
1

GnuSim: A General Purpose Simulator for Gnutella
and Unstructured P2P Networks

Murat Karakaya, İbrahim Körpeoğlu and Özgür Ulusoy
Computer Engineering

Bilkent University Ankara, Turkey
{muratk,korpe,oulusoy}@cs.bilkent.edu.tr

Abstract— Peer-to-peer networks have attracted a significant
amount of interest as a popular and successful alternative
to traditional client-server networks for resource sharing and
content distribution. Since a P2P network consists of many nodes,
thousands or millions, it is hard to evaulate the performance of a
P2P network and some related protocols analytically using only
mathematical models. Most often we need to do simulations.
Therefore it is important to have a simulation tool specifically
designed for P2P network and protocol simulation. We developed
such a tool, and in this report we present the design and
implementation of this simulation tool, which we call GnuSim.
The report includes both the simulation model and the code
details. This work will be useful for researchers doing simulation
study in P2P systems domain.

I. INTRODUCTION

Peer-to-peer (P2P) networks have attracted a significant
amount of interest both in the Internet community and in
the academic world as a popular and successful alternative
to traditional client-server networks for resource sharing and
content distribution. P2P networks are implemented as overlay
networks on top of the existing Internet infrastructure. There
have been many system proposals and applications in the main
functional areas of P2P paradigm such as data placement, file
lookup, replication, etc. Most of these efforts aim to provide
efficient, effective and fast exchange of files between peers.

Although there exist different architectural designs and
applications for P2P file sharing, in nearly all P2P systems
files are stored at peers, searched through the P2P network
mechanisms, and exchanged directly between peers using the
underlying network mechanisms. In an ideal case, peers share
their content with other peers and a file that is downloaded by
a peer is automatically opened for sharing with other peers.
However, peers can, and frequently do, abstain from sharing
any content to economize on their own resources such as
bandwidth. Therefore, the primary property of P2P systems,
the implicit or explicit functional cooperation and resource
contribution of peers, may fail and lead to a situation called
free riding.

In this report, we introduce a new simulation tool for
modelling Gnutella and unstructured P2P networks. As part
of this simulation tool, we implemented an unstructured P2P
model with many number of parameters to observe the effect
of many factors and mechanisms applied on a P2P network.
The implementation has many levels of detail such as the
number of peers, network topology, content distribution and

replication, free riding, time-to-live value, query pattern and
query generation rate, etc. The model can be extended to
simulate other types of P2P networks as well.

The goal of the simulation study is to validate the schemes
that are proposed to use in P2P networks, to evaluate the
performance of the schemes and the cost of them. Furthermore,
the model can be used to measure and compare the perfor-
mance metrics of different models of P2P network functions
such as querying content and downloading.

The organization of the report is as follows. Sections II
is devoted to related work and background information about
P2P networks and related concepts. In Section III describes the
simulation model in detail. In Section IV, we present detailed
information about our simulation code. The performance re-
port, which is produced as an output of the simulation program
and the trace file which may used to debug and control of
the flow of the simulation are presented in Section V. The
conclusions are provided in Section VI.

II. BACKGROUND

In this section, we describe some basic P2P systems con-
cepts and protocols upon which our simulation model is built.
Much more details about P2P networks and protocols can be
found in [7], [24], [4], [5]. The observations and findings
about P2P network traffic measurement, modelling, and peer
behaviors can be found [2], [6], [10], [9], [8]. Some of the
important P2P applications exist on the Internet are [28], [29],
[22], [21], [17], [30], [20], [27], [31]. Information about free
riding issue can be found in [1], [3], [25], [26], [32], [11],
[12], [13], [15], [16].

We focus on unstructured P2P networks like Gnutella,
because of their popularity and well-known protocols [24].
Unstructured P2P networks have the distinct properties that
can be summarized as [4]:

• no central coordination
• no central database
• no peer has a global view of the system
• global behavior emerges from local interactions
• all existing data and services should be accessible
• peers are autonomous and anonymous
• peers and connections are unreliable
These features enabled unstructured P2P networks to be

very successful, but also brought some problems. Among the
problems of such networks is the so-called reputation problem.

2

In an unstructured P2P network such as Gnutella, peers interact
with unknown peers and have no information about their
reputations. In other words, they do not know to what extent
they can trust the other peers and the data provided by them.

A. P2P General Scenario
The basic service that a P2P network provides is answering

user queries and enabling file downloads. A requesting peer
may send queries to the P2P network, wanting the network
answer the query. The query can be, for example, “list me the
source peers that have the file x”. The outcome of this request
can be one of the following: success (the P2P system could
find the file and respond with a query hit); failure (the P2P
system could not find a node sharing the file in the search
process). If the peer could get a list of source peers that have
the file, the requesting peer then can select one source peer
and try to download the file from that source peer. Again, the
outcome of this request can be one of the following: success
(the source peer really has the file and provides the file, the
network resources are enough for the download operation, and
the download is successfully realized); failure (the source peer
lied by sending a query hit and it really does not have the
file, or the network resources are not enough to realize the
download operation).

B. Phases in P2P communication
In an unstructured P2P network, a peer may go through four

main phases:
• Connection phase: In this phase, the peer tries to find

some other peers which have already been connected to
the P2P network. On finding some peers, it announces its
existence to these peers. These connections will be used
to broadcast any search requests of the peer. Furthermore,
connected peers may communicate with the peer for the
search requests initiated by other peers.

• Search Phase: The peer needs a file and initiates its search
operation by broadcasting a search message through its
neighbors. It then waits for replies.

• Downloading Phase: If the peer has received a hit mes-
sage, then it may begin to download the file from the
source peer through a direct connection.

• Local Search and Routing Phase: The peer can have some
search queries delivered to itself by neighboring peers. It
first checks its local resources. If it has the file it returns
a hit message to the neighboring node. Either it has the
file or not, it decreases Time-To-Live (TTL) value of the
search message, and if TTL value is greater than 1, it
forwards it to all neighbors other than the one which has
delivered the search. If any hit message arrives, the peer
routes it back to the requesting peer.

These phases are implemented with descriptors in Gnutella
Protocol [24] (See Table III).

C. Free Riding Implemented in Scenario
As a P2P networking concept, free riding (FR) means

exploiting P2P network resources (through searching, down-
loading objects, or using services) without contributing to the
P2P network at desirable levels.

User traffic on Gnutella network is extensively analyzed in
[1] and it is observed that 70% of peers do not share any file
at all. Furthermore, 63% of the peers who share some files
do not respond to any queries. That is, they are sharing some
files but nobody is interested in them and therefore no queries
are generated searching for these files. Another interesting
observation is that 25% of the peers provide 99% of the whole
content in the network.

In the following discussion, we define three possible free
riding types and identify some clues that can be used to detect
them 1. A summary of free riding Types’ properties is given
in Table I.

• The peer does not share anything at all or shares
uninteresting files. It may be observed that a neighboring
peer does not return any QueryHit messages to the
queries that it receives. There may be two reasons for
that: either the peer does not have any files matching the
queries, or the peer does not share any files at all. This
kind of free riding peers can be called a non-contributor.

• The peer consumes much more resource than that it
shares. A peer may share some documents and upload
them to the system. However the number of its downloads
highly exceeds the number of its uploads. The compar-
ison of these two numbers indicates that any peer may
consume more than it share. This kind of peers may be
considered as a free-rider and named as a consumer.

• The peer drops others’ queries. A peer may drop P2P
protocol messages of other peers to save its resources. Es-
pecially, it may not route the neighboring peers’ Query
and/or QueryHit messages. We call this type of free
riders droppers.

Researchers have observed the existence of high degrees of
free riding in P2P networks and they suggest that free riding
may be an important threat against the existence and efficient
operation of P2P networks [1], [9]. Adar and Huberman
argue that “free riding leads to degradation of the system
performance and adds vulnerability to the system. If this trend
continues copyright issues might become moot compared to
the possible collapse of such systems” [1].

In a more recent work, Saroui et al. confirm that there is
a large amount of free riding in Gnutella network as well
as in Napster [9]. Another interesting observation is that 7%
of the peers together provide more files than all of the other
remaining peers. The authors suggest that the system should
not treat its peers equally, on the contrary it should provide the
right incentives and rewards for peers to provide and exchange
data.

Considering the importance of free riding for P2P networks,
in our simulation tool, we provide several parameters to
simulate FR phenomena and observe its effect on the system.

1The free riding types defined here are not an exhaustive list. There could
be a more and detailed classification of possible FR types. We believe that,
considering the purpose of the work, the defined FR types are enough to cover
and enable the detection of most of the free riding behaviors which may seen
in a P2P network.

3

Free Riding Type Sharing Content? Request Generation Speed Routing Messages?
NONE Yes, much Normal Yes
NON-CONTRIBUTOR No Normal Yes
CONSUMER Yes, but little Higher Yes
DROPPER No Normal No

TABLE I
SUMMARY OF FREE RIDING TYPES

D. Performance Metrics

As stated before, the aim of the work is to enable researchers
to observe the performance of a P2P network under different
scenarios and different mechanisms. Therefore, we set up three
parameters for Quality of Service (QoS) and their metrics.

For example, a work aiming to implement a scheme re-
ducing free riding in a P2P network may use these metrics.
Researchers may want to observe that Quality of Service
(QoS) for non-free riders is increased, while being diminished
for free riders.

The QoS improvement of a P2P system has to be measured
by using some metrics. We would like to use the following
QoS parameters and related metrics to evaluate the perfor-
mance of a P2P system that applies a proposed method.
We classify QoS parameters under three topics. Summary
information about parameters and metrics given in Table II.
Below, details of each parameter is presented. All these metrics
are observed during simulation and presented in the result
report for each peer type.

• Availability: The availability of content and services in
P2P network can be an important issue. For example, if
we consider upload capacity of peers, we may recognize
that some peers may have upload bottleneck due to high
level of downloading requests. When they reach the limit
of upload capacity, they begin to refuse new requests.
The number of refused download requests (unsuccessful
downloads) may be used as a metric for availability of
content. Another metric for availability parameter may be
the number of downloaded files. Furthermore, Query Hit
Ratio can be calculated using number of files requested
to download and number of queries submitted.

• Load Sharing : A large number of search and download
operations may go towards few peers and this may lead a
bottleneck. In ideal case in P2P system, the load on peers
can also be shared by peers. This will help the system to
be more efficient so that larger number of search queries
and download operations can be executed on the system
successfully. Specifically, the number of uploads done by
each peer type may be used as a sample metric for this
reason.

• Scalability: One of the important scalability issues in P2P
networks is the flooding of the messages. As the number
of messages routed in the network increases each peer
needs to handle more messages. Network congestion can
be occurred for large amounts of messages. Network
congestion can affect several services such as login
to network, querying for the content, and downloading

files [18]. Therefore, we decide to observe the number
of P2P network protocol messages as a metric related to
network congestion.

III. ASSUMPTIONS AND PARAMETERS OF THE
SIMULATION MODEL

We have implemented an event-driven P2P network and
protocol simulator using CSIM 18 [19] simulation library and
C++ programming language on the WINDOWS OS. The basic
characteristics of the model are set to be similar to those
of Gnutella network by implementing the protocol described
in [24]. Main message types of the protocol are presented in
Table III.

Before discussing details of the model, we present the main
parameters of the simulation environment in Tables IV, V,
VI, VII. All these parameters are set up in parameter.h file
given in Appendix D.

In the following subsections,, details of the important pa-
rameters and related assumptions are provided as classified
into those subsections: Network, Peers, Content, Request.
Before that however, we present first the parameter that is
not classified into one of those subsections: simulation time.

Simulation Time: This is a parameter defining how long
a simulation run will last. The unit used by the parameter
is simulation time unit. When the specified simulation time
expires during a simulation run, a simulation report file is
generated and the simulation program terminated. The report
file can then be used for analysis.

We next describe other parameters.

A. Network

Network Topology: The network topology defines the con-
nectivity between peers. We assume that number of peers
(nodes) and their interconnections (links) are fixed and never
changes during a simulation run. Many previous works observe
that P2P networks manifest small world phenomena. That is,
most of the peers have small number of neighbors (e.g., 3
or 4) whereas few number of peers have large numbers of
neighbors. However, as Power-Law states, a few peers can
have many neighbors. This configuration can be created by
using a topology generator. The simulation program reads
topology information from an input file defined by parameter
NEIGHBOURS TABLE SETUP FILE NAME. The file orga-
nization is very simple. In the first line, total number of peers
is written. In each of the following line, there are ids of two
peers separated by a space character which indicates that these

4

QoS Parameter Observed Metric(s)
Availability # downloads
Availability # unsuccessful

downloads
Availability Query Hit Ratio
Load Sharing # uploads
Scalability # P2P messages

TABLE II
SUMMARY OF QUALITY OF SERVICE PARAMETERS AND METRICS

Descriptor Description Content

Ping Used to actively discover hosts on Nothing
the network. A servent receiving a Ping
descriptor is expected to respond
with one or more Pong descriptors.

Pong The response to a Ping. Includes the IP and port of responding host,
address of a connected Gnutella servent number and size of files shared
and information regarding the amount of
data it is making available to the
network.

Query The primary mechanism for searching Minimum speed requirement of the
the distributed network. A servent responding host;search string
receiving a Query descriptor will
respond with a QueryHit if a match is
found against its local data set.

QueryHit The response to a Query. This descriptor IP and port, speed of responding
provides the recipient with enough host; number of matching files
information to acquire the data and their indexed result set
matching the corresponding Query.

Push A mechanism that allows a firewalled Responding host id; file index;
servent to contribute file-based data IP and port of requesting peer
to the network.

TABLE III
GNUTELLA PROTOCOL DESCRIPTORS

Parameter Definition Default Value

MESHEDGE Number of peers in one edge of mesh, if 20
mesh structure is used for topology
generation.

NUMPEERS Total number of peers in the simulation. MESHEDGE * MESHEDGE
maxNoOfCon Maximum number of neighbors that Depends on topology

a peer can be connected to.

TABLE IV
TOPOLOGY PARAMETERS

5

two peers are neighbors. A sample topology file is presented
in Appendix C.

In performance tests, we use a mesh structure to model the
network topology for the sake of simplicity (see Fig. 1). The
average number of connections (NAC) is between 3 and 4.
Given a mesh topology, the exact value for the average number
of connections can be calculated as:

NAC = (4mn − 2(m + n))/mn (1)

where m and n are the dimensions of the mesh. For
example, for a 20x20 mesh, NAC is 3.8.

Fig. 1. A mesh topology for network connections.

Messaging: There are two mailboxes within each peer. One
mailbox is used for P2P network messages, and the other is
used for download requests and downloads. In this way, each
mailbox simulates a port in Gnutella and TCP/IP protocol
stack running on a peer.

Connection Duration: A peer is assumed to stay connected
in the network during the whole simulation lifetime.

Pinging Frequency: To check the validity of the connections
with its neighbors, each peer submits a PING message at every
PINGFREQ seconds.

Time-To-Live (TTL): In unstructured P2P networks, mes-
sages are broadcasted into the network. The TTL parameter is
a technique used to limit the broadcast horizon in the network.
In the simulation, we assume that maximum TTL value for any
P2P protocol message may be set to 7.

B. Peers

Peers and Peer Types: We simulate a population of
peers, NUMPEERS, constituting both free riders and con-
tributors. Peers are grouped according to the given NUM-
BER OF PEER TYPES parameter and the corresponding
properties that are given in Table V. We selected the default
values in accordance with the observations done in [1].

Ratio of Free Riders: At the beginning of the sim-
ulation, peers are grouped into different types according
to the NUM OF PEER TYPES parameter. The number of
peers in each type is determined according to the POPU-
LATION RATIOS parameter considering the total number
of peers (NUM PEERS). For each peer type, we can set
FREE RIDING TYPE to determine FR type of peers in that
group. The possible values of the FREE RIDING TYPE pa-
rameter are: NONE, NON CONTRIBUTOR, CONSUMER,
DROPPER, and MIXED. MIXED means that the peers in that

type are equally distributed to each of the three free riding
types. Peers’ free riding types will not change during a single
run of a simulation (i.e. during the simulation lifetime).

Upload Bandwidth Capacity: We assume that each peer
has a limited bandwidth capacity to download and upload
files. Download capacity is assumed to be 1. That means
there is only one download operation that can be executed
at a time. However, a peer can do more than one up-
loads at the same time which is limited by the value of
NO OF MAXIMUM UPLOADS parameter.

Download Attempts: If a peer reaches to
NO OF MAXIMUM UPLOADS, it can refuse more uploads.
If a requesting peer is refused by a resource peer, it can
try another source peer if there is any in the queryHitList.
MAX DL ATTEMPT NUMBER specifies how many times
a peer should try to download the same file from different
source peers if any peer refuses to upload the requested file.

C. Content

Content Distribution: We distribute the content to peers uni-
formly. First of all, peers are grouped into different types based
on the NUM OF PEER TYPES parameter. Later, according
to the given SHARED FILE RATIOS parameter, the number
of files to be distributed for each peer type is calculated. At
last, for each type of peers, the determined number of files are
distributed uniformly. However, if a free rider peer is specified
as a dropper or a non-contributor, no files are distributed to
it. The files saved from this kind of peers are redistributed
to consumer peers of the same peer type. Furthermore, at the
beginning of the every simulation run, the distribution of the
files to the peers is the same.

Content Replication During Simulation: The settings given
above are valid for the beginning of the each run of the
simulation. During the simulation the settings can be changed
according to peers’ property to replicate the downloaded
files. If peers’ REPLICATION property is set “true” then
the downloaded files are replicated and shared. Therefore, the
content distribution in the system would be dynamic during
the simulation time.

Size of files: We assume that each file has the same size and
download time for all the files are the same which is defined
by DOWNLOAD TIME parameter.

Uniqueness of the content: At the beginning of the ev-
ery simulation run, the distinct files (DISTINCT FILES) are
copied according to given three parameters:

• COPY
• RANGE
• SKEWNESS
The first parameter specifies the number of copies of each

distinct files. For example if the number of distinct files
(DISTINCT FILES) is 100 and the COPY parameter is 2 then,
it means that the total number of files (TOTAL FILES) in the
simulation would be 200 and there are 2 copies for each file.
If we want some files have more copies than the other files
we use the second and third parameters. For example, if we
want that only the first 10 files have 2 copies but others have
only one copy then the setting should be as follows:

6

Parameter Definition Default Value

NUM OF PEER Number of peer types in the simulation. 3
TYPES
POPULATION Population ratios of each peer type. {0.10, 0.20,
RATIOS 0.70}
FREE RIDING Free riding types of each peer type. {NONE,
TYPE NONE,

MIXED}
SHARED Ratio of shared files of each peer type to total files {0.87, 0.12,
FILE in the simulation 0.1}
RATIOS
NO OF Maximum number of uploads a peer can provide {3, 3, 3}
MAXIMUM at the same time.
UPLOADS
QUERY The mean value of the exponential distribution that {60, 60, 60}
GENERATION defines the time between two consecutive
MEAN generated queries.
CONSUMER The mean value of the exponential distribution that 60
QUERY defines the time between two consecutive queries
GENERATION generated by Consumer peers.
MEAN
REPLICATION If peers’ REPLICATION property is set “true” then {true, true, false}

the downloaded files are replicated and shared.

TABLE V
PEER TYPE PARAMETERS

Parameter Definition Default Value

DISTINCT Total number of distinct files NUMPEERS * 10
FILES in the simulation.
COPY Number of copies of each distinct files. 2
RANGE Range of files to be replicated more than 0

COPY.
SKEWNESS Number of extra copies of the files in 0

the RANGE.
TOTAL Total number of files in the system. DISTINCT FILES*COPY
FILES + RANGE*SKEWNESS

TABLE VI
CONTENT PARAMETERS

DISTINCT FILES 100
COPY 1
RANGE 10
SKEWNESS 1
The above setting means that each file has only one copy,

but the first 10 files (0..9) have 1 more copy. Therefore,
TOTAL FILES would be 110.

D. Request

Request-File Matching: We assume that the system replies
the queries with exact matches only. In reality, Gnutella can
also reply with partial matches. For example, if we execute a

query for file “barismanco.mp3”, we will get a reply if only
the system has a file with name “barismanco.mp3” in a peer
and if the query has reached to that peer. We do not simulate
the system with keyword searches for the time being.

Request Pattern: Peers randomly (uniform distribution) se-
lect a file to be requested from the P2P network. After
selecting a FileId to be requested, it is checked if the peer
itself has the file. If the peer does not have the file then it
generates a Query message and submits it to its neighbors.
All the files have equal probability for getting requested.

Request Generation Rate: The inter arrival time distribution
of requests generated by a peer follows exponential distri-

7

bution with a mean value QUERY GENERATION MEAN
which is supplied to the simulation as a peer type parameter
to observe the effect of the request pattern.

The request rate (queries/second) originating from a CON-
SUMER free rider peer is assumed to be larger than the
request rate originating from other peers and the CON-
SUMER QUERY GENERATION MEAN parameter is set up
for this reason.

IV. CODE DETAILS

In this section we present the details of the simulation code.

A. Main Classes

1) List Class: The List class is an implementation of a
linked list structure. It consists of a node and this node has
an integer variable and a node pointer to the next node in the
list. We used list to hold three types of data:

• Each peer has a files list to hold the FileIds owned by
that peer.

• Each peer has a download list to select a peer, who sends
a QueryHit to its Query, to download the file.

• Each peer type has a list consisting of peers of that type.
2) TimedList Class: The TimedList class is an implemen-

tation of a linked list structure. The difference between List
and TimedList is that TimedList has three variables in its node.
One of them holds the id of the node, which can be a query ID
or a neighbour ID or a peer ID. One of them holds extra values
needed for different uses of TimedList and the last of them,
which is a double floating number, holds the timeout value of
the node. The most important role of the TimedList class in
simulation is that it can apply the current simulation time to
the nodes timeout and delete all the nodes whose timeout has
expired. We used TimedList to hold three types of data:

• Each peer has a routing table to cache incoming queries
and pings and route their query hits and pongs back.
Id value of the query is query ID, extra value of the
query is routed peer ID. We delete the queries after the
messages’ timeout has expired or the query has passed
HITWAITTIME.

• Each peer has a neighbors table to have up to date
neighbors. After each Ping or Pong arrival from a peer in
the neighbors table we update the timeout value of that
peer. If the peer does not send a Ping or reply with a
Pong in 3 * PINGFREQ time, we delete that peer from
the neighbors table.

• Each peer has an upload list to count uploads and update
it. When a peer starts an upload it adds the fileId and
the peerId to the upload list and sets its timeout value to
DOWNLOADTIME. When the download time finishes,
the system automatically deletes this upload from the list,
so new empty connections can be established.

3) Message Classes: There are two different message
classes. One for P2P protocol and the other is for TCP/IP
protocol.

P2P protocol message class: There are 4 types of simulated
messages for P2P protocol: Query (Q), QueryHit (QH), PING,

PONG. To cover all necessary information of each message
type, a generic message class is created. Properties of the class
are given in Table VIII.

Details of each implemented P2P protocol message type are
presented below.

• QUERY MESSAGE: Any peer searching for a file sub-
mits Query message with a QueryId, requested FileId,
and TTL (set to 7). PeerId will be the id of the in-
termediate peers which are routing the Query message.
The peer waits until HIT WAIT TIME expires or the
number of QUERYHIT messages exceeds the SATIS-
FIED QUERY HIT parameter. After then, if there is
at least one hit, it starts the download cycle. Oth-
erwise, if there is no hit to its query, it waits for
QUERY GENERATION MEAN time to generate a new
query.

• QUERYHIT MESSAGE: Any peer which has the re-
quested file replies with QueryHit message including
QueryId of the Query message, requested and found
FileId, its PeerId. TTL is the TTL of the Query message.

• PING MESSAGE: Any peer desiring to connect to a peer
or to check the connection submits a Ping message to its
neighbors with a proper QueryId. FileId is null. PeerId is
the id of the peer itself and TTL is 7.
When a peer receives a Ping message, it first checks if the
owner of the Ping message is its neighbor. If the owner
is its neighbor, it sends a Pong message as a reply. If the
owner is not a neighbor, the peer checks whether it has
available connections to connect this peer itself. If there
is an available slot for a new connection in this peer, it
replies this Ping with a Pong message.
If there is not an available slot to connect the owner of
the Ping message, and if TTL value of the message is
greater than 1, it changes peerId of the message to its
own peerId and forwards it to other peers.
To check the validity of the connections with its neigh-
bors, each peer submits a PING message at every
PINGFREQ time. If a peer does not get a PING message
or a PONG message from its neighbor for a long time
(currently 3 * PINGFREQ), it deletes this neighbor from
neighbors table.
To check the validity of the connections with its neigh-
bors, each peer submits a PING message at every
PINGFREQ seconds. If it did not get a PONG message
from existing neighbors, it deletes this neighbor from
NEIGHBORS table.

• PONG MESSAGE: Any peer receiving a Ping message
replies with a Pong message if either the connection
is alive or it can accept the pinging peer as a new
connection. If the connection is not alive and if there is
no empty connection capacity (reached MaxNumOfCon)
it only routes Ping messages as other messages.
For simulation purposes, at the beginning of simulation it
is not necessary to create Ping, Pong and Push messages
as Gnutella protocol suggests. Because, at the beginning
of the simulation, each peer is connected to some other
peers according to the given network topology.

8

Parameter Definition Default Value

MESSAGE Time to process any message. 0.1
PROCESSING
TIME
MESSAGE The time duration of a peer to listen to its 0.1
WAITING mailbox for any incoming message.
TIMEOUT
MESSAGE The time for keeping information about 5.0
STORING a message: when timeout occurs all information
TIMEOUT about that message is deleted from routing table.
HIT The time for a peer to wait the QUERY HIT messages 5.0
WAIT to arrive itself before beginning to download process.
TIME
PINGFREQ The time between two consecutive Ping messages. 20.0
SATISFIED The minimum number of QUERY HITS arrived to 3
QUERY requesting peer to begin download process.
HIT
TIME TO LIVE The maximum number of hops that a message can be 3

transferred.
MAX DL The maximum number of attempts to download a file 3
ATTEMPT from arrived QUERY HITS.
NUMBER

TABLE VII
P2P PROTOCOL PARAMETERS

Property Definition
messageType messageType:Query,RoutedQuery,QueryHit
queryId query id
fileId the file which is looked for
routingPeerId the peer that routing the message
replyingPeerId the peer that replying the message
TTL remainin life time of message(in terms of number of hopes)

TABLE VIII
P2P PROTOCOL MESSAGE CLASS PROPERTIES

However, during the simulation, peers may leave or be
disconnected from the network due to some reasons.
Therefore, we set several rules. First of all, the maximum
number of connection for a peer is maxNoOfCon. A
disconnected peer should find a peer with a current
connection number less than maxNoOfCon to reconnect.
A disconnected peer can search for such a peer submitting
Ping messages. Any peer with a current connection
number less than maxNoOfCon answers with a Pong
message. If a peer receives more than one Pong messages,
it uses all of them. It does exploit them to fulfill all the
empty connections until it reaches maxNoOfCon.

TCP/IP protocol message class: Two types of
messages for the TCP/IP protocol are implemented:
DOWNLOAD REQUEST (DR) and DOWN-
LOAD REQUEST REPLY (DRR). To cover all necessary
information of each message type, a generic message data
structure is used. Properties of the class are given in Table IX.

• DOWNLOAD REQUEST MESSAGE: Any peer request-
ing for the file which is found at the source peer (known
from QH message located at QueryHit List) submits DR
message with the FileId of the file and PeerId of itself.
Initially reply type is 0.

• DOWNLOAD REQUEST REPLY MESSAGE: Any peer
receiving a DR message replies it with a DRR message.
If the resources are available for the upload, reply type
is set to Download Acknowledged. If the file is not
available in the requested peer, then it replies with the
type Wrong File ID. If the requested peer reached its
upload capacity before this request, than it replies with
the reply type No Upload Capacity.

4) Peer Types Class: Class peerTypes encapsulates the
properties of a peer type. Initialization of the peers and phases
of life cycles of the peers are determined by the properties
given in Table X.

9

Property Definition
messageType Type of TCP message: DOWNLOAD REQUEST REPLY

or DOWNLOAD REQUEST
peerId peer Id
fileId the file which is looked for
replyType if the request is accepted: Download Acknowledged, Wrong File ID or

No Upload Capacity

TABLE IX
TCP MESSAGE CLASS PROPERTIES

Property Definition
populationRatio the ratio of population of the given peer type

to entire population
sharedFileRatio the ratio of files shared by the given peer type

to entire files
noOfMaxConnections the maximum number of connections a peer can have

in a given peer type
noOfMaxUploadConnections maximum number of uploads a peer can make

in a given peer type
queryGenerationTimeMean the exponential mean value of sleep time for a peer

in a given peer type
freeRidingType free riding type of the peers in this type
replicationEnable determines if the peers in the given peer type

replicate the files they download

TABLE X
PEERTYPES CLASS PROPERTIES

B. Main Functions

• void queryHitnPongForward(int peerId,
msg * message)
This function finds the routed peer who sent the query or
ping message to this peer using routing table, copies the
message and sends it to routed peer. After that it adds one
message to allMessagesQtable using note entry()
function.

• void sendDownloadRequest(int peerId,
int fileId, int & attemptNumber)
This function finds the source peer to download the
file with the help of attemptNumber, creates a down-
load request and sends it to source peer. After that it
increments attemptNumber by one, adds one message to
allMessagesQtable using note entry() function.

• void sendDownloadRequestReply(int
peerId, tcpMsg *tcpMessage, int
replyType)
This function creates a download request reply message
with the help of tcpMessage, and sends the message to
tcpMessage’s peerId. After that it adds one message to
allMessagesQtable using note entry() function.

• void sendQueryHit(int peerId, msg *
message)
This function creates a query hit message with the help of
message and sends the message to the peer who routed

that query to itself. After that it adds one message to
allMessagesQtable using note entry() function.

• int selectPeerToDownload(List *list,
int attemptNumber)
This function returns a new peer to download the file
using attemptNumber and downloadList.

• bool alreadyReceived(int queryId, int
peerId)
This function checks whether the peer with peerId got
the query before using routing table of the peer.

• void forwardToNeighbour(int peerId,
int neighbourId, msg * message)
This function copies the message and sends it to peer
with Id neighbourId. After that it adds one message to
allMessagesQtable using note entry() function.

• void sendQueryToNeighbour(int peerId,
int neighbourId, int fileId, int
querySeqNo)
This function creates a query message using fileId,
peerId and querySeqNo. Then sends it to peer with ID
neighbourId. After that it adds one message to allMes-
sagesQtable using note entry() function.

• void pingNeighbour(int peerId, int
neighbourId, int querySeqNo)
This function creates a ping message using peerId and
querySeqNo. Then sends it to peer with ID neighbourID.

10

After that it adds one message to allMessages qtable using
note entry() function.

• void sendPong(int peerId, msg * message)
This function creates a pong message with the help of
message and sends the message to the peer who routed
that query to itself. After that it adds one message to
allMessages qtable using note entry() function

C. Initialization of the Simulation Model

First, we initialize the following tables and the lists.
• files, array of List pointers,
• routing Tables, array of TimedList pointers;
• neighbors Table, array of TimedList pointers;
• download List, array of List pointers;
• uploadList, array of TimedList pointers;
• pTypes, array of List pointers;
After initialization of these lists and tables, we filled Neigh-

bors table with the topology data gathered from the file speci-
fied by the NEIGHBOURS TABLE SETUP FILE NAME pa-
rameter. Later, we initialized the CSIM Table data structures
to obtain statistics from the system.

Peer types are created according to the data gathered from
the parameters defined in Section III-B. The number of peers
in each peer type is computed and randomly chosen peers are
assigned to these peer types. The number of files of each peer
type is determined according to the shared file ratio of each
peer type to the number of total file number.

Following the global initialization of the simulation the
initialization of each peer starts. The download and upload
lists of peers are initialized. After the initialization of these
lists, the free rider type of the peer is decided if it is a free
rider peer. The maximum number of connections value of the
peer is set to a number that is one more than the number of
its current neighbors. The first ping time and the first query
time of the peer is set, and the life cycle of the peer starts.

D. Life Cycle of a Peer

Every peer continuously executes a cycle during the sim-
ulation. The life cycle of a peer consists of five phases
which simulate the main P2P communication phases defined
in Section II-B.

A peer starts every cycle with applying timeout to its
TimedLists, which are routing tables, upload lists and neigh-
bors table. If any node’s timeout value has expired, that node is
deleted from these lists. Then, with the refreshed information,
the peer starts its life cycle as described below.

The first phase of a peer’s life cycle - Message Processing:
The peer calls timed receive function of CSIM library to
receive the message from the P2P protocol mailbox if there
exists. If there is no message in the mailbox, the peer passes
the first phase and starts the second phase. If there is a message
in the mailbox, and the peer receives it successfully, the peer
increments the received message number and processes the
received message according to its type as defined below.

• Query: The first control on the query is whether we
have received this query before or not. This check can

be done by searching routing table. If we have received
this message before, we don’t need to process it again.
Therefore we delete this message and proceed with the
following phase of the peer life cycle. If this message is
a new one, then the life cycle continues with a hold for
a message processing time. After that the peer records
the query information to its routing table to be able to
route QueryHit message back successfully to its owner.
After adding this query to the routing table, the life cycle
continues according to the free rider type of the peer. If
the peer is a DROPPER, then it deletes the query and
ends the first phase of its life cycle. If the peer is not a
CONSUMER, then it executes the query on its own files
and replies with a QueryHit if it finds the requested file
among its files. If the peer is a NON CONTRIBUTOR,
then it does not look for the requested file and passes
to the next step. The next step is forwarding the Query
message if its time to live (TTL) is not expired. If the
message’s TTL is greater than 1, then the peer copies
the message and forwards the message to all the other
neighbors. After this step the peer deletes the message
and ends the first phase of its life cycle.

• Query Hit: We wait MESSAGE PROCESSING TIME to
pass at the start of processing query hits. Then, we check
whether this peer is the owner of the query. If this peer is
the owner, it again checks whether the file of the query
hit is the same with the file of its last query. If they are
the same, then the peer adds the owner of the query hit to
its download list. If they are not the same, then the peer
deletes the message and completes the first phase of its
life cycle. If this peer is not the owner of the query then
it routes the query hit message to the owner of the query
with the help of the information in its routing table. After
sending the message, the peer completes the first phase
of its life cycle.

• Ping: Processing ping is nearly the same as processing a
query. We start with a control of the ping in our routing
table. If we find the ping’s query ID in the routing table,
then it means that we have received this Ping message
before. So we delete this message and return to the start
of the life cycle. If this message is a new, one then we
add this message to the routing table. Then, we continue
to execute controls. We check whether the owner of the
Ping message is one of our neighbors. If it is, then we
update its timeout value in the neighbors table and send
a Pong message to it. If it is not, we check whether we
have empty connections to connect him. If we have empty
connections, then we add the owner of the Ping message
to the neighbors table and send a Pong message to it.
If we do not have any available connection slots, then
we check whether the message has a TTL value greater
than 1. If it does, we forward the Ping message to the
other neighbors of this peer. After sending the message,
the peer completes the first phase of its life cycle.

• Pong: Processing Pong messages is very similar to pro-
cessing QueryHit messages. We first check whether the
peer is the owner of the Ping message. If the peer is the
owner, it again checks whether the owner of the Pong

11

message is a neighboring peer. If it is a neighbor, then
we update its timeout value in the neighbors table. If it is
not a neighbor, we add this peer to our neighbors list if we
have available connections. If this peer is not the owner
of the Ping message, then it routes the message to the
owner of the Ping message with the help of information
in its routing table. After sending the message back, the
peer completes the first phase of its life cycle.

The second phase of a peer’s life cycle - Pinging: In this
phase the peer checks whether its next ping time (PINGFREQ)
has expired. If it is over, the peer sends a new ping message to
its neighbors and sets its next ping time by adding PINGFREQ
to current time.

The third phase of a peer’s life cycle - Download Request
Messages Processing: The peer calls timed receive function of
CSIM library to receive the message if there are any in the
TCP mailbox. If there is no messages in the TCP mailbox, the
peer passes this phase and starts the fourth phase. If there is a
message in the mailbox, and the peer receives it successfully,
we process the message according to its type.

• Download Request: We wait MES-
SAGE PROCESSING TIME to pass at the beginning of
processing Download Requests. Then, we check whether
the peer has reached its upload capacity. If it has, then
it replies this request with NO UPLOAD CAPACITY
as the reply type. If the peer has not reached the
upload capacity and the requested file is actually among
its files, then it adds this download to its download
list and sets the timeout value to current time +
DOWNLOADTIME. After that it sends a reply to the
request with DOWNLOAD ACKNOWLEDGED as the
reply type. If the requested file is not in this peer’s files,
then it replies the request with WRONG FILE ID as the
reply type.

• Download Request Reply: We process download request
replies according to their reply types. If the reply type
is DOWNLOAD ACKNOWLEDGED, we remove all
peers in the download list, we set the attemptNum-
ber to 0, we reset our query file ID, last query time
and set next Query time by adding DOWNLOADTIME
and exponential of peer type’s queryGenerationMean to
current clock. If the peer’s type allows replication, we
replicate the file by adding this file to our files list.
We increment all downloads by one and increment the
peer’s type’s downloads by one. If the reply type is
not DOWNLOAD ACKNOWLEDGED, we first check
whether we have other peers in our download list and
we have not exceeded the maximum attempt number. If
there are other peers in the list and we have not exceeded
the maximum attempt number, then we select a new peer
and send Download request to that peer. Otherwise, we
set attemptNumber to 0, remove all peers in the download
list, reset the query file ID and the last query time and set
the next query time by adding the peer’s query generation
time mean to current clock.

The fourth phase of a peer’s life cycle - Download Request:
At the beginning of this phase, we first check if we need to

make a download request. If there is not an active query, then
we should not make a download request. Similarly, if there is
an active request, but HIT WAIT TIME has not passed yet or
there are not enough hits to reach SATISFIED QUERY HITS,
then we do not make a download request and exit this phase.
Otherwise, we need to make a download request. We first
check if we have requested any file before. If we requested
any file before, we do not make a new download request and
wait for the reply for this file. If it is the first request, than we
check if there is any peer in the download list. If there are not
any files, then we reset our query file ID, reset the last query
time and set the next query time by adding peer type’s query
generation mean value to current clock. If there is a file, then
we send a download request to the first peer in the download
list.

The fifth phase of a peer’s life cycle - Query Generation:
At next query time of the peer, the peer starts the query
generation phase. First, next query time is set to -1, in order to
be sure that this phase is done only once for a query. Then, we
increment the query sequence number of the peer and select a
random file which this peer does not own. After determining
the file to search, we wait MESSAGE PROCESSING TIME
to pass and send the query to all neighbors. We increment all
query counters by one. We set the peer’s query file ID to the
requested file and set the last query time to current clock.

V. PERFORMANCE RESULT REPORT AND TRACE FILE

We prepare a custom report for observing metrics defined in
Section II-D. The report consists of a list for parameters and
their corresponding values, observed metric values (including
download, upload, P2P messages, unsuccessful downloads),
and information about free riders and content distribution. A
sample output is provided in Appendix A. Other observations
can be made by using these facts such as query hit ratio,
unsuccessful download ratio, etc.

We have also produced a trace file to be able to understand
and control the simulation run time flow. The trace file is
generated for a specific peer, Peer-To-Trace (PTT). At each
important phase of the simulation, the output is written to
the file. Furthermore any error captured by the simulation is
written to the trace file. The behavior of PTT can be monitored
using this file. A sample trace file is presented in Appendix
B.

VI. CONCLUSION

In this work, we have designed and implemented a sim-
ulation tool to model an unstructured P2P network such as
Gnutella network. We have simulated Gnutella protocol in
details. Our model is sophisticated enough to observe and
compare the performance of a P2P network under various
parameters and their different values.

We are currently extending the simulation program
to implement and evaluate a mechanism to be used
against free riding. We aim to compare our proposed
system with existing networks using this simulation tool.

12

Acknowledgement: The authors would like to thank Ahmet
Murat Özdemiray and Eyüphan Bulut for their invaluable
contributions for developing initial codes of the simulation
program.

REFERENCES

[1] Eytan Adar and Bernardo A. Huberman, “Free Riding on Gnutella”,
“http://www.firstmonday.dk/issues/issue5 10/adar”, 2000.

[2] Evangelos P. Markatos, “Tracing a large-scale Peer to Peer System:
an hour in the life of Gnutella”, Proceedings of the second IEEE
International Symposium on Cluster Computing and the Grid, 65-74,
May 2002.

[3] Lakshmish Ramaswamy and Ling Liu, “Free Riding: A New Challenge
to Peer-to-Peer File Sharing Systems”, 36th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS’03), - Track7,Big Island,
Hawaii, January, 2003.

[4] Karl Aberer and Manfred Hauswirth, “Peer-to-Peer Information Sys-
tems: Concepts and Models, State-of-the-Art, and Future Systems”, 18th
International Conference on Data Engineering (ICDE),

[5] Karl Aberer and Manfred Hauswirth, “An Overview of Peer-to-Peer
Information Systems”, WDAS, 2002.

[6] M. Jovanovic and F.S. Annexstein and K.A. Berman, “Scalability Issues
in Large Peer-to-Peer Networks - A Case Study of Gnutella”, Technical
Report, University of Cincinnati, 2001.

[7] Jordan Ritter, “Why Gnutella Can not Scale. No, Really”,
“http://www.darkridge.com/ jpr5/doc/gnutella.html”, February, 2001.

[8] Matei Ripeanu and Ian Foster and Adriana Iamnitchi, “Mapping the
Gnutella Network: Properties of Large-Scale Peer-to-Peer Systems and
Implications for System Design”, IEEE Internet Computing, Journal
special issue on peer-to-peer networking, Volume.6, 2002

[9] Stefan Saroiu and P. Krishna Gummadi and Steven D. Gribble, “A
Measurement Study of Peer-to-Peer File Sharing Systems”, Proceedings
of the Multimedia Computing and Networking, January, 2002.

[10] Krishna P. Gummadi and Richard J. Dunn and Stefan Saroiu and Steven
D. Gribble and Henry M. Levy and John Zahorjan, “Measurement,
Modeling, and Analysis of a Peer-to-Peer File-Sharing Workload”, Pro-
ceedings of the 19th ACM Symposium on Operating Systems Principles,
(SOSP-19), October, 2003.

[11] Ramayya Krishnan and Michael D. Smith and Zhulei Tang and Rahul
Telang, “The Impact of Free-Riding on Peer-to-Peer Networks”, Pro-
ceedings of the 37th Annual Hawaii International Conference on System
Sciences (HICSS’04) - Track 7, January, 2004.

[12] Makoto Iguchi and Masayuki Terada and Ko Fujimura, “Managing
Resource and Servent Reputation in P2P Networks”, Proceedings of
the 37th Annual Hawaii International Conference on System Sciences
(HICSS’04) - Track 7, January, 2004.

[13] Philippe Golle and Kevin Leyton-Brown and Ilya Mironov, “Incentives
for Sharing in Peer-to-Peer Networks”, Proceedings of the Electronic
Commerce’01, 2001.

[14] Vivek Vishnumurthy and Sangeeth Chandrakumar and Emin Gun Sirer,
“KARMA: A Secure Economic Framework for P2P Resource Sharing”,
Proceedings of the Workshop on the Economics of Peer-to-Peer Systems,
June, 2003.

[15] Sepandar D. Kamvar and Mario T. Schlosser and Hector Garcia-
Molina, “Addressing the Non-Cooperation Problem in Competitive P2P
Networks”, First Workshop on Economics of P2P Systems, June 2003.

[16] Jeff Shneidman and David Parkes, “Rationality and Self Interest in Peer
to Peer Networks”, Proceedings of the IPTPS Workshop, February 2003.

[17] Ares Web Site, “http://www.aresgalaxy.org”, 2004.
[18] Atip Asvanund and Karen Clay and Ramayya Krishnan and Michael

Smith, “An Emprical Analysis of Network Externalities in Peer-To-
Peer Music Sharing Networks”, Proceedings of the 23rd International
Conference on Information Systems (ICIS), pp. 15-18, December, 2002.

[19] Herb Schwetman, “CSIM: A C-based, process oriented simulation
language”, Proceedings of the 1991 Winter Simulation Conference, pp.
387-396, 1991.

[20] eDonkey Web Site, “http://www.edonkey2000.com”, 2004.
[21] eMule Web Site, “http://www.emule-project.net”, 2004.
[22] FreeNet Web Site, “http://www.freenet.com”, 2004.
[23] N.S. Glance and B.A. Huberman, “Dynamics of Social Dilemmas”,

Scientific American, March, 1994.
[24] Clip2, “The Gnutella Protocol Specification v0.4 (Document Revision

1.2)”, “http://www9.limewire.com/developer/gnutella protocol0.4.pdf”,
June, 2001.

[25] B.A. Huberman and N.S. Glance, “Beliefs and Cooperation”, Modeling
Rational and Moral Agents, Oxford University Press, pages 210-235,
1996.

[26] B.A. Huberman and R.Lukose, “Social Dilemmas and Internet Conges-
tion”, Science, V. 277, March, 1997.

[27] iMesh Web Site, “http://www.imesh.com”, 2004.
[28] Kazaa Web Site, “htpp://www.kazaa.com”, 2004.
[29] Kazaa Lite Web Site, “http://www.k-lite.tk”, 2004
[30] LimeWire Web Site, “http://www.limewire.com”, 2004
[31] MP2P Web Site, “http://www.mp2p.net”, 2004
[32] Leander Kahney, “Cheaters bow to peer pressure”,

“http://www9.wired.com/news/tecnology/0,1282,41838,00.html”,
2001.

[33] M. Karakaya and I. Korpeoglu and O. Ulusoy, “A Distributed and
Measurement-Based Framework Against Free Riding in Peer-to-Peer
Networks”, Proceedings of the IEEE International Conference on Peer-
to-Peer Computing (P2P’04), August 2004.

[34] Nazareno Andrade and Francisco Brasileiro and Walfredo Cirne and
Miranda Mowbray, “Discouraging Free-riding in a Peer-to-Peer Grid”,
Proceedings of the Thirteenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC13), June, 2004.

[35] Nazareno Andrade and Miranda Mowbray and Walfredo Cirne and
Francisco Brasileiro, “When Can an Autonomous Reputation Scheme
Discourage Free-riding in a Peer-to-Peer System”, Proceedings of the
4th Workshop on Global and Peer-to-Peer Computing(GP2PC), April
2004.

13

Appendix A: Sample Report

C++/CSIM Simulation Report (Version 18.3 for MSVC++ V4.0)

Fri Nov 05 21:10:55 2004

Ending simulation time: 0.000
Elapsed simulation time: 0.000
CPU time used (seconds): 0.000

*************** PARAMETER VALUES ***************

MESH EDGE 20
SIMTIME 1000
MESSAGE PROCESSING TIME 0.10000
PINGFREQ 20.000 HIT WAIT TIME 5.000
DOWNLOAD TIME 60.000 SATISFIED QUERY HIT 3
TIME TO LIVE 7 MAX DL ATTEMPT NUMBER 3
DISTINCT FILES 4000 COPY 2
RANGE 0 SKEWNESS 0
TOTAL FILES 8000

NUM OF PEER TYPES 3
POPULATION RATIOS 0.10 0.20 0.70
SHARED FILE RATIOS 0.10 0.19 0.71
NO OF MAXIMUM UPLOADS 3 3 3
QUERY GENERATION MEAN 60.00 60.00 60.00
CONSUMER QUERY GEN MEAN 30.00
REPLICATION 1 1 0
FREE RIDING TYPE NONE NONE MIXED

*************** OBTAINED RESULTS ***************
C++/CSIM Simulation Report (Version 18.3 for MSVC++ V4.0)

Fri Nov 05 21:12:53 2004
Ending simulation time: 1000.100

Elapsed simulation time: 1000.100
CPU time used (seconds): 117.825

*************** QUERIES ********************
The number of queries of all peers is : 6505
The number of queries of type A peers is : 544 0.08
The number of queries of type B peers is : 1096 0.17
The number of queries of type C peers is : 4865 0.75
*************** DOWNLOADS ********************
The number of downloads done by all peers is : 836
The number of downloads done by type A peers is : 71 0.08
The number of downloads done by type B peers is : 142 0.17
The number of downloads done by type C peers is : 623 0.75
*************** UPLOADS ********************
The number of uploads done by all peers is : 836
The number of uploads done by type A peers is : 95 0.11
The number of uploads done by type B peers is : 178 0.21
The number of uploads done by type C peers is : 563 0.67
*********** UNSUCCESSFULL DOWNLOADS ************
The number of unsucessful downloads done by all peers is : 80
The number of unsucessful downloads done by type A peers is : 5 0.06
The number of unsucessful downloads done by type B peers is : 21 0.26
The number of unsucessful downloads done by type C peers is : 54 0.68
**************** PING PONG MESSAGES **************
The number of ping pong messages in the network is : 150675
**************** P2P PROTOCOL MESSAGES **********************
total messages send :1066169

14

total messages received :1065872
**
FREE RIDING TYPES AND POPULATION
**
consumers :105
droppers :77
NON-contributors :98
noneFR :120
**
PEERS AND FILES
**
peers having zero file :175 0.44
peers having some file (¡=10) :175 0.44

Appendix B: Trace File

SIM STARTED!
init started!
init tables() started!
init NeighboursTable() started!
reading file started!
NUMBER OF PEERS READ FROM neighbourTable20.txt: 400
init NeighboursTable() ended!
init FRLT() started!
init FRLT() ended!
init tables() ended!
initPeerTypes() started!
initPeerTypes() ended!
init Stats() started!
init Stats() ended!
identication of peer types started!
PEER TYPES AND THEIR MEMBERS
PEER TYPE 0 : 205 70 123 213 ...
PEER TYPE 1 : 391 50 85 ...
PEER TYPE 2 : 0 1 2 3 4 5 ...
FREE RIDING TYPES OF ALL PEERS
PeerId: 0 FreeRiding Type: DROPPER
PeerId: 1 FreeRiding Type: CONSUMER
PeerId: 2 FreeRiding Type: CONSUMER
...........
...........
identication of peer types ended!
identication of peer file quotas started!
peer type 0 [num of peers:40]
equallyDistributed 800
remainders 0
distributed 0
totalDistributed 8000
peer type 1 [num of peers:80]
equallyDistributed 1520
remainders 0
distributed 0
totalDistributed 8000
peer type 2 [num of peers:280]
equallyDistributed 5600
remainders 80
distributed 0
totalDistributed 8000
identication of peer file quotas ended!
distributing files to peers started!
distribute files out of skewness range started!
distributing files to peers ended!
transfer files between peers started!
The cycle 6 begins at: 1.2 checking for new message at 1.2 (number of msg in mabox 0)

15

********** * Message came at 1.3 * **********
********** * Message Info * **********
Message type (txt): QUERY
QueryId: 200278017
Query Sequence no.: 1
Owner of the Query: 191
Routing PeerId: 191
Replying PeerId: -1
TTL: 7
file ID: 2954
current msg number at mailbox : 0
********** * Message Processing Begins* **********
I forward this message to my neighbour: 210
I forward this message to my neighbour: 212
I forward this message to my neighbour: 231
********** * Message Processing Ends at 1.4 * **********
The cycle 6 ends at: 1.5
.........
.........
checking for new message at 999.9 (number of msg in mabox 0)
NO new message at 1000
The cycle 5036 ends at: 1000.1
************ Files at the end of simulation *************
Total Number of Files:0
*********** PEER LIFE CYCLE ENDS **************
SIM ENDED!

Appendix C: Topology File

100
0 1
0 10
1 2
1 11
2 3
2 12
3 4
3 13
4 5
4 14
......
......

Appendix D: parameter.h File

/**

This header contains information about the parameters used in
simulation system.
The names of the parameters are tried to be chosen carefully
for easy understanding of the function of the parameters. However
the comments are also written to explain the meanings of the
parameters.

/

#ifndef PARAMETERS H
#define PARAMETERS H

16

//**
// Since the system is designed as a medge with square structure
// at the beginning of simulation, we should define how many peer
// will be in one edge of the medge.
//**
#define MESH EDGE 20
const int NUM PEERS=MESH EDGE * MESH EDGE;
//**
// The total simulation run time. The program ends when the clock
// of CSIM reachs to that time.
//**
#define SIMTIME 1000.0

//**
// During the life time of a peer,it does several operations.
// It processes messages, it waits for a while between two
// consecutive generated queries, it waits for a specific time for
// HIT messages of its queries and it downloads files from other
// peers for some time.
//
// Below these parameters are specified and set some numbers
//**

// The time passing while a peer processes a message
#define MESSAGE PROCESSING TIME 0.1

// Timeout value for message receiving
#define MESSAGE WAITING TIMEOUT 0.1

// The time for keeping information about a message: when timeout occurs
// all information about that message is deleted from routing table
#define MESSAGE STORING TIMEOUT 5.0

//***
// The time frequency for a peer to ping its neighbours
//**

#define PINGFREQ 20.0

// The time for a peer to wait the QUERY HIT messages arrive to
// itself. After that time elapses, download begins.
#define HIT WAIT TIME 5.0

// The time to download files. Download times for all peers is the
// same.
#define DOWNLOAD TIME 60.0

//**
// When a peer broadcasts a query, it starts to wait for query hits
// The time for waitng is defined either by the number of QUERY HITS
// arrived to peer or by the HIT WAIT TIME.
// Normally a peer intends to wait the HIT messages during a
// HIT WAIT TIME after it has done the query. However if the number
// of QUERY HIT messages reachs the value SATISFIED QUERY HIT
// it stops waiting the HIT messages and starts to download.
//**
#define SATISFIED QUERY HIT 3

//**
// The peers in the system share some files among possible number
// of files. The total number of distinct files in the system is
// defined by parameter NO OF DISTINCT FILES
//**

#define NO OF DISTINCT FILES (NUM PEERS*10)

#define FILE DISTRIBUTION REPLICATION 2

17

#define FILE DISTRIBUTION REPLICATION SKEWNESS RANGE ((NO OF DISTINCT FILES /100)*5)

#define FILE DISTRIBUTION REPLICATION SKEWNESS RANGE 0

#define FILE DISTRIBUTION REPLICATION SKEWNESS 0

#define TOTAL NO OF FILES (int)(NO OF DISTINCT FILES *
FILE DISTRIBUTION REPLICATION+
FILE DISTRIBUTION REPLICATION SKEWNESS RANGE *
FILE DISTRIBUTION REPLICATION SKEWNESS)

//**
// In Gnutella, the number of hops that a message can go over is
// defined by a TIME TO LIVE(TTL) value. In every hop the TTL of
// message is decreased by one.
//**
#define TIME TO LIVE 7
//**
// When a peer starts to download files, it may be refused by the
// peers that it applied to download the specific file from. At
// that moments it tries to download the file from another peer
// that it take QUERY HIT from. The number of attempts for a peer
// to download a file is defined by the parameter below.
//**
#define MAX DL ATTEMPT NUMBER 3

//**

#define NUM OF PEER TYPES 3

//**
// Free riding types
//***
#define NONE 0
#define NON CONTRIBUTOR 1
#define CONSUMER 2
#define DROPPER 3

#define MIXED 4
//peers are equally distributed to each seven free riding types

#define NUM OF FR TYPES 3

#define CONSUMER QUERY GENERATION MEAN 30.0
#define POPULATION RATIOS 0.1 , 0.2 , 0.7
#define SHARED FILE RATIOS 0.1, 0.19 , 0.71
#define NO OF MAXIMUM UPLOADS 3 , 3 , 3
#define QUERY GENERATION MEAN 60.0 , 60.0 , 60.0
#define REPLICATION true, true , false
#define FREE RIDING TYPE NONE, NONE, MIXED

#define SIMULATION REPORT FILE NAME “REPORT.txt”
#define SIMULATION TRACE FILE NAME “TRACE.txt”

#define NEIGHBOURS TABLE SETUP FILE NAME “neighbourTable20.txt”
//**
// The peers in the system communicate eachother using messages
// There are different types of messages acccording to the Gnutella
// structure. Query, RoutedQuery, QueryHit and DownloadRequest, Ping, Pong
//**
#define QUERY 1
#define QUERY HIT 2
#define DOWNLOAD REQUEST 3
#define DOWNLOAD REQUEST REPLY 4
#define PING 5
#define PONG 6

//**
// Download request reply messages

18

//***
#define DOWNLOAD ACKNOWLEDGED 99
#define WRONG FILE ID 199
#define NO UPLOAD CAPACITY 299

;

#endif

