
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Hypergraph-Partitioning-Based Remapping

Models for Image-Space-Parallel Direct

Volume Rendering of Unstructured Grids

B. Barla Cambazoglu and Cevdet Aykanat

This work is partially supported by The Scientific and Technical Research Council of Turkey under project

EEEAG-199E013.

B. Barla Cambazoglu is with the Computer Engineering Department, Bilkent University, Ankara, Turkey.

E-mail: berkant@cs.bilkent.edu.tr

Cevdet Aykanat is with the Computer Engineering Department, Bilkent University, Ankara, Turkey.

E-mail: aykanat@cs.bilkent.edu.tr

March 7, 2005 DRAFT

1 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Abstract

In this work, image-space-parallel direct volume rendering (DVR) of unstructured grids is investigated

for distributed-memory architectures. A hypergraph-partitioning-based model is proposed for the adaptive

screen partitioning problem in this context. The proposed model aims to balance the rendering loads of

processors while trying to minimize the amount of data replication. In the parallel DVR framework we

adopted, each data primitive is statically owned by its home processor, which is responsible from replicating

its primitives on other processors. Two appropriate remapping models are proposed by enhancing the

above model for use within this framework. These two remapping models aim to minimize the total

volume of communication in data replication while balancing the rendering loads of processors. Based on

the proposed models, a parallel DVR algorithm is developed. The experiments conducted on a PC cluster

show that the proposed remapping models achieve better speedup values compared to the remapping

models previously suggested for image-space-parallel DVR.

Keywords

direct volume rendering, unstructured grids, ray casting, image space parallelization, hypergraph

partitioning, screen partitioning, remapping.

I. Introduction

A. Direct Volume Rendering

Direct volume rendering (DVR) is a popular volume visualization technique [16], em-

ployed in exploration and analysis of 3D data grids used by scientific simulations. DVR

applications are rather important in that they foster research studies by letting scientists

have better visual understandings of the problems under investigation. In the last decade,

DVR research has been accelerated due to the ever-growing size and use of numeric sim-

ulations and the need for fast and high-quality rendering. Today, DVR finds application

in a wide range of research fields that require interpretation of large volumetric data.

In many scientific simulations, data values are located at the vertices (data points) of a

3D grid that represents a physical phenomena. The connectivity between vertices shapes

volumetric primitives (cells) of the grid and forms a volumetric dataset to be visualized.

Unstructured datasets, which are mainly used in disciplines such as fluid dynamics, shock

physics, and thermodynamics, are a special type of grid-based volumetric datasets. The

data points in unstructured grids are irregularly distributed. The lack of implicit adjacency

information between cells, the high amount of cell size variation, and the large size of the

datasets make rendering these grids a challenging problem.

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 2

sampling point

front−facing external face

back−facing external face

screen

data point

screen pixel

ray segment
internal face

Fig. 1. Ray-casting-based DVR of unstructured grids with mid-point sampling.

The aim of DVR is to map a set of scalar or vectorial values (e.g., pressure, temperature,

velocity) defined throughout a 3D data grid to some color values, which form a 2D image

on the screen. Unlike surface-based rendering techniques, no intermediate representations

are generated for the data. Instead, the volume is treated as a whole, and the color is

formed by a series of sampling and composition operations performed within the volume.

In general, the image is generated by iterating over the object space (data space) or

image space (screen space) primitives. Object space (OS) methods [7], [17], [20], [32] visit

volumetric data primitives and compute their color contributions on the screen. Image

space (IS) methods [26], [28], [45] visit screen pixels and assign a color value to each pixel

by compositing the samples taken along the rays fired from the pixels into the volume.

In this work, a slightly modified version of Koyamada’s IS DVR algorithm [26] is used

as the underlying sequential DVR algorithm. In this algorithm, projected areas of all

front-facing external faces of grid cells (in our case, tetrahedral cells) are scan converted

to find the pixels covered on the screen. From each such pixel a ray is shot into the

volume, and a ray segment is generated between a front-facing external face and a back-

facing external face (Fig. 1). Ray segments are traversed using the adjacency information

between cells. While traversing a ray segment, intersection tests are performed between

the ray segment and cell faces to find the points where the ray segment leaves the cells.

The exit points found are used as the entry points for the following cells. After the entry

and exit points of a cell are computed, some sampling points are determined along the ray

segment within the cell. The number and location of the sampling points depend on the

sampling technique used. In mid-point sampling, which is frequently used for unstructured

DRAFT March 7, 2005

3 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

grids, a single sampling point, located in the middle of the entry and exit points, is used.

At each sampling point, new sampling values are computed by interpolating the data

values at the data points of the cell which contains the sampling point. The sampling

values are passed from transfer functions, and corresponding color and opacity values are

calculated. These values are composited in visibility order, and the color generated for the

ray segment is put in the respective pixel’s buffer. Due to the concavity of the volume,

there may be more than one ray segment generated for the same pixel, and hence more

than one color value may be stored in the same pixel buffer. After all ray segments are

traversed, the colors in pixel buffers are composited in visibility order, and the final colors

on the screen are generated. Since the rays shot from nearby pixels of the screen are

likely to pass through the same cells, IS coherency is utilized by this algorithm. Since the

adjacency information between cells is used, OS coherency is also utilized.

B. Parallel DVR

Due to the excessive amount of sampling and composition operations, DVR algorithms

suffer from a considerable speed limitation. Moreover, memory needs of recent datasets are

beyond the capacities of today’s conventional computers. These render sequential DVR

algorithms inadequate for practical use. In the literature, parallel DVR algorithms exist

for shared-memory [48], [49], distributed-memory [3], [5], [30], [31], [38], and distributed-

shared-memory [11], [12], [18], [21] architectures. Our work considers distributed-memory

parallel DVR, in which OS or IS parallelization approaches can be followed.

OS-parallel methods [5], [30], [31] partition the data into subvolumes and assign them

to processors. Each processor locally renders its subvolume and produces a full-screen but

partial image. IS-parallel methods [3], [38] partition the screen into subscreens and assign

the subscreens to processors. Each processor locally renders its subscreen and produces a

small but complete portion of the final image. Both OS and IS parallelizations require a

communication step in which IS primitives (pixels) or OS primitives (cells) are transferred

between processors, respectively. In OS parallelization, communication is performed after

the local rendering to merge the partial images into a final image. In IS parallelization,

communication is performed before the local rendering to replicate some OS primitives so

that each processor has all OS primitives that it needs in rendering its subscreen. In this

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 4

respect, OS and IS parallelizations can be respectively classified as sort-last and sort-first

by the taxonomy of [33]. This work focuses on IS-parallel DVR.

In IS-parallel DVR, visualization parameters (such as view point and viewing direction)

determine the computational structure in rendering since they affect both the rendering

load distribution on the screen and the interaction between OS and IS primitives. In

successively visualizing a dataset with different visualization parameters, existing screen

partitions turn into poor partitions that cause a rendering load imbalance among pro-

cessors. Hence, pixel-to-processor mapping is important for balancing rendering loads of

processors and minimizing the communication overhead during data replication.

Three approaches can be followed in pixel-to-processor mapping: static, dynamic, and

adaptive. In the static approach, nearby pixels are scattered among processors with the

assumption that adjacent pixels have similar rendering loads. The advantage of this scheme

is simplicity. However, since IS coherency is disturbed, it causes high amounts of data

replication. In the dynamic approach, pixels are remapped to processors on a demand-

driven basis. This approach solves the load balancing problem in a natural way, but

it suffers from disturbing IS coherency since nearby pixels may be processed by different

processors. Moreover, each pixel assignment incurs communication on distributed-memory

architectures. The adaptive approach, also adopted in this work, rebalances the rendering

load explicitly by repartitioning the screen at the beginning of each visualization instance

(i.e., a rendering cycle, which generates an image frame) in a series of visualizations on the

data. In this approach, current visualization parameters are utilized to maintain the load

balance, and nearby pixels are mapped to the same processors to preserve IS coherency.

C. Previous Work on IS Parallelization

Challinger [11], [12] presented IS parallelizations of a hybrid DVR algorithm [13]. In [11],

scanlines on the screen were assigned to processors using the static and dynamic approaches

in two different algorithms. In [12], pixel blocks were considered as atomic tasks for

dynamic assignment. Wilhelms et al. [48] presented IS parallelization of a hierarchical

DVR algorithm for multiple grids. A survey on parallel DVR can be found in [50].

In the literature, several IS-parallel polygon rendering works [29], [39], [40], [41] exist.

Samanta et al. [39] developed an IS-parallel rendering system for a multi-projector display

DRAFT March 7, 2005

5 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

wall. For dynamic load balancing, they developed three screen partitioning algorithms.

In [40], they developed a hybrid polygon rendering algorithm on a PC cluster. In [41], they

investigated a replication strategy for this algorithm. Lin et al. [29] followed the adaptive

approach in their polygon rendering algorithm using a binary tree for screen partitioning.

In DVR, the adaptive approach was investigated in two different works [3], [38]. Palmer

and Taylor [38] presented adaptive IS parallelization of a ray-casting-based DVR algo-

rithm. Aykanat et al. [3] presented and discussed twelve screen partitioning algorithms for

adaptive IS-parallel DVR of unstructured grids. All of those algorithms are common in

that they try to rebalance the rendering load but have no explicit attempt on minimizing

the data replication overhead. This work aims to fill this gap in the literature.

D. Proposed Work

In this work, we propose a novel model, which formulates the adaptive screen par-

titioning problem as a hypergraph partitioning problem. In this model, the interaction

between OS and IS primitives is represented as a hypergraph. By partitioning this interac-

tion hypergraph into equally weighted parts, the proposed model partitions the screen into

subscreens that have similar rendering loads. Also, by minimizing the cost of the partition,

the model aims to minimize the total amount of data replication in the parallel system.

In this model, minimizing the total replication amount also corresponds to minimizing the

upper bound on the total volume of communication during the data replication.

In the parallel DVR framework we adopted, OS primitives are statically owned by their

home processors, responsible from sending them to the processors where they are needed

and hence must be temporarily replicated. As another contribution, the above model is

enhanced, and two remapping models are proposed to accurately formulate the communi-

cation requirement in this framework: two-phase and one-phase remapping models.

The two-phase model aims to find a screen partition and a pixel-to-processor remapping

that minimize the total volume of communication and balance the rendering load distribu-

tion. Partitioning and mapping form the two consecutive phases of our two-phase model,

in which a screen partition is obtained by partitioning the interaction hypergraph and

then subscreens are mapped to processors by the maximum weight matching algorithm

for weighted bipartite graphs [14]. The one-phase model directly obtains a remapping by

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 6

partitioning the remapping hypergraph, which is formed by augmenting the interaction

hypergraph. This model tries to balance the sum of the local rendering and communication

volume loads of processors while minimizing the total communication volume.

Based on the proposed models and Koyamada’s sequential DVR algorithm [26], an

adaptive IS-parallel DVR algorithm is developed. Experiments were conducted using

well-known datasets, and the performance was tested on a 32-node PC cluster. Compar-

isons with jagged partitioning, which was found by [3] to be the best screen partitioning

algorithm in minimizing data replication, show that the proposed models achieve better

speedups by incurring less communication volume and obtaining better load balance.

The rest of the paper is organized as follows. Section II discusses the issues in adaptive

IS parallelization and the preprocessing techniques we developed. Section III presents the

proposed models in detail. Section IV describes our parallel DVR algorithm. Section V

presents experimental results, which validate the work. Section VI concludes the paper.

II. Adaptive IS Parallelization Issues and Proposed Solutions

A. Screen Partitioning

In the adaptive screen partitioning approach, to be able to partition the screen in a

balanced manner, the rendering load distribution on the pixels must be calculated in a

view-dependent preprocessing step at the beginning of each visualization instance. The

rendering load of a pixel may be assumed to be equal to the number of samples that will be

taken along the ray fired from the pixel into the volume. In unstructured tetrahedral grids,

with mid-point sampling, this is equal to the number of front-facing faces intersected by the

ray, and hence the screen workload can be calculated as follows. First, the sampling load

of each pixel is set to zero. Then, all cells are traversed. The pixels under the projected

area of each front-facing face of a cell are found by scan conversion, and sampling loads

of those pixels are increased by one. Consequently, after all of the projected areas of

front-facing faces are scan converted, rendering loads of all screen pixels are estimated.

After the screen workload is computed, the screen is partitioned into subscreens such

that estimated rendering loads of subscreens are similar. The number of subscreens is cho-

sen to be equal to the number of processors so that each processor is assigned the task of

DRAFT March 7, 2005

7 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

rendering one of the subscreens. In the literature, several screen partitioning techniques ex-

ist. Quad trees, recursive bisection, and jagged partitioning are among such techniques [3],

[34]. In these techniques, the subscreens are always isothetic rectangles. This restriction

decreases the flexibility in partitioning and prevents getting further performance.

In this work, for implementation efficiency in screen partitioning, an M×M coarse mesh,

which forms M2 square pixel blocks, is imposed on the screen. An individual pixel block

constitutes an atomic rendering task, assigned to a single processor. The set of pixel blocks

assigned to a processor forms a subscreen for that processor. In the extreme case of using a

too-fine mesh, a single pixel corresponds to a single pixel block. This allows the partitioning

algorithm to have the highest flexibility in determining subscreen boundaries. However,

the increasing preprocessing overhead makes this approach practically infeasible. On the

contrary, the use of a too-coarse mesh may restrict the solution space of the partitioning

algorithm and prevent having a satisfactory load balance. A better approach is to trade

off between the preprocessing overhead and the size of the solution space by varying M

according to the current parallelization and visualization parameters.

B. Cell Clustering

Scan converting all front-facing faces for calculation of the screen workload is a costly

operation. To reduce the scan conversion cost, in a view-independent preprocessing phase,

we apply a top-down, graph-partitioning-based clustering on the data. The motivation

behind this clustering is grouping close tetrahedral cells to form cell clusters with small

surface areas so that the total surface area to be scan converted during the workload

calculations is smaller. The clustering is independent of visualization parameters and is

performed just once at the very beginning of the series of visualization instances. Hence,

the preprocessing overhead introduced is almost negligible. The proposed parallel DVR

algorithm and models work on cell clusters throughout the succeeding view-dependent

preprocessing and data replication phases instead of working on individual cells.

In our graph-partitioning-based clustering approach, cells correspond to tasks to be

partitioned, and cell clusters correspond to parts to be formed. In the clustering graph

G=(V, E), each vertex in V represents a tetrahedral cell. An edge in E exists between two

vertices if and only if a face is shared by the cells corresponding to those vertices. Vertices

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 8

C5

C1

C6

C4

C3

C2

(a) (b) (c) (d)

Fig. 2. (a) A tetrahedral dataset. (b) The graph representation of the dataset. (c) A partition obtained

by 6-way graph partitioning. (d) The resulting set of 6 cell clusters.

and edges are associated with weights. As the weight of each vertex, a unit cost of 1 is

assigned. The area of a face shared between two neighbor cells is assigned as the weight

of the respective edge connecting the vertices corresponding to those two cells.

C-way partitioning [24] of the clustering graph G creates a mutually disjoint and exhaus-

tive set {C1, C2, . . . , CC} of C non-empty cell clusters. In partitioning, since part weights

are balanced, clusters contain almost equal number of cells, and hence their communication

costs will be similar in data replication. Minimizing the weighted edge cut corresponds

to minimizing the total surface area of cell clusters. This clustering scheme, illustrated

in Fig. 2, aims to minimize both the interaction between adjacent cell clusters and the

average-case interaction between cell clusters and the screen. This means smaller projected

areas for cell clusters and hence less scan conversion cost in workload calculations.

In this approach, the total number C of generated clusters must be chosen carefully. In

one extreme, C can be chosen to be equal to the number of processors. In such a case, the

solution space of the partitioning algorithm is severely restricted. On the other extreme,

each cluster can be made up of a single tetrahedral cell, in which case we face with an

extremely high preprocessing overhead. In this work, C is chosen empirically.

During the view-dependent screen workload calculations at the beginning of each visu-

alization instance, the rendering load of a cell cluster C is estimated as the sum of the

projected areas of all front-facing faces (FC) in the cell cluster and is calculated as

CCload(C) =
∑

f∈FC

af , (1)

where the projected area of a face f is af = |x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|. Here, xi and yj

are the coordinates (in normalized projection coordinate system) of vertices of face f . To

DRAFT March 7, 2005

9 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

determine the pixel blocks whose sampling loads are affected, each cell cluster’s projected

area is computed by scan converting projected areas of front-facing faces on the surface

of the cell cluster. To calculate the screen workload, the estimated rendering load of each

cell cluster (Eq. 1) is distributed evenly among the pixel blocks that are overlapped by the

projected area of the cell cluster. In this approach, since each pixel block affected by the

cell cluster is assigned equal rendering load, estimation errors are introduced. Also, since

cell clusters are replicated as a whole, communication volume slightly increases. However,

cell clustering brings the benefit of reduced preprocessing cost during the screen workload

calculations. Furthermore, in the implementation, it simplifies housekeeping, decreases

the number of iterations in some loops, and simplifies some data structures.

C. Remapping and Data Replication

As visualization parameters change, the rendering load distribution on the screen and

hence on processors change. In adaptive IS-parallel DVR, the screen is repartitioned at

the beginning of each visualization instance, and pixels are remapped to processors for

load rebalancing. Since OS primitives need to be shared among processors, they must be

replicated via communication between processors. For an efficient parallelization, novel

remapping models are needed. These models should rebalance the load distribution in the

parallel system while minimizing the communication overhead due to data replication.

In the literature, several graph-partitioning-based remapping models exist for the prob-

lems in other contexts. These models may be classified as scratch-remap [36], [43] or

diffusion-based [37], [42], [43], [47]. Scratch-remap models work in two phases. In the first

phase, tasks are partitioned into parts, which have similar computational loads. In the

second phase, parts are mapped to processors such that the data migration overhead is as

low as possible. Diffusion-based models move tasks from heavily loaded to lightly loaded

processors and interleave minimization of the migration overhead with load balancing.

III. Screen Partitioning and Remapping Models

A. Hypergraph Partitioning Problem

A hypergraph H=(V,N) consists of a set of vertices V and a set of nets N [6]. Each

net nj in N connects a subset of vertices in V, which are said to be the pins of nj . Each

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 10

vertex vi has a weight wi, and each net nj has a cost cj. Π={V1,V2, . . . ,VK} is a K-way

vertex partition if each part Vk is non-empty, parts are pairwise disjoint, and the union of

parts gives V. In Π, a net is said to connect a part if it has at least one pin in that part.

The connectivity set Λj of a net nj is the set of parts connected by nj . The connectivity

λj = |Λj| of a net nj is equal to the number of parts connected by nj . If λj = 1, then nj

is an internal net. If λj >1, then nj is an external net and is said to be at cut. In Π, the

weight Wk of a part Vk is equal to the sum of the weights of vertices in Vk, i.e.,

Wk =
∑

vi∈Vk

wi. (2)

The K-way hypergraph partitioning problem [1] is defined as finding a vertex partition

Π for a given hypergraph H = (V,N) such that part weights are balanced while a cost

defined on nets is optimized. In this work, the connectivity−1 metric

χ(Π) =
∑

nj∈N
cj(λj−1) (3)

is used as the cost to be minimized. In this metric, which is frequently used in VLSI [15],

[27] and recently used in scientific computing [4], [10], [46] communities, each net nj

contributes cj(λj−1) to the cost χ(Π) of a partition Π.

B. Adaptive Screen Partitioning Model

We model the computational structure of a visualization instance as a hypergraph and

formulate the screen partitioning problem in adaptive IS-parallel DVR as a hypergraph

partitioning problem. In the proposed model, an interaction hypergraph HI = (V,N)

represents the interaction between OS primitives (cell clusters) and IS primitives (pixel

blocks). In HI, a vertex vi in vertex set V represents a pixel block bi in set S of pixel

blocks. As the weight wi of a vertex vi, the rendering load PBload(bi), estimated during

the screen workload calculations for the corresponding pixel block bi, is assigned. A net

nj in net set N represents a cell cluster Cj . Vertex vi is a pin of a net nj if the projected

area of cell cluster Cj overlaps pixel block bi. As the cost cj of a net nj , the storage cost

Cost(Cj) of the corresponding cell cluster Cj is assigned. Here, Cost(Cj) is the number of

bytes needed to store (or send) the Cj cluster’s data.

DRAFT March 7, 2005

11 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

screen

C��

C�� C��

C��

C��
C��

C�

C�

C� C	

C�

C�

C�

C

C�

n��

n��

n�

n	

n�

n�

n�

n�

n

n��

n��

n��

n��

n�

n�

v� v� v� v�v� v�b� b� b� b� b	b�b� b�S v	v�

(a) (b)

Fig. 3. (a) A sample visualization instance with 15 cell clusters and 8 pixel blocks. (b) The interaction

hypergraph HI representing the interaction between the cell clusters and pixel blocks in (a).

Fig. 3(a) illustrates a sample visualization instance. To simplify the drawing and ease

understanding, 3D cell clusters are illustrated as 2D regions. Similarly, the 2D screen

is replaced with a single row of pixel blocks. The dotted vertical lines show the view

volume boundaries of pixel blocks, assuming parallel projection. Throughout the examples,

unit rendering loads and storage costs are assumed for pixel blocks and cell clusters,

respectively. Fig. 3(b) shows the interaction hypergraph HI constructed to represent the

sample interaction of Fig. 3(a). In HI, nets and vertices are represented by circles and

squares, respectively. In Fig. 3(b), for example, vertices v1 and v2 are the pins of net n2

since the projected area of cell cluster C2 overlaps both pixel blocks b1 and b2.

After constructing HI, the screen partitioning problem reduces to the hypergraph par-

titioning problem of finding a vertex partition Π = {V1,V2, . . . ,VK}, where each part Vk

corresponds to a subscreen Sk to be rendered by a single processor. In the proposed model,

a vertex partition Π is obtained by applying K-way hypergraph partitioning on HI. As a

result, since the weights of the parts in Π are balanced, the screen is partitioned into K

subscreens S1,S2, . . . ,SK , which have similar rendering loads. Hence, after the subscreens

are assigned to processors, each processor performs almost the same amount of rendering.

In a partition Π, if a net nj has a pin in a part Vk (i.e., Vk ∈ Λj), then cell cluster

Cj is needed in rendering at least one pixel block in subscreen Sk and hence must be

replicated on the processor responsible from Sk. Each cell cluster Cj is replicated on λj

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 12

n��

n�

n�

n��

n�

n�

C��

n�

n�

n	

n��

n�	

n��

C�

n

C�� C��

C��

C��
C�	

C

C�

C� C�

C�

C	

n��

C�

C�

n�

v�

b� b� b� b
 b�b�b� b	

v�

v	

v�

V�

v�

v�

v�

v

V� V	

S	S� S�

(a) (b)

Fig. 4. (a) A 3-way vertex partition Π of HI in Fig. 3(b). (b) The corresponding screen partition.

different processors, incurring λjcj bytes of replication in the parallel system. Hence, the

total connectivity cost χ′(Π) =
∑

nj∈N cjλj exactly corresponds to the total amount of cell

cluster replication. By minimizing χ′(Π), the proposed model correctly minimizes this

amount. Due to Eq. 4, there is a constant factor CF between the total connectivity cost

χ′(Π) and the conventional connectivity−1 cost χ(Π) of a partition Π, i.e.,

χ′(Π) =
∑

nj∈N
cjλj =

∑

nj∈N
cj(λj−1) +

∑

nj∈N
cj = χ(Π) + CF . (4)

Therefore, minimizing χ(Π) (Eq. 3) during the partitioning also minimizes χ′(Π), enabling

the use of existing hypergraph partitioning tools [9], [25] without any modification.

Depending on the parallel DVR framework employed, some cell clusters may already

have a copy on one or more processors in the parallel system. If a cell cluster Cj is

already replicated on a processor where it is needed, then no communication is necessary

for transferring Cj to that processor. Hence, the total replication amount χ′(Π) forms an

upper bound on the total volume of communication, whose worst case occurs when no cell

clusters have a copy in any of the processors where they must be replicated. As a result,

minimizing the total connectivity cost χ′(Π) also corresponds to minimizing the upper

bound on the total volume of communication. In the case that cell clusters are not stored

within the parallel system but retrieved from a central data server outside the parallel

system, the model exactly minimizes the total volume of communication.

Fig. 4(a) shows a 3-way vertex partition Π found for a 3-processor system by applying

DRAFT March 7, 2005

13 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

hypergraph partitioning on HI of Fig. 3(b). In Π, cut net n8 has all 3 vertex parts in its

connectivity set Λ8 ={V1,V2,V3}. This means that cell cluster C8 is needed in rendering all

3 subscreens, and hence it must be replicated on all processors. Similarly, λ6 =λ7 =λ10 =2

for cut nets n6, n7, and n10, and hence cell clusters C6, C7, and C10 are each replicated on

2 processors. All of the remaining 11 nets are internal and hence replicated on a single

processor. Therefore, the total replication amount is equal to χ′(Π)=1×3+3×2+11×1=20.

Fig. 4(b) illustrates subscreens S1, S2, and S3, formed according to vertex partition Π.

C. Remapping of Pixel Blocks

After the screen is partitioned and subscreens are found, a one-to-one subscreen-to-

processor mapping MS must be created in order to assign each subscreen S� to a processor

Pk = MS(S�). This process remaps all pixel blocks in a subscreen to a processor for

rendering. The many-to-one remapping Mb indicates the assignment of a pixel block bi to

a processor Pk =Mb(bi). A subscreen-to-processor mapping MS can be created arbitrarily

(e.g., Pk =MS(Sk)). Using MS , Mb can be obtained as

Pk = Mb(bi) ⇔ bi ∈ S� ∧ Pk = MS(S�). (5)

A vertex partition Π and a mapping MS together induce a replication pattern RC for cell

clusters. A cell cluster Cj is replicated on a set RC(Cj) of processors as

RC(Cj) = {Pk : ∃V�,V� ∈ Λj ∧ Pk = MS(S�)}. (6)

In our parallel DVR framework, each processor statically keeps a subset of cell clusters

throughout the visualization. That is, at the beginning of a visualization instance, a single

copy of each cell cluster Cj is available only on its home processor Pk =Home(Cj). Home

processors are responsible from temporarily replicating their cell clusters on the processors

that need them. In the following subsections, we propose two remapping models that aim

to minimize the total volume of communication within this framework.

C.1 Two-Phase Remapping Model

The two-phase model has two consecutive phases. The first phase produces K sub-

screens, using partition Π found by K-way partitioning of HI, as described in Section III-B.

The objective of this phase is to minimize the upper bound on the total volume of commu-

nication. The second phase assigns the subscreens formed in the first phase to processors

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 14

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

��
��
��

��
��
��

��
��
��
��

��
��
��
��

����
����
����

����
����
����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

screen

C��

C�� C��

C��

C��
C��

C�

C�

C� C	

C�

C�

C�

C

C�

n�

n�

n�

n

n��n��n��

n�

n�

n�

n��

n��

n��

n�

n	

v�
v	

v�

v�

b� b� b� b� b	b�b� b�S

V�

v�

v�

v�

V�

V�

P� P�

v�

P�

(a) (b)

Fig. 5. (a) An initial, static cluster-to-processor mapping. (b) A 3-way vertex partition Π of HI found

by the first phase of the two-phase model.

by finding a mapping MS that achieves the maximum saving in the total communication

volume relative to the upper bound. Without the second phase, each subscreen S� may be

assigned to a processor Pk arbitrarily, as mentioned in Section III-C. However, this may

lead to a communication volume as high as the upper bound set by the first phase.

Fig. 5(a) shows an initial processor mapping for cell clusters. In the figure, the fill pat-

tern of a cell cluster Cj indicates its home processor Home(Cj). Processors P1, P2, and P3

initially store cell clusters filled with vertical lines, horizontal lines, and color, respectively.

Fig. 5(b) shows a 3-way vertex partition Π found by the first phase. In this example, con-

sider the trivial M(S1)=P1, M(S2)=P2, M(S3)=P3 mapping. With this mapping, pro-

cessors P1, P2, and P3 need 8, 5, and 7 cell clusters but store only 1, 1, and 2 of the cell clus-

ters they need, respectively. Hence, the total communication volume incurred by this map-

ping is (8−1)+(5−1)+(7−2)=16. However, the M(S1)=P3, M(S2)=P2, M(S3)=P1

mapping incurs a total communication volume of only (8−2)+(5−1)+(7−5)=12. This

decrease in the communication volume is mostly because subscreen S3 is assigned to pro-

cessor P1, which already stores most of the cell clusters needed by subscreen S3.

Taking this observation into account, we formulate the problem of finding the best

subscreen-to-processor mapping, which achieves the highest saving in the total volume

of communication, as a maximum weight bipartite matching problem. In this second

DRAFT March 7, 2005

15 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

������
������
������
������

������
������
������
������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

���
���
���
���

���
���
���
���

1

3

2

5

5

1

1

2

C��

C�

C�

C�

C�

C�

C�

C�

C��
C�	

C

C��

C	

C�

C��

v	v�v�

v� v�v�

b	 b� b
 b� b�b�b� b�

M�S���P� M�S���P	 M�S	��P�

p�

s�

v� v

s�
p�

p�

s�

(a) (b)

Fig. 6. (a) Bipartite graph B created using the initial cluster-to-processor mapping and vertex partition

Π in Fig. 5. (b) Mapping of subscreens to processors, using the maximum-weighted matching in (a).

phase, the K subscreens, obtained using vertex partition Π of the first phase, and the

K processors in the parallel system form the two partite vertex sets {s1, s2, . . . , sK} and

{p1, p2, . . . , pK} of a bipartite graph B. That is, each subscreen vertex s� and processor

vertex pk represents a subscreen S� and a processor Pk, respectively. A cell cluster Cj incurs

an edge e�k between vertices s� and pk with weight Cost(Cj) if Pk = Home(Cj) and Cj is

needed by subscreen S�. Multiple edges between the same pair of vertices are contracted

into a single edge, whose weight is equal to the sum of the weights of each contracted edge.

In this model, finding the maximum-weighted matching in B corresponds to finding a

subscreen-to-processor mapping that achieves the highest saving in the total communi-

cation volume relative to the upper bound set by the first phase. Each edge e�k in the

maximum-weighted matching assigns subscreen S� to processor Pk, generating a subscreen-

to-processor mapping MS . The subscreen-to-processor mapping found by the second

phase is an optimum solution, which minimizes the total volume of communication for the

given initial cluster-to-processor mapping and the screen partition supplied by the first

phase. Using the subscreen-to-processor mapping MS in Eq. 5 and Eq. 6, the remapping

Mb of pixel blocks and the replication pattern RC of cell clusters can be calculated.

Fig. 6(a) shows bipartite graph B constructed for the sample case of Fig. 5. In the figure,

bold edges indicate the maximum-weighted matching, composed of edges e12, e23, and e31

with weights 5, 3, and 5, respectively. The subscreen-to-processor mapping corresponding

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 16

to this matching is M(S1) = P2, M(S2) = P3, M(S3) = P1. With this mapping, the

total volume of communication is (8+5+7)−(5+3+5)=7 with a saving of 13 over the

upper bound 20, set by the first phase. Fig. 6(b) shows the remapping of pixel blocks to

processors. Replicated cell clusters are illustrated by the square-filled pattern.

C.2 One-Phase Remapping Model

An important point not considered by the first-phase of the two-phase model is that, in

our framework, each cell cluster Cj is originally owned by a home processor Pk =Home(Cj)

and no communication is necessary to replicate Cj on Pk. Consider net n9 in Fig. 5(b). If S2

is assigned to P1, C9 must be transferred from its home processor P3 to P1 introducing some

communication overhead. However, if S2 is assigned to P3, no data transfer is necessary

for replication at P3 since P3 already has C9 in its memory.

In order to accurately model the total volume of communication within our framework,

the initial cluster-to-processor mapping must be supplied into the model. In the one-phase

model, we use a remapping hypergraph H̃R = (Ṽ ,N), which is obtained by augmenting

the interaction hypergraph HI, proposed earlier in Section III-B, with some vertex and

pin additions. Vertex set Ṽ of the remapping hypergraph H̃R is formed by introducing a

set P={p1, p2, . . . , pK} of K processor vertices into HI, that is, Ṽ=V ∪P. Each processor

vertex pk represents a processor Pk belonging to the parallel system and has no weight.

Also, new pins are added to the pin set of HI such that a processor vertex pk is a pin of a

net nj if cell cluster Cj is initially assigned to processor Pk, that is, Home(Cj)=Pk.

In the proposed model, a K-way vertex partition Π̃={Ṽ1, Ṽ2, . . . , ṼK} of H̃R is said to

be feasible if it satisfies the mapping constraint
∣∣∣Ṽ�

⋂P
∣∣∣ = 1, for � = 1, 2, . . . , K, (7)

that is, each part Ṽ� contains exactly one processor vertex pk. A feasible partition Π̃

induces a remapping Mb for pixel blocks such that all pixel blocks represented by the

non-processor vertices in a part are remapped to the processor represented by the unique

processor vertex in that part. That is, a pixel block bi, whose corresponding vertex vi is

in Ṽ�, is remapped to processor Pk if processor vertex pk is in Ṽ�.

Another point omitted by the two-phase model is that communication overheads of

processors vary during the data replication and some processors spend more time on

DRAFT March 7, 2005

17 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

communication. Taking this fact into consideration, the one-phase model aims to balance

the estimated time for incoming data communication plus the time for local rendering

of each processor. In this model, each vertex vi is assigned a weight wi which equals to

the estimated time PBload(bi)×tr for rendering pixel block bi. Here, tr is the time cost

for taking a single sample within a data cell. As the cost cj of a net nj , the estimated

communication time Cost(Cj)×tc of cell cluster Cj is assigned. Here, tc is the per-byte

cost for receiving a cell cluster, unpacking it, and creating the necessary data structures.

In this model, we modify the conventional part weight definition (Eq. 2) and define the

weight W ′
k of a part Ṽk as the sum of the weights of vertices within Ṽk plus the sum of the

costs of cut nets that connect Ṽk but not processor vertex pk, i.e.,

W ′
k =

∑

vi∈Ṽk

wi +
∑

Ṽk∈Λj∧pk /∈nj

cj , (8)

where the second summation term is the incoming message volume overhead of processor

Pk. Note that we prefer to balance this overhead since, in our framework, outgoing message

volume overheads of processors are already balanced and relatively insignificant.

After this setting, the remapping problem reduces to the problem of finding a feasible K-

way partition Π̃={Ṽ1, Ṽ2, . . . , ṼK} of H̃R, satisfying the mapping constraint. Maintaining

the balance among parts corresponds to maintaining the time balance among processors

during the replication plus local rendering phases. In Π̃, consider a net nj which connects

processor vertex pk. In this model, net nj indicates that processor Pk should replicate

cell cluster Cj on all processors responsible from each subscreen corresponding to a vertex

part in Λj, excluding the processor itself, i.e., processor Pk. Since cell cluster Cj must be

replicated on λj−1 processors, the communication volume incurred by net nj is cj(λj−1).

Note that internal nets incur no communication. Hence, by minimizing the cost χ(Π̃)

(Eq. 3) of partition Π̃, the model exactly minimizes the total volume of communication.

Fig. 7 shows the remapping hypergraph H̃R, constructed for a 3-processor system by

augmenting the interaction hypergraph HI of Fig. 5(b). In H̃R, triangles represent pro-

cessor vertices, corresponding to processors. A dotted line, connecting a processor vertex

pk and a net nj , indicates that Pk =Home(Cj). Fig. 7 also shows a 3-way vertex partition

Π̃ of H̃R, where vertex parts Ṽ1, Ṽ2, and Ṽ3 contain processor vertices p2, p3, and p1, re-

spectively. In Fig. 7, consider cut net n8 with connectivity set Λ8 ={Ṽ1, Ṽ2, Ṽ3}. Processor

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 18

����
����
����
����

����
����
����

����
����
����

����
����
����
���� ���

���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

����
����

����

���
���
���
���

�
�
�
�

�
�
�
�

���
���
���

���
���
���

��
��
��
��

n11
n12

n10

n8

n14 n13

n9

n15

p3

p1

n4

n1

n2

n3

p2

n7

n5

n6

Ṽ3

v8

v7

Ṽ2

v6

v5

v4

Ṽ1

v1

v3

v2

Fig. 7. A 3-way vertex partition Π̃ of the remapping hypergraph H̃R.

vertex p1, corresponding to home processor P1 =Home(C8) of cell cluster C8, is in vertex

part Ṽ3. Hence, processor P1 is responsible from replicating cell cluster C8 on processors

P2 and P3, determined by processor vertices p2 and p3 in the other two vertex parts Ṽ1 and

Ṽ2. There are 5 cut nets n5, n6, n7, n10, and n15 with connectivity 2, each incurring a com-

munication cost of 1. The other 9 nets are internal and incur no communication. Hence,

the total communication volume is accurately calculated as χ(Π̃)=9×0+5×1+1×2=7.

Existing hypergraph partitioning tools can be enhanced to maintain the mapping (Eq. 7)

and balancing constraints in the model. The mapping constraint can also be maintained

by using the state-of-the-art hypergraph partitioning tools that support the fixed vertices

feature [9], [46]. This widely used feature [2], allows prespecified vertices to be fixed to

given parts and can be exploited to fix each vertex pk to a part Ṽk, for k=1, 2, . . . , K.

IV. IS-Parallel DVR Algorithm

The proposed parallel DVR algorithm (Fig. 8) starts with view-independent preprocess-

ing. This phase is followed by three consecutive phases, repeated for each visualization

instance: view-dependent preprocessing, cell cluster replication, and rendering.

A. View-Independent Preprocessing

This phase, performed just once at the very beginning of the whole visualization process,

carries out the view-independent operations, which include reading the dataset from the

disk, clustering data cells, and mapping cell clusters to processors. Since most scientific

simulations are carried out on parallel systems, we assume that each local disk stores a

contiguous portion of the data. Hence, processors read subvolumes in parallel.

DRAFT March 7, 2005

19 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

P
ar

al
le

liz
at

io
n

D
at

as
et

V
is

ua
liz

at
io

n
An Image Frame

Preprocessing
View-Dependent

Transformations

Workload Calculations

Screen Partitioning

Cluster Mapping
Initial Cell

Preprocessing
View-Independent

Cell Clustering

Dataset Retrieval
Cell Cluster

Communication
Point-to-Point

Replication

Image Generation

Local Rendering

Local Pixel Merging

Rendering

P
ar

am
et

er
s

P
ar

am
et

er
s

Start the Next Visualization Instance

Pixel Block Remapping

Fig. 8. The proposed adaptive IS-parallel DVR algorithm.

After reading their data, each processor concurrently creates the view-independent clus-

tering graph of its local data using the adjacency information between cells. Then, the

clustering scheme of Section II-B is applied on the local graphs, and each processor ob-

tains a set of cell clusters. Since the volume is currently stored in a distributed manner,

creation and partitioning of a global visualization graph may be expensive. Hence, a local

cell clustering scheme, which reduces the overhead of clustering, is preferred. We use the

state-of-the-art graph partitioning tool MeTiS [23] for partitioning the clustering graphs.

After cell clustering, an initial cluster-to-processor mapping is found. This mapping is

important in that all following remapping phases use this initial data mapping. Even if a

cell cluster may be temporarily replicated on other processors after remapping, it is stati-

cally owned by only its home processor. This static owner keeps the cell cluster throughout

the whole visualization process. The reason for this static assignment scheme is the drastic

variation in preprocessing costs of cell clusters, which requires balancing the preprocess-

ing overhead of processors. During the initial cell cluster distribution step, cell clusters

are assigned to processors such that processors have roughly equal scan conversion costs.

The best-fit-decreasing heuristic used in solving the K-feasible bin-packing problem [22] is

adapted to obtain such an initial distribution. Cell clusters are assigned to K processors

in decreasing scan-conversion cost order, where best-fit criterion corresponds to assigning

a cell cluster to a processor which currently has the minimum total scan-conversion cost.

B. View-Dependent Preprocessing

This phase contains the steps that try to adapt the computational structure according

to changing view-dependent visualization parameters: calculation of the screen workload,

partitioning of the screen, and remapping of pixel blocks. During the screen workload

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 20

calculations, the interaction between the volume and the screen is computed, and the

rendering load distribution on the screen is estimated. That is, the interaction between

cell clusters and pixel blocks is found, and the rendering loads of pixel blocks are computed.

The screen partitioning and remapping steps use the proposed models. The interaction

between a processor’s local data and the screen is stored as a local hypergraph on the

processor. Since each processor owns a portion of the whole volume, only the local hy-

pergraphs can be created. These hypergraphs are then merged into a global hypergraph,

which represents the interaction of the whole volume with the screen. For this purpose,

an all-to-all broadcast operation, in which each processor sends its local hypergraph to

others, is performed among processors. By combining the common vertices in local hyper-

graphs, a global hypergraph, which is replicated on all processors, is obtained. During the

global hypergraph creation, the pixel blocks having no sampling load are discarded from

the hypergraph. The fixed vertices in the one-phase model are also added at this step.

Finally, a pixel-to-processor remapping is found using one of the proposed remapping

models. In the implementation, the sequential hypergraph partitioning tool PaToH [9] is

used for partitioning the global hypergraph. Since this hypergraph is small in size, the

multi-level paradigm is abandoned and the flat hypergraph is partitioned without further

coarsening. This considerably decreases the preprocessing overhead due to hypergraph

partitioning. The solution qualities are not affected much since we run the partitioner at

each processor with a different seed and pick the best solution (i.e., the lowest imbalance

rate or the smallest total communication volume) for remapping. In the two-phase model,

a maximum-weighted matching is obtained using the Kuhn-Munkres algorithm [14].

C. Cell Cluster Replication

Before the rendering starts, cell clusters are temporarily replicated in the parallel system

according to the replication pattern RC, induced by the pixel-to-processor remapping.

The replication is performed by sending cell clusters from their home processors to the

processors where they are needed via point-to-point communication between processors.

D. Rendering

After cell clusters are replicated, processors are ready to locally render their assigned

pixel blocks in parallel. A ray is shot from each pixel covered by the projected areas of

DRAFT March 7, 2005

21 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

front-facing external faces of cell clusters only if the pixel belongs to the subscreen assigned

to the processor. The rays are followed through the volume by utilizing the adjacency

information stored in cells and cell clusters, eliminating the need to scan convert all front-

facing faces on surfaces of cell clusters. Although it is possible to have non-convex cell

clusters as a result of the clustering algorithm, this does not cause an increase in the

number of ray segments created. Existence of such non-convexities is eliminated due to

data replication, and hence processors act as if rendering a whole and convex subvolume.

However, because of the non-convexities in the nature of the volumetric data, the use

of ray buffers is still required. The generated ray segments are accumulated in the corre-

sponding ray buffers. For each pixel, a separate ray buffer is kept. The accumulated color

and opacity values are inserted into their corresponding ray buffers in the sorted order of

their increasing z coordinates. Later, the values in ray buffers are composited using the

traditional composition formulas in a separate local pixel merging phase. Since, at this

stage, all processors have a subimage, an all-to-one communication operation is performed,

and the whole and final image for the current visualization instance is generated in one of

the processors. After the rendering, each processor deallocates the memory reserved for

the temporarily replicated cell clusters for which it is not a home processor.

V. Experimental Results

Experiments are conducted on three datasets (Blunt Fin, Combustion Chamber, and

Oxygen Post), obtained from NASA Ames Research Center [35]. These datasets are the

results of computational fluid dynamics simulations and are originally curvilinear. The

unstructured datasets used in the experiments are obtained using the tetrahedralization

techniques described in [19] and [44]. The properties of the datasets formed in this manner

are summarized in the captions of Fig. 9, which displays our renderings and the screen

partitions produced by different screen partitioning models. In each row, the first image

is the rendering obtained using the standard viewing parameters. The second and third

images illustrate the 16-way screen partitions produced by the jagged-partitioning-based

model [3] and the proposed hypergraph-partitioning-based model, respectively. In these

images, each color represents a subscreen, rendered by an individual processor.

The parallel rendering platform is a 32-node PC cluster interconnected by a Gigabit

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 22

a) Blunt Fin (40960 vertices, 187395 cells, the coefficient of variation is 5.50).

b) Combustion Chamber (47025 vertices, 215040 cells, the coefficient of variation is 0.42).

c) Oxygen Post (109744 vertices, 513375 cells, the coefficient of variation is 4.26).

Fig. 9. Example renderings of the datasets and the 16-way screen partitions produced by the jagged-

partitioning-based and hypergraph-partitioning-based screen partitioning models.

Ethernet switch. Each node contains an Intel Pentium IV 2.6 GHz processor, 1 GB of

RAM, and runs the Debian/GNU Linux operating system. The parallel DVR algorithm

is implemented in C using the LAM/MPI library [8].

In the experiments, each of the three datasets is rendered using five different viewing

parameter sets. Hence, the values reported for an experiment represent the averages of the

values obtained from fifteen different executions of the parallel DVR algorithm. The view-

ing parameter sets contain different view-point coordinates and viewing directions. These

values are selected such that different computational characteristics of the datasets are re-

flected as much as possible. In each experiment, processors are assigned C =10 cell clusters,

which is an empirically found number. As mentioned, to make the view-dependent pre-

DRAFT March 7, 2005

23 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

processing overhead affordable, coarse meshes of varying sizes are imposed on the screen.

Three different remapping models are compared: jagged-partitioning-based (JP2), two-

phase hypergraph-partitioning-based (HP2), and one-phase hypergraph-partitioning-based

(HP1) models. The JP2 model is implemented as a two-phase model, in which the jagged

partitioning algorithm is used in the first phase for screen partitioning while the matching

algorithm is used in the second phase for subscreen-to-processor matching, similar to the

second phase of the HP2 model. Hence, it is an enhanced version of the model in [3].

Two sets of experiments are conducted. The first set of experiments test solution qual-

ities of the remapping models in load balancing and minimization of the total communi-

cation volume. These experiments are carried out at large numbers of virtual processors

by assigning more than one executable to available processors. In the second set of exper-

iments, practical aspects of our parallel implementation are investigated. Execution time

of a single visualization instance and view-dependent preprocessing time are dissected into

their components, and speedup values are recorded at the available numbers of processors.

A. Experiments on Remapping Quality

These experiments are conducted on 16, 32, 48, 64, 80, and 96 virtual processors us-

ing a screen resolution of S×S =1200×1200. Two different coarse mesh resolutions of

M×M =30×30 and M×M =60×60 are tried. Fig. 10 shows the predicted and actual

load imbalances in sampling amounts of processors for the JP2 and HP2 models, respec-

tively. The predicted imbalance values are the ones expected by the partitioning algorithm.

The actual imbalance values are the sampling imbalance values observed in parallel render-

ing. No results are displayed for HP1 since this model tries to directly balance processors’

total rendering time including the communication overhead.

It can be seen from Fig. 10 that the actual imbalance values are always higher than

the predicted imbalance values in all models. This is basically due to the estimation

errors made in screen workload calculations. As the number of processors increases, the

predicted values get closer to the actual values. This is because of the increase in the

workload estimation quality, which is caused by the increase in the number of cell clusters

and hence the decrease in cell cluster volumes. In general, the HP2 model performs

significantly better than the JP2 model in terms of load balancing. For example, with a

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 24

16 32 48 64 80 96 16 32 48 64 80 96
Number of processors

0

10

20

30

40

50

60

70

80

L
o

ad
 im

b
al

an
ce

 (
%

) JP2-predicted

HP2-predicted

JP2-actual
HP2-actual

MxM=60x60 MxM=30x30

SxS=1200x1200

Fig. 10. Averages of the predicted and actual sampling load imbalance values.

mesh resolution of M×M =60×60 and 96 virtual processors, the JP2 model results in a

load imbalance of 38.1%. With the same parameters, the load imbalance for the HP2 model

is 17.3%. As expected, the imbalance values almost linearly increase with the increasing

number of processors. When the mesh resolution is decreased from M×M =60×60 to

M×M =30×30, both models perform worse in load balancing. This is due to the decrease

in the number of pixel blocks and hence the reduction in the solution space.

Fig. 11 displays the total volume of communication in cell cluster replication for the vary-

ing number of processors and mesh resolutions. With a mesh resolution of M×M =60×60,

using 96 virtual processors, the HP2 and HP1 models result in around 30% and 27% less

total volume of communication than the JP2 model, respectively. When the number of

processors is increased from 16 to 96, the volume almost doubles. This points out the

importance of minimizing this overhead at large numbers of processors. If the mesh res-

olution is reduced to M×M =30×30, there occurs a slight decrease in the total volume

of communication. This can be explained with the decrease in the total length of sub-

screen boundaries and hence the decrease in the amount of overlaps between cell clusters

and subscreen boundaries. Since coarse mesh resolution affects both the load imbalance

and communication volume, it can be used to trade off between these two parallelization

overheads. In general, the JP2 model incurs the highest total volume of communication

while the HP2 model is the best at minimizing this overhead. Although the HP1 model

accurately calculates the total volume of communication, it produces results inferior to

the HP2 model. This is basically due to the fact that the recursive bisection paradigm

DRAFT March 7, 2005

25 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

16 32 48 64 80 96 16 32 48 64 80 96
Number of processors

0

50

100

150

200

T
o

ta
l c

o
m

m
u

n
ic

at
io

n
 v

o
lu

m
e

(M
B

)

JP2
HP2
HP1

MxM=60x60 MxM=30x30

SxS=1200x1200

Fig. 11. Averages of the total communication volumes in cell cluster replication.

employed in PaToH is not well-suited to handle a hypergraph with fixed vertices.

B. Experiments on Parallel Performance

Experiments demonstrating the practical performance of the models are carried out on

the available numbers of processors 8, 16, 24, and 32. In the figures related with time

dissection of different phases, averages of the maximum execution times of processors

in each phase are shown. In Fig. 12, the average parallel execution time for a single

visualization instance is dissected into three components as view-dependent preprocessing,

cell cluster replication, and rendering. The two cases examined are S×S =900×900 and

S×S =1500×1500 with M×M =30×30. View-dependent preprocessing and rendering

times increase with the increasing screen resolution. The cell cluster replication time is

not affected much from the variation in the screen resolution. The rendering time falls

with the increasing number of processors whereas the replication time remains almost the

same. At 32 processors, for the S×S =900×900 resolution case, the replication time takes

more than one third of the total visualization time. This indicates that the replication step

has the potential to form a bottleneck on the scalability at large numbers of processors.

In Fig. 13, the view-dependent preprocessing time is dissected into three major compo-

nents as screen workload calculations, model formation, and partitioning/remapping. In

the HP2 and HP1 models, the model formation step represents creation of the global hy-

pergraph from local hypergraphs via communication among processors. In the JP2 model,

this step represents the local prefix sum and distributed global sum operations on local

screen workloads of processors. The duration of screen workload calculations tends to

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 26

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

0

1

2

3

4

5

6

7

8

T
im

e
(s

ec
.)

Rendering

Cell cluster replication

View-dependent prep.

SxS=1500x1500, MxM=30x30
P=8 P=16 P=32P=24

SxS=900x900, MxM=30x30
P=8 P=16 P=32P=24

Fig. 12. Dissection of the average execution time of a single visualization instance.

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

JP
2

H
P

2

H
P

1

0.00

0.05

0.10

0.15

0.20

0.25

T
im

e
(s

ec
.)

Partitioning/Remapping

Model formation
Workload calculations

P=8 P=16 P=32P=24
SxS=1200x1200, MxM=60x60

P=8 P=16 P=32P=24

SxS=1200x1200, MxM=30x30

Fig. 13. Dissection of the average view-dependent preprocessing time.

decrease with the increasing number of processors as expected since the total surface area

to be scan converted per processor gets smaller. The partitioning/remapping times of the

models increase with the increasing number of processors and are affected from the coarse

mesh resolution. Decreasing the mesh resolution from M×M =60×60 to M×M =30×30

decreases the number of pixel blocks and hence reduces the partitioning/remapping time.

The partitioning heuristics used in the HP1 model converge earlier than the ones in the

HP2 model. Hence, the partitioning time for HP1 is slightly less than that of HP2.

Fig. 14 shows the speedups achieved by the three models at 2, 4, 8, 16, and 32 processors.

On 32 processors, with a screen resolution of S×S =900×900 and a coarse mesh resolution

of M×M =30×30, speedups are 14.44, 15.41, and 16.85 for the JP2, HP2 and HP1 models,

respectively. At the same number of processors and coarse mesh resolution, with a screen

resolution of S×S =1500×1500, speedups are respectively 18.96, 21.34, and 22.30. The

HP1 model is able to render an image with a resolution of S×S =900×900 in 1.135 seconds

DRAFT March 7, 2005

27 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

2 4 8 16 32 2 4 8 16 32
Number of processors

0

4

8

12

16

20

24

S
p

ee
d

u
p

JP2
HP2
HP1

MxM=30x30 MxM=30x30

SxS=900x900 SxS=1500x1500

Fig. 14. Average speedups achieved in parallel rendering.

on the average, i.e., 14.3% faster than the JP2 model. Moreover, it is observed that the

increasing screen resolution and number of processors favor the proposed models. It should

be noted that the HP1 model achieves better speedups than the HP2 model although the

sum of the execution times for individual phases of HP1 are higher than that of HP2

(Fig. 12). This can be explained with the fact that HP1 tries to assign less communication

volume overhead to computationally-loaded processors and vice versa.

C. Comparison with an OS-parallel DVR algorithm

In this section, we compare the performance of HP1 with our recently proposed adaptive,

OS-parallel DVR algorithm (OS) [5]. In this model, the computational structure in the

data space is represented as a graph, where the clusters of cells correspond to vertices

and faces shared between cell clusters correspond to edges. In this model, the remapping

problem in OS parallelization is formulated as a graph partitioning problem by introducing

a set of fixed processor vertices into the graph. Our enhanced version of MeTiS is used

to minimize the communication volume overheads in data remapping and global pixel

merging while balancing the rendering loads of processors. The details of the algorithm

can be found in [5].

Fig. 15 provides the speedups achieved by the two algorithms for varying numbers of

processors and screen resolutions. In all executions of HP1, M×M =30×30 is used as the

coarse mesh resolution. According to Fig. 15, for small screen resolutions, OS achieves

better speedups than HP1. For example, at a resolution of S×S =600×600 with 32 pro-

cessors, speedups are 17.47 and 11.48 for OS and HP1, respectively. At S×S =1200×1200

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 28

8 16 32 8 16 32 8 16 32 8 16 32
Number of processors

0

4

8

12

16

20

24

28

S
p

ee
d

u
p

OS
HP1

SxS=600x600 SxS=1200x1200 SxS=1800x1800 SxS=2400x2400

Fig. 15. Average speedups achieved in parallel rendering.

both algorithms display a similar performance. As the resolution is further increased, HP1

begins to achieve better speedups. For example, at a resolution of S×S =2400×2400 with

32 processors, speedups are 21.86 and 24.57 for OS and HP1, respectively. The scalability

problem of OS at high screen resolutions is basically due to the global pixel merging over-

head. This overhead, which proportionally increases with the resolution, is not present in

HP1.

We conducted further experiments to investigate the performance of the OS and HP1

algorithms at the dataset level. Table I provides dataset-specific speedups for varying

numbers of processors and screen resolutions. According to Table I, OS scales better than

HP1 with increasing dataset size. For example, the average speedups at 32 processors are

21.59 and 16.59 for the larger Oxygen Post and the smaller Blunt Fin datasets, respectively.

On the other hand, for the datasets at hand, the performance of HP1 seems to be relatively

independent of the dataset size. This can be explained with the fact that, in HP1, the task

decomposition and load balancing is on the screen space and hence is not much affected by

the dataset properties. However, for the cases where data replication overhead is relatively

important (e.g., small screen resolution or low network speed), increasing dataset size is

supposed to be a bottleneck on scalability of HP1.

Another important observation that can be made using Table I is about dataset regu-

larity, which is determined by the degree of variation among the cell sizes in a dataset.

According to Table I, HP1 seems to perform better on regular datasets, which have low

cell-size variation. The coefficients of variations provided in the captions of Fig. 9 show

DRAFT March 7, 2005

29 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

TABLE I

Dataset-specific performance comparison of the algorithms.

S×S=600×600 S×S=1200×1200

algorithm dataset K =8 K =16 K =32 K =8 K =16 K =32

blunt 6.33 11.13 16.85 6.49 11.74 19.21

OS comb 6.66 11.65 17.44 6.64 12.14 20.18

post 6.97 12.60 17.90 7.11 13.12 22.58

blunt 5.87 9.07 11.44 6.97 12.73 19.95

HP1 comb 5.50 9.10 12.95 6.99 13.03 22.21

post 5.58 8.84 10.79 6.92 12.37 20.83

S×S=1800×1800 S×S=2400×2400

algorithm dataset K =8 K =16 K =32 K =8 K =16 K =32

blunt 6.54 11.97 19.39 6.57 12.11 20.61

OS comb 6.68 12.40 20.93 6.76 12.58 21.37

post 7.18 13.44 22.86 7.20 13.48 23.02

blunt 7.27 13.75 22.82 7.48 13.75 23.36

HP1 comb 7.42 13.98 25.49 7.55 14.51 26.70

post 7.15 13.54 22.98 7.20 13.97 24.17

that the Blunt Fin and Oxygen Post datasets are rather irregular, whereas the Combus-

tion Chamber dataset is a regular one. The average speedups of HP1 at 32 processors

are 19.40 and 19.69 for the irregular datasets while it is 21.84 for the regular Combustion

Chamber dataset. Performance of OS seems to be independent of the dataset regularity.

This is basically because, in OS, the task decomposition and load balancing is on the data

space.

VI. Conclusion

The experiments conducted on the available numbers of processors show that, compared

to the previous remapping models, the HP-based remapping models yield superior speedup

values by obtaining better load balance and incurring less total volume of communication.

We believe that as new hypergraph partitioning heuristics are developed and existing

hypergraph partitioning tools are improved, solution qualities of the proposed models will

also improve. We should also note that the final target in parallel DVR is a hybrid,

adaptive algorithm in which both IS and OS will be partitioned for higher scalability. In

this respect, the proposed work forms a good frontier for this hybrid algorithm.

March 7, 2005 DRAFT

CAMBAZOGLU AND AYKANAT 30

References

[1] C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partitioning: A Survey”, VLSI Journal, vol. 19,
no. 1-2, pp. 1–81, 1995.

[2] C. J. Alpert, A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Hypergraph Partitioning with Fixed Vertices”,
IEEE Trans. Computer-Aided Design, vol. 19, no. 2, pp. 267–272, 2000.

[3] C. Aykanat, H. Kutluca, and T. M. Kurç, “Image-Space Decomposition Algorithms for Sort-First Parallel
Volume Rendering of Unstructured Grids”, J. Supercomputing, vol. 15, pp. 51–93, 2000.

[4] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek, “Permuting Sparse Rectangular Matrices into Block-Diagonal
Form”, SIAM J. Scientific Computing, vol. 25, no. 6, pp. 1860–1879, 2004.

[5] C. Aykanat, B. B. Cambazoglu, F. Findik, and T. M. Kurç, “Adaptive Decomposition and Remapping
Algorithms for Object-Space-Parallel Direct Volume Rendering of Unstructured Grids”, Submitted to J. of
Parallel and Distributed Computing, 2003.

[6] C. Berge, “Graphs and Hypergraphs”, North-Holland Publishing Company, 1973.

[7] H. Berk, C. Aykanat, and U. Güdükbay, “Direct Volume Rendering of Unstructured Grids”, Computers &
Graphics, vol. 27, no. 3, pp. 387–406, 2003.

[8] G. Burns, R. Daoud, and J. Vaigl, “LAM: An Open Cluster Environment for MPI”. Proc. Supercomputing

Symp. ’94, pp. 379–386, 1994.

[9] Ü. V. Çatalyürek and C. Aykanat, “PaToH: Partitioning Tool for Hypergraphs”, Technical Report, Dept. of

Computer Engineering, Bilkent University, 1999.

[10] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix

Vector Multiplication”, IEEE Trans. Parallel and Distributed Systems, vol. 10, no. 7, pp. 673–693, 1999.

[11] J. Challinger, “Parallel Volume Rendering for Curvilinear Volumes”, Proc. IEEE Scalable High Performance
Computing Conf., pp. 14–21, 1992.

[12] J. Challinger, “Scalable Parallel Volume Raycasting for Nonrectilinear Computational Grids”, Proc.
IEEE/ACM 1993 Parallel Rendering Symp., pp. 81–88, 1993.

[13] J. Challinger, “Scalable Parallel Direct Volume Rendering for Nonrectilinear Computational Grids”, Ph.D.
thesis, University of California, 1993.

[14] G. Chartrand and O. R. Oellermann, “Applied and Algorithmic Graph Theory”, McGraw-Hill, 1993.

[15] A. Dasdan and C. Aykanat, “Two Novel Multiway Circuit Partitioning Algorithms Using Relaxed Locking”,

IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no. 2, pp. 169–178, 1997.

[16] T. T. Elvins, “A Survey of Algorithms for Volume Visualization”, Computer Graphics (ACM Siggraph

Quarterly), vol. 26, no 3, pp. 194–201, 1992.

[17] R. Farias, J. Mitchell, and C. T. Silva, “ZSWEEP: An efficient and exact projection algorithm for unstructured
volume rendering”, ACM/IEEE Volume Visualization and Graphics Symp., pp. 91–99, 2000.

[18] R. Farias and C. T. Silva, “Parallelizing the ZSWEEP Algorithm for Distributed-Shared Memory Architec-
tures”, Int’l Volume Graphics Workshop 2001, pp. 181–192, 2001.

[19] M. P. Garrity, “Ray-Tracing Irregular Volume Data”, Computer Graphics, vol. 24, no. 5, pp. 35–40, 1990.

[20] A. V. Gelder and J. Wilhelms, “Rapid Exploration of Curvilinear Grids Using Direct Volume Rendering”,
Proc. IEEE Visualization ’93, pp. 70–77, 1993.

[21] C. Hofsetz and K.-L. Ma, “Multi-threaded Rendering Unstructured-Grid Volume Data on the SGI Origin

2000”, Proc. Third Eurographics Workshop on Parallel Graphics and Visualization, 2000.

[22] E. Horowitz and S. Sahni, “Fundamentals of Computer Algorithms”, Computer Science Press, 1978.

[23] G. Karypis and V. Kumar, “MeTiS: A Software Package for Partitioning Unstructured Graphs, Partitioning
Meshes and Computing Fill-Reducing Orderings of Sparse Matrices”, Technical Report, Dept. of Computer

Science, University of Minnesota, 1998.

[24] G. Karypis and V. Kumar, “Multilevel k-way Partitioning Scheme for Irregular Graphs”, J. Parallel and
Distributed Computing, vol. 48, no. 1, pp. 96–129, 1998.

[25] G. Karypis and V. Kumar, “hMETIS: A Hypergraph Partitioning Package”, Technical Report, Dept. of
Computer Science, University of Minnesota, 1998.

[26] K. Koyamada, “Fast Traversal of Irregular Volumes”. T. L. Kunii (Ed.), Visual Computing, Integrating
Computer Graphics with Computer Vision, Springer-Verlag New York, pp. 295–312, 1992.

DRAFT March 7, 2005

31 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

[27] T. Lengauer, “Combinatorial Algorithms for Integrated Circuit Layout”, Wiley-Teubner, Chichester, 1990.

[28] M. Levoy, “Display of Surfaces from Volume Data”, IEEE Computer Graphics and Implementations, vol. 8,

no. 3, pp. 29–37, 1988.

[29] W.-S. Lin, R. W. H. Lau, K. Hwang, X. Lin, and P. Y. S. Cheung, “Adaptive Parallel Rendering on

Multiprocessors and Workstation Clusters”, IEEE Trans. Parallel and Distributed Systems, vol.12, no. 3,
pp. 241–258, 2001.

[30] K.-L. Ma, “Parallel Volume Ray-Casting for Unstructured-Grid Data on Distributed Memory Multicomput-

ers”, Proc. 1995 Parallel Rendering Symp., pp. 23–30, 1995.

[31] K.-L. Ma and T. W. Crockett, “A Scalable Parallel Cell-Projection Volume Rendering Algorithm for Three-

Dimensional Unstructured Data”, Proc. 1997 Parallel Rendering Symp., pp. 95–104, 1997.

[32] X. Mao, L. Hong, and A. Kaufman, “Splatting of Curvilinear Volumes”, Proc. IEEE Visualization ’95,
pp. 61–68, 1995.

[33] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A Sorting Classification of Parallel Rendering”, IEEE
Computer Graphics and Applications, vol. 14, no. 4, pp. 23–32, 1994.

[34] C. Mueller, “The Sort-First Rendering Architecture for High-Performance Graphics”, Proc. 1995 Symp.
Interactive 3D Graphics, pp. 75–84, 1995.

[35] NASA dataset archive, http://www.nas.nasa.gov/Research/Datasets/datasets.html

[36] L. Oliker and R. Biswas, “PLUM: Parallel Load Balancing for Adaptive Unstructured Meshes”, J. Parallel

and Distributed Computing, vol. 52, no. 2, pp. 150–177, 1998.

[37] C.-W. Ou and S. Ranka, “Parallel Incremental Graph Partitioning”, IEEE Trans. Parallel and Distributed

Systems, vol. 8, no. 8, pp. 884–896, 1997.

[38] M. E. Palmer and S. Taylor, “Rotation Invariant Partitioning for Concurrent Scientific Visualization”, Proc.

Parallel CFD’94, 1994.

[39] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh, “Sort-First Parallel Rendering with a Cluster of PCs”,
SIGGRAPH 2000, Technical Sketch, New Orleans, LA, 2000.

[40] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh, “Hybrid Sort-First and Sort-Last Parallel Rendering
with a Cluster of PCs”, SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2000.

[41] R. Samanta, T. Funkhouser, and K. Li, “Parallel Rendering with K-Way Replication”, IEEE Symp. Parallel
and Large-Data Visualization and Graphics, 2001.

[42] K. Schloegel, G. Karypis, and V. Kumar, “Multilevel Diffusion Schemes for Repartitioning of Adaptive
Meshes”, J. Parallel and Distributed Computing, vol. 47, no. 2, pp. 109–124, 1997.

[43] K. Schloegel, G. Karypis, and V. Kumar, “Wavefront Diffusion and LMSR: Algorithms for Dynamic Repar-
titioning of Adaptive Meshes”, IEEE Trans. Parallel and Dist. Systems, vol. 12, no. 5, pp. 451–466, 2001.

[44] P. Shirley and A. Tuchman, “A Polygonal Approximation to Direct Scalar Volume Rendering”, Computer
Graphics, vol. 24, no. 5, pp. 63–70, 1990.

[45] R. Shu, “A Fast Ray-Casting Algorithm Using Adaptive Isotriangular Subdivision”, Proc. IEEE Visualization
’91, pp. 232–237, 1991.

[46] B. Ucar and C. Aykanat, “Encapsulating Multiple Communication-Cost Metrics in Partitioning Sparse

Rectangular Matrices for Parallel Matrix-Vector Multiplies”, SIAM J. Scientific Computing, vol. 25, no. 6,
pp. 1837–1859, 2004.

[47] C. Walshaw, M. Cross, and M. G. Everett, “Parallel Dynamic Graph Partitioning for Adaptive Unstructured
Meshes”, J. Parallel and Distributed Computing, vol. 47, no. 2, pp. 102–108, 1997.

[48] J. Wilhelms, A. V. Gelder, P. Tarantino, and J. Gibbs, “Hierarchical and Parallelizable Direct Volume

Rendering for Irregular and Multiple Grids”, Proc. IEEE Visualization ’96, pp. 57–64, 1996.

[49] P. L. Williams, “Interactive Direct Volume Rendering of Curvilinear and Unstructured Data”, PhD thesis,

University of Illinois at Urbana-Champaign, 1992.

[50] C. M. Wittenbrink, “Survey of Parallel Volume Rendering Algorithms”, Parallel and Distributed Processing

Techniques and Applications, Las Vegas, NV, pp. 1329–1336, 1998.

March 7, 2005 DRAFT

