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ABSTRACT

REDUCING QUERY OVERHEAD THROUGH ROUTE
LEARNING IN UNSTRUCTURED PEER-TO-PEER

NETWORKS

Selim Çıraçı

M.S. in Computer Engineering

Supervisors: Assist. Prof. Dr. İbrahim Körpeoğlu, Prof. Dr. Özgür Ulusoy

August, 2005

In unstructured peer-to-peer networks, such as Gnutella, peers propagate query

messages towards the resource holders by flooding them through the network.

This is, however, a costly operation since it consumes node and link resources

excessively and most of the time unnecessarily. There is no reason, for example,

for a peer to receive a query message if the peer does not own any matching

resource or if the peer is not on the path reaching to a peer holding a matching

resource.

Semantic routing is a technique that tries to forward the queries only to those

nodes where replies are likely to come from. In this thesis, we present “Route

Learning”, a semantic routing scheme, which aims to reduce query traffic in un-

structured peer-to-peer networks by utilizing a well-known estimation technique

called “Parzen Windows”. In Route Learning, peers try to find the most likely

neighbors through which replies can be obtained for submitted queries. In this

way, a query is forwarded only to a subset of the neighbors of a peer, or is dropped

if no neighbor, which is likely to return a reply, is found. The scheme has also

mechanisms to cope with variations in user submitted queries, like changes in

the keywords. This way the scheme can also evaluate the route for a query for

which it is not trained. The proposed scheme consists of three phases: training,

evaluation, and recursive learning. The last phase enables the scheme to adapt

itself to changes in a dynamic peer-to-peer network. Our simulation results show

that our scheme reduces the bandwidth overhead significantly without scarifying

user satisfaction compared to a pure flooding based querying approach.

Keywords: Peer-to-peer query routing, Parzen Windows estimation, query

caching, distributed hash tables.
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ÖZET

PLANSIZ PEER-TO-PEER SISTEMLERDE “ROTA
ÖĞRENME” YÖNTEMI ILE SORGULAMA YÜKÜNÜN

AZALTıLMASı

Selim Çıraçı

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Assist. Prof. Dr. İbrahim Körpeoğlu, Prof. Dr. Özgür Ulusoy

Ağustos, 2005

Gnutella gibi belli bir planı olmayan peer-to-peer (P2P) sistemlerde, akranlar

sorgu mesajlarını kaynak tutucularına sel baskını yöntemi ile P2P ağı üzerinden

aktarır. Fakat bu operasyon çok verimli değildir, çünkü sel baskını yöntemi akran-

ların bant genişliği gibi kaynaklarını gereksiz yere harcamaktadır. Örneğin, bir

akranın bir sorgu mesajına cevap verecek kaynağa sahip olmadığı, veya o kaynağa

gidecek yolu bilmediği zaman, bu sorgu mesajının rotasını belirlemede görev al-

masına gerek yoktur.

Anlamsal rota belirleme tekniği sorgu mesajlarını sadece cevapların

gelebileceği akranlara yollamaya çalışan bir mekanizmadır. Bu tezde plansız

P2P sistemlerde sorgulama yükünü “Parzen Windows” sınıflandırma algorit-

malarını kullanarak azalatmaya çalışan ve bir anlamsal rota belirleme sistemi

olan “Route Learning” (Rota Öğrenme) sistemini sunuyoruz. Sunduğumuz bu sis-

temde, akranlar sorgu mesajlarını cevapların yüksek olasılıkla gelebileceği komşu

akranlara iletirler. Bu sayede, bir sorgu mesajı bir akranın, sel baskını tekniğinde

olduğu gibi, tüm komşularına değil, sadece bu komşuların bir kısmına aktarılır.

Eğer bir akranın komşularının gelen bir sorguya cevap veremeyecekleri tah-

min edilirse, o sorgu mesajı düşürülür. Sistemimiz ayrıca sorgulardaki anahtar

sözcük değişikleri gibi dinamik yapılar ile başa çıkabilecek mekanizmalara sahip-

tir. Böylece sistemimiz daha önceden görmediği sorguların bile rotasını tahmin

edebilir. Sistemimiz üç fazdan oluşmaktadır; bunlar: öğrenme, değerlendirme ve

yeniden öğrenmedir. Yaptığımız testler sonucunda sistemimizin sorgularda bant

genişliği kullanımını, kullanıcı memnuniyetini çok düşürmeden, yüksek düzeyde

azalttığı görülmüştür.
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Anahtar sözcükler : Peer-to-peer sorgulama yönlendirmesi, Parzen Windows tah-

min yöntemi, sorgunun ön belleğe alınması.
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Chapter 1

Introduction

Peer-to-peer (P2P) communication paradigm has gained significant importance

since it allows people to become active participants in a huge community. In P2P

networks, nodes, that are also called peers, can act both as servers and clients

allowing the resources to be distributed and the load that is put onto one server

to be shared. This provides a great advantage over the client-server paradigm,

where a failure of the server causes all the resources to become unreachable. How-

ever, the distributed nature of P2P networks and resources brings the problem

of locating resources in a huge network. This problem is also known as location

lookup. To determine the location of a resource, a query is generated and sent

through the P2P network to be received by one or more peers which can answer

the query. This process is called querying.

Querying in unstructured P2P networks like Gnutella [1] is performed by

flooding the query through the network. In flooding, each node receiving the

query forwards the query to all of its neighbors. Although it is simple and robust,

this approach, however, causes too much bandwidth to be wasted, because most of

the time the query is forwarded towards neighbors from where no answer returns.

There is also the possibility of receiving the same answer from multiple peers even

though one answer would be enough.

There exists many studies so far that come with efficient schemes and protocols

1



CHAPTER 1. INTRODUCTION 2

to solve this problem. Semantic routing [11] is one of them, which aims to reduce

querying overhead by trying to find the nodes where an answer can come from

and forwarding the queries towards those nodes The scheme that we propose in

this paper, which we call Route Learning, is also a semantic routing technique,

that is inherently a classification problem. Our proposed scheme learns routes

and makes routing decisions for query messages based on this learning.

There are also caching based query routing techniques proposed to reduce

the querying overhead. Many of these techniques, that are discussed in Chap-

ter 2, cache a query as a whole. However, our observations that are reported

in Chapter 4 show that only 15% of the queries are repeated, which implies

that the reduction in the overhead can be at most nearly 15%. Besides this, our

observations also show that the repetition rate of keywords follows a power-law

distribution as we discuss also in chapter 4. From this observation one can con-

clude that some keywords are repeated at a higher rate than the average query

repetition rate. Therefore, making use of this high keyword repetition rate may

greatly reduce the querying overhead. Our Route Learning scheme makes use of

this repetition rate by applying a classification technique to estimate the next

hop of a query by using its keywords as features.

Our scheme starts with a process in which a node learns resources reachable

by its neighbors. We call this phase of our scheme the training. During the

training phase, nodes store query messages they receive before forwarding them

to all their neighbors using the flooding approach. The same nodes, upon arrival

of query hit messages, find the matching query messages that were stored earlier

and record the number of results returned to the queries. These recorded results

are used in the next phase of the scheme, the evaluation phase, to make intelligent

routing decisions.

Intelligent routing decision allows a node to forward a query only to a subset of

neighbors. It is, however, still possible a query to be forwarded to all the neigh-

bors, or to be dropped depending on the containing probability estimated for

each neighbor. The containing probabilities are estimated for each keyword seen

on the query. The containing probability for a keyword and neighbor indicates



CHAPTER 1. INTRODUCTION 3

the likelihood of finding the resource matching the keyword through that neigh-

bor. Flooding the query in the evaluation phase occurs only when the containing

probability is found to be not trained for each neighbor. Although flooding is not

desirable in the evaluation phase, it allows the scheme to continue to learn routes.

In this way, the scheme can adapt itself to the dynamic nature of peer-to-peer

networks, such as node disconnections or new node arrivals.

We evaluated our scheme through simulations. Our simulation results show

that our scheme reduces the bandwidth overhead of querying significantly com-

pared to a pure flooding based approach that is not using any intelligent routing.

More specifically, a P2P network with our scheme consumes only around 10% of

the bandwidth that would be consumed in a pure flooding based P2P network.

Our simulation results also show that the quality of answers in a P2P system

using our scheme is not reduced considerably compared to the quality of answers

in flooding based systems.

Another contribution of this thesis is derivation of characteristics information

about some of the important parameters of the Gnutella network. The Gnutella

network is one of the greatest P2P networks that is currently under use over

Internet. Therefore it is important to know about its characteristics. For exam-

ple, people who will do simulation studies about this network may benefit from

the model and parameter characteristics derived through monitoring the current

operational network.

We have done extensive monitoring of Gnutella traffic and then analyzed the

captured Gnutella messages. Using this analysis we have derived characteristics

of some of the important parameters such as keyword repetition rate, distribution

of initial TTL values, etc.

In summary, the contributions of the thesis are as follows:

• Proposal of a scheme, which we call Route Learning, to use for reducing

the querying overhead in Gnutella and similar unstructured P2P networks.

This is crucial in these networks since querying is based on flooding which

causes extensive control traffic overhead.
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• Evaluation of the performance of the proposed scheme. The performance

evaluation is done both through performing real-time experiments in a

test bed consisting of a custom-built Gnutella crawler attached to the real

Gnutella network, and through simulations. What is needed for simulation

is a model and characteristic information about some important Gnutella

parameters. And this is obtained as a result of the next contribution.

• Deriving a model and characteristic information about some of the param-

eters of the Gnutella network and its user population. The results of this

contribution have been used in the simulations done as part of this thesis,

and can also be used for other simulation studies.

The thesis is organized as follows. In Chapter 2, the recent research that is

related to our work is described. A brief description of the Gnutella protocol is

provided in Chapter 3. The observations extracted from the Gnutella network is

shown in Chapter 4. An introduction to classification problems, the P2P frame-

work we have assumed, and the Route Learning scheme we propose is provided

in Chapter 5. The experiments we conducted to evaluate our routing scheme are

described in Chapter 6, and the performance results are presented in Chapter 6.

In Chapter 7 we summarize our conclusions. Finally, in Chapter 8 we describe

some improvements that we are considering to test on the scheme.



Chapter 2

Related Work

Peer-to-peer (P2P) technology is a relatively new technology that enables forma-

tion of huge overlay networks and that allows users to become active participants

in those networks without requiring a pre-installed server system. Each node,

called servent or peer, in a P2P network is both a server and a client, and has

equal responsibilities with other peers. This allows resources to be distributed

among users, thus the probability of a resource becoming unreachable is reduced.

In the standard client/server paradigm, on the other hand, the server is the only

owner of the resource, thus the resource becomes unavailable if the server crashes.

The distribution of resources is the major motivation for considering P2P tech-

nology as one of the most important applications of Internet.

Today, thanks to the advances in Internet technologies, one can find many

P2P systems some of which are operational and used by thousands of people

and some of which are of research interest. These systems can be classified

roughly into there main groups [2], which are unstructured, loosely structured

and structured P2P systems. In an unstructured P2P network like Gnutella [1],

the location of the resources is completely independent from the formation of

the overlay network. In structured P2P systems, on the other hand, a node is

given a virtual address/location determined by the resources the node is shar-

ing. Lastly in loosely structured P2P systems the resources supply routing hints

to the intermediate nodes. Unstructured P2P networks can further be divided

5
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into three groups, which are pure, hybrid and centralized. In pure unstructured

networks each node has equal responsibilities while in others some nodes take

special responsibilities like holding an index of the resources the neighbors are

sharing. An example to hybrid systems is Kazaa [3] network; where nodes with

high-bandwidth connections become super-nodes, which have the responsibility

of routing network messages. Normal nodes, which are not active participants

in routing, connect to super-nodes and send the index of their shares to the

super-nodes.

Considering the number of users that will connect to Internet in the future, it is

obvious that the P2P networks of the Internet should accommodate large number

of nodes. Thus the only P2P network type that can accommodate such large

number of nodes is unstructured P2P systems. The major problem in such P2P

systems is, however, resource location (querying), which can be summarized as

given a keyword set S finding the resources whose meta-data or name matches all

the keywords in S. Current unstructured P2P systems, propagate query messages

by flooding the messages, which increases the bandwidth requirements of the

network so that nodes with low bandwidth connections cannot keep up with the

query traffic. Our study, in this thesis aims at reducing the querying overhead

by applying some well-known classification technique. There are many related

protocols and schemes that share the same goal that we do, and we discuss some

of the most related ones to our scheme in Section 2.2. As we have discussed in

the Introduction chapter, to generate close to real life simulations in evaluating

our scheme, we have conducted some measurements and experiments in the live

Gnutella network. Therefore, before discussing the related studies that aim on

reducing the query overhead, we first discuss some related work on Gnutella

network measurements and analysis.

2.1 Work on Gnutella Network Measurements

There exist several studies on the measurement and analysis of several P2P net-

works. The study on [12] lists some of the important parameters that should be
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considered when simulating a P2P file sharing network. In this study, a model

for some of the parameters are derived from real world observations, and the

parameters considered are separated into two groups. The first group of param-

eters are related with the distribution of resources in the P2P network, and the

second group of parameters are related with modeling the behavior of peers. The

main difference of our study from [12] is that we try to characterize P2P network

parameters using traces collected by custom P2P crawlers. We also investigate

some parameters that are not investigated in [12]. A list of parameters that are

important for Gnutella simulations is also reported in [18].

The authors of [4] conducted an analysis of the Gnutella network using

crawlers, like we did. They logged for an hour the query and query hit mes-

sages seen at three different points on the Gnutella network. The study of the

logged messages is focused on the detailed analysis of repeated queries, the TTL

values seen in the queries, and the inter-arrival times of submitted queries. We

also analyzed some aspects of repeated queries and the TTL values of user sub-

mitted queries. But we are more focusing on the characterization of initial TTL

values set in the queries, and on the characterization of inter-arrival times of re-

peated queries. A similar study to [4] is presented in [14]. That study, however,

is more focused on content analysis of queries. It derives and lists some popular

keywords that are used in submitted queries. In this aspect, the work also re-

sembles to what we did, but we are also trying to find a model for the repetition

count of popular keywords.

The study presented in [13] also uses crawlers to collect message traces from

Napster and Gnutella networks. It plots cumulative distributions of peer char-

acteristics such as the number of resources shared, the uptime of peers, and the

bandwidth capacity of peers. Our observations also focus on similar parameters

such as the number of resources shared by peers, but we also try to come up

with a model that can be used to generate similar values for these parameters in

simulation studies.
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2.2 Work on Reducing Query Overhead

There exists a substantial amount of work on reducing query traffic overhead in

an unstructured P2P network. Here we briefly describe some of these works that

are closely related to what we present in this thesis.

A study about Gnutella query traffic characteristics shows that queries in a

Gnutella network exhibit a significant amount of locality, namely queries with

the same or similar search strings are common [4]. Based on this observation, a

caching scheme is proposed in which every peer stores query strings, time-to-live

(TTL) values, and the corresponding query hit messages while the peer is relaying

Gnutella queries and query hit messages. Then, upon receiving a query message,

a peer scans the TTL and query string pairs stored in itself for a match to the

query string and the TTL value stored in the received query. If such an entry is

found, the peer returns the corresponding query hit (i.e., the answer) as a reply

to the query. Similar to that study, our system also makes use of the locality in

queries. However, rather than indexing the query string as a whole, we index each

of the keywords seen in a query, separately. This helps us to cope with changes

in user submitted query strings. Another difference of our work from [4] is that

the peers in our scheme do not answer queries on behalf of their neighbors or any

other peer. They estimate the most likely neighbors where replies can come from

and forward the query messages only towards those neighbors. In other words,

we do not cache the query hit messages that originate from peers holding the

matching files at intermediate peers where the query hits are forwarded.

Applying a distributed hash table (DHT) structure on P2P networks is an-

other approach to improve the scalability and also the exact-match hit rate.

Gnutella developers have adopted a DHT-like scheme where peers index their

shares into a binary hash table and send it to their neighbors at certain time

intervals [7]. The problem with a hash table based structure is that it can only

support exact match queries. An n-gram based technique to allow fuzzy queries is

described in [5]. This idea is borrowed by [6] to bring DHTs to P2P systems with

a complex query structure. These approaches are significantly different from ours

in that we are not requiring peers to hash their resources and distribute them
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to their neighbors, which causes extra messaging overhead. We just require each

peer to learn about the resources managed at or reachable by their neighbors

by only monitoring the query and query-hit messages sent to or received from

their neighbors. The query and query hit messages are already part of the base

Gnutella protocol, hence we are not causing extra control traffic overhead.

The routing method proposed in [8], may seem related to Route Learning since

both schemes use a probabilistic approach. However, the only feature common

between their scheme and ours is that both aim at reducing the query overhead

in the network. The protocol shown in [8] makes use of caches and forwards

queries to neighbors with a probability called “broadcast probability”. Route

Learning, on the contrary, does not make use of caches and forwards the queries

to neighbors depending on the knowledge that is collected about neighbors.

Most of the learning based routing protocols focus on clustering peers that

have similar interests together. In the scheme proposed in [9], peers associate

to the networks using two connection methods. The first connection method,

called the random connection, is the method used by Gnutella in which a peer

chooses the neighbors to connect to by availability; i.e. if a neighbor can ac-

cept the new comer then the connection is established. In the second connection

method, called the attractive connection, the new comer establishes a connection

according to the answers it has received. If a peer X has supplied most of the

answers, then the new comer establishes a connection with peer X. This way,

most of the queries submitted will be answered at one hop distance. A method

similar to this is proposed in [10]. In that method peers develop knowledge about

their environment by using a neural network technique. The main difference of

our work from [10] and [9] is that in our system peers do not change connections.

Changing neighboring connections is not considered to be good solution since

peer-to-peer networks are highly dynamic networks in which nodes frequently

disconnect or connect to the network. Also Route Learning has methods to cope

also with changes in keywords, thus it does not only rely only on keyword rep-

etitions but it also uses similarity between keywords as a means to reduce the

querying overhead further. Finally, Route Learning can dynamically adjust itself

to the changes in the topology of a P2P network. The changes in topology can
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be due to new connections or disconnections.



Chapter 3

Gnutella Protocol

In Gnutella network, peers form an overlay network over Internet by opening

point-to-point TCP connections to each other. To join the overlay, a new coming

peer has to discover a small subset of the active overlay participants. This discov-

ery is done by querying the host caches, which hold the IP addresses of some of

the high-uptime participants. Each Gnutella compatible P2P client comes with a

set of predefined host cache addresses. After discovering a set of the peers to join,

a newcomer initiates Gnutella handshake with a peer in that set (Figure 3.1).

During this handshake, both the newcomer peer and the peer that is already part

of the Gnutella network indicate to each other the Gnutella protocol version they

are using and the extensions they support [1]. If the peer that is already part

of the Gnutella network can accept the connection request from the new coming

peer, it indicates this by sending an OK message. If, on the other hand, the peer

cannot accept the connection, it indicates the reason why it cannot accept the

connection and provides the newcomer with a set of peers it knows. This way the

newcomer can discover other peers without further querying the host cache.

After a successful connection establishment, peers start exchanging Gnutella

protocol messages. A Gnutella message header, shown in Figure 3.2, consists of

a global unique identifier (GUID) field, a time-to-live (TTL) field, a hops field,

a payload type field, and a payload length field. The GUID is used to overcome

routing loops that may occur in the overlay. To prevent routing loops, a peer

11
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Figure 3.1: A successful Gnutella handshake between two peers.

Figure 3.2: Header of a Gnutella Protocol Message.

receiving two messages with the same GUID ignores the second one. Each peer

receiving a Gnutella message increases the hops count value in the message by

one and also decreases the TTL value by one. When the TTL value of a message

reaches to zero, the message is not forwarded anymore. The payload type field is

used by peers to distinguish different types of Gnutella messages. There are five

types of Gnutella messages, which are Query, QueryHit, Bye, Push, Ping, and

Pong messages.

A Query message contains the user submitted query string as its payload.

Peers in Gnutella network maintain a routing table that stores the GUID’s of

the queries they have received. A peer receiving a Query message extracts the

GUID from the header and searches that GUID in its routing table. If the GUID

is previously seen, in other words an entry with the same GUID appears in the

routing table, then query is dropped; this way Gnutella becomes “free” from

routing loops. After checking the query in the routing table, the peer forwards

the query to all of its neighbors, except to the neighbor that has sent the query.
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Figure 3.3: Gnutella download fails due to firewall.

The peer, after forwarding, checks its shared resources for a match to the query

string included in the Query message. If the peer has resources that match the

query string, it sends a Query Hit message back. The Query Hit message is set

the same TTL value as the hops field of the corresponding Query message. The

payload of the Query Hit message contains the physical address of the originator

and the names of the resources that match the corresponding query. To download

a resource, the user of a node in the Gnutella network selects the resource from

the list of resources received via Query Hit messages. Then the Gnutella protocol

opens a connection to the peer which is going to supply the resource the user

wants to download, and the download process starts. If for any reason this

connection attempt fails (Figure 3.3), the peer that wants to download a file

sends a Push message through Gnutella network to the peer that is going to

supply the resource. The Push message contains the sender’s physical address

and the TCP port number from which it can accept connections. Upon receiving

the Push message, the supplying peer opens a connection to the peer requesting

the resource.

The Ping and Pong messages are used to exchange topological information.

When a peer receives a Ping message, it answers back with at least 10 Pong mes-

sages each containing the physical addresses of other peers that are collected again

by sending Ping messages. Bye is used by a peer to indicate its disconnection

from the network to its neighbors.



Chapter 4

Observations From Gnutella

Protocol

Having models and characteristics information about important parameters of a

network, including a P2P network, enables us to accuratly simulate the network

to do performance analysis and protocol verification. There is already some work

describing some models for some of the parameters of the Gnutella network, but

these are not covering all important parameters necessary for all types of simu-

lations. Therefore, we first identified some parameters of the Gnutella network

and its user population, that can be useful for the performance evaluation of our

proposed Route Learning scheme; and then we did extensive Gnutella network

monitoring and analysis to obtain knowledge about the characteristics of these

parameters[19].

While doing this, we followed a methodology similar to the one described in

[14]. We programmed a custom Gnutella crawler to collect Gnutella network

traces. Using the crawler we gathered large sets of data and logged them on

a local disk. The logged data includes various Gnutella protocol messages that

suit our measurement goals. After logging the Gnutella messages, we also probed

numerous nodes, whose addresses are obtained from the logged messages, in order

to have an idea about the duration of node uptimes.

14
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In this chapter, we first briefly introduce the measurements and analysis that

we conducted on the live Gnutella Network. Then we describe briefly our Gnutella

crawler that is used to collect Gnutella protocol messages transported over a

portion of the Gnutella network. We then introduce and describe some of the P2P

network parameters that we identified and that we tried to model and estimate

using the message traces we obtained via our crawler.

4.1 Gnutella Crawler

Our Gnutella crawler is written in Java and follows the Gnutella protocol speci-

fication version v0.6 [1]. First, the crawler connects to the HTTP address gweb-

cache2.limewire.com:9000/gwc to collect physical addresses of some active peers.

It then starts opening connections to those peers and also builds its own host

cache from the physical addresses collected via unsuccessful connection attempts

and Pong messages. After connecting to three peers successfully, the crawler

starts monitoring and logging Gnutella messages considering the parameters we

are going to discuss in mind.

4.2 Measured Parameters

The simulation of a Gnutella network requires consideration of a lot of parameters.

We focused only a subset of all possible parameters and tried to understand

the nature of the values of these parameters in the Gnutella network. We now

introduce the parameters we focused on, and describe how the related traces are

collected to obtain the characteristics of these parameters.

4.2.1 Number of Keywords Contained in a Query

For semantic routing techniques, keywords in a query define routing rules for that

query. Thus, the more keywords a query has, the more information the routing
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technique can extract about the query’s route. It is widely believed that P2P

users submit short queries consisting of one or two keywords, so its difficult to

apply semantic routing techniques. To test this belief, we have programmed the

crawler to collect 10 thousand queries from five different connection sets (each set

consisting of different nodes). After collecting the data, the queries are tokenized

with “. *()",;:!?” deliminators to extract the keywords and then each keyword

is counted. To combine the counts from different connection sets, the averages of

the counts is taken.

4.2.2 Repetition Rate of Keywords in Queries

It is a fact that in P2P networks there exist some popular resources which are

queried a lot. Many protocols that try to improve search quality rely on repetition

rate of keywords in queries. So it is important to develop a model for popular

keywords for such techniques.

To develop this model, we have used the tokenized queries of the previous

parameter and hashed each keyword using Java’s string class, which hashes strings

by adding the integer values of each character in a string. These hashed keywords

are used as a key to index the hash table holding the number of accesses made to

the cells. We have given the highest rank of 1 to the mostly accessed cell, which

in turn is the keyword with the highest repetition.

4.2.3 Initial TTL Values of Queries

For P2P simulations, the initial TTL values set in Query messages play an im-

portant role, since Query messages can travel longer distances with a higher TTL

value which increases the chance of finding the resources requested by the query.

The TTL value in a query is also important for determining the bandwidth re-

quired for various protocols. Gnutella protocol specification [1] states that TTL

values in queries should be set to 7 and many P2P simulators follow this specifica-

tion. However, the fact that many Gnutella clients today use shorter initial TTL
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values makes TTL an important parameter to achieve realistic P2P simulations.

To keep track of TTL values, while collecting query data for the previous

parameters we have also programmed the crawler to log the TTL and hops values

of the received queries. The initial TTL values are calculated by adding these

two values. Again averages of several collected data sets are used to obtain the

final estimates.

4.2.4 Peers’ Contribution to the Network

Distribution of resources to peers in a P2P simulation should also be handled

carefully, since the query hit rate is directly affected by this parameter. Some

previous studies show that %25 of the Gnutella peers do not share any files at

all, and %7 of peers share 100 files [14].

To collect the required data to estimate the distribution characteristics of

resources, the crawler has been programmed to collect 10 thousand Pong messages

from five different connections sets. The collected Pong messages contain the

physical addresses of the nodes sending the Pong messages, and the total number

and size of resources shared by these nodes.

4.2.5 Query Hit to Query Ratio

Although peers’ contribution to the network greatly affects the Query Hit mes-

sages returned to Query messages, the popularity of the shared resources is an-

other important factor that can affect the Query Hits, since popular resources will

be queried more than other ones. So it is not only important how many files a

peer shares, but it is also important what kind of files the peer shared. It is hard

to model the popularity of shared resources, however, collecting the number of

Query messages with matching Query Hit messages in the Gnutella network may

give an idea. Assuming, for example, x% of the queries in the collected data have

a matching Query Hit message, we then can adjust the popularity parameter in
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a simulation so that the chance of getting a Query Hit to a Query message is x%.

To find the Query to Query hit ratio, our crawler uses a hash table. This hash

table holds the GUID of a Query message as a key and stores the corresponding

Query Hit message as data. Upon receiving a Query message, the crawler inserts

a null Query Hit message, which has zero as the hit-count, to the hash table.

Since the Query Hit message has the same GUID as a Query message, upon

receiving a Query Hit message, the crawler searches the GUID of the message

in the hash table, and if found, the Query Hit message is inserted to the table.

By collecting the Query Hit messages in this way, found the chance of getting a

Query Hit to a submitted Query message.

4.2.6 Repeated Queries

When the P2P network does not return any results to a query submitted by a

user, the query is re-submitted by the user or the P2P client software. Thus, it

may be important to model this behavior for simulation of caching systems.

In order to find out how many queries are repeated in a five different query

sets each containing 10 thousand queries, we have hashed the query string in a

Query message together with the hops value of the message, again by using Java’s

string class. If two different queries are hashed to the same cell, then that query

is marked as a repeated query. Although it is impossible to know which peer has

submitted the query when the hops value is greater than 1, two queries with the

same query string and the same hops value have a very high probability of being

repeated, thus we have used this method to recognize repeated queries.

4.2.7 TTL Values of Repeated Queries

When a user of a P2P system re-submits a query, it provides some advantage

for the P2P client to send the query to the network with a higher TTL value.

Although Gnutella specification does not mention this, some clients may have
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adapted this approach in order to increase search quality. This makes it important

to analyze the TTL values in repeated queries. In order to analyze this behavior,

the crawler also logs the TTL values in queries that are recognized as repeated

queries.

4.3 Observations

Message Type Occurence

Query 91%
Query Hit 1%
Ping 8%

Table 4.1: The Gnutella protocol messages observed in trace data and their
fraction of occurrances.

In this section we present our results about the characteristics of the param-

eters that we have described. Before that, however, we would like to present a

table describing the overall Gnutella traffic characteristics (Table 4.1). In this

table, we did not include the Pong messages since they are sent whenever a node

receives a Ping message. The overhead of flooding is clearly seen in the figure;

%91 of the Gnutella traffic consists of Query messages. Thus the need for a

protocol that reduces this overhead is clear.

In Figure 4.1, the distribution of the number of keywords submitted in a

query is shown. Our analysis of the related traces shows that 68477 queries out

of 100 thousand queries contain less than 5 keywords. We found 4 as the mean

of the number of keywords that can be seen in a query. Queries with just one

keyword constitute the 10% of all queries we analyzed. The Figure 4.1 indicates

that users tend to submit more descriptive queries instead of submitting single-

keywords queries. It is also interesting to notice that 1561 queries out of 100

thousand queries contain more that 7 keywords which makes around 1.5% of all

the queries analyzed.

Figure 4.2 shows the repetition count of keywords in user submitted queries.
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Figure 4.1: Distribution of number of keywords seen in query messages.

In plotting the graphs in the figure, we first ranked all the keywords with respect

to their repetition count. In Figure 4.2-a, the x-axis is the rank of the keywords,

and the y-axis is the repetition count of the keywords with respect to those ranks.

The keyword that has the highest repetition count has rank 1, the keyword that

has the next highest repetition count has rank 2, and so on. The analysis of this

plot shows that the repetition count of keywords obeys a power-law distribution

with respect to the rank of keywords. We think this is due to popularity of some

keywords. For example, in our traces, keywords “mp3” and “divx” are the two

most popular keywords and they have very high reparation counts (i.e. we can

see them in many queries). Since the curve on the graph is steeply decreasing,

we only plotted the repetition counts up to rank 1000. Otherwise it was difficult

to identify the curve on the graph. To better show that the repetition count of

keywords obey a power-law distribution, we plotted the repetition count versus

rank of keywords in logarithmic scale, and fit a polynomial with degree 1 to the

curve obtained in this manner. The Figure 4.2-b shows the plot in logarithmic

scale with the fitted polynomial (in this plot we did not limit the rank). The

fitted polynomial has coefficients -1.028 and 4.74 (i.e., . it is the line described

by equation y = −1.028 × x + 4.74).
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Figure 4.2: Repetition count of keywords. a) Repetition count of keywords versus
the rank of keywords. Keywords are ranked according their frequency of occu-
rance in query messages. b) Log of repetition count of keywords versus log of
rank of keywords.

The distribution of initial TTL values observed in Query messages are shown

in Table 4.2. As can be seen from the table, majority of the Gnutella clients

(89%) set the initial TTL value to 4 in a Query message. The clients setting

the initial TTL value to 3 constitute around 11% of the peers. The number of

clients setting the initial TTL value to something else is less than 1% and therefore

negligible. We also tested what happens if a client tries to submit Query messages

with larger initial TTL values than 4. For this we modified our Gnutella client

so that it submits queries to the network with TTL values larger than 4. We

have noticed that majority of the clients around us have lowered the TTL value

to 4. We believe that Gnutella developers have taken such an action to lower

the overhead introduced by the flooding mechanisms used for disseminating the

queries.

In Figure 4.3, we show the cumulative distribution function of number of files

shared by a peer. On the x-axis we have the number of files shared, and on the

y-axis we have the fraction of peers sharing number of files that is less than or

equal to the corresponding value indicated on the x-axis. From the figure we see

that 50 peers out of 420 peers share zero files. In other words, nearly 10% percent

of peers do not share any files. The figure also reveals that only around 5% of
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TTL % of Messages with TTL

3 11%
4 89%
5 and greater < 1%

Table 4.2: Initial TTL values seen in query messages and their percentages. Most
queries observed in the traces have an initial value of 4.
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Figure 4.3: Cumulative distribution function (CDF) of the number of files shared
by a peer. Most of the peers (95%) share less than 1000 files.

peers share more than one thousand files. These are not suprising results since it

is a quite well-known fact that only a small percentage of peers in a P2P network

share huge numbers of files. It is also interesting to notice that although many

peers indicate that they share small number of files, these shared files are quite

large in size (around 2 GB). This leads us to believe that in Gnutella network

users tend to search and download large files which in turn causes peers to share

large files.

Although Query to Query Hit ratio greatly depends on the queries submitted,

from Table 4.1 one can see that Query Hit messages constitute only %1 of the

overall P2P message traffic observed in the traces. This is quite a small fraction
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indeed.

Repetition Count % of Repetitions

2 81%
3 14%
4 3%
5 1%

More than 5 1%

Table 4.3: The count of repeating the same query string by a peer. 81% of peers
that repeated a query sting have repeated the string 2 times.

We also looked how many times a query string is repeated by a peer in sub-

mitting queries. A query string can be repeated by a peer because the results

obtained in previous query submissions may not be found satisfactory by the

peer. Out of the 100 thousand queries observed, we have identified 15678 queries

as repeated queries. This constitutes 15% of all the queries observed. Table 4.3

shows that majority of the queries are repeated twice (81% of all queries). The

percent of queries that are submitted three times is 14%. We have found that

only 2 queries are submitted to the network more than 5 times. These two queries

have all ”?” as query strings, which we believe are used by peers to discover all

the names of the resources shared by their neighbors, although nothing about

this is mentioned in Gnutella protocol specification. Our inter-arrival time anal-

ysis for repeated queries shows that on average there is a 1242291.09 msec time

interval between the repeated queries. This corresponds to around 21 minutes

between each repeated query, which is a reasonable time, since a user re-submits

a query after the arrival and inspection of the previous results. Our TTL analysis

for repeated queries shows that the initial TTL values of these 15678 repeated

queries are not increased by the clients submitting these queries. Given that ma-

jority of the queries are repeated only twice, we can say that a Gnutella user is

satisfied with the results after a second submission that comes after a sufficient

inter-arrival time (around 21 minutes). Since the mean uptime of Gnutella peers

are around 60 minutes [4], we conclude that there is no need for an increase in

the TTL of the repeated queries for the purpose of getting better results, and

therefore we find the decision made by Gnutella developers about not to increase
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the TTL values in repeated queries to be correct; since by the time the query is

re-submitted new nodes would join the network so there is no need to increase

the TTL value of a query.



Chapter 5

Route Learning

In this chapter, we detail our proposed solution, Route Learning, to the querying

overhead problem seen in unstructured P2P networks. Before going into the

details, however, we first provide some insights into the classification problem

and one of its solutions in the next section, since we use a technique from this

domain as part of our Route Learning solution. Then, in Section 5.2, we define

the properties of the P2P network environment for which our solution can be

applied. Finally, in Section 5.3 we provide the details of our solution.

5.1 Background

The solution that we propose in this thesis for reducing query overhead is based

on a solution of the general classification problem. Therefore, in this section we

briefly describe what a classification problem is and give one popular solution

approach for it.

A classification problem consists of a classifier and two or more classes to be

chosen. The classifier tries to classify a given object according to its features; thus

ideally the features that belong to a class should be distinct from other classes.

25
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The classification problem mainly consists of five phases which are data collec-

tion, feature extraction, modeling, training and evaluation [15]. The classifiers are

distinguished according to their learning phase; one type requires pre-knowledge

of the objects to be classified; in other words it is trained with a set of samples

whose class is known previously. This type of learning is called supervised learn-

ing. The second type of classifiers does not require prior knowledge, and this type

of learning is called non-supervised learning. Route Learning classifier belongs to

the first type, which is therefore detailed in this paper. The aim of supervised

learning is to provide the classifier with some information about the classes which

determine the location of each class in the feature space. For example, assume

that we are classifying the objects with red color. For this problem we have two

classes, red and non-red, and each class’ features are the red, green, blue (RGB)

values of the objects. Here we model a very simple classifier that works according

to nearest-neighbor rule, where an object is labeled with the class whose features

are nearest to the features of the object. In the learning phase, we provide the

classifier with some samples and specifically mark which class each sample be-

longs to. Then, in the evaluation phase we provide an object to the classifier

which labels the object with the class whose “color” is nearest to the object we

have provided.

The simple classifier we have used in the above problem gives good results

(twice the error rate of a Bayesian classifier [15]) with unlimited samples. How-

ever, in most cases we do not have that many samples. Thus we have to use

classifiers that take a statistical approach. The primary statistical solution to a

classification lies in the Bayesian decision theory (see Equation 5.1).

P (ωi | x̄) =
P (x̄ | ωi)P (ωi)∫

i

P (x̄ | ωi)P (ωi)
(5.1)

The term P (x̄|ωi) in Equation 5.1 is called the likelihood or the class condi-

tional density. Estimation of this parameter is the crucial part of the classification

problem [15]. If the probability distribution of the likelihood is known, then we

could use some parameter estimation techniques to find the parameters of the
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Figure 5.1: Parzen Windows Estimation with a 1-D feature space. Volume size
is 1, then P(3/2)=(4+5)/19/1/.

distribution. However, in many cases we do not have this valuable information,

thus we use some non-parametric techniques like Parzen Windows.

Next, we provide a simple description of Parzen Windows estimation and

algorithms of a generic Parzen Windows classifier. The theoretical background of

the non-parametric techniques can be found in [15]. The continuous probability

that a vector x will fall into a very small region R is given in Equation 5.2.

P (x̄) ∼=
k̄/n

V
(5.2)

In this expression, k stands for the number of samples that fall in volume

(V ) enclosed by R, and n stands for the total number of samples in the set.

To estimate this probability we can take two approaches. In the first approach,

which is used by Parzen Windows estimation, we can take the volume fixed and

count the number of samples in the volume (Figure 5.1). In the second approach,

each time we can select a constant number of samples, and then calculate the

volume that encloses each of these samples. After this brief explanation, we can

detail the algorithms of a simple Parzen Windows classifier.

The training phase of a Parzen Windows classifier is very simple, where sam-

ples are placed into the feature space of the class they belong to, which is a
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d-dimensional array (see Algorithms 1 and 2). In the evaluation phase, the num-

ber of samples within the volume centered at the given feature vector is counted

for each class. Then the probabilities are estimated according to the formula

given in Equation 5.1. Eventually the feature is assigned to the class that gives

the maximum probability.

Algorithm 1 Parzen Windows Classifier with 1-D features, Training Phase

Train(TrainingSet T )

for i = 1 to Length(T ) do
featureSpaces[T [i].class][T [i].features] += 1;

end for

Algorithm 2 Parzen Windows Classifier with 1-D features, Evaluation Phase

Evaluate(Feature F , int WindowSize)

for i = 0 to NoOfClasses do
count[i] = 0;

end for
for j = 0 to NoOfClasses do

for i = F - WindowSize / 2 to F + WindowSize / 2 do
count[j] += FeatureSpaces[j][i];

end for
end for
for i = 0 to NoOfClasses do

probability[i] =
(count[i] / FeatureSaces[i].totalNoOfSample) / WindowSize);

end for
return MaxClass(probability)

To have a better understanding about how these algorithms work, let’s look

at an example. Assume, we want to extract faces from images. The easiest way

to accomplish this task is designing a classifier that classifies each pixel in an

image by its color. For this problem, we have two classes which are Face and

non-Face and we are using RGB values of a pixel as our features; obviously our

classifier of choice is Parzen Windows classifier. As shown in Figure 5.2, during

the training phase we supply the classifier two images. The first one is the original

training image and second one is the “mask” image which tells the classifier to

which class the pixel belongs to. In this example, the black and white image is
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Figure 5.2: Parzen Windows training example.

the mask image and the white regions belong to Face class. The classifier, reads

each image pixel by pixel and if the pixel read from mask is white then the pixel

value from the training image is placed into the Face class. If, on the other hand,

the pixel value is black, the pixel value from the training image is places into

non-Face class.

During the evaluation phase, the classifier is supplied with the image to classify

(Figure 5.3). Again, the image is read pixel by pixel; however, this time the

classifier calculates the likelihood of each pixel by searching the pixel in each

feature space. This is done by using the pixel value to index the feature space

and centering the volume at the point whose coordinates are the pixel’s RGB

values. Then, the classifier counts the number of pixels that fall into the region

enclosed by the volume. In this example, we assumed that each class is equally

likely, thus there is no need to multiply the likelihoods with class conditional

densities so we can classify by just looking at the likelihoods.
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Figure 5.3: Parzen Windows estimation example.

5.2 Framework

In this section we present the features of the reference P2P network where our

proposed scheme can be used. The features of the reference network are very

similar to the features of Gnutella architecture and its protocol.

• The P2P system is an overlay network and it is connected, i.e. there is at

least one path between any two peers.

• Each message has a TTL value and the message is forwarded between peers

until TTL reaches to 0.

• Each query message has a unique identifier (QUID). The peer receiving two

or more query messages with the same unique identifier and TTL responds

to one of these messages. This is necessary because of the routing loops in

an unstructured P2P network.

• A query is formed by one or more keywords that are separated by a delim-

inator character like space.

• A peer can only answer a query if it has a resource whose name or meta-data

contains all the keywords in the query.
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• A query hit message has the same unique identifier as the query message it

is responding to.

• A query hit message is routed through the same path as the query message

is routed, but in reverse direction.

• A query hit message contains all the resources that matched the query in

the peer sending the hit message.

5.3 Route Learning scheme

In Route Learning scheme that we propose, a peer tries to estimate the most likely

neighbors the replies to queries may come from. Peers calculate this estimation

based on the knowledge that is gradually built from query and query hit messages

sent to and received from the neighbors.

Route Learning inherits its basic idea from the classification problem where a

peer having n neighbors has n classes to choose from. Each class corresponding

to a neighbor i can be used to find out the probability of having the resource at

or reachable by neighbor i. We call this probability the containing probability of

that class. Since we do not know the probability distribution of user submitted

queries, to solve this classification problem, we have used an adapted version

of Parzen Windows density estimation technique. To adapt the problem to P2P

domain we have made some modifications to the basic Parzen Windows technique

whose details can be found in [15].

The scheme, which will be executed by all peers, maps (hashes) each keyword

in a query to a point in a 1-D feature space that is created for each neighbor the

peer has. Each point k of the feature space has two numbers associated with itself.

The first number (answer-count) is the number of answers returned for keywords

mapping to point k, and the second number (query-count) is the number of queries

made to point k. The system estimates the containing probability by applying

division on these two numbers.
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The proposed scheme investigates the keywords in a query and indexes them

separately in order to cope with varieties in user submitted queries. For example,

assume that a user has submitted a query that is composed of keywords K1, K2,

and K3. If the system would have indexed these three keywords together (not

separately), then it would estimate the containing probability for a query with

keywords K1 and K2 as zero. Besides investigating each keyword separately,

the scheme should also have a carefully designed mapping algorithm that maps

related keywords (e.g., two keywords where one is the substring of the other) to

points that are close to each other in the feature space. In this way, the Parzen

Windows’ window function can include these keywords’ probabilities in estimating

the containing probabilities. As an example, assume that a user has submitted a

query with a single keyword “Matrix” and a peer that has forwarded the query

has learned about the neighbor that has supplied the answer. Now, assume that

another user submits a query “MatrixDvd”, and the Parzen Windows in our peer

is not trained with this keyword. The peer will then broadcast the query to all

its neighbors (wasting network resources) to learn about the neighbors that can

provide the answer. However, routing the query to the neighbor that had supplied

the answer to the previous query could help, since these two keywords are related

with each other. If these keywords can be mapped close to each other in the

feature space, then the window function can include the containing probability

of the keyword “Matrix” and can send the query only to the neighbor that had

supplied the answer for “Matrix”.

Route Learning scheme has three phases, which are respectively training, eval-

uation, and recursive learning. Next, we describe the training phase and the

mapping algorithm that we have used in mapping keywords to points of feature

space. Then, we introduce the evaluation phase and the rank decision algorithm.

Finally, we explain the recursive adaptation procedure, which tries to cope with

changes in the network.
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5.3.0.1 Phase 1: Training

Upon joining to the network, a peer starts running the training algorithm, which

is an adjusted version of the Parzen Windows’s training algorithm (Algorithm 3).

In this phase of the scheme, the peer discovers its environment, the resources that

are reachable through its neighbors, by accounting and monitoring the query and

query hit messages. The training algorithm takes three parameters, which are

respectively the number of other peers connected to the peer (i.e. the number

of neighbors), feature space size, and train count. The train count parameter

determines the number of query messages that should be sent towards neighbors

in order to accumulate knowledge about the resources managed by or reachable

through the neighbors. To extract the keywords from queries we have tokenized

queries with the same character set used by many Gnutella clients, which contains

“. *()",;:!?” characters. Here the size of feature space becomes a problem,

since, there is no limit in the length of the keywords submitted in a query; we

need to create an infinite feature space. However, creating such a feature space,

that will implemented using arrays, would be impossible, thus we need to limit

the feature space size. Having a very small feature space will cause queries to

be forwarded to every neighbor (like flooding). This will cause a lot of query

overhead, deviating from the main purpose of our scheme. However, it may have

more success in getting replies. On the other hand, having a very large feature

space will cause queries to be forwarded in a more selected and directed manner to

neighbors, hence decreasing the query overhead. But the chance of getting replies

to queries may be less in this case compared to using a small feature space.

The training phase is divided into three parts. The first part shown in Al-

gorithm 3, starts by creating the feature spaces and close bucket hash tables

for each neighbor the newly joined peer has. The hash tables are used to store

the keyword maps and arrival times of each query that will be used during the

training session. In a Gnutella type of network, the peers do not send a reply

message when they do not manage a resource that matches a query they receive.

Therefore, in order to declare a query forwarded by a peer as not contained in the

neighborhood of the peer we use a timeout mechanism. It is important to note
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Algorithm 3 Training Algorithm

RouteLearnTrain(int NumberOfNeighboors,
int FeatureSpaceSize, int TrainCount)

for i = 1 to NumberOfNeighboors do
FeatureSpaces[i] = sc CreateFeatureSpace(FeatureSpaceSize);
queries hash table[i] = CreateHashTable();

end for
Train = 0;
while Train < TrainCount do

query = GetQuery();
keyword maps = Map(query.data);
query data.maps = keywords maps;
query data.startT ime = currentT ime;
for i = 1 to NumberOfNeighboors do

queries hash table[i].Insert(query.QUID, query data);
for j = 1 to Length(query data.maps) do

InsertQuery(query data.maps[j], NumberOfNeighboors);
end for

end for
StartTimer(query data);
Broadcast(query);

end while

Algorithm 4 Timeout Fuction

RouteLearnTimeout(QUID Q, int T imeOutFrom)

qdata = queries hash table[T imeOutFrom].Get(Q);
queries hash table[T imeOutFrom].Remove(Q);

Algorithm 5 Query Hit Fuction

RouteLearnQueryHit(Query Hit Q, int AnswerFromPeer)

count = CountAnswers(Q.data)
qdata = queries hash table[AnswerFromPeer].Get(Q.QUID);
if qdata == NULL then

return;
end if
for i = 1 to Length(qdata.maps) do

InsertAnswer(qdata.maps[i], count, AnswerFromPeer);
end for
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here that the CreateFeatureSpace function, after allocating the memory for

the feature space, sets both query-count and answer-count values of each feature

space point to -1, which denotes the system is not trained. After creating the

feature spaces, the training algorithm starts listening to the query messages and

upon receiving a query message the algorithm calculates the points where each

keyword in the query maps to; inserts these mappings (points) to the queries

hash table as well as the feature space of each neighbor, and then starts the timer

for the query. Inserting mappings of keywords into a feature space is done by

calling the InsertQuery function whose pseudo-code is shown in Algorithm 6.

For each keyword, this function checks the feature space point it is mapping to

and if the point’s values (answer-count and query-count) are equal to -1, meaning

the system is not trained earlier with keywords that are mapping to this point,

then the query count for that point is set to 1 and the answer-count is set to 0.

However, if the values at a point are not equal to -1, which means the system

is started being training earlier with keywords mapping to this point, then the

query count value is increased by one.

Algorithm 6 Insert Query function

InsertQuery(Query Data q, int NumberOfNeighboors)

for j = 1 to NumberOfNeighboors do
for i = 1 to Length(q.maps) do

if FeatureSpaces[j][q.maps[i]].QueryCount == -1 then
FeatureSpaces[j][q.maps[i]].QueryCount = 1;
FeatureSpaces[j][q.maps[i]].AnswerCount = 0;

else
FeatureSpace[j][q.maps[i]].QueryCount++;

end if
end for

end for

When a timer for a query expires, the second part of the algorithm shown in

Algorithm 4 is executed and the query is removed from the hash table of queries.

In this way, further training of the system with this query is stopped, since there

is no reply coming for the query from anyone of the neighbors.

The last part of the training phase (Algorithm 5) is executed upon the arrival
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F (S) =
|S|∑

i=0

(S(i) − 97) × i−1 (5.3)

Figure 5.4: Dictionary mapping function.

of query hit messages. In this part, when a query hit message is received, the

mappings of the keywords seen earlier in the corresponding query are extracted

from the queries hash table by using the QUID of the query hit message. Then,

for each mapping, the feature space point’s answer-count is increased by the

number of answers contained in the query hit message. The query-count value

at these points is increased by one minus the number of answers returned in the

query, since the first part of the algorithm increases this value by one. These

steps are shown in Algorithm 7.

Algorithm 7 Insert Answer function

InsertAnswer(int keywordMap, int AnswerCount,
int AnswerFromNeighboor)

FeatureSpace[AnswerFromNeighboor][KeywordMap].QueryCount +=
(AnswerCount - 1);

FeatureSpace[AnswerFromNeighboor][KeywordMap].AnswerCount +=
AnswerCount;

As we have discussed before, we require the mapping algorithm to map related

keywords to close points in the feature space. To support this, we have come up

with two different mapping algorithms. Both of these algorithms use the feature

space as dictionary. The mapping function for the first one, which we call the

dictionary mapping function, is shown in Figure 5.4.

Although the function in Figure 5.4 maps related keywords to close points,

it has many parameters that should be considered. Since we are mapping a

continuous space (keyword space) to a discrete space (one dimensional array) of

limited size, we need a distinctive rule that separates two neighboring cells of

the array. This rule is the precision between two neighboring cells and it greatly

affects the match rate of the system. The second mapping algorithm, we have

considered, is based on Radix 32, which is shown in Figure 5.5. This algorithm
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F (S) =
|S|∑

i=0

(S(i) − 97) × 32−i (5.4)

Figure 5.5: Radix 32 based mapping function.

requires exactly 32i cells to avoid collisions, where i is the number of characters

in the longest keyword. Since not many peers would support such a large storage

space, a limitation on the number of characters the dictionary maps is needed.

Such a limitation also helps in coping with dynamic queries. Assume that the

system ignores characters after the ith character in the keyword, then changes

that occur after the ith character (the limit) would not be reflected on the decision

making process. Changes that occur before the ith character are handled by the

window function. Another use of this limitation is that it inherently sets the cell

separation rule; the precision of the system, is 32−i.

5.3.0.2 Phase 2: Evaluation

This phase of the scheme can be executed at a peer after the training phase

is finished, i.e. after the peer has observed enough number of query messages

to acquire knowledge about its neighbors and the resources reachable by them.

At that time, the peer becomes ready to make intelligent decisions about which

routes to forward the queries through. Algorithm 8 is the evaluation algorithm

used in this phase. This algorithm is also an adaptation of the Parzen Windows

evaluation algorithm. As it is seen in the algorithm, route learning does not

route a query it has received to all the neighbors; but routes to a subset of the

neighbors. The size of this subset is fixed and expressed with the value of the

toSendPeers parameter. When a query arrives, the algorithm first determines

the mapping of each keyword in the query. Then, for each neighbor and keyword,

the volume around the mapping of the keyword whose size is determined with

the windowSize parameter is applied in order to find the range of cells that will

be used in estimating the containing probability. Then, from the cells that fall

within the volume the containing probabilities are retried, which is the ratio

of answer-count and query count. The containing probability of a keyword is
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then calculated by adding these containing probabilities. To decide to which

neighbors to forward the query, we use a ranking mechanism that is similar to

the one used in NeuroGrid [10]. Our decision algorithm, however, completely

ignores neighbors whose containing probability for a query is found to be zero

to save further bandwidth. The decision function, shown in Algorithm 9, gives

the highest rank to non-zero containing probabilities of all keyword matches and

the lowest rank to the containing probabilities of one keyword matches. The

containing probability of a neighbor for a query is calculated by multiplying the

retrieved containing probabilities of each keyword (seen in the query) from the

feature space of that neighbor. Thus, according to this formula, if one keyword’s

containing probability is found to be zero for a neighbor’s feature space, then the

query’s containing probability becomes zero, for which there is no need to forward

the query to. Here, we have used multiplication since in Gnutella queries, each

keyword is implicitly connected to other keywords with logical “and” operation.

That is, a peer receiving a query with keywords K1 and K2 can only answer the

query if a resource’s name contains both keywords K1 and K2. If, during query

evaluation, a keyword is found to be not trained, i.e. the containing probability

is equal to -1, the neighbor is given a lower rank. If the query is found to be

not trained for all neighbors, then all neighbors will be added with rank 0 and

containing probability equal to 1. This triggers the evaluation algorithm to re-

execute the training algorithm only for this query, as shown in Algorithm 8.

After ranking each neighbor, the evaluation algorithm continues by calcu-

lating the set of neighbors where the query will be forwarded to. To achieve

this, the algorithm calls FINDMAXS() function with the highest rank, which

sorts the results obtained from each neighbor’s feature space and returns the

top toSendPeers number of neighbors for that rank. If the number of neigh-

bors at that rank is lower then the toSendPeers the evaluation algorithm lowers

the rank and re-executes the steps described above1. This process continues un-

til toSendPeers number of neighbors is added to the set of neighbors that will

receive the query. Then the queries are forwarded to these neighbors.

During the training and evaluation phase, if the scheme does not capture some

1The highest rank is equal to the number of keywords in the query.
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Algorithm 8 Evaluation Algorithm

RouteLearnEvaluate(Query Q, int toSendPeers,
int WindowSize)

maps = Map(Q.message);
probs = RankDecision(maps, NoOfNeighboors, WindowSize);
if all elements in probs[0] is 1 then

Train(Q);
end if
for i = Length(probs) down to 1 do

sendpeers = sendpeers
∪ FINDMAXS(probs[i], toSendPeers);

if Length(sendpeers) != toSendPeers) then
toSendPeers -= Length(sendpeers);
continue;

else
break;

end if
end for
for j = 1 to Length(sendpeers) do

FowardQuery(Q, sendpeers[j]);
end for
if expected disconnection period is reached then

randpeer = SelectRandomPeer(neighbors - sendpeers);
ForwardQuery(Q, randpeer);
RouteRecursiveLearn(count,

sendpeers ∪ randpeer, threshold);
end if
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Algorithm 9 Rank Decision Algorithm

RankDecision(Maps M , int NumberOfNeighboors,
int WindowSize)

currentNeighbor = 0;
for j = 1 to NumberOfNeighboors do

rank = Length(M);
neighborProb = 1;
for i = 1 to Length(M) do

allUnknown = true;
for k= M [i]-(WindowSize / 2) to M [i]+WindowSize / 2 do

if FeatureSpaces[j][k] != -1 then
currentProb += FeatureSpaces[j][k];
allUnknown = false;

end if
end for
if allUnknown then

rank -= 1;
end if
if currentProb == 0 then

rank = -1;
break;

end if
neighborProb *= currentProb;

end for
if rank != -1 then

allP robs[rank].Add(j, neighborProb);
end if

end for
return allP robs;
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query hit messages, then for popular keywords the scheme may decide to drop

the queries. For example, assume in the training phase the scheme has received

query “matrix avi” and this query hasn’t generated hit messages. “Avi” here is a

popular keyword and have a high probability of being repeated. Now lets assume

a query “eternal sun shine of the spotless mind avi” is received. Since “avi” is

seen before and no answers has received, the query will be dropped. However,

the keywords other then “avi” are not seen before (unknown to the node), thus

making a decision based on only one keyword generates a fallacy. To fix this,

we change the decision algorithm to count keywords that are unknown and that

did not generate hit messages. If the unknown keyword count is greater than

the number of keywords that did not generate a query hit message, the query is

broadcast. If, on the hand, the keywords that did not generate hit messages is

greater, then the query is dropped. We call this modified version of the Route

Learning V oteRouteLearning.

Another method, which we did not include in our experiments, for calculating

the set of peers to forward the query to is to use a threshold value. For the highest

rank, the algorithm can find the neighbors with containing probabilities greater

then a threshold value and these neighbors should receive the query. If no such

neighbors are found, then the algorithm can move to a lower rank.

5.3.0.3 Phase 3: Recursive Learning

This phase of the algorithm allows a peer to probe for changes in the neighboring

peers and adapt its routing knowledge accordingly. The peer can find out about a

failure that occurred at one hop distance with the help of ping/pong messages, and

on such failures the peer may want to connect to other peers. Upon establishing

the new connection, the peer restarts the training phase of the algorithm only for

the new connection. On the other hand, adapting to neighborhood changes at

distances from TTL = 1 to TTL = maxTTL value, requires more attention. For

example, a peer at two hops distance can change one of its connections or can

completely disconnect from the network. In these types of neighborhood changes,

the peers’ knowledge about their environments becomes outdated. Still, the peers
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can update their knowledge by observing the query and query hit messages, since

the neighborhood changes have a direct effect on the number of results returned

to a query. So at certain time intervals, broadcasting the query, listening to query

hit messages and retraining the Parzen windows according to the answers received

would allow dynamic adaptation.

The naive method described above would fail if one considers the frequent

disconnections of peers. A better way is to add a randomly selected peer from

the list of neighbors that won’t receive the query, to the list of peers that the

query will be forwarded. This can be seen in Algorithm 8.

We present the “Recursive Learning” algorithm (Algorithm 10), to avoid un-

necessary training of peers’ Parzen Windows when there is no or slight change

in the neighborhood. The algorithm starts by waiting for the query hit messages

from all the peers that the query is sent. From the query hit messages, the real

probabilities of finding the resources are calculated. Then these probabilities are

compared with the probabilities obtained from the Parzen Windows estimation

method. If the estimated probability is greater or less then the real probabilities

by a threshold, then the peer is marked for retraining.
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Algorithm 10 Recursive Learning Algorithm

RouteRecursiveLearn(float ExpectedProbability,
Set setOfPeersQuerySent, float Threashold, Maps M)

for i = 1 to Length(setOfPeersQuerySend) do
for j = 1 to Length (M) do

ex count[j] = FeatureSpace[i][M [j]].AnswerCount /
FeatureSpaces[i][M [j]].QueryCount;

end for
query hit = ReceiveQueryHitMessages(setOfPeersQuerySent[i],

timeout);
if timeout occured then

for j = 1 to Length(M) do
prob[j] = 0;

end for
else

for j = 1 to Length(M) do
prob = CountResources(query hit.message) /

FeatureSpace[i][j].QueryCount;
end for

end if
for j = 1 to Length(M) do

if (ex count[j] - threshold > prob[j]) || (ex count[j] + threshold < prob[j])
then

MarkForRetraining(setOfPeersQuerySent[i]);
break;

end if
end for

end for



Chapter 6

Experiments and Results

In this chapter, we first describe the experiments that we have conducted to eval-

uate our Route Learning scheme, and then detail our findings. While discussing

the experiments, we also describe our methodology of evaluation and simulation

model.

6.1 Experiments

Route Learning protocol has too many parameters and testing each of these

parameters at a simulator with many nodes may lead to a very uncontrolled

experiment. To overcome this, we have decided to simulate first a small but

representative part of a peer-to-peer system (Figure 6.1). The simulator has one

Route Learning enabled root node with six neighboring nodes, one of which is

assumed to be connected to the whole network and queries come from this node.

Other five nodes are leaf nodes that share resources. With this setup we have

conducted the following experiments.

1. Exact match error experiment: This experiment aims at proving that the

protocol works for repeated queries, and also tries to find the value for the

window size parameter. If this parameter is set to be a large number, then

44
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Root

Leaf Nodes

Query Generator

Figure 6.1: Simple P2P Network Model.

the protocol would estimate incorrect probabilities and forward the query

to wrong peers even in exactly repeating queries.

The experiment works as follows: each leaf node randomly selects 20 queries

from the query data collected by our Gnutella crawler. The keywords of

those 20 queries selected by a leaf node are then associated with simulated

resources shared by that leaf node. In this way, the leaf node can successfully

answer the queries containing those keywords.

In the training phase, the “network” queries each of these resources. Then in

the evaluation phase, these resources are re-queried and the root node tries

to determine the peer managing the resource. However, the root node is

only allowed to send the query to the node that has the highest containing

probability and rank. If the root node evaluates the peer managing the

resource incorrectly, declares the resource as not contained in the network,

or broadcasts the query (which is not a desired behavior), then the simulator

marks this as an error. The test continues until all the queries in the

collected data are used.

2. Modification error experiment: This test aims at determining the protocol’s

behavior on close keywords and show how rank decision algorithm improves

the protocol’s decision making process. The test environment is similar to

the previous test, however, in the evaluation phase the “network” modi-

fies at least one keyword in the query by adding random characters at the

end of each keyword. We have specifically not used random locations while
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padding the random characters because this may produce completely irrel-

evant keywords and broadcasting may not become an error. The definition

of the cases that are declared as errors are the same as in the previous test.

3. Gnutella run: In this experiment we measure the bandwidth usage of Rout-

ing Learning scheme and compare it to pure broadcasting. The “network”

issues queries to the root peer in the order they are received by the crawler.

The root peer trains itself with the first n queries it has received, and then

starts the evaluation phase, in which toSendPeers parameter is set to 1.

We try the test with different values of n to show how training affects the

decision making process.

Simulating a P2P network is considered to be a thumbling block since there are

many parameters to consider and using unrealistic approximations for one of these

parameters may produce unrealistic results. Especially the performance of Route

Learning scheme greatly depends on the dynamic behavior of peers; frequent

disconnections may cause the “knowledge” of the peers to become outdated. For

this reason, after finding a good parameter set, we have decided to evaluate the

scheme by modifying our Gnutella crawler to run Route Learning scheme virtually

over flooding. As a normal Gnutella client, the crawler starts searching for other

peers to connect to and after connecting to 4 peers the crawler starts executing

the Route Learning scheme. For each received query, the crawler logs the decision

made, which can be to drop, broadcast or forward the query, and the bandwidth

used by the scheme. After this loging step, the query is flooded. Upon arrival

of a query hit message, the crawler logs the number of answers received and the

neighbor the answer came from. From these logs we extract the following results:

1. Bandwidth used: The bandwidth used, in terms number of messages, of the

scheme is measured according to the decisions it has made. If the query is

dropped then the bandwidth used is marked as 0, if on the other hand the

query is broadcast the bandwidth used is set to the number of neighbors

the crawler has. We have set the toSendPeer parameter to one, thus when

a query is forwarded it is forwarded to only one neighbor which in turn uses

one message.
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2. Answer Rate: It is obvious that for some queries Route Learning scheme is

going to return less results then flooding since some queries are dropped or

forwarded to only one neighbor. Thus it is important to compare how Route

Learning reduces the answer rate of flooding. As indicated, the logs include

the answers could have returned if the scheme is used and the answers

returned by flooding. By examine the answers returned columns of the logs

we are able to find out and compare the answer rate of Route Learning to

flooding.

It is indicated by [4] that only 10% of queries in Gnutella receive a response

message. This low response rate may not directly show the effects of using Route

Learning instead of flooding on responses. For this reason have selected to pro-

gram a simulator in which responses to queries are greater then Gnutella. To

generate an environment that is similar to Gnutella, we have used queries and

pong messages collected by our crawler. Each peer in the simulation acts as a

peer collected in the pong messages. This way a close to real life scenario is gen-

erated in terms of the number of items the peers is sharing. Studies show that

P2P networks’ topology exhibit a power-law network. To add this behavior in

our simulations, we have used the “Power Law Out Degree” algorithm presented

in [17]. Each peer randomly selects and issues a query from the 30000 queries

collected by the crawler. Peers also select the resources they are going to share

during the simulation from these queries. The TTL values of the queries are set

to 4 since 91% of queries are submitted to the network with TTL 4. We ran

the simulation with flooding, Route Learning, Vote Route Learning and random

walk based protocols. For each submitted query the simulator logs the number

of results returned to query and the bandwidth used.

6.2 Results

In this section we present the results and evaluate the scheme. However, before

going on to the results we describe the parameters used for the Route Learning

scheme. For Radix 32 based dictionary function, the cell separation distance is set
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to 32−5 since the average keyword length is 5. Because of this, the system requires

an array of 325 cells. However a better implementation, one that uses hash tables

instead of arrays, as shown in Algorithm 11, can overcome this requirement.

When we inserted 6800 queries, collected by our Gnutella crawler, to a hash

table with size 324, we achieved a 40% load factor. As a result, the hash table is

initiated with size set to 324, and a peer is allowed to re-hash if 90% load factor

is achieved for the hash table.

Algorithm 11 Hash-table version of the feature space operations

RouteLearnInsertToFeatureSpace(hashtable feature space,
int AnswerCount, int QueryCount, Maps M)

toInsert = CreateCell(AnswerCount, QueryCount);
for i = 1 to Length(M) do

feature space.HashTableInsert(M [i], toInsert);
end for

RouteLearnCalculateContainingProb(hashtable feature space,
Maps M , int windowSize)

qprob = 1;
for i = 1 to Length(M) do

prob = 0
for j = M [i].data - windowSize / 2 to M [i] + windowSize / 2 do

fromTable = feature space.HashTableLookUp(j);
if fromTable != NULL then

prob += fromTable.answerCount / fromTable.queryCount;
end if

end for
qprob *= prob;

end for

The Figure 6.2 shows the number of incorrect routing decisions made in a sys-

tem using Hash-1 for the exact match experiments conducted with 6800 queries.

As can be seen from the figure, as the window size increases the number of errors

increases significantly. With large window sizes the increase is much sharper.

When window function of size 10000 is used, for example, the number of errors

becomes 2428 (out of 6800 queries). This corresponds to an unacceptable error

rate. Therefore, using a window size of 10000 is not suitable for a system with
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Figure 6.2: Number of errors made by the dictionary function in exact match
experiment conducted with 6800 queries.

Figure 6.3: Number of errors made by the Radix 32 based mapping function in
exact match experiment conducted with 6800 queries.

parameters that have values as in this experiment. Even with window size that

are much smaller than 10000, the error rate is still too high. This means that

the system is placing unrelated keywords in close proximity and this causes in-

correct decisions to be made. Such high error rates in exact match queries are

not acceptable for route learning scheme to be usable in practice.

Figure 6.3 shows the behavior of the scheme on exact match queries when

Radix 32 based dictionary function is used. The graph in the figure has a similar

pattern as of the Figure 6.2. But the number of errors is significantly reduced in

this case, indicating that Radix 32 is better in placing unrelated keywords into
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Figure 6.4: Dictionary function behavior on modified queries; experiment con-
ducted with 6800 queries.

a feature space. The sharp increase in number of errors with a window size of

32768 recalls the sharp increase in number of errors noticed when the dictionary

function of Figure 5.4 with a windows size of 10000 is used. The absolute increase

with Radix 32, however, is not as much as the increase with dictionary function

of Figure 5.5. Therefore, in a system using Radix 32 based mapping function,

we can not immediately declare the window size of 32768 as not suitable for the

parameters we have used.

The results of the modification experiments conducted with 6800 queries are

shown in Figures 6.4 and 6.5. With window size equal to 1, the dictionary func-

tion has predicted the routes of almost all the queries incorrectly. This is an

expected result since with such a small window size the system will perform just

like a hash function. But interestingly, increasing the window size does not sig-

nificantly decrease the error rate. The benefits of the rank decision algorithm

(Algorithm 9) can be seen clearly from the Figure 6.4, however, the results are

not satisfactory. Hash-1 was also performing unsatisfactorily in the exact query

experiments. Therefore, we conclude that the hash function of Figure 5.4 does

not perform well in our Route Learning scheme and we exclude that function

from the rest of the experiments.

While discussing the Radix 32 based mapping function, we have mentioned
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Figure 6.5: Radix 32 based mapping function modification behavior; experiment
conducted with 6800 queries.

that the immunity of the system to modified queries greatly depends on the win-

dow size used. This prediction can easily be seen in Figure 6.5 since increasing

the window size decreases the number of errors significantly. The high number

of errors recorded without the usage of rank decision algorithm are caused by

keywords that are shorter then the window sizes coverage area. For those key-

words, the system has declared the queries that include these keywords as not

trained; but this is not the case. It is important to notice that the system has

predicted the routes of 2493 queries out of 6800 queries correctly although the

window size was 1. This is because these queries are made of keywords whose

length is equal to or more than 5 characters, so the Radix 32 mapping function

has simply ignored the padding, and therefore made the correct decision. With

rank decision algorithm, Radix 32 based function has scored even better results

compared to the dictionary function. There is a slight increase in the number of

errors when a window size of 32768 is used. Therefore, considering the execution

times and the errors, we have decided that 1024 is a good value for the window

size. We use this in the experiments we will discuss next.

Figure 6.6 shows the results of the “Gnutella run” test conducted with Radix

32 based mapping function with window size of 1024. If broadcasting is used

on the system of this experiment, the bandwidth required, in terms number of

messages, would be 34000 (5*6800). With route learning method, however, only
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Figure 6.6: Bandwidth Used in Gnutella Experiment conducted with 6800
queries; 90% reduction to flooding requirements

about 20% of this bandwidth is used in the system. Hence improvement over

broadcasting is clear. As the system gets trained with more queries, the band-

width wasted in the evaluation phase is reduced. This is because the system starts

declaring less queries as not trained when the training count increases. Although

training the system with more queries reduces the bandwidth used in the evalu-

ation phase, reductions becomes insignificant after some point. In Figure 6.6, for

example, when the system is trained with 1000 queries, we see that less bandwidth

is used in the evaluation phase, this is, however, not a significant improvement

compared to the bandwidth used in the evaluation phase of a system that is

trained with 500 queries. From this we can conclude that training the system

with large number of queries does not improve the system’s overall performance

significantly to justify the cost of training. Hence, by looking to Figure 6.6, we

can say that training the system with around 100 queries is adequate.

We have collected 100000 queries in 6 hours for the Gnutella tests. The peer’s

life time analysis conducted by [16] states that most of the session durations

are short and the median duration is found to be 60 minutes. Thus by crawling

the Gnutella network for 6 hours guaranties neighborhood changes. In fact the

change can easily be seen in Figure 6.7, as the time increases the inter arrival of

query messages also increases resulting in the decrease in flooding’s bandwidth

usage. This decrease can be caused by disconnection of peers. In Figure 6.7 the
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Figure 6.7: Bandwidth used by flooding and Route Learning.

bandwidth used in terms of number of messages is plotted against time. As can be

seen, at the initial phase Route Learning uses the same bandwidth as the flooding;

this is because of training. However, as soon as training phase finishes, Route

Learning’s bandwidth usage drops sharply below flooding. One can explain this

sharp decrease with keyword repetitions. Since most of the keywords seen during

the training phase is also seen while evaluating, and since for these keywords

no query hit message is generated, Route Learning drops the queries containing

these keywords. In our experiments, out of 100000 queries only 13 have received

a query hit message and route learning in the evaluation phase was able to find

answers for 5 of these queries, yielding a %38 answer rate.

To find better understanding of the answer rate we have programmed the sim-

ulator to return answers to %30 of the queries submitted to the network; which

is 3 times the ratio one can find in Gnutella [4]. We ran the simulation with

100 peers and each has submitted 100 queries uniformly selected from the 30000

queries collected by the crawler. We have set Route Learning toSendPeer param-

eter to 1 so that Route Learning is allowed to send the query to the neighbor with

the highest rank and containing probability. To induce comparable results, we

have set the random walk based protocol to send the query to only one neighbor.
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From the total 10000 queries flooding has returned answers to 3000 of them.

Protocol Number of Answers Returned Answer Rate Bandwidth Used

Route Learning 1285 ∼42% ∼23%
Vote Route Learning 1853 61% 45%
Random Walk 210 7% 2%

Table 6.1: Simulation results.

In Table 6.1 the number of answers returned and answer rate of each protocol

are shown. Route Learning was able to return 42% of the answers returned by

flooding. This answer rate is close to the one that was observed in Gnutella.

However, Route Learning was able to record this answer rate by using 23% of

the bandwidth used by Gnutella. By doubling the bandwidth used, Vote Route

Learning was able to return answers to 61% of the queries.



Chapter 7

Conclusion

The contribution of this thesis is two fold:

• Derivation of models and characteristics information for some of the im-

portant parameters of Gnutella, an unstructured P2P network that is very

popular and widely used;

• Providing a scheme called Route Learning to reduce the query overhead

in flooding based P2P networks like Gnutella, and performing a thorough

evaluation of the proposed scheme via extensive simulation experiments and

also via experiments done by using a custom-built crawler attached to the

Gnutella network.

The derivation of models and characteristics information of some important

Gnutella parameters is done by collecting real network traces via our crawler

attached to the live Gnutella network used by thousands of people. As already

mentioned by several studies, we have verified that a large portion of Gnutella

protocol messages seen on a Gnutella network is constituted by Query messages

which are disseminated through a simple and inefficient flooding mechanism. This

clearly indicates the need for more clever algorithms for disseminating queries in

unstructured P2P networks to reduce the messaging overhead and to provide

better scalability.

55
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Our results also indicate that most submitted queries contain query strings

that consist of multiple keywords, as opposed to the common assumption in

various simulations that a query consists of a single keyword. We also found that

repetition count of keywords seen in a P2P network obeys a power-law distribution

with respect to the rank of keywords where the keyword that is repeated the most

has a rank of 1. We also verified the fact that not all peers contribute to a P2P

network at the same level. A small portion of peers share a large portion of all

files available in the network. Our traces also revealed the fact that the same

query string is not repeated too much by the same peer. Also a peer does not

increase the initial TTL (time-to-live) values of repeated queries to enlarge the

search horizon. We have found that most submitted queries have an initial TTL

value of 4, and even though a peer submits a query with a larger TTL value, the

neighboring peers immediately reduce the TTL to a value below 4.

We think that our findings can be important for P2P network simulation

studies that are looking for models and information about some of the important

parameters of P2P networks.

As the second contribution of the thesis, we propose the Route Learning

scheme, as an adaptation of a classification problem to P2P networks, for reduc-

ing query overhead in flooding based unstructured P2P networks like Gnutella.

In this scheme, peers gradually built knowledge about their environment, so that

they can predict the neighbors where an answer can come from. This process

results in less bandwidth usage in querying. The main difference of the scheme

presented from a classification problem is that it continuously tries to adapt its

knowledge in order to cope with frequent changes occurring in the neighborhood.

Therefore, the scheme’s learning period never ends, as it is the case in Bayesian

Recursive Learning. Route Learning’s efficiency in predicting the routes greatly

depends on the repetition of the keywords. The analysis of P2P networks have

shown that keywords submitted to the network show a Zipf distribution. There-

fore, a high number of repetitions on some keywords is expected. However, Route

Learning also considers the similarity between keywords and tries to relate these

keywords in order to save bandwidth. Due to the Zipfian distribution of key-

words in queries, which is shown in Figure 4.2, by relating close keywords, Route
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Learning is able to search a keyword at different regions of the popularity graph.

For example, from out traces we have found that “Matrix” is a popular key-

word; however, “MatrixDVD” is not that popular. By relating “MatrixDVD”

with “Matrix” Route Learning is able to map a not so popular keyword to a very

popular keyword and return answers to this not so popular query without the

need to broadcast the query.

We have considered a very simple similarity metric, the distance between key-

words when they are mapped to the feature space. The results of the modification

test have shown that Route Learning most of time relates close keywords with

each other and forwards the query to only one neighbor. Better mapping func-

tions like Soundex could give better results, thus we are considering in conducting

further experiments. Overall, as we describe in Chapter 8, the scheme presented

in this thesis can be improved in many ways, but even in its simplest from, Route

Learning greatly saves bandwidth as can be seen in Figure 6.6.



Chapter 8

Future Work

As we have mentioned in our conclusions, we are considering to test the per-

formance of the Route Learning scheme with different mapping functions. We

specifically want to test the scheme with Sound-Ex algorithm, since it is widely

accepted for relating close keywords. For example, many libraries today number

and sort their books according to the output of the Sound-Ex algorithm.

Route Learning in its current state does not consider TTL values in user sub-

mitted queries and leaves the updates to recursive learning phase of the protocol.

The fallacy behind this approach can be best described with the following sce-

nario (Figure 8.1-a and 8.1-b). Assume we have a P2P network setup shown as

Figure 1, and in the training phase of the algorithm, the root node receives query

(a) (b)

Figure 8.1: Fallacy scenario: a) training phase, b) evaluation phase.
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q1 which has a TTL value equal to 1. The root node broadcasts the query and

the node 2 returns the largest result set for query q1. However, the siblings of

the root node do not forward or broadcast the query, since the TTL value of the

query expires. In the evaluation phase, assume that the same query with a TTL

value equal to 2 arrives at the root node which falsely estimates the route of the

query as node 2, since node 2 had returned the largest result set for q1. However,

at TTL level 2, node 5 has the largest number of resources matching the query.

For a solution to this scenario, we are considering using the TTL levels of queries

as a second feature. In this way, the feature space becomes 2-dimensional.

Besides the above issue, the Route Learning scheme only addresses the query

overhead problem in Gnutella network. Many other P2P networks, however,

may use the Route Learning scheme as well. For example, the Kazaa network

uses a random walk based protocol for routing the queries between super-nodes.

Using Route Learning for Kazaa, however, may greatly increase the answer count

returned in queries. Thus we are considering conducting performance experiments

on use of Route Learning in Kazaa network as well.
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