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Abstract. This manual is the primary guide to the Harbinger Machine
Learning Toolkit (HMLT), which provides implementations for some
well-known and frequently used machine learning classifiers. The main
concerns in development of HMLT are correctness, effectiveness, trans-
parency, modularity, and re-usability. At the moment, efficiency is not
claimed to be a primary concern in any part of the toolkit. This is ba-
sically due to the fact that all supported classifier implementations use
common representations and data structures, preventing further utiliza-
tion and employment of some classifier-specific optimizations. However,
we believe that the toolkit is quite robust and supposed to successfully
execute under most circumstances.

1 Introduction

The Harbinger Machine Learning Toolkit (HMLT) is a general-purpose machine
learning toolkit. It currently supports ten different machine learning classifiers
including the naive Bayesian and k-nearest neighbor classifiers. The toolkit uses
a common format for storing and reading the data sets. In this format, aliases can
be defined for attribute values preventing repetition of long strings. Moreover,
this format allows using both dense matrix and sparse matrix representations
for the data sets. Hence, for problems with high attribute dimensions (like text
categorization), sparse matrix format can be used to save storage space and
reduce the I/O time. As well as classifiers, the toolkit offers a wrapper program to
ease the validation process. By means of this wrapper, the user can easily perform
cross-validation, leave-1-out validation, and some other validation techniques
over the data set. This eliminates the need for writing an extra piece of code to
partition the instance set into train and test sets for each data set at hand.
The outline of the manual is as follows. In Section 2, we provide some back-
ground information on the supported classifiers. In Section 3, the details of the
HMLT data set format used by the classifiers are presented on an example. In
Section 4, the installation procedure is described. In Section 5, we provide the
command line options for the classifiers. In Section 6, we briefly mention the
wrapper program and its options. In Section 7, we underline the limitations of
the current version and point at the work under progress. Finally, in Section 8,
we provide contact addresses and pointers to machine learning sites in the Web.

* The original and up-to-date version of this document can be obtained from
http://www.cs.bilkent.edu.tr/ “berkant /coding/harbinger.



2 Supported Classifiers

We present the classifiers supported by HMLT under four main headings: instance-
based classifiers, probabilistic classifiers, symbolic learning classifiers, and neural
network classifiers. The reader is assumed to be aware of the theoretical and
practical details of these classifiers. Hence, here we provide only a very brief and
rough description of the implemented classifiers.

2.1 Instance-Based Classifiers

k-nearest neighbor (k-NN), k-nearest neighbor with feature projections (k-NN-
FP), and k-means classifiers are the supported classifiers of this type. k-NN and
its derivations (like weight adjusted k-NN) are among the most frequently used
classifiers. This type of classifiers are able to capture the local properties in the
data, but fail to capture the global features of a data set. These classifiers perform
the entire work in the test phase, where all test instances are compared with
the training instances and, for each test instance, the most similar N training
instances are determined. Depending on the classes of these NNV training instances,
a prediction about the class of the test instance is made.

For the k-NN classifier, HMLT supports three different distance measures
for finding the similarity of two instances: cosine similarity measure, Euclidean
distance measure, and Manhattan distance measure. After the most similar N
instances are found, the class of an instance can be predicted using majority
voting or similarity score summing. Similarly, for k-NN-FP, majority voting or
similarity score summing can be used to make the final decision on class selection.

2.2 Probabilistic Classifiers

Currently, the only supported classifier under this category is the naive Bayesian
classifier. In contrast to instance-based classifiers, the naive Bayesian classifier
tries to capture the global properties of a data set. It operates only on data sets
with categorical attributes. In the training phase of this classifier, the probability
that a class value will be observed when an input attribute value is observed is
calculated. In the test phase, for each instance, these probabilities are multiplied
depending on the attribute values of the test instance. For each class value, a
probability is calculated and the class with the highest probability is selected as
the predicted class. Despite its assumption that attributes appear independent
of each other, naive Bayesian performs quite well in most data sets.

2.3 Symbolic Learning Classifiers

The supported classifiers of this type are the covering rules (PRIM) and 1-rule
classifiers. The covering rules classifier aims to produce human-understandable
rules for classifying the test instances. During the training phase, each class
value is visited. For each class value, using the training instances, a set of rules



that will cover all training instances with that class value is generated. Later,
these rules are used for classification of test instances. This classifier works on
categorical attributes. An instance can be classified by more than one rule as
belonging to many classes. In this case, a majority voting scheme can be used,
or the most frequently appearing class can be assigned as the predicted class.

1-rule classifier is a similar but simpler version of covering rules classifier. It
produces its rules depending on the values of just a single attribute. Although
being a rather naive classifier, for small data sets with a few important attributes,
this classifier produces surprisingly good results.

2.4 Neural Network Classifiers

The supported neural network classifiers include perceptron, back-propagation,
Kohonen, and Hopfield networks. All classifiers in this category convert their
input attribute values to -1 and 1, by taking the sign of actual input attribute
values. Compared to other classifiers, the training phase is quite slow in this type
of classifiers. It may take a large number of iterations to find a local optimum.
Hence, it is wise to limit the epoch counts in most cases.

Perceptron is the simplest of neural networks. It acts as a black box, which
maps a given input instance to an output class value. Back-propagation neural
network is a more enhanced classifier. It is known to be outperforming perceptron
neural network in many applications. However, due to the massive amount of
computations performed, it is relatively slower. Our implementation of back-
propagation neural network constructs a three layer (input, hidden, and output
layers) network. This classifier can be used both for classification and regression
problems.

Kohonen and Hopfield networks are examples of unsupervised classifiers. In
fact, these two are clustering algorithms rather than classification algorithms.
However, created clusters can be used for classification purposes. In Hopfield
neural networks, the class values of the training instances is not utilized at all.
In Kohonen network, they are used just for calibration purposes.

3 Harbinger Data Set Format

Throughout this discussion on the data set format, we assume that we work on
a data set containing a total of m instances (examples), n input attributes (fea-
tures), and a single output attribute (class). All classifiers expect the information
about the data set and its content to be initially distributed and stored under
four separate files in the disk. These four files are pure text files, each starting
with a common name, <data set>, where <data set> is a name representing
the data set. The file extensions for the files are fixed and are .info, .insts,
.attrs, and .DMR. For example, a data set about cancer can be stored under
the files cancer.info, cancer.insts, cancer.attrs, and cancer.DMR. In all
files, the lines starting with a # character are treated as comment lines and are
ignored together with white spaces. All files are case-sensitive.



We describe the details of these files on an example. Assume that we have a
data set about humans. Each instance in our data set represents a human being.
Let each human being has the input attributes skin color, age, weight, and the
output attribute gender. In other words, by using the skin color, age, and weight
of a human, we are trying to predict its gender. Since we have four attributes,
in this particular example, n=4.

.insts file:

<data set>.insts file contains information about the labels of the instances.
Each line in this file corresponds to a label identifying an instance. In our case,
it contains human names:

# human.insts
# containing human names
# m=5

Berkant
Barla
John
Marry
Sandra

The use of this file is not obligatory. In the absence of the <data set>.insts
file, each instance is given a unique name starting from Inst{ through Instm.

.attrs file:

This file keeps the labels used for the attributes and optionally the labels for
the attribute values. The <data set>.attrs file is also optional. If the file is not
present, default attribute names Attr through Attrn are assigned as the labels
for the attributes. In our human data set, human.attrs file contains something
like the following;:

# human.attrs
# containing human attributes
# n=4

eyeColor
age
weight
gender

In the HMLT data set format, attributes may have three types of values:
categorical, ordinal, or numeric. In our example, eye color and gender are cate-
gorical attributes, age is an ordinal attribute, and weight is a numeric attribute.
We can further include this information in the human.attrs file as follows:



# human.attrs
# containing human attributes
# n=4

eyeColor C
age O
weight N
gender C

The letters C, O, and N indicate the attribute being categorical, ordinal, and
numeric, respectively. In the absence of this information, the convention is to
assume all attributes as categorical. However, even if a single numeric value is
detected for an attribute, while reading the data set content, that attribute is
assumed to be of type numeric. For example, by reading the weight 54.5 for the
instance Marry, the code can decide that the weight attribute is numeric.

It is possible to define aliases for categorical attribute values. This can be
done by inserting <value>:<alias> pairs in the <data set>.attrs file. This
way, we can avoid repeating the same string in the <data set>.DMR file and save
some storage space. For example, we can use the value 0 to represent male, and 1
to represent female genders, and then define them as aliases in the human.attrs
file. Hence, we do not repeat the strings male and female in the original data file
<data set>.DMR. The sample human.attrs file can be created like this:

# human.attrs
# containing human attributes
# n=4

eyeColor C O:black 1l:brown 2:green 3:blue
age O

weight N

gender C O:male 1:female

.DMR and .SMR files:

The attribute values are stored in the <data set>.DMR file. This file contains
an mxn matrix, where the rows represent the instances and the columns are the
attributes. Our example human.DMR file is as follows:

# human.DMR
# containing attribute values
mXn=5X4

**

34 67.3
48 53.
34 78.
78 b51.
49 55.

N OO W

0
21
00
21
21



For some applications, DMR (dense matrix representation) format is not
appropriate. In case the number of attributes is large and attribute values are
mostly zero, using SMR (sparse matrix representation) format may be better.
Hence, as an option, it is possible to store attribute values in SMR, format in the
<data set>.SMR file. The above example can be stored in the human.SMR file as
follows:

# human.SMR
# containing non-zero attribute values

Note that, in this representation, for the first instance, the value of the out-
put attribute is not stored. While the data is read, it is implicitly assumed to be
zero. For small data sets, DMR format is usually the better choice and vice versa.

.info file:

In the <data set>.info file, some general information about the data set is
supplied. This information includes the type of the storage format used (DMR
or SMR) and the total number of instances and attributes in the data set. The
<data set>.info file also contains information about the partitioning of train-
ing and test instances, and selection of the attributes that will be used as input
and output attributes. The sample human. info file is as follows:

# human.info
representationType DMR

totalInstanceCount 5
trainInstances 1-3 5
testInstances 4

totalAttributeCount 4
inputAttributes 1-3
outputAttribute 4

The tags used in this file and their meanings are as follows:

— representationType: The storage format used for keeping the attribute val-
ues. It can be DMR or SMR. Depending on this information, the appropriate
<data set>.DMR or <data set>.SMR file is fetched from the disk.



— totallnstanceCount: Shows how many instances are expected. Instance labels
beyond this count are ignored.

— trainInstances: Shows which instances will be used for training. “-”

be used to denote intervals, as in 1-3.

sign can

— testInstances: Shows the instances to be predicted.

— totalAttributeCount: Shows how many attributes are expected. Attribute la-
bels beyond this count are ignored.

— inputAttributes: Shows the input attributes that will be used for prediction.

— outputAtiribute: Shows the output attribute we are trying to predict.

Any tag other than these is accepted to be an erroneous tag. All indices
in the <data set>.info file start from 1. For instances and attributes, the
indices beyond totallnstance Count and totalAttribute Count are treated as errors,
respectively. The output attribute need not be the last one. We can simply
modify the <data set>.info file to predict the eye color of a human by using
its age and gender attributes as follows:

# human.info
representationType DMR

totalInstanceCount 5
trainInstances 1-5
testInstances 1-5

totalAttributeCount 3
inputAttributes 2 3
outputAttribute 1

In this example, totalAttributeCount is 3 since we no longer use the weight
attribute. We use all instances both for training and testing purposes. No other
modification is necessary in any of the remaining three files.

4 Installation

HMLT has been successfully installed, compiled, and executed on Linux, Unix,
and Windows platforms. For Windows installation, Cygwin was used. Installa-
tion of HMLT is rather straightforward:

— Download and move harbinger.tar.gz file into the directory where you
want to install HMLT.



— Type the following to unzip the file:
gunzip harbinger.tar.gz

— Now, extract the files by:
tar xvf harbinger.tar.gz

— This will create a directory named Harbinger in the current directory and
extract the source files under it.
— Now, move into the Harbinger directory and run the installation script:

cd Harbinger
./install

— This will compile the source codes. For each classifier, there is an associated
directory. Both the source codes and executables of a classifier are kept in
corresponding directories. Also, a library, which is common to all classifiers
is compiled under the 1ib directory. Symbolic links are created under the
bin directory. The wrapper program is installed in the tester directory.

— You may need to modify some parts of the installation script depending on
your system configuration (the lines at the top of the script).

5 Toolkit Options

In this section, we provide a list of the command line parameters that classifiers
accept. Some options are common to all classifiers, whereas some are classifier-
specific.

5.1 Options Common to All Classifiers

-h : Prints the command line options for a classifier.

-iv <verbosity level>: Sets instance verbosity (1:Low, 2:Medium, 3:High). If
verbosity is low only the name of the instance is displayed. When medium, the
class value is also displayed. If verbosity is high, the input attribute values are
also displayed. But, this may be annoying if there are too many attributes in
the data set.

-cv <verbosity level>: Sets classifier verbosity (0:None, 1:Low, 2:Medium,
3:High). The meaning of classifier verbosity depends on the classifier used. But,
in general, if verbosity is none, only the accuracy and timing information is dis-
played. If it is low, test instances together with predictions made for them is
printed.



-M <classification model>: Sets classification model (1, 2, 3, 4). In the first
model, all attribute values are used both for training and testing. In the sec-
ond model, only the non-zero values of the test instances are used. In the third
model, only the non-zero values of the training instances are used. In the fourth
model, only the non-zero values of the instances are used.

-f <path>: Sets the location of the dataset to be read. For example, to read the

human data set from the current directory, this option should take the parameter
./human.

5.2 Classifier-Specific Options

Options for k-NN classifier:
-N <number of neighbors>: Sets the number of neighbors to be found.

-dm <distance metric>: Sets the distance metric used (c:cosine similarity,
e:Euclidean distance, m:Manhattan distance).

-vm <voting metric>: Sets the voting metric used (m:majority voting, s:similarity
voting).

Options for k-NN-FP classifier:
-N <number of neighbors>: Sets the number of neighbors to be found.

-vin <voting metric>: Sets the voting metric used (m:majority voting, s:similarity
voting).

Options for k-means classifier:

No options.

Options for naive Bayesian classifier:
No options.

Options for covering rules classifier:
No options.

Options for 1-rule classifier:

No options.



Options for perceptron neural network classifier:
-tr: Trains the network.

-ts: Tests the network. If the -tr option is not used, the testing is performed
using the initial, randomly generated weight matrix.

-lc <learning constant>: Sets the learning constant.

-er <minimum error>: Sets the minimum error before convergence. If this error
is obtained over the training set, the training algorithm stops.

-ep <maximum epoch count>: Sets the maximum epoch count before conver-
gence. If this epoch count is reached, the training algorithm stops.

Options for back-propagation neural network classifier:
-tr: Trains the network. Saves the weight matrix to the disk.

-ts: Tests the network. If the -tr option is not used, the testing is performed
using the weight matrix read from the disk.

-lc <learning constant>: Sets the learning constant.
-mc <momentum constant>: Sets the momentum constant.
-N <hidden layer neuron count>: Sets the number of hidden layer neurons.

-er <minimum error>: Sets the minimum error before convergence. If this error
is obtained over the training set, the training algorithm stops.

-ep <maximum epoch count>: Sets the maximum epoch count before conver-
gence. If this epoch count is reached, the training algorithm stops.

-tt <test type>: Sets the test type (r:regression, c:classification). If the test
type is classification, output attribute must have categorical values. Otherwise,
it must have ordinal or numeric values.

Options for Kohonen neural network classifier:

-tr: Trains the network.

-ts: Tests the network. If the -tr option is not used, the testing is performed
using the initial, randomly generated weight matrix.



-lc <learning constant>: Sets the learning constant.

-ep <maximum epoch count>: Sets the maximum epoch count before conver-
gence. If this epoch count is reached, the training algorithm stops.

Options for Hopfield neural network classifier:
-tr: Trains the network.

-ts: Tests the network. If the -tr option is not used, the testing is performed
using the initial, randomly generated weight matrix.

6 The Wrapper

It is possible to run each classifier as a stand-alone application. However, HMLT
also supplies a wrapper program to release the burden of modifying the .info
file for each experiment. if the wrapper is not used, in order to perform cross-
validation over a data set, the .info file must be edited before each run. The
wrapper offers several validation techniques and hides the details of partitioning
the instance set. The options for the wrapper are as follows:

-h : Prints the command line options for the wrapper.
-v <verbosity level>: Currently this option is not used.

-vt <validation type>: Sets the validation type (can be one of exact, cv, scv,
1o, all). If it is set to exact, the current .info file is used without any mod-
ification. If it is set to cv or scv, the data set is IN-fold cross validated, by
partitioning the data set into N pieces and running the classifier N times. In
each run a different piece of data set is used for testing, and the average of the
results is calculated as the final result. scv is different than cv in that the in-
stance set is shuffled before partitioning. 11o stands for leave-1-out validation.
This is equivalent to m-fold cross validation. If validation type is set to all, the
entire instance set is used for both training and testing.

-N <fold count>: Sets the fold count in cross validation.

-e <command>: Sets the command (i.e., the classifier) to be executed. This option
must always be given as the last option to the wrapper.

The example below executes the k-NN classifier over the human data set and
performs shuffled, 10-fold cross-validation.

tester -v 3 -vt scv -N 10 -e ../knn/knn -iv 2 -cv 2 -M 1 -N 5
-dm e -vm m -f ../data/human



7 Limitations and Future Work

The following are the limitations of the current version:

— No handling of missing values. This will hopefully be implemented in the
future versions.

— No support for feature extraction (or weighting).

— The parser code for the input files should be enhanced and made more flex-
ible.

The following are among our future plans:

— Addition of new classifiers, including C4.5 decision tree algorithm and clas-
sification rules algorithm.

— Optimization of the code.

— A graphical front-end to the classifiers.

8 Contact Points and References

The Harbinger Machine Learning Toolkit is under continuous modification. Please,
feel free to report any improvements, suggestions, and bugs you came across. Any
contributions are welcome. The following are the contact points:

— Harbinger Machine Learning Toolkit homepage:
http://www.cs.bilkent.edu.tr/ berkant/coding/harbinger
— Email address:
berkant@cs.bilkent.edu.tr
— Phone:
+90 312 2902092

The following are some pointers to the machine learning sites in the Web:

http://www.kdnuggets.com/

— http://www.ics.uci.edu/"mlearn/

http://www-dsi.ing.unifi.it/neural/w3-sites.html

http://directory.google.com/Top/Computers/Artificial _
Intelligence/Machine_Learning/Datasets/

http://dir.yahoo.com/Science/computer_science/artificial_
intelligence/machine_learning/



