form: Each object’s importance score is derived from a closed func-

tion. This approach, which we used during the creation of the DBLP Bib-

liography metadata database, is more practical to apply during automated

or semi-automated metadata creation. For instance, the importance score

for topics of type “PaperName” can be specified as a weighted function of

citations received and the impact factor of the journal/conference in which

the paper is published/presented. We express the importance score func-

tion in the closed form as Imp(E.Topics, TType= “PaperName”) = f(no

of citations, impact factor of the journal). In this case, the domain expert

should also specify how to compute the function f() and determine each

parameter in this function.

• Semi-closed form: Domain expert specifies a function to assign a score for a

set of objects identified through regular expressions. Consider the function

Imp(E.TopicSources, TName=“*size of Web data*”, TDomain=“WWW”,

Last-Modified = (Now - 2years)) = No, where * denotes a wildcard character

that matches any string. This function assigns the importance score “No”

to all Web resources for any topic with topic name including the string “size

of Web data” in the “WWW” domain and not updated in the last 2 years.

So, these topic sources will never be included in query outputs unless they

are updated.

More detailed discussion on creation of metadata repositories can be found in

[5, 52], and [47] includes maintenance issues of metadata repositories when new

CHAPTER 3. WEB INFORMATION SPACE MODEL 34

Web documents are included in the subnet. Matching of metadata objects from

multiple metadata repositories is discussed in [68]. Once we create the metadata,

we can store it in an object relational DBMS, and we can pose sophisticated

queries for the underlying Web resources through the metadata database. In

Chapter 4, we give examples of such queries.

3.4.2 Creation and Maintenance of User Profiles

In the Web information space model, our aim is to employ user profiles during

metadata-based subnet querying to increase the quality of the results returned to

the user. Thus, user profiles should be created and maintained by the querying

application that makes use of our Web information space model. As user prefer-

ences allow each user to specify his/her preferences about experts and metadata

objects, a Web querying application employing the Web information space model

should allow its users to enter his/her own preferences by filling out a form,

as shown in Figure 3.3. The user then, explicitly specifies which expert advice

repositories he/she wants to use, as well as the other preferences (topic impor-

tance threshold, rejected resources, etc.).

As user knowledge maintains knowledge of users on topics in terms of detail

levels and navigational history information for the users, it can be generated and

updated from user click-stream data that is collected at the application level,

i.e., search/query interface for a Web querying application based on our model.

Assume that a user who login to such a Web querying application poses a query

involving various metadata entities, and a list of required topic source URLs

is returned. Then, as the user clicks some links in this list, the URL of the

document that the user visits, the first and last visit dates, media type, and

the visit frequency for the document are directly written to the user knowledge

database. Besides, the detail level of each such topic source for the required topic

in the query is retrieved from the expert advice repository and stored in the user

knowledge.

Example 3.3 Assume that the user John Doe requires all sources for

CHAPTER 3. WEB INFORMATION SPACE MODEL 35

Figure 3.3: User preference specification form

the topic “inverted index”, and the expert advice includes three sources

www.IR-resources.org/inv-index.html (includes definition of inverted index),

www.csindex.com/Baeza96.pdf (a paper containing introductory information

about inverted indexes), www.DBLPBib.com/Moffat00.pdf (more advanced level

paper about inverted indexes) for this topic with detail levels beginner (1), in-

termediate (2) and advanced (3), respectively. All three sources are returned to

the user as the query response. Assume that the user knowledge formerly in-

cludes the entry U-Knowledge (John-Doe)={(TName=“inverted index”, 1)} and

the user clicks to first and second sources. Then, his knowledge about this topic

will be updated as “intermediate” and the entry becomes U-Knowledge (John-

Doe)={(TName=“inverted index”, 2)}. Moreover, the list of visited URLs by

the user John Doe is expanded with these two sources, along with their visit

dates, media types, etc. The user knowledge database for this example is shown

in Tables 3.4, and 3.5.

Information captured in user profile is employed for refining query results

that are initially obtained by querying expert advice repositories. For instance,

the user John Doe would specify that the sources for the topic “inverted index”

CHAPTER 3. WEB INFORMATION SPACE MODEL 36

Table 3.4: Navigational history information for user John Doe
TName Detail Web-Address First Last Media Freq

Level Visit Visit Type
inverted
index

1 www.IR-
resources.org/inv-
index.html

1.2.03 2.12.03 text 11

inverted
index

2 www.csindex.com/
Baeza96.pdf

2.12.03 2.12.03 pdf 1

Table 3.5: Topic knowledge for user John Doe
TName TType TDomain TAuthor Knowledge

Level
inverted index Index Term Information Retrieval E 2

should be eliminated from the query output, if he has visited these resources in

the last two weeks or the sources are at the “beginner” level. We discuss in the

subsequent chapters the use of user profiles for query output refinement purposes

in more detail.

Chapter 4

SQL Extensions and SVA

Algebra

We model a subnet by employing our Web information space model, and store

expert advices and user profiles in a (object) relational DBMS. For the purpose

of personalized metadata-based subnet querying through our Web information

space model, we extend the SQL with new clauses, specialized operators (e.g.,

text similarity based selection, text similarity based join, topic closure, etc.),

and score management functionality. We also define Sideway Value generating

Algebra (SVA) to support these SQL extensions.

4.1 SQL Extensions

We extend the basic “select” statement of SQL as below to query our Web infor-

mation space model.

select <Metadata Objects>

using advice at <URL of metadata database> as database <DB>

[using profile at <URL of user profile> as database <U>]

from <list of tables from DB and/or U>

37

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 38

where <Conditions>

[propagate importance as <f > function of <list of arguments> |
topic closure importance computation as

<FPath> function within a path and as

<FPathMerge> function among multiple paths]

stop after <k> most important

• The clause using advice at <URL of metadata database> as database

<DB> specifies the metadata database that is employed in the query. If

more than one expert advice database is to be queried, a comma separated

list of expert advice databases is specified in this clause.

• using profile at <URL of user profile> as database <U> clause specifies

the user profile database that is used in the query. If the user specifies which

expert advice that he/she wants to query in the user preferences, then using

advice at clause may not be used in the query.

• propagate importance as <f > function of <list of arguments> speci-

fies the formula for propagating importance scores of query input relations

to the output relation. f is a monotonically decreasing function such as

min, product, average, and geometric average, which always returns a

value less than or equal to its input importance scores. list of arguments is

a sublist of relations listed in the from clause of the query. Only the im-

portance scores for the relations specified in the propagate importance

clause are employed during importance score computation of output tuples.

• Queries involving a topic closure operator should include topic closure im-

portance computation clause

topic closure importance computation as

<FPath> function within a path and as

<FPathMerge> function among multiple paths

which specifies how to compute the derived importance scores of topics

encountered during topic closures. The functions FPath and FPathMerge

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 39

are functions like product, max, min, etc., and we describe what kind of

functions can be employed in the topic closure importance propagation

clause in Section 4.2.4, where we present the topic closure operator. If an

extended SQL query includes a topic closure operator, the query must have

topic closure importance computation clause, otherwise propagate

importance clause is used.

• The query stopping clause stop after <k> most important specifies the

ranking threshold such that the query returns at most k objects having the

highest derived importance scores as output.

We give examples of extended SQL queries in the next section where we

describe the Sideway Value generating Algebra operators.

4.2 Sideway Value Generating Algebra

In the Web information space model, we attach importance scores to topic, met-

alink, and topic source reference objects. We refer to these values as sideway

values3 which are used for ranking query outputs and limiting output size dur-

ing query evaluation. We extend SQL with new algebraic operators supporting

score (sideway value) management functionality, and that’s why we called the

underlying algebra Sideway Value generating Algebra (SVA). The SVA operators

modify and propagate sideway values of base relations, and employ these values

for efficient query processing.

As our aim is to provide efficient querying of Web-based information resources,

our SQL extensions also allow approximate text similarity based querying, which

is supported by majority of today’s Web search engines. We define text similarity

based selection (i.e., similarity based SVA selection), two types of text similarity

based join (i.e., similarity based SVA join, and similarity based SVA directional

join) operators to perform similarity based querying. In addition to these, we

3We use the terms “importance score” and “sideway value” interchangeably in this thesis.

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 40

define a new operator, SVA topic closure, to allow query posers to formulate

useful queries which may not be performed by typical keyword matching based

querying system.

We describe SQL extensions, SVA operators, and score management through

example queries in the subsequent sections. In the logical query tree examples

discussed next, we use the following notation: Operators with superscript * are

SVA operators. Operators without superscript * are normal relational algebra

operators. A unary relational algebra operator without * in its superscript simply

carries (into its output tuples) the sideway values of its operand relation. A

binary relational algebra operator without a superscript * may carry (into its

output tuples) sideway values of either its left hand side relation or its right hand

side relation, indicated by superscript L or R, respectively.

4.2.1 Similarity Based SVA Selection Operator

Our text similarity based SVA selection operator is represented and defined as

follows.

Notation: σ∗sC,fout,k(R)

Definition: The selection operator σ∗s takes as input a relation R with impor-

tance propagation function fin, a text similarity based selection condition C, an

output importance propagation function fout for the output tuples, and a positive

integer k as the ranking threshold. The operator σ∗s returns, in decreasing order of

output importance scores, k output tuples that satisfy the selection condition C.

The text similarity based SVA selection operator can be employed during text

similarity based search over the Web information space model, which is a required

search facility, as the majority of Web based information resources consist of text,

and experts assign arbitrary names to topics. This allows query poser to retrieve

topics even if he/she does not know the exact topic name.

Example 4.1 Using the advice at www.DBLPandAnthology.com/advice, find

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 41

the names and URLs of 10 highest topic importance ranked journals and confer-

ences having names similar to the string “Web data management”. Employ a

product based importance propagation function.

select T.TName, S.URL

using advice at www.DBLPandAnthology.com/advice as database DB

from DB.Topics T, DB.TSRef S

where T.TType=“JournalConferenceOrg” and

T.TName ∼= “Web data management” and

T.TId in S.TId

propagate importance as product function of T

stop after 10 most important

 URLTName,Π

 ORDER BYimportance

 L

 L.TId in R.TId

 *

")management data Web"Sim(TName,*finfout ,10
"ferenceOrgJournalCon"TType and "management data Web"TName s

==
=≅

k

σ DB.TSRef

 DB.Topics

Figure 4.1: Logical query tree for Example 4.1.

The logical query tree of Example 4.1 is shown in Figure 4.1. This query

chooses journal/conference names and their URLs on the basis of the “derived”

importance values of JournalConferenceOrg topics as described in the “propagate

importance” clause. The clause T.TName ∼= “Web data management” states

that the selection condition is similarity based, and k topics having the highest

derived importance scores and having topic names similar to the string “Web

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 42

data management” are selected. The function Sim() in Figure 4.1 computes

the text similarity (according to tf-idf similarity measure, see Chapter 5) of two

strings, and returns a value in the range [0, 1]. Here, Sim() is used to modify

the importance scores of output tuples according to their TName similarity to

the string “Web data management”. Due to the “propagate importance” clause,

product function is employed as fout function, and the value of k equals 10 because

of the “stop after” clause. The URLs for the selected journal/conference topics

can be easily obtained by joining the output tuples of the SVA selection operator

with the T(opic)S(ource)Ref(erence) table, and the join operator in Figure 4.1,

passes the importance scores of its left hand side input relation to its output.

Algorithm: Text Similarity Based SVA Selection

Input: Relation R, an inverted index I on relation R,
selection condition C, an importance propagation function fout,
an integer k.

Output: Selected tuples with respect to importance scores.

begin
for each term t in text similarity based condition (Q) in C do

Search t from the inverted index I.
if it exists in the inverted index

for all tuples p in the inverted list entry for term t do
if p also satisfies other selection conditions (if any) then

¦ Accumulate similarity Sim(p.TName,Q);
¦ p.score = fout(p.score) ∗ Sim(p.TName, Q);
¦ Store p and p.score in list S.

end if
end for

end for
Return k tuples from S having the highest modified importance scores.

end

Figure 4.2: Similarity based SVA selection algorithm

The query processing algorithm for the SVA selection operator is presented in

Figure 4.2. A naive SVA selection algorithm scans the input relation once, and

for each tuple in the relation, the algorithm checks whether the tuple satisfies

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 43

the selection conditions or not. If the tuple satisfies the selection conditions, the

algorithm computes the modified importance score for the tuple, and at the end,

outputs k tuples having the highest modified importance score. For the naive

algorithm, we need to have topic name vectors for each tuple to compute the

similarity of topic name of the tuple with the string constant specified in the text

similarity based selection condition. In the algorithm we present in Figure 4.2, we

employ an inverted index (for topic name attribute) over the input relation, and

we do not pass over the whole relation. We make similarity computations, and

check selection conditions only for tuples which are guaranteed to have a similarity

value greater than zero to the string constant given in the text similarity based

selection condition. We discuss the effects of employing inverted indexes on the

performance of query processing of similarity based SVA directional join operator

in Chapter 5. The results obtained for the similarity based SVA directional join

operator are also applicable for the SVA selection operator.

4.2.2 Similarity Based SVA Join Operator

Another SVA operator is the text similarity based SVA join operator.

Notation: (L) ./∗s A∼=B,fout,k (R)

Definition: The text similarity based join operator ./∗s takes as input two

relations L and R with sideway value functions flin and frin respectively, a

text similarity based join condition on attributes A and B of relations L and

R, respectively, a sideway value propagation function fout for the output tuples,

and an output size threshold k. The join operator then joins tuples of L and R if

their attributes A and B are similar to each other, computes importance scores of

output tuples as specified by fout, and returns k joined tuples having the highest

importance scores.

Text similarity based SVA join operator is useful when topics from different

expert advices are joined, as each expert may assign different names to same

topics. The join operator is also employed for retrieving similar topic pairs from

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 44

the same expert advice.

Example 4.2 Using the advices at www.DBLP.com/advice (E1) and

www.SIGMOD.org/advice (E2), for the index terms advised by expert E1, find

the most similar index terms from E2, and return top 20 index term pairs with the

highest derived importance scores. Employ a geometric average based importance

propagation function.

select T1.TName, T2.TName

using advice at www.DBLP.com/advice as database DB1,

www.SIGMOD.org/advice as database DB2

from DB1.Topics T1, DB2.Topics T2

where T1.TType=“IndexTerm” and

T2.TType=“IndexTerm” and

T1.TName ∼= T2.TName

propagate importance as gmtrc-avg function of T1, T2

stop after 20 most important

 T2.TName T1.TName,Π

 ORDER BYimportance

 s*
 L.TName ≅ R.TName, k=20,
 fout= gmtr-avg(flin,frin)*Sim(L.TName,R.TName)

 "IndexTerm"TType =σ "IndexTerm"TType =σ

 DB1.Topics DB2.Topics

Figure 4.3: Logical query tree for Example 4.2.

In this query, text similarity based join operation is performed between the

“IndexTerm” topics from the two expert advice databases. Topics of type index

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 45

term are joined if their topic names are similar to each other. The importance

score of the joined tuples are computed as the geometric average of importance

scores of input relations, and this value is revised by the similarity value of the

index terms (their topic names). Then, the join operator returns 20 joined tuples

having the highest modified importance score. The logical query tree for this

query is presented in Figure 4.3. In the query tree, relational algebra selection

operators select index term type topics and pass the importance score of their

input relations without any modification. The text similarity based SVA join

operator then, modifies the importance score according to the function provided

in the “propagate importance” clause.

Text similarity based SVA join algorithms and their performance evaluation

experiments are presented in [69, 70]. The algorithms that have been proposed

in [69, 70] are nested loop based join algorithms employing an inverted index

on one of the input relations to decrease the number of similarity computations

performed.

4.2.3 Similarity Based SVA Directional Join Operator

The other text similarity based SVA operator is directional join operator, which

is different from the similarity based SVA join operator as described below.

Notation: (L) ./∗dir A∼=B,fout,k (R)

Definition: The text similarity based SVA directional join operator ./∗dir

takes as input two relations L and R with sideway value functions flin and frin

respectively, a text similarity based join condition on attributes A and B of

relations L and R, respectively, a sideway value propagation function fout for

the output tuples, and an integer k. The join operator then joins each tuple l of

relation L with at most k tuples from relation R such that the derived importance

score for tuple r of relation R (i.e., fout(flin, frin)* Sim(l.A,r.B)) is among the

top k highest derived importance score for the joined tuple l.r.

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 46

Text similarity based SVA directional join operator may be employed in in-

tegration and querying of multiple expert advices to facilitate metadata-based

subnet querying.

Example 4.3 Using the advice at www.DBLPandAnthology.com/advice, find

5 papers having the most similar titles to each paper whose title includes the string

“association rule mining” and was written by “J. D. Ullman”. Employ a product

based importance propagation function.

select T1.TName, S1.URL, T2.TName, S2.URL

using advice at www.DBLPandAnthology.com/advice as database DB

from DB.Topics T1, DB.Topics T2, DB.AuthoredBy M,

DB.Topics T3, DB.TSRef S1, DB.TSRef S2

where T1.TType=“PaperName” and T2.TType=“PaperName” and

T1.TName ∼=(dir,k=5) T2.TName and

T3.TType=“AuthorName” and T3.TName=“J. D. Ullman” and

T3.TId in M.AntId and T1.TId=M.Cons-Id and

T1.TName like “*association rule mining*” and

T1.TId in S1.TId and T2.TId in S2.TId

propagate importance as product function of T1, T2

The logical query tree of Example 4.3 is shown in Figure 4.4. The clause

“T1.TName ∼=(dir,k=5) T2.TName” represents text similarity based SVA direc-

tional join operator, which joins each T1 topic with at most 5 T2 topics having

the highest derived importance score according to the function specified in the

“propagate importance” clause. Cons-Id and Ant-Id are consequent and an-

tecedent topic attributes of the AuthoredBy metalink entity. We assume that

AuthoredBy is a metalink type that specifies the relationship between a research

paper and its set of authors. The signature of the metalink type is AuthoredBy :

Set of AuthorName → PaperName. We also assume that, topic ids rather than

topic names for the topics of types AuthorName and PaperName are stored in

the AuthoredBy metalink table. In this query, we do not need “stop after” clause

as the ranking threshold is specified in the SVA directional join statement.

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 47

 S2.URL.T2.TName,S1.URL,T1.TName,Π

 *dir
 k=5, fout=flin*frin*Sim(L.TName,R.TName)

 L R

 L.TId in R.TId L.TId in R.TId

 R

 DB.TSRef
 L.Cons-Id=R.TId DB.TSRef PaperName"" TType =σ

mining*" ruleion "*associat like TName
 and PaperName"" TType =σ

 L.TId in R.Ant-Id DB.Topics

 DB.Topics

 Ullman"D. J. TName
and "AuthorName" TType

=
=σ AuthoredBy

 DB.Topics

Figure 4.4: Logical query tree for Example 4.3.

Example 4.4 Let’s assume that an editor of a journal wants to find 5 referees

for each paper submitted to the journal. Also assume that, all submitted papers

(pdf or ps files), along with their titles, keywords, author names, name and ad-

dress of the corresponding authors are stored in a database. And additionally,

an expert E provides metadata about referees such as their names, affiliations,

and research areas. The editor can easily find the top 5 most suitable referees

for each paper by using the text similarity based SVA directional join operation

on the relation that contains information about submitted papers and the rela-

tion maintained for referees. The joining attributes of this join operation are the

keyword attribute of papers and the research interest attribute of referees.

The text similarity based SVA directional join operator produces different out-

put for (L) ./∗dir A∼=B,fout,k (R), and (R) ./∗dir B∼=A,fout,k (L) operations. The order

of the operands is important, that is why we called this operator “directional”.

As an example, let L and R be relations on papers and referees, respectively,

as discussed in Example 4.4. Then (L) ./∗dir A∼=B,fout,k (R) finds the top-5 most

suitable referees for each submitted paper, whereas (R) ./∗dir B∼=A,fout,k (L) finds

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 48

the top-5 most suitable papers for each referee.

We discuss query processing algorithms for the text similarity based SVA

directional join operator in Chapter 5, and give results for performance evaluation

experiments.

4.2.4 SVA Topic Closure Operator

SVA topic closure is a recursive closure operator that takes into account the

rankings of its input tuples.

Notation: TClosure∗Topics,MetalinkType,FPath,FPathMerge,k(X)

Definition: The SVA topic closure operator computes the topic closure X+

of a set X of topics with respect to a metalink type (and, thus, with respect to

the set of axioms characterizing the metalink type). The operator takes as input

three relations, namely, the relation X, the relation Topics containing all topic

instances, and the relation MetalinkType containing all instances of given met-

alink type; FPath function that specifies how to compute the importance values

of newly reached topics with respect to a single path, the function FPathMerge

that specifies how to merge the importance values obtained for different paths,

and the ranking threshold k. It then computes the closure where each new topic

in the closure is represented as an output tuple, and has a derived importance

score which is among the top k highest derived importance scores.

Example 4.5 Using the advice at www.DBLPandAnthology.com/advice, find

the titles and URLs of 10 highest importance-valued papers that are prerequisites

(recursively) of the paper “DMQL: A Data Mining Query Language for Relational

Databases”.

select T2.TName, S2.URL

using advice at www.DBLPandAnthology.com/advice as database DB

from DB.Topics T, DB.Topics T1, DB.Topics T2,

DB.PrerequisitePapers M, DB.TSRef S2

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 49

 URLTName,Π

 ORDER BYimportance

 L

 L.TId in R.TId

 TCLOSURE DB.TSRef
 k=10, FPath=*, FPathMerge=Max

PaperName""TType and

..." LanguageQuery Mining DataA :DMQL"TName
=

≅σ

 DB.Topics DB.PrerequisitePapers

 DB.Topics

Figure 4.5: Logical query tree for Example 4.5

where T1.TName=“DMQL: A Data Mining Query Language

for Relational Databases” and

T1.TType=“PaperName” and

T2.TId in PrerequisitePapers*(T1.TId, T, M) and

T2.TId in S2.TId

topic closure importance computation as

product function within a path and as

max function among multiple paths

stop after 10 most important

In the above query, prerequisites of the paper “DMQL: A Data Mining Query

Language for Relational Databases” are located recursively by following the met-

alink instances of type PrerequisitePapers. The statement “T2.TId in Prereq-

uisitePapers*(T1.TId, T, M)” is topic closure clause and the function types for

FPath and FPathMerge are specified in the “topic closure importance compu-

tation” clause. In this query, the closure operator first finds all instances of

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 50

PrerequisitePapers metalink type such that the paper “DMQL: A Data Mining

Query Language for Relational Databases” is antecedent topic. Then, it gets all

consequent topics, and revises their importance scores by using the FPath and

FPathMerge functions. The derived importance score of a consequent topic is

computed as (ant-topic.score)∗ (m.score)∗ (cons-topic.score) as the FPath func-

tion is product. m is the metalink instance from which the consequent topic is

reached, ant-topic is the antecedent topic, and cons-topic is the consequent topic

of the metalink instance m. The reached topics and their derived importance

scores are stored in a list, and the prerequisite topics for the newly reached topics

are found by following the PrerequisitePapers metalink paths recursively. This

process is repeated for all the topics in the list, until no new topic with higher

revised importance score is reached. And, the topics having the k(=10) high-

est derived importance scores are returned as output. If a topic is reached by

following more than one PrerequisitePapers metalink paths, then the maximum

score among the paths is taken as the derived importance score for the topic, as

the FPathMerge function is max for this query. The logical query tree for this

example is given in Figure 4.5.

If the query poser wants to see top 5 papers having titles that are most similar

to the title “DMQL: A Data Mining Query Language for Relational Databases”,

and their top 10 most topic important prerequisites, then he/she will need to run

the below queries.

select T.TId, T.TName

using advice at www.DBLPandAnthology.com/advice as database DB

from DB.Topics T

where T.TType=“PaperName” and

T.TName ∼= “DMQL: A Data Mining Query Language

for Relational Databases”

propagate importance as product function of T

stop after 5 most important

select T1.TName, T2.TName, S2.URL

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 51

using advice at www.DBLPandAnthology.com/advice as database DB

from DB.Topics T, T1, DB.Topics T2,

DB.PrerequisitePapers M, DB.TSRef S2

where T2.TId in PrerequisitePapers*(T1.TId, T, M) and

T2.TId in S2.TId

topic closure importance computation as

product function within a path and as

max function among multiple paths

stop after 10 most important

In the first query, 5 similar and having highest derived importance score valued

papers are found, and the query poser stores the output in a table named T1.

Then, T1 is included in the second query to find the prerequisite papers.

In the “topic closure importance computation” clause, the function FPath

should be a monotonically decreasing function. We define the FPath function

as follows: let FPath takes a set of reals in the range [0, 1] and returns a real

in [0, 1], and S be a nonempty set of reals in [0, 1] and v be a real in [0, 1].

Then, FPath(S
⋃{v}) ≤ FPath(S). This property of FPath guarantees that

the search for topics over a metalink path always comes to an end. That is, a

topic obtained over a path that includes topic t (and, thus, is reached after t is

reached) always has a propagated importance value lower than the propagated

importance value of t. To guarantee that, during topic closure computations,

the search for topics over multiple and possibly merging paths comes to an end,

the FPathMerge function has the following property: Assume that the input of

FPathMerge is the set S = {v1, ..., vn} where vi is a real in the range [0, 1] for

1 ≤ i ≤ n. Then, FPathMerge(S) ≤ Max(S).

The query processing algorithm that we employ in this thesis for the SVA topic

closure operator is presented in Figure 4.6. More general topic closure algorithms

that computes closure with respect to a regular expression of multiple metalink

types are presented in [69, 70].

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 52

Algorithm: SVA Topic Closure (for a topic t)

Input: Topic t for which topic closure is computed,
relation Topics which includes all topics in the expert advice,
relation M including all instances of metalinks of a given type,
FPath and FPathMerge functions, and an integer k.

Output: k topics having the highest derived importance scores and
logically implied from topic t and metalink instances in M .

begin
Closure = {}; Candidate = {}.
Get the TId and importance score of t (i.e., t.score).
Closure = Closure

⋃{t.T Id}
for each topic t1 ∈ Closure do

i. Closure = Closure− {t1}; Candidate = Candidate
⋃{t1}.

ii. m ∈ M ; t1.T Id = m.Ant-Id; t2 = m.Cons-Id;
iii. for each topic t2 do

¦ Compute derived importance of t2 as
t2.score

′ = FPath(t1.score, t2.score,m.score).
if t2 is not in the Candidate set then

if t2 is not in the Closure set
◦ Closure = Closure

⋃{t2};
◦ t2.score = t2.score

′;
else
◦ t2.score

′′ = FPathMerge(t2.score
′, t2.score);

end if
end for

iv. Sort the topics in Closure with respect to their
derived importance scores in descending order.

v. if |Candidate| ≥ k and minimum score in the Candidate
set is greater than the maximum score in the Closure set then

Exit the loop.
end for

Return k topics having the highest derived importance scores from
the Candidate set.
end

Figure 4.6: SVA topic closure algorithm

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 53

4.2.5 Other SVA Operators

For each relational algebra operator, there is an SVA counterpart extended with

an output sideway value function fout and the output ranking threshold k which

is an integer value. The SVA operator processes its input relation in the same way

that its relational algebra counterpart does, and also the SVA operator modifies

the importance score of its input relation with the function fout and gives the k

tuples having the highest modified importance score as output.

Example 4.6 Using the advice at www.DBLPandAnthology.com/advice, find

the names and URLs of 10 highest topic importance ranked journals and confer-

ences whose scope involves the term “query processing”. Employ a product based

importance propagation function that uses all involved importance values.

select T2.TName, S.URL

using advice at www.DBLPandAnthology.com/advice as database DB

from DB.Topics T1, DB.Topics T2, DB.TSRef S, DB.HasScope M

where T1.TType=“IndexTerm” and T1.TId in M.AntId and

T1.TName=“query processing” and

T2.TType=“JournalConferenceOrg” and

T2.TId=M.Cons-Id and T2.TId in S.TId

propagate importance as product function of T2, M

stop after 10 most important

The query tree for this example is given in Figure 4.7. In the figure, the SVA

join operator modifies the importance score of its input relations, however, the

join condition is not similarity based (i.e., exact).

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 54

 T2.TNameΠ

 *
 L.Cons-Id=R.TId , fout=flin*frin, k=10

 "ferenceOrgJournalCon" TType =σ

 R
 L.TId in R.Ant-Id
 DB.Topics

"processing"query TName
and IndexTerm"" TType

=
=σ

 DB.HasScope

 DB.Topics

Figure 4.7: Logical query tree for Example 4.6.

4.3 Extended SQL Queries with User Profiles

Our SQL extensions allow user profiles to be included into the queries to facilitate

personalized metadata-based subnet querying. User profiles include user prefer-

ences about experts, topics, sources, and metalinks, as well as user knowledge

about topics. An extended SQL query employing user profiles can be processed

by performing relational algebra selection operators over topics, metalinks, and

topic source reference tables, as we show in the below example.

Example 4.7 Using the profile at www.DBLPandAnthology.com/profile/John-

Doe, find the names and URLs of 10 highest topic importance ranked papers

having the index term “query processing”. Employ a product based importance

propagation function that uses importance values of papers and metalink in-

stances.

Let’s assume that the user profile employed in this query specifies the below

preferences, in which the user wants to employ only one expert advice, see paper

names including the string “relational databases”, does not want any topic with

topic name including the string “parallel”, and include only the topics and sources

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 55

having an importance value of at least 0.5 in the query output.

Accept-Expert(John-Doe) = {www.DBLPandAnthology.com/advice as E1}
T-Importance(John-Doe) = {(E1, 0.5)}
S-Importance(John-Doe) = {(E1, 0.5)}
Accept-T(John-Doe) = {(E1, TName=“*relational database*”,

TType=“PaperName”)}
Reject-T(John-Doe) = {(E1, TName= “*parallel*”,

TType=“PaperName”)}

The extended SQL query is formulated as follows:

select T2.TName, S.URL

using profile at www.DBLPandAnthology.com/profile/John-Doe as database U

from U.E1.Topics T1, U.E1.Topics T2, U.E1.TSRef S, U.E1.IndexedBy M

where T1.TType=“IndexTerm” and T1.TId in M.Ant-Id and

T1.TName=“query processing” and

T2.TType=“PaperName” and

T2.TId=M.Cons-Id and T2.TId in S.TId

propagate importance as product function of T2, M

stop after 10 most important

The query tree for this example is presented in Figure 4.8. In the query tree,

user preferences are satisfied through extra selection conditions in addition to the

selection conditions that are specified explicitly in the query.

Further examples of extended SQL queries are presented in Chapter 6 and

Appendix A.

CHAPTER 4. SQL EXTENSIONS AND SVA ALGEBRA 56

 S.URL T2.TName,Π

 L

 L.TId in R.TId

 0.5 Score-eSImportanc >=σ

 * U.E1.TSRef
 L.Cons-Id=R.TId , fout=flin*frin, k=10

0.5 Score-eTImportanc
and *""*parallel likenot TName

 and database*" al"*relation like TName
and " PaperName" TType

>=

=σ

 R
 L.TId in R.Ant-Id
 U.E1.Topics

"processing"query TName
and IndexTerm"" TType

=
=σ

 U.E1.IndexedBy

 U.E1.Topics

Figure 4.8: Logical query tree for Example 4.7.

Chapter 5

Similarity Based SVA Directional

Join

Various methods have been proposed for the efficient implementation of the join

operator which is known to be one of the most expensive operations in rela-

tional databases. Yang et al. and Mishra et al. provide survey of (equi)join

techniques for relational databases [60, 85]. While a large amount of work has

been devoted to processing of equijoins, only a few papers have appeared in the

literature regarding the text similarity based join operator [25, 59]. The text

similarity based join operator, as we describe in Chapter 4, joins two relations if

their join attributes, which consist of pure text, are similar to each other. The

similarity between join attributes is determined by well-known techniques such

as tf-idf weighting scheme [75] and cosine similarity measure from the Informa-

tion Retrieval (IR) domain, for which we give a brief explanation in Section 5.1.

The text similarity based join operator has several application domains: Cohen

used this operator for the integration of data from distributed, heterogeneous

databases that lack common formal object identifiers [25]. For instance, in two

Web databases listing research institutions, to determine whether the two names

“AT&T Labs” and “AT&T Research Labs” denote the same institution or not,

text similarity based join operator may be employed.

57

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 58

Meng et al. used the text similarity based join operator to query a mul-

tidatabase system that contains local systems managing both structured data

(e.g., relational database) and unstructured data (e.g., text) [59]. Assume that

we have two global relations: applicants containing information about job ap-

plicants and their resumes, and positions including the description of each job;

then the text similarity based join operator is used to answer queries like “for

each position, find k applicants whose resumes are most similar to the position’s

description”.

We use the text similarity based join operator for the integration and querying

of metadata from multiple resources to facilitate metadata-based Web querying.

We give examples for such queries in Chapter 4. Besides, we define two types

of text similarity based join operator, namely the text similarity based SVA join

operator and the text similarity based SVA directional join operator in Chapter

4. Both types of operators take two relations L and R, and an integer k as input.

The former join operator joins k similar tuple pairs (according to the similarity

of their textual join attributes) having the highest derived importance scores

from L and R, while the latter one joins each tuple in relation L with k similar

tuples having the highest derived importance scores from relation R. Thus, text

similarity based SVA join operator produces output relation of size at most k

tuples, while the maximum number of tuples in the output relation of similarity

based SVA directional join operator is number of tuples in relation L * k. Text

similarity based SVA join operator, text similarity based SVA join algorithms, and

performance evaluations of these algorithms are presented in our recent work [69].

In this thesis, we only focus on the processing of the text similarity based SVA

directional join operator and provide efficient algorithms for this operator.

This chapter is organized as follows. In the next section, we define the sim-

ilarity measure employed in similarity comparisons of tuple attributes. A brief

summary of the previously proposed algorithms are presented in Section 5.2. Our

new join algorithm, and early termination heuristics applied to our algorithm are

explained in Section 5.3. After that, we experimentally evaluate and compare all

the algorithms in terms of the number of tuple comparisons, the number of disk

accesses made, and the amount of main memory required in Section 5.4. Finally,

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 59

we conclude our discussion in Section 5.5.

5.1 The Similarity Measure

The similarity measure used in all similarity based SVA operators is the cosine

similarity measure with tf-idf weighting scheme [75]. The previous work on sim-

ilarity based text join also employed the same similarity measure [25, 59]. In

this measure, each document (join attribute in the text similarity based SVA

directional join operator) is represented as a vector consisting of n components,

n being the number of distinct terms in the document collection. Each compo-

nent vi of a vector v for a document d gives the weight of the term i for that

document. Weight of a term for a particular document is computed according

to tf ∗ idf value, where tf stands for term frequency meaning that the number

of occurrences of term i within the document; idf is inverse document frequency

and it gives more weight to scarce terms in the collection. The tf ∗ idf rule states

that a term that appears in many documents should not be regarded as being

more important than a term that appears in a few documents. Also, a document

with many occurrences of a term should not be regarded as being less important

than a document that has just a few [82]. The similarity measure is the cosine

of the angle between the two document vectors such that the larger the cosine,

the greater the similarity. For the text similarity based SVA directional join al-

gorithm, we use the following formulas to give term weights for each tuple and

measure the similarity between textual attributes:

wl,t = loge(1 + N/ft) (5.1)

wr,t = 1 + loge(fr,t) (5.2)

Wl =
√∑

t∈l

w2
l,t (5.3)

Wr =

√√√√
n∑

t=1

w2
r,t (5.4)

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 60

in which N denotes the total number of tuples in relation R, ft is the total

number of tuples in R that contain term t. wl,t is the weight of term t for tuple

l in relation L. wr,t denotes the weight of term t for tuple r in relation R. fr,t is

the frequency of term t in tuple r. n is the total number of distinct terms in the

collection (relation R). Wl and Wr are the normalization factor for tuple l and

tuple r, respectively. The similarity between tuples l and r is calculated by using

the following formula:

cos sim(l, r) =
1

Wl ·Wr

∑

t∈(l∩r)

(wl,t · wr,t) (5.5)

As an example, assume that the join attributes of tuples l and r consist of

the strings “A Query Language for Relational Database Systems”, and “Query

Processing for Relational Databases”, respectively. Also assume that, the relation

R has 132,000 tuples, and 8,563 of them contain the term “database”. Then, the

weight of the term “database” for tuple l is computed as loge(1 + 132000/8563)

which equals 2.74. The weights of all terms in tuple l are computed similarly. For

tuple r, the weight of the term “database” is calculated as 1 + loge(1) since the

frequency of the term is 1. After all the term weights are calculated for tuples

l and r, the similarity between them is computed by using the cos sim formula

presented above.

In the above weighting scheme, to calculate weights for each tuple in rela-

tion L, we use the statistical data for relation R. Because, in the SVA directional

join operator, our aim is, for each tuple in L, to find most similar (and having

the highest derived importance score) tuples from relation R. And, the weighting

scheme we describe above is employed in search engines to find k most similar

documents for a given user query [82]. Thus, each tuple l in relation L is con-

sidered as a user query, and the relation R as the document collection of search

engines.

For the text similarity based SVA directional join operation, we do not need

to make normalization with respect to tuple l, since for tuple l we want to find

the k tuples having the highest derived importance score tuples from R, and

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 61

dividing similarity values of R tuples to the same real value Wl does not affect

the relative order of the similarity values. Thus, we can eliminate some of the

expensive operations (multiplication, division, square-root) that are employed in

the similarity computation.

Other measures such as Hamming distance, and longest common subsequence

(LCS) for determining the similarity between short strings have also been devel-

oped. We prefer tf-idf weighting scheme and cosine similarity measure because as

it is shown in [25, 36] they give quite good matches even for short strings. Also,

the tf-idf weighting allows the use of inverted indices, which enables us to em-

ploy some early termination heuristics from the IR domain during the similarity

comparisons of tuples.

5.2 Text Similarity Based Join Algorithms

The only algorithms that have appeared in the literature for the similarity based

text join operator were developed by Meng et al. [59] and Cohen [25]. Meng

et al. presented three algorithms namely HHNL, HVNL, and VVM for the text

join operator. The HHNL (Horizontal-Horizontal Nested Loops) algorithm, as

its name implies, is a nested loops based join algorithm, in which each tuple l in

relation L is compared with every tuple in relation R, and k most similar tuples

from R are joined with tuple l. This is the straightforward way for evaluating

the join operation. In [59], the input relations L and R are read from disk. After

reading X tuples from L into the main memory, the tuples in R are scanned; and

while a tuple in R is in the memory, the similarity between this tuple and every

tuple in L that is currently in the memory is computed. For each tuple l in L,

the algorithm keeps track of only those tuples in R, which have been processed

against l and have the k highest similarities with l. In the HHNL algorithm, and

also in all other algorithms described in that study, a heap structure is used to

find the smallest of the k largest similarities.

The HVNL (Horizontal-Vertical Nested Loops) algorithm is an adaptation

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 62

of the ranked query evaluation techniques in the IR domain to the join opera-

tion [59]. In an IR system, the aim is to find the k documents in the system

which are most similar to the user query. For that purpose, most of the IR sys-

tems employ inverted indexes. In these systems, for each term t in the user query,

the term is searched from the inverted index and the ids of documents containing

term t are found. Then, the similarity calculations are performed only for those

documents that have at least one common term with the user query. Algorithm

HVNL is a straightforward extension of this method such that for each tuple l in

L, the algorithm calculates the similarity of l to all tuples in R having at least

one common term with l, and selects the k most similar tuples from R. The

advantage of HVNL algorithm is that, it does not perform similarity calculations

for all tuples in R as in the case of the HHNL algorithm. In the HVNL algorithm,

the inverted index is in the memory, the inverted list entries, and the relations L

and R are read from disk.

The algorithm VVM (Vertical-Vertical Merge) employs sorted inverted indices

with respect to the index terms on both of the input relations L and R [59]. The

VVM algorithm scans both inverted files on the input relations at the same time.

During the scan of the inverted indices, if both index entries correspond to the

same index term, then similarities are accumulated between all tuples in the

inverted lists of the indices. The VVM algorithm assumes that, both inverted

files as well as relations L and R are read from disk. In order to store intermediate

similarities between every pair of tuples in the two relations, the algorithm needs

accumulators for |L| ∗ |R| tuple pairs that are stored in main memory. The

strength of the algorithm is that it scans the inverted files only once to compute

similarities between every pair of tuples. However, the memory requirement for

the accumulator4 is so large that it cannot be run for relations having large

number of tuples. Assume that both relations L and R consist of 100,000 tuples,

and each similarity value requires 4 bytes (size of float), so the memory allocated

for the accumulator should be at least 100,000*100,000*4 bytes = 40Gb.

4An accumulator for a tuple l is a set of real numbers each of which is used to store the
accumulated similarity value between tuple l and tuples r from R. For each new tuple r
considered for similarity comparison, a new element is inserted to the accumulator.

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 63

Cohen developed a database management system called WHIRL (Word-based

Heterogeneous Information Representation Language), which supports text sim-

ilarity based joins [25]. WHIRL’s text similarity based join algorithm makes

reasoning about the similarity of the join attributes of the tuples l in relation L

and r in relation R. The output of the join operation is a set of ordered tuples

so that the “best” tuple pairs are presented first. WHIRL considers tuple pairs

to be “better” when the similarity conditions required by the join operation are

more likely to hold. WHIRL’s algorithm finds the highest scoring tuples without

generating all low scoring tuples. It makes heavy use of inverted indexes and tf-idf

weighting scheme. It is assumed that, every tuple < ~v1, ~v2, ..., ~vm > has exactly

m components, and each of these components is a text fragment, represented as

a document vector over the vocabulary. It is also assumed that a “score” is asso-

ciated with every tuple. This score is always between 0 and 1, and it measures

the degree of belief in a fact.

In WHIRL, finding best tuples is viewed as an optimization problem; in par-

ticular, the join algorithm uses A* search method to find the highest scoring k

substitutions for joining tuples. The goal is to find a “small” number of “good”

substitutions. The search method uses some short-cut evaluation techniques from

IR ranked retrieval. For example, tuples containing high weighted query terms

are searched. If a tuple does not contain a high weighted search term, then it

is not possible that the tuple has high similarity to the search tuple. The cur-

rent implementation of WHIRL keeps all indices and document vectors in main

memory [25].

WHIRL’s similarity based text join algorithm finds k most similar tuples

from relation R to an input tuple l as follows: Initially, r tuples containing

the highest weighted term in tuple l are found. The score of each r tuple is

the similarity of that tuple to tuple l, and this value is simply calculated by

multiplying the document vectors of tuples l and r. After finding scores for

all tuples that contain the highest weighted term, the algorithm computes the

maximum score for r tuples (i.e., f(r′j) value) which do not contain the highest

weighted term. If the score of a tuple i containing the highest weighted term

is greater than the f(r′j) value, the algorithm outputs that tuple, otherwise it

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 64

continues with the next highest weighted term. As the algorithm uses A* search,

it does not compare every tuples from R with tuple l; it only compares tuples

which have high probability to have high similarity to tuple l.

In addition to Meng et al. [59] and Cohen’s [25] join algorithms, Gravano

et al. also studied the text join operation in a relational database management

system (RDBMS) [36]. They described a technique for performing text join oper-

ation within an unmodified RDBMS using plain SQL statements. In their work,

tf-idf weighting scheme and the cosine similarity metric are employed to identify

potential string matches. Two strings are joined if their similarity exceeds a spec-

ified threshold. To perform the join operation, a sampling based strategy using

the cosine similarity metric implemented with pure SQL queries is developed,

however, no specialized operator is designed for the join operation.

5.3 Text Similarity Based SVA Directional Join

Algorithms

In this thesis, we present a new algorithm for the implementation of the text

similarity based SVA directional join operator. Our algorithm is an improved and

extended version of the algorithms presented in [59]. We also employ some early

termination heuristics from the IR domain [81] for further possible improvement of

the performance of our algorithm. In this section, we introduce our new algorithm

and then, we propose extensions to our algorithm involving heuristics from the

IR domain.

In [59], the tuples to be joined consist of arbitrarily long text documents. In

our work, however, we assume that the join attribute of tuples contains short

strings (e.g., person name, company name, book title, etc., which consist of at

most 50 words) as in the text similarity join algorithm of WHIRL. When the join

attribute consists of only short texts, it is easier to create an inverted index on

the input relation, and the join algorithm does not require an a-priori generated

inverted index as an input. We designed an algorithm, named Inverted Index

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 65

based Nested Loop (IINL), which takes only two relations L and R as input, and

constructs an in-memory inverted index for one block of tuples from relation R

that are currently in the memory during the join operation. Our algorithm is

presented in Figure 5.1.

The IINL algorithm is a block nested loops join algorithm, in which while

there are unprocessed tuples in relation L, one block of tuples from L are read,

and for each block of tuples read from L, the algorithm starts reading tuples

from the beginning of the relation R. For each block of tuples read from R, an

in memory inverted index is created. As the inverted index is constructed only

for one block of tuples, it does not require huge amount of memory space and it

can fit into the main memory. We discuss the amount of memory required for

the inverted index in Section 5.4. After being constructed, the inverted index is

used for similarity computations. As the inverted is constructed for one block of

tuples from relation R, we assume that all the statistical data about the relation

R (e.g., number of tuples in R, frequency of each term in relation R, etc.) that are

necessary for the similarity computations are known in advance by just making

single pass over the relation R as pre-processing step which takes only a few

seconds.

With the IINL algorithm, we intend to make use of the benefits of both

HHNL and HVNL algorithms. The HHNL algorithm, as we discussed in the

previous section, is a blind nested loops join algorithm and it reads blocks of tuples

from its input relations and compares every tuple pairs. The advantage of the

HHNL algorithm is it makes only d(|L|/Block size(L))e+d(|L|/Block size(L))e∗
d(|R|/Block size(R))e disk accesses, but |L| ∗ |R| tuple comparisons. The HVNL

algorithm, on the other hand, employs an inverted index on relation R to make

very few number of tuple comparisons, however for each inverted list entry that

is not in the memory it has to access to the disk. As we employ in-memory

inverted index in the IINL algorithm, it does not need to access to the disk

for retrieving inverted list entries and it makes only d(|L|/Block size(L))e +

d(|L|/Block size(L))e ∗ d(|R|/Block size(R))e disk accesses and does very few

number of tuple comparisons as we discuss in the next section. The only drawback

of the IINL algorithm is that it needs to create an in-memory inverted index for

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 66

Algorithm: IINL

Input: Relations L and R, an importance score propagation
function fout, an integer k.

Output: Joined tuples with respect to importance scores.
Var: An accumulator A.

begin (IINL)
while there are unprocessed tuples in relation L do

¦ Read X tuples from L. (If the number of the unprocessed
tuples is less than X, read all the unprocessed tuples into
the main memory.)
¦ Go to the beginning of relation R.
while there are unprocessed tuples in relation R do

◦ Read Y tuples from R. (If the number of the unprocessed
tuples is less than Y , read all the unprocessed tuples into
the main memory.)
◦ Create an in-memory inverted index on tuples that are
being read.
for each unprocessed tuple l in L in the memory do

for each term t in l do
Search t from the inverted index.
if t is found then

Accumulate similarities between l and all the
tuples in the inverted list entry for term t (It).

end if
end for
for each accumulated similarity (Ar ∈ A) for tuple l do

Compute the derived importance score as fout(l.score, r.score) ∗ Ar.
if the derived importance score is greater than the smallest of the
k largest scores computed so far for l then
◦ Replace the smallest of the k largest scores
by the new score.
◦ Update the list (Sl) of tuples in R to keep track of those
tuples with the k largest scores with l.

end if
end for

end for
end while
¦ Join each l tuple in the memory with R tuples in the list Sl.

end while
end (IINL)

Figure 5.1: The IINL algorithm.

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 67

2 1 3 2 135 1

term ft pointer … tuple_id fr,t ….

 2 data

database 10

inverted index inverted list

 Figure 5.2: Inverted index structure.

each Y tuples read from R. However, this task is not costly, since the join

attribute consists of short texts, and making only a single pass over the R tuples

in the memory is enough to create the index, as we discuss in Section 5.4. Also,

once the inverted index is constructed for each block of R tuples, it can be written

on the disk and it can be re-used in the subsequent similarity computations, again

this does not increase the number of disk accesses considerably (see Section 5.4).

The HVNL algorithm, on the other hand, requires a pre-constructed inverted

index on relation R as input to the algorithm.

The inverted index employed in the IINL algorithm has the structure shown

in Figure 5.2. The inverted index is an array of records and it contains the index

term (t), the number of tuples in R containing the index term (ft), and a pointer

to its corresponding inverted list entry. The inverted list is also an array of records

and it stores tuple id containing the index term t, and the frequency of the term

in that tuple (fr,t). As an example, according to the Figure 5.2, the index term

“data” occurs in two tuples having ids 2 and 3, and tuple 2 contains the term

only once, while in tuple 3 the frequency of the term “data” is 2.

The use of the inverted index and the inverted list in similarity based text join

for both the IINL algorithm and the HVNL/VVM algorithms can be explained

as follows. Let t be the term in tuple l to be considered, and let wl,t be its weight.

Let the inverted list entry for the term t be {(r1, fr1,t), ..., (rn, frn,t)} where ri is

the tuple id and fri,t is the frequency of term t in tuple ri. The weight wri,t for

term t for tuple ri can be calculated using fri,t, and term weights for L tuples are

computed as we explained in Section 5.1. After term t is processed, the similarity

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 68

between l and ri accumulated so far will be Ari
+ wl,t ∗ wri,t, where Ari

is the

accumulated similarity between l and ri before t is considered, and wl,t ∗ wri,t

is the contribution due to the sharing of the term t. After all terms in tuple l

are processed, the similarities between l and all the tuples in R will have been

computed and stored in Ari
, and the derived importance scores are computed

by fout(l.score, ri.score) ∗ Ari
and the k tuples in R having the highest derived

importance scores can be identified.

As we employ inverted index during the similarity computations of the IINL

algorithm, some early termination heuristics [81] from the IR domain can be used

to decrease the similarity computations made during the join operation. Applying

early termination heuristics reduces the search space for finding similar tuples,

and decreases the number of tuple comparisons to be done, that’s why they are

called “early termination” heuristics. These heuristics improve the performance

of the join operation by considering only the R tuples that have high similarity

to a given tuple from L. The main idea behind the early termination heuristics

is that if a tuple r from relation R has high weighted terms of tuple l of relation

L, then it is more likely that tuple r has higher similarity to tuple l than the

other tuples from R that do not contain high weighted terms. We discuss these

heuristics in more detail in the sections below, and present different variations of

the IINL algorithm employing these heuristics.

The IINL algorithm is a nested-loops based join algorithm. Other join tech-

niques, sort-merge and hash join, are not suitable for text similarity based SVA

directional join operator. Sort-merge is not applicable to our join operator since

our input relations are not sorted. Even if the input relation R is sorted, the per-

formance of the sort-merge algorithm would not be better than the nested-loops

based algorithms, because our join condition is a similarity based condition and

it requires multiple passes over the input relation R. Since the join condition is

not an equality condition, hash join algorithm is also not applicable to our join

operator.

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 69

5.3.1 Harman Heuristic

Harman et al. [39] proposed a heuristic to decrease the number of similarity

computations performed during the search of similar documents to a user query.

According to this heuristic, the terms in the given user query are sorted with

respect to their weights in descending order, and only the terms whose weights

are greater than the 1/3 of the highest weighted term in the query are considered.

Then, the inverted list is accessed only for these terms and in decreasing weight

order.

The IINL algorithm extended with Harman heuristic is called IINL-Harman.

In this variation of the IINL algorithm, for each tuple l in relation L, weights of

the terms in l are examined, and the in-memory inverted index is accessed only

for these terms having a weight greater than the 1/3 of the highest weighted term

in the tuple. The IINL-Harman algorithm considers R tuples which have high

weighted terms in tuple l, and does not perform similarity computations for other

R tuples that do not contain high weighted terms.

5.3.2 Quit and Continue Heuristics

Moffat et al. [63] also suggested to sort the terms in the user query with respect

to their weights in descending order, and access the inverted index with respect

to this order. They place an a priori bound on the number of nonzero accumula-

tors permitted. In other words, they place a bound on the number of candidate

documents that can be considered for the similarity calculation. New accumu-

lators are added until this bound is reached. The idea behind this heuristic is

that, terms of high weight are permitted to select accumulators, but terms of

low weight are not allowed to contribute to the similarity computation. When

the accumulator bound is reached, then there are two possibilities: In the quit

approach, the cosine contribution of all unprocessed terms are ignored, and the

accumulator contains only partial similarity values for documents. In the continue

strategy, documents that do not have an accumulator are ignored, but documents

for which accumulators have already been created continue to have their cosine

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 70

contributions accumulated. When the processing ends, the computation of full

cosine values for a subset of the documents becomes completed.

As the quit heuristic allows only the partial similarity computation, it is not

suitable for the text similarity based SVA directional join operator. In order

to find top k similar tuples having highest derived importance scores for a given

tuple l in relation L, we need to have full cosine values. Thus, we use the continue

heuristic with our IINL algorithm (IINL-Continue). In this variation of the IINL

algorithm, for each tuple l of L, only r tuples from R which have high weighted

terms in l are considered for similarity computations until the accumulator bound

(i.e. an upper bound on the number of tuples that can be considered for similarity

computations) is reached. Then, r tuples for which accumulators have already

been created continue to have their cosine contributions accumulated. When

the processing ends, the full cosine similarity between tuple l and r becomes

computed, and the importance scores are derived by the fout(l.score, r.score)∗Ar

value, and the k similar and having highest derived importance score r tuples for

l tuple are selected.

In the IINL-Continue algorithm, to select r tuples having high importance

scores during similarity computations (until the accumulator bound is reached),

the inverted list entries of the in-memory inverted index is sorted in descending

order of the importance score values of r tuples. As the inverted list entries are

kept in the memory, this sort operation is not costly.

5.3.3 Maximal Similarity Filter

“Maximal similarity filter” is another technique that may be used to reduce the

number of tuple comparisons made during the text similarity based SVA direc-

tional join operation [69]. Let ur =< u1, u2, ...un > be the normalized term

vector corresponding to the join attribute of tuple r of R, where ui represents

the weight of the term i in the join attribute. Assume that the filter vector

fL =< w1, w2, ...wx > is created such that each value wi is the maximum weight

of the corresponding term i among all vectors of L. Then, if cos(ur, fL) < Vt

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 71

then r can not be similar to any tuple l in L with similarity above Vt. The value

cos(ur, fL) is called the maximal similarity of a record r in R to any other record

l in L. The maximum value of a term for a given relation is determined while

creating the vectors for the tuples, and the filter vector for each relation may be

formed as a one-time cost.

In the IINL algorithm with maximal similarity filter (IINL-Max-Filter), the

in-memory inverted list entries are sorted with respect to descending order of

cos(ur, fL) ∗ r.score (i.e., importance score of tuple r revised with its maximal

similarity value) for r tuples. For each term t in tuple l of L, the inverted index

is entered and the similarity comparisons are stopped at the point when the

importance score revised with maximal similarity value (cos(ur, fL) ∗ r.score) for

the tuple r is less than the smallest of the k largest derived importance scores

(fout(l.score, r.score) ∗ cos(ul, ur)) computed so far for tuple l, since it is not

possible for r to be in the top k similar and having high derived importance score

tuples list.

The maximum weight of a term for a given relation L is determined while

creating the vectors for the tuples, and the filter vector for each relation may

be formed as a one-time cost. To improve the performance of the IINL-Max-

Filter algorithm, inverted list entries are sorted with respect to importance scores

revised with maximal similarity values of tuples in descending order, and this

operation is not costly as the inverted index is stored entirely in the memory.

5.3.4 Other Improvements

In addition to the above early termination heuristics, the following well-known

IR heuristic can also be employed: store term weights (wr,t) in the inverted index

instead of term frequency (fr,t) values since all values necessary for calculating the

weight are known in advance [82]. Also, during the implementation of all of the

above algorithms, we observed that, we may preprocess the relation L in such a

way that it contains the inverted index address for each term instead of the term

itself in each tuple. So, we can directly access the inverted index without making

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 72

any search over the index. Another observation made is that, in the similarity

join operation, we determine similarity of short strings like paper titles, company

names, author names, etc., and we do not need to consider term frequency for

each term in the tuple due to the fact that term frequency for almost all of the

terms in a tuple is 1. When we plug 1 for fr,t value in the term weight (wr,t)

formula, wr,t value becomes 1. Then the cosine similarity equation reduces to

cos sim(l, r) =
1

Wr

∑

t∈(l∩r)

wl,t (5.6)

and evaluating this similarity equation is cheaper than evaluating the original

formula.

All these observations may serve to improve the running time performance of

the algorithms described in the above sections. However, for the experimentation,

we implemented the HHNL, HVNL, WHIRL’s algorithm, and all versions of the

IINL algorithm, and compared these algorithms with respect to the number of

tuple comparisons, and the number of disk accesses made. As the improvements

mentioned in this subsection does not serve to improve the number of tuple

comparisons and disk access made, we do not include them in our experiments.

The experimental results are provided in the next section.

5.4 Experimental Results

We compare the performance of our new algorithm with the ones developed previ-

ously [25, 59] in terms of the number of tuple comparisons made and the number

of disk accesses required. For the experimentation, all of the algorithms (HHNL,

HVNL, WHIRL’s algorithm, and all versions of the IINL algorithm) except the

VVM algorithm were implemented in C programming language under MS Win-

dows98 operating system. During the implementation, we extended the HHNL,

HVNL, and WHIRL’s algorithm with score management functionality, and im-

plemented a disk based version of WHIRL’s algorithm in which the inverted index

is in-memory, but the inverted list entries are stored on disk. We did not include

VVM since it requires huge amount of memory to keep intermediate similarities

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 73

between tuple pairs.

We used a real dataset that consists of the bibliographic information of journal

and conference papers obtained from the DBLP Bibliography database [51]. In

the experimentation, the relations L and R do not contain any common tuple,

and the relation L consists of bibliographic information of approximately 90,000

journal papers, and the relation R contains bibliographic information of 132,000

conference papers. We take the paper title attribute as the join attribute, and for

each journal paper l in relation L, we try to find k conference papers from relation

R having similar titles to the title of l and have highest derived importance scores.

We created the vectors for the join attribute of each tuple in the relations L and

R, the maximal similarity filter vector for relation L, and the inverted index on

relation R in advance. We assumed that input relations L and R, and the inverted

lists are stored on disk, and we have enough main memory to store the inverted

index and the accumulators used for similarity calculations. The experiments

were performed on a PC having Pentium III 450 MHz CPU and 320 MB of main

memory.

5.4.1 Tuple Comparisons

Some of the experimental results for the implemented algorithms are provided

in Figure 5.3 through Figure 5.6. In Figure 5.3 and Figure 5.4, the number of

tuple comparisons performed by all of the implemented algorithms during the

text similarity based SVA directional join operations for different k values are

presented.

As shown in Figure 5.3, the HHNL algorithm needs to make around 12 billion

comparisons for each different k values to join L and R, while all of the other

algorithms do less than 900 million tuple comparisons for the same join operation

(Figure 5.4). The HVNL, WHIRL, and all variations of the IINL algorithm

perform much better than the HHNL algorithm, because of the fact that these

algorithms employ inverted index on the input relation R, and they only perform

similarity calculations for tuple pairs having at least one common term; in other

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 74

Figure 5.3: Number of tuple comparisons required by the HHNL algorithm for
different k values.

words, these algorithms compare similarity of tuples which are guaranteed to

have a similarity value greater than 0. The HHNL algorithm, on the other hand,

makes similarity computation for all tuple pairs regardless of whether the tuples

contain any common term or not.

The HHNL-Max-Filter algorithm in Figure 5.3, is a variation of the HHNL

algorithm, which employs the maximal similarity filter heuristic to reduce the

number of tuple comparisons to be performed. As shown in Figure 5.3, the max-

imal similarity filter heuristic, by itself, reduces the number of tuple comparisons

by approximately 25%.

In Figure 5.4, the number of tuple comparisons required by the HVNL,

WHIRL, and all variations of the IINL algorithm for different k values are dis-

played. The IINL and HVNL algorithms make exactly the same number of tuple

comparisons, and the performance results of the IINL-Harman, and WHIRL al-

gorithms are almost the same as the IINL and HVNL algorithms. The IINL

algorithm employing the maximal similarity filter heuristic, makes about 25%

less number of tuple comparisons with respect to the IINL algorithm, and the

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 75

Figure 5.4: Number of tuple comparisons required by the HVNL, WHIRL and
IINL algorithms for different k values.

continue heuristic5 provides more improvement on the performance of the IINL

algorithm by decreasing the number of tuple comparisons by 50%. The Harman

heuristic does not improve the performance of the IINL algorithm, because term

weights for our input data are quite close to each other. The Harman, continue,

and maximal similarity filter heuristics make the same percentage of reduction in

the number of tuple comparisons performed by the other algorithms. However,

the Harman and continue heuristics can only be used in algorithms that employ

inverted index (i.e., HVNL and WHIRL), the maximal similarity filter heuristic,

on the other hand, can be applied to all algorithms described in this chapter.

5.4.2 Disk Accesses

Figure 5.5 displays the results obtained in terms of the number of disk accesses

required by the HHNL, HVNL, WHIRL, and the IINL algorithms when the re-

lations L and R, and the inverted list entries on the join attribute of relation R

for the HVNL and WHIRL algorithms are stored on disk. We assumed that the

HHNL and IINL algorithms read 10,000 tuples from the relations L and R at

5We chose the accumulator bound for the continue heuristic as 5000 tuples for this experi-
ment. In the subsequent sections, we present the experimental results that show the effect of
the accumulator bound on the join algorithm performance.

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 76

each iteration of the inner and outer loops; the HVNL and WHIRL algorithms

read 10,000 tuples at a time from the relation L, and store upto 5,000 inverted

list entries in the memory. For each term t considered during the similarity com-

parisons, the HVNL and WHIRL algorithms read inverted list entries of term t

(i.e., It) only. If It is not in the memory and there is no available space for It in the

memory, the inverted list entry which is currently held in the memory for a term

having the least term frequency, is replaced with It. Under these assumptions, we

observed that, the number of disk accesses performed by the HHNL and all ver-

sions of the IINL algorithms, which is approximately 150 disk accesses, are quite

less than those obtained with the HVNL and WHIRL algorithms. As the IINL

algorithm creates an in-memory inverted index for the similarity computations,

it does not need to make disk accesses for retrieving the inverted list entries, and

thus, the early termination heuristics employed in the IINL algorithm can not re-

duce the number of disk accesses performed. So, we did not give the performance

results for the IINL-Harman, IINL-Continue, and IINL-Max-Filter algorithms in

Figure 5.5. The number of disk accesses required by the HVNL and WHIRL

algorithms are much higher than that with the HHNL algorithm, although the

number of tuple comparisons performed is much lower. This result is due to the

fact that the HVNL and WHIRL algorithms need to make at least one disk access

to read inverted list entries that are not in the main memory, and they access the

inverted list for almost all terms in each tuple of relation L.

In IINL algorithms, the in-memory inverted index reduces the number of disk

accesses significantly, however it incurs the extra cost of index construction during

the join operation. For each block of tuples (10000 tuples, each of them includes

at most 50 terms) that are read from the relation R, 27 seconds is required to

create the in-memory inverted index which is only 10% of the time required to

perform the join operation. If we write the in-memory index on disk to be re-used

whenever necessary during the join operation, it takes just 1 second to write and

read the inverted index. As the IINL algorithm is a nested loops based algorithm,

we read the same blocks of the inner relation multiple times, and we do not need

to create inverted index for the blocks at each time. Once the inverted indexes

over the blocks are written on the disk, they can also be used for the subsequent

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 77

Figure 5.5: Number of disk accesses performed by all the similarity join algorithms
for different k values.

join operations performed over the same relation. Writing the in-memory index

on disk and reading it during the join operation increases disk accesses only by

d(|L|/Block size(L))e∗d(|R|/Block size(R))e which equals 140 disk accesses for

our data set, and this value is considerably less than the number of disk accesses

performed by the HVNL algorithm (see Figure 5.5). In the HVNL algorithm, the

creation of inverted index over the whole R relation requires 8764 seconds, which

is much higher than the index creation cost of the IINL algorithm.

Figure 5.6: Number of disk accesses performed by the early termination heuristics
for different k values.

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 78

We performed another experiment to measure the reduction made by the early

termination heuristics on the number of disk accesses required when the inverted

list entries are stored on disk. For this experiment, we implemented the HVNL

algorithm with early termination heuristics namely the Harman, continue, and

maximal similarity filter heuristics. We assumed that we have an inverted in-

dex on relation R, we have enough memory to store the inverted index, and the

inverted list entries are stored on disk. Also we assumed that, for the continue

heuristic the accumulator bound is 5000 tuples. The results of this experiment

are displayed in Figure 5.6. According to this figure, the continue heuristic re-

duces the number of disk accesses of the HVNL algorithm by 50%. The Harman

and maximal similarity filter heuristics, on the other hand, do not lead to any

reduction on the number of disk accesses required. This result is due to the fact

that, the term weights in our dataset are close to each other and the Harman

heuristic considers almost all terms in a tuple l during the similarity computa-

tions. The maximal similarity filter heuristic on the other hand, needs to access

all the inverted list entries for all terms in a tuple l to find the r tuples having

high importance scores revised with maximal similarity values. Therefore, this

heuristic only reduces the number of tuple comparisons performed when the in-

verted list entries are sorted with respect to the importance score revised with

maximal similarity value of tuples.

In the continue heuristic, the accumulator bound is an important factor on

the performance of the join algorithm. To show the effect of the accumulator

bound on the join operation, we run the HVNL-Continue algorithm with different

accumulator bounds. We observed that, the number of tuple comparisons and

the number of disk accesses decreases as the accumulator bound is decreased as

shown in Table 5.1. This is due to the fact that the accumulator bound is an upper

bound on the number of tuples that can be considered for similarity comparisons.

The number of disk accesses and the tuple comparisons made remain the same

for different k values.

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 79

Table 5.1: The effect of accumulator bound for the continue heuristic on the
number of tuple comparisons and disk accesses made, and the accuracy of the
join operation.

Accumulator # of Tuple # of Disk Accuracy
Bound Comparisons Accesses
5,000 372,448,481 14,176 65%
10,000 604,454,778 20,001 84%
15,000 732,112,934 22,678 91%

5.4.3 Accuracy of the Early Termination Heuristics

We calculated the accuracy of the output produced by the algorithms that employ

early termination heuristics as follows: Accuracy = |B ⋂
H|/|B|. In this equation

B denotes the output set generated by any one of the HHNL, HVNL, or IINL

algorithms as all of these algorithms produce the same output, H is the output

set generated by one of the IINL or HVNL algorithms that employ any one of

the early termination heuristics, and |.| denotes the set cardinality. We chose the

output set of any one of the HHNL, HVNL, and IINL algorithms as the base for

the accuracy calculation, because these algorithms do not miss any pairings that

must be in the result set. The Harman, and the continue heuristics compare tuple

pairs which have high probability to have high similarity, thus it is possible that

they may not find all of actual top k similar tuples. So, we defined the accuracy

of a heuristic as the percentage of the “true match”es that are generated by

that heuristic, and calculated the accuracies by using the above formula. We

observed that the Harman heuristic generates exactly the same output as the

HHNL, HVNL, and IINL algorihms; the continue heuristic, on the other hand,

could achieve 65% accuracy when the accumulator bound is set to 5000, and

the accuracy can be improved to 91% when the accumulator bound is increased

to 15000, as shown in Table 5.1. As the accumulator bound is increased, the

accuracy of the continue heuristic also increases, since the continue heuristic

allows more tuples to be considered during the similarity comparisons. For the

maximal similarity filter heuristic, we observed that the accuracy of this heuristic

is 100%, as it calculates the similarity for r tuples having importance score revised

with maximal similarity value greater than or equal to the smallest of the k largest

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 80

derived importance scores computed so far for tuple l. Therefore, the heuristic

considers all r tuples that can be in the result set by eliminating the ones that

are not possible to be in the result.

5.4.4 Memory and CPU Requirements

We also compared the HHNL, HVNL, WHIRL, and IINL algorithms in terms of

the amount of memory they required. As the HHNL algorithm is a block nested

loops based join algorithm, it requires lb bytes to keep one block of tuples from

relation L, rb bytes for one block of tuples from relation R, and |LB| ∗ h bytes

where |LB| is the number of L tuples that are currently in the memory and h

is the size of a heap having k elements to keep the k largest derived importance

scores computed so for a tuple in L that is currently in the memory. Thus, the

HHNL algorithm requires at least lb+rb+|LB|∗h bytes of memory. In the HVNL

algorithm, we need lb + nx + nl + acc bytes where lb bytes is required to read

one block of tuples from relation L, nx bytes to store the inverted index, nl bytes

to keep inverted list entries for m number of index terms, and acc bytes for the

accumulator. The memory requirement of the WHIRL algorithm is very similar

to that of the HVNL algorithm. For the WHIRL algorithm, we need lb bytes for

one block of L tuples, nx bytes for the inverted list, nl bytes for the m number

of inverted list entries, os bytes for the set of open states, and ex bytes for the

list of exclusion terms. The IINL algorithm needs lb and rb bytes for one block

of tuples from the relations L and R, respectively, nxl bytes for the in-memory

inverted index and the inverted list entries for the R tuples that are currently in

the memory, acc bytes to accumulate similarities between a tuple l and r tuples

in the memory, and |LB|∗h bytes to keep the k largest derived importance scores

computed so far for each L tuple that is currently in the memory. In Table 5.2,

we give all the variables in the memory requirement formulas for the HHNL,

HVNL, WHIRL, and IINL algorithms, and their values for the L and R relations

generated from the DBLP Bibliography data.

As presented in Table 5.2, the minimal memory requirements of the algo-

rithms are as follows: the HHNL algorithm requires 90MB, the HVNL algorithm

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 81

Table 5.2: Statistical data for the L and R relations obtained from the DBLP
Bibliography data.
Variable Explanation Value

|L| # of tuples in relation L 91,230
|R| # of tuples in relation R 132,748
|LB| # of tuples from L that are currently in the memory 10,000
|RB| # of tuples from R that are currently in the memory 10,000

t size of a tuple (in bytes) 4372 bytes
lb size of a block of tuples from L (in bytes) = t ∗ |LB| 43,720,000

bytes
rb size of a block of tuples from R (in bytes) = t ∗ |RB| 43,720,000

bytes
h size of a heap to keep k largest similarity values and

corresponding tuple ids for a tuple from L
300 bytes

V # of distinct terms in relation R 30,625
x size of an inverted index entry 83 bytes
nx size of the inverted index (x ∗ V) 2,541,875

bytes
i size of an inverted list entry 28 bytes
I # of inverted list entries 809,497

inl size of the inverted list (i ∗ I) 22,665,916
bytes

m # of index terms whose inverted list entries are kept in
the memory

5,000

nl average size of the inverted list that are kept in the mem-
ory for the HVNL algorithm (m ∗ i ∗ I/V)

3,700,557
bytes

acc maximum size of the accumulator (|R| ∗ 8 bytes) 1,061,984
bytes

os average size for storing the open states in the WHIRL
algorithm (|r| ∗ (I/V) ∗ 12 bytes)

15,859
bytes

ex maximum size for the list of exclusion terms (|r| ∗
term size)

3,750 bytes

|r| maximum # of terms in a tuple 50
term size maximum size of a term (in bytes) 75 bytes

nl′ average size of the in-memory inverted list for the IINL
algorithm (i ∗ I ∗ |RB|/|R|)

1,707,439
bytes

nxl size of the in-memory inverted index and inverted list
for the IINL algorithm (nl′ + nx)

4,249,314
bytes

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 82

needs 51 MB, the WHIRL algorithm has need of 52 MB, and the IINL algorithm

necessitates 96 MB of memory. The IINL algorithm requires more memory space

with respect to the other algorithms; however, the extra memory space required

may not be considered to be large for today’s computer technology.

In order to estimate the CPU requirement of the HHNL, HVNL, WHIRL, and

IINL algorithms, we considered the number of similarity computations (i.e., tuple

comparisons) performed during the join operation, as the similarity computation

is the most expensive operation. In Section 5.4.1, we provide the number of tuple

comparisons made by each algorithm during the join of the relations L and R.

Here, we try to find an upper bound on the number of tuple comparisons done

by the HHNL, HVNL, WHIRL, and IINL algorithms. As the HHNL algorithm

is a block nested loops join algorithm, it compares every tuple pair from the

relations L and R, and makes exactly |L| ∗ |R| tuple comparisons. The HVNL,

WHIRL, and IINL algorithms employ an inverted index to reduce the similarity

computations performed during the join operation, and these algorithms perform

similarly to each other as it is shown in Figure 5.4. In any text similarity based

SVA directional join algorithm employing an inverted index, for each term in a

tuple l, the term is searched from the inverted index and the tuple l is compared

with every tuple in the inverted list entry for that term. The upper bound on the

number of tuple comparisons can be calculated as follows:

n∑

i=1

(fti,L ∗ fti,R) (5.7)

where ti is a term in relation R, fti,L is the frequency of term ti in relation L,

fti,R is the frequency of term ti in relation R, and the frequency of each term in

a relation can be estimated using the Zipf’s law [9].

5.5 Discussion

Employing inverted index during the similarity computations of the similarity

based directional text join operator reduces considerably the number of tuple

comparisons made (e.g., from 12 billion comparisons to 900 million comparisons

CHAPTER 5. SIMILARITY BASED SVA DIRECTIONAL JOIN 83

as shown in Figures 5.3 and 5.4). However, storing the inverted list entries on

disk increases the disk accesses required during the join operation (e.g., from 150

disk accesses to 26,000 disk accesses). In order to make use of the benefits of

employing an inverted index during the similarity computations while experienc-

ing very small number of disk accesses, we developed a new algorithm named

Inverted Index based Nested Loop (IINL). As we used inverted index during the

similarity comparisons, we were able to employ some early termination heuristics

(i.e., the Harman, continue, and maximal similarity filter heuristics) into our text

similarity based SVA directional join algorithm, and observed a reduction in the

number of tuple comparisons experienced. We showed in Sections 5.4.1 and 5.4.2

that, the continue and the maximal similarity filter heuristics reduce the number

of tuple comparisons and the disk accesses significantly; however, the Harman

heuristic, does not provide any performance improvements. The performance

of the continue heuristic is highly dependent on the value of the accumulator

bound. As the accumulator bound decreases, the number of tuple comparisons

and the number of disk accesses decrease, however the accuracy of the output

also decreases. The IINL algorithm with continue heuristic (IINL-Continue) may

be used when fast response to the join operator is needed. Otherwise, the IINL-

Max-Filter performs best in terms of the number of tuple comparisons and the

disk accesses performed compared to all the other algorithms.

Chapter 6

Performance Evaluation

As we propose a Web querying system in this thesis, we conducted an experiment

to measure the search effectiveness of our system against the state-of-the-art

keyword-based search techniques (e.g., boolean, ranked retrieval) that are widely

used in search engines. For the experimentation, we used two metadata databases,

namely Stephen King metadata and DBLP Bibliography metadata. Stephen

King metadata is a small sized metadata database that provides advice over 280

Web documents about the famous horror novelist Stephen King and his books.

DBLP Bibliography metadata database, on the other hand, contains metadata

about more than 225,000 computer science research papers that are located at the

DBLP Bibliography server [51]. A more detailed information about the metadata

databases are given in Section 6.2.

We designed and run two groups of test queries over the two expert advice

databases. The first group of queries requires our specialized operators (e.g., text

similarity based selection, text similarity based directional join, topic closure) to

be answered correctly. We run these queries over the two metadata databases

and compute the precision of the output and running time of the queries. Our

aim in this part of the experiment is to show that, our SQL extensions allow us

to form useful queries that can not be formulated by boolean and ranked queries,

and our SQL extensions generate high precision query outputs in a reasonably

short amount of time.

84

CHAPTER 6. PERFORMANCE EVALUATION 85

The second group of queries do not require any specialized operator, they can

be formulated in plain SQL, and also they can be represented as boolean and

ranked queries. We again run these queries over the same metadata databases.

Also, we use inverted indexes created over the Web documents that are covered

by the two metadata databases. We run the boolean and ranked queries over

these inverted indexes, and compare the precision of the query outputs generated

by querying the metadata databases against boolean and ranked querying of

the inverted indices. In this part of the experiment, our aim is to compare the

precision of the metadata-based search with traditional keyword based search

techniques.

In Section 6.1 we explain how we compute precision of query outputs. The

features of the metadata databases employed in the experiments are discussed in

Section 6.2. Both groups of queries which are run over the metadata databases

and inverted indices are given in Section 6.3. Finally, we present the experimental

results in Section 6.4.

6.1 Performance Evaluation Criteria

When a user obtains some information (in the form of documents) from an infor-

mation retrieval system, he/she will evaluate them according to his/her informa-

tion need. The documents retrieved by the system will seldom match exactly the

user’s information need. Some documents may not be useful to the user; others

may be helpful in some way. This evaluation measure corresponds to the rele-

vance of retrieved documents [9]. If the user judges that a particular document is

what he/she is looking for, or it helps him/her in some way with his/her problem,

the document is called relevant to the information need.

To evaluate performance of information retrieval systems, several criteria such

as coverage, time lag, recall, precision, presentation, user effort, etc. have been

used [24]. Of these criteria, recall and precision have most frequently been ap-

plied [37]. Assuming that the user of an information retrieval system could specify

CHAPTER 6. PERFORMANCE EVALUATION 86

every document retrieved as relevant or not to his/her particular query or need,

recall and precision are defined as follows:

Recall =
Number of relevant documents retrieved

Total number of relevant documents in the collection
(6.1)

Precision =
Number of relevant documents retrieved

Total number of documents retrieved
(6.2)

However, the measurement of recall on the Web is problematic; due to the

extremely dynamic character of the Web, its very high changeability, and its huge

size, it is not possible to determine the total number of relevant documents on the

Web for a user’s query. Therefore, precision is the major performance measure

to evaluate Web search systems [37].

As precision of an information retrieval system is the ratio of the number of

relevant documents retrieved to the total number of documents retrieved by the

system, this value highly depends on relevance judgements of the users. In [37],

a model of calculating relevance for hyper-linked document systems is described.

According to the model, documents which are directly relevant are assigned a

score called the base relevance, denoted by br. The overall relevance of a document

is denoted by r, and for directly relevant documents r=br. Documents which are

not directly relevant are assigned a relevance score by incorporating base relevance

and inter-document link structure. For those documents the overall relevance r

is calculated as

r =

br − dr if br > dr

0 otherwise
(6.3)

where dr is the distance component and calculated as a number of links that

need to be traversed to reach to a directly relevant document.

Samalpasis et al. [76] have suggested a simpler version of this relevance model

for the Web environment, and their proposal is highly accepted since the model is

computationally simple and sufficient in practice [37]. This model assumes that

CHAPTER 6. PERFORMANCE EVALUATION 87

users tend to examine the first 10 or 20 documents in the result, and they do not

usually follow links in very deep levels. Thus, only local link information needs to

be incorporated into the relevance judgements. In line with these assumptions,

relevance scores are assigned to Web documents as presented in Table 6.1.

Table 6.1: Relevance score values
Relevance Score Description

3 The most relevant document
2 Partly relevant or contains a link to a page with score

of 3
1 Somewhat relevant (i.e., short mention of a topic or

terms appear on a page) or contains a link to a page
ranked 2

0 Not relevant, no query terms are found

By using the relevance measure described in Table 6.1, the inter-document link

structure is also incorporated into precision calculations. In [37], four different

precision measures are described:

Full precision =

∑minFnHits
i=1 scorei

minFnHits×maxHitScore
(6.4)

Best precision =
count ofminFnHits

i=1 (scorei = 3)

minFnHits
(6.5)

Useful precision =
count ofminFnHits

i=1 (scorei ≥ 2)

minFnHits
(6.6)

Objective precision =
count ofminFnHits

i=1 (scorei > 0)

minFnHits
(6.7)

where scorei is the score assigned to document i ; n is the number of measured

hits (n = 10 for this experiment); minFnHits is the minimum of n and hitsRe-

turned ; hitsReturned is the total number of hits returned; and maxHitScore is

CHAPTER 6. PERFORMANCE EVALUATION 88

the maximum relevance score that can be assigned to one hit (maxHitScore = 3

in our experiment).

The only difference between the above precision measures is the usage of rele-

vance scores. Full precision takes fully into account the subjective score assigned

to each hit, and assumes that relevance scores are additive (e.g., 2 documents

with scores 3 are equivalent to 6 documents with scores 1). Best precision, on

the other hand, considers only the most relevant hits. It maps relevance scores

to a binary measure. In the useful precision, only the most relevant hits, and

hits containing links to the most relevant documents are taken. Objective pre-

cision, as its name implies, is an objective measure since it does not rely on

human relevance judgments. It is based on presence or absence of query terms.

In this experiment, we employed all these four precision measures along with the

relevance score assignment described in Table 6.1.

6.2 Metadata Databases Employed in the Ex-

periment

As we mention at the beginning of this chapter, we employed two expert advice

databases, namely Stephen King, and DBLP Bibliography metadata databases, in

the performance evaluation experiments. The following two subsections describe

these two metadata databases, respectively.

6.2.1 Stephen King Metadata Database

Stephen King metadata database contains expert advice about the famous horror

novelist Stephen King and his publications. A domain expert manually created

the Stephen King metadata database by browsing hundreds of Web sites about

him. The database includes all the novels and books written by Stephen King,

their publishers and publication years, and movies and tv-films based on Stephen

King novels and books. The metadata database consists of 157 topic instances of

CHAPTER 6. PERFORMANCE EVALUATION 89

type “horror novelist”, “novel”, “book”, “publisher”, “year”, “movie”, “tv-film”,

etc., 304 metalink instances of types WrittenBy, PublisherOf, PublicationYear,

BasedOn, Prerequisite, and RelatedTo, and 280 topic sources (i.e., URLs of in-

formation resources). Metalinks included in the expert advice database have the

following signatures:

WrittenBy: Author-id → WrittenBy Novel-id

PublisherOf: Novel-id → PublisherOf Publisher-id

PublicationYear: Novel-id → PublicationYear Year-id

BasedOn: Novel-id → BasedOn Movie-id

BasedOn: Novel-id → BasedOn Tvfilm-id

Prerequisite: Novel-id → Prerequisite Novel-id

RelatedTo: Novel-id → RelatedTo Novel-id

As an example, the metalink instance “Night Shift → BasedOn Cat’s Eye”

of metalink type BasedOn is read as “the movie Cat’s Eye is based on the novel

Night Shift”.

Topic sources may also have types (roles) such as “bibliography”, “biogra-

phy”, “link”, “news”, “commercial”, “picture”, etc., and a topic instance may

have more than one source, a Web page may be source for more than one topic

instance, and a Web document can be topic source of a topic instance with dif-

ferent source types. For example, the information resources pointed by the URL

www.stephenking.com can be topic sources for the topic “Stephen King” with

roles “biography” and “bibliography”, and it can also be a topic source for the

topic “Richard Bachman” of type “bibliography”. Each source is assigned a real-

valued importance in the range [0, 1] by the domain expert such that, the value

1 indicates that the source has the highest importance, and the value 0 means

that the source is not important.

CHAPTER 6. PERFORMANCE EVALUATION 90

6.2.2 DBLP Bibliography Metadata Database

DBLP Bibliography server [51] includes bibliographic information about more

than 225,000 computer science publications (e.g., conference and journal papers,

books, master and PhD theses, etc.). The DBLP Bibliography metadata database

contains expert advice on the publications located at the DBLP Bibliography

site. The metadata database contains 380,823 topic instances of topic types “Pa-

perName”, “AuthorName”, “JournalConference-and-Year”, “PublicationDate”,

and “JournalConferenceOrg”, 224,066 distinct topic source instances, 4,902,671

metalink instances of types InPublicationDate, PublicationDateOf, JourConfOf,

JourConfPapers, AuthoredBy, AuthorOf, PrerequisitePapers, and RelatedToPa-

pers having the following signatures:

InPublicationDate: PublicationDate → InPublicationDate PaperName

PublicationDateOf: PaperName → PublicationDateOf PublicationDate

JourConfOf: PaperName → JourConfOf JournalConference-and-Year

JourConfPapers: JournalConference-and-Year → JourConfPapers Paper-

Name

AuthoredBy: AuthorName → AuthoredBy PaperName

AuthorOf: PaperName → AuthorOf AuthorName

PrerequisitePapers: PaperName → PrerequisitePapers PaperName

RelatedToPapers: PaperName → RelatedToPapers PaperName

We generated the DBLP Bibliography metadata database from the DBLP

Bibliography data which is a 90 megabyte sized XML document containing bib-

liographic entries. We obtained the DBLP Bibliography data from the DBLP

Bibliography site, and constructed the expert advice by implementing a collec-

tion of Perl and C codes. We exploited the DTD of the DBLP Bibliography data

as described in Chapter 3 to generate the expert advice.

CHAPTER 6. PERFORMANCE EVALUATION 91

Each topic instance of type PaperName is assigned a real-valued importance

score in the range [0,1] by considering the impact factor of the journal or con-

ference proceedings that the paper is published in. Table 6.2 presents the scale

for the importance score values assigned to PaperNames. For instance, we as-

sign importance score of 1 to a paper which is published in a journal/conference

proceeding having top 10% impact factor. We obtained the impact factor values

for journals and some conference proceedings from the Web site of CiteSeer [23]

search engine which is developed for searching Computer Science publications.

Papers published in a journal or conference proceeding whose impact factor is

not listed by the CiteSeer, were assigned an importance score of 0.3. Each topic

instance of types JournalConference-and-Year and JournalConferenceOrg are as-

signed importance in the same way as PaperName topic instances. The impor-

tance score for each of the metalink instances of type PrerequisitePapers and

RelatedToPapers is the cosine similarity of the paper names that are associated

with the metalink type. All other topic and metalink instances are assigned an

importance score of 1.

Table 6.2: Importance score scales for publications.
Importance Impact Factor

Score (top %)
1 10%

0.9 20%
0.8 30%
0.7 40%
0.6 50%
0.5 60%
0.4 70%
0.3 80%
0.2 90%
0.1 100%

6.3 Queries

For the performance evaluation of our Web querying system, we designed two

groups of queries, and run these queries over both metadata databases. Then we

CHAPTER 6. PERFORMANCE EVALUATION 92

computed the precision of the outputs, as we described in Section 6.1. We also

measured the running time of the queries.

6.3.1 Queries Involving SVA Operators

In this thesis, as we propose SQL extensions that can be used for querying the

Web, we designed and implemented the below queries each of which serves to

satisfy information need of a typical user of the DBLP Bibliography server. Each

one of the queries discussed in this section includes at least one SVA operator.

As a researcher, frequently we need to get a list of research papers on a

particular topic, and also have the papers in the list be ordered according to

their importance. For instance, it will be more useful to us if a research paper

that has the most relevance to the searched topic, attracted the highest number of

citations, or was published in a highly respected journal or conference proceeding,

is located at the top of the result list. The query below can satisfy this kind of

user request.

DBLP Query 1: (SVA Selection) Using the advice at www.DBLPand-

Anthology.com/advice, find the names and URLs of 25 highest topic importance

ranked papers having most similar titles to the string “XML data and their query

languages”. Employ a product based topic importance propagation function.

select T.TName, S.URL

using advice at www.DBLPandAnthology.com/advice as database DB

from DB.Topics T, DB.TSRef S

where T.TType=“PaperName” and

T.TName ∼= “XML data and their query languages” and

T.TId in S.TId

propagate importance as product function of T

stop after 25 most important

This query finds top 25 topic importance ranked journal or conference papers

CHAPTER 6. PERFORMANCE EVALUATION 93

 URLTName,Π

 ORDER BYimportance

 L
 L.TId in R.TId

*

)languages"query their and data XML"Sim(TName,*finfout 25,
papername""TType and languages"query their and data XML"TName

==
=≅

k

σ DB.TSRef

 DB.Topics

Figure 6.1: Query tree for query1

having titles most similar to the string “XML data and their query languages”.

The query answers this request by involving one SVA selection operator. The

clause T.TName ∼= “XML data and their query languages” states that k topics

are selected such that they have the highest name similarity to the string “XML

data and their query languages” and their modified importance scores are among

the highest k scores over all topics that satisfy the selection condition. The

value for k is specified in the stop after clause. The propagate importance clause

specifies the function that is used during the score modification of the input topics

of the query. Thus, in this query, the score of each paper, which is assigned

during the metadata generation step by considering the impact factor of the

journal/conference proceeding in which the paper is published, is multiplied by

the similarity of the paper title with the string “XML data and their query

languages”. The SVA selection operator selects top 25 topics having the highest

modified scores. After finding the topics that satisfy the selection condition, the

sources (Web addresses) for these papers are found by simply joining the output

of the SVA selection operator with the TSRef table. The query tree for this query

is given in Figure 6.1.

In some other cases, we may want to see a list of research papers which are

CHAPTER 6. PERFORMANCE EVALUATION 94

similar to some set of papers that we are interested in. SVA directional join

operator is suitable for such kind of queries.

DBLP Query 2: (SVA Directional Join) Using the advice at www.DBLP-

andAnthology.com/advice, for each paper presented in VLDB 2001 conference,

find 5 most similar journal or conference papers and their sources. Employ a

product based topic importance propagation function.

select T1.TName, S1.URL, T2.TName, T2.URL

using advice at www.DBLPandAnthology.com/advice as database DB

from DB.Topics T1, DB.Topics T2, DB.Topics T3,

DB.TSRef S1, DB.TSRef S2, DB.JourConfOf M

where T1.TType = “PaperName” and T2.TType = “PaperName” and

T3.TType= “JournalConference-and-Year” and

T3.TName= “VLDB2001” and

T3.Tid = M.Cons-Id and T1.Tid = M.Ant-Id and

T1.TName ∼=(dir,k=5) T2.TName and

T1.TId in S1.TId and T2.TId in S2.TId

propagate importance as product function of T1, T2

In this query, first, the set of papers that are presented in VLDB 2001 con-

ference are found using the Topics and JourConfOf relations of the DBLP Bibli-

ography metadata. After finding the required set of papers, the SVA directional

join operator allows us to find 5 most similar papers for each paper presented

in VLDB 2001. The SVA directional join operator is denoted by T1.TName

∼=(dir,k=5) T2.TName, and it states that for each TName attribute value for rela-

tion T1, find 5 topics (tuples) from relation T2 having most similar topic names

to T1.TName. Here, T1 relation contains all the papers presented in VLDB 2001,

and T2 relation contains all the journal and conference papers. As product func-

tion over T1 and T2 relations is specified as importance propagation function,

similarity score between two topic names is calculated as the product of the scores

of the topics with the similarity measure between their topic names. The Web

addresses for the paper pairs are found by just joining the T1 and T2 relations

with the TSRef table. The query tree for Query 2 is provided in Figure 6.2.

CHAPTER 6. PERFORMANCE EVALUATION 95

 S2.URL.T2.TName,S1.URL,T1.TName,Π

 *
 k=5, fout=flin*frin*Sim(L.TName,R.TName)

 L R

 L.TId in R.TId L.TId in R.TId

 R

 DB.TSRef
 L.Ant-Id=R.Tid DB.TSRef PaperName"" TType =σ

 PaperName"" TType =σ

 L.Tid=R.Cons-Id DB.Topics
 DB.Topics

VLDB2001"" TName
and Year"-and-ferenceJournalCon" TType

=
=σ DB.JourConfOf

 DB.Topics

Figure 6.2: Query tree for query 2

CHAPTER 6. PERFORMANCE EVALUATION 96

We present another useful query below which allows us to see the list of

publications to be examined before starting to study a particular topic/paper

that we are not familiar with. Any typical scientific paper search service cannot

answer this kind of query, but it can be answered by employing our SVA topic

closure operator.

DBLP Query 3: (SVA Topic Closure) Using the advice at www.DBLPand-

Anthology.com/advice, find the titles and URLs of 20 highest importance-valued

papers such that the selected papers are prerequisite papers to the paper having

the title “Information Retrieval on the World Wide Web”.

select T2.TName, S2.URL

using advice at www.DBLPandAnthology.com/advice as database DB

from DB.Topics T, DB.Topics T1, DB.Topics T2, DB.PrerequisitePapers M,

DB.TSRef S2

where T1.TName= “Information Retrieval on the World Wide Web” and

T1.TType= “PaperName” and

T2.TId in PrerequisitePapers*(T1.TId, T, M) and

T2.TId in S2.TId

topic closure importance computation as

product function within a path and as

max function among multiple paths

stop after 20 most important

The query includes one topic closure operator which is represented by T2.TId

in PrerequisitePapers*(T1.TId, T, M) clause. In the topic closure clause, T1.TId

represents the topic-id of the paper having the topic name “Information Retrieval

on the World Wide Web”, topics represented by T2 are the ones that are reached

by following PrerequisitePapers metalink paths, specified in table M, originating

from the topic T1. During the closure operation, for each new topic that is

reached by following the PrerequisitePapers metalink paths, importance score

of that topic is modified by using the functions specified in the topic closure

importance computation clause.

CHAPTER 6. PERFORMANCE EVALUATION 97

 URLTName,Π

 ORDER BYimportance

 L

 L.TId in R.TId

 DB.TSRef
 TCLOSURE
 k=20,FPath=*,FPathMerge=Max

PaperName"TType and
 Web" Wide Worldon the Retrievaln Informatio"TName

=
≅σ DB.PrerequisitePapers

 DB.Topics

 DB.Topics

Figure 6.3: Query tree for query 3

CHAPTER 6. PERFORMANCE EVALUATION 98

Our SQL extensions also allow users to include their preferences and knowl-

edge level into the queries. The fourth query below is an example for personalized

metadata-based Web searching.

DBLP Query 4: (User Profile) Using the advice at www.DBLPand-

Anthology.com/advice, and the user profile at www.DBLPandAnthology.com/user,

find the titles and URLs of 10 highest importance-valued papers such that the se-

lected papers are related to the paper having the title “Searching for Multimedia

on the World Wide Web”.

select T2.TName, S2.URL

using advice at www.DBLPandAnthology.com/advice as database DB

using profile at www.DBLPandAnthology.com/user as database U

from DB.Topics T, DB.Topics T1, DB.Topics T2, DB.RelatedToPapers M,

DB.TSRef S2

where T1.TName= “Searching for Multimedia on the World Wide Web” and

T1.TType= “PaperName” and

T2.TId in RelatedToPapers*(T1.TId, T, M) and

T2.TId in S2.TId

topic closure importance computation as

product function within a path and as

max function among multiple paths

stop after 10 most important

This query is very similar to the previous query, however in this query the user

employs his/her preferences through using profile at clause. Assuming that, the

user only wants to see the list of papers having the string “multimedia” in their

names, then only these topics are considered in the topic closure operator. Thus,

employing user profiles decreases the search space and increases the precision of

the output, as we show in Section 6.4. The logical query tree for this query is

presented in Figure 6.4.

DBLP Query 5: Using the advice at www.DBLPandAnthology.com/advice,

find the titles and URLs of 10 highest importance-valued papers such that the

CHAPTER 6. PERFORMANCE EVALUATION 99

 URLTName,Π

 ORDER BYimportance

 L

 L.TId in R.TId

 DB.TSRef
 TCLOSURE
 k=10,FPath=*,FPathMerge=Max

PaperName"TType and
 Web" Wide Worldon the Multimediafor Searching"TName

=
≅σ DB.RelatedToPapers

 ia*""*multimed like TNameσ

 DB.Topics DB.Topics

Figure 6.4: Query tree for query 4

CHAPTER 6. PERFORMANCE EVALUATION 100

selected papers are related papers to the paper having the title “Searching for

Multimedia on the World Wide Web”.

select T2.TName, S2.URL

using advice at www.DBLPandAnthology.com/advice as database DB

from DB.Topics T, DB.Topics T1, DB.Topics T2, DB.RelatedToPapers M,

DB.TSRef S2

where T1.TName= “Searching for Multimedia on the World Wide Web” and

T1.TType= “PaperName” and

T2.TId in RelatedToPapers*(T1.TId, T, M) and

T2.TId in S2.TId

topic closure importance computation as

product function within a path and as

max function among multiple paths

stop after 10 most important

This query is the same as the previous query except that, in this query no

user profile (i.e., user preferences and user knowledge) is employed during the

query processing. We designed this query to compare the results obtained with

the previous query, and to show the effect of user profile on query processing and

in the query outputs.

For the Stephen King matadata database, we also designed 5 queries, which

are equivalent to the above queries. By equivalence we mean that, the queries

which run over the Stephen King metadata database have the same number of

SVA operators with the DBLP Bibliography queries. Also, the query trees and

the processing order of operators are the same for both Stephen King and DBLP

queries. Only the names of the relations, and the string constant values are

different in the query trees. The queries for the Stephen King metadata database

are the following:

S.King Query 1: (SVA Selection) Using the advice at www.Stephen-

King.com/advice, find the names and URLs of 25 highest topic importance ranked

novels having titles most similar to the string “dark tower”. Return only the URLs

CHAPTER 6. PERFORMANCE EVALUATION 101

 URLTName,Π

 ORDER BYimportance

 L

 L.TId in R.TId

 DB.TSRef
 TCLOSURE
 k=10,FPath=*,FPathMerge=Max

PaperName"TType and
 Web" Wide Worldon the Multimediafor Searching"TName

=
≅σ DB.RelatedToPapers

 DB.Topics

 DB.Topics

Figure 6.5: Query tree for query 5

CHAPTER 6. PERFORMANCE EVALUATION 102

of the topic sources of type “bibliography”, and employ a product based topic

importance propagation function.

S.King Query 2: (SVA Directional Join) Using the advice at www.Stephen-

King.com/advice, for each novel written by Stephen King, find 5 movies or tv-

films having titles most similar to the title of the novel. Return their sources

of type “summary”, and employ a product based topic importance propagation

function.

S.King Query 3: (SVA Topic Closure) Using the advice at www.Stephen-

King.com/advice, find the titles and URLs of 20 highest importance-valued novels

such that the selected novels are prerequisite to the novel having the title “Wizard

& Glass”. Return their “description” type of sources.

S.King Query 4: (User Profile) Using the advice at www.Stephen-

King.com/advice, and the user profile at www.StephenKing.com/user, find the

titles and URLs of 10 highest importance-valued novels such that the selected

novels are related to the novel having the title “Night Journey”. Return their

“description” type of sources.

S.King Query 5: Using the advice at www.StephenKing.com/advice, find

the titles and URLs of 10 highest importance-valued novels such that the selected

novels are related to the novel having the title “Night Journey”. Return their

“description” type of sources.

As these queries are almost the same as the queries over the DBLP Bibliogra-

phy metadata database, we do not give the extended SQL statements and query

trees in this chapter, however, they are presented in Appendix A.1.

We run the above queries over the DBLP Bibliography and Stephen King

metadata databases, then we computed and compared the precision of the out-

puts. The aim of this experiment is to justify the efficiency of the search over

metadata databases performed by employing our specialized operators. This ex-

periment also allowed us to compare the precision of the results obtained through

semi-automatically generated metadata against the precision values obtained with

CHAPTER 6. PERFORMANCE EVALUATION 103

manually generated metadata. The results of this experiment are presented in

Section 6.4.

6.3.2 Queries without Any SVA Operators

In this part of the experiment, we designed and run the queries given below,

which do not include any specialized SVA operator and can also be formulated

as keyword queries, over the metadata databases and the inverted indices. Then,

the first 10 results returned for each query were examined for the precision com-

putations. The queries made use of in the experiment are:

S. King Query 1: Find all novels written by Stephen King.

S. King Query 2: Find reviews for the novel “Carrie”.

S. King Query 3: Find biography of Stephen King.

S. King Query 4: Find the list of Stephen King books published in year 1999.

S. King Query 5: Find commercial sites for the novel “Dark Half”.

S. King Query 6: Find all novels of Stephen King, which are not published by

“Viking”.

S. King Query 7: Find the latest work of Stephen King.

S. King Query 8: Find the description or summaries of all movies and tv-films

based on the novel “Dark Half”.

S. King Query 9: Find the description or summaries of all movies and tv-films

based on the novel “Night Shift”.

S. King Query 10: Find the publication year and the publisher of the book

“Dead Zone”.

S. King Query 11: Find the summary and characters of the book “Dream-

catcher”.

CHAPTER 6. PERFORMANCE EVALUATION 104

All these queries were formulated as both extended SQL and keyword queries.

As an example, the SQL statement for Query 1 is the following:

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.Topics T1, DB.WrittenBy M, DB.TSRef S

where T.TId=M.Cons-Id and

T1.TName=“Stephen King” and T1.TType=“Author” and

M.Ant-Id=T1.Tid and T.TId in S.TId

order by S.S-advice desc

The same query is also formulated as “Stephen” AND “King” AND “novel”,

and as “Stephen King novel” for boolean and ranked querying, respectively. The

extended SQL statements for all the queries which run over the Stephen King

metadata database are provided in Appendix A.2.

The queries that are used in this experiment are chosen such that, the first 4

queries are simple general search queries, and they can easily be formulated and

expected to return relevant hits by any search system. The last 7 queries, on the

other hand, are more complicated, and more specific information is sought for.

These queries are chosen to confirm the querying power of metadata-based search

over keyword-based search systems.

The equivalent queries6 that were run over the DBLP Bibliography metadata

database are:

DBLP Query 1: Find all papers written by J. D. Ullman.

DBLP Query 2: Find the document(s) containing the full text of the paper

“Mining Sequential Patterns”.

DBLP Query 3: Find the homepage of J. D. Ullman.

6in terms of query trees and the processing order of operators

CHAPTER 6. PERFORMANCE EVALUATION 105

DBLP Query 4: Find the list of J. D. Ullman papers published/presented in

year 2000.

DBLP Query 5: Find sources for the paper “Access Methods for Text”.

DBLP Query 6: Find all papers of J. D. Ullman, which are not presented in

any VLDB Conference.

DBLP Query 7: Find the latest published paper of J. D. Ullman.

DBLP Query 8: Find the list of all papers which are directly related to the

paper “Access Methods for Text”.

DBLP Query 9: Find the list of all papers which are directly related to the

paper “Mining Sequential Patterns”.

DBLP Query 10: Find the year and the journal/conference name in which the

paper “Access Methods for Text” is published/presented.

DBLP Query 11: Find the bibliographic information of the paper “Mining Se-

quential Patterns”.

6.4 Experimental Results

The full, best, useful, and objective precision of the outputs generated by the

first group of queries are presented in Figure 6.6 and Figure 6.7. As shown in the

Figure 6.7, the objective precision value for all queries is 1 for both Stephen King

and DBLP Bibliography metadata databases, meaning that all hits returned by

querying the two expert advice systems are relevant (i.e., having relevance scores

greater than 0), and no bad hits are returned. The main reason for having 1

as objective precision is that, all of the documents covered by the metadata

databases are relevant documents (i.e., all documents are about “Stephen King”),

so they are scored more than 0 by the query posers. Thus in this experiment,

objective precision is not a sufficient measure. On the other hand, the full, best,

and useful precision values may not be objective since they highly depend on

CHAPTER 6. PERFORMANCE EVALUATION 106

relevance judgments. Nevertheless, these measures are useful in the sense that,

they show the ability of a search system to retrieve highly relevant documents

(i.e., having score ≥ 2).

According to Figures 6.6 and 6.7, for queries 2 and 3, the full, best, and useful

precision values are quite close to each other for the two metadata databases. For

the other queries, precision of the DBLP Bibliography metadata database is less

than the Stephen King metadata database because of two main reasons: firstly,

the DBLP Bibliography metadata database covers huge number of information

resources (more than 225,000 publications), secondly, the metadata objects (i.e.,

topic, metalink, source instances) of the DBLP Bibliography metadata database

is generated automatically by considering only the bibliographic information of

the publications. The Stephen King metadata database, on the other hand, is

created by a human expert by considering the full text of the Web documents.

If we could have covered the full text documents of all the publications located

at the DBLP Bibliography site, the metadata database would yield more precise

results. Nevertheless, the precision of the DBLP Bibliography metadata database

is satisfactory as it achieves 80% full precision for query 1, approximately 90%

full precision for queries 2,3, and 4. The precision values for query 5 is lower with

respect to the other queries for both metadata databases, due to the fact that the

metalink type that is involved in this query has too many instances, and some of

these instances were not considered as “relavant” by the query poser. When the

user preferences are taken into account during the query processing (i.e., query

4), the outputs generated for the same query are assigned higher scores by the

user.

During the processing of the same queries involving SVA operators, we also

measured the running time of the queries. All the queries were run on a PC

having Pentium III 450Mhz CPU, and 320Mb of RAM, and we assumed that

all the metadata objects are read from disk, and kept in the memory until the

end of the query processing. Table 6.3 presents the running time for the queries

over both metadata databases. Processing time of the queries run over the DBLP

Bibliography metadata database is higher since this database contains huge num-

ber of topic and metalink instances as compared to the Stephen King metadata

CHAPTER 6. PERFORMANCE EVALUATION 107

Figure 6.6: Full and best precision of the outputs for queries involving SVA
operators.

CHAPTER 6. PERFORMANCE EVALUATION 108

Figure 6.7: Useful and objective precision of the outputs for queries involving
SVA operators.

CHAPTER 6. PERFORMANCE EVALUATION 109

database. Queries involving SVA directional join operator (e.g., query 2) requires

more time than the queries including SVA selection (e.g., query 1), as the direc-

tional join operation involves much more similarity computations than the SVA

selection operation. Both queries 3 and 5 include one topic closure operator,

however the metalink type employed in query 5 has many more instances than

the one used in query 3, hence query 5 runs slower. Queries 4 and 5 are actually

the same except that query 4 includes user preferences during the processing of

the topic closure operator. Thus, in query 4, deeper levels are searched during

the closure operator to reach topic instances that satisfy user preferences. On the

other hand, closure operation is pruned for some topic instances which are not

required by the user.

Table 6.3: Running time for the queries involving SVA operators (in seconds)
Query # Time for Time for

DBLP Database S. King Database
1 32 <1
2 332 1
3 68 <1
4 738 1
5 134 <1

According to Figures 6.6, 6.7 and Table 6.3, metadata-based Web querying by

employing the SQL extensions, allows query posers to form useful queries which

can not be formulated by any other search techniques, and yields high precision

query outputs in a reasonably short amount of time. Employing user preferences

during the query processing helps to improve the precision of the output further.

For the second part of the experiment, we created one inverted index for

each metadata databases. The inverted index for the Stephen King metadata

database is created over full text documents covered by the expert advice. For the

DBLP Bibliography database, we built the inverted index over the bibliographic

entries of the publications. We did not consider the full text documents of the

publications. Our DBLP Bibliography expert advice is also generated over the

bibliographic entries only, since obtaining and indexing the full text documents

of more than 225,000 publications requires vast amount of work.

CHAPTER 6. PERFORMANCE EVALUATION 110

Figures 6.8 through 6.11 present the full, best, useful, and objective precision

of the outputs generated by the second group of queries which do not involve any

SQL extension. As in the case of the first part of the experiment, the objective

precision of the outputs for all queries and all search techniques (i.e., metadata

based, boolean, and ranked) are equal to 1, because of the fact that, metadata

databases and the inverted indexes cover only relevant documents on a particular

domain.

As displayed in Figures 6.8 through 6.11, the full, best and useful precision

values for boolean and ranked querying hits are not as high as objective precision

values, which show that most of the relevant hits returned by these keyword

based search systems have scores 2 and 1. As a result of this, useful precision of

keyword based querying systems is slightly higher than their full precision; best

precision on the other hand, is quite low for these systems. According to the

figures, metadata-based querying over both metadata databases beats keyword

based search with respect to all the three precision measures. This is due to

the fact that both keyword based querying systems would not probably retrieve

the highest scored documents in the top 10 hits, because these systems can only

return documents that contain the search terms (in any context). As metadata-

based search employs expert advices, it can return the most relevant documents

in the first 10-result set.

For the Stephen King metadata database (Figures 6.8 and 6.9), only for a few

queries (Queries 3, 8, and 10), the best and full precision values are slightly less

than 1, implying that only a few number of the documents returned in the result

sets have scores less than 3. This result occurred because of the fact that, for

these queries, the number of Web documents having score 3 that are included in

the Stephen King expert advice repository is less than 10, or in some occasional

cases the relevance judgements of query posers may not agree with the importance

assignment of the domain experts.

For the DBLP Bibliography metadata database (Figures 6.10 and 6.11), the

full and best precision of only two queries (Queries 8 and 9) are almost equal to the

ranked querying, and slightly less than the boolean querying. This result shows

CHAPTER 6. PERFORMANCE EVALUATION 111

Figure 6.8: Full and best precision of the outputs for queries not involving SVA
operators and run over the Stephen King metadata database.

CHAPTER 6. PERFORMANCE EVALUATION 112

Figure 6.9: Useful and objective precision of the outputs for queries not involving
SVA operators and run over the Stephen King metadata database.

CHAPTER 6. PERFORMANCE EVALUATION 113

Figure 6.10: Full and best precision of the outputs for queries not involving SVA
operators and run over the DBLP Bibliography metadata database.

CHAPTER 6. PERFORMANCE EVALUATION 114

Figure 6.11: Useful and objective precision of the outputs for queries not involving
SVA operators and run over the DBLP Bibliography metadata database.

CHAPTER 6. PERFORMANCE EVALUATION 115

that the rule used to determine the related papers during the metadata generation

step does not match exactly with the user request. However, if the query poser

could employ user preferences during the query processing, the precision would

be higher, as we observed in the first part of the experiment.

When we compare the precision of both expert advices with each other, re-

gardless of being manually or semi-automatically created, metadata databases

yield high precision results as compared to keyword based search over an in-

verted index. However, the gap between the precision of the manually generated

metadata-based search and keyword based search is higher.

In the second part of the experiment we also showed that making metadata-

based search is favorable for some kind of queries. As an example, in Query 5 for

the Stephen King database, the query poser wants to see some buying information

about the novel “Dark Half”. Metadata-based querying responds to this query

by directly listing the information resources having the role “commercial” for the

novel “Dark Half”. Ranked and boolean querying systems on the other hand,

try to find Web documents containing the keywords “Dark Half”, “novel”, and

“commercial“, and respond poorly to this query. In Query 7, metadata-based

querying directly gives the list of novels/books with the latest publication date

and written by Stephen King. However, to find the latest works of him, a keyword

search based system user has to browse tens of Web documents returned by the

system. Thus, in this experiment, we also observed that metadata-based search

performs better than keyword-based search when specific information is queried,

and queries involve relationships among query terms.

Chapter 7

Conclusions and Future Work

In this thesis we have described a metadata-based querying system for information

resources on the Web. We have presented a data model named Web information

space model, for metadata-based modeling of Web resources. Our Web informa-

tion space model consists of three main parts: information resources, metadata

databases, and user profiles. The information resources include the Web-based

information sources to be queried. Metadata databases store metadata about

the information resources in terms of topics, relationships among topics (i.e.,

metalinks), and references to the information resources that they describe. User

profiles contain user preferences about expert advices, user knowledge level about

topics, and navigational history information about the Web documents that the

user visits. In order to make the metadata generation an attainable task, we have

assumed that information resources in the Web information space model do not

cover the whole Web; rather they are defined within a set of Web resources on a

particular domain, which we call subnets.

In our model, metadata and user profiles are stored in a (object) relational

database management system. In order to query the Web information resources

efficiently, we have enriched the SQL with score management functionality, and

new operators like text similarity based selection, text similarity based join, and

topic closure. Score management allows ranking of query outputs, and limiting

the output size. Text similarity based operators provide text similarity based

116

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 117

querying over the information resources. Topic closure operator supports recur-

sive closure queries that can not be formed by keyword matching based Web

search engines. Our SQL extensions also allow query poser to include his/her

profile (i.e., preferences and knowledge level) into the queries to facilitate per-

sonalized Web search. We have also defined an algebra named as Sideway Value

generating Algebra (SVA) to support our SQL extensions, and presented algebraic

operators along with their processing algorithms. We have especially focused on

the text similarity based SVA directional join operator and proposed a new algo-

rithm for efficient processing of the directional join operator.

Text similarity based directional join is a very useful operator to be employed

in a variety of applications, such as the integration of distributed, heterogeneous

databases that lack common object identifier; querying a multidatabase system

that manages both relational and text databases; and integration and querying

of metadata/ontology from multiple resources to facilitate Web querying. In this

thesis, we have evaluated the text similarity based join algorithms proposed pre-

viously, developed a new algorithm which is more efficient in terms of the number

of tuple comparisons and disk accesses made, and incorporated some early ter-

mination heuristics from the Information Retrieval domain to achieve further im-

provement in the performance of our algorithm. We have demonstrated through

experimental evaluation that nested loops based join algorithm for the text simi-

larity based directional join operator performs the best in terms of the number of

disk accesses required. However, this algorithm compares every tuple pair from

the relations to be joined and leads to a huge amount of expensive similarity

computations. Inverted index based join algorithms, on the other hand, achieve

very small number of similarity computations while requiring large number of

disk accesses. We have developed a new nested loop based join algorithm, which

employs an in memory inverted index, to implement the similarity based direc-

tional text join operation more efficiently. We have observed further performance

improvement by applying maximal similarity filter and continue heuristics to our

join algorithm.

We have also evaluated performance of metadata-based Web querying against

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 118

traditional keyword matching based techniques (i.e., boolean and ranked query-

ing techniques) through experimentation. In the performance evaluation experi-

ments, we have employed two metadata databases (i.e., Stephen King metadata

database, and DBLP Bibliography metadata database), and run some test queries

over these metadata databases using our extended SQL. Then, we have run the

boolean and ranked query versions of the same queries on the inverted indexes

that we have created over the Web documents covered by the two metadata

databases, and compared the precision of the results returned by the extended

SQL, boolean, and ranked queries. We have shown that the precision of the

metadata-based querying is higher than that of the boolean and ranked query-

ing. This experiment also allowed us to compare the querying performance of

the manually created metadata database (i.e., Stephen King metadata database)

against semi-automatically created metadata database (i.e., DBLP Bibliogra-

phy metadata database). While the performance with both manually and semi-

automatically generated metadata databases was observed to be better than that

of the keyword based search systems, the overall performance obtained with the

manually generated metadata database was at a higher level. In addition to

these, we have observed that, employing user preferences during the metadata-

based Web querying improves the precision of the results returned.

In this thesis, we have extracted metadata by exploiting DTDs of the XML

information resources. Although XML is adopted as a standard for electronic

data exchange on the Web, currently most of the Web resources are not XML

documents, and efficient metadata extraction tools are required for Web infor-

mation resources of any media type such as text (e.g., ps, pdf, ascii), image (e.g.,

jpeg, bitmap), audio, etc.

Although our proposal for metadata-based Web querying includes SQL ex-

tensions along with new operators and score management functionality, and we

have not dealt with the usage of the extended SQL by naive users. Also, we

have implemented only our specialized SQL operators, not a full query processor

for the extended SQL. As a future work, a graphical user interface that help to

formulate extended SQL queries easily, and a query processor for executing the

extended SQL queries can be developed.

Bibliography

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. Morgan Kaufmann

Publishers, San Francisco, 258 p., 2000.

[2] ACM Portal Web Site. Available at http://www.acm.org.

[3] R. Agraval and R. Srikant. Mining Sequential Patterns. In Proc. ICDE Con-

ference 1995, pp. 3-14.

[4] R. Agrawal, and E. L. Wimmers. A Framework for Expressing and Combining

Preferences. In Proc. ACM SIGMOD Conference 2000, pp. 297-306.

[5] İ. S. Altıngövde. Topic-Centric Querying of Web Resources. MS. Thesis,

Bilkent University, Deptartment of Computer Engineering, September 2001.

[6] İ. S. Altıngövde, S. A. Özel, Ö. Ulusoy, G. Özsoyoğlu, and Z. M. Özsoyoğlu.

Topic-Centric Querying of Web Information Resources. In Proc. Database and

Expert Systems Applications 2001 (DEXA’01), pp. 699-711.

[7] G. O. Arocena. WebOQL: Exploiting Document Structure in Web Queries.

MS Thesis, Department of Computer Science, University of Toronto, 1997.

[8] G. O. Arocena, A. O. Mendelzon, and G. A. Mihaila. Ap-

plications of a Web Query Language, 1997. Available at

http://www.cs.toronto.edu/ websql/www-conf/wsql/PAPER267.html.

[9] R. Baeza-Yates, and B. Ribeiro-Neto. Modern Information Retrieval. Addison

Wesley, 513 p., 1999.

119

BIBLIOGRAPHY 120

[10] A. A. Barfourosh, H. R. M. Nezhad, M. L. Anderson, and

D. Perlis. Information Retrieval on the World Wide Web and Ac-

tive Logic: A Survey and Problem Definition, 2002. Available at

http://citeseer.nj.nec.com/barfourosh02information.html.

[11] R. J. Bayardo, and D. P. Miranker. Processing Queries for First Few An-

swers. In Proc. Conference on Information and Knowledge Management 1996

(CIKM’96), pp. 45-52.

[12] T. Berners-Lee. Semantic Web Roadmap. W3C draft, 2000. Available at

http://www.w3.org/DesignIssues/Semantic.html.

[13] M. Biezunski. Topic Maps at a Glance, 2001. Available at

http://www.infoloom.com/tmsample/bie0.htm.

[14] M. Biezunski, M. Bryan, and S. Newcomb (Eds).

ISO/IEC 13250, Topic Maps, 1999. Available at

http://www.ornl.gov/sgml/sc34/document/0058.htm.

[15] J. Bosak. XML, Java, and the Future of the Web, 1997. Available at

http://www.xml.com/xml/pub/w3j/s3.bosak.html.

[16] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensi-

ble Markup Language (XML) 1.0 (Second Edition), 2000. Available at

http://www.w3.org/TR/REC-xml.

[17] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web

Search Engine, 1998. Available at http://www7.scu.edu.au/programme/-

fullpapers/1921/com1921.htm.

[18] M. J. Carey, and D. Kossmann. On Saying “Enough Already!” in SQL. In

Proc. ACM SIGMOD Conference 1997, pp. 219-230.

[19] M. J. Carey, and D. Kossmann. Reducing the Breaking Distance of an SQL

Query Engine. In Proc. VLDB Conference 1998, pp. 158-169.

[20] K. C. Chang, and S. Hwang. Minimal Probing: Supporting Expensive Pred-

icates for Top-k Queries. In Proc. ACM SIGMOD Conference 2002, pp. 346-

357.

BIBLIOGRAPHY 121

[21] S. Chaudhuri, and L. Gravano. Evaluating Top-k Selection Queries. In Proc.

VLDB Conference 1999, pp. 397-410.

[22] V. Chritophides. Community Webs (C-Webs): Technologi-

cal Assessment and System Architecture, 2000. Available at

http://citeseer.nj.nec.com/christophides00community.html.

[23] CiteSeer Search Engine. Available at http://citeseer.nj.nec.com.

[24] C. W. Cleverdon, J. Mills, and E. M. Keen. An inquiry in testing of infor-

mation retrieval systems. Cranfileld, U.K.: Aslib Cranfield Research Project,

College of Aeronautics, 1966.

[25] W. Cohen. Data Integration Using Similarity Joins and a Word-Based In-

formation Representation Language. ACM Transactions on Information Sys-

tems, 18(3):288-321, 2000.

[26] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Maier, and D. Suciu.

Querying XML Data. Data Engineering, 22(3):10-18, 1999.

[27] A. Deutsch, M. Fernandez, and D. Suciu. Storing Semistructured Data with

STORED. In Proc. ACM SIGMOD Conference 1999, pp. 431-442.

[28] ECDL Workshop on the Semantic Web, Sept. 21, 2000, Lisbon, Portugal.

[29] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms for

Middleware. In Proc. PODS 2001, pp. 102-113.

[30] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Declarative Specification

of Web Sites with STRUDEL. The VLDB Journal, (9):38-55, 2000.

[31] D. Florescu, A. Levy, and A. Mendelzon. Database Techniques for the World

Wide Web: A Survey. ACM SIGMOD Record, 27(3):59-74, 1998.

[32] H. Folch, and B. Habert. Constructing a Navigable Topic Map by Inductive

Semantic Acquisition Methods. In Proc. Extreme Markup Languages 2000.

Available at www.limsi.fr/Individu/habert/Publications/Fichiers/folch-et-

habert00/folch-et-habert00.html.

BIBLIOGRAPHY 122

[33] L. M. Garshol. tolog A Topic Map Query Language, 2001. Available at

http://www.ontopia.net/topicmaps/materials/tolog.html.

[34] L. M. Garshol. Topic Maps, RDF, DAML, OIL: A Comparison, 2001. Avail-

able at http://www.ontopia.net/topicmaps/materials/tmrdfoildaml.html.

[35] R. Goldman, J. McHugh, and J. Widom. From semistructured Data to XML:

Migrating the Lore Data Model and Query Language. In Proc. WebDB 1999,

pp. 25-30.

[36] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivasta. Text Joins in an

RDBMS for Web Data Integration. In Proc. WWW 2003, pp. 90-101.

[37] J. Gwidzka, and M. Chignell. Towards Information Retrieval Mea-

sures for Evaluation of Web Search Engines, 1999. Available at

http://imedia.mie.utoronto.ca/ jacekg/pubs/webIR eval1 99.pdf.

[38] J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A Data Mining

Query Language for Relational Databases. In Proc. SIGMOD’96 Workshop

on Research Issues in Data Mining and Knowledge Discovery (DMKD’96).

[39] D. K. Harman and G. Candela. Retrieving Records from a Gigabyte of

Text on a Minicomputer Using Statistical Ranking. Journal of the American

Society for Information Science, 41(8):581-589, 1990.

[40] R. Himmeröder, G. Lausen, B. Ludascher, and C. Schlepphorst. On a Declar-

ative Semantics for Web Queries. In Proc. International Conference on De-

ductive and Object Oriented Databases 1997 (DOOD’97), pp. 386-398.

[41] I. Horrocks. DAML+OIL: a Description Logic for the Semantic Web. Bulletin

of the IEEE Computer Society Technical Committee on Data Engineering,

25(1):4-9, 2002.

[42] ISO/IEC 13250 Topic Maps standard, 1999. Available at

http://www.y12.doe.gov/sgml/sc34/document/iso13250-2nd-ed-v2.pdf.

[43] M. Kobayashi and K. Takeda. Information Retrieval on the Web. ACM

Computing Surveys, 32(2):144-173, 2000.

BIBLIOGRAPHY 123

[44] D. Konopnicki, and O. Shmueli. W3QL: A Query System for the World

Wide Web. In Proc. VLDB Conference 1995, pp. 54-65.

[45] D. Konopnicki, and O. Shmueli. Bringing Database Functionality to the

WWW. In Proc. International Workshop on the Web and Databases 1998,

pp. 49-55.

[46] R. Ksiezyk. Answer is just a question of matching Topic Maps,

2000. Available at http://www.infoloom.com/gcaconfs/WEB/paris2000/S22-

03.HTM#s22-03tmql.

[47] M. Kutlutürk. Implementation of a Topic Map Data Model for a Web-

based Information Resource, MS. Thesis, Bilkent University, Department of

Computer Engineering, Augusut, 2002.

[48] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A

Brief Survey of Web Data Extraction Tools. SIGMOD Record, 31(2):84-93,

2002.

[49] M. S. Lacher, and S. Decker. On the Integration of Topic Maps and RDF

Data. In Proc. Semantic Web Working Symposium 2001.

[50] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. A Declarative

Language for Querying and Restructuring the Web. In Proc. International

Workshop on Research Issues in Data Engineering 1996, RIDE’ 96, pp. 12-

21.

[51] M. Ley. DBLP Bibliography, 2001. Available at http://www.informatik.uni-

trier.de/̃ley/db/.

[52] L. Li. Metadata Extraction: RelatedToPapers and its Use in Querying. MS.

Thesis, Case Western Reserve Unversity, Department of Electrical Engineer-

ing and Computer Science, August, 2003.

[53] W. S. Li, J. Shim, K. S. Candan, and Y. Hara. WebDB: A Web Query System

and its Modeling, Language, and Implementation. In Proc. IEEE Advances

in Digital Libraries 1998, pp. 216-227.

BIBLIOGRAPHY 124

[54] H. Liefke, and D. Suciu. XMill: an Efficient Compressor for XML Data. In

Proc. ACM SIGMOD Conference 2000, pp. 153-164.

[55] B. Ludascher, R. Himmeröder, G. Lausen, W. May, and C. Schlepphorst.

Managing Semistructured Data with FLORID: A Deductive Object Oriented

Perspective. Information Systems, 23(8):1-25, 1998.

[56] A. Magkanaraki, G. Karvounarakis, T. T. Anh, V. Christophides, and

D. Plexousakis. Ontology Storage and Querying. Technical Report. Foun-

dation for Research and Technology Hellas, Institute of Computer Science,

2002.

[57] G. Mecca, P. Merialdo, and P. Atzeni. Araneus in the Era of XML. Data

Engineering, 22(3):19-26, 1999.

[58] A. O. Mendelzon, G. A. Mihalia, and T. Milo. Querying the World Wide

Web. International Journal of Digital Libraries, 1(1):54-67, 1997.

[59] W. Meng, C. Yu, W. Wang, and N Rishe. Performance Analysis of Three

Text-Join Algorithms. IEEE Transactions on Knowledge and Data Engineer-

ing, 10(3):477-492, 1998.

[60] P. Mishra, and M. H. Eich. Join Processing in Relational Databases. ACM

Computing Surveys, 24(1):63-113, 1992.

[61] Microsoft Developers Network Online Support. Available at

http://support.microsoft.com/servicedesks/msdn.

[62] G. A. Mihaila, L. Raschid, and A. Tomasic. Locating and accessing data

repositories with WebSemantics. VLDB Journal, 11:47-57, 2002.

[63] A. Moffat and J. Zobel. Self Indexing Inverted Files for Fast Text Retrieval.

ACM Transactions on Information Systems, 14(4):349-379, 1996.

[64] Mondeca home page. Available at http://www.mondeca.com.

[65] G. Moore. Topic Map Technology - the state of the art, 2000. Available at

http://www.infoloom.com/gcaconfs/WEB/paris2000/S22-044.htm.

BIBLIOGRAPHY 125

[66] A. Natsev, Y. C. Chang, J. R. Smith, C. S. Li, and J. S. Vitter. Supporting

Incremental Join Queries on Ranked Inputs. In Proc. VLDB Conference 2001,

pp. 281-290.

[67] S. Newcomb, and M. Biezunski. Topic Maps go XML. In Proc. XML Europe

2000.

[68] S. A. Özel, İ. S. Altıngövde, Ö Ulusoy, G. Özsoyoğlu, and Z. M. Özsoyoğlu.

Metadata-based Modeling of Information Resources on the Web. Journal of

the American Society for Information Science and Technology, 55(2):97-110,

2004.

[69] G. Özsoyoğlu, A. Al-Hamdani, İ. S. Altıngövde, S. A. Özel, Ö. Ulusoy, and

Z. M. Özsoyoğlu. Sideway Value Algebra for Object-Relational Databases. In

Proc. VLDB Conference 2002.

[70] G. Özsoyoğlu, İ. S. Altıngövde, A. Al-Hamdani, S. A. Özel, Ö. Ulusoy, and

Z. M. Özsoyoğlu. Querying Web Metadata: Native Score Management and

Text Suport in Databases. submitted to a journal, 2003.

[71] S. Pepper. Euler, Topic Maps, and Revolution. In Proc. XML Europe 1999.

Available at http://www.infoloom.com/tmsample/pep4.htm.

[72] H. H. Rath, and S. Pepper. Topic Maps at Work. C. F. Goldfarb and P.

Prescod (eds): XML Handbook, 2nd edition, Prentice Hall, 1999.

[73] Resource Description Framework (RDF) Model and Syntax Specification.

W3C Recommendation, 1999. Available at http://www.w3.org/TR/REC-rdf-

syntax/.

[74] A. Sahuguet. Everything You Ever Wanted to Know About DTDs, But Were

Afraid to Ask. In Proc. WebDB 2000, pp. 69-74.

[75] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.

[76] M. Samalpasis, J. Tait, and C. Bloor. Evaluation of Information Seeking

Performance in Hypermedia Digital Libraries. Interacting with Computers,

10(3):269-284, 1998.

BIBLIOGRAPHY 126

[77] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient Relational

Storage and Retrieval of XML Documents. In Proc. WebDB 2000, pp. 47-52.

[78] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and

J. Naughton. Relational Databases for Querying XML Documents: Limi-

tations and Opportunities. In Proc. VLDB Conference 1999.

[79] Techquila. TM4J A Free Topic Map Construction Tool. Available at

http://www.techquila.com.

[80] TREC (Text REtrieval Conference) Home Page. Available at

http://trec.nist.gov/.

[81] A. N. Vo, O. Krester, and A. Moffat. Vector-Space Ranking with Effective

Early Termination. In Proc. ACM SIGIR 2001, pp. 35-42.

[82] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing

and Indexing Documents and Images. Morgan Kaufmann, 1999.

[83] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin, and C. G. Nevill-

Manning. KEA: Practical Automatic Keyphrase Extraction. In Proc. Fourth

ACM Conference on Digital Libraries 1999, pp. 254-255.

[84] Extensible Markup Language (XML) 1.0, 1998. Available at

http://www.w3.org/TR/REC-xml.

[85] Y. Yang, and M. Singhal. A Comprehensive Survey of Join Techniques in

Relational Databases. Technical Report. Ohio State University, Computer and

Information Science, 1997.

Appendix A

Extended SQL Queries Used in

Experiments

The Appendix includes the extended SQL statements of the queries that were

run over the Stephen King metadata database during the performance evaluation

experiments of our metadata-based Web querying system.

A.1 Queries Involving SVA Operators

In this section, we provide the extended SQL statements and the logical query

trees for the queries that include at least one SVA operator and were run over the

Stephen King metadata database for the first part of the performance experiments

(see Section 6.3.1).

S.King Query 1: (SVA Selection) Using the advice at www.Stephen-

King.com/advice, find the names and URLs of 25 highest topic importance ranked

novels having titles most similar to the string “dark tower”. Return only the URLs

of the topic sources of type “bibliography”, and employ a product based topic

importance propagation function.

127

APPENDIX A. EXTENDED SQL QUERIES USED IN EXPERIMENTS 128

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.TSRef S

where T.TType=“Novel” and

T.TName ∼= “Dark Tower” and

T.TId in S.TId and

S.Role=“bibliography”

propagate importance as product function of T

stop after 25 most important

 URLTName,Π

 ORDER BYimportance

 L
 L.TId in R.TId

*

Tower")Dark "Sim(TName,*finfout 25,
Novel""TType and Tower"Dark "TName

==
=≅

k

σ hy"bibliograp"Role=σ

 DB.Topics DB.TSRef

Figure A.1: Query tree for S. King query 1

S.King Query 2: (SVA Directional Join) Using the advice at www.Stephen-

King.com/advice, for each novel written by Stephen King, find 5 movies or tv-

films having titles most similar to the title of the novel. Return their sources

of type “summary”, and employ a product based topic importance propagation

function.

select T1.TName, S1.URL, T2.TName, T2.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T1, DB.Topics T2, DB.Topics T3,

APPENDIX A. EXTENDED SQL QUERIES USED IN EXPERIMENTS 129

DB.TSRef S1, DB.TSRef S2, DB.WrittenBy M

where T1.TType = “Novel” and

(T2.TType =“movie” or T2.TType =“tv-film”) and

T3.TType= “Author” and

T3.TName= “Stephen King” and

T3.TId = M.Ant-Id and T1.TId = M.Cons-Id and

T1.TName ∼=(dir,k=5) T2.TName and

T1.TId in S1.TId and T2.TId in S2.TId and

S1.Role=“summary” and S2.Role=“summary”

propagate importance as product function of T1, T2

 S2.URL.T2.TName,S1.URL,T1.TName,Π

 *
 k=5, fout=flin*frin*Sim(L.TName,R.TName)

 L R

 L.TId in R.TId L.TId in R.TId

 R

 summary"" Role =σ

 L.Cons-Id=R.Tid summary"" Role =σ film"-tv"or movie"" TType =σ

 DB.TSRef
 Novel"" TType =σ

 L.Tid=R.Ant-Id DB.TSRef DB.Topics
 DB.Topics

King"Stephen " TName
and Author"" TType

=
=σ DB.WrittenBy

 DB.Topics

Figure A.2: Query tree for S. King query 2

S.King Query 3: (SVA Topic Closure) Using the advice at www.Stephen-

King.com/advice, find the titles and URLs of 20 highest importance-valued novels

such that the selected novels are prerequisite to the novel having the title “Wizard

& Glass”. Return their “description” type of sources.

APPENDIX A. EXTENDED SQL QUERIES USED IN EXPERIMENTS 130

select T2.TName, S2.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.Topics T1, DB.Topics T2, DB.Prerequisite M,

DB.TSRef S2

where T1.TName= “Wizard & Glass” and

T1.TType= “Novel” and

T2.TId in Prerequisite*(T1.TId, T, M) and

T2.TId in S2.TId and

S2.Role=“description”

topic closure importance computation as

product function within a path and as

max function among multiple paths

stop after 20 most important

S.King Query 4: (User Profile) Using the advice at www.Stephen-

King.com/advice, and the user profile at www.StephenKing.com/user, find the

titles and URLs of 10 highest importance-valued novels such that the selected

novels are related to the novel having the title “Night Journey”. Return their

“description” type of sources. Assume that the user wants to see topics having

the string “Green Mile” in the query output.

select T2.TName, S2.URL

using advice at www.StephenKing.com/advice as database DB

using profile at www.StephenKing.com/user as database U

from DB.Topics T, DB.Topics T1, DB.Topics T2, DB.RelatedTo M,

DB.TSRef S2

where T1.TName= “Night Journey” and

T1.TType= “Novel” and

T2.TId in RelatedTo*(T1.TId, T, M) and

T2.TId in S2.TId and

S2.Role=“description”

topic closure importance computation as

product function within a path and as

APPENDIX A. EXTENDED SQL QUERIES USED IN EXPERIMENTS 131

 URLTName,Π

 ORDER BYimportance

 L

 L.TId in R.TId

 on""descriptiRole=σ

 TCLOSURE
 k=20,FPath=*,FPathMerge=Max DB.TSRef

Novel""TType and
Glass" & Wizard"TName

=
≅σ

 DB.Topics DB.Prerequisite

 DB.Topics

Figure A.3: Query tree for S. King query 3

max function among multiple paths

stop after 10 most important

S.King Query 5: Using the advice at www.StephenKing.com/advice, find

the titles and URLs of 10 highest importance-valued novels such that the selected

novels are related to the novel having the title “Night Journey”. Return their

“description” type of sources.

select T2.TName, S2.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.Topics T1, DB.Topics T2, DB.RelatedTo M,

DB.TSRef S2

APPENDIX A. EXTENDED SQL QUERIES USED IN EXPERIMENTS 132

 URLTName,Π

 ORDER BYimportance

 L

 L.TId in R.TId

 on""descriptiRole=σ

 TCLOSURE
 k=10,FPath=*,FPathMerge=Max DB.TSRef

Novel""TType and
Journey"Night "TName

=
≅σ

 mile*""*green like TNameσ DB.RelatedTo

 DB.Topics DB.Topics

 Figure A.4: Query tree for S. King query 4

where T1.TName= “Night Journey” and

T1.TType= “Novel” and

T2.TId in RelatedTo*(T1.TId, T, M) and

T2.TId in S2.TId and

S2.Role=“description”

topic closure importance computation as

product function within a path and as

max function among multiple paths

stop after 10 most important

APPENDIX A. EXTENDED SQL QUERIES USED IN EXPERIMENTS 133

 URLTName,Π

 ORDER BYimportance

 L

 L.TId in R.TId

 on""descriptiRole=σ

 TCLOSURE
 k=10,FPath=*,FPathMerge=Max DB.TSRef

Novel""TType and
Journey"Night "TName

=
≅σ

 DB.Topics DB.RelatedTo

 DB.Topics

 Figure A.5: Query tree for S. King query 5

A.2 Queries Not Involving SVA Operators

This section presents the extended SQL statements of the queries that do not

include any SVA operator and were run over the Stephen King metadata database

for the second part of the performance experiments (see Section 6.3.2). The

queries given in this section can also be formulated as keyword queries.

S. King Query 1: Find all novels written by Stephen King.

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.Topics T1, DB.WrittenBy M, DB.TSRef S

where T.TId=M.Cons-Id and

APPENDIX A. EXTENDED SQL QUERIES USED IN EXPERIMENTS 134

T1.TName=“Stephen King” and T1.TType=“Author” and

M.Ant-Id=T1.TId and T.TId in S.TId

order by S.S-advice desc

S. King Query 2: Find reviews for the novel “Carrie”.

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.TSRef S

where T.TName=“Carrie” and T.TType = “Novel” and

T.TId in S.TId and S.Role = “review”

order by S.S-advice desc

S. King Query 3: Find biography of Stephen King.

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.TSRef S

where T.TName=“Stephen King” and T.TType = “Author” and

T.TId in S.TId and S.Role = “biography”

order by S.S-advice desc

S. King Query 4: Find the list of Stephen King books published in year

1999.

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.PublicationYear M, DB.WrittenBy M2,

DB.Topics T1, DB.Topics T2, DB.TSRef S

where T.TId=M.Ant-Id and

T1.TName=1999 and T1.TId=M.Cons-Id and

T.TId=M2.Cons-Id and T2.TId=M2.Ant-Id and

T2.TName=“Stephen King” and T.TId in S.TId

APPENDIX A. EXTENDED SQL QUERIES USED IN EXPERIMENTS 135

S. King Query 5: Find commercial sites for the novel “Dark Half”.

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.TSRef S

where T.TName=“Dark Half” and T.TType=“Novel” and

T.TId in S.TId and S.Role=“commercial”

order by S.S-advice desc

S. King Query 6: Find all novels of Stephen King, which are not published

by “Viking”.

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.PublisherOf M, DB.WrittenBy M2,

DB.Topics T1, DB.TSRef S

where T.TId=M.Ant-Id and

M.Cons-Id not in (select T1.TId

from DB.Topics T1

where T1.TName=“Viking” and

T1.TType=“Publisher”) and

T.TId=M2.Cons-Id and T1.TId=M2.Ant-Id and

T1.TName=“Stephen King” and T.TId in S.TId

order by S.S-advice desc

S. King Query 7: Find the latest work of Stephen King.

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.PublicationYear M, DB.WrittenBy M2,

DB.Topics T1, DB.TSRef S

where T.TId=M.Ant-Id and

APPENDIX A. EXTENDED SQL QUERIES USED IN EXPERIMENTS 136

M.Cons-Id in (select max(T1.TId)

from DB.Topics T1

where T1.TType=“Year-Id”) and

T.TId=M2.Cons-Id and T1.TId=M2.Ant-Id and

T1.TName=“Stephen King” and T.TId in S.TId

order by S.S-advice desc

S. King Query 8: Find the description or summaries of all movies and

tv-films based on the novel “Dark Half”.

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.Topics T1, DB.BasedOn M, DB.TSRef S

where T1.TName=“Dark Half” and T1.TType=“Novel” and

(T.TType=“Movie” or T.TType =“Tv-film”) and

T.TId=M.Cons-Id and T1.TId=M.Ant-Id and

T.TId in S.TId and

(S.Role=“description” or S.Role=“summary”)

order by S.S-advice desc

S. King Query 9: Find the description or summaries of all movies and

tv-films based on the novel “Night Shift”.

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.Topics T1, DB.BasedOn M, DB.TSRef S

where T1.TName=“Night Shift” and T1.TType=“Novel” and

(T.TType=“Movie” or T.TType =“Tv-film”) and

T.TId=M.Cons-Id and T1.TId=M.Ant-Id and

T.TId in S.TId and

(S.Role=“description” or S.Role=“summary”)

order by S.S-advice desc

APPENDIX A. EXTENDED SQL QUERIES USED IN EXPERIMENTS 137

S. King Query 10: Find the publication year and the publisher of the book

“Dead Zone”.

select T.TName, T1.TName, T2.TName

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.Topics T1, DB.Topics T2

DB.PublisherOf M, DB.PublicationYear M2

where T.TName=“Dead Zone” and T.TType=“Novel” and

T.TId=M.Ant-Id and T1.TId=M.Cons-Id and

T.TId=M2.Ant-Id and T2.TId=M.Cons-Id

S. King Query 11: Find the summary and characters of the book “Dream-

catcher”.

select T.TName, S.URL

using advice at www.StephenKing.com/advice as database DB

from DB.Topics T, DB.TSRef S

where T.TName=“Dreamcatcher” and T1.TType=“Novel” and

T.TId in S.TId and

(S.Role=“character” or S.Role=“summary”)

order by S.S-advice desc

Extended SQL statements for the queries that do not include any SVA op-

erator and were run over the DBLP Bibliography metadata database are very

similar to the above statements.

