
Processing Count Queries over Event

Streams at Multiple Time Granularities

Aykut Ünal∗, Yücel Saygın †, Özgür Ulusoy∗

∗Department of Computer Engineering, Bilkent University, Ankara, Turkey.

†Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey.

E-mail: {unala, oulusoy}@cs.bilkent.edu.tr, ysaygin@sabanciuniv.edu

1

Abstract

Management and analysis of streaming data has become crucial with its appli-

cations in web, sensor data, network traffic data, and stock market. Data streams

consist of mostly numeric data but what is more interesting is the events derived

from the numerical data that need to be monitored. The events obtained from

streaming data form event streams. Event streams have similar properties to data

streams, i.e., they are seen only once in a fixed order as a continuous stream.

Events appearing in the event stream have time stamps associated with them in a

certain time granularity, such as second, minute, or hour. One type of frequently

asked queries over event streams is count queries, i.e., the frequency of an event

occurrence over time. Count queries can be answered over event streams easily,

however, users may ask queries over different time granularities as well. For exam-

ple, a broker may ask how many times a stock increased in the same time frame,

where the time frames specified could be hour, day, or both. This is crucial es-

pecially in the case of event streams where only a window of an event stream is

available at a certain time instead of the whole stream. In this paper, we propose

a technique for predicting the frequencies of event occurrences in event streams

at multiple time granularities. The proposed approximation method efficiently

estimates the count of events with a high accuracy in an event stream at any time

granularity by examining the distance distributions of event occurrences. The pro-

posed method has been implemented and tested on different real data sets and the

results obtained are presented to show its effectiveness.

Index Terms - Count Queries, Data Streams, Event Streams, Time Granu-

larity, Association Rules, Data Mining

2

1 Introduction

The amount of electronic data has increased significantly with the advances in data

collection and data storage technologies. Traditionally, data are collected and stored in

a repository and queried or mined for useful information upon request. However, in the

case of applications like sensor networks and stock market, data continuously flow as

a stream and thus need to be queried or analyzed on the fly. Streaming data (or data

streams) brought another dimension to data querying and data mining research. This

is due to the fact that, in data streams, as the data continuously flow, only a window

of the data is available at a certain time. The values that appear in data streams are

usually numerical, however what is more interesting for the observers of a data stream

is the occurrence of events in the data stream. A very high value or an unusual value

coming from a sensor could be specified as an interesting event for the observer. The

events occurring in a stream of data constitute an event stream, and an event stream

has the same characteristics as a data stream, i.e., it is continuous and only a window

of the stream can be seen at a time. Basically, an event stream is a collection of events

that are collected from a data stream over a period of time. Events in an event stream

are observed in the order of occurrence, each with a timestamp that captures the time

unit supported by the system. The time unit used can be day, hour, second or any other

granularity. Experts would like to extract information from an event stream, such as

the value of an event at a specific time-tick; frequency of certain events, correlations

between different events, regularities within a single event; or future behavior of an

event. Relationships among the events can be captured from event streams via online

data mining tools.

3

1.1 Motivation

Given an event stream at a particular granularity, we are interested in frequencies of

events in the event stream at coarser time granularities. Consider, for instance, a stock

broker who wants to see how many times a stock peaks in hourly, daily and weekly basis.

For each time granularity (i.e., hour, day, week), the counts change. For fraud detection

in telecommunication, it may be interesting to know the count of different calls made by

a suspicious person hourly or daily. Data stream coming from sensor networks in a battle

field for detecting the movements around a region can be queried to find out the count

of moving objects in an hourly and daily fashion to estimate the military activities. All

these example queries require the analysis of the event streams at various granularities,

such as hour, day, and week.

1.2 Contribution

The main focus of our work is to find the frequencies of events in an event stream

at different time granularities. Our main contribution is to propose a method that

efficiently estimates the count of an event at any time granularity and runs in linear

time with respect to the length of the given stream. With our method, the event stream

is analyzed only once, and summary information is kept in an incremental fashion for

frequency estimation. Our method utilizes distance histograms of event occurrences

for event count prediction at multiple time granularities. Distance histograms can also

be used for event occurrence prediction besides event count prediction. Although the

distance histograms induce some storage overhead, this overhead could be justified by

their multiple uses. We discuss event occurrence prediction via distance histograms in

Section 6.

4

Most of the Data Mining methods proposed so far are based on finding the fre-

quencies of data items and then generating and validating the candidates against the

database [1]. Even the methods that do not perform candidate generation rely on finding

the frequencies of the items as the initial step [17]. Therefore, in addition to efficient

answering of count queries at multiple time granularities, our methods can also be used

by data mining algorithms on data streams to find frequent itemsets at multiple time

granularities.

The rest of the paper is organized as follows. The next section summarizes the related

work. Section 3 explains the basic concepts and the notation used throughout the pa-

per. Section 4 presents the method proposed to predict the count of an event at different

time granularities. Section 5 gives the results of several experiments conducted on real

life data to evaluate the accuracy of the method and the impact of several parameters.

Section 6 provides a brief discussion on estimation of event occurrences through dis-

tance histograms. Finally, the last section concludes the paper with a discussion of the

proposed method and further research issues.

2 Related Work

In this section, we summarize previous work related to our method which can be divided

into three categories: Data Mining, Time Granularity, and Histograms.

2.1 Data Mining

Handling of data streams has become a major concern for database researchers with

the increase of streaming data sources like sensor networks, phone calls in telephone

networks [3, 9], client requests for data in broadcast systems [29] and e-commerce data

5

on World Wide Web, stock market trades, and HHTP requests from a web server. Given

these huge data sources, data mining researchers moved into the domain of mining data

streams [11]. In this emerging area, the temporal dimension and time granularities are

yet to be explored.

Association rule mining has been well studied in the context of data mining, however

there is no work on mining associations at multiple time granularities. The work we have

performed can also be applied to association rule mining at multiple time granularities.

The problem and the corresponding terminology in association rule mining was first

introduced in market basket analysis, where the items are products in your shopping

card and associations among these purchases are looked for [1]. Each record in the sales

data consists of a transaction date and the items bought by the customer. The issue

of discovering frequent generic patterns (called episodes) in sequences was explained by

Mannila et.al. in [23] where the events are ordered in a sequence with respect to the time

of their occurrence at a certain time granularity. In their work, an episode was defined

as a partially ordered set of events, and can also be described as a directed acyclic

graph. Their iterative algorithm builds candidate episodes using the frequent episodes

found in the previous iteration. They extended their work in [22] to discover generalized

episodes, and proposed algorithms for discovering episode rules from sequences of events.

In [8], Das et.al. aimed at finding local relationships from a time series, in the spirit

of association rules, sequential patterns, or episode rules. They convert the time series

into a discrete representation by first forming subsequences using a sliding window and

then clustering these subsequences using a pattern similarity measure. Rule finding

algorithms such as episode rule methods can be used directly on the discretized sequence

to find rules relating temporal patterns. In a recent work, Gwadera et.al. investigated

the problem of the reliable detection of an abnormal episode in event sequences, where

6

an episode is a particular ordered sequence occurring as a subsequence of a large event

stream within a window of size w, but they did not consider the case of detecting

more than one episode [15]. This work was extended in [2] to the case of many pattern

sequences, including the important special case of all permutations of the same sequence.

All these works are different from ours in that they investigate temporal relationships

but only at a single time granularity.

Cyclic associations where each association has a cyclic period associated with it were

studied by Özden et al. in [25]. But the authors only investigated the case where the

database has a fixed time granularity. Another work by Pavlov et al. considered count

queries for itemsets on sparse binary transaction data [26]. The authors used proba-

bilistic models to approximate data for answering queries on transactional data. In [21],

Mannila and Smyth used enthropy models to answer count queries over transactional

data. In both of these works, the authors did not consider the time dimension. Again

a recent work by Bouicaut et. al. describes methods for approximate answering of

frequency queries over transactional data without considering time dimension and time

granularities [6].

2.2 Time Granularity

Given an event stream, we are interested in estimating the frequencies of event occur-

rences at coarser time granularities. Data analysis at multiple time granularities was

already explored in the context of sequential pattern mining by Bettini et al. [5]. How-

ever, the target of their work is completely different from ours in that, they try to find

sequences with predefined beginning and ending timestamps, and they would like to find

sequences that have these predefined timestamps at multiple time granularities. Our tar-

get, however, is to find frequencies of event occurrences at multiple time granularities

7

without any time restriction.

Temporal aggregation queries were well studied and several approaches have been

proposed recently [10, 12, 14, 20, 24, 30, 31, 33]. However, all these works consider only a

single time granularity, where this granularity is usually the same as the granularity used

to store the time attributes. To the best of our knowledge, the only work exploring the

aggregate queries of streaming data in the time dimension at multiple time granularities

appeared in [32], where Zhang et.al. present specialized indexing schemes for maintain-

ing aggregates using multiple levels of temporal granularities: older data is aggregated

using coarser granularities while more recent data is aggregated with finer detail. If

the dividing time between different granularities should be advanced, the values at the

finer granularity are traversed and the aggregation at coarser granularity is computed.

Their work is different from ours in that, they calculate the exact aggregate function of

the stream at predefined coarser time granularities by performing queries. However, we

scan the stream only once and estimate the frequency of the event at any arbitrary time

granularity without storing any information at intermediate time granularities.

2.3 Histograms

In order to estimate event occurrence frequencies at coarser time granularities, we obtain

statistical information from the event stream which is similar to histograms. In order to

construct an histogram on an attribute domain X, the data distribution τ of attribute

X is partitioned into β (≥ 1) mutually disjoint subsets, called buckets. A uniform dis-

tribution is assumed within each bucket, i.e., the frequency of a value in a bucket is

approximated by the average of the frequencies of all values in the bucket. The point

in histogram construction is the partitioning rule that is used to determine the buckets.

Various types of histograms have been proposed and used in several commercial systems.

8

The most popular ones are the equi-width [19] and equi-height [19, 27] histograms. Equi-

width histograms group contiguous ranges of attribute values into buckets such that the

widths of each bucket’s range is the same. Equi-height histograms are partitioned such

that the sum of all frequencies in each bucket is the same and equal to the total sum of

all frequencies of the values in the attribute domain divided by the number of buckets.

Another important class of histograms is the end-biased [18] histograms, in which some

of the highest frequencies and some number of the lowest frequencies are explicitly and

accurately stored in individual buckets, and the remaining middle frequencies are all

grouped in one single bucket. Indeed, this type of histogram is the most suitable data

structure for our count estimation algorithm, because, the experiments we conducted

on real-life data show that the distribution of the distance between two occurrences of

an event in a history tends to have high frequencies for some small distance values, and

very low frequencies for the remaining larger values. Therefore, we use end-biased his-

tograms, in which some of the values with the highest and lowest frequencies are stored

in individual buckets, and the remaining values with middle frequencies are grouped in

a single bucket. Readers who are interested in further detailed information on histogram

types, construction and maintenance issues are referred to [28], which provides a taxon-

omy of histograms that captures all previously proposed histogram types and indicates

many new possibilities. Random sampling for histogram construction has also been

widely studied, and several algorithms have been proposed and used in many different

contexts in databases [7, 13, 16, 27]. The aim of all these works is to use only a small

sample of the data to construct approximate histograms that gives reasonably accurate

estimations with high probabilities.

9

3 Basic Concepts and Notation

This section includes the definitions of some basic concepts and the notation used

throughout the paper. For ease of reference, a summary of the most frequently used

notation is given in Table 3.1.

Notation Description
� finer than
S1 Base Stream
Sg An Event Stream at granularity g

cgg′ Transformation coefficient of the
transformation Sg → Sg′

dg
i A distance of length i in Sg

Dg Distance distribution of Sg

Table 3.1: Summary of Notation

We start by defining granularity, the most fundamental concept [4].

Definition 3.1 A granularity is a mapping G from the positive integers (the time-ticks)

to subsets of the Time Domain satisfying:

1. ∀i, j ∈ Z+ such that i < j, G(i) 6= ∅ and G(j) 6= ∅, each number in G(i) is less

than all numbers in G(j),

2. ∀i, j ∈ Z+ such that i < j, G(i) = ∅ implies that G(j) = ∅.

The first condition states that the mapping must be monotonic. The second one

states that if a time-tick of G is empty, then all subsequent time-ticks must be empty as

well. Intuitive granularities such as second, minute, hour, day, month all satisfy these

conditions. For example, the months in year 2002 can be defined as a mapping G such

that {G(1)=January,. . . , G(12)=December}, and G(i) = Ø for all i > 12. Since the

mapping G satisfies both conditions, month is a valid granularity. There is a natural

relationship between granularities as follows [4]:

10

Definition 3.2 Let G and H be two granularities. Then, G is said to be finer than H,

denoted as G � H, if for each time-tick i in G, there exists a time-tick j in H such that

G(i) ⊆ H(j).

If G � H, then H is said to be coarser than G. For example, day is finer than week, and

coarser than hour, because every day is a subset of a week and every hour is a subset

of a day.

Definition 3.3 An Event Stream Sg is a collection of time-ticks at granularity g and

an event corresponding to each time-tick. More formally, Sg = {< ti, ei > |i ≥ 1, ti ∈

Tg, ei ∈ E}, where Tg is the set of time-ticks at granularity g, and E is the universal set

of event states for the particular system in concern. The Length of the stream is equal

to the total number of time ticks registered for that stream, and is denoted as Sg.length.

Definition 3.4 An event stream can be given with a particular granularity to be trans-

formed to coarser granularities. The event stream generated by the application in con-

cern is called the Base Stream, denoted by S1, and its time granularity is called the Base

Granularity.

As an example, consider the daily percentage price changes of a particular stock ex-

changed in a stock market between January 1st, 2002 and December 31st, 2002. Here,

event is the price change of the stock, granularity is business-day, Tg is the set of

all business-days in year 2002, and E is the set of all possible event states, such as

E = {fall, no change, rise} or E = {(−∞,−2%), [−2%, 0), [0, 0], (0, 2%], (2%,∞)} (At

each time-tick, the event has one of the five states according to the interval the price

change falls into). In our work, we are interested in event streams whose set of all

possible event states are 0 and 1, namely E = {0, 1}.

11

Definition 3.5 A 0/1 event stream is an event stream where each time-tick records

the state of the event at that time-tick, which is equal to 1 if the event occurs, and 0

otherwise.

When we transform an event stream Sg at time granularity g to another event stream

Sg′ at granularity g′, we obtain a different set of time-ticks and different sets of events

associated with these time-ticks. Before we give the formal definition of transformation

of a stream, the following two concepts need to be introduced.

Definition 3.6 Suppose that an event stream Sg is transformed to an event stream Sg′.

Then, Transformation Coefficient, denoted by cgg′, is the total number of time-ticks in

Sg that correspond to a single time-tick in Sg′.

For example, seven days form one week, yielding a transformation coefficient equal to 7.

Definition 3.7 A Transformation Operation is a mapping P : Ec → E that takes event

states at c successive time-ticks where c is the transformation coefficient, and returns a

single event state according to the particular operation in use.

Some common transformation operations are MinMerge, MaxMerge, AvgMerge, Sum-

Merge, Union, and Intersection. For example, MinMerge operation returns the mini-

mum event value from the set of c events, where c is the transformation coefficient. The

other operations are defined similarly. In this paper, we are interested in 0/1 (boolean)

event stream where the universal set of event states is {0,1}, and we use mergeOR oper-

ation that logically ORs the event values at corresponding time-ticks. Besides mergeOR,

some other transformation operations can also be used as long as their output is also a

boolean event stream.

Definition 3.8 Let Sg = {< ti, ei > |i ≥ 1, ti ∈ Tg, ei ∈ E} be an event stream, P be

12

a transformation operation, and c be the transformation coefficient. Then, the transfor-

mation of Sg to another stream Sg′ with granularity g′ is provided in such a way that,

Sg′ = {< t′j, e
′
j > |j ≥ 1, t′j ∈ Tg′ , e′j ∈ E}, where e′j = P (e(j−1)∗c+1, e(j−1)∗c+2, . . . , ej∗c)

and t′j ∈ Tg′ corresponds to time-ticks [t(j−1)∗c+1, tj∗c] ⊆ Tg.

Consider the transactional database of a retail company that stores the purchased

items in a daily basis. And consider the transformation of the “milk purchase history” at

granularity day to granularity week. Then, the ith week corresponds to the days between

[day(i−1)∗7+1, dayi∗7], and stores 1 if the milk is purchased on any of the corresponding

days. For instance, the first week corresponds to the first 7 days, and the third week

corresponds to days [15,21]. Note that, stream Sg can be transformed to Sg′ only if

g < g′, and cgg′ is an integer, i.e., g′ is a multiple of g. During the transformation, the

event corresponding to a time-tick t′j ∈ T ′
g is constructed by applying the transformation

operation P to the event sequence of length cgg′ in Sg at time-ticks corresponding to t′j.

Since the only transformation operation we use is mergeOR, we omit the specification of

the operation used in transformations throughout the paper. Then, the transformation

of Sg to Sg′ becomes equivalent to dividing Sg into blocks of length cgg′ and checking

whether the event occurs at any time-tick in each of these blocks. If so, the corresponding

t′j in Sg′ records 1, and 0 otherwise. Note that the number of the blocks of length cgg′ is

equal to dSg.length/cgg′e, which also gives the cardinality of Tg′ .

The count of an event at granularity g′ can be found by constructing Sg′ and count-

ing the time-ticks at which the event occurred. However, this naive method is quite

infeasible in case of event streams where the stream is available only once and as a set of

windows. Considering this limitation incurred by event streams, we propose a method

that reads the given stream once and then estimates the count of the event at any coarser

granularity efficiently and accurately. This is accomplished as follows: Distance between

13

two successive occurrences of an event is defined as the number of time-ticks between

these occurrences. We examine the distribution of the distances within the whole se-

quence, and then observe the possible values to which each particular distance value can

transform during the transformation of Sg to Sg′. We formulate these observations to

be able to capture the possible distance transformations along with their corresponding

probabilities. The formal definitions of distance and distance distribution can be given

as follows:

Definition 3.9 Given a 0/1 event stream Sg (g ≥ 1), the distance between two event

occurrences is defined to be the number of zeros between the time-ticks at which the event

occurs in the stream.

A distance of length i in Sg is denoted by dg
i . If the event occurs at any two successive

time-ticks, then we have a distance of length 0 (dg
0).

Definition 3.9 becomes ambiguous when a stream starts or ends with zero(s). These

special cases are treated in Section 4.6 in detail.

Definition 3.10 The Distance Distribution of an event stream Sg is the set of pairs

Dg = {(dg
0, c

g
0), (d

g
1, c

g
1), (d

g
2, c

g
2), . . . , (d

g
mg

, cg
mg

)}

where mg is the maximum distance value observed in Sg, and cg
i gives the count of the

distance dg
i in Sg (0 ≤ i ≤ mg).

For convenience, we use array notation to refer the counts of distance values such

that Dg[i] = cg
i .

As an example, consider the base event stream S1 given in Figure 3.1. Corresponding

distance distribution is given in Table 3.2.

14

S1 : 1 0 0︸︷︷︸
2

1 1︸︷︷︸
0

0 0 0︸ ︷︷ ︸
3

1 0 1︸ ︷︷ ︸
1

0︸︷︷︸
1

1 1︸︷︷︸
0

0 0 0 0 0 0︸ ︷︷ ︸
6

1 1︸︷︷︸
0

0 0 0 0 0︸ ︷︷ ︸
5

1 1︸︷︷︸
0

0 0 0︸ ︷︷ ︸
3

1 1︸︷︷︸
0

0︸︷︷︸
1

1 0 0 0 0 0 0 1︸ ︷︷ ︸
6

0 0︸︷︷︸
2

1 0 0 1︸ ︷︷ ︸
2

Figure 3.1: An Example of Event Stream

d1
i D1[i] F1[i]
0 5 0.3125
1 3 0.1875
2 3 0.1875
3 2 0.1250
4 0 0.0
5 1 0.0625
6 2 0.1250

Total 16 1.0

Table 3.2: The Distribution of Distance

d1
i : possible distance values in S1

D1[i] : count of d1
i

F1[i] : relative frequency of d1
i

(F1[i] =
D1[i]∑mg

j=0 D1[j]
)

4 Estimation of an Event’s Count at Coarser Gran-

ularities

The aim of our work is to estimate accurately the count of an event in an event stream

at any time granularity g by using an efficient method in terms of both time and space

considerations. The brute-force technique to scan the given stream and generate the

stream at each time granularity in question is unacceptable due to the fact that when

the person monitoring the event streams wants to query it in a different time granularity,

the part of the event stream that contains the past events can not be brought back

for further analysis. The method we propose in this paper is based on analyzing the

15

S1︸︷︷︸
S2

: | |︸︷︷︸
| |

| |︸︷︷︸
| |

| |︸︷︷︸
| |

.︸ ︷︷ ︸
...

| |︸︷︷︸
| |

| |︸︷︷︸
| |

| |︸︷︷︸
| |

Figure 4.2: Transformation with Granularity 2

event stream only once as it flows continuously. Some statistical information about the

frequency and distribution of the event occurrences is collected, and used to estimate

the frequency (or count) of the event at any coarser time granularity. One can think

that the event frequencies could be calculated for all possible time granularities as the

event stream flows, but this is also not practical since there exist a large number of

possible time granularities. In order to show how a particular distance can transform to

different values with certain probabilities, we first analyze the transformation of a base

event stream (i.e., a stream with granularity 1) to event streams with granularities 2

and 3. Understanding how transformation takes place with small granularities will help

to generalize the estimation method for arbitrary granularities.

4.1 Estimation at Time Granularity 2

For the simplest case, consider the transformation of the base event stream S1 (at gran-

ularity 1) to event stream S2 (at granularity 2). During this transformation, we will

examine how the distance array D1 changes and transforms to D2. As we have al-

ready mentioned, this transformation is equivalent to dividing S1 into blocks of length

2 and checking whether the event occurs at any time-tick in these blocks. If so, the

corresponding time-tick ti in S2 records 1, and 0 otherwise. This is shown in Figure 4.2.

A distance d1
0 indicates a subsequence “11” of length 2 in S1. During the transfor-

mation of S1 to S2, there are two cases : Either both of 1s are in the same block, or

they are in two successive blocks. As shown in Figure 4.3, the first case yields a single 1

in S2, which means that d1
0 vanishes in D2 (also in S2); while the second one preserves

16

both 1s in S2, i.e., d1
0 in S1 transforms to d2

0 in S2. From a probabilistic point of view,

both of these cases have 50% probability and are equally likely to happen.

Similarly, a distance d1
1 represents the subsequence “101” in S1 and yields two differ-

ent cases which are specified in Figure 4.4. However, for the distance d1
1, the two cases

give the same result indicating that d1
1 in S1 always becomes d2

0 in S2.

S1 : | |︸︷︷︸
| |

· · · · · ·︸ ︷︷ ︸
···

| |︸︷︷︸
| |

|1 1|︸︷︷︸
|1|

| |︸︷︷︸
| |

· · · · · ·︸ ︷︷ ︸
···

| |︸︷︷︸
| |

(Case 1 : d1
0 vanishes in S2)

S1 : | |︸︷︷︸
| |

· · · · · ·︸ ︷︷ ︸
···

| 1|︸︷︷︸
|1|

|1 |︸︷︷︸
|1|

| |︸︷︷︸
| |

· · · · · ·︸ ︷︷ ︸
···

| |︸︷︷︸
| |

(Case 2 : d1
0 −→ d2

0)

Figure 4.3: Transformation D1 −→ D2 for d1
0

S1 : | |︸︷︷︸
| |

· · · · · ·︸ ︷︷ ︸
···

|1 0|︸︷︷︸
|1|

|1 |︸︷︷︸
|1|

| |︸︷︷︸
| |

· · · · · ·︸ ︷︷ ︸
···

| |︸︷︷︸
| |

(Case 1 : d1
1 −→ d2

0)

S1 : | |︸︷︷︸
| |

· · · · · ·︸ ︷︷ ︸
···

| 1|︸︷︷︸
|1|

|0 1|︸︷︷︸
|1|

| |︸︷︷︸
| |

· · · · · ·︸ ︷︷ ︸
···

| |︸︷︷︸
| |

(Case 2 : d1
1 −→ d2

0)

Figure 4.4: Transformation D1 −→ D2 for d1
1

S1 : | |︸︷︷︸
| |

· · · · · ·︸ ︷︷ ︸
···

|1 0|︸︷︷︸
|1|

|0 1|︸︷︷︸
|1|

| |︸︷︷︸
| |

· · · · · ·︸ ︷︷ ︸
···

| |︸︷︷︸
| |

(Case 1 : d1
2 −→ d2

0)

S1 : | |︸︷︷︸
| |

· · · · · ·︸ ︷︷ ︸
···

| 1|︸︷︷︸
|1|

|0 0|︸︷︷︸
|0|

|1 |︸︷︷︸
|1|

· · · · · ·︸ ︷︷ ︸
···

| |︸︷︷︸
| |

(Case 2 : d1
2 −→ d2

1)

Figure 4.5: Transformation D1 −→ D2 for d1
2

A similar analysis for d1
2 in S1 shows that d1

2 becomes either d2
0 or d2

1 with equal

probabilities, which can be figured as shown in Figure 4.5.

17

Table 4.3 lists the transformation of D1 to D2 for distance values ranging from 0

to 9. As the table shows clearly, this transformation can be summarized as follows:

∀i ≥ 1, if i is odd then d1
i −→ d2

bi/2c, otherwise d1
i −→ d2

(i/2) or d1
(i/2−1) with equal

probability. The first case implies that only d1
2i+1 in S1 can transform to d2

i in S2, and

all distances d1
2i+1 transform to d2

i . The second case implies that both distances d1
2i and

d1
2i+2 in S1 can transform to distance d2

i in S2, and half of these distances transform

to d2
i . Equation 1, which takes both cases into account using a probabilistic approach,

formulates this relation accordingly. Ignoring the second case and assuming that always

the first case takes place yields a different formula for the transformation. Although it

seems not intuitive to ignore the second case, the second estimation that counts only

the first case gives reasonably good results if the base stream is long enough. However,

the first approximation gives even better results than the second one.

D1 D2

0 vanish ; 0
1 0
2 0 ; 1
3 1
4 1 ; 2
5 2
6 2 ; 3
7 3
8 3 ; 4
9 4

Table 4.3: Transformation D1 −→ D2

D2[i] =
D1[2 · i]

2
+ D1[2 · i + 1] +

D1[2 · i + 2]

2
(1)

18

S1︸︷︷︸
S3

: | |︸ ︷︷ ︸
| |

| |︸ ︷︷ ︸
| |

| |︸ ︷︷ ︸
| |

.︸ ︷︷ ︸
...

| |︸ ︷︷ ︸
| |

| |︸ ︷︷ ︸
| |

| |︸ ︷︷ ︸
| |

Figure 4.6: Transformation with Granularity 3

4.2 Estimation at Time Granularity 3

Now, we can examine how the distance array D1 changes and becomes D3 during the

transformation of event stream S1 (at granularity 1) to event stream S3 (at granularity

3). The only difference from the transformation to an event stream at time granularity

2 is the length of the blocks in S1, which now is three and we thus have three different

cases for each distance value in D1. This is shown in Figure 4.6.

Again a distance d1
0 indicates a “11” subsequence of length 2 in S1. Three cases to

consider during the transformation of S1 to S3 are: Both of 1s can be in the same block

with 2 different possible placement in that block, or they can be in different successive

blocks. As shown in Figure 4.7, the first two cases yield a single 1 in S3, which means that

d1
0 vanishes in D3; while the third one preserves both 1s in S3, i.e., d1

0 in S1 transforms to

d3
0 in S3. Thus, a zero distance in S1 vanishes in S3 with probability 2/3, and becomes

a zero distance in S3 with probability 1/3.

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

|1 1 |︸ ︷︷ ︸
|1|

| |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 1 : d1
0 vanishes in S3)

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

| 1 1|︸ ︷︷ ︸
|1|

| |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 2 : d1
0 vanishes in S3)

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

| 1|︸ ︷︷ ︸
|1|

|1 |︸ ︷︷ ︸
|1|

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 3 : d1
0 −→ d3

0)

Figure 4.7: Transformation D1 −→ D3 for d1
0

The same analysis for distances 1 to 3 are given in Figures 4.8, 4.9 and 4.10, respec-

19

tively, without any further explanation. Table 4.4 lists the transformation of D1 to D3

for distance values 0 to 9 with associated probabilities given in parentheses. Equation 2

formulates this relation between D1 and D3.

D3[i] = D1[3 · i]
1

3
+ D1[3 · i + 1]

2

3
+ D1[3 · i + 2]

3

3
+ D1[3 · i + 3]

2

3
+ D1[3 · i + 4]

1

3
(2)

D1 D3

0 vanish (2/3) ; 0 (1/3)
1 vanish (1/3) ; 0 (2/3)
2 0
3 0 (2/3) ; 1 (1/3)
4 0 (1/3) ; 1 (2/3)
5 1
6 1 (2/3) ; 2 (1/3)
7 1 (1/3) ; 2 (2/3)
8 2
9 2 (2/3) ; 1 (1/3)

Table 4.4: Transformation D1 −→ D3

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

|1 0 1|︸ ︷︷ ︸
|1|

| |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 1 : d1
0 vanishes in S3)

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

| 1 0|︸ ︷︷ ︸
|1|

|1 |︸ ︷︷ ︸
|1|

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 2 : d1
0 −→ d3

0)

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

| 1|︸ ︷︷ ︸
|1|

|0 1 |︸ ︷︷ ︸
|1|

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 3 : d1
0 −→ d3

0)

Figure 4.8: Transformation D1 −→ D3 for d1
1

4.3 Estimation at Coarser Granularities

Consider the transformation of the base event stream S1 to event stream Sg with an

arbitrary time granularity g ≥ 2. Instead of analyzing how a particular distance d1
i in

20

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

|1 0 0|︸ ︷︷ ︸
|1|

|1 |︸ ︷︷ ︸
|1|

| |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 1 : d1
0 −→ d3

0)

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

| 1 0|︸ ︷︷ ︸
|1|

|0 1 |︸ ︷︷ ︸
|1|

| |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 2 : d1
0 −→ d3

0)

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

| 1|︸ ︷︷ ︸
|1|

|0 0 1|︸ ︷︷ ︸
|1|

| |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 3 : d1
0 −→ d3

0)

Figure 4.9: Transformation D1 −→ D3 for d1
2

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

|1 0 0|︸ ︷︷ ︸
|1|

|0 1 |︸ ︷︷ ︸
|1|

| |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 1 : d1
0 −→ d3

0)

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

| 1 0|︸ ︷︷ ︸
|1|

|0 0 1|︸ ︷︷ ︸
|1|

| |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 2 : d1
0 −→ d3

0)

S1 : | |︸ ︷︷ ︸
| |

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

| 1|︸ ︷︷ ︸
|1|

|0 0 0|︸ ︷︷ ︸
|0|

|1 |︸ ︷︷ ︸
|1|

· · · · · · · · ·︸ ︷︷ ︸
···

| |︸ ︷︷ ︸
| |

(Case 3 : d1
0 −→ d3

1)

Figure 4.10: Transformation D1 −→ D3 for d1
3

S1 transforms to a distance dg
j in Sg, we find which distances in S1 can transform to a

particular distance dg
j in Sg and their corresponding probabilities.

Let g be the target granularity and t be a distance in Sg, where 0 ≤ t ≤ MaxDistg.

Let R be the possible distance values in S1 that can transform to dg
t . Formally, R =

{d′ | d′ ∈ D1, d
′ −→ t}. Using our block structure, this transformation can be figured as

in Figure 4.11. Each block is of length g, and d′ must be at least (t · g) in order to have

S1︸︷︷︸
Sg

:

t︷ ︸︸ ︷
| . . . | | . . . | | . . . | | . . . | | . . . | | . . . |︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

b0 b1 b2 bt−1 bt bt+1

Figure 4.11: Transformation with Granularity g

21

dg
t . This represents the best case, because in order to have d′ = (t · g) −→ t, the d′ zeros

in S1 must start at exactly b1[1], which is the first time-tick of the block b1. The worst

case occurs when the d′ zeros start at b0[2] and ends at bt+1[g−1], spanning (t·g+2·g−2)

time-ticks. Adding one more zero to d′ zeros would fill either of the blocks b0 and bt+1

and d′ would become at least dg
t+1 in Dg. Thus, we have R = [t · g , t · g + 2 · g − 2] and

R ⊂ Z.

Now, let us find the probability of (d′ −→ dg
t) for each value in R, which will be

referred to by p(d′ = i −→ t). As we have already mentioned above, the probability

of d′ = (t · g) is 1/g since the d′ zeros must start at the first time-tick of any block of

length g. For d′ = (t · g + 1), the d′ zeros can start at the points b0[g] or b1[1]. The first

case spans the points between b0[g] and bt[g], while the second one spans the points b1[1]

to bt+1[1]. Any other start point would leave either of the blocks b0 or bt unfilled and

violate the transformation d′ −→ t. Thus, only two out of g points are acceptable and

p(t · g + 1 −→ t) = 2/g. Similar analysis on different values of d′ can be made to show

the following relation:

∀d′ = t · g + j , 0 ≤ j ≤ g − 1 ⇒ p(d′ −→ t) =
j + 1

g
(3)

Substituting (t + 1) for (t) in Equation 3 gives

∀d′ = (t + 1) · g + j , 0 ≤ j ≤ g − 1 ⇒ p(d′ −→ t + 1) =
j + 1

g
(4)

∀d′ = (t + 1) · g + j , 0 ≤ j ≤ g − 1 ⇒ p(d′ −→ t) = 1− j + 1

g
(5)

∀d′ = t · g + g + j , 0 ≤ j ≤ g − 2 ⇒ p(d′ −→ t) =
g − j − 1

g
(6)

22

Equation 4 is straightforward. Equation 5 uses the fact that ∀d′ = t · g + g + j , 0 ≤

j ≤ g − 1, either d′ −→ t or d′ −→ t + 1. Therefore, p(d′ −→ t) = 1 − p(d′ −→ t + 1).

Equation 6 is just the more explicit form of Equation 5. The combination of Equations

3 and 5 given below spans the whole R and is the desired generalization of Equations 1

and 2 to coarser time granularities.

Dg[i] =

g−1∑
j=0

D1[g · i + j]
j + 1

g
+

g−1∑
j=1

D1[g · i + g − 1 + j]
g − j

g
(7)

4.4 Calculation of Event Counts Using the Distance Matrix

Once we have estimated the distance array Dg, the count of 1s in Sg is found as follows:

for 1 ≤ i ≤ Dg.length, Dg[i] gives the number of distances of length i, i.e., the number

of blocks of successive zeros of length i. Thus, the total number of zeros in Sg is

Countg(0) =

Dg .length∑
i=1

i ∗Dg[i]

Then, the total count of 1s in Dg is given by

Countg(1) = Dg.length− Countg(0)

where Dg.length = dn/ge and n is the length of S1.

4.5 Incremental Maintenance

The distance array can be updated incrementally for streaming data. At each time tick,

a variable, say current, is updated according to the current state of the event. Whenever

the event state is 1, the corresponding distance value D1[current] is incremented by one,

and current is set to zero. For each 0-state, current is incremented by one. Equation

3 and 6 clearly show that the count estimations at granularity g can be incrementally

23

updated as follows:

Dg[i] + =
j + 1

g

Dg[i− 1] + =
g − j − 1

g
(8)

where current = g · i + j.

4.6 Special Cases

Before applying the method to an input event stream S, two similar special cases should

be considered. Depending on the implementation, one or both of these cases may degrade

the accuracy of the method. Suppose that the values that appeared last in the stream

S are one or more zeros, i.e., S1 : [· · · · · · · · · , 1 , 0 · · · 0︸ ︷︷ ︸
dk

], where dk ≥ 1. And suppose

that during the distance generation phase, the dk zeros at the end are treated as a

distance of length dk, and D[dk] is incremented by 1, where D is the distance array.

Then, since a distance is defined as the total number of successive 0s between two 1s

in the stream, this kind of implementation implicitly (and erroneously) assumes the

presence of a 1 at the end of the stream, just after the dk 0s. This misbehavior results

in an overestimate of the count of the event at coarser granularities by 1. Although an

overestimate by 1 may seem insignificant, this can cause relatively high error rates for

extremely sparse event streams or at sufficiently high granularities where the frequency

of the event is very low.

The same effect could be made by one or more 0s at the beginning of the event

stream, where the implicit (and erroneous) assumption would be the presence of a 1

before the 0s at the beginning of the stream. To prevent such misbehavior, the start and

end of the stream should be considered separately from the rest, or the stream should be

trimmed off from both ends during the preprocessing phase, so that it starts and ends

24

with a 1.

4.7 Time and Space Requirements

In the preprocessing phase, we scan the base stream once and populate the distance array

D1, which takes O(n) time and uses O(max1) space, where n is the length of the base

stream S1 and max1 is the maximum distance at base granularity. For any particular

granularity g, we make the transformation D1 −→ Dg which takes O(maxg × g) time

where maxg is the maximum distance at granularity g. Indeed, maxg is the length of

Dg and is less than or equal to dmax1/ge. The space required to store the distance

distribution Dg is also proportional to maxg. Thus, the run-time of our method is

O(n+maxg×g) = O(n+(max1/g)×g) = O(n+max1) = O(n), and the memory required

is O(maxg) if the stream is not stored after the distance distribution is constructed, and

it is O(n + maxg) = O(n) otherwise.

We use histograms to store the distance distributions of the event streams at base

granularity. As explained before, various histogram types have been introduced and

their construction and maintenance issues have been well studied so far, especially in

the context of query result size estimation. We used end-biased histograms, where some

of the values with the highest and lowest frequencies are stored in individual buckets,

and the remaining values with middle frequencies are grouped in one single bucket.

5 Performance Experiments

In this section, we give some experimental results conducted on different real life data.

The experimental setup and corresponding results are presented in the following subsec-

tions.

25

5.1 Data Set 1

We used the data set gathered in [5] and available at http://cs.bilkent.edu.tr/~unala/stockdata.

The data set is the closing prices of 439 stocks for 517 trading days between Jan-

uary 3, 1994, and January 11, 1996. We have used this data set to simulate event

streams. For each stock in the data set, the price change percentages are calculated

and partitioned into 7 categories: (−∞,-5],(-5,-3], (-3,0], [0,0], (0,3], (3,5], (5,∞). Each

category of price change for each stock is considered as a distinct event, yielding a

total 439 × 7 = 3073 number of event types and 3073 × 517 = 1, 588, 741 distinct

< time − tick, eventstate >eventtype pairs. For example, IBM 03 is an event type that

represents a price change percentage of IBM stock that falls into (-3,0]. < 200, 1 >IBM 03

meaning that the event IBM 03 occurred on day 200 in the stream. If a stock is not

exchanged for any reason on a particular business day, then all 7 events are registered

as 0 for that stock on that day.

The machine we used for the experiments was a personal computer with a Pentium

4 1.4 GHz processor and 2 memory boards, each 64 MB RDRAM, totally 128 MB main

memory.

In the experiments, we considered both single and multiple events (or eventsets). In

Section 5.1 experimental results for a single event are presented. In Sections 5.2 and

5.3, multiple events are considered to show that our methods can also be generalized to

eventsets. Frequencies of multiple events are predicted exactly the same way as single

events, i.e., using the distance distributions for each event.

As mentioned before, the experiments we conducted show that the distribution of the

distance between two occurrences of an event in a history tends to have high frequencies

for some small distance values, and very low frequencies for the remaining larger values.

Therefore, we use end-biased histograms, in which some of the values with the highest

26

and lowest frequencies are stored in individual buckets, and the remaining values with

middle frequencies are grouped in a single bucket.

5.1.1 Experiments for a Single Event

We first examined a single event in order to prove the accuracy of our method on finding

the count (or frequency) of an event stream at coarser granularities. The count of an

event stream at a particular granularity is equal to the number of time ticks at which

the event occurred at that granularity. Table 5.5 shows the results of the experiment

in which the event was defined as no price change of McDonalds Corp. stock. The

first column gives the granularities at which the estimations are made. The next two

columns specify the actual count of the event at the corresponding granularity and the

count estimated by our method, respectively. The last two columns give the absolute

and relative errors of our estimations, respectively, with respect to the actual values.

The frequency of the event at base granularity was 9.48% and the maximum distance

was 72. Figure 5.12 plots the actual and estimated counts at multiple time granularities.

Experiments conducted on a different set of real life data gave similar results, validating

the accuracy of our method. The second data set also consists of stock exchange market

closing prices, and is available at http://www.analiz.com/AYADL/ayadl01.html. The

results obtained with this data set are presented in the next section.

We then conducted 3 sets of experiments, each testing the behavior of the method

with respect to 3 parameters: granularity, support threshold, and the number of events.

In each experiment set, two of these parameters were held constant while several ex-

periments were conducted for different values of the third parameter, and given a set

of event streams, we estimated the frequent eventsets at granularity in concern. The

following subsections present the results of these experiments.

27

g Actual Approx. Abs Err Rel Err (%) g Actual Approx Abs Err Rel Err (%)
1 49 49 0 0 26 18 18 0 0
2 46 47 1 2,17 27 17 17 0 0
3 46 45 -1 -2,17 28 16 16 0 0
4 42 43 1 2,38 29 16 16 0 0
5 41 42 1 2,44 30 15 15 0 0
6 39 40 1 2,56 31 15 16 1 6,67
7 38 38 1 2,7 32 14 15 1 7,14
8 38 37 -1 -2,63 33 14 15 1 7,14
9 35 35 0 0 34 13 14 1 7,69
10 32 33 1 3,12 35 13 14 1 7,69
11 31 31 0 0 36 12 13 1 8,33
12 30 30 0 0 37 12 13 1 8,33
13 30 29 -1 -3,33 38 12 13 1 8,33
14 26 27 1 3,85 39 12 12 0 0
15 26 26 0 0 40 12 12 0 0
16 26 25 -1 -3,85 41 12 12 0 0
17 24 24 0 0 42 11 11 0 0
18 22 23 1 4,55 43 11 11 0 0
19 22 22 0 0 44 11 11 0 0
20 21 22 1 4,76 45 11 11 0 0
21 21 20 -1 -4,76 46 10 10 0 0
22 20 20 0 0 47 10 10 0 0
23 18 19 1 5,56 48 10 10 0 0
24 17 18 1 5,88 49 10 10 0 0
25 18 19 1 5,56 50 10 10 0 0

Table 5.5: Summary of the experiments conducted using a single event

5.1.2 Granularity

The experiments of this section were conducted with varying values of the granularity

parameter. For each granularity value, using our approximation algorithm we estimated

the eventsets that are frequent in the event stream.

Table 5.6 reports the experimental results. For each granularity, the second column

gives the number of actual frequent eventsets, and the third column presents the number

of estimated eventsets. The last two columns report the number of under and over

28

0

10

20

30

40

50

60

1 5 10 15 20 25 30 35 40 45 50

Co
un

t O
f E

ve
nt

 S
tre

am

Granularity

Actual
Approx

Figure 5.12: Count Estimation of a Single Event Stream at Multiple Time Granularities

estimated eventsets, respectively. An under-estimated eventset is one that is in the set

of actual frequent eventsets but not found by the approximation algorithm. On the

other hand, an over-estimated eventset is one that is found to be a frequent eventset but

is not really frequent.

As the granularity increases, the total number of frequent eventsets decreases. We

used absolute support threshold values rather than relative ones. Since the support

threshold is held constant and the count of a particular event decreases at coarser gran-

ularities, the number of frequent eventsets of length 1 (C1) decreases as well. The

candidates of length 2 are generated by the combinations of frequent eventsets of length

1. Thus, a constant decrease in C1 yields an exponential reduction in the total candidate

eventsets of length 2, which in turn yields a reduction in the total number of frequent

eventsets of length 2. This is similar for coarser granularities and does explain the pat-

tern in Figure 5.13. Note that the reduction does not follow an exact pattern and is

fully dependent on the dataset.

The absolute errors of over/under estimations fluctuate around a linearly decreasing

pattern. Figure 5.14 plots the absolute errors at different granularities and clearly shows

29

Granularity Actual Approx. Under Over
2 445 443 15 13
3 309 318 6 15
4 204 207 11 14
5 124 122 10 8
6 75 77 1 3
7 49 50 2 3
8 11 9 4 2
9 1 0 1 0
10 0 0 0 0

Table 5.6: Summary of the experiments conducted for varying granularity values

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6 7 8 9 10

Fr

eq
ue

nt
 E

ve
nt

se
ts

Granularity

Actual
Approx

Figure 5.13: Frequent Eventset Counts vs. Granularity

the fluctuating pattern. Figures 5.15 and 5.16 show the regressions of over-estimation

and under-estimation errors, respectively, and are given to make the overall linear pattern

more clear. The local fluctuations arise from the distance distributions of the streams

in the dataset.

The relative errors (RE), given in Equations 9 and 10, are plotted in Figure 5.17.

While REOver gives the ratio of the total estimated eventsets that are indeed infrequent,

REUnder gives the ratio of the total actual frequent eventsets that are not estimated by

the method as frequent. As Figure 5.17 shows clearly, the relative errors stay below

8% except for the granularities at which the total number of frequent eventsets is very

30

small, which gives higher relative errors for small absolute errors. The sharp increase in

the Figure 5.17, for example, is a good example of such a situation, where even a small

absolute error gives high relative error because of very small frequent eventset count.

REOver =
#Over Estimations

#EstimatedEventsets
(9)

REUnder =
#Under Estimations

#ActualFrequentEventsets
(10)

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10

Ab
so

lu
te

 E
st

im
at

io
n

Er
ro

r

Granularity

Under
Over

Figure 5.14: Absolute Estimation Errors vs. Granularity

0

2

4

6

8

10

12

14

16

18

20

2 3 4 5 6 7 8 9 10

O

ve
r-E

st
im

at
ed

 E
ve

ns
et

s

Granularity

Over
Linear Regression

Figure 5.15: Linear Regression of Over-Estimation Errors vs. Granularity

31

0

2

4

6

8

10

12

14

16

18

20

2 3 4 5 6 7 8 9 10

Un

de
r-E

st
im

at
ed

 E
ve

ns
et

s

Granularity

Under
Linear Regression

Figure 5.16: Linear Regression of Under-Estimation Errors vs. Granularity

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10

Re
la

tiv
e

Es
tim

at
io

n
Er

ro
r (

%
)

Granularity

Under
Over

Figure 5.17: Relative Estimation Errors vs. Granularity

32

5.1.3 Support Threshold

We conducted several experiments under varying values of the support threshold. One

typical experiment is summarized in Table 5.7. As the support threshold value increases,

the number of frequent eventsets of length 1 decreases. This yields a reduction in can-

didate eventset count, which in turn causes a reduction in the total number of frequent

eventsets. The experiments conducted produced similar patterns for total number of

frequent eventsets, and the results of one of these experiments are depicted in Figure

5.18.

The errors of over/under estimations follow the same pattern (Figure 5.19) as in

experiments conducted at different granularities and given in the previous subsection.

The absolute errors fluctuate around a linearly decreasing pattern (Figures 5.20 and

5.21), which is again due to the distance distributions of the dataset. However, the

relative errors, as shown in Figure 5.22 stay below 10% except for the support threshold

values where the total number of frequent eventsets is very small.

Support Actual Approx. Under Over
35 1061 1081 27 47
40 683 704 23 44
45 383 399 25 41
50 172 190 10 28
55 66 74 10 18
60 8 8 2 2
65 0 0 0 0
70 0 0 0 0

Table 5.7: Summary of the experiments conducted for varying support thresholds

33

0

200

400

600

800

1000

1200

35 40 45 50 55 60 65

Fr

eq
ue

nt
 E

ve
nt

se
ts

Support Threshold

Actual
Approx

Figure 5.18: Frequent Eventset Counts vs. Support Threshold

0

10

20

30

40

50

60

70

80

90

100

35 40 45 50 55 60 65

Ab
so

lu
te

 E
st

im
at

io
n

Er
ro

r

Support Threshold

Under
Over

Figure 5.19: Absolute Estimation Errors vs. Support Threshold

0

10

20

30

40

50

60

70

80

90

100

35 40 45 50 55 60 65 70

O

ve
r-E

st
im

at
ed

 E
ve

ns
et

s

Support Threshold

Over
Linear Regression

Figure 5.20: Linear Regression of Over-Estimation Errors vs. Support Threshold

34

0

10

20

30

40

50

60

70

80

90

100

35 40 45 50 55 60 65 70

Un

de
r-E

st
im

at
ed

 E
ve

ns
et

s

Support Threshold

Under
Linear Regression

Figure 5.21: Linear Regression of Under-Estimation Errors vs. Support Threshold

0

10

20

30

40

50

60

70

80

90

100

35 40 45 50 55 60 65

Re
la

tiv
e

Es
tim

at
io

n
Er

ro
r (

%
)

Support Threshold

Under
Over

Figure 5.22: Relative Estimation Errors vs. Support Threshold

35

5.1.4 Number of Events

The last set of experiments was conducted under varying values of event counts. We

increased the number of events by incrementally adding new event streams to the event

set. A typical experiment is summarized in Table 5.8.

The absolute and relative errors again showed similar behaviors as in the previous

experiment sets. The number of absolute errors increases linearly as the event count

increases, and the percentage of relative errors stays under 5 − 6% except for very

small event counts, where small frequent eventset counts yield high relative errors for

reasonable absolute errors.

Figure 5.23 plots both the actual and estimated numbers of frequent eventsets for

varying numbers of event streams. Figure 5.24 shows the counts of over-estimated and

under-estimated eventsets, which are also plotted in Figure 5.25 and Figure 5.26, re-

spectively, along with their corresponding linear regressions. These figures are provided

just to verify the linear patterns observed in the previous experiments. Finally, Figure

5.27 presents the relative estimation errors.

0

200

400

600

800

1000

1200

1400

35 70 105 140 175 210 245 280 315 350 385 420 455 490 525 560 595 630 665 700

Fr

eq
ue

nt
 E

ve
nt

se
ts

Events

Actual
Approx

Figure 5.23: Estimation Error Counts vs. Number of Events

36

0

10

20

30

40

50

60

70

80

90

100

35 70 105 140 175 210 245 280 315 350 385 420 455 490 525 560 595 630 665 700

Ab
so

lu
te

 E
st

im
at

io
n

Er
ro

r

Events

Under
Over

Figure 5.24: Absolute Estimation Errors vs. Number of Events

0

10

20

30

40

50

60

70

80

90

100

35 70 105 140 175 210 245 280 315 350 385 420 455 490 525 560 595 630 665 700

O

ve
r-E

st
im

at
ed

 E
ve

ns
et

s

Events

Over-Estimation Count
Linear Regression

Figure 5.25: Linear Regression of Over-Estimation Errors vs. Number of Events

0

10

20

30

40

50

60

70

80

90

100

35 70 105 140 175 210 245 280 315 350 385 420 455 490 525 560 595 630 665 700

Un

de
r-E

st
im

at
ed

 E
ve

ns
et

s

Events

Under-Estimation Count
Linear Regression

Figure 5.26: Linear Regression of Under-Estimation Errors vs. Number of Events

37

Events Actual Approx. Under Over
35 4 4 0 0
70 6 7 0 1
105 27 30 1 4
140 64 68 1 5
175 66 70 1 5
210 133 142 2 11
245 292 310 3 21
280 296 314 3 21
315 379 398 8 27
350 491 512 12 33
385 544 570 12 38
420 590 619 12 41
455 593 623 12 42
490 674 705 14 45
525 702 734 15 47
560 907 946 19 58
595 1156 1197 28 69
630 1161 1200 30 69
665 1231 1270 33 72
700 1317 1364 37 84

Table 5.8: Summary of the experiments conducted for varying number of event streams

5.2 Data Set 2

A similar set of experiments was conducted using a second data set, which is the closing

prices of 285 stocks for 504 trading days between January 1, 1999, and December 31,

2000. We have used this data set to simulate event streams. For each stock in the

data set, the price change is considered as a distinct event, yielding a total 285 number

of event types and 285 × 504 = 143640 distinct < time − tick, eventstate >eventtype

pairs. If a stock is not exchanged for any reason on a particular business day, then the

corresponding event is registered as 0 for that stock on that day.

38

0

2

4

6

8

10

12

14

16

18

20

105 140 175 210 245 280 315 350 385 420 455 490 525 560 595 630 665 700

Re
la

tiv
e

Es
tim

at
io

n
Er

ro
r (

%
)

Events

Under
Over

Figure 5.27: Relative Estimation Errors vs. Number of Events

5.3 Experiments for a Single Event

Table 5.9 shows the results of the experiment in which the event was defined as increase

of price of ACIBD stock. The first column gives the granularities at which the esti-

mations are made. The next two columns specify the actual count of the event at the

corresponding granularity and the count estimated by our method, respectively. The

last two columns give the absolute and relative errors of our estimations, respectively,

with respect to the actual values. The frequency of the event at base granularity was

22.02% and the maximum distance was 42. Figure 5.28 plots the actual and estimated

counts at multiple time granularities.

We then again conducted 3 sets of experiments, each testing the behavior of the

method with respect to 3 parameters: granularity, support threshold, and the number

of events. The following subsections present the results of these experiments.

5.4 Granularity

The experiments of this section were conducted with varying values of the granularity

parameter. For each granularity value, using our approximation algorithm we estimated

39

g Actual Approx. Abs Err Rel Err (%) g Actual Approx Abs Err Rel Err (%)
1 111 111 0 0 21 22 21 -1 -4,54
2 105 103 -2 -1,9 22 20 20 0 0
3 96 94 -2 -2,08 23 19 19 1 0
4 89 85 -4 -4,49 24 19 19 0 0
5 72 78 6 8,33 25 18 19 1 5,55
6 71 69 -2 -2,82 26 18 17 0 0
7 62 61 -1 -1,61 27 17 17 0 0
8 54 54 0 0 28 16 16 0 0
9 48 48 0 0 29 15 15 0 0
10 43 43 0 0 30 15 16 1 6,66
11 39 39 0 0 31 15 16 1 6,66
12 36 36 0 0 32 15 15 0 0
13 33 33 0 0 33 15 15 0 0
14 31 31 0 0 34 14 14 0 0
15 29 29 0 0 35 13 13 0 0
16 28 27 -1 -3,57 36 13 13 0 0
17 26 26 0 0 37 12 12 0 0
18 24 23 1 -4,16 38 12 12 0 0
19 23 23 0 0 39 12 12 0 0
20 23 22 1 -4,34 40 12 12 0 0

Table 5.9: Summary of the experiments conducted using a single event

the eventsets that are frequent in the event stream.

Table 5.10 reports the experimental results. For each granularity, the second column

gives the number of actual frequent eventsets, and the third column presents the number

of estimated eventsets. The last two columns report the number of under and over

estimated eventsets, respectively.

The results are also similar to those given in the previous section. As the granularity

increases, the total number of frequent eventsets decreases. Figure 5.29 shows this

relation clearly. Figure 5.30 plots the absolute errors at different granularities which

again fluctuate around a linearly decreasing pattern. Figures 5.31 and 5.32 show the

regressions of over-estimation and under-estimation errors, respectively, and are given

to make the overall linear pattern more clear.

40

0

20

40

60

80

100

120

1 5 10 15 20 25 30 35 40 45 50

Co
un

t o
f E

ve
nt

 S
tre

am

Granularity

Actual
Approx

Figure 5.28: Count Estimation of a Single Event Stream at Multiple Time Granularities

Granularity Actual Approx. Under Over
2 307 314 12 19
3 217 212 13 8
4 137 142 7 12
5 84 87 6 9
6 53 51 4 2
7 34 35 2 3
8 9 11 1 2
9 2 1 1 0
10 0 0 0 0

Table 5.10: Summary of the experiments conducted for varying granularity values

The relative errors (RE), given in Equations 9 and 10, are plotted in Figure 5.33. As

Figure 5.33 shows clearly, the relative errors stay below 10% except for the granularities

at which the total number of frequent eventsets is very small, which gives higher relative

errors for small absolute errors. The sharp increases in the Figure 5.33, arise from such

a situation, where even a small absolute error gives high relative error because of very

small frequent eventset count. In general, the relative errors are higher than the errors

for the previous dataset, because the number of frequent eventsets are lower.

41

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10

#F
re

qu
en

t E
ve

nt
se

ts

Granularity

Actual
Approx

Figure 5.29: Frequent Eventset Counts vs. Granularity

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7 8 9 10

Ab
so

lu
te

 E
st

im
at

io
n

Er
ro

r

Granularity

Under
Over

Figure 5.30: Absolute Estimation Errors vs. Granularity

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7 8 9

#O
ve

r-E
st

im
at

ed
 E

ve
nt

se
ts

Granularity

Linear Regression
Over

Figure 5.31: Linear Regression of Over-Estimation Errors vs. Granularity

42

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7 8 9 10

#U
nd

er
-E

st
im

at
ed

 E
ve

nt
se

ts

Granularity

Linear Regression
Under

Figure 5.32: Linear Regression of Under-Estimation Errors vs. Granularity

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10

Re
la

tiv
e

Es
tim

at
io

n
Er

ro
r (

%
) 1

,0

Granularity

Under
Over

Figure 5.33: Relative Estimation Errors vs. Granularity

43

5.5 Support Threshold

We conducted several experiments under varying values of the support threshold. As

expected, the results are similar to the results of the previous section, and are summa-

rized in Table 5.11. Figure 5.34 shows that, as the support threshold value increases,

the number of frequent eventsets decreases. The errors of over/under estimations follow

the same pattern (Figure 5.35) as in experiments conducted at different granularities

and given in the previous subsection. The absolute errors fluctuate around a linearly de-

creasing pattern (Figures 5.36 and 5.37), which is again due to the distance distributions

of the dataset. However, the relative errors, as shown in Figure 5.38 stay below 10%

except for the support threshold values where the total number of frequent eventsets is

very small. The reason of the sharp increases is the same: too small frequent eventset

counts.

Support Actual Approx. Under Over
5 604 615 37 48
10 434 441 25 42
15 212 221 14 23
20 56 63 11 18
25 13 14 1 2
30 3 3 0 0
35 0 0 0 0
40 0 0 0 0

Table 5.11: Summary of the experiments conducted for varying support thresholds

5.6 Number of Events

The last set of experiments was conducted under varying values of event counts. We

increased the number of events by incrementally adding new event streams to the event

set. A typical experiment is summarized in Table 5.12.

The absolute and relative errors again showed similar behaviors as in the previous

44

0

100

200

300

400

500

600

700

5 10 15 20 25 30 35 40

Fr

eq
ue

nt
 E

ve
nt

se
ts

Support Threshold

Actual
Approx

Figure 5.34: Frequent Eventset Counts vs. Support Threshold

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40

Ab
so

lu
te

 E
st

im
at

io
n

Er
ro

r

Support Threshold

Under
Over

Figure 5.35: Absolute Estimation Errors vs. Support Threshold

experiment sets. The number of absolute errors increases linearly as the event count

increases, and the percentage of relative errors stays under 5% for Under-Estimations

and 10% for Over-Estimations except for very small event counts, where small frequent

eventset counts yield high relative errors for reasonable absolute errors.

Figure 5.39 plots both the actual and estimated numbers of frequent eventsets for

varying numbers of event streams. Figure 5.40 shows the counts of over-estimated and

under-estimated eventsets, which are also plotted in Figure 5.41 and Figure 5.42, re-

spectively, along with their corresponding linear regressions. These figures are provided

45

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40

O

ve
r-E

st
im

at
ed

 E
ve

nt
se

ts

Support Threshold

Linear Regression
Over

Figure 5.36: Linear Regression of Over-Estimation Errors vs. Support Threshold

0

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40

Un

de
r-E

st
im

at
ed

 E
ve

nt
se

ts

Support Threshold

Linear Regression
Under

Figure 5.37: Linear Regression of Under-Estimation Errors vs. Support Threshold

just to verify the linear patterns observed in the previous experiments. Finally, Figure

5.43 presents the relative estimation errors.

The experiments discussed above proved the accuracy of our method in estimating

the count of a stream at coarser granularities. While the number of absolute errors

decreases linearly, the percentage of relative errors stays under reasonably small values

except for the points where frequent eventset counts are small. The experiment results

show that the ratio of relative errors rarely exceeds 10% and most of the time does not

exceed 5% if the number of frequent eventsets is large enough.

46

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40

Re
la

tiv
e

Es
tim

at
io

n
Er

ro
r (

%
)

Support Threshold

Under
Over

Figure 5.38: Relative Estimation Errors vs. Support Threshold

0

100

200

300

400

500

20 40 60 80 100 120 140 160 180 200

Fr

eq
ue

nt
 E

ve
nt

se
ts

Events

Actual
Approx

Figure 5.39: Estimation Error Counts vs. Number of Events

0

10

20

30

40

50

20 40 60 80 100 120 140 160 180 200

Ab
so

lu
te

 E
st

im
at

io
n

Er
ro

r

Events

Under
Over

Figure 5.40: Absolute Estimation Errors vs. Number of Events

47

0

10

20

30

40

50

20 40 60 80 100 120 140 160 180 200

O

ve
r-E

st
im

at
ed

 E
ve

nt
se

ts

Events

Linear Regression
Over-Estimation Count

Figure 5.41: Linear Regression of Over-Estimation Errors vs. Number of Events

0

10

20

30

40

50

20 40 60 80 100 120 140 160 180 200

Un

de
r-E

st
im

at
ed

 E
ve

nt
se

ts

Events

Linear Regression
Under-Estimation Count

Figure 5.42: Linear Regression of Under-Estimation Errors vs. Number of Events

0

5

10

15

20

25

20 40 60 80 100 120 140 160 180 200

Re
la

tiv
e

Es
tim

at
io

n
Er

ro
r (

%
)

Events

Under
Over

Figure 5.43: Relative Estimation Errors vs. Number of Events

48

Events Actual Approx. Under Over
20 3 3 0 0
40 5 6 0 1
60 20 21 1 2
80 50 53 2 5
100 65 68 3 6
120 80 84 3 7
140 135 141 6 12
160 222 230 11 19
180 334 349 11 26
200 398 415 12 29

Table 5.12: Summary of the experiments conducted for varying number of event streams

6 Prediction

The statistical information collected about the frequency and distribution of the event

occurrences can also be used for estimation of the event at future time ticks or at previous

time ticks at which the data is missing. This can be done at the base granularity or any

other coarser time granularities with the help of corresponding distance vectors. For any

time tick t, let st be the distance from that time tick to the last occurrence of the event in

the interval [0, t] . Then, we have s0 = 0, and the state st = n can be followed only by the

states st+1 = 0 if the event occurs at time t + 1, or st+1 = n + 1 otherwise. This process

satisfies the Markov Property and is therefore a Markov Chain. The state transition

diagram of the system is given in Figure 6.44, where the real transition probabilities p

0 1 n n+1
q

p

Figure 6.44: State Diagram of the Markov Chain

and q can be estimated using the distance histogram that stores the numbers of distance

49

values. Observing a distance d ≥ n + 1 is equivalent to starting from state 0, making

a rightwards transition at each time tick until we reach the state s = d, and finally

jumping back to state 0 in our Markov Chain given in Figure 6.44. Then, whenever we

have a distance d > n, we are guaranteed to make the transition n → n + 1. Similarly,

whenever we have a distance d = n, we will definitely make the transition n → 0. Then,

the state s = n is visited for all distances d ≥ n. While the exact values of p and

q are not known, they can be approximated using the number of transitions observed

through the event series in concern so far. p can be approximated by the ratio of the

total number of transitions n → n + 1 to the total number of visits to the state s = n.

Similarly, q can be approximated by the ratio of the total number of transitions n → 0

to the total number of visits to the state s = n. Since the transition n → n + 1 is

made for all distances d > n, the total number of times this transition is made equals

to the summation
∑

i>n Dg[i]. Similarly, the total number of times the transition n → 0

is made equals Dg[n], and the total number of visits to the state s = n equals to the

summation
∑

i≥n Dg[i]. Then, we have

p =

∑
i>n Dg[i]∑
i≥n Dg[i]

(11)

and

q =
Dg[n]∑
i≥n Dg[i]

(12)

Now, suppose that the number of time ticks after the last occurrence of the event is

equal to n, n ≥ 0, and we want to predict the behavior of the event in the next time

tick. The probability of having a 1 in the next tick is equivalent to the probability of

the transition from state n to 0, which is simply q. That is, q gives the probability that

the event occurs in the next time tick.

For various reasons, some of the values of the stream might not have been recorded.

50

As mentioned above, the same idea can be applied to predict the missing information in

the past time ticks.

7 Conclusion

We introduced a probabilistic approach to answer count queries for 0/1 event streams

at arbitrary time granularities. We examined the distance distribution of an event at

base granularity, used the probabilities of the distance transformations to approximate

the distance distribution of the event at any coarser time granularity, and used this

approximation to estimate the count of the event at the granularity in concern.

The experiments conducted on real-life data proved that most of the time our ap-

proach gives reasonably good estimations with error rates less than 5%. Our method

runs in O(n) time and uses O(n) space, where n is the length of the base event stream.

The results of the experiments conducted on different real-life data prove the accuracy

of our method for count estimation at multiple time granularities.

The data structure we used is a histogram that stores the possible distance values and

the corresponding distance counts in the base event stream. A future research issue that

we are planning to investigate is the use of samples of the base event stream to construct

an approximate distance histogram, which improves the runtime while decreasing the

accuracy of the estimations. The tradeoff between speed and accuracy can be examined

in detail.

Another future research direction is to study different histogram classes to find the

best one for storing the distance distribution. One possible scheme is to store the dis-

tance values that have the same frequencies in the same bucket, and others in individual

buckets. Another method can be to store the distance values with high and low frequen-

cies in individual buckets and the remaining ones in a single bucket. In each case, the

tradeoff between space and accuracy should be analyzed carefully.
51

References

[1] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items
in large databases, Proceedings of the ACM SIGMOD Conference on Management of
Data(1993) 207-216.

[2] M. Atallah, R. Gwadera, W. Szpankowski, Detection of Significant Sets of Episodes
in Event Sequences: Algorithms, Analysis and Experiments, Proceedings of the 4th

IEEE International Conference Data Mining (2004) 3-10.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and Issues in
Data Streams, Proceedings of the ACM PODS Symposium on Principles of Database
Systems (2002), 1-16.

[4] C. Bettini, C. Dyreson, W. Evans, R. Snodgrass, X. Wang, A Glossary of Time
Granularity Concepts, in: Temporal Databases: Research and Practice, Lecture Notes
in Computer Science 1399, O. Etzion, S. Jajodia, S. Sripada (Ed.), Springer-Verlag,
1998, pp. 406-411.

[5] C. Bettini, S. Jajodia, J. Lin, Discovering frequent event patterns with multiple gran-
ularities in time sequences, IEEE Transactions on Knowledge and Data Engineering
10(2) (1998) 222-237.

[6] J.F. Boulicaut, A. Bykowski, C. Rigotti, Free-Sets: A Condensed Representation of
Boolean Data for the Approximation of Frequency Queries, Data Mining and Knowl-
edge Discovery 7(1) (2003) 5-22.

[7] S. Chaudhuri, R. Motwani, V. Narasayya, Random sampling for histogram construc-
tion: How much is enough? Proceedings of ACM SIGMOD International Conference
on Management of Data (1998) 436-447.

[8] G. Das, K-I Lin, H. Mannila, G. Ranganathan, P. Smyth, Rule discovery from time
series, Proceedings of the 4th International Conference on Knowledge Discovery and
Data Mining (1998) 16-22.

[9] A. Dobra, M. Garofalakis, J. Gherke, R. Rastogi, Processing Complex Aggregate
Queries over Data Streams, Proceedings of the ACM SIGMOD Conference on Man-
agament of Data (2002) 61-72.

[10] D. Gao, J.A.G. Gendrano, B. Moon, R.T. Snodgrass, M. Park, B.C. Huang, J.M.
Rodrigue, Main Memory-Based Algorithms for Efficient Parallel Aggregation for Tem-
poral Databases, Distributed and Parallel Databases Journal 16(2) (2004) 123-163.

[11] M. Garofalakis, J. Gehrke, R. Rastogi, Querying and Mining Data Streams: You
Only Get One Look, Tutorial in ACM SIGMOD Conference (2002) 635-635.

52

[12] J. Gendrano, B. Huang, J. Rodrigue, B. Moon, R. Snodgrass, Parallel Algorithms
for Computing Temporal Aggregates, Proceedings of the 15th International Conference
on Data Engineering (1999)418-427.

[13] P.B. Gibbons, Y. Matias, V. Poosala, Fast incremental maintenance of approximate
histograms, Proceedings of the 23rd Conference on Very Large Databases (1997) 466-
475.

[14] S. Govindarajan, P. Agarwal, L. Arge, CRBTree: An Efficient Indexing Scheme
for Range Aggregate Queries, Proceedings of the 9th International Conference on
Database Theory (2003) 143-157.

[15] R. Gwadera, M. Atallah, W. Szpankowski, Reliable detection of episodes in event
sequences, Proceedings of the 3rd IEEE International Conference Data Mining (2003)
67-74.

[16] P.J. Haas, J.F. Naughton, S. Seshadri, L. Stokes, Sampling-based estimation of the
number of distinct values of an attribute, Proceedings of the 21st Conference on Very
Large Databases (1995) 311-322.

[17] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, Pro-
ceedings of ACM-SIGMOD International Conference on Management of Data (2000)1-
12.

[18] Y. Ioannidis, V. Poosola, Balancing Histogram Optimality and Practicality for
Query Result Size Estimation, Proceedings of ACM SIGMOD International Con-
ference on the Management of Data (1995) 233-244.

[19] R.P. Kooi, The optimization of queries in relational databases, PhD thesis, Case
Western Reserve University, September 1980.

[20] I.F.V. Lopez, R.T. Snodgrass, B. Moon, Spatiotemporal Aggregate Computation:
A Survey, IEEE Transactions on Knowledge and Data Engineering 17(2) (2005) 271-
286.

[21] H. Mannila, P. Smyth, Approximate query answering using frequent sets and max-
imum entropy, Proceedings of the 16th International Conference on Data Engineering
(2000) 309.

[22] H. Mannila, H. Toivonen, Discovering generalized episodes using minimal occur-
rences, Proceedings of the 2nd International Conference on Knowledge Discovery and
Data Mining (1996) 146-151.

53

[23] H. Mannila, H. Toivonen, A.I. Verkamo, Discovering Frequent Episodes in Se-
quences, Proceedings of the 1st International Conference on Knowledge Discovery
and Data Mining (1995) 210-215.

[24] B. Moon, I. Lopez, V. Immanuel, Scalable Algorithms for Large Temporal Aggre-
gation, Proceedings of the 16th International Conference on Data Engineering (2000),
145-154.

[25] B. Özden, S. Ramaswamy, A. Silberschatz, Cyclic Association Rules, Proceedings
of the 40th International Conference on Data Engineering (1998) 412-421.

[26] D. Pavlov, H. Mannila, P. Smyth, Beyond Independence: Probabilistic Models for
Query Approximation on Binary Transaction Data, IEEE Transactions on Knowledge
and Data Engineering 15(6) (2003) 1409-1421.

[27] G. Piatetsky-Shapiro, C. Connell, Accurate estimation of the number of tuples
satisfying a condition, Proceedings of ACM SIGMOD International Conference on
the Management of Data (1984) 256-276.

[28] V. Poosola, Y. Ioannidis, P. Haas, E. Shekita, Improved histograms for selectivity
estimation of range predicates, Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data(1996) 294-305.

[29] Y. Saygın, Ö. Ulusoy, Exploiting Data Mining Techniques for Broadcasting Data in
Mobile Computing Environments, IEEE Transactions on Knowledge and Data Engi-
neering 14(6) (2002) 1387-1399.

[30] Y. Tao, D. Papadias, C. Faloutsos, Approximate Temporal Aggregation, Proceed-
ings of the 20th International Conference on Data Engineering (2004) 190-201.

[31] J. Yang, J. Widom, Incremental Computation and Maintenance of Temporal Aggre-
gates, Proceedings of the 17th International Conference on Data Engineering (2001)
51-60.

[32] D. Zhang, D. Gunopulos, V.J. Tsotras, B. Seeger, Temporal and Spatio-Temporal
Aggregations over Data Streams Using Multiple Time Granularities, Information Sys-
tems 28(1-2) (2003) 61-84.

[33] D. Zhang, A. Markowetz, V.J. Tsotras, D. Gunopulos, B. Seeger, Efficient Com-
putation of Temporal Aggregates with Range Predicates, Proceedings of the ACM
PODS Symposium on Principles of Database Systems (2001) 237-245.

54

