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multiplication routines which benefit from such overlaps.
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1 Introduction

Parallel sparse matrix vector multiplies (SpMxV) of the form y = Ax reside in
the kernel of many scientific computations. One-dimensional (1D) [5, 13, 14,
16, 21] and two-dimensional (2D) [6, 7, 22] partitioning methods are proposed
to balance the computational loads of the processors while minimizing the com-
munication overhead. In this paper, we describe software that perform parallel
SpMxV operations under 1D and 2D partitionings. Our aim is to ease the de-
velopment of iterative methods. We give coding of the BiCGSTAB method as
an example.

As noted in [20], software packages that implement only the parallel SpMxV
operations are not common for several reasons. First, matrix-vector multiply is
a simple operation; developers write their own routine. Second, there are dif-
ferent sparse matrix storage formats that fit different applications; it is difficult
to design softwares that apply to all areas. Recently published sparse BLAS
standard [10] even does not specify a data structure to store sparse matrices. It
rather allows complete freedom for sparse BLAS library developers to optimize
their own libraries [11]. However, there are numerous software packages (see
the sparse iterative solvers having parallel mode in Dongarra’s survey [9]) that
include utilities for performing distributed SpMxV operations; see for example
PETSc [1], Aztec [15, 20], and PSPARSLIB [18].

Common features of existing software utilities for SpMxV operations are as
follows. Most of the packages target 1D partitioned matrices, where y and x

vectors have the same processor assignment as that of the rows or the columns
of the matrix. This symmetric partitioning on the input and output vectors
restricts the packages to square matrices. Some packages enable the user of
the library to plug the necessary communication subroutines which are called
between the partial executions of the SpMxV routines in a reverse communica-
tion [8] loop.

The characteristics of our software are as follows. Its SpMxV routines apply
to 1D and 2D partitioned matrices of any shape. It can handle symmetric and
unsymmetric partitionings on the input and output vectors. Our software uses
point-to-point communication operations internally to exploit sparsity during
communications, i.e., there does not exist any redundancy in the communi-
cation. To our knowledge, there does not exist any package that uses point-
to-point communication when the matrices have 2D partitions. Also, we are
not aware of any SpMxV libraries targeting rectangular matrices. Our package
include entry-level matrix construction process as prescribed in Sparse BLAS
standard [10]. There are software utilities to set-up communication data struc-
tures using the partitioning indicators. The software exploits compressed sparse
row (CSR) and compressed sparse column(CSC) storage formats to achieve max-
imum communication and computation overlap.

The organization of this report is as follows. In §2 and §3, we discuss the
SpMxV operations under 1D and 2D partitioning of the sparse matrices, respec-
tively. In §4, we discuss necessary steps to realize efficient implementation of
the SpMxV routines. We clearly give pseudocodes that set up communication
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and list issues that should be resolved to design parallel SpMxV routines along
with our decisions. In §5, we give the interface of the library and its usability
through actual implementations. We conclude the report with future work.

2 Parallel algorithms based on 1D partitioning

Suppose that the rows and columns of an m× n matrix A are permuted into
a K ×K block structure

ABL =











A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AK1 AK2 · · · AKK











(1)

for rowwise or columnwise partitioning, where K is the number of processors.
Block Akℓ is of size mk × nℓ , where

∑

k mk = m and
∑

ℓ nℓ = n . In row-
wise partitioning, each processor Pk holds the k th row stripe [Ak1 · · ·AkK ]
of size mk×n . In columnwise partitioning, Pk holds the k th column stripe
[AT

1k · · ·A
T
Kk]T of size m× nk . In rowwise partitioning, the row stripes should

have nearly equal number of nonzeros for having the computational load bal-
ance among processors. The same requirement exists for the column stripes in
columnwise partitioning.

2.1 Row-parallel algorithm

Consider matrix-vector multiply of the form y ← Ax , where y and x are column
vectors of size m and n , respectively, and the matrix is partitioned rowwise.
A rowwise partition of matrix A defines a partition on the output vector y .
The input vector x is assumed to be partitioned conformably with the column
permutation of matrix A . In particular, y and x vectors are partitioned as
y = [yT

1
· · · yT

K ]T and x = [xT
1
· · ·xT

K ]T , where yk and xk are column vectors of
size mk and nk , respectively. That is, processor Pk holds xk and is responsible
for computing yk .

In [13, 18, 20, 21], authors discuss the implementation of parallel SpMxV
operations where the matrix is partitioned rowwise. The common algorithm
executes the following steps at each processor Pk :

1. For each nonzero off-diagonal block Aℓk , send sparse vector x̂ℓ
k to proces-

sor Pℓ , where x̂ℓ
k contains only those entries of xk corresponding to the

nonzero columns in Aℓk .

2. Compute the diagonal block product yk
k = Akk × xk , and set yk = yk

k .

3. For each nonzero off-diagonal block Akℓ , receive x̂k
ℓ from processor Pℓ ,

then compute yℓ
k = Akℓ × x̂k

ℓ , and update yk = yk + yℓ
k .
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Since the matrix is distributed rowwise, we call the above algorithm row-parallel.
In Step 1, Pk might be sending the same xk -vector entry to different processors
according to the sparsity pattern of the respective column of A . This multicast-
like operation is referred to here as expand operation.

2.2 Column-parallel algorithm

Consider matrix-vector multiply of the form y ← Ax , where y and x are col-
umn vectors of size m and n , respectively, and the matrix A is partitioned
columnwise. The columnwise partition of matrix A defines a partition on the
input vector x . The output vector y is assumed to be partitioned conformably
with the row permutation of matrix A . In particular, y and x vectors are par-
titioned as y = [yT

1
· · · yT

K ]T and x = [xT
1
· · ·xT

K ]T , where yk and xk are column
vectors of size mk and nk , respectively. That is, processor Pk holds xk and is
responsible for computing yk . Since the matrix is distributed columnwise, we
derive a column-parallel algorithm for this case. The column-parallel algorithm
executes the following steps at processor Pk :

1. For each nonzero off-diagonal block Aℓk , form sparse vector ŷk
ℓ which

contains only those results of yk
ℓ = Aℓk×xk corresponding to the nonzero

rows in Aℓk . Send ŷk
ℓ to processor Pℓ .

2. Compute the diagonal block product yk
k = Akk × xk , and set yk = yk

k .

3. For each nonzero off-diagonal block Akℓ receive partial-result vector ŷℓ
k

from processor Pℓ , and update yk = yk + ŷℓ
k .

The multinode accumulation on the wk -vector entries is referred to here as fold

operation.

3 Parallel SpMxV based on 2D partitioning

Consider the matrix-vector multiply of the form y ← Ax , where y and x are
column vectors of size m and n , respectively, and the matrix is partitioned in
two dimensions among K processors. The vectors y and x are partitioned as
y = [yT

1
· · · yT

K ]T and x = [xT
1
· · ·xT

K ]T , where yk and xk are column vectors of
size mk and nk , respectively. As before we have

∑

k mk = m and
∑

ℓ nℓ = n .
Processor Pk holds xk and is responsible for computing yk . Nonzeros of a
processor Pk can be visualized as a sparse matrix Ak

Ak =

















Ak
11

· · · Ak
1k · · · Ak

1K

...
. . .

...
. . .

...
Ak

k1
· · · Ak

kk · · · Ak
kK

...
. . .

...
. . .

...
Ak

K1
· · · Ak

Kk · · · Ak
KK

















(2)
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of size m × n , where A =
∑

Ak . Here, the blocks in row-block stripe Ak
k∗ =

{Ak
k1

, · · · , Ak
kk, · · · , Ak

kK} have row dimension of size mk . Similarly, the blocks
in column-block stripe Ak

∗k = {Ak
1k, · · · , Ak

kk, · · · , Ak
Kk} have column dimension

of size nk . The x-vector entries that are to be used by processor Pk are rep-
resented as xk = [xk

1
, · · · , xk

k, · · · , xk
K ] , where xk

k corresponds to xk and other
xk

ℓ are belonging to some other processor Pℓ . The y -vector entries that proces-
sor Pk computes partial results for are represented as yk = [yk

1
, · · · , yk

k , · · · , yk
K ] ,

where yk
k corresponds to yk and other yk

ℓ are to be sent to some other processor
Pℓ . Since the parallelism is achieved on nonzero basis rather than complete rows
or columns, we derive a row-column-parallel SpMxV algorithm. This algorithm
executes the following steps at each processor Pk :

1. For each ℓ 6= k having nonzero column-block stripe Aℓ
∗k , send sparse

vector x̂ℓ
k to processor Pℓ , where x̂ℓ

k contains only those entries of xk

corresponding to the nonzero columns in Aℓ
∗k .

2. Compute the column-block stripe product yk = Ak
∗k × xk

k .

3. For each nonzero column-block stripe Ak
∗ℓ , receive x̂k

ℓ from processor Pℓ ,
then compute yk = yk + Ak

∗ℓ × x̂k
ℓ , and set yk = yk

k .

4. For each nonzero row-block stripe Ak
ℓ∗ , form sparse partial-result vector

ŷk
ℓ which contains only those results of yk

ℓ = Ak
ℓ∗ × xk corresponding to

the nonzero rows in Ak
ℓ∗ . Send ŷk

ℓ to processor Pℓ .

5. For each ℓ 6= k having nonzero row-block stripe Aℓ
k∗ receive partial-result

vector ŷℓ
k from processor Pℓ , and update yk = yk + ŷℓ

k .

4 Implementation details

In order to implement the above algorithms, one has to follow some initialization
steps:

1. Provide partitioning indicators on x and y vectors. In our implementa-
tion a central processor reads these partitioning indicators from different files
and broadcast them to the other processors. We chose to provide each processor
with partitioning indicators as a whole, i.e., each processor gets two arrays of
size M and N one for output vector and one for input vector, respectively.
Note that, processors usually need only a small portion of these partition ar-
rays. The rationale behind our choice is to make the library handle arbitrary
partitionings. That is, a processor can hold an x vector element and thus ex-
pand it even if it has not got a single nonzero in the corresponding column of
A . Similarly, a processor can be set to responsible for folding on an element of
y vector even if it does not generate partial result for that element. We refer
reader to our previous work [21] to get taste of such unusual partitionings. Note
that these indicators are usually available; however it is possible to efficiently
construct them as discussed by Pınar [17] and Tunimaro et.al. [20]. If the matrix

4



SetupComm2D(A, xpartvec, ypartvec)
begin

(1) for each nonzero aij in A do #i and j are global indices
(2) if i is not marked then

(3) mark i
(4) increase ySendCount to processor p=ypartvec[i]
(5) put p into ySendList
(6) if j is not marked then

(7) mark j
(8) increase xRecvCount from processor p=xpartvec[j]
(9) put p into xRecvList
(10) end for

(11) for i=1..M do

(12) if i is not marked and myId=ypartvec[i] then

(13) mark i; increase ySendCount[myId]
(14) end for

(15) for j=1..N do

(16) if j is not marked and myId=xpartvec[j] then

(17) mark j; increase xRecvCount[myId]
(18) end for

(19) AlltoAll communication
#send xRecvCounts, receive into xSendCounts;
#send ySend Counts, receive into yRecvCounts

(20) #allocate space for indices to be sent and to be received
(21) for each column j do

(22) if j is marked then

(23) put j into xIndexRecv list for processor p=xpartvec[j]
(24) end for

(25) for each row i do

(26) if i is marked then

(27) put i into yIndexSend list for processor p=ypartvec[i]
(28) end for

(29) for each processor in xRecvList do

(30) send xIndexRecv list to processor p
(31) end for

(32) for each processor in xSend list do

(33) receive into xIndexSend list for processor p
(34) end for

(35) for each processor in ySendList list do

(36) send yIndexSend list to processor p
(37) end for

(38) for each processor in yRecvList list do

(39) receive into yIndexRecv list for processor p
(40) end for

end

Figure 1: Setting up communication for 2D partition.
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partitioning is 1D then one of the partitioning indicators is used to partition
the matrix as well.

2. Provide matrix nonzeros and x vector components to the processor. A
central processor reads the matrix components and distribute them according
to partition on the matrix. If the matrix partitioning is 2D then the central
processor reads partitioning indicator on the nonzeros of A from a file. Here,
the central processor sends all the matrix components of a processor in a single
message.

3. Determine the communication pattern. This is a complicated task that
takes more time than SpMxV takes. We show the pseudo-code, which is exe-
cuted by each processor, for setting-up communication pattern for 2D case in
Fig. 1. By removing lines pertaining to y vector one can obtain communica-
tion set-up procedure for 1D rowwise-partitioned matrices. Similarly, one can
obtain the same procedure for 1D columnwise partitioned matrices by removing
the lines pertaining to x vector. As seen in the figure, a certain processor sweeps
(lines 1–10) its nonzeros to mark global indices of x vector entries that it needs
and global indices of y vector entries on which it generates partial results. Note
that after that sweeping processors know which x vector entries to be received
from which processor and which y vector entries to be sent to which processor.
Here, a processor increments the counters corresponding to its rank to compute
its local matrix’s row and column dimensions. Another sweep over row indices
(lines 11–14) and column indices (lines 15–18) is necessary to handle arbitrary
input and output vector partitionings. After the all-to-all communication (line
19), processors know the number of x vector entries to be sent and number of
y vector partial results to be received on per processor basis. After allocating
necessary space each processor become ready to exchange the indices of the vec-
tor components to be communicated later in SpMxV routines. In lines 21–28,
processors build the lists that hold global indices of vector components. In the
remaining of the method, processors exchange those global index lists. After
executing the depicted steps each processor obtain the information on the vec-
tor components’ indices to be sent and to be received. Besides, each processor
obtain the row and column dimensions for the sparse matrix in its memory.

4. Determine local indices. For row-parallel algorithm, it is customary to
renumber the x-vector entries that are accessed by processors in such a way that
entries those belong to the same processor have contiguous indices; see [18, 20].
Analogously, for column-parallel algorithm, the y -vector entries that are to be
sent to the same processor are renumbered contiguously. Combining these, it
is preferable to renumber the x vector entries to be received from the same
processor contiguously and y vector entries to be sent to the same processor
contiguously in 2D case. In previous works [18, 20], developers renumbered
the local vector components starting from 0, and then continue on the external

vector components. We choose to renumber the vector components according
to the rank of the processors responsible on the components. For example,
processor Pk gives label to the external vector components belonging to some
other processor Pj where j < k , then gives labels to the local vector components
and then continue with labeling the external vector components belonging to
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some other processor Pℓ where k < ℓ . Note that processor Pk can give labels
to external vector components belonging to a processor Pℓ in any order; x[i]
can get label that is less than the label of x[j] even processor Pℓ labels x[j]
before x[i] . Since processors communicate global indices in Fig. 1 this does not
cause any problem.

5. Set local indices for vector components to be sent and to be received

and also for matrix components. This is a straightforward task that is done
locally by each processors. Each processor sweeps the local data structures
holding the global indices of local matrix, xSendList, xRecvList, ySendList,
and yRecvList.

6. Assemble the local sparse matrix. The local matrix is assembled using the
labels determined in Step 4. In [18, 20], developers store the local matrix in CSR
format for rowwise-partitioned matrices. Continuing their labeling procedure,
this results in splitting the matrix into two, that is, Aloc and Acpl . Here Aloc

contains nonzeros aij where x[j] belongs to the associated processor, and Acpl

contains nonzeros aie where x[e] belongs to some other processor. Remember
that the mentioned works address symmetric partitioning on x and y vectors,
hence Aloc is a square matrix. In [18] developers mention that the matrices
Aloc and Acpl can be stored in any format.

In our implementation we explicitly split a processor’s matrix into two sparse
matrices Aloc and Acpl for row-parallel algorithm. Here Aloc contains all
nonzeros aij where x[j] is local to the processor even if y[i] belongs to some
other processor and Acpl contains all nonzeros aie where x[e] belongs to some
other processor. We store Aloc and Acpl in CSC format. Our aim is to maxi-
mize communication and computation overlap without incurring any extra oper-
ation. In [18] developers perform the first two steps of the row-parallel algorithm
above by overlapping communication in the first step with the computation in
the second one. After receiving all external x vector components they continue
with multiplication using Acpl as the third step. With our approach we again
obtain the same overlap in the first two steps and also overlap communication
and computation in the third step as well, i.e., we implement the third step of
row-parallel algorithm as written in §2. When a processor receives a message
in the third step containing some external x components, it can continue mul-
tiplying before waiting all external x components to arrive through exploiting
the CSC format. Note that, using CSC format instead of CSR here is essen-
tial. In this format, we have explicit and immediate access to the row indices
that has nonzeros in a given column. Hence, given an x[j] one can update those
y[i] ’s where there is a nonzero aij sequentially without any search. Similarly for
column-parallel algorithm we store Aloc and Acpl in CSR format to maximize
the communication computation overlap. In using CSR format here, our gain is
the overlap between the messages a processor receives and the associated gath-
ering of partial sums in step 3 of the column-parallel algorithm. In row-column
parallel algorithm we benefit both of the overlaps by using the same constructs
in row and column-parallel algorithms.
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5 Examples using the library

In Fig. 2, we give the listing of the interface to the library and a call to external
BiCGSTAB solver we have developed using the SpMxV routines of the library.
We used LAM implementation [3] of message passing interface (MPI). In Fig. 2,
buMatrix data structure is used the store the sparse matrices, either in CSR
or CSR format. The data structure also has fields to hold the row, column,
and nonzero counts and to distinguish the storage formats. Each local matrix
will be of this type (loc and cpl in the figure). parMatrix is used to store
distributed matrices for SpMxV operation. It has loc and cpl fields to store
Aloc and Acpl as discussed in Section 4. The parMatrix structure also has fields
to describe and implement communications. The communication handle in is
used in communications regarding the input vectors of the SpMxV operation.
The handle out is used in communications regarding the output vectors of
SpMxV operations. We carry those communication handles along with matrices,
however, they are used with vectors that appear in a SpMxV operation with
the associated matrix. The field scheme designates the partitioning scheme on
the matrix, which is used to decide on the SpMxV subroutine to call.

In Fig. 2, initParLib initializes the library. Note that this call creates
a communication world under the current communication world (in the figure,
the parent communication world is MPI’s default MPI COMM WORLD). We hide the
world that library’s communication exist from the user, however, there are nec-
essary subroutines which returns library’s communication world handle. Such a
distinct communication world is necessary in order to distinguish messages that
are performed inside and outside the library (see Chapter 5 in [19]) to avoid
message conflicts. The routine readMatrixCoordinates fills coordinate format
storage area through communication. In setup2D, the initialization steps dis-
cussed in Section 4 are executed. It also assembles the matrices Aloc and Acpl

from the coordinate format. The vector x is created with the size of the local
x-vector entries which is mostly available explicitly without any computation.
We choose to decouple the size of the local vectors from the local matrices’ di-
mensions to free the user from parallel programming details. Similarly, vector
b generated at the end of mxv routine holds only the components of b that are
folded in this processor. Finally, we delete the library’s communication world
by a call quitParLib. After this call, any attempts to call library’s facilities
will fail with a proper message.

We have developed BiCGSTAB [2, 23] to test the usability of the developed
SpMxV library and give the code in Fig. 3. Once we have designed the SpMxV
routine with proper interface, development of iterative methods becomes an
easy task. One has to deal with vector operations only. We have provided a
few linear vector operations such as dotv, normv, and v plus cw as well. These
operations perform dot product of two vectors, compute the norm of a vector,
and compute “scalar c w plus v” as in SAXPY of BLAS1 with different resulting
vector. With these routines, the code looks like its pseudocode listing.
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int main(int argc, char *argv[])

{

int myId, numProcs, i, myXsize;

int *rowIndices, *colIndices; double *val;

buMatrix *mtrx, *loc, *cpl;

int partScheme;

parMatrix *A;

comm *in, comm *out;

buVector *x, *b;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numProcs);

MPI_Comm_rank(MPI_COMM_WORLD, &myId);

mtrx = (buMatrix*) malloc(sizeof(buMatrix));

loc = (buMatrix *) malloc(sizeof(buMatrix));

cpl = (buMatrix *) malloc(sizeof(buMatrix));

in = allocComm();

out = allocComm();

initParLib(MPI_COMM_WORLD);

partScheme = PART_2D;

readMatrixCoordinates(&rowIndices,&colIndices,

&val, &(mtrx->nnz), &(mtrx->gm),

&(mtrx->gn), &(mtrx->outPart),

&(mtrx->inPart),argv[1], MPI_COMM_WORLD);

setup2D(rowIndices,colIndices, val, mtrx->nnz,

mtrx, loc, cpl, in, out, MPI_COMM_WORLD);

A = (parMatrix *) malloc(sizeof(parMatrix));

A->loc=loc; A->cpl=cpl; A->in=in; A->out=out;

A->scheme = partScheme;

/*fill a local vector x;later enlarge *

*into a temporary vector in mxv routine to *

*hold external variables as well. */

myXsize=A->loc->n-A->in->recv->all[numProcs]

x = allocVector(myXsize);

for(i = 0 ; i < x->sz; i++)

x->val[i] = 1;

b = (buVector *)malloc(sizeof(buVector));

b->sz = 0;

/*will be adjusted in mxv routine to *

* include only the elements that I own */

mxv(A, x, b, MPI_COMM_WORLD);

/*compute b = A.1 */

for( i = 0 ; i < x->sz; i++) /*reset x=0 */

x->val[i] = 0.0;

bicgstab(A,x,b,200,1.0e-12,MPI_COMM_WORLD);

freeMatrix(mtrx); freeMatrix(loc);

freeMatrix(cpl);

free(A); freeVector(x); freeVector(b);

freeComm(out); freeComm(in);

quitParLib(MPI_COMM_WORLD);

MPI_Finalize();

return 0;

}

Figure 2: A simple C program that uses library with 2D partitioning.
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void

bicgstab(parMatrix *A,buVector *x,buVector *b,

int maxIter,double tol,MPI_Comm parentComm)

{

buVector *rhat, *r, *p, *v, *w, *z;

double c,old_rho,rho,alpha;

double old_omega,omega,beta;

double res, res0;

int k, myId, inSz, outSz;

c= old_rho=alpha=old_omega= 1.0;

z = (buVector *)malloc(sizeof(buVector));

z->sz = 0;

/*initial residual will be computed*/

mxv(A, x, z, parentComm);

v_plus_cw(b, z, c, r);

inSz = x->sz; outSz = z->sz;

p = allocVector(inSz); v=allocVector(inSz);

r = allocVector(outSz);

rhat = allocVector(outSz);

w = allocVector(inSz + outSz);

vcopy_vv(r, rhat);

res0 = normv(b); k = 0;

do /*main BiCGSTAB loop*/

{

k ++;

rho = dotv(rhat, r);

beta =(rho/old_rho) * (alpha/old_omega);

/* compute new p as */

/* p = r - beta * z # z=p -old_omega * v*/

v_plus_cw(p, v, -old_omega, z);

v_plus_cw(r, z, beta, p);

/*compute new v, r, and alpha*/

mxv(A, p, v, parentComm);

alpha = rho/dotv(rhat, v);

v_plus_cw(r, v, -alpha, r);

if(normv(r)/res0 < tol)

{ v_plus_cw(x, p, alpha, x); break;}

/*compute new omega*/

mxv(A, r, z, parentCOMM);

omega = dotv_div_dotv(z, r, z, z);

/*compute new x and new r*/

v_plus_cw(x, p, alpha, w);

v_plus_cw(w, r, omega, x);

v_plus_cw(r, z, -omega, r);

res = normv(r);

old_rho = rho;

old_omega = omega;

if(myId == 0)

printf("\titeration=");

printf("%9d residual %e\n",k,res/res0);

} while((res/res0>tol) && (k<maxIter));

freeVector(p);freeVector(v);freeVector(w);

freeVector(z);freeVector(r);freeVector(rhat);

return;

}

Figure 3: A simple C program that uses library to develop BiCGSTAB.
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Table 1: Properties of test matrices.

Matrix M N NNZ

memplus 17758 17758 126150
bcsstk25 15439 15439 252241
onetone2 36057 36057 254595
pig-very 174193 105882 463303
lhr34 35152 35152 799064

6 Experiments

We have conducted experiments on a few sparse matrices. Properties of these
matrices are listed in Table 1. In the table, M , N , and NNZ denote number of
rows, number of columns, and number of nonzeros, respectively, of the matrices
obtained from University of Florida Sparse Matrix Collection1, Matrix Market2,
and [12].

The matrices are partitioned among 24 processors using PaToH software [4]
to obtain rowwise, columnwise, fine-grain on nonzero basis, and checkerboard
partitionings [5, 6, 7] to test our 1D and 2D parallel algorithms. We report the
timings in Table 2 in milliseconds. Timings are obtained using MPI Wtime()

function. The columns having label R list the time consumed while reading the
matrix, the vectors, and partitioning indicators and providing each processor
with the necessary data. The columns having labels S list the time consumed
during setting up the communication and local matrix data structures. The
columns having labels M list the time for an SpMxV operation.

Except for the matrix bcsstk25, the row-column-parallel algorithm based
on checkerboard partitioning is the best among algorithm-partitioning combi-
nations. The algorithm based on fine-grain partitioning is the worst except for
matrix pig-very. In order to investigate these results we give the communication
pattern for parallel SpMxV computations. In Tables 3 and 4 we give the com-
munication patterns for 1D partitioning and 2D partitioning based algorithms,
respectively. For the checkerboard partitioning we assumed a processor mesh of
size 6 × 4. In these tables, TM and MM correspond to total number of messages
and maximum number of messages per processor; and TV and MV correspond
to total volume of messages and maximum volume of messages per processor.
These metrics refer to the send operations. Note that PaToH minimizes the
total volume metric; in fine-grain partitioning case it minimizes the sum of the
volumes in fold and expand steps; in checkerboard partitioning case it mini-
mizes the total volumes in fold and expand phases separately. Note that in
all cases except the pig-very matrix the total number of messages are doubled
in fine-grain partitionings. Hence, even in the case of memplus in which total
volume in fine-grain partitioning shrinks to 1/3 of other partitionings, the row-
column-parallel algorithm based on fine-grain partitioning takes more time than

1http://www.cise.ufl.edu/˜davis/sparse/
2http://math.nist.gov/MatrixMarket/
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Table 2: Parallel times on 24 processors. R reading time(msecs.), S setup
time(msecs.), M SpMxV time(msecs.).

1D partitioning
Row-Parallel Column-Parallel

Matrix R S M R S M

memplus 1220 25 3.25 1260 27 3.14
bcsstk25 1950 53 1.53 2000 47 1.37
onetone2 2550 70 2.24 2600 39 1.97
pig-very 6900 1060 5.63 6980 139 6.72
lhr34 6590 54 6.02 6310 56 4.56

2D partitioning
Fine Grain Checkerboard

Matrix R S M R S M

memplus 1890 42 4.95 1880 35 1.97
bcsstk25 3340 72 1.68 3360 38 1.66
onetone2 3880 58 3.77 3880 58 2.11
pig-very 9530 187 6.03 8950 165 5.46
lhr34 10850 82 6.23 10620 89 5.96

Table 3: Communication pattern for parallel computations based on 1D parti-
tionings.

Row-Parallel Column-Parallel
Matrix TM MM TV MV TM MM TV MV
memplus 522 23 12016 1070 509 23 10754 1689
bcsstk25 59 4 6855 377 62 5 6702 403
onetone2 132 7 5959 556 103 8 7890 835
pig-very 511 23 10196 1573 496 23 24172 3686
lhr34 233 15 24184 1482 239 13 24967 1323

other combinations. Note also that the checkerboard partitioning produces the
smallest total number of messages in all cases. Combined with the advantage
of bounding the maximum number of messages per processor, the checkerboard
partitioning delivers the fastest SpMxV where there are significant differences
on the metrics pertaining to number of messages.

7 Conclusion and future work

We have developed a sparse matrix vector multiplication library that works
under 1D and 2D partitioning of sparse matrices. The matrices can be square
and rectangular. The library can handle vector distributions that are different
than the matrix distribution. In our implementation of the SpMxV routines,
processors perform scalar multiplications as soon as the associated data are
available.

We are going to implement a reference model for the vectors, matrices, and
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Table 4: Communication pattern for parallel computations based on 2D fine-
grain and checkerboard partitionings.

Fine-grain partitioning
Matrix Expand Fold

TM MM TV MV TM MM TV MV
memplus 488 23 2407 347 472 23 2298 127
bcsstk25 47 4 1227 92 56 4 6094 362
onetone2 173 20 2783 349 132 10 3653 260
pig-very 525 23 12781 1553 61 5 169 19
lhr34 167 11 4185 449 234 13 22631 1533

Checkerboard partitioning
Matrix Expand Fold

TM MM TV MV TM MM TV MV
memplus 118 5 5998 365 72 3 6005 556
bcsstk25 10 1 1679 230 48 3 5717 450
onetone2 35 4 1332 266 65 3 7360 647
pig-very 116 5 6200 714 72 3 17497 957
lhr34 60 5 11261 792 72 3 20131 1324

communicators using integers. The aims are to enable inter-operability of the
library with Fortran codes and to hide the complexity of data structures.

We are going to implement a reference model for the vectors, matrices, and
communicators. In doing so, the gain is two fold. First, we are going to use
integers as references which will enable the inter-operability of the library within
Fortran codes. Second, the data structures are a little bit cumbersome. Once
we have designed the reference model these data structures will be hidden.
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