
AN ONTOLOGY FOR COMPUTER-AIDED
MODELING OF CELLULAR PROCESSES

a dissertation submitted to

the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Emek Demir

October, 2005

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Uğur Doğrusöz(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Özgür Ulusoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. İsmail Hakkı Toroslu

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Ayşe Elif Erson

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Uğur Güdükbay

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

iii

ABSTRACT

AN ONTOLOGY FOR COMPUTER-AIDED
MODELING OF CELLULAR PROCESSES

Emek Demir

Ph.D. in Computer Engineering

Supervisor: Asst. Prof. Dr. Uğur Doğrusöz

October, 2005

Cellular processes form the hardware layer of living organisms. Malfunctions in

cellular processes are responsible for most of the currently incurable diseases. Not

surprisingly, knowledge about cellular processes are growing at an enormous rate.

However, today’s molecular biology suffers from lack of a formal representation

system for cellular processes. Most of the knowledge is locked in literature, that

are not accessible to computational analysis and modeling. Given the complexity

of the system we are attacking, the need for a representation system and modeling

tools for cellular processes are clear.

In this dissertation, we describe an ontology for modeling processes. Our

ontology possesses several unique features, including ability to represent abstrac-

tions and multiple levels of detail, cellular compartments and molecular states.

Furthermore, it was designed to meet several user and system requirements, in-

cluding ease of integration, querying, analysis and visualization.

Based on this ontology we also implemented a set of software tools within

the Patika project. Primary use cases of Patika are integration, querying and

visualization, and we have obtained satisfactory results proving the feasibility of

our ontology.

Compared with existing alternative methods of representing and querying in-

formation about cellular processes, Patika provides several advantages, including

a regular representation system, powerful querying options, an advanced visual-

ization. Moreover Patika models can be analyzed by computational methods

such as flux analysis or pathway activity inference. Although it has a more steep

learning curve compared to existing ad hoc representation systems, we believe

that tools like Patika will be essential for molecular biology research in the

future.

iv

v

Keywords: bioinformatics, ontology, pathway.

ÖZET

BİLGİSAYAR DESTEKLİ HÜCRESEL YOLAK
MODELLEMESİ İÇİN BİR ONTOLOJİ

Emek Demir

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Asst. Prof. Dr. Uğur Doğrusöz

Ekim, 2005

Hücresel işlemler canlıların en alt seviyedeki donanımlarıdır. Bu düzeydeki

bozukluklar halihazırda tedavi edilemeyen pek çok hastalıktan sorumludur.

Hücresel işlemler hakkındaki bilgilerimiz hızla artmaktadır. Ancak, günümüz

moleküler biyolojisi bu işlemleri kurallı bir şekilde gösterecek yöntemlerden yok-

sundur. Bilgi dağarcığının büyük bir kısmı bilimsel yazında, bilgisayarlı mod-

elleme ve çözümlemeye uygun olmayan bir biçimde durmaktadır. Çözülmeye

çalışılan sistemin karmaşıklığı gözönüne alındığında, uygun bir gösterim sistemi

ve araçlarına duyulan ihtiyac açıktır.

Bu çalışmada hücresel sistemleri modellemek icin bir ontoloji öneriyoruz. Bu

ontoloji, soyutlamaları, çoklu ayrıntı düzeylerini, hücresel bölmeleri ve molekül

hallerini gösterebilmek gibi tekil özelliklere sahiptir. Ayrıca tümleme, sorgu-

lama, çözümleme ve görselleştirme kolaylığı gibi birtakım kullanıcı ve sistem

ihtiyaçlarını karşılamak üzere tasarlanmıştır.

Bu ontolojiyi taban alarak bir dizi yazılım aracı geliştirdik. Patika

araçlarının temel kullanım hedefleri tümleme, görselleme ve sorgulamadır. Bu

hedeflerde elde ettiğimiz tatmin edici sonuçların ontolojinin kullanılabilirliğini

doğruladığını düşünüyoruz.

Halihazırdaki yolak gösterme ve sorgulama aracları ile karşılaştırıldığında

Patika düzenli bir gösterim sistemi, ileri sorgulama yöntemleri, açık görselleme

arabirimi gibi avantajlara sahiptir. Bunun yanısıra Patika’dan elde edilen mod-

eller, akım analizi ya da yolak etkinliği çıkarımı gibi yöntemlerle çözümlenebilir.

Anahtar sözcükler : Biyoenformatik, ontoloji, yolak.

vi

Acknowledgement

I would like to thank my advisor Dr. Uğur Doğrusöz for advising this thesis. I

know I will never be able to achieve the standards he set as an advisor.

Prof. Dr. Özgür Ulusoy and Assoc. Prof. Dr. İsmail Hakkı Toroslu receive

my gratefulness for reading the manuscript and their helpful comments.

Asst. Prof. Ayşe Elif Erson went in great lengths correcting this manuscript,

and her biology expertise was immensely helpful.

I would like to thank Asst. Prof. Uğur Güdükbay for carefully reviewing the

manuscript and his invaluable comments.

It is quite difficult to thank properly the Patika group. Instead I opt to

give a fictional memory of one of our research meetings. I am standing before

the whiteboard, drawing a figure to answer the question of Dr. Doğrusöz. He

just asked one of those questions, that made all the pieces fall into their places.

Özgün Babur is nodding, somehow absently, but I know he is thinking. Our ideas

are resonating, then we are probably on the right track. If Dr. Doğrusöz is the

judge, he is the jury. Aslı Ayaz has that frown on her face again. She is trying

to find a gap, an ambiguity. If there is one, I am sure that she is going to root

it out. Several minutes ago Erhan Giral has just listed the plethora of features

he fixed/implemented last week. Zeynep Erson is looking distracted, but I know

she has a very detailed documentation with her. She is wrestling with one of the

most difficult components, yet somehow keeps her sanity. Ahmet Çetintaş will

talk about query documentation and the formalisms he came up. I rely on them

to do things that I can not do, to succeed where I fail. I know my skills and

abilities are highly valued here. It feels like family, a very good one.

During the course of six years I had a chance to work with many excellent

undergraduate students. I would like to thank them for the effort they put in

PATIKA.

vii

viii

I would like to thank BioPAX group for their suggestions, insights and com-

ments on the BioPAX list.

My parents not only infected me with curiosity, but also thought me how to

enjoy it. Every part of this work is a result of their love and care.

Contents

1 Introduction 1

2 Background on Cellular Processes 5

2.1 Main Actors . 5

2.2 Control Mechanisms . 6

2.2.1 Transcription Factors . 8

2.2.2 Chromatin Structure . 8

2.2.3 Post Transcriptional Control 8

2.2.4 Alternative Splicing . 10

2.2.5 Naturally Arising Anti Sense RNA 10

2.2.6 Regulons . 11

2.2.7 Post Translational Control 11

2.2.8 Complex formation . 13

2.2.9 Spatial Aspects . 14

2.2.10 Temporal Aspects . 15

ix

CONTENTS x

3 Related Work 16

3.1 Gene Networks . 16

3.2 Interaction Networks . 17

3.3 Metabolic Networks . 19

3.4 Signaling Networks . 20

4 Requirements Analysis 24

4.1 Use-Case overview . 25

4.2 Complexity of Cellular Processes in Humans 26

4.3 Clarity, Content and Coverage . 27

4.4 Requirements . 28

4.5 Integration . 28

4.6 Incomplete Information . 29

4.7 Multiple Levels of Detail . 30

4.8 Complexity Management . 30

4.9 Analysis . 30

4.10 Visualization . 31

5 Ontology 33

5.1 Patika Objects . 33

5.2 Bioentities . 34

5.3 Bioentity Interactions . 36

CONTENTS xi

5.4 States . 37

5.4.1 Simple States . 37

5.4.2 Compound States . 41

5.5 Transitions . 43

5.6 Mechanistic Interactions . 45

5.7 Abstractions . 46

5.7.1 Regular Abstractions . 46

5.7.2 Incomplete Abstractions 47

5.7.3 Homology Abstractions . 47

5.8 Cell Model . 50

5.9 Formal Definition . 51

5.10 Open Issues . 53

5.10.1 Generics . 54

5.10.2 Modulation . 55

5.10.3 Exhaustive relations . 56

5.10.4 Reversible Transitions . 56

5.10.5 Context . 57

5.10.6 Chromosome Structure . 57

6 Ontology Implementation 58

6.1 Model Layer . 58

CONTENTS xii

6.2 Concrete Implementations . 60

6.2.1 DB Level . 60

6.2.2 S Level . 60

6.2.3 V Level . 60

6.3 Common Properties and Patterns 61

6.3.1 Info objects . 61

6.3.2 Patika Factory . 61

6.3.3 Abstraction Info . 63

6.4 Services . 63

6.4.1 Validation . 64

6.4.2 Graph Traversal . 64

6.4.3 Field Querying . 64

6.4.4 Graph traversal . 65

6.4.5 Integration Support . 67

6.4.6 Excision support . 67

7 System Implementation 69

7.1 System Overview . 69

7.1.1 Patika Server . 69

7.1.2 Clients . 74

7.2 Query subsystem . 74

CONTENTS xiii

7.2.1 Query Interface . 77

7.2.2 Query Proxy . 77

7.2.3 Query Controller . 78

7.2.4 Query . 78

7.2.5 Query Algorithms . 78

7.2.6 PATIKA Graph Model 79

7.2.7 Query by fields of the objects 79

7.2.8 Algorithmic (Pathway) queries 84

7.2.9 Logical queries . 90

7.2.10 Server Side Query Sequence 90

7.3 Model Integration and Concurrency 91

7.3.1 Identity and Versioning . 92

7.3.2 Concurrency . 93

7.3.3 Orphaning . 94

7.3.4 Multiple Levels of Detail 95

7.4 View Management . 95

7.5 System and Ontology . 98

8 Discussion 101

8.1 Why a new ontology? . 101

8.2 Simulation vs. Pathway Reconstruction 102

CONTENTS xiv

8.3 Public Standard Development Efforts and Patika Ontology . . . 103

8.4 Future Directions . 105

8.5 Conclusion . 106

A Owl Definition 119

List of Figures

2.1 Life cycle of an entity in the modified paradigm. From bottom

to up, an entity’s life starts by being transported into the cell or

synthesized, then it goes through an optional series of modifica-

tions/transitions. Finally it is degraded or transported out of the

cell. 7

2.2 A map of histone modifications. Histone subunits come together

to form a large protein complex which acts as a spindle for DNA.

Note that all subunits have several modification sites and these

modifications can be combinatorial in nature. (Courtesy of Peter-

son et al [67] . 9

2.3 Transcriptional and post transcriptional control is highly coupled.

In the figure, red arrow indicate the stages of transcription. Steps

of RNA processing and export is listed below, in a chronological

order, with respect to transcription. Black arrows indicate physi-

cal/functional coupling between two steps. Courtesy of Maniatis

and Reed [54] . 12

5.1 Representation of complex in Patika . Here C1 is a complex

formed by states S2, S3 and S4. Binding relations are also rep-

resented. Transition T1, which represents the complex formation

event adresses the complex, where the inhibition of t2 by S4 is an

example of addressing complex members. 42

xv

LIST OF FIGURES xvi

5.2 Patika transition tree decomposes transitions to several classes. . 44

5.3 An example portion of cell cycle pathways containing homologies . 48

5.4 An example of cell model relations. Circles are spaces, squares are

membranes and rounded rectangles are subregions. Different inter

region relations are also shown. 51

5.5 A representation of a portion of a Wnt pathway with the Patika

ontology. Three regions are shown, Extracellular Matrix, cyto-

plasm and cytoplasmic membrane. Wnt is a homology abstraction

containing different Wnts, which are simple states themselves. Frz

is also homology state and represents a family of receptors that are

important in differentiation during development. C1 is a complex

of Wnt and Frz proteins. Note that members can have different

compartments. C2-C5 represents different complexes formed by

APC, Axin and beta-Catenin, proteins that are also involved in

development. Two downstream pathways of protein degradation

and gene expression were shown with regular abstractions. 52

6.1 Class hierarchy of the primary Patika objects. 59

6.2 Class hierarchy of info objects . 62

7.1 Major server side components and their deployment 71

7.2 DAO pattern allows decoupling business logic from the persistence

aspects . 72

7.3 Server components within spring framework. Cross cutting con-

cerns, such as transaction damarcation is done via AOP. 72

7.4 A screenshot of Patikapro. 75

7.5 A screenshot of Patikaweb. 76

LIST OF FIGURES xvii

7.6 An overview of query class relations. Not all algorithmic queries

are shown for brevity. 79

7.7 The class diagram of field query nodes. A composite pattern was

used for arbitrary nesting of query objects. 81

7.8 General state diagram of fieldQueryParser, for parsing the Patika

query languages field queries. 82

7.9 State diagram of the FieldQueryParser, for deciding on which con-

dition to create. Through composite conditions it is possible to

specify arbitrarily nested object relations. 83

7.10 A screenshot of Patika editor where the concurrency status of the

current objects are highlighted, by the show status facility. Blue

means the object is up-to-date, yellow modified, green local and

red conflicting . 94

7.11 An update wizard allows comparing and merging changes 95

7.12 A simple reaction in the pathway (upper left) is queried (shaded

box) and replaced by the user to include intermediary steps (upper

right). However user might not know whether the inhibitor at the

bottom inhibits first or second step (lower left). A solution to

this problem is to allow user to define an incomplete transition

abstraction, and define the inhibition on the abstraction, allowing

multiple levels of detail. 96

7.13 A state diagram showing how various Patika operations change

the visualization state of an abstraction. For example if one of the

members of an abstraction is deleted from the view, then it should

be also removed from the view (3), or it can not be visualized

other than as a holo, if it has an overlapping abstraction that is in

expanded state (8). 98

List of Tables

4.1 A rough estimation of numbers of various cellular components,

based on currently known numbers in the literature. (PTM stands

for post translational modification) 27

5.1 Examples of bioentity variable triples. 39

8.1 A comparison of naming of different ontologies. Note that several

terms clash with each other. 104

xviii

Chapter 1

Introduction

Living is not a simple task, even for a cell. A cell struggles to survive, com-

pete and transmit its genetic information to the next generation. This is not an

easy task and requires constant scanning of the environment and decision mak-

ing mechanisms to respond to changes accordingly. The underlying network of

interacting genes, proteins, RNAs and other molecules is a massively parallel,

inherently complex system. Cellular processes typically span several magnitudes

of spatial and temporal parameters.

Reductionist tradition in molecular biology can be traced back to Mendel

who, being an atomist, sought genetic atoms that define an organism. Mendel’s

views were resurrected during the start of this century with identification of chro-

mosomes. What we have witnessed for the last century was essentially a race to

identify and catalogue those elements, and associate them with end-effects or phe-

notypes. In line with the same tradition, the mechanism between the element and

the phenotype was often elucidated as an isolated path of interactions. System

models exist only in very small scales and simple organisms [31]. Although reduc-

tionist approach was very successful in identifying unit components of the cell,

it fails when trying to elucidate mechanisms of so called “multi-faceted diseases”

such as diabetes and cancer.

1

CHAPTER 1. INTRODUCTION 2

One reason is the robustness of the cell. It is possible to think cell’s environ-

ment as a landscape with many basins, each basin denoting a phenotype, and

points themselves being genotypes. Small perturbations in the system is often

counter balanced by homeostatic forces or alternative pathways, and are not re-

flected to the phenotype. However, if somehow a large perturbation occurs, or

small perturbations accumulate as in cancer, cell suddenly changes behavior, as

it now switches to a different basin. Such behavior is often called robust but

fragile. There can be combinatorially many paths to achieve this phenotype. In

fact attempts to pin down different cancer stages to individual oncogenes almost

always fails, with the exception of very specific cancer types such as retinoblas-

toma. Instead what we observe is different genes mutated in different frequencies,

supporting our proposition that although mutations in some genes are more crit-

ical for inducing cancer, there are multiple (and possibly combinatorially many)

paths.

Yeast gene deletion experiments also tell a similar tale [38]. The concept of

essential genes are getting less and less important. Instead research is currently

focusing on combinations of deletions that has the most effect on the survivability

of the system [44].

Finally there are phenomena that can only be detected and analyzed at sys-

tems level, such as conserved subgraphs, modules, and emerging patterns, due to

the evolution mechanism of the network and the fitness landscape it evolved to

such as the topology of the graph, its structure and properties [43]. It is evident

that one needs to consider cellular pathways as an interconnected network rather

than separate linear signal routes. Perceiving cellular pathways as subgraphs of

a single global pathway can provide more meaningful models.

There is a wide array of biological questions that require such a cell scale

model. Reasoning about complex biological problems such as mechanisms of

multi-faceted diseases using only biological literature is analogous to servicing a

Boeing 777 using a textual catalog of its 3.000.000 parts. To make things worse,

that catalog is often fragmented, incomplete and contains conflicting information.

An integrated model of the cellular processes would help us to fix those missing

CHAPTER 1. INTRODUCTION 3

and conflicting parts, employ computational methods of analysis and preserve

our sanity.

First effort in this direction was creation of models of metabolic networks as

early as 1950s. Later, this data was extended and captured by several databases

[46, 40]. More recently several advances in experimental and computational meth-

ods enabled us to produce cell-scale high-throughput data [34]. Each of these

systems, however, capture a certain aspect of the system, and have their own

representation system. Finally several efforts were launched to reconstruct sig-

naling networks through human curation. As a result, we are witnessing an array

of pathway databases and resources with strikingly diverse representation schema

or ontologies, ranging from none to detailed quantitative models, to multi-level

qualitative models. Terms such as state, pathway and modules become increas-

ingly popular in the systems biology literature, but one can find different even

conflicting definitions for those. Clearly, systems biology is seeking a paradigm,

a common way of thinking and communicating. This is not an easy task though,

as such a paradigm have to be able to deal with complex, stochastic and combi-

natorial phenomena that are abound in living organisms [10].

Here we propose an ontology for reconstructing cellular processes. Our ontol-

ogy is specifically developed for representing metabolic and signaling pathways,

and attempts to stay as loyal as possible to current existing notions and concepts

used in molecular biology literature. For example entity-state relationships such

as different phosphorylated forms of protein X can be represented within our on-

tology, but was a missing concept in existing ontologies when Patika project

started. Similarly compartments, molecular complexes and entity level interac-

tions are also covered. This ontology was used as a basis for tools developed

within the Patika project in our group. Several unique features of the Patika

ontology which allows handling incomplete information, complexity management

and integration, arose as a result of requirements analysis during software devel-

opment. We believe that requirements of the software is closely coupled with the

ontology.

The rest of the thesis is organized as follows: Next two chapters provides

CHAPTER 1. INTRODUCTION 4

background information about cellular processes and describe previous research

on modeling them. Chapter 4 attempts to analyze requirements for this ontology.

In Chapter 5 we give a textual and formal definition of the ontology follows

and discuss open issues that are still to be addressed. Chapter 6 details the

implementation of the ontology within the Patika system. Chapter 7 gives an

overview of Patika project and tools, with particular emphasis on how concepts

in the ontology were put to use. Finally we discuss the place of Patika ontology

in the current systems biology landscape and consider future directions.

Chapter 2

Background on Cellular

Processes

This chapter briefly gives an overview of cellular processes with emphasis on

phenomena that was important on our design choices. It obviously does not

attempt to provide a comprehensive overview, but rather focuses on observations

that was critical for the design of Patika ontology.

2.1 Main Actors

70% of a cell’s mass is water. Proteins take the second spot, ranging from 15%

to 20%. DNA and RNA form another 2% to 7%. Small molecules make up

approximately 4% of a cell’s mass, and the remaining 4% to 7% are membranes

and lipids forming them.

Proteins are responsible for most of the functional and structural features

of cells. Although diverse, all proteins are essentially polymers of 20 types of

amino acids. Sizes of proteins are typically hundreds to thousands of amino

acids, making a huge set of proteins possible. They act as a skeleton dictating

cell’s shape and sometimes mobility. They catalyze reactions that are needed

5

CHAPTER 2. BACKGROUND ON CELLULAR PROCESSES 6

for maintenance and replication. They detect and report environmental changes

outside the cell. And more importantly they act as switches, essentially forming

one of the basic elements of decision making mechanism we were searching for.

Proteins provide the function and structure, whereas nucleic acids, DNA and

RNA, provide memory and inheritance. Similar to proteins, nucleic acids are

polymers of 4 different nucleotides. Genetic material in cells reside in several

large DNA molecules. Through templating they can self replicate, and through

transcription and translation, they act as templates for RNA and indirectly, pro-

tein synthesis. Substrings of chromosomes that act as such templates are called

genes and the process is called gene expression.

Small molecules such as various ions, saccharides, lipids alcohols and other

organic compounds act as structural units, co-factors, energy storage and mes-

sengers. Some small molecules are ubiquitously present such as water and ATP,

in the sense that they are assumed to be always present, and their consumption

is considered insignificant as it is drawn from a very large pool.

2.2 Control Mechanisms

A cell uses a diverse array of mechanisms for controlling and directing the flow of

information. An attempt to build an ontology first requires an in-depth analysis

of those mechanisms. This analysis will be helpful later while justifying our design

choices and assessing our coverage.

When discussing control mechanisms in the cell, it is useful to slightly extend

the chemical paradigm, such that some very similar molecules are grouped under

the term biological entity. For example, different phosphorylated forms of p53

are indeed different molecules, but they are grouped under the term p53 protein.

Then one can conceptualize the network of reactions as signals carried through

changes in the state of entities, rather than individual reactions.

In this modified paradigm, a biological entity starts its life by either being

CHAPTER 2. BACKGROUND ON CELLULAR PROCESSES 7

Figure 2.1: Life cycle of an entity in the modified paradigm. From bottom to up,
an entity’s life starts by being transported into the cell or synthesized, then it goes
through an optional series of modifications/transitions. Finally it is degraded or
transported out of the cell.

synthesized from its precursors, or transported into the cell, then it goes through

a series of transitions, such as receiving and losing chemical groups, forming

complexes and different isomers or changing cellular location. An entity’s life

ends by either being degraded, or transported out of the cell (Figure 2.1).

Each such transition changes the information context of the molecule. The

set of transitions an entity goes through is context dependent, i.e. an entity can

follow very different paths depending on the environmental, spatial and temporal

variables, which in turn can trigger different cellular responses. Throughout evo-

lution, several types of mechanisms were reused to control this flow of information

at different levels and different time scales. Rest of this section discusses those

mechanisms. However, one should also bear in mind that although these exam-

ples cover a majority of cases they are not comprehensive. Every now and then,

scientists come up with a new mechanism or a variation of an existing mechanism,

to prove that our understanding of even the most elementary mechanisms are far

from complete [54].

CHAPTER 2. BACKGROUND ON CELLULAR PROCESSES 8

2.2.1 Transcription Factors

In a cell not all genes are expressed uniformly. Some genes, often called housekeep-

ing genes because they are involved with everyday tasks such as metabolism, are

expressed with a relatively constant rate. Others such as those involved in control-

ling cell cycle can vary drastically in their expression rates and times. The most

classical example of such regulation is transcription factors, where a protein spe-

cific to the sequence in the vicinity of the target gene binds to that region and in-

creases or decreases the binding rate of the RNA polymerase to the promoter [37].

Several transcription factors, different RNA polymerases and local changes in

DNA structure can combine to provide several different mechanisms [13, 14].

Roeder provides an excellent review of those processes [71]. An alternative

method is blocking the gene with small interfering RNA molecules [24, 82, 57].

2.2.2 Chromatin Structure

Alternatively the expression rate can be regulated by changing the chromatin

structure. DNA is typically stored in a highly condensed fashion, folded around

proteins called histones. In order to be transcribed, some portions of the DNA

molecule needs to be unfolded and exposed, a process regulated by modified

histones. Histones are subject to an enormous number of post-translational mod-

ifications, including acetylation and methylation of lysines, and arginines, phos-

phorylation of serines and threonines, ubiquitylation and sumoylation of lysines,

as well as ribosylation [67] (See Figure 2.2). Each combination might lead to dis-

tinct chromatin structures, effectively. Modification of a histone subunit, called

H3, is increasingly considered as a generic transcriptional regulation mechanism.

Finally gene expression is also regulated by adding methyl groups to the DNA.

2.2.3 Post Transcriptional Control

RNA molecules that act as templates for protein synthesis are called messenger

RNA (mRNA). Once an mRNA is synthesized, it goes through a complicated task

CHAPTER 2. BACKGROUND ON CELLULAR PROCESSES 9

Figure 2.2: A map of histone modifications. Histone subunits come together to
form a large protein complex which acts as a spindle for DNA. Note that all sub-
units have several modification sites and these modifications can be combinatorial
in nature. (Courtesy of Peterson et al [67]

.

CHAPTER 2. BACKGROUND ON CELLULAR PROCESSES 10

of RNA processing [54]. Several substrings of the RNA, are removed, and specific

sequences are added to both ends of the RNA. The process controls the longevity

and function of the mRNA. Finally, RNAs produced in the nucleus have to be

exported, either to fulfill their function in protein synthesis or to mature into

functional particles. All of these steps are controlled by a complex mechanism of

proteins and act as another layer of control mechanism [70].

2.2.4 Alternative Splicing

RNA splicing is a post-transcriptional process that occurs prior to mRNA trans-

lation. A gene is first transcribed into a pre-messenger RNA (pre-mRNA), which

is a copy of the genomic DNA containing intronic regions destined to be removed

during pre-mRNA processing (RNA splicing), as well as exonic sequences that

are retained within the mature mRNA. During RNA splicing, exons can either be

retained in the mature message or targeted for removal in different combinations

to create a diverse array of mRNAs from a single pre-mRNA, a process referred

to as alternative RNA splicing. Alternative splice events that affect the protein

coding region of the mRNA will give rise to proteins which differ in their sequence

and possibly, in their activities. Alternative splicing within the non-coding re-

gions of the RNA can result in changes in regulatory elements such as translation

enhancers or RNA stability domains, which may have a dramatic effect on the

level of protein expression [80]. More than half of human RNAs are estimated to

be subject to alternative splicing [61, 60]. A bias for alternatively spliced genes in

signaling pathways [59] indicate that in fact this is a very common decision mak-

ing mechanism for cells. High-throughput experimental methods for detecting

alternative splice forms are being developed [77].

2.2.5 Naturally Arising Anti Sense RNA

Some RNA sequences are complementary to other endogenous RNAs, and are

often called Natural Antisense RNA (NARs). Their modus operandi can be both

CHAPTER 2. BACKGROUND ON CELLULAR PROCESSES 11

cis, where NAR is transcribed from the opposing strand, or trans, from a com-

pletely separate loci. Although much less is known about trans NARs, it is known

to induce gene silencing in Drosophila [5] and probably humans. Antisense regu-

lation, both at transcription and post-transcription appears to be co-evolved and

has a lot of common patterns [62].

2.2.6 Regulons

Experiments reported over the past several years, including genome-wide microar-

ray approaches, have demonstrated that many eukaryotic RNA-binding proteins

(RBPs) associate with multiple messenger RNAs (mRNAs) both in vitro and in

vivo, regulating the translation of the bound RNA molecule, often called regu-

lons. Although still a novelty, regulons have been shown to be critical in protein

targeting [45].

One should keep in mind that, although these mechanisms are listed sepa-

rately in fact they are tightly coupled. Figure 2.3 [54], shows the known coupling

between these processes.

2.2.7 Post Translational Control

Perhaps the richest layer of control, in terms of diversity of mechanisms, occur

after a protein is translated. Also the lifespan of their effects cover a broad

spectrum ranging from nanoseconds to days, making them typically very hard to

detect using high-throughput methods.

Group Additions

A small molecule added to a specific residue of protein can lead to a change in its

function. These modifications occur at highly specific sites which are conserved

across species and different proteins in sequence and structure.

CHAPTER 2. BACKGROUND ON CELLULAR PROCESSES 12

Figure 2.3: Transcriptional and post transcriptional control is highly coupled. In
the figure, red arrow indicate the stages of transcription. Steps of RNA processing
and export is listed below, in a chronological order, with respect to transcription.
Black arrows indicate physical/functional coupling between two steps. Courtesy
of Maniatis and Reed [54]

CHAPTER 2. BACKGROUND ON CELLULAR PROCESSES 13

Swiss-prot1 is a database of curated database sequences. As a part of their

curation effort they provide a controlled vocabulary for post translational modi-

fications, which lists 281 different groups that are known to be attached to pro-

teins2. Some of these groups allow proteins attach and penetrate membranes,

whereas others acts as cofactors for specific reactions. Yet another group in-

duces structural changes in the protein, often leading to activation of a catalytic

activity.

Phosphate belong to this latter category and are by far the most common

modification. There are 1027 kinases identifed in the human genome, proteins,

whose sole purpose is to add phosphate groups to other proteins. Similar to gene

networks, kinases can activate other kinases by phosphorylation, leading to a

phenomena called signaling cascades. Signaling cascades allow multiplication of

the signal, and fine grained control for signal propagation [64].

Another important observation is that a protein might potentially receive

multiple group additions, leading to combinatorially many different molecules

[2, 88]. In several cases enumerating each combination might not be feasible.

Cleavage

Sometimes the peptide sequence of a protein can change through cleavage of

the peptide. Although this is typical of secreted proteins, it is also used as a

mechanism of protein activation control to induce major cellular mechanisms

such as apoptosis, induced cell suicide [73, 20].

2.2.8 Complex formation

Relatively long lasting specific non-covalent interactions between molecules are

very common in a cell, and often called molecular complexes. Purpose of some

complexes are purely catalytic, or structural. However there are other complexes

1http://ca.expasy.org/sprot/
2http://ca.expasy.org/sprot/userman.html#PTM vocabularies

CHAPTER 2. BACKGROUND ON CELLULAR PROCESSES 14

which serve as an AND operator, in the sense that presence of all members of

the complex have to be satisfied to perform required function. Alternatively, it

can be used for decoupling different functions, and reusing same molecules. For

example different transcription factors use the same recruitment mechanism to

control expression of different genes.

Recently several high-throughput essays for detecting complex forming inter-

actions between proteins, DNA and RNA have been developed, which in turn

resulted in several interaction databases that capture these data.

2.2.9 Spatial Aspects

So far, we have considered only static part of signaling. But spatial aspects also

plays important roles in signal transduction and cell behavior such as cell cycle.

The most obvious mechanism is sub-cellular targeting or compartmentaliza-

tion. A cell is far from being a homogeneous environment. It is divided by mem-

branes, and often has special points which is specialized in providing a certain

service or behavior, such as axon hillock. Concentrations of different molecules

in different regions and compartments can be different, forming diverse contexts.

For example transportation to nucleus is a critical control point for many tran-

scription factors.

Gradients, on the other hand, occur in a free but not well stirred medium.

Often formed by two molecules with different diffusion constants and opposite

activities, gradients may form two sorts of patterns. If the inhibitor (or sub-

strate) diffuses much more rapidly than the activator, the activator piles up in

local regions of space, forming steady-state (time-independent) patterns as in

chromosome separation. On the other hand, when the diffusion constant of the

inhibitor (or substrate) is about the same as (or less than) the diffusion constant

of the activator, traveling waves of activation propagate through the medium.

Traveling waves of cyclic AMP, a small molecule often act as a signal messenger,

in fields of Dictyostelium amoebae govern the processes of aggregation [52, 11].

CHAPTER 2. BACKGROUND ON CELLULAR PROCESSES 15

2.2.10 Temporal Aspects

Cells are by no means static machines. Oscillation loops and thresholds play an

important role on the regulation of cellular processes [12]. An important tempo-

ral aspect is cycles, a series of reactions that affect each other in a cyclic manner,

either through substrate/product relations as in the Krebs cycle or effector re-

lations as in the cell cycle, Circadian clock or synaptic signaling pathways [9].

Depending on the relations a cycle is either a positive cycle, i.e. it is self enforc-

ing, or negative cycle, it is self controlling. Temporal aspects more then often

require quantitative analysis of the signaling network, thus is best captured by

simulation and flux analysis studies.

Chapter 3

Related Work

A recent collection of pathway resources available on the net1 reveals more than

181 pathway resources. Most of these resources are pathway databases themselves.

What is more striking than the number of resources is the diversity of network

paradigms they use.

The Pali Buddhist Udana, tells the story of 6 blind men, who attempt to

obtain a picture of an elephant by feeling it. Each one of them touches a differ-

ent part, tusk, body, ear, trunk, leg and tail, and make different claims about

what animal looks like. Similarly, different types of networks of cellular pro-

cesses capture different aspects of the system, and can present strikingly different

paradigms. Still, one should keep in mind that these paradigms arise more from

experimental systems and common abstractions rather than physical or chemical

features of the cell.

3.1 Gene Networks

Changes in the expression rate of a gene can in turn regulate other genes, an

observation which led to one of the first network models in biology, gene networks

1http://cbio.mskcc.org/prl/index.php

16

CHAPTER 3. RELATED WORK 17

[76]. A gene network, is a directed graph where nodes represent genes and edges

represent a regulation path from source to target. Lytic/lysogenic switch of the

lambda phage gene network was one of the earliest examples of stochastic behavior

modeled in living organisms [1]. Models of gene networks were later extended

to cover combinatorial effects of the genes. Segal et al. provides an interesting

approach where a hierarchy of genes were built which in turn control a module,

or a grouping of target genes [78]. Common data sources for these models are

microarrays [47, 25] and protein DNA interactions of transcription factors [56,

55]. Chromatin immunoprecipitation chip followed by cDNA microarray analysis

(ChIP2) is also becoming a major high-throughput assay for proteinDNA binding

data [49, 15].

The advantage with gene networks is that it is relatively easy to obtain system

wide data using microarrays and ChIP2. The downside is they can not capture

mechanisms that does not involve transcriptional regulation. Moreover, the acti-

vation path from one gene to the other may be subject to control by other genes,

through possibly combinatorial mechanisms, which again can not be captured by

gene networks.

3.2 Interaction Networks

Interaction networks were a result of several experimental systems that can detect

complex forming interactions. Yeast two hybrid assay and protein chips allowed

proteome wide analysis of protein-protein interactions. System scale, pair-wise in-

teractions maps, often called interactomes, were constructed for several organisms

including S.cerevisiae, C.elegans and D.melanogaster. Using sequence homologies

it was possible to predict a substantial amount of human interactome as well [17].

Gavin et al and Ho et al also demonstrated a mechanism for detecting multi pro-

tein complexes by first using hundreds of tagged proteins as baits, precipitating

complexes including these proteins and finally using mass spectroscopy for de-

tecting complex contents [28, 32]. Additionally, structures of complexes that

were detected by X-Ray crystallography also provides a substantial amount of

CHAPTER 3. RELATED WORK 18

data [51, 3].

Although interaction networks provide almost system scale data, the number

of false positives are still high. Moreover, since all interactions are obtained in

vitro, chances are some detected interactions never occurs in vivo due to temporal

and spatial constraints. Nevertheless, interaction information is still a valuable

facet of the elephant and must be captured by a pathway ontology.

BIND is perhaps the most extensive interaction database [3]. Description of an

interaction encompasses cellular location, experimental conditions used to observe

the interaction, conserved sequence, molecular location of interaction, chemical

action, kinetics, thermodynamics, and chemical state. Molecular complexes are

defined as collections of more than two interactions that form a complex, with

extra descriptive information such as complex topology. Pathways are defined as

collections of two or more interactions that form a pathway, with extra descriptive

information such as cell cycle stage. Currently BIND contains 32716 entities and

79820 interactions.

Another important interaction database is Database of Interacting Proteins

(DIP) [87]. DIP focuses only on protein-protein interactions and uses a hybrid

curation effort, where the core portion is curated by researchers and the rest is by

computational methods. It currently contains 44349 interactions among 17048

proteins. It is possible to query these interactions and visualize it using an applet

(JDip). DIP is tightly linked to PIR and SwissProt and it accepts submissions

from users.

HPRD is a database of human proteins, but also contains a significant amount

of protein-protein interactions [66]. Information about the domain and region of

interaction, if available, is present as well as the type of experiment done to

detect the interaction. Expression, domain architecture and post-translational

modifications are also curated for each protein. A number of curated pathways

created from the interaction data are available as images.

CHAPTER 3. RELATED WORK 19

3.3 Metabolic Networks

Metabolic networks were determined in vitro by classical enzyme assays as early

as 1950s. The core paradigm of the metabolic network is chemical paradigm

with two major differences, first any reactions containing the same substrates

and products are considered identical. Second, the molecules catalyzing the

reactions (enzymes), and the substrates/products form two distinct sets. An

established classification of enzymes, based on the reactions they catalyze are

also an important part of this ontology. The Enzyme Commission (EC) system

(http://www.chem.qmul.ac.uk/iubmb/enzyme/) [19] is perhaps the earliest, and

one of the most widely used, examples of a hierarchical controlled vocabulary in

biology. Rather then linking enzymes directly to the reactions, each reaction is

instead assigned a set of EC numbers, meaning that any enzyme falling into this

category can actually catalyze this reaction. Typically these reactions are not

assigned to a cellular compartment. Each reaction is actually a cross-organism,

cross-compartment abstraction of actual instances of reactions. This generaliza-

tion, however, has one very useful feature, it is possible to semi-automatically ob-

tain the metabolic map specific to an organism, once its genome is sequenced [72].

Metabolic network ontology can cover only a certain subset of existing chem-

ical network, because it lacks structures for representing aforementioned control

mechanisms. This is mostly due to the fact that enzymes are never substrates

and products of reactions. Thanks to recent advancements in metabolic profiling,

which allow non intrusive in vivo measurements [68, 4, 81], our knowledge about

metabolic networks are almost complete, including kinetic constants. This led to

successful efforts for simulating minimal cell, more correctly minimal metabolism.

Extending this network to more comprehensive models are currently an active

field of study.

Metabolic pathways are more manageable compared to signaling pathways

in terms of complexity. Therefore, efforts for drawing every interaction in those

pathways as a still image have proved to be successful. These databases have a

rigid definition of a pathway and they never create a pathway on the fly. Unfor-

tunately, these features are essential for regulatory pathways.

CHAPTER 3. RELATED WORK 20

One of the well-known metabolic databases is Kyoto Encyclopedia for Genes

and Genomes (KEGG) [40] . KEGG is composed of a set of still images defining

metabolic pathways, a set of tables defining relationships and orthologous entries,

and hierarchal texts defining these entries. These components are backed up with

a querying system that allows users to extract pathways. Although KEGG started

as a metabolic pathways database, it recently started an initiative for modeling

cellular signaling processes as well. However, signaling part lacks the ontology of

the metabolic part and is not a truly pathways database.

EcoCyc [46] is one of the most serious attempts toward building an ontology

for metabolic pathways. EcoCyc features the entire small molecule metabolism

in E.Coli and provides support for querying and computation. EcoCyc is also

the first true attempt to an integrated environment since it also provides visual

tools for analyzing and displaying cellular environments [42]. They define differ-

ent types of molecules, each with its own class, and consider different states of a

molecule as different actors. In addition, reactions are defined to be independent

entities, and molecules are linked to the reactions by distinct relations, which

they call slots. Each molecule may optionally be tagged with a cellular compart-

ment. Their ontology also makes use of the pathway concept to define summary

abstractions, which may be used for defining data at varying levels of detail.

3.4 Signaling Networks

Signaling Network ontologies can model metabolic networks, and more complex

signaling networks. They typically allow any role for any molecule. They also

provide methods for representing complexes, spatial constraints, and abstract

groupings. Despite some efforts, currently there is no standard ontology for mod-

eling signaling networks. Signaling network ontologies provide the most detailed

ontology, but the detail of the ontology also dictates manual curation, a very

scarce resource. Currently most of the data on signaling networks reside in the

literature in free text form [29].

CHAPTER 3. RELATED WORK 21

Cell Signaling Networks Data base (CSNDB) is a data- and knowledge- base

for signaling pathways of human cells. It compiles the information on biolog-

ical molecules, sequences, structures, functions, and biological reactions that

transfer the cellular signals. Signaling pathways are compiled as binary relation-

ships of biomolecules and represented by graphs drawn automatically. CSNDB’s

pathfinder querying mechanism is probably one of the pioneering works in the

field. Unfortunately, CSNDB suffers from a naive data model in which you may

get multiple instances of the same molecule or their orthologous and generic vari-

ants in the same graph.

TRANSPATH [48]2 employs a powerful hybrid ontology of both mechanistic

(actor-event based) and semantic for describing cellular events. It has a well-

defined structure and an extensive content. It focuses on pathways involved in

the regulation of transcription factors. All data is extracted by experts from the

scientific literature. TRANSPATH features a basic querying system that allows

searching for molecules. TRANSPATH currently does not support computations

but has a very suitable structure as long as all data entries are made in mechanistic

model.

AfCS3 is a collaboration between 17 universities in USA and Nature Publish-

ing Group, attempting to provide curated pathway models. [63]. AfCS is an

interesting project, since it takes collaborative reconstruction as its primary use

case. AfCS relies on a relatively loose ontology and linking models using URLs

to provide a distributed, collaborative environment. AfCS is focused on signal

transduction and as such can model concepts such as complexes and cellular

location.

The Reactome project4 is a collaboration among Cold Spring Harbor Labo-

ratory, The European Bioinformatics Institute, and The Gene Ontology Consor-

tium to develop a curated resource of core pathways and reactions in human bi-

ology [39]. The information is authored by biological researchers with expertise

in their field, maintained by the Reactome editorial staff, and cross-referenced

2http://biobase.de/transpath
3http://www.afcs.org
4http://www.reactome.org

CHAPTER 3. RELATED WORK 22

with with PubMed, GO, and the sequence databases at NCBI, Ensembl and

UniProt. Reactome’s ontology, which was developed independently, is very sim-

ilar to PATIKA’s mechanistic level , and in fact it is possible to convert Reac-

tome data into PATIKA’s. Reactome’s manually curated repository, provides

the most extensive high quality signaling pathway data for humans. Reactome

allows a very loose concept of generic which can be used to model generic states,

e.g. damaged DNA. However, Reactome does not differentiate between different

generic concepts and does not handle ambiguities in the model that might arise

due to their semantics.

The aMaze project aims to provide a workbench for modeling which can deal

with a large variety of cellular processes including metabolic pathways, protein-

protein interactions, gene regulation, sub-cellular localization, transport, and sig-

nal transduction [50]. aMaze’s data model is again very similar to PATIKA

[84, 83] although there are several differences that makes transformation from

one to another very lossy. aMaze ontology was one of the first to introduce the

concept of state.

Inoh project is another pathway database, that provide several new concepts.

Of particular interest is the usage of the compound graphs. If we do not consider

KEGG’s and EcoCyc’s pathways, INOH receives credit for publishing the first

concept of abstractions. INOH’s abstractions are focused on homologies, it allows

a form of homology templates [26, 27].

In general, signaling pathway databases focus on the direction of signal flow,

showing activation and inhibition relations among signaling molecules. In these

systems one can follow the transduction of a signal. However, the mechanisms

of regulation is often omitted in favor of simplicity, leading to ambiguities in

the model, and hindering any possible functional computations. Considering a

molecule to be only in active and inactive states is clearly an oversimplification

since a molecule often times has more than one active state, each performing a

different activity.

Because of the aforementioned reasons, efforts for developing common, stan-

dard ontologies are gaining increasing support in the scientific community. There

CHAPTER 3. RELATED WORK 23

are efforts in multiple levels [35, 6, 30, 18, 72]. We believe that coercion between

these different levels are important for the integration of biological data at dif-

ferent levels. For example, sequence, yeast two hybrid, microarray and metabolic

simulation data have different perspective and level of detail, although they de-

scribe the same system. An ontology which could integrate and store data from

such different sources and present them seamlessly in different perspectives, iso-

lating a user from such heterogeneities, is critical to modeling of such a complex

system.

Chapter 4

Requirements Analysis

In the future, we expect that a biologist who wants to adopt a system-level ap-

proach for modeling a disease or a biological phenomena starts by constructing a

large network of knowledge, spanning multiple databases and information sources.

They do this by specifying queries from a single common interface. They then

add their knowledge and data into it, and visualize and analyze the resulting

model. They will like to share and integrate their model with their colleagues,

especially if they are in a large distributed research community (e.g. European

NoEs or AFCS of United States). They often will couple this model with high-

throughput data, trying to figure out how the changes in the genotype led to the

phenotype they are observing. They will need to change their view port to per-

ceive the model at varying levels of detail and perspective, ranging from medical

imaging data to individual reactions to protein structure. They specify complex

queries to test their hypothesis or come up with new targets for drugs. They

can annotate and couple their models with logical inference methods, so that a

medical doctor can use it for diagnostic purposes. Clearly present-day biologist

is unprepared and unequipped for this challenge. There are currently numerous

tools and databases, providing some of this information. However, none of them

provides the tight integration needed by the biologist. This chapter analyzes the

requirements for an ontology that can at least partially address above use case

history.

24

CHAPTER 4. REQUIREMENTS ANALYSIS 25

4.1 Use-Case overview

Why do we want to define a formal specification, after all? Following are the

use-cases we envision, where an ontology is mandatory or helpful.

1. Rapid knowledge acquisition: A common representation system would en-

able users to query, retrieve and visualize pathway data using a common

interface, allow a faster and easier way to obtain information on cellular

pathways.

2. Collaborative model building: A common format is the first natural step for

a collaborative environment, allowing integration of different models from

different sources.

3. High-throughput data analysis/integration: A common ontology would allow

building system-scale models, with much more explicit semantics. This

would be a major breakthrough for analyzing system-wide, high throughput

data.

4. Scenario/target/hypothesis testing: Again a system-scale model would allow

testing plausibility of ideas, or investigating possible outcomes and side

effects of a change.

5. Simulation: There are several levels and models for simulation of cellular

systems. Although our current ontology does not meet the requirements of

most simulation systems, nor does the current biological data. However, an

ontology would serve as a blueprint, for building system-scale models, with

increasing levels of detail.

6. Pathway-inference: There is already a substantial amount of effort to infer

”pathways” from high throughput data or literature. However, without a

common ontology, results of these efforts remain isolated pieces of knowl-

edge, which cannot be integrated with or compared to each other. More-

over, most of these methods use ad-hoc, loose definitions of a pathway,

which result in data that has little biological value. A common ontological

framework is also essential for these efforts to flourish.

CHAPTER 4. REQUIREMENTS ANALYSIS 26

7. Customized drug combination design: A use-case that combines several use-

cases mentioned above and of particular importance is the ability to foresee

how a cell would respond to a certain combination of drugs. This is espe-

cially important for a cure for cancer, as one can couple such a model with

high-throughput techniques and computational methods to come up with

best drug combination that can most effectively select and kill cancerous

tissue, with minimal side effects.

4.2 Complexity of Cellular Processes in Hu-

mans

An estimation of the complexity of the problem we are attacking is essential to

set our requirements. In this section we try to estimate some statistics related to

the cellular processes in humans.

Although there is a constant debate on the issue, the best estimates for the

number of genes in the Human Genome is approximately 25000 [65]. Differential

expression of these genes leads to approximately 250 different cell types [33], each

having different chemical, spatial and temporal contexts. Different cells express

different combinations of approximately 1500 different receptors [85], which listen

different environmental changes, and responsible for most of the difference in

cell’s reaction. An array of 518 known protein kinases and approximately 150

phosphatases took part in signaling pathways, along with components for other

mechanisms, which transfer these signals to the various response mechanisms

[63].

Considering all the control mechanism we have revised, a rough estimation

indicates 10-100 states per gene on the average(See table 4.1 for more details)

. This indicates that the networks human cellular processes contain 105-106 ge-

netic components only. Considering small molecules, combinatorial and genetic

phenomena, our estimation is a network with a magnitude in the order of 106 .

CHAPTER 4. REQUIREMENTS ANALYSIS 27

Network Component Number
Cells 1014

Cell Types 200
Genes 25000

Splice Variants per Gene 2.5
PTM1s per Proteins 2.5

Protein States per Gene 20

Table 4.1: A rough estimation of numbers of various cellular components, based
on currently known numbers in the literature. (PTM stands for post translational
modification)

4.3 Clarity, Content and Coverage

While discussing design choices and trade-offs we made in our ontology, it is

useful to have an evaluation space. Here, we define three criteria we found most

relevant.

1. Coverage refers to the amount of data an ontology is able to model, com-

pared to the entire biological knowledge corpus. Increasing coverage has

the obvious benefits of being able to model more biological phenomena,

thus able to solve more. However, most of the time in order to be able to

cover new ground, one needs to introduce new classes/relations/rules into

the ontology, or relax the semantics of existing ones to accommodate the

new phenomena.

2. Content describes an unambiguous and regular structure in the information

to be modeled. A higher content is key for better and more powerful analysis

methods. For example still image databases has very high coverage but no

content at all, as one can not even query the system against the names of

proteins. Increasing content often means introducing new rules to handle

exceptions, or leaving out these exceptional cases.

3. Clarity refers to the intuitiveness and comprehensibility of the model itself.

The more classes/relations/rules there are, less the clarity is. The advantage

of clarity is obvious, a less steep learning curve. However more then often,

it comes with a cost in content.

CHAPTER 4. REQUIREMENTS ANALYSIS 28

These principles often conflict with each other, and a compromise must be

made, considering the nature of the data at hand.

4.4 Requirements

Below is a brief overview of major requirements for Patika project and ontology.

One should note that they are not isolated items rather they are coupled with

each other, ontology and software components.

4.5 Integration

The primary use case for Patika ontology is collaborative reconstruction of hu-

man cellular processes. Modeling the human as a system is a task that scales

higher in several orders of magnitude in complexity to any engineering model our

civilization has so far managed to build. Modeling such a system is clearly be-

yond the capabilities of a single lab or group. We need a large scale collaborative

effort.

A molecular biologist has a very good grasp of a particular subgraph of this

complex network. There are reviews which would put several such subgraphs

together to form a larger map of a certain pathway. Following the same path,

why not build an integration system, that would scale up to the complete graph

of the processes in a cell, where scientists could put together their knowledge, in

a similar fashion to put pieces of a puzzle together. However there are several

obstacles we need to resolve first before we can hope to realize an integrated

pathway database. First, unlike Genbank and Protein Data Bank, where user

submissions are typically isolated records, a pathway submission needs to be

merged with the already existing model in the database. This raises several

problems related to identity, concurrency and conflict resolution, which needs to

be addressed at the ontology level. It is reasonable to assume that a user will

view only a limited portion of the complex network of available cellular pathways

CHAPTER 4. REQUIREMENTS ANALYSIS 29

at a time. Hence a modification to the existing data in this small window may

affect the integrity of this entire network. In order to deal with this, an ontology

should also state the integrity rules of the pathway data, enabling us to construct

a robust model. Only with the help of such rules, automated integration of data

into the existing knowledge base is possible.Second, models created by different

users might be at different levels of detail and precision. Finally these models,

similar to journal articles, contain heavily interpreted information and a revision

mechanism is often required. Tackling these problems require improvements in

existing ontologies and development of new protocols and software tools. This

goal creates an array of sub-requirements, some of which needs to be addressed

at the ontology level.

As our goal is to annotate and model all processes within a cell, we should

try to maximize our coverage during design, with making as little as possible

sacrifices from clarity and content.

4.6 Incomplete Information

There are fields, as in metabolic pathways, where our understanding is much

more complete, with a nearly complete map of reactions, their reaction constants

and even typical concentrations. On the other hand, data on most signaling

pathways are still vague at best, with indirect relations, ambiguous mechanisms

and unknown reaction constants. A more strict model would dismiss a lot of

signaling data leading to low coverage, where a lax model would poorly model

metabolic pathways.

To make things worse, new high-throughput techniques such as Y2H(yeast

two hybrid) system, or (ChIP2) produces data that are inherently partial. For

example, in the case of Y2H, we know that two proteins interact (and that is

if it is not a false positive), but we do not know its cellular location, or other

participants. We need ontological facilities to separate known from unknown

clearly. By adding new classes and rules we decrease the clarity of the model,

CHAPTER 4. REQUIREMENTS ANALYSIS 30

balanced by an increase in clarity and content.

4.7 Multiple Levels of Detail

Ability to represent multiple levels of detail is a very important requirement that

arises due to the heterogeneous nature of biological knowledge. In collaborative

construction, as desired modeling detail level of one user can be drastically dif-

ferent from another, a user may not be able to integrate their knowledge if the

existing level of detail in the database does not match theirs. We attempt to

address this problem by allowing multiple levels of detail, using different abstrac-

tions. A user can represent a metabolic pathway in a very detailed form, and can

include a very abstract level signaling pathway regulation in the same graph.

4.8 Complexity Management

A more vigorous model, for most of the time, means a more complex represen-

tation, which in turn leads to models cluttered with states and interactions that

are possibly of no interest to certain users. It is therefore desirable to manage

complexity, such that the part of the model that a user currently focuses on is

represented in full detail, where other portions are hidden or represented at a

more abstract level. Similar analysis and query facilities must also be provided.

The ontology should provide facilities to reduce complexity through capturing

groupings and similarities, abstracting them and hiding their details when de-

sired.

4.9 Analysis

Analysis options one can provide to the user has a lot to do with the content

of the model. For example ordinary differential equations simulation of a model

CHAPTER 4. REQUIREMENTS ANALYSIS 31

requires each transition to be associated with a differential equation, and each

state with an initial condition. One often needs to trade off a lot of coverage for

such a content, as such data is not often available, however stoichiometry is often

known so it is a realistic trade off to leave out data with unknown stoichiometry,

so that one can perform flux analysis on the model.

As a minimal requirement, we typically would be able to query and retrieve

a subgraph of it. Apart from SQL like queries, we would like to be able to

run graph theoretic queries to identify shortest paths, positive feedback loops,

common regulators etc. It is important to map such graph theoretic problems to

biological ones, identify and verify their relevance to the biological problems and

come up with ontology modifications to improve them.

4.10 Visualization

Even though the ultimate goal in analysis of pathway data is support for func-

tional computations and simulations on the model created, a simpler yet very

effective form of analysis is possible through visualization. First of all, an effec-

tive visualization is only possible through an ontology that permits drawings of

pathways with intuitive images (i.e., graphical user interfaces). Another neces-

sary tool for effective visualization is automated layout, with which aesthetically

pleasing, comprehensible drawings of pathways can be produced. It is also crucial

to have proper complexity management tools for analysis of complex pathways.

Such techniques are necessary at both the visualization level and at the level of

knowledge base, which is free of geometrical information for pathways. Thus the

ontology should suggest various ways to reduce the complexity of the information

that the user deals with at one time. Another way of dealing with complexity is by

supplying powerful querying mechanisms. Such mechanisms enable researchers

to find their ways around in the jungle of paths, again requiring a rigid ontology.

Visualizing external multi-dimensional data on pathway graphs is also very im-

portant for making the model useful. Although visualization seems like a software

aspect rather than an ontological one, there are still ontological choices, which can

CHAPTER 4. REQUIREMENTS ANALYSIS 32

lead to models that can be more effectively visualized, such as designing objects

so that node degrees and depth of compound graphs are reduced or limited.

Chapter 5

Ontology

In this chapter, we describe Patika ontology, to model networks of cellular pro-

cesses through integration of information on individual pathways. Our ontology

is suitable for modeling incomplete information and abstractions of varying levels

for complexity management. Furthermore, it facilitates concurrent modifications

and extensions to existing data while maintaining its validity and consistency.

We first define the fundamentals of our ontology for modeling cellular pro-

cesses, then we give a formal owl definition.

5.1 Patika Objects

Every first class object in the Patika ontology is a Patika Object, which describe

the common functionality and information. A Patika Object has a unique id, a

version, an author (for the purposes of provenance), and a data source, which de-

scribes how this phenomenon was observed and points to the literature references.

A data source is further classified into four classes as follows:

1. Experimental: Existence of this object can be tracked to some experimental

observables. In this case data source typically points to a journal article.

33

CHAPTER 5. ONTOLOGY 34

2. Inferred: This object was inferred from other experimental observables, such

as complex prediction from 3D structure, or a reaction that was inferred

by homology. In this case the data source typically points to the article in

which the method was described.

3. Imported: This object was automatically imported from another similar

database, such as Reactome. In this case data source typically points to

that database entry.

4. Other: Used when the data source does not fit aforementioned cases, such

as psychic revelation and divine intervention.

Although there are more detailed data source ontologies [41], we found this

classification quite sufficient for the time being.

Every Patika Object also has a name and description, which should comply

with external naming conventions and vocabularies (such as HUGO [86], or GO

[30]) whenever possible. This however was not enforced in the core ontology in

any way. Finally every Patika Object is optionally associated with a set of GO

terms.

Content of the Patika Objects might be extended in order to comply with

standards that are defined by various initiatives such as Psi-MI, BioPAX [18]

or SBML [35], or for adding in user data such as the results of a microarray

experiment.

5.2 Bioentities

More than often actors, especially macromolecules have a common path of syn-

thesis and/or are chemically very similar. For example, a p53 protein may be

in native, phosphorylated, and MDM2-bound forms. Another example is cyto-

plasmic and extracellular calcium. These molecules have different information

contexts, and changes in their concentrations leads to clearly different outcomes.

CHAPTER 5. ONTOLOGY 35

It is possible to model these molecules as separate entities, ignoring the men-

tioned grouping. However, these entity groupings are very common and deeply

embedded in the current biological paradigm. In fact there is a wealth of infor-

mation that is only available at the entity level. Therefore it is more agreeable to

maintain such biological or chemical groupings as bioentities while representing

these ’minor’ changes in their information context with states.

As state information is often not available, most genomic and proteomic

databases such as Entrez Gene [53], UniProt [7] or GO [30] are entity level

databases. In our ontology a bioentity stores a set of external references mapping

to these databases, and acts as a gateway to the external resources. Bioentities

are further classified into 5 classes:

1. DNA: A DNA molecule or certain region on a DNA molecule. Typically

DNA entity is used to model genes on a chromosome, although it can also

be used for other DNA molecules such as viral DNA, or damaged DNA

fragments. A DNA entity also has a set of products, used to identify tran-

scription/translation relations between entities.

2. RNA: Similar to DNA, this entity is used for RNA molecules. It typically

represents gene transcripts. It has an optional source for identifying its

source gene, and a set of products for identifying its protein products. Dif-

ferent splice forms of an RNA are considered as different states of the same

entity, although their protein products are considered as different entities.

3. Protein: Again, this entity is primarily used for protein products of genes,

however it can also be used to represent short peptide sequences. A protein

entity has an optional source entity, a DNA or RNA.

4. Small Molecule: Despite its name this entity is used for all other molecules,

lipids, ions, carbohydrates etc. Unlike genetic (DNA, RNA and Protein)

entities, entity-state concept for small molecules are somewhat weaker. It

is hard to come up with rules defining what sets of molecules should be

grouped under a single entity. Clearly cytoplasmic and extracellular Ca++

belong to the same entity, but is 6P-Glucose a state of glucose? Or are

CHAPTER 5. ONTOLOGY 36

ATP and ADP different states or different entities? We opt to model com-

partment changes, complex formations and non-covalent isomerizations and

homomerizations as state changes. Covalent chemical modifications are con-

sidered as a transformation to a different entity.

5. Physical Factor: This rare class is reserved for entity-like environmental

factors, such as radiation, pressure or heat, since they also act as an input

to the signaling pathways.

5.3 Bioentity Interactions

For most high-throughput techniques such as microarray and Y2H, bioentities

form the unit entries, and the results of the experiment defines a graph over

them. In fact aforementioned gene and interaction networks, which are the major

outputs of these methods are defined at this level. Bioentity interactions are used

to capture such relations. In a sense they represent incomplete information, as a

bioentity interaction always maps to one or more mechanistic level interactions,

although latter one often is not identified/elucidated yet. There are four types of

bioentity interactions:

1. Protein protein interaction: PPI is an undirected relation, indicating that

two proteins are observed to interact with each other in a Y2H or co-

precipitation system, i.e. there is at least one state of entity A that somehow

interacts with B. One or more mechanistic level relations might be associ-

ated with this entity level relation. For example a state 1 of protein A

might be bound by protein B, where state 2 of protein A might be bound

and cleaved by B. Even the nature of the chemical reaction does not nec-

essarily be same / similar. Compartment information and n-ary relations

can not be captured by PPI. Some sample databases that contain PPI data

include DIP, BIND and IntAct.

2. Transcriptional Regulation: TR is a directed relation, indicating that at

least one state of source node activates/inhibits expression of at least one

CHAPTER 5. ONTOLOGY 37

DNA state of the target. Although there is combinatorial information on

TR, we are yet to incorporate this to our ontology. Although current on-

tology can not capture the mechanism of the regulation, incorporation of

operons in the future can improve this. Moreover one can always define

complete mechanism at the entity level, if the information is available.

3. Derived: These edges represent that there is a transition in the mechanistic

graph that is adjacent to at least one state of each bioentity. Depending on

the exact semantics this edge might have sub-types. For example a control

edge might indicate that source bioentity has a state that is an effector of

a transition, from which a state of the target is produced.

4. Generic: This is an undirected or directed relation which does not fit into

one of the previous three. Co-occurence graphs, where an edge between

two bioentities indicate that they are referred significantly together in the

literature is an example.

5.4 States

Typically in a cellular network, flow and control of information happens through

modifications of molecules. Most of the time, it is easy to envision these changes

as a state-transition, where an entity modulates another entity by switching it

to a different state. The term is very generic and encapsulates macromolecules

(e.g., DNAs, RNAs, and proteins), small molecules e.g., ions, ATP, and lipids),

or even physical actors (e.g., heat, radiation, and mechanical stress). States also

represent molecular complexes, or conceptual abstractions that behave like state.

Depending on their nature, states are classified as either compound or simple.

5.4.1 Simple States

Simple states represent tangible and unit phenomena. Each state belong to a

bioentity, and represents a change in the information context of the bioentity.

CHAPTER 5. ONTOLOGY 38

Those changes are represented with the following bioentity variables:

1. Cellular Localization: Each state has a compartment in the cell. Changes

in compartment means a change in the molecules information context, since

the set of molecules it can interact with changes. This property is single

and mandatory for all states. Compartments are described later in this

document.

2. Complex Binding: This property describes a functional change due to

long-lived non-covalent bonds between molecules, e.g. p53 bound state

of MDM2. This property is multiple and optional.

3. Homomerization, i.e. non covalent bonding of two or more of the same

state is not considered as a complex formation for the sake of simplicity.

Instead we use a separate property for modeling such a state. This property

is multiple and optional

4. Isomerization: Conformational non-covalent changes within the molecule.

This property is multiple and optional.

5. Chemical Modification: Cleavages, group additions/removals and other co-

valent changes are classified in this group. This property is multiple and

optional.

Each bioentity variable tuple is formed of a class, a value and a description.

Class is one of the variable classes above. Value is chosen from a limited vo-

cabulary, possibly taken from other specific ontologies. Description is free text,

however depending on other ontologies, we might also wish to constrain it. Fol-

lowing are some examples:

Defining bioentity variables more formally increases the content of the models,

and helps a great deal to the equivalence by context problem. There is still further

room for improvement by formalizing the information that was delegated to the

free form description slot. This, however, again requires formalization of sequence

and sequence position and have subtle complexities such as disulfide bonds which

requires two position information to be formally defined.

CHAPTER 5. ONTOLOGY 39

Class Value Description
Cellular Loc. Cytoplasm –
Attachment Cytoplasmic Membrane Farnesyl attached

Chem. Mod. Phosphorylation At 155-Arg
Chem, Mod. Point Mutation 2444 A-T

Isomerization Allosteric Active Enzyme
Homomerization Trimer -

Table 5.1: Examples of bioentity variable triples.

Any combination of bioentity variables forms a unique state of this bioentity.

It should be noted that only a very small portion of the state space actually

occurs in biological systems.

Important points when defining states are context and desired level of detail.

One should keep in mind that states map to a class of molecules/entities rather

than a single molecule. It might be that this group is not totally homogeneous.

For example, it is not desirable for most of the cases to model the rotamers of a

protein as different states, as there are combinatorially many of them, they are

very short lived (in the range of nanoseconds) and switching from one of them to

another is almost instantaneous. However, Patika ontology does not define hard

lines for the level of abstraction, as it readily provides a framework for modeling

and representing multiple levels of detail. So we can say that state variables can

be incomplete and overlapping. An example of incomplete state variable is ”phos-

phorylated p53”. However, this representation poses a subtle problem. Since we

do not know at which site the p53 is phosphorylated, relationship between this

state and phosphorylated p53 at 153Arg is not clear. It might be that two au-

thors actually talk about different states, or the latter is a non-proper subset of

the first. A sensible approach is to delegate this issue to the submitter, and to

the expert, as it is really hard to come up with a context free resolution rule.

If the first is the case, than the submitter must modify the phosphorylated p53

entry to bring it into the correct level of detail.On the other hand, if it is the

second case they must switch the p53 phosphorylated into an incomplete state

to indicate different levels of detail. However, this does not solve all cases, sub-

mitter (rightfully) might not know whether it is the first or the second case. Or

CHAPTER 5. ONTOLOGY 40

he might know that it is the first case, however he might not have enough infor-

mation to annotate p53 phosphorylated. This is a very difficult issue to handle,

and currently unresolved. A formal hierarchy might seem more desirable to solve

these problems but then again there might be different, conflicting hierarchies for

states of an entity.

It is hard to come up with rules defining what sets of molecules should be

grouped under a single entity, especially for small molecules. Clearly cytoplasmic

and extracellular Ca++ belong to the same entity, but is 6P-Glucose a type of

glucose? Or are ATP and ADP different states or different entities? A crude

rule is to allow only compartment and attachment changes as states variables for

small molecules. However, this point still needs to be elucidated.

An important side note is in pathway drawings, it is common represent dif-

ferent states as a single biological entity, even when the mechanistic detail is

known. This is an oversimplification as different states can have very different

and sometimes conflicting effects. Mapping such information to Patika graphs

might not be trivial, as in most cases the mechanistic detail is unknown. Patika

allows defining relations at both bioentity and state level to address these levels

of detail and abstraction.

In some cases, a bioentity’s states are also labeled with various semantic tags,

such as active form of an enzyme or open/closed state of a channel protein.

Another logical tag is aberrations. Two types of aberrations exist: sequence

and structure aberrations (i.e. due to misfolding). Sequence aberrations can

be chromosomal or point mutations as well as polymorphisms. We can define

a more detailed sequence state variable annotation scheme using GO. Sequence

aberrations can be traced both on DNA, RNA and protein, although it must

originate on DNA. Structure aberrations can occur in RNA and Protein states and

model changes due to aberrant folding. Most of those aberrations are non-specific,

i.e. they are groupings of combinatorially many different molecules under a name.

Logical variables are manifestations of physical variables in a certain context, and

there are times where we do not have the exact physical variable, but can assess

the logical state. Leaving out logicals would decrease our coverage in that sense.

CHAPTER 5. ONTOLOGY 41

However, we decided that modeling contexts would be very difficult at this level,

and such data was often not admitted by the databases. Although these tags are

rather unambiguous, there are also no standard control vocabularies. Currently

it is best to capture such tags with the states name and description.

Another point is states can be ubiquitous, i.e., they participate in a signifi-

cantly high number of reactions. Typical examples are small molecules such as

ATP (Adenosine triphosphate), or water, which have generic and structural roles.

Such states can be problematic from two aspects, first for querying purposes, one

often wants to ignore these. For example, when querying for shortest path be-

tween two protein states that both get phosphorylated, there is a path of size 3

that passes over ATP. This path, however, is rather insignificant, as both events

does not really change the ATP concentration in the cell, and there is no real

information flow over this path. Second, molecules such as water can have very

high degrees even for very small subgraphs, which makes them very difficult to

visualize. So for both aspects, we would like to handle ubique states specially.

Patika ontology uses ubique state class to describe simple states that exhibit

such a behavior. Although we have identified compound states that also show

ubique-like behavior (e.g. ribosome) for the current level we opt to ignore such

cases. Another problem is in some contexts ubique state might have taken part in

decision making mechanisms. For example for oxidative phosphorylation, ATP

concentration might act as a regulator. However, it is very difficult to specify

such contexts, and currently is not covered by the Patika ontology.

5.4.2 Compound States

A compound state is a grouping of other Patika objects, which exhibits a state-

like behavior, and needs to be addressed at this level. There are two types of

compound states, complex and abstraction.

CHAPTER 5. ONTOLOGY 42

Figure 5.1: Representation of complex in Patika . Here C1 is a complex formed
by states S2, S3 and S4. Binding relations are also represented. Transition T1,
which represents the complex formation event adresses the complex, where the
inhibition of t2 by S4 is an example of addressing complex members.

5.4.2.1 Complexes

In biological systems molecules often form clusters for performing proper tasks,

behaving like a single state. We consider each member of a molecular complex as

a new state of its biological entity. The function of a molecular complex is affected

by the specific binding relations within itself. Therefore these binding relations

must be represented in the model as well. Moreover, members of a molecular

complex may independently participate in different transitions; thus one should

be able to address each member individually. In addition, a molecular complex

may contain members from multiple neighboring compartments. In that case,

always one of those compartments is a member type compartment. It is actually

possible to model complexes in a similar fashion to membrane spanning proteins.

Complex states have a set of simple state members which should be complex

members.

Complex states do not have a bioentity, as they are not simple. However

their members have their own bioentities. This information may be used for

complexes as well, e.g. for querying. In a similar manner, each complex member

has its own set of bioentity variables, including compartments. So it is possible

to specify multi compartment spanning complexes with Patika ontology. Since

each complex member is specified separately it is possible to address members

specifically as activators or inhibitors of other reactions(Figure 5.1).

CHAPTER 5. ONTOLOGY 43

An important question is “Do we model short lived binding relations as com-

plexes or activation relationships?”. There might not be a concrete answer for

that, however a best practice is never use a compound graph unless you need to,

and this also applies to complexes. If an activation relation would be able to

represent the current knowledge, it is best to use it. If that level of detail is not

sufficient for another user, they can re-edit it to add a complex at that point.

Another important distinction is between a chemical modification and a com-

plex. As a rule of thumb, long lived non-covalent relations are considered as

complexes, whereas covalent bonds are considered as chemical modifications.

5.4.2.2 Abstraction States

Abstraction states are groupings of pathway elements that behave like a state.

An example is Wnt protein, which in fact represents a set of homologous proteins

with similar functions. Abstractions are not limited to states but to transitions

and in fact is a cross cutting aspect in our ontology. Therefore we are describing

the details of both abstractions later in this chapter.

5.5 Transitions

A cell is not a static entity, neither are its actors. Molecules in a cell are synthe-

sized, modified, transported and degraded constantly to respond to the changes

the environment, or to accomplish a task. One can model such changes as quanti-

tative chemical reactions. However this would reduce the coverage of the model,

as currently both molecular concentrations and rate constants for most of these

reactions are unknown. It is often preferred to represent these changes qualita-

tively since this better suits existing knowledge in molecular biology. A transition

has a set of states as its substrates (inputs) and products (outputs). A transi-

tion occurs only when all of its substrates are present and activation conditions

are satisfied; a function of the certain other states. These states are called the

effectors of a transition. Two types of effectors relations are defined, activator

CHAPTER 5. ONTOLOGY 44

Figure 5.2: Patika transition tree decomposes transitions to several classes.

and inhibitor, for positive and negative regulation respectively. When a transi-

tion occurs, all of its products are generated. Patika uses a pragmatic approach

for formally defining transitions: any event that changes one or more states to

another set of states is a transition. This definition delegates the exact definition

of transition to the exact definition of state, and as mentioned above, level of

modeling detail for Patika states are very flexible. It follows that Patika on-

tology can model transitions at multiple levels, allowing high coverage, without

losing from its content. Two transitions are equal if they have the same set of

substrates and products. This reveals two invariants for transitions:

• A transition has at least one substrate and one product

• There cannot be two transitions with same set of substrates and products.

Although transitions can have a very large spectrum, we expect that most

of them will fall to the certain classes. Those classes are captured by Patika

transition tree (Figure 5.2).

CHAPTER 5. ONTOLOGY 45

5.6 Mechanistic Interactions

Mechanistic interactions define relations between states and transitions at the

chemical level of detail. There are five types of them:

1. A substrate relation is a directed relation with a state as its source and a

transition as its target, which indicates that the state is consumed by the

transition. A substrate relation has a stoichiometry attribute which describe

the number of its source states that are consumed per target transition.

stoichiometry defaults to one.

2. A product relation is a directed relation with a transition as its source

and a state as its target. It indicates that the state is produced by the

transition. It also has a stoichiometry attribute to describe states produced

per transition.

3. An activator relation is a directed relation with a state as its source and

a transition as its target. It describes the enabling or facilitating of the

transition via the source state. An activator relation may optionally be one

of enzymatic, allosteric or abstract.

4. An inhibitor relation is a directed relation with a state as its source and

a transition as its target. It describes the disabling or impeding of the

transition via the source state. Irreversible inhibitions should be modeled

as a separate state of the modified enzyme. An inhibition relation may

optionally be one of competitive, non-competitive, allosteric, enzymatic or

abstract.

5. A bind relation is an undirected relation with two complex members as their

source and target. It describes a non-covalent bonding between these two

states. If all binding relations were known for a complex, than the graph

defined by binding relations and members would be connected.

CHAPTER 5. ONTOLOGY 46

There are cases where the stoichiometry might be unknown. Ron Caspi, a

researcher at MetaCyc project1 kindly provided the following use case at the

BioPAX list;

A different scenario is when the identity of all of the reactants is

NOT known. There are cases when some intermediates in a pathway

are identified, and a general pathway is suggested, but the exact na-

ture of the reactions has not been figured out. In this case, you have

reactions that do not balance, and would not balance because there

may be additional reactants involved. In such cases the stoichiom-

etry of the known reactants may be unknown. An example for this

can be found in the MetaCyc pathway indole-3-acetate degradation to

anthranilate.

Currently Patika ontology can not cover such incomplete information.

5.7 Abstractions

Network of molecular interactions derived from current biological data is incom-

plete and complicated. Different types of abstractions are necessary to make

effective analysis of cellular processes and dealing with complexity better.

Currently abstractions are only defined in the mechanistic graph level. How-

ever, there are other groupings, mostly created by clustering and inference algo-

rithms that produce groupings of bioentities. In order to capture such groupings

we might wish to introduce bioentity level groupings.

5.7.1 Regular Abstractions

Pathway is a very common and ambiguous term, and can have several even con-

flicting meanings. In its broadest meaning it is a subgraph of the cellular process

1http://www.metacyc.org

CHAPTER 5. ONTOLOGY 47

network. Typically, content of a pathway might be effected by the researcher’s

point of view and target, experimental system and even historical reasons. We

still make use of abstraction classes for capturing such groupings, because they

can immensely help with complexity management. (It is much easier to query

regular abstraction named lysine catabolism compared to figuring out 1 neigh-

borhood of up-to-3 downstream of cytoplasmic lysine). We model such groupings

using regular abstractions. Regular abstractions can be arbitrarily nested and

can intersect. However they can not be addressed directly, i.e. they have no

incident edges.

5.7.2 Incomplete Abstractions

Since the data on cellular processes is not complete, different levels of information

may be available for certain events. In cases where it is not identified which state

among a set of states constitutes the substrate, product or effector of a transition,

or where target transition of an effector is obscure, we may need to abstract

these states (transitions) as a single state (transition) to represent the available

information despite its incomplete nature. An edge defined on an incomplete

state means that it is actually defined on at least one state inside but the exact

state is not known. A similar semantic applies to incomplete transitions.

5.7.3 Homology Abstractions

In biological systems, a gene is often duplicated throughout its evolution serving

a similar but different function. A special case occurs when this differentiation

serves as a specialization of a generic mechanism. For example the term WNT

gene, actually represents nineteen various similar genes in human [58]. These

genes are all activated by different stimulus at different tissues and can lead to dif-

ferent responses even though the signal processing mechanism is similar. Bhalla

also describes common process motifs in signaling pathways, which are even more

elementary operations that are reused through the entire network [8]. Our on-

tology supports representation of such homologies using abstractions. Homology

CHAPTER 5. ONTOLOGY 48

Figure 5.3: An example portion of cell cycle pathways containing homologies

abstractions are also divided into homology states and homology transitions.

Exact semantics of homology abstractions can be slightly ambiguous, below is

a more formal definition to clarify this issue: We will define a Homology State sim-

ply as a set of member states. For our purpose, it is sufficient to define a transition

as T(S,P,A,I) where S is a set of states acting as substrates, P for products etc. A

homology transition is defined as HT (SH , SS, PH , PH , AH , AH , IH , IS, M). SS, PS

are sets of simple states where SH , and PH ’s members are homology states. M

is a set of transitions, that belong to this homology. If m(Sm, Pm, Am, Im) ∈ M ,

then Sm = SS ∪NH where NH is a set that satisfies the following:

For every valid NH there is a set of ordered pairs σ = {(h, n)|h ∈ SH , n ∈
NH , n ∈ h and ∀h ∈ SH there is exactly one (h, n) ∈ σ}.

Pm is also defined similarly. For Am and Im we modify the definition of NH

to include at least one (instead of exactly one) pair (h,n).

CHAPTER 5. ONTOLOGY 49

Above definition means that a homology transition is like a transition tem-

plate. To create your own instance of this template, you have to insert your

states of choice, to the given slots. Some slots are invariable, and defined by

simple states, other slots :

• If a simple state is a S/P/A/I to a homology transition, it is a S/P/A/I to

all of its members.

• If a homology state is a S/P to a homology transition, then for every member

of the homology transition, there is exactly one member of the homology

state, acting as a S/P.

• If a homology state is a A/I to a homology transition, then for every member

of the homology transition, there is at least one member of the homology

state, acting as an A/I.

This is a hard invariant to check at runtime dynamically, instead we might

want to modify the ontology in the future, such that the user actually specifies a

mapping.

An important invariant not included in the definition above is that HSs can

only interact with HTs. This is due to the fact that HS is an abstraction, and a

reaction that has an abstract input/output is also abstract. Reverse is not true,

an HT can perfectly interact with a simple state.

Another related invariant is, an HT must have at least one interacting HS.

Since biologically there is no concept of reaction homology (events does not evolve,

entities does), it actually is a group of reactions with homologous S/P/A/I.

A subtle concern is if an HT has two different homology S/P, from the same

homology state (e.g. dimerization of different members within a protein family),

then our exactly one constraint becomes exactly two. A similar scenario might

occur if two HSs are overlapping, and are S/P to the same homology transition.

Note that the above definition does not remove HS-HT edges. It may be

argued that HS-HT edges can always be inferred by finding HSs that satisfy

CHAPTER 5. ONTOLOGY 50

the mapping. However, the concern above makes inferring these a rather hard

problem, so using them explicitly and checking invariants makes a lot more sense.

Another issue that was not covered is homology complexes. Several ontologies,

including Reactome allow generic states as complex members. When more then

one such generic exist within a complex, this implies that every possible complex

combination in fact exists. This is rather a dangerous implication, as users will

often use a generic - higher granularity, introducing fictional complexes absent

in-vivo. PATIKA does not allow this, but also has no way to nicely represent

combinatorial complexes

5.8 Cell Model

While modeling the events in the cell we can not ignore the cellular structure

that these events take place. In fact cellular locations have major effects on

many cellular events. As the compartments and their adjacencies are cell type

dependent, compartmental structure should be modeled as part of the ontology.

We consider a cell as a closed sack. If we think of a sack as a membrane

structure each sack encapsulates a space and each space contains other sacks

(membrane bound organelles), where specific cellular events can take place. For

example cytoplasmic membrane is a sack and encapsulates cytoplasmic space.

Cytoplasmic space in turn contains other membrane bound organelles such as

mitochondria, nucleus etc. These inclusion relations can be a few levels of depth.

Neighborhood relations can be determined by these inclusion relations in our

model. There are some exceptions in this model where the model does not fit to

the real cell. For example ER (Endoplasmic reticulum) does not have a closed

sack structure instead it is like tube extending from nuclear membrane to the

extracellular matrix. We model extra neighborhood relations as in ER exam-

ple (ER-nuclear membrane ER-extracellular matrix neighborhoods) independent

from the inclusion model.

For different cell types different cell models can be prepared using ontology

CHAPTER 5. ONTOLOGY 51

Figure 5.4: An example of cell model relations. Circles are spaces, squares are
membranes and rounded rectangles are subregions. Different inter region relations
are also shown.

explained above. This cell model can be used as an underlying cell model of

Patikapro. Cell models can be prepared not only for different cell types, but

also to examine compartments at different levels of detail. An example of relations

are given in Figure 5.4.

Membranes pose an additional problem since not only a molecule may be

located completely inside the membrane but also it may span one or both of its

neighboring compartments. For membranes there are four types of sub-locations,

inner and outer side of the membrane, inside membrane and spanning membrane.

5.9 Formal Definition

Patika ontology was partially defined in [21] using a graph notation. However,

it is quite cumbersome to define and extend constraints and other relations using

CHAPTER 5. ONTOLOGY 52

Figure 5.5: A representation of a portion of a Wnt pathway with the Patika
ontology. Three regions are shown, Extracellular Matrix, cytoplasm and cyto-
plasmic membrane. Wnt is a homology abstraction containing different Wnts,
which are simple states themselves. Frz is also homology state and represents
a family of receptors that are important in differentiation during development.
C1 is a complex of Wnt and Frz proteins. Note that members can have different
compartments. C2-C5 represents different complexes formed by APC, Axin and
beta-Catenin, proteins that are also involved in development. Two downstream
pathways of protein degradation and gene expression were shown with regular
abstractions.

CHAPTER 5. ONTOLOGY 53

this notation. So far most of these extra constraints were defined informally as

internal documentation or software invariants. This makes it difficult to track

and communicate such constraints. In order to improve this, we have described

our ontology in Web Ontology Language (OWL). OWL is a semantic markup

language for publishing and sharing ontologies on the World Wide Web. OWL is

developed as a vocabulary extension of RDF (the Resource Description Frame-

work) and is derived from the DAML+OIL Web Ontology Language2.OWL is

gaining support in many communities, including biology and chemistry as the de

facto ontology language. Current OWL ontology can be obtained from Patika

web site3. There are numerous tools for visualizing and analyzing OWL. Among

them Protègè provides a very friendly and visual environment, and can be ob-

tained from Protègè home page4. There are differences between the way Patika

is implemented compared to its ontology, mostly due to programming constraints,

however, these are minor, and does not compromise with the overall semantics of

the ontology.

The short version of the ontology is given in Appendix A. By short, we mean

that the controlled vocabularies, such as post translational modification types,

and actual compartment structure is not included. In Patika, these are exter-

nalized into separate XML files.

5.10 Open Issues

Following properties are missing from the current ontology, but were considered

at some point and left out for future versions.

2http://www.w3.org/2001/sw/WebOnt/
3http://www.patika.org/ontology/patikapro.owl
4http://protege.stanford.edu

CHAPTER 5. ONTOLOGY 54

5.10.1 Generics

Frequently multiple molecules are grouped and referred as a single actor in liter-

ature. For example there are groupings of states that are formed through poly-

merization such as glycogen. Although the structure of the complete glycogen

is single, virtually infinite sub-structures occur during its metabolism. It is an

example of generic states by polymerization, also applicable to other polysaccha-

rides, cytoskeleton proteins (i.e. tubulin) and fatty acids. Their instances can not

be (feasibly) enumerated. It is worth to note that sometimes entities of the states

are also generic. For example in the example of removing a glucose from a glyco-

gen, we can not represent all poosible glycogen molecules with different number

of glucoses feasibly, yet representing both left and right side glycogen with the

same entity is also wrong and breaks quite a number of invariants, including the

statement that a molecule can not be a both substrate and product of a reaction.

Although semantically we can perceive that, this is nowhere in the ontology, so

we can not claim that we are modeling glycogen metabolism unambiguously.

Another example is damaged DNA with 3’ incision. This is a classic example

used in DNA repair pathways. It is worthy to note that one really can not hope to

model DNA repair pathways, without somehow modeling damaged generic DNA.

Another classical example is combinatorial recombination for diverse immune

response. This is a very special example however one also needs to consider

the extensions of this generic behavior, like major histocompatibility complex,

epitopes etc.

Yet again there are proteins which can get semi-quantitatively phosphorylated.

The tail of the neurofilament heavy subunit contains an amino acid motif repeated

44-45 times [2]. Each repeat can get phosphorylated, which then regulates axonal

caliber, with interfilament spacing determined by phosphorylation of the motifs.

This results in potentially 245 different proteins.

Generic states can form complexes in such a manner that they create com-

binatorially many species, even though species of states themselves can feasibly

CHAPTER 5. ONTOLOGY 55

be enumerated. Initial events in EGFR signaling, accounting for Sos and PLCg

activation can generate as much as 5000 states [16].

How to model generics is still an open and hotly debated issue in the current

pathway modeling community.

5.10.2 Modulation

Patika ontology does not cover some aspects of control effector molecules can

exert on a transition. Specification of inhibitors and activators of a transition

does not necessarily establish an exact activation condition. Currently we as-

sume that any combination of effectors can regulate a transition. This might not

be the case, for example two inhibitors may never be present together in the cell,

or when two inhibitors are present they cancel out each other . An approach

is to use extra objects for modeling such modulation logic. If it turns out that

actually only a small number of all combinations of effectors are significant, an-

other possible approach is to use the already existing compound graph notion

to include children nodes into the transition for all significant combination sets,

in order to be able to address them separately. The term modulation coins a

rather wide spectrum. In modeling modulation we can use boolean predicates,

linear equations, stochastic models, pi-calculus etc. [36, 79, 74, 69]. Patika

ontology assumes that the representation and stoichiometry of the transition is

independent of the transition logic. This is a choice made to increase coverage

since vigorously modeling activation condition and substrate concentrations re-

quire a linear (and possibly stochastic) set of equations, which are unknown for

most signaling pathways. Our primary aim is to build a framework, albeit not

precise, with the available biological data. However, it would still be possible to

add simulation support, at the software level by using a pluggable interface to

a simulation engine. Our ontology would then serve to intuitively represent and

investigate a model, where the simulation engine would be used for functional

computations.

CHAPTER 5. ONTOLOGY 56

5.10.3 Exhaustive relations

Another related aspect is under certain circumstances, multiple transitions hav-

ing the same state as a substrate may affect each other through depleting this

common substrate. This happens when the equilibrium constant of a transition

is relatively much higher than the others. There are a bunch of control mech-

anisms, often involving activation of an enzyme such that a certain constant is

lowered, that uses this depletion mechanism. If such a difference occurs among

the equilibrium constants of transitions, we call the transition with the higher

equilibrium constant exhaustive over other transitions for the common substrate.

Transitions having the same order of equilibrium constant, on the other hand, are

said to be cooperative.These relations currently can not be represented properly

with Patika ontology, as Patika ontology totally forgoes quantitative aspects in

favor of coverage. A simple exhaustive over edge is not simple sufficient, as there

can be as high as n2 such relations where n is the degree of product edges incident

on this state, and other factors such as enzymes can change those constants(again

here the assumption is system is not in equilibrium.

5.10.4 Reversible Transitions

In theory, all chemical reactions within a well-stirred medium is reversible,i.e.

depending on the chemical equilibrium they can produce their substrates from

their products or vice versa. However a biological system is hardly a balanced,

well stirred medium (in fact more it gets close to a balanced, well stirred medium,

less alive it is). In Patika all transitions are models as one-way reactions. If a

reaction is reversible, then it is modeled as two transitions, where one’s product

set is other’s substrate set and vice versa. These two transitions are called inverse

of each other. However this representation has one obvious problem, one can

annotate one part of the reversible reaction and forget to annotate other, leading

to inconsistencies in the data. It is much more preferable to have both transitions

as a single entity.

CHAPTER 5. ONTOLOGY 57

5.10.5 Context

Contents of a complete network of pathways may be classified according to vary-

ing fields of studies such as apoptosis, lipid metabolism, cell cycle, etc. Similar

classification may be performed based on tissue or phase specific processes. Look-

ing at such an entire, complex network from the point of specific interest fields,

tissues, or phases of cellular processes would simplify the understanding of the

network by filtering out the undesired parts. Fields, tissues and phases can also

be modeled as bioentity/state level abstractions, but they can be very large and

impractical to use. States and transitions can occur in many different cell types

and contexts. Therefore these groupings are not isolated.

Phases, which describe a partial ordering and co-occurrence are even more

problematic, as they can overlap and include each other, creating combinatorially

many intervals, and each of these phases might be specific to each tissue. More

importantly cells change their type through differentiation so a phase would also

ideally contain such changes. Clearly, a full coverage of this issue in the near

future is very unlikely.

5.10.6 Chromosome Structure

Genes are not separate molecules, they are a subsequence of a chromosome. How

genes are ordered and located is important as it affects several important phe-

nomena, including their activation and inheritance. Also on a chromosome there

are other entities like operons or activator sequences, which behave very like

stateful bioentities. They do not simply belong to the bioentity of the gene they

regulate, since they can took part in regulation of multiple genes. Other chro-

mosomal features include repeating subsequences, or regions where the frequency

of Adenine and Thymine is high. To add further complexity the chromosome

is physically non-uniform, some portions are densely folded, effectively turning

off genes in that regions, whereas some of them are exposed to increase their

expression rate. These features and relations currently can not be expressed with

Patika ontology.

Chapter 6

Ontology Implementation

This chapter describes the design and implementation of Patika ontology in

Patikapro and Patikaweb.

6.1 Model Layer

Model layer defines first class objects as interfaces, allowing a greater flexibility for

its implementors. We assume that the reader already has an acquaintance with

the ontology so we do not further explain its concepts, unless an implementation

specific explanation is required. The implementation was done in Java 1.4 and

most of the time clearly parallel to owl description, which is also not detailed

here.

An overview graph of first class objects are given in Figure 6.1. Since abstrac-

tions are cross-cutting concerns they were implemented with multiple inheritance.

58

CHAPTER 6. ONTOLOGY IMPLEMENTATION 59

Figure 6.1: Class hierarchy of the primary Patika objects.

CHAPTER 6. ONTOLOGY IMPLEMENTATION 60

6.2 Concrete Implementations

There are three concrete model implementations, DB (Database) level, S (Sub-

ject) level and V (View) level.

6.2.1 DB Level

The server side employs an MVC framework and DB level acts as the model layer,

providing the Patika Model interface which is used for manipulating data. DB

level is also a DAO layer hiding persistence related details from the user, and

provides the same consistent Patika Model interface. The DB level relies on an

in house graph implementation and provides persistence and querying logic.

6.2.2 S Level

The S level relies on Tom Sawyer Software’s1 graph libraries for defining an ab-

stract Patika graph. S level is a model layer and contains only topology of the

graph and the related data. In a sense, S level acts as a cached subgraph of the

database and a temporary storage for user created objects and user modifications.

6.2.3 V Level

V level defines a compound graph which again relies on Tom Sawyer Software’s

graph libraries. V level is a view layer and contains all the drawing information.

However each manipulation that is made to the model is delegated to the S layer,

which in turn updates views accordingly.

V level provides extra facilities for managing the visualization such as collaps-

ing compound nodes, fetching and merging more objects from the subject graph

1http://www.tomsawyer.com

CHAPTER 6. ONTOLOGY IMPLEMENTATION 61

and laying out external data on them such as expression levels from a microarray

experiment.

6.3 Common Properties and Patterns

6.3.1 Info objects

Defining the model at the interface level is preferable, as it allows greater flexi-

bility, but has a drawback. Logic and data common to all Patika objects need

to be duplicated at each level, since Java does not allow multiple inheritance. To

work around this problem we chose to use so called info objects.

Each Patika interface has an associated info class, which is responsible for

containing data and logic that is independent of the implementation. Thus imple-

mentors of the interface use the same info class and delegate the calls to the info.

For example bioentity of a simple state is kept at the SimpleStateInfo and in-

stance of both DBSimpleState and SSimpleState delegate calls to their getBioEn-

tity and setBioEntity methods to the corresponding methods of their associated

SimpleStateInfo instances. This way only the delegation code is duplicated. A

hierarchy of info objects are depicted in Figure 6.2.

6.3.2 Patika Factory

More often we want to abstract implementation of the model objects from their

creation logic. For example XML convertor should be able to convert XML to

any model implementation. In order to achieve this goal, all creation logic of

the Patika objects are abstracted in the PatikaFactory interface. PatikaFactory

contains methods in the form createXXX (creates an object with a given id and

persistence flags, should be used when the object was already created previously

e.g. while reading from XML) and createNewXXX (creates an object with a

new id and modified=true, removed=false, orphan=false values, should be used

CHAPTER 6. ONTOLOGY IMPLEMENTATION 62

Figure 6.2: Class hierarchy of info objects

CHAPTER 6. ONTOLOGY IMPLEMENTATION 63

when an object is newly created, e.g. by wizards), and its implementors create

corresponding objects. For example createSimpleState methods in DBPatikaFac-

tory and SPatikaFactory creates a DBSimpleState and SSimpleState respectively.

Returning back to our initial use case, setting a correct factory to the XML con-

vertor delegates all creation calls to the factory, thus creates the correct level of

objects. All model implementations should contain a respective factory.

6.3.3 Abstraction Info

Abstraction hierarchy tree overlaps with state/transition hierarchy tree as a ho-

mology abstraction can be a state or a transition. Same goes for the incomplete

abstraction. Multiple inheritance does not pose an additional problem at the

interface level but concrete implementors should implement state/transition tree

as the main inheritance tree and implement abstraction specific calls at the leafs.

Abstraction implementations should use AbstractionInfo directly or by ex-

tending it to delegate common logic to all abstractions in order to avoid code

duplication across abstractions. Although AbstractionInfo uses the same pattern

with PatikaObjectInfo they are separate classes. Thus a HomologyStateInfo has

two info objects both a StateInfo and a HomologyInfo.

6.4 Services

So far we have covered how the data was modeled within the system and the

general layer design. However there are other services which are needed to satisfy

the requirements that were previously listed. Other than the data specified in

OWL and its accessor methods, model implementations provide several extra

services.

CHAPTER 6. ONTOLOGY IMPLEMENTATION 64

6.4.1 Validation

Although OWL also provides its own validation facilities, some Patika con-

straints can not be specified by OWL, and also it is quite impractical to use

OWL at performance critical points such as the server side. Therefore all model

implementations provide a check method to check model invariants and model

validity specified by the ontology. Model invariants are constraints that needs to

be satisfied between any two atomic edit operations, e.g. every edge must have a

source and a target node. Validity constraints are those that needs to be satisfied

before a user’s changes are submitted to the database. Check methods return an

error log when they find a constraint violation, which can be used for debugging,

user-feedback and logging.

6.4.2 Graph Traversal

PATIKA nodes support an interface for some graph traversal operations, like

neighborhood fetching. Definition of adjacency can depend on the user prefer-

ences. For example, a user may or may not want to traverse over the members

of a reached homology state for a certain shortest path query. Patika model

implements a visitor pattern for abstracting such traversal options from the ac-

tual query algorithms such as shortest path. Each Patika node provide methods

for specifying traversal policy and for providing lists of adjacent nodes, owner

abstractions, equivalent states etc. upon being visited by an algorithm.

6.4.3 Field Querying

Patika Graph interface provides two methods for querying its contents. findByPid

method returns the PatikaObject with the given PID. findByField method pro-

vides a facility for retrieving the contents of the graph via an SQL like query.

At different levels different query implementations exist. DB level converts the

query into Hibernate queries where S level sports a simple querying system of its

own.

CHAPTER 6. ONTOLOGY IMPLEMENTATION 65

Once a query result is obtained as a set of Patika Objects, one often wants to

find the minimal valid subgraph that contains all the query results. This opera-

tion is called excising and is also provided by model implementations. PATIKA

nodes support an interface for some graph traversal operations, like neighborhood

fetching. Algorithm classes are highly encouraged to use this interface when they

need those operations.

6.4.4 Graph traversal

How to traverse a Patika graph depends on the user preferences. For example

when you reach a homology state you may want the query to assume that it also

reached all member states of this homology state. Or you may not want this

behavior. One can specify these traversal options, with different flags:

• linkComplexToMember

• linkMemberToComplex

• linkMembersOfComplex

• linkHomologyStateToMember

• linkMemberToHomologyState

• linkMembersOfHomologyState

• linkHomologyTransitionToMember

• linkMemberToHomologyTransition

• linkMembersOfHomologyTransition

• linkIncompleteStateToMember

• linkMemberToIncompleteState

• linkMembersOfIncompleteState

CHAPTER 6. ONTOLOGY IMPLEMENTATION 66

• linkIncompleteTransitionToMember

• linkMemberToIncompleteTransition

• linkMembersOfIncompleteTransition

• traverseUbique

Each link may be considered as edges for traversal whose distance is 0. For

example if linkMembersOfIncompleteState is true, then the traversal behaves if

there is an edge between members of an incomplete state, whose distance is 0. So,

reaching any of them means reaching all of them. The last option, traverseUbique,

determines if the ubique states will be traversed or not. If not, then there would

be no neighbor of a ubique to traverse.

At the general node level, just a simple neighborhood operation is supported,

that do not consider any traversal option. The method getNeighbors is supported

by any Patika Node, with a direction parameter which can be upstream, don-

wstream or both. Bond edges are not considered and product edges are always

traversed if encountered. Other types of edges are subject to edge type parame-

ter. This may be a specific type (e.g. substrate) or general type (e.g. mechanistic

interaction). The neighbors are collected into the parameter collection, result. If

null is sent, then a new collection is created by the method and returned.

At the mechanistic node level, one may want to find all owner abstractions

that explicitly or implicitly contain this node, i.e. owner abstractions and their

owner abstractions and so on. Method getParentAbstractionsRecursive supports

this. Only abstractions that match the abstraction type parameter are considered

and further navigated, similar to edge type parameter.

Using the traversal options, one can ask the equivalent states of a state

or a transition, i.e. states/transitions that have 0 distance edges from this

state/transition. This is provided by the getEquivalentStates and getEquivalent-

Transitions respectively.

CHAPTER 6. ONTOLOGY IMPLEMENTATION 67

6.4.5 Integration Support

All Patika Objects provide several flags and services that are needed by the

submission subsystem.

• Modified: This flag is used to track whether the object was modified by the

user. Depending on the factory method that was used to create the object (

false for createXXX methods, true for createNewXXX methods) the flag is

set to the proper value. At the client side this flag is set to true, whenever

the user performed an edit on the object. Furthermore to avoid accidental

edits, the user is warned and asked to confirm their edit operation. This

flag is set to false whenever the object was updated from the database (

clean copy). On the server side this object is set to true only as a result of

submission, and set to false whenever the submission is successful and the

object is updated in the database and its version increased. This way the

submission manager can cleverly minimize the work done for submission

checks, as there is no need to check unmodified objects or commit them to

the database.

• Removed: Whenever a user wants to remove an object from the database,

it schedules it for removal. On the software side this is tracked by the

removed flag. Upon a successful submission these objects are removed from

the database.

6.4.6 Excision support

Not all subgraphs of a Patika graph is valid. Some Patika objects depend

on other objects for being valid, the latter being called a prerequisite of the

former. Some example dependency relations are:

– All interactions must have their sources and targets in the view, and

if both its source and target is in the view, so must the interaction.

– Each transition must have all of its substrates and products in the view.

Although effectors are optional. A transition with missing substrates

CHAPTER 6. ONTOLOGY IMPLEMENTATION 68

and products is wrong, in the sense that it clearly violated chemical

paradigm. On the other hand leaving out effectors makes it simply

partial.

– All states must have their bioentity in the graph.

– All complexes must have their complexes member states in the graph

and vice versa.

– All abstractions must have their members in the graph. The reverse

does not hold.

All Patika objects know and can provide a list of their prerequisites.

Chapter 7

System Implementation

This chapter gives an overview of the Patika tools. It then proceeds to explain

design and implementation of several components, with the focus being on com-

ponents that were based on or complimenting the ontology. Finally we discuss

how these components in turn affected the ontology itself.

7.1 System Overview

Patika software contains a server side component which provides web services

for persistence, querying and integration and two clients for serving different use

cases. All clients talk with the server using the same XML based interface over

HTPP. Patikapro is the heavy client, which is a Java application aimed at users

whose primary use case is to edit or extensively analyze the data. On the other

hand, Patikaweb is targeted for users who are more interested in read-only access

to the database for rapid knowledge-acquisition.

7.1.1 Patika Server

A component diagram for Patika Server was given in Figure 7.1.

69

CHAPTER 7. SYSTEM IMPLEMENTATION 70

Underlying container is Tomcat1, although server can also be configured to

run on a J2EE server and a JTA datasource, if a clustered environment is needed.

Hibernate2 is the current ORM tool, but it is pretty much isolated using a

DAO pattern7.2, so it should be possible to migrate to any other ORM easily,

including JDO and iBatis, or simply JDBC. Hibernate is a powerful, high perfor-

mance object/relational persistence and query service for Java. Hibernate allows

developing persistent objects using plain old Java classes and relations - includ-

ing association, inheritance, polymorphism, composition and the Java collections

framework.

Spring3 is a layered Java/J2EE framework, providing several commonly oc-

curing structures in J2EE servers. Spring framework is used for three things:

Implementing the IoC pattern for a modular server design, a flexible MVC and

managing and isolating Hibernate. Spring layers and how they interact with other

server components is given in Figure 7.3.

Of particular importance is how the transaction demarcation and session

structure is handled with this architecture. Most of the low-level short-term con-

currency is handled by the underlying database. It is database’s responsibility to

ensure that two concurrent transactions are serializable; i.e. their outcomes are

same as if they were not concurrent. This transaction level logic is pretty much

abstract and well thought. However RDMS does not give us any guarantee on

the order of the serial schedule. Thus it is our responsibility to ensure that work

between transactions does not depend on each other. As for transaction handling,

each method that needs to be in a transaction context is defined declaratively in

a Spring context XML definition. A typical declaration looks like

<prop key="get*">PROPAGATION_MANDATORY, readOnly</prop>

which defines that all methods of this class starting with get must always be

called from a transactional context, and can not modify the DB. Any violation of

1http://www.jakarta.org/tomcat
2http://www.hibernate.org
3http://www.springframework.org

CHAPTER 7. SYSTEM IMPLEMENTATION 71

Figure 7.1: Major server side components and their deployment

CHAPTER 7. SYSTEM IMPLEMENTATION 72

Figure 7.2: DAO pattern allows decoupling business logic from the persistence
aspects

Figure 7.3: Server components within spring framework. Cross cutting concerns,
such as transaction damarcation is done via AOP.

CHAPTER 7. SYSTEM IMPLEMENTATION 73

these constraints results in a run-time exception. These are implemented using

run time class enhancement based on AOP Alliance interface. More interesting

things occur when we use a declaration like

<prop key="query*">PROPAGATION_REQUIRED,readOnly</prop>

which means that if this method is called from a non-transactional context,

Spring first opens a new transaction, otherwise it uses the existing transaction.

Transactions are closed when the opening method is closed and comitted. You

can throw certain exceptions to rollback and cancel the transaction.

Accessor graph methods are propagation mandatory, which means that they

do not open and close the transactions, but require to be called from within

a transaction context. On the other hand QueryController’s query method is

propagation required. Each call to query method is an abstraction of Hibernate

session, which in turn is an abstraction of a JDBC transaction. Accessor graph

serves as the viewpoint of the underlying graph. A user can perform a large

number of operations on the accessor graph. Finally the user returns the query

method which closes and commits the transaction. This whole process is a single

transaction from database point of view and therefore atomic.

Handling of session cache, versioning and similar aspects are handled using

this session structure and similar declarative AOP based strategies. This way

persistence related code is minimized in the implementation. For example a

graph traversal algorithm is unaware of the fact that it is actually opening a

transaction when first accessing the database and closing it after the algorithm

has returned. Similarly accessing the neighbors of a node is done transparently,

where Hibernate tracks database status and runs SQL queries for bringing up

objects that are not currently in the cache from the database. All mapping

definitions with the only exception of implemented bean interface is specified in

separate xml files, decoupling the business logic from persistence.

Current Patika database contains 62568 records, which was obtained by inte-

grating several data sources including Entrez-Gene [53], UniProt [7], HPRD [66]

CHAPTER 7. SYSTEM IMPLEMENTATION 74

and Reactome [39].

7.1.2 Clients

Patika has two different clients, Patikaweb and Patikapro. Overall architec-

ture of these clients are fairly similar, the only difference in their modus operandi

is the Patikaweb has a three-tier architecture, where the most editor operations

are done on the so-called bridge, whereas Patikapro sports a plain two-tier ar-

chitecture, where all editor operations are done a heavy Java application. Mostly

due to keep the client thin and high performant, Patikaweb provides only read-

access to the database and does not allow users to modify queried models.

Clients provide full graph editor functionality such as do/undo, zoom, move

etc. On top of it boasts a multiple view framework where different subgraphs

of underlying subject graph is visualized in different windows, allowing user to

effectively manage and compare their view ports. An automated layout algorithm

[23] which can handle both compartment constraints and compound graphs nicely

is provided to effectively visualize these views. Finally user can associate the given

graph with external data such as a microarray experiment. Example screen shots

from both Patikapro and Patikawebis provided in Figure 7.4 and 7.5.

The architecture of the clients are quite complicated and are beyond the scope

of this thesis.

7.2 Query subsystem

Querying component of Patikapro aims to provide users with a strong yet easy

to use tool for retrieving and analyzing pathway graphs. Queries in Patika can

be very complicated and have their little subsystem worth mentioning,

In the query scenario server receives an http request to the query URL. Servlet

CHAPTER 7. SYSTEM IMPLEMENTATION 75

Figure 7.4: A screenshot of Patikapro.

CHAPTER 7. SYSTEM IMPLEMENTATION 76

Figure 7.5: A screenshot of Patikaweb.

CHAPTER 7. SYSTEM IMPLEMENTATION 77

reads the query in the XML format, dispatches correct controller which in turn un-

marshals Query type objects from the XML and runs them against the database.

All queries return a set of Patika objects and some query specific result data e.g.

in the case of k-shortest paths a set of lists describing paths found. However a

set of Patika objects does not necessarily reflect a consistent view. The minimal

consistent subgraph of the database containing the set is determined and copied

into a DBPatikaGraph, forming a model. This model is marshaled into XML

and finally the XML is sent back to the client. On the client side the graph is

unmarshaled from XML. Already existing objects are detected, their version is

checked and if outdated they are updated, new objects are merged to the model.

The resulting view is incrementally laid out.

Patika query component has several layers as follows.

7.2.1 Query Interface

As the queries in Patikapro will be constructed according to user needs, a user

interface layer works in client side to get the inputs of queries from user. This

layer allows the user to select the type, inputs and other query-specific attributes

from a dialog. When the query result is found (client side query) or taken from

Query Proxy (server side query), this layer is responsible of retrieval of the query

result to the user (see the analysis report).

7.2.2 Query Proxy

As some queries run in server side, the constructed queries with the help of Query

Dialog should be sent to the main server to be evaluated. At those times, the

queries are converted to XML format (i.e. marshaled) and sent to the main

server from client computers. Query Proxy component is responsible from this

operation. When the query is evaluated in server side and the result of the query

is received from the server, Query Proxy makes the reverse operation and converts

the XML data to its original form. When the operation is completed, it sends

CHAPTER 7. SYSTEM IMPLEMENTATION 78

the query result to Query Interface.

7.2.3 Query Controller

Query Controller works in server side and is responsible for evaluating the queries

that come from client side. To achieve this, it first converts the XML formatted

query to its original form (i.e. unmarshalls it) and then creates a Query object

using the parameters. When the query result is found, it converts the result to

XML format and sends to Query Proxy.

7.2.4 Query

Query is the object constructed by client or server side that contains all the

information (i.e. type, running environment, predicates, etc.) about the query

created by the user.

7.2.5 Query Algorithms

Query Algorithms are needed for evaluation of queries. As the query types, input

parameters and evaluation criteria change from query to query, query algorithm

design and implementations differ between them. So, there exist different algo-

rithms for query evaluation. One exception is that Field Queries do not need any

Query Algorithm objects; they are straightforward and evaluated directly using

the graph model in client side or server side.

Every query can also receive result of another query as input. In this context,

it is possible to create nested queries, which provides querying also according

to non primitive fields. For example, by using nested field queries, users can

inquire ComplexMemberStates whose BioEntities have name something. In that

example, the inner primitive field query, returns bioentities according to their

names. An overview of class relations are given in Figure 7.6.

CHAPTER 7. SYSTEM IMPLEMENTATION 79

Figure 7.6: An overview of query class relations. Not all algorithmic queries are
shown for brevity.

7.2.6 PATIKA Graph Model

The queries of Patikapro run on the graph model in both client and server sides.

If the query will run on view or subject graph, graph model on client side is used

as the environment to run the query. However, if the database will be used as

the environment; the server side graph model is used.

Queries can be grouped into three class, field queries, algorithmic queries and

logical queries. Patika system allows composing and combining them, allowing

a very powerful querying system.

7.2.7 Query by fields of the objects

: These queries are the simplest queries that ask only the object with given field

information. Field queries are composed of clauses and conditions. Clauses are

the structures in which conditions and clauses are conjunct with ORs and ANDs,

using a composite pattern. There are several kinds of conditions.

CHAPTER 7. SYSTEM IMPLEMENTATION 80

• String condition in which it is checked whether a field is equal to the spec-

ified string

• Integer condition in which it is checked whether a field is equal to the

specified integer

• Object condition in which it is checked whether a field is equal to the spec-

ified object. These conditions are not directly created directly by the user,

but it is required to check an object is equal to the result of another query,

like joins in database queries.

from ComplexMemberState where BioEntity =

{ from BioEntity where Name = ? }

The above query written in PatikaFieldQuery language is an example to

an object condition in which a string condition is used as an object. This

query should get ComplexMemberStates of which have BioEntity’s naming

smt.

• List condition in which it is checked whether a field which is a list of some-

thing (integer, string or object) has any specified query. List conditions are

as object conditions have at least one condition inside.

from BioEntity where Names has any ?

The above query is an example to a list condition which consists a string

condition inside. Bioentities has a an array of Names which are simple

strings, a bioentity is chosen if it has any value equal to the specified string

in its Names string.

from Complex where MemberStates has any

{ from ComplexMemberState where BioEntity =

{ from BioEntity where Names has any ? } }

The above query is a list condition query and if one of its MemberStates is

equal to the inner condition (an object condition consist of a list condition

of a string condition), it is chosen. Figure 7.2.7 summarizes the aforemen-

tioned classes.

CHAPTER 7. SYSTEM IMPLEMENTATION 81

Figure 7.7: The class diagram of field query nodes. A composite pattern was
used for arbitrary nesting of query objects.

These strings are then parsed and transformed into several field query ob-

jects. A FieldQueryParser object takes a string and then parses it producing an

abstractSyntaxNode instance (or rather an instance of one of its subclass) which

further may include more clauses and conditions by composition. State diagrams

in Figures 7.8 and 7.9 depicts the details of field query parsing.

Field queries are interpreted differently at server and client side. This is

achieved by making polymorphing calls to PatikaGraph interface. At the client

side iteratively all of the Patika objects should be sent to the evaluate method

of this abstractSyntaxNode one by one, and the list of the ones which return true,

should be returned as the result of the query. A visitor pattern was implemented

to achieve polymorphism between different S-level objects. Client side does not do

anything for the performance, all queries have O(n) time complexity and there is

no query optimizer. On the server side interpretation is even more simple. Since

our Patika Field Query Language is similar but not equal to the Hibernate

Query Language (HQL), conversion from our language to HQL can be done with

little effort. An AbstractSyntaxNode object has an synthesizeHibernateQuery

method, which can do this conversion, then only remains running of this query

via hibernate query, with its full performance benefits.

CHAPTER 7. SYSTEM IMPLEMENTATION 82

Figure 7.8: General state diagram of fieldQueryParser, for parsing the Patika
query languages field queries.

CHAPTER 7. SYSTEM IMPLEMENTATION 83

Figure 7.9: State diagram of the FieldQueryParser, for deciding on which condi-
tion to create. Through composite conditions it is possible to specify arbitrarily
nested object relations.

CHAPTER 7. SYSTEM IMPLEMENTATION 84

7.2.8 Algorithmic (Pathway) queries

These types of queries include mostly the graph theoretic queries and the queries

that ask about the pathway information. Examples include shortest path, k-

neighborhood, or common regulator. Patika query system defines different graph

theoretic queries for different biological problems.

First of all, let’s define the following frequently used terms.

• Path: A path is a non-empty graph P = (V, E) where;

V = n0, n1, , nkE = n0n1, n1n2, , nk−1nk,

where ni are all distinct. n0 and nk are called the end points of path P.

Therefore, we can write P as an ordered set of nodes, as follows

P = n0n1n2nk

Also we will represent paths as sets. In this manner, a path P = V (P, E)

can be represented as V (P) ∪ E(P)

• Incoming and Outgoing Paths: A directed path P is called an incoming

path of node n if P ends at node n. Similarly, a directed path P is called

an outgoing path of node n if P starts with node n. The sets of incoming

and outgoing paths are denoted with In and On respectively.

• A-Path: A-path is a path where one of the end nodes is from set A and no

other nodes and interactions are from set A. Hence P is an A-path iff

V (P) ∩ A = n0 or V (P) ∩ A = nk

We denote the set of all A paths as ΠA.

• A-B Path: Let A and B be set of nodes and interactions, then an A-B path

is a path with one end node is from set A and the other from set B, and no

other node of path is from either set A or B. Hence P is an A-B path iff

V (P) ∩ A = n0 and V (P) ∩B = nk

CHAPTER 7. SYSTEM IMPLEMENTATION 85

or

V (P) ∩ A = nk and V (P) ∩B = n0.

Similarly we denote the set of all A paths as ΠA−B.

• Cycle: If P = n0n1n2nk is a path, then C = P + nkn0 is a cycle. We denote

cycle C as follows

C = n0n1n2nkn0

We denote the set of all cycles on n0 as Γn0

• Positive and Negative Paths: A directed path is called positive iff it con-

tains an even number of inhibitors, and represented with a ⊕. Similarly, a

directed path is called negative iff it contains an odd number of inhibitors

and represented with 	.

• Positive and Negative Feedback: A directed cycle is called positive feedback

iff it contains even number of inhibitors. Similarly, a directed cycle is called

negative feedback iff it contains odd number of inhibitors.

• Metabolic Path: A directed path is called to be metabolic iff it does not

contain any activators and inhibitors. A metabolic path is represented with

�.

Following are the list of defined pathway/algorithmic queries in the Patika

system. For each query type, we give a formal definition and their biological

significance.

Shortest Path between two Sets

This query returns paths between two sets, or paths starting from source set and

ending at target set. Hence, this query results in a set of paths with the following

property:

SP (A, B) =
{
p | p ∈ Π(A−B), | p |≤| q | ∀q ∈ ΠA−B

}

CHAPTER 7. SYSTEM IMPLEMENTATION 86

Note that a user can also specify the sign of the path. For the positive case

resulting in such a condition:

SP⊕(A, B) =
{
p | p ∈ Π⊕(A−B), | p |≤| q | ∀q ∈ Π⊕A−B

}
and vice versa for the negative case.

Also there is an upper limit on the number of the paths that is to be returned.

This acts as a safe guard as occasionally there might be combinatorially many

paths.

Biological Significance: It is commonly accepted that graph theoretic distance

of two nodes is correlated with their functional distance. This argument is a long

one and is beyond the scope of this document. But to put it simply it has three

basis:

• In a small-world graph evolved with node duplication events (most biolog-

ical networks, including reaction networks fall into this category), graph

theoretic distance correlates with evolutionary distance.

• Shorter the graph theoretic distance between two nodes, more likely that

they are co-regulated, because there are less (control) reactions between

them.

• Evolutionarily a very long path with many redundant intermediates should

be suboptimal. Intermediates that do not perform control and amplifica-

tion of the signal, are simply unnecessary vulnerable spots reducing the

robustness of the system.

Assuming the above statement is true, and then this query answers the following

questions:

• What are the possible route(s) that this protein governs this process?

• How pathway A and pathway B are linked?

• What is the most possible route for this signal to be transmitted to the

nucleus?

CHAPTER 7. SYSTEM IMPLEMENTATION 87

Positive / Negative Feedback of a Node

This query results in a list of positive (Γ⊕a) or negative cycles (Γ	a) that contain

a specified node.

Biological Significance: Feedback loops are an important apparatus used by

cellular networks. They can have signal amplifying or stabilizing roles. This

query answers questions like:

• How is the concentration of this molecule stabilized?

• How this signal gets amplified?

k-Neighborhood of a Node Set

This query returns all the edges and nodes which are in the specified distance, k,

to the specified objects. This query results in a set N, where

Nk(A) = A ∪ {x | ∃p ∈ ΠA, x ∈ p}

Biological Significance: This query again relies on the graph theoretic argument

above, but takes a different point of view. It finds out objects that are closest to

the given target(s), thus returns a functional neighborhood. This query answers

questions like:

• In which pathways does my protein take part in?

• With which states does this molecule interact with?

• What are the other actors taking part in this process?

• Which proteins catalyze this reaction?

CHAPTER 7. SYSTEM IMPLEMENTATION 88

Positive/Negative Upstream and Downstream

A positive 1-upstream of a node is the first node on the incoming path which also

activates the preceding transition of that node. Similarly, a kth positive upstream

is the kth node that behaves in the same manner. Negative upstream of a node is

composed of the nodes on the incoming path that inhibits the preceding transition

of that node. In downstream case, the nodes following the proceeding transition

of the node is concerned. To give a chemical intuition, positive stream of a node

is the set of nodes that keep the node not to be vanished by reactions. Formally

stating a node s is in the positive upstream of a node t iff:

∃p : p ∈ O⊕
s , p ∈ I⊕t , | p |≤ k

The negative and/or downstream queries are defined similarly.

Biological Significance: Analyzing upstream and downstream nodes of a

molecule is important to be able to retrieve cause/effect relationships, which

are critical in diagnosis or drug design. This query answers questions like:

• What activated this protein?

• Which processes are affected if this gene is knocked down?

• What are the downstream effects of this drug?

Unambiguous Upstream and Downstream

By unambiguous positive upstream of a node n we mean the set of nodes that

have only positive outgoing paths ending at n. And similarly we define the

negative and positive upstream and downstream of a node. Formally, a node s is

in unambiguous upstream of node t iff:

∃p : p ∈ O⊕
s , p ∈ I⊕t , | p |≤ k

and

CHAPTER 7. SYSTEM IMPLEMENTATION 89

6= ∃q : q ∈ O	
s , q ∈ I	t , | q |≤ k

Biological Significance: The result of this query is a subset of the previous one.

However in this query we require that there are no routes with conflicting effects

between the source and target, i.e. all paths are of the same sign. This way we

can say unambiguously that to our best knowledge source affects the target in

this manner.

Common Target and Common Regulator

If node A is starting node of a directed path that end up with node B, then node

B is said to be a target of node A and node A is said to be a regulator of node

B. In this context, common target of a node set S is the set of nodes that are

targets of all nodes in S; similarly the common regulator of a node set S is the

set of nodes that are regulators of all nodes in S. A

Node t is common positive target for set of nodes S iff

∀s ∈ S ∃p : p ∈ O⊕
s , p ∈ I⊕t , | p |≤ k

Biological Importance: This query becomes important when analyzing cor-

related events, like microarray expression levels. It finds common regula-

tors/targets, that can possibly explain observed correlation. This query answers

questions like:

• Why the expression levels of these two genes are correlated?

• Why are the final phenotypes of these two different signals the same?

Graph of Interest

This query is actually like a special version of query that will be mentioned next.

If the same set is given for both input sets, then the result will be the same as

CHAPTER 7. SYSTEM IMPLEMENTATION 90

of this query. This query returns all paths of length at most k between any two

nodes of a specified node set. As in the name of the query, we aim to find a graph

of interested nodes. And we give a parameter k, to limit the size of the resulting

graph.

GoI(A, k) =
⋃ {

p | p, p ∈ O⊕
s , s ∈ A, p ∈ I⊕t , t ∈ A, | p |≤ k,

}
Biological Importance: Although this query does not attempt to answer a specific

question, it allows a quick and easy way for the user the fetch subgraph, that is

potentially most interesting for them based on a set of initial nodes. Compared

to a neighborhood query GOI has the specific advantage of filtering out dangling

subgraphs that is connected to only one ”interest node”. GOI is also useful in

analyzing microarray data as when given a set of correlated genes, it brings in

paths between those genes.

7.2.9 Logical queries

These queries allow performing negation, union and intersection operations on

other query results.

Some algorithms provide the user with extra information, for example a cy-

cle query might return a set of cycles in the form of lists. Query Result class

allows attachment of such information to the result set. This information is then

visualized at the client side. A bridge pattern is used to handle different query

results.

7.2.10 Server Side Query Sequence

Using the parameters taken from the user, through a GUI,the query is con-

structed, converted to a custom XML format and sent to server side by Query

Proxy. In the server side, Query Manager unmarshals the XML and creates a

Query object. Once the query object is created, it is run on database either after

the creation of an appropriate algorithm or directly (if it is a Field Query). The

CHAPTER 7. SYSTEM IMPLEMENTATION 91

result of the query needs to be sent back to client side and same steps are followed

in the reverse order. Query Manager marshals the result of the query into XML

format and sends to Query Proxy. Query Proxy unmarshalls the query result and

passes the query result to the Query Interface.

7.3 Model Integration and Concurrency

Although not directly a part of ontology, model integration is nevertheless an

ontology issue. Patika assumes a distributed collaborative environment where

scientists put together a model similar to putting together pieces of a puzzle.

In the submission scenario, a user makes several modifications to the objects

queried from server and/or creates new objects, and decides to submit these

changes to the database, to be integrated with the rest of the model. Server re-

ceives an http request to submission url. Servlet reads the submission in the XML

format, dispatches correct controller which in turn unmarshals a Submission ob-

ject. Users id and access rights is checked and if passed submission is processed.

A submission manager is called which performs several checks. In validity check

common ontology invariants are checked to verify that the submitted model is in

fact valid. Although this check is also done by the Patika client before submis-

sion, it is only safe to have it double checked. In version check submitted objects

are checked for being up-to-date to avoid concurrency conflicts. In orphan checks

it is ensured that objects scheduled for deletion does not invalidate ontological

invariants. Finally duplicate checks determine if there is a suspiciously similar

object in the database and warns user to avoid redundant duplications. If these

checks are successfully passed the submission is accepted for validation. Initial

XML is persisted as a file, and the submission is sent to an expert. The expert

then examines and validates the model, acting as a scientific arbiter. Finally the

submission is merged to the database. In trusted environments, such as a local

server at a research lab, it is possible to skip this validation step.

Patika system tracks the version of each object. Additionally a modified flag

CHAPTER 7. SYSTEM IMPLEMENTATION 92

is set to true whenever a user edits an object. Finally a removed flag is set if the

object is scheduled for removal.

7.3.1 Identity and Versioning

Every Patika object has a unique identification object called PID (Patika identi-

fication), which keeps track of the ID and the version of the object. A PID comes

in two types, local and global. When an object is first created, editor assigns it

an ID using an incrementing scheme. The version is set to 0. When this object

is first committed to the database, a new ID is issued, and the version is set to

1. After this point we call this ID global. When an object with a global ID is

submitted to the database, its version is incremented by 1. In a Patika graph,

all local ID s are unique among other local IDs, and all global IDs are unique

among other global IDs.

One should notice that assigning an ID and version alone does not solve

all identity and redundancy problems. For most bioentities, responsibilities for

object identity and non-redundancy is delegated to the source database. For

example we assume that two genes with different Entrez-Gene IDs are actually

different entities, and we also assume that the granularity of the Entrez-Gene is

actually satisfying for all users, i.e. no user will need to divide DNA bioentities

imported from Entrez-Gene. They are atomic for the current paradigm. This is

obviously a strong statement, however it is the only viable and feasible option if

we are hoping to integrate different models, and should be acceptable for most

use-cases, if not all.

As for the other Patika objects, unfortunately there is nothing we can dele-

gate to. Patika employs several mechanisms to minimize duplicate objects. For

example when a user wants to create a state of a protein, a query based on the

owner entity is sent to the server, it is first presented the existing states of this

protein in the database. Upon reviewing these if they figure that the state they

have in mind is already defined in the database, they can simply retrieve this from

the database instead of creating a duplicate. As a second measure if a state’s all

CHAPTER 7. SYSTEM IMPLEMENTATION 93

entity variables are same with an existing state, duplicate check at the server side

fails and user is asked to first fix this (either by replacing the duplicate entry

with the existing one, or providing the variable that makes this state a new one),

Similarly transitions with exact state/product set is not allowed. However these

checks would miss semantic mistakes. In that case we rely on expert validation

and curation to fix those problems. Although this sounds like rather weak, in

fact creating a duplicate entry is quite difficult in the Patika system and with

sensible curators, it should be extremely rare.

7.3.2 Concurrency

A problem of collaborative systems is to merge user edits. Patika employs a CVS

like logic for handling concurrencies. As for the concurrency scenarios, there are

five events, a user might get an up-to-date copy (checkout), edit its copy (edit),

submit its changes to the database (commit) and update its edited copy with

the latest database version (merge), schedule it for removal from the database

(remove). When multiple users actually perform these actions concurrently, there

can be some conflicts.

When a Patika object is first checked out it is in up-to-date state, if this

object is edited it will pass to the modified state. If a user commits this modified

object, its version in the database is incremented, and all other copies of the

objects in other clients become out-dated. At any time a user might invoke a

checkout to fetch the up-to-date version of the object. If however, the outdated

object is also modified, then we say that it is in conflict state. Now instead

of checkout, which will simply override user changes and bring it to up-to-date

state, user can also perform a merge, which will semi-automatically merge changes

between two copies and bring it to modified state. Patika provides facilities

for querying the state of the current objects and performing various operations.

Figure 7.10 is a screenshot from Patika editor where the concurrency status of

the current objects are highlighted.

CHAPTER 7. SYSTEM IMPLEMENTATION 94

Figure 7.10: A screenshot of Patika editor where the concurrency status of the
current objects are highlighted, by the show status facility. Blue means the object
is up-to-date, yellow modified, green local and red conflicting

.

An interesting scenario occurs when two users query an object and concur-

rently modify it, and then one of them submits the modified version to the

database. Now the other user has an edit conflict. If that object is queried

again Patika will automatically detect this conflict by checking version numbers

during merge, and then provide an update wizard to allow user to merge its local

changes to the new version in the database.

7.3.3 Orphaning

A problem with the current Patika integration framework rises due to the fact

that each user works on a certain subgraph of the database. This requires that

certain elements are partially represented. For example not all reactions that

a state participates in is brought to the client. Changes, particularly delete

operations, on such elements might lead to consistencies upon merge, even though

the submitted graph is valid by itself. For example removing a Bioentity requires

all of its states to be removed as well. Such inconsistencies are called orphans,

CHAPTER 7. SYSTEM IMPLEMENTATION 95

Figure 7.11: An update wizard allows comparing and merging changes

and are checked and detected by the submission system when a submission is

received. User is asked to retrieve orphaned objects, edit the graph to make

it consistent and resubmit. In the previous example the user can also schedule

states of the bioentity for removal as well to restore validity.

7.3.4 Multiple Levels of Detail

A problem with integration efforts is different parts of the knowledge is known at

different levels of detail. A scenario is given in figure 7.12. Incomplete abstrac-

tions can be used for similar cases for handling multiple levels of detail.

7.4 View Management

A user of the Patika database is interested in a small sub-graph of the actual

network in the database. There are two level of views in the Patika system. Each

Patika client represents a view, fetched by incremental Patika queries. In the

query section, we have already described the scenarios and facilities for retrieving

this subgraph, called the subject graph. However we also need to manage the

views obtained by the queries. Then at the client, there are multiple views of the

subject graph, again subject to same validity conditions.

CHAPTER 7. SYSTEM IMPLEMENTATION 96

Figure 7.12: A simple reaction in the pathway (upper left) is queried (shaded
box) and replaced by the user to include intermediary steps (upper right). How-
ever user might not know whether the inhibitor at the bottom inhibits first or
second step (lower left). A solution to this problem is to allow user to define an
incomplete transition abstraction, and define the inhibition on the abstraction,
allowing multiple levels of detail.

CHAPTER 7. SYSTEM IMPLEMENTATION 97

On the server side these constraints are satisfied with the excision system

where the valid minimal graph is obtained from a given set of nodes by recur-

sively calculating the prerequisites of the objects, by calling the getPrerequisites()

method. Then the expanded object set is retrieved from the database, cloned, in-

serted into a new graph, and the corresponding relations restored, which is again

done polymorphically by bindToPrerequisites() method. The created graph is

then passed to the client, and either replaces subject graph or merged into it.

In the case of a merge, there is still one risk of inconsistency, an interaction be-

tween a node in the existing graph and the merged graph does not necessarily

excised by the server. Although this problem can easily solved by running an

O(n) check on the server, it can sinificantly increase the server traffic as it is a

very frequent operation. Thus for the time being, we are allowing it to happen.

User however can always. update their view, upon which they will receive the

missing interaction.

On the server side things are bit more complicated as view(s) of a subject

graph can be visualized/edited at the same time on different graph windows and

synchronization of the graph objects is an important issue, since the modification

of a view affects the subject, thus affects all other views in the consideration of the

user in the client. The mechanism can be simplified as composed of single subject

and observers depending on this subject. The design for this mechanism is based

on the Observer Pattern, since each view is basically the observer of the subject

graph. To complicate issues more, if two abstractions are overlapping in the view

only one of them can be visualized fully as due to the geometrical constraints. As

an amendment we introduce an alternative method of visualizing abstractions by

drawing a holo around its members. From the user’s point of view an abstraction

can be in four visual states: Hidden, Holo, Collapsed and Expanded. PATIKA

users can change visualization states of abstraction by a given interface. However

programmatically visual state transitions for an abstraction depends on the other

abstractions in the view (Figure 7.13).

CHAPTER 7. SYSTEM IMPLEMENTATION 98

Figure 7.13: A state diagram showing how various Patika operations change
the visualization state of an abstraction. For example if one of the members of
an abstraction is deleted from the view, then it should be also removed from the
view (3), or it can not be visualized other than as a holo, if it has an overlapping
abstraction that is in expanded state (8).

7.5 System and Ontology

So far we argued a certain flow of direction for the design process. From biological

domain to the ontology, from the ontology to the software system. Although this

sounds completely rational, there were many cases where the reverse happened

actually; the requirements of the system dictated the ontology. Below is a list of

several such cases:

1. Incomplete Abstractions

Incomplete abstractions (called blackbox pathways) rarely exist in the bi-

ological literature, as representing multiple levels of detail and incomplete-

ness is not a major requirement for them. Initial Patika ontology only

had one type of abstraction, called a summary back then, but with the

discussion of integration scenarios, it became clear that the semantics of

these summary nodes were way too ambiguous for our needs. We defined

incomplete abstractions to be able to deal with several integration scenarios,

CHAPTER 7. SYSTEM IMPLEMENTATION 99

isolating incompleteness and ambiguity from the rest of the system.

2. Ubique States

The introduction of the ubique states into the ontology was only for ad-

dressing problems that were created by high degree nodes, in analysis and

visualization. Although we have foreseen this problem much earlier, their

proper implementation was postponed until we started migrating actual

data from Reactome and hit the problems in laying them out and querying

them.

After their introduction, however ubiques needed another refinement in the

ontology based on ubique membership in abstractions. This was because

they broke one of the invariances of the abstraction visualization system. A

deeper analysis revealed that in fact the semantics of having a disconnected

ubique in an abstraction was not clear, and should be best not allowed.

3. Homology Abstraction Semantics

Again problem with homology abstraction semantics arise as a result of

abstraction visualization efforts. Similar to the ubique case, we realized

that we needed a more strong mapping between the owner and owned ab-

stractions and thus have added the additional restrictions detailed in the

ontology chapter.

4. View Validity

First concerns related to the view validity arise when we were designing the

query subsystem of the first version of the Patika editor, quickly we real-

ized the need for an excision system and added the view validity constraints

to the ontology.

5. State Variables

Previously state variables were described using a less formal system. The

need for detecting the duplicate states was the first motivation for formal-

izing state variables with further subclasses and control vocabularies.

CHAPTER 7. SYSTEM IMPLEMENTATION 100

As the above examples clearly indicates there is in fact a strong coupling be-

tween the software development process and the ontology. The software system

is not merely a testing ground for the ontology, it has its own set of problems,

which more than often better delegated to the ontology. It also clarifies the min-

imal information that are needed to perform various goals such as integration or

visualization.

Chapter 8

Discussion

8.1 Why a new ontology?

By the time Patika project started, there were no real ontology for modeling

cellular processes at the level of mechanism, i.e. a network of biochemical reac-

tions, that can possibly cover major signal transduction pathways. One might

question the need for developing a new ontology. After all there were very good

ontologies for chemical reactions, interaction data and metabolic pathways. In

which ways signal transduction pathways are different?

Mechanistic representation requires additional detail that can not be covered

by existing ontologies. Chemical reactions have no concept of entity and compart-

ments, Interaction ontologies are defined only at the entity level and metabolic

pathways separates substrate/product set clearly from the enzyme set, a feature

that is most needed for signal transduction pathways.

Mechanistic level representation often requires an interpretation of the exper-

imental data and can not be produced in a high-throughput manner. Still we

strongly believe that the advantage is obvious; well defined, high detail ontology

allows integration of different experimental findings and reasoning over them.

However, in reality a quick overview of human curated metabolic and signaling

101

CHAPTER 8. DISCUSSION 102

pathway databases employing this representation system reveals a different pic-

ture. Although all of them are based on chemical paradigm, there are different

extensions in their ontologies, and sometimes these can be quite ambiguous in

their semantics. This is especially the case for signaling pathway databases.We

believe that the main reason behind this proliferation and divergence is the failure

of the chemical paradigm to model biological systems.

Most of the deficiency in covering mechanism of signal transduction was due

to lack of state-bioentity duality. In a very short time, several different research

groups, including ours [83, 75, 22] published ontologies containing very similar

state concepts. Several other concepts including abstractions emerged at the

same time. Our ontology was first to bring issues such as formal state definitions

via state variables, incomplete and homology abstractions, transition function

classifications, cell models etc. and show that it can actually work by developing

a platform based on it.

We strongly believe that Patika ontology have influenced several other

projects as well, including Reactome [39] and BioPAX [18].

8.2 Simulation vs. Pathway Reconstruction

There are two major use cases for a pathway modeling system, simulation and

pathway reconstruction.

A simulation use case has two major ultimate goals, ability to represent an

observed temporal aspect, and ability to predict. Although not an absolute ne-

cessity, most simulation systems are based on quantitative models. Parameters

of this reaction needs to be determined. If this data is experimentally available

(whether the experimentally available, reduced in vitro data is acceptable is an-

other issue) then one can talk about a system that can predict the outcome of a

system given an initial condition. That data is most often missing. What hap-

pens is that scientists employ different steady state assumptions to come up with

constants such that the system successfully displays the same phenotype with

CHAPTER 8. DISCUSSION 103

the subject at hand, effectively covering the temporal information. However, one

should be careful that these predicted constants are strictly context dependent,

and different quantitative models are hard to integrate. Even with a predic-

tive system, one need to come up with virtual constants that specify the system

boundaries. For example many metabolic systems assume a constant concentra-

tion of ATP or glucose. These artificial constraints exist, since we are modeling a

subsystem and we need to artificially isolate it from the rest of the system. It is

ok though, for the requirements of this system, since the simulation is consistent

within itself.

These constants however has one major drawback. It is virtually impossible

to integrate two such models, since scaling of the constants between models is

arbitrary and there is no naive policy to implement to ensure correct scaling

of the constants during model creation time. Pathway reconstruction systems

such as Patika let go of the simulation ability to provide increased coverage

and integrability. Such systems are always qualitative. They can not represent

temporal aspects, and has very limited predictive power. However we expect that

once the underlying graph topology is reconstructed, one can use it to create and

integrate quantitative models.

8.3 Public Standard Development Efforts and

Patika Ontology

A survey of several ontologies that can cover signaling pathways easily reveals

that, due to aforementioned divergence in semantics and ontology terms, stan-

dardization is of critical importance. Table 8.1 gives an overview of naming

clashes between ontologies. Semantic clashes, which are much more serious, are

as frequent as naming clashes.

There are several efforts for developing a standard representation system for

pathways. Based on two major use cases, simulation and pathway reconstruction,

two major efforts are prominent on the scene, SBML and BioPAX respectively.

CHAPTER 8. DISCUSSION 104

BioPAX Patika aMaze INOH Reactome SBML 2
Physical
Entity

Bio Entity Physical
Entity

Reference
Entity

Reference
Entity

–

State State Bio Entity State Physical
Entity

Species

Physical
Entity
Participant

Interaction Input/
Output

Input/
Output/
Controller

Input/
Output

Species
Reference

Interaction Transition Bioevent Process/
Event

Event Reaction

State Vari-
able

Bioentity
Variable

State Biological
Attribute

- -

Table 8.1: A comparison of naming of different ontologies. Note that several
terms clash with each other.

The Systems Biology Markup Language (SBML) is a machine-readable format

for describing qualitative and quantitative models of biochemical networks. It

can also be used to express the interactions of biochemical networks with other

phenomena. The emphasis in SBML is on supporting quantitative models. Major

differences between SBML and Patika ontology are:

• the lack of entities and entity level representation. Each state in SBML,

called a specie is a separate molecule. Therefore there are no semantic rela-

tion between cytoplasmic Ca and Extracellular Ca in an SBML model. Sim-

ilarly one can not represent entity level interaction information in SBML.

• the ability to represent quantitative models, SBML’s focus is not on model

integration.

• unstructured cell model. Each compartment in SBML is a bag, where

Patika compartments are aware of their neighbors.

• no abstraction facilities. Abstractions, by definition are qualitative struc-

tures, and can not be simulated, so SBML does not contain them.

The goal of the BioPAX group is to develop a common exchange format

for biological pathways data. Since BioPAX’s concentration is much more on

CHAPTER 8. DISCUSSION 105

pathway reconstruction, it is much more similar to Patika ontology compared

to SBML. Major differences between BioPAX and Patika ontology are:

• the lack of states. Current BioPAX definition considers each participant of

a reaction as a separate state of a molecule, but there is no way to represent

if two participants are actually the same state.

• the make use of modulation class. Instead of directly defining activators and

inhibitors of a transition, BioPAX make use of a separate class called modu-

lation, which then modulates the reaction. This addresses some of the open

issues we mentioned at Ontology chapter related to defining cumulative or

multiplicative effects of effectors and transition rules.

• abstraction facilities for only representing pathways, analogous to Patikaś

regular abstractions. No ability to represent incomplete information, mul-

tiple levels of detail and homology.

We are actively involved in the BioPAX, and have contributed significantly

to the state subgroup and cell models. Starting from Level 3 (current release is

level 2) BioPAX will cover most of Patika structures including states and cell

models, allowing import and export of BioPAX models to Patika format with

minimal information loss.

Currently we have exporters for converting Patika models to BioPAX and

SBML. However the inverse is not true, since BioPAX and SBML models are

relatively more loose and may not contain information that are mandatory for

Patika models, such as a cell model or entity-state relationships.

8.4 Future Directions

We have listed a bunch of open issues that are still waiting to be addressed. Of

all, generic entities pose the most challenging obstacle, and also have the utmost

priority due to their omnipresence in cellular pathways. They are particularly

CHAPTER 8. DISCUSSION 106

important for Patika since we are importing large amounts of data from Reac-

tome and losing quite an important bit of it because we can not cover generic

entities in Reactome. To a lesser extent, modeling chromosome structure can

also provide a significant amount of coverage, allowing importing and integrating

data from transcriptional regulation databases.

Patika is ongoing project with several subprojects. The requirements of these

subprojects affect and are affected by the ontology. They will definitely provide

new use cases and requirements for the ontology, which will lead to new additions

and improvements to the ontology.

Some very recent ontology changes were resulted from the data integration

efforts from external databases. We have identified points where we are incom-

patible and improved our ontology accordingly. As we will add more and more

data sources ontology will be also refined to fit and cover them. In a similar

manner new high-throughput techniques will create new data sources and types

that needs to be fitted into the system.

8.5 Conclusion

We have described an ontology for modeling cellular processes. The ontology

provides novel structures and facilities for describing phenomena and aspects such

as entity-state relations, homologies, compartments and incomplete information.

Based on this ontology we have built an integrated system for modeling processes,

and developed methods for visualizing, analyzing and integrating them. The

system itself also acts as a proof of concept for the ontology, as it shows that the

Patika ontology can be used feasibly to model quite a large amount of cellular

processes in biological literature today with minimal information loss.

Today we are witnessing an accelerating progress toward a standardized on-

tology for cellular processes, and concept that was first proposed by Patika

ontology, are being converged and adopted by such efforts. We are hoping to

contribute to the field in the future as well.

Bibliography

[1] G. Ackers, A. Johnson, and M. Shea. Quantitative model for gene regulation

by lambda phage repressor. Proc Natl Acad Sci U S A, 79(4):1129–33, Feb

1982.

[2] A. Al-Chalabi, P. M. Andersen, P. Nilsson, B. Chioza, J. L. Andersson,

C. Russ, C. E. Shaw, J. F. Powell, and P. N. Leigh. Deletions of the heavy

neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet,

8(2):157–164, Feb 1999.

[3] C. Alfarano, C. Andrade, K. Anthony, N. Bahroos, M. Bajec, K. Bantoft,

D. Betel, B. Bobechko, K. Boutilier, E. Burgess, K. Buzadzija, R. Cavero,

C. D’Abreo, I. Donaldson, D. Dorairajoo, M. Dumontier, M. Dumontier,

V. Earles, R. Farrall, H. Feldman, E. Garderman, Y. Gong, R. Gonzaga,

V. Grytsan, E. Gryz, V. Gu, E. Haldorsen, A. Halupa, R. Haw, A. Hrvojic,

L. Hurrell, R. Isserlin, F. Jack, F. Juma, A. Khan, T. Kon, S. Konopinsky,

V. Le, E. Lee, S. Ling, M. Magidin, J. Moniakis, J. Montojo, S. Moore,

B. Muskat, I. Ng, J. Paraiso, B. Parker, G. Pintilie, R. Pirone, J. Salama,

S. Sgro, T. Shan, Y. Shu, J. Siew, D. Skinner, K. Snyder, R. Stasiuk,

D. Strumpf, B. Tuekam, S. Tao, Z. Wang, M. White, R. Willis, C. Wolt-

ing, S. Wong, A. Wrong, C. Xin, R. Yao, B. Yates, S. Zhang, K. Zheng,

T. Pawson, B. F. F. Ouellette, and C. W. V. Hogue. The Biomolecular In-

teraction Network Database and related tools 2005 update. Nucleic Acids

Res, 33(Database issue):D418–24, Jan 2005.

[4] J. Allen, H. M. Davey, D. Broadhurst, J. K. Heald, J. J. Rowland, S. G.

Oliver, and D. B. Kell. High-throughput classification of yeast mutants for

107

BIBLIOGRAPHY 108

functional genomics using metabolic footprinting. Nat Biotechnol, 21(6):692–

6, Jun 2003.

[5] A. A. Aravin, M. S. Klenov, V. V. Vagin, F. Bantignies, G. Cavalli, and V. A.

Gvozdev. Dissection of a natural RNA silencing process in the Drosophila

melanogaster germ line. Mol Cell Biol, 24(15):6742–6750, Aug 2004.

[6] M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler, J. Cherry, A. Davis,

K. Dolinski, S. Dwight, J. Eppig, M. Harris, D. Hill, L. Issel-Tarver,

A. Kasarskis, S. Lewis, J. Matese, J. Richardson, M. Ringwald, G. Rubin,

and G. Sherlock. Gene ontology: tool for the unification of biology. The

Gene Ontology Consortium. Nat Genet, 25(1):25–9, May 2000.

[7] A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro,

E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale,

C. O’Donovan, N. Redaschi, and L.-S. L. Yeh. The Universal Protein Re-

source (UniProt). Nucleic Acids Res, 33(Database issue):D154–9, Jan 2005.

[8] U. S. Bhalla. The chemical organization of signaling interactions. Bioinfor-

matics, 18(6):855–863, Jun 2002.

[9] U. S. Bhalla. Temporal computation by synaptic signaling pathways. J

Chem Neuroanat, 26(2):81–86, Oct 2003.

[10] U. S. Bhalla. Models of cell signaling pathways. Curr Opin Genet Dev,

14(4):375–381, Aug 2004.

[11] U. S. Bhalla. Signaling in small subcellular volumes. I. Stochastic and diffu-

sion effects on individual pathways. Biophys J, 87(2):733–744, Aug 2004.

[12] U. S. Bhalla and R. Iyengar. Robustness of the bistable behavior of a bio-

logical signaling feedback loop. Chaos, 11(1):221–226, Mar 2001.

[13] L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kondev,

T. Kuhlman, and R. Phillips. Transcriptional regulation by the numbers:

applications. Curr Opin Genet Dev, 15(2):125–35, Apr 2005.

BIBLIOGRAPHY 109

[14] L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kondev, and

R. Phillips. Transcriptional regulation by the numbers: models. Curr Opin

Genet Dev, 15(2):116–124, Apr 2005.

[15] A. Blais and B. D. Dynlacht. Devising transcriptional regulatory networks

operating during the cell cycle and differentiation using ChIP-on-chip. Chro-

mosome Res, 13(3):275–288, 2005.

[16] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek. BioNet-

Gen: software for rule-based modeling of signal transduction based on the

interactions of molecular domains. Bioinformatics, 20(17):3289–3291, Nov

2004.

[17] K. R. Brown and I. Jurisica. Online predicted human interaction database.

Bioinformatics, 21(9):2076–82, May 2005.

[18] M. P. Cary, G. D. Bader, and C. Sander. Pathway information for systems

biology. FEBS Lett, 579(8):1815–20, Mar 2005.

[19] N. committee of the international union of biochemistry and molecular bi-

ology (NC-IUBMB). Enzyme Supplement 5 (1999). Eur J Biochem,

264(2):610–50, Sep 1999.

[20] N. N. Danial and S. J. Korsmeyer. Cell death: critical control points. Cell,

116(2):205–219, Jan 2004.

[21] E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, A. Ayaz, G. Gulesir, G. Ni-

sanci, and R. Cetin-Atalay. An ontology for collaborative construction and

analysis of cellular pathways. Bioinformatics, 20(3):349–56, Feb 2004.

[22] E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, G. Nisanci, R. Cetin-Atalay,

and M. Ozturk. PATIKA: an integrated visual environment for collaborative

construction and analysis of cellular pathways. Bioinformatics, 18(7):996–

1003, Jul 2002.

[23] U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir. A layout

algorithm for undirected compound graphs. Submitted for Publication, 2005.

BIBLIOGRAPHY 110

[24] A. Fire, S. Xu, M. Montgomery, S. Kostas, S. Driver, and C. Mello. Potent

and specific genetic interference by double-stranded RNA in Caenorhabditis

elegans. Nature, 391(6669):806–11, Feb 1998.

[25] N. Friedman. Inferring cellular networks using probabilistic graphical models.

Science, 303(5659):799–805, Feb 2004.

[26] K. Fukuda and T. Takagi. Knowledge representation of signal transduction

pathways. Bioinformatics, 17(9):829–37, Sep 2001.

[27] K. I. Fukuda, Y. Yamagata, and T. Takagi. FREX: a query interface for

biological processes with hierarchical and recursive structures. In Silico Biol,

4(1):63–79, 2004.

[28] A.-C. Gavin, M. B?sche, R. Krause, P. Grandi, M. Marzioch, A. Bauer,

J. Schultz, J. M. Rick, A.-M. Michon, C.-M. Cruciat, M. Remor, C. H?fert,

M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hu-

dak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse,

C. Leutwein, M.-A. Heurtier, R. R. Copley, A. Edelmann, E. Querfurth,

V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin,

B. Kuster, G. Neubauer, and G. Superti-Furga. Functional organization of

the yeast proteome by systematic analysis of protein complexes. Nature,

415(6868):141–7, Jan 2002.

[29] D. Hanahan and R. Weinberg. The hallmarks of cancer. Cell, 100(1):57–70,

Jan 2000.

[30] M. Harris, J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foulger, K. Eil-

beck, S. Lewis, B. Marshall, C. Mungall, J. Richter, G. Rubin, J. Blake,

C. Bult, M. Dolan, H. Drabkin, J. Eppig, D. Hill, L. Ni, M. Ringwald,

R. Balakrishnan, J. Cherry, K. Christie, M. Costanzo, S. Dwight, S. Engel,

D. Fisk, J. Hirschman, E. Hong, R. Nash, A. Sethuraman, C. Theesfeld,

D. Botstein, K. Dolinski, B. Feierbach, T. Berardini, S. Mundodi, S. Rhee,

R. Apweiler, D. Barrell, E. Camon, E. Dimmer, V. Lee, R. Chisholm,

P. Gaudet, W. Kibbe, R. Kishore, E. Schwarz, P. Sternberg, M. Gwinn,

L. Hannick, J. Wortman, M. Berriman, V. Wood, N. de la Cruz, P. Tonellato,

BIBLIOGRAPHY 111

P. Jaiswal, T. Seigfried, R. White, and G. O. Consortium. The Gene Ontol-

ogy (GO) database and informatics resource. Nucleic Acids Res, 32(Database

issue):D258–61, Jan 2004.

[31] H. L. Heine, H. S. Leong, F. M. V. Rossi, B. M. McManus, and T. J. Podor.

Strategies of conditional gene expression in myocardium: an overview. Meth-

ods Mol Med, 112:109–154, 2005.

[32] Y. Ho, A. Gruhler, A. Heilbut, G. D. Bader, L. Moore, S.-L. Adams, A. Mil-

lar, P. Taylor, K. Bennett, K. Boutilier, L. Yang, C. Wolting, I. Donaldson,

S. Schandorff, J. Shewnarane, M. Vo, J. Taggart, M. Goudreault, B. Muskat,

C. Alfarano, D. Dewar, Z. Lin, K. Michalickova, A. R. Willems, H. Sassi,

P. A. Nielsen, K. J. Rasmussen, J. R. Andersen, L. E. Johansen, L. H.

Hansen, H. Jespersen, A. Podtelejnikov, E. Nielsen, J. Crawford, V. Poulsen,

B. D. S?rensen, J. Matthiesen, R. C. Hendrickson, F. Gleeson, T. Pawson,

M. F. Moran, D. Durocher, M. Mann, C. W. V. Hogue, D. Figeys, and

M. Tyers. Systematic identification of protein complexes in Saccharomyces

cerevisiae by mass spectrometry. Nature, 415(6868):180–3, Jan 2002.

[33] L. Hood and D. Galas. The digital code of DNA. Nature, 421(6921):444–448,

Jan 2003.

[34] L. Hood, J. R. Heath, M. E. Phelps, and B. Lin. Systems biology and

new technologies enable predictive and preventative medicine. Science,

306(5696):640–643, Oct 2004.

[35] M. Hucka, A. Finney, H. Sauro, H. Bolouri, J. Doyle, H. Kitano, A. Arkin,

B. Bornstein, D. Bray, A. Cornish-Bowden, A. Cuellar, S. Dronov, E. Gilles,

M. Ginkel, V. Gor, I. Goryanin, W. Hedley, T. Hodgman, J.-H. Hofmeyr,

P. Hunter, N. Juty, J. Kasberger, A. Kremling, U. Kummer, N. L. Novre,

L. Loew, D. Lucio, P. Mendes, E. Minch, E. Mjolsness, Y. Nakayama, M. Nel-

son, P. Nielsen, T. Sakurada, J. Schaff, B. Shapiro, T. Shimizu, H. Spence,

J. Stelling, K. Takahashi, M. Tomita, J. Wagner, J. Wang, and S. Forum.

The systems biology markup language (SBML): a medium for representation

and exchange of biochemical network models. Bioinformatics, 19(4):524–31,

Mar 2003.

BIBLIOGRAPHY 112

[36] N. Ishii, M. Robert, Y. Nakayama, A. Kanai, and M. Tomita. Toward large-

scale modeling of the microbial cell for computer simulation. J Biotechnol,

113(1-3):281–294, Sep 2004.

[37] F. JACOB and J. MONOD. Genetic regulatory mechanisms in the synthesis

of proteins. J Mol Biol, 3:318–56, Jun 1961.

[38] H. Jeong, S. Mason, A. Barab?si, and Z. Oltvai. Lethality and centrality in

protein networks. Nature, 411(6833):41–2, May 2001.

[39] G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D’Eustachio, E. Schmidt,

B. de Bono, B. Jassal, G. Gopinath, G. Wu, L. Matthews, S. Lewis, E. Birney,

and L. Stein. Reactome: a knowledgebase of biological pathways. Nucleic

Acids Res, 33(Database issue):D428–32, Jan 2005.

[40] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The

KEGG resource for deciphering the genome. Nucleic Acids Res, 32(Database

issue):D277–80, Jan 2004.

[41] P. D. Karp, S. Paley, C. J. Krieger, and P. Zhang. An evidence ontology for

use in pathway/genome databases. Pac Symp Biocomput, pages 190–201,

2004.

[42] P. D. Karp, S. Paley, and P. Romero. The Pathway Tools software. Bioin-

formatics, 18 Suppl 1:S225–S232, 2002.

[43] S. A. Kauffman. The Origins of Order: Self-Organization and Selection in

Evolution. Oxford Universty Press, 1993.

[44] A. Kaufman. Obtaining a functional pathway description from multi-

knockout data. In 7th BioPathways Meeting at ISMB 2005, 2005.

[45] J. D. Keene and P. J. Lager. Post-transcriptional operons and regulons co-

ordinating gene expression. Chromosome Res, 13(3):327–337, 2005.

[46] I. M. Keseler, J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T.

Paulsen, M. Peralta-Gil, and P. D. Karp. EcoCyc: a comprehensive database

resource for Escherichia coli. Nucleic Acids Res, 33(Database issue):D334–

D337, Jan 2005.

BIBLIOGRAPHY 113

[47] S. Y. Kim, S. Imoto, and S. Miyano. Inferring gene networks from time

series microarray data using dynamic Bayesian networks. Brief Bioinform,

4(3):228–35, Sep 2003.

[48] M. Krull, N. Voss, C. Choi, S. Pistor, A. Potapov, and E. Wingender.

TRANSPATH: an integrated database on signal transduction and a tool

for array analysis. Nucleic Acids Res, 31(1):97–100, Jan 2003.

[49] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber,

N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger,

E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J.-

B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young.

Transcriptional regulatory networks in Saccharomyces cerevisiae. Science,

298(5594):799–804, Oct 2002.

[50] C. Lemer, E. Antezana, F. Couche, F. Fays, X. Santolaria, R. Janky, Y. Dev-

ille, J. Richelle, and S. J. Wodak. The aMAZE LightBench: a web interface

to a relational database of cellular processes. Nucleic Acids Res, 32(Database

issue):D443–D448, Jan 2004.

[51] H. Li, J. Li, S. Tan, and S. Ng. Discovery of binding motif pairs from protein

complex structural data and protein interaction sequence data. Pac Symp

Biocomput, pages 312–23, 2004.

[52] D. F. Lusche, K. Bezares-Roder, K. Happle, and C. Schlatterer. cAMP

controls cytosolic Ca2+ levels in Dictyostelium discoideum. BMC Cell Biol,

6(1):12, Mar 2005.

[53] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova. Entrez Gene: gene-

centered information at NCBI. Nucleic Acids Res, 33(Database issue):D54–8,

Jan 2005.

[54] T. Maniatis and R. Reed. An extensive network of coupling among gene

expression machines. Nature, 416(6880):499–506, Apr 2002.

[55] V. D. Marinescu, I. S. Kohane, and A. Riva. The MAPPER database: a

multi-genome catalog of putative transcription factor binding sites. Nucleic

Acids Res, 33(Database issue):D91–7, Jan 2005.

BIBLIOGRAPHY 114

[56] V. Matys, E. Fricke, R. Geffers, E. Gssling, M. Haubrock, R. Hehl,

K. Hornischer, D. Karas, A. Kel, O. Kel-Margoulis, D.-U. Kloos, S. Land,

B. Lewicki-Potapov, H. Michael, R. Mnch, I. Reuter, S. Rotert, H. Saxel,

M. Scheer, S. Thiele, and E. Wingender. TRANSFAC: transcriptional regu-

lation, from patterns to profiles. Nucleic Acids Res, 31(1):374–8, Jan 2003.

[57] M. A. Matzke and J. A. Birchler. RNAi-mediated pathways in the nucleus.

Nat Rev Genet, 6(1):24–35, Jan 2005.

[58] J. R. Miller. The Wnts. Genome Biol, 3(1):REVIEWS3001, 2002.

[59] B. Modrek and C. Lee. A genomic view of alternative splicing. Nat Genet,

30(1):13–19, Jan 2002.

[60] B. Modrek and C. J. Lee. Alternative splicing in the human, mouse and rat

genomes is associated with an increased frequency of exon creation and/or

loss. Nat Genet, 34(2):177–180, Jun 2003.

[61] B. Modrek, A. Resch, C. Grasso, and C. Lee. Genome-wide detection of

alternative splicing in expressed sequences of human genes. Nucleic Acids

Res, 29(13):2850–2859, Jul 2001.

[62] S. H. Munroe. Diversity of antisense regulation in eukaryotes: multiple

mechanisms, emerging patterns. J Cell Biochem, 93(4):664–671, Nov 2004.

[63] J. A. Papin, T. Hunter, B. O. Palsson, and S. Subramaniam. Reconstruction

of cellular signalling networks and analysis of their properties. Nat Rev Mol

Cell Biol, 6(2):99–111, Feb 2005.

[64] T. Pawson and J. D. Scott. Protein phosphorylation in signaling–50 years

and counting. Trends Biochem Sci, 30(6):286–290, Jun 2005.

[65] E. Pennisi. Why do humans have so few genes? Science, 309(5731):80, Jul

2005.

[66] S. Peri, J. D. Navarro, T. Z. Kristiansen, R. Amanchy, V. Surendranath,

B. Muthusamy, T. K. B. Gandhi, K. Chandrika, N. Deshpande, S. Suresh,

BIBLIOGRAPHY 115

B. Rashmi, K. Shanker, N. Padma, V. Niranjan, H. Harsha, N. Tal-

reja, B. Vrushabendra, M. Ramya, A. Yatish, M. Joy, H. Shivashankar,

M. Kavitha, M. Menezes, D. R. Choudhury, N. Ghosh, R. Saravana, S. Chan-

dran, S. Mohan, C. K. Jonnalagadda, C. Prasad, C. Kumar-Sinha, K. S.

Deshpande, and A. Pandey. Human protein reference database as a discovery

resource for proteomics. Nucleic Acids Res, 32(Database issue):D497–501,

Jan 2004.

[67] C. L. Peterson and M.-A. Laniel. Histones and histone modifications. Curr

Biol, 14(14):R546–R551, Jul 2004.

[68] L. Raamsdonk, B. Teusink, D. Broadhurst, N. Zhang, A. Hayes, M. Walsh,

J. Berden, K. Brindle, D. Kell, J. Rowland, H. Westerhoff, K. van Dam,

and S. Oliver. A functional genomics strategy that uses metabolome data to

reveal the phenotype of silent mutations. Nat Biotechnol, 19(1):45–50, Jan

2001.

[69] A. Regev and E. Shapiro. Cells as computation. Nature, 419(6905):343, Sep

2002.

[70] M. S. Rodriguez, C. Dargemont, and F. Stutz. Nuclear export of RNA. Biol

Cell, 96(8):639–655, Oct 2004.

[71] R. G. Roeder. Transcriptional regulation and the role of diverse coactivators

in animal cells. FEBS Lett, 579(4):909–15, Feb 2005.

[72] P. Romero, J. Wagg, M. L. Green, D. Kaiser, M. Krummenacker, and P. D.

Karp. Computational prediction of human metabolic pathways from the

complete human genome. Genome Biol, 6(1):R2, 2005.

[73] G. S. Salvesen and J. M. Abrams. Caspase activation - stepping on the

gas or releasing the brakes? Lessons from humans and flies. Oncogene,

23(16):2774–2784, Apr 2004.

[74] M. Samoilov, S. Plyasunov, and A. P. Arkin. Stochastic amplification and

signaling in enzymatic futile cycles through noise-induced bistability with

oscillations. Proc Natl Acad Sci U S A, 102(7):2310–2315, Feb 2005.

BIBLIOGRAPHY 116

[75] F. Schacherer, C. Choi, U. Gtze, M. Krull, S. Pistor, and E. Wingender.

The TRANSPATH signal transduction database: a knowledge base on signal

transduction networks. Bioinformatics, 17(11):1053–7, Nov 2001.

[76] T. Schlitt and A. Brazma. Modelling gene networks at different organisa-

tional levels. FEBS Lett, 579(8):1859–66, Mar 2005.

[77] F. Schweighoffer, A. Ait-Ikhlef, A. L. Resink, B. Brinkman, D. Melle-

Milovanovic, P. Laurent-Puig, J. Kearsey, and L. Bracco. Qualitative gene

profiling: a novel tool in genomics and in pharmacogenomics that deciphers

messenger RNA isoforms diversity. Pharmacogenomics, 1(2):187–197, May

2000.

[78] E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from pro-

tein interaction and gene expression data. Bioinformatics, 19 Suppl 1:i264–

71, 2003.

[79] B. M. Slepchenko, J. C. Schaff, I. Macara, and L. M. Loew. Quantitative cell

biology with the Virtual Cell. Trends Cell Biol, 13(11):570–576, Nov 2003.

[80] S. Stamm, S. Ben-Ari, I. Rafalska, Y. Tang, Z. Zhang, D. Toiber, T. A.

Thanaraj, and H. Soreq. Function of alternative splicing. Gene, 344:1–20,

Jan 2005.

[81] L. W. Sumner, P. Mendes, and R. A. Dixon. Plant metabolomics: large-scale

phytochemistry in the functional genomics era. Phytochemistry, 62(6):817–

36, Mar 2003.

[82] Y. Tomari and P. D. Zamore. Perspective: machines for RNAi. Genes Dev,

19(5):517–29, Mar 2005.

[83] J. van Helden, A. Naim, C. Lemer, R. Mancuso, M. Eldridge, and S. J.

Wodak. From molecular activities and processes to biological function. Brief

Bioinform, 2(1):81–93, Mar 2001.

[84] J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch, D. Gilbert,

and S. J. Wodak. Representing and analysing molecular and cellular function

using the computer. Biol Chem, 381(9-10):921–935, 2000.

BIBLIOGRAPHY 117

[85] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G.

Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne,

P. Amanatides, R. M. Ballew, D. H. Huson, J. R. Wortman, Q. Zhang, C. D.

Kodira, X. H. Zheng, L. Chen, M. Skupski, G. Subramanian, P. D. Thomas,

J. Zhang, G. L. G. Miklos, C. Nelson, S. Broder, A. G. Clark, J. Nadeau,

V. A. McKusick, N. Zinder, A. J. Levine, R. J. Roberts, M. Simon, C. Slay-

man, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flani-

gan, L. Florea, A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mo-

barry, K. Reinert, K. Remington, J. Abu-Threideh, E. Beasley, K. Biddick,

V. Bonazzi, R. Brandon, M. Cargill, I. Chandramouliswaran, R. Charlab,

K. Chaturvedi, Z. Deng, V. D. Francesco, P. Dunn, K. Eilbeck, C. Evan-

gelista, A. E. Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T. J.

Heiman, M. E. Higgins, R. R. Ji, Z. Ke, K. A. Ketchum, Z. Lai, Y. Lei,

Z. Li, J. Li, Y. Liang, X. Lin, F. Lu, G. V. Merkulov, N. Milshina, H. M.

Moore, A. K. Naik, V. A. Narayan, B. Neelam, D. Nusskern, D. B. Rusch,

S. Salzberg, W. Shao, B. Shue, J. Sun, Z. Wang, A. Wang, X. Wang, J. Wang,

M. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan, W. Zhang,

H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S. Zhu, S. Zhao,

D. Gilbert, S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage,

F. Ali, H. An, A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow,

K. Beeson, D. Busam, A. Carver, A. Center, M. L. Cheng, L. Curry, S. Dana-

her, L. Davenport, R. Desilets, S. Dietz, K. Dodson, L. Doup, S. Ferri-

era, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes, C. Heiner,

S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam, J. Johnson,

F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann, D. May, S. McCaw-

ley, T. McIntosh, I. McMullen, M. Moy, L. Moy, B. Murphy, K. Nelson,

C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon, R. Rodriguez,

Y. H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter, M. Smallwood,

E. Stewart, R. Strong, E. Suh, R. Thomas, N. N. Tint, S. Tse, C. Vech,

G. Wang, J. Wetter, S. Williams, M. Williams, S. Windsor, E. Winn-

Deen, K. Wolfe, J. Zaveri, K. Zaveri, J. F. Abril, R. Guig, M. J. Campbell,

K. V. Sjolander, B. Karlak, A. Kejariwal, H. Mi, B. Lazareva, T. Hatton,

BIBLIOGRAPHY 118

A. Narechania, K. Diemer, A. Muruganujan, N. Guo, S. Sato, V. Bafna, S. Is-

trail, R. Lippert, R. Schwartz, B. Walenz, S. Yooseph, D. Allen, A. Basu,

J. Baxendale, L. Blick, M. Caminha, J. Carnes-Stine, P. Caulk, Y. H. Chi-

ang, M. Coyne, C. Dahlke, A. Mays, M. Dombroski, M. Donnelly, D. Ely,

S. Esparham, C. Fosler, H. Gire, S. Glanowski, K. Glasser, A. Glodek,

M. Gorokhov, K. Graham, B. Gropman, M. Harris, J. Heil, S. Hender-

son, J. Hoover, D. Jennings, C. Jordan, J. Jordan, J. Kasha, L. Kagan,

C. Kraft, A. Levitsky, M. Lewis, X. Liu, J. Lopez, D. Ma, W. Majoros,

J. McDaniel, S. Murphy, M. Newman, T. Nguyen, N. Nguyen, M. Nodell,

S. Pan, J. Peck, M. Peterson, W. Rowe, R. Sanders, J. Scott, M. Simpson,

T. Smith, A. Sprague, T. Stockwell, R. Turner, E. Venter, M. Wang, M. Wen,

D. Wu, M. Wu, A. Xia, A. Zandieh, and X. Zhu. The sequence of the human

genome. Science, 291(5507):1304–1351, Feb 2001.

[86] H. M. Wain, M. J. Lush, F. Ducluzeau, V. K. Khodiyar, and S. Povey.

Genew: the Human Gene Nomenclature Database, 2004 updates. Nucleic

Acids Res, 32(Database issue):D255–7, Jan 2004. Hugo.

[87] I. Xenarios, L. Salwnski, X. J. Duan, P. Higney, S.-M. Kim, and D. Eisen-

berg. DIP, the Database of Interacting Proteins: a research tool for studying

cellular networks of protein interactions. Nucleic Acids Res, 30(1):303–305,

Jan 2002.

[88] X.-J. Yang. Multisite protein modification and intramolecular signaling.

Oncogene, 24(10):1653–1662, Mar 2005.

Appendix A

Owl Definition

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY pat

"http://cs.bilkent.edu.tr/~emek/patika-pro-ontology.owl#" >

]>

<rdf:RDF

xmlns:pat="&pat;"

xmlns:rdf="&rdf;"

xmlns:rdfs="&rdfs;"

xmlns:owl="&owl;"

xmlns:xsd="&xsd;"

xml:base="&pat;"

>

<owl:Ontology rdf:about="">

<rdfs:comment>

This is the ontology for cellular processes,

as used in PATIKA project in OWL format. If

you would like to use any part of this ontology,

please cite Demir, Babur et al 2004.

Visit http://www.patika.org for more information.

PATIKA project is at Bilkent University, Turkey.

All rights reserved, 2003 PATIKA project

</rdfs:comment>

<rdfs:label>Patika Pro Ontology</rdfs:label>

119

APPENDIX A. OWL DEFINITION 120

</owl:Ontology>

<!--**-->

<!--Section: PID -->

<!--**-->

<owl:Class rdf:ID="PID">

<rdfs:comment>

This class represents the primary key for PATIKA objects.

</rdfs:comment>

</owl:Class>

<owl:DatatypeProperty rdf:ID="ID">

<rdfs:domain rdf:resource="#PID"/>

<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="version">

<rdfs:domain rdf:resource="#PID"/>

<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<!--**-->

<!--Section: PatikaObject -->

<!--**-->

<owl:Class rdf:ID="PatikaObject">

<rdfs:comment>This is the root class for the principle

elements of the Patika ontology. </rdfs:comment>

</owl:Class>

<owl:ObjectProperty rdf:ID="uniquePID">

<rdfs:comment>Unique PID of this PATIKA object</rdfs:comment>

<rdfs:domain rdf:resource="#PatikaObject"/>

<rdfs:range rdf:resource="#PID"/>

<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="name">

<rdfs:domain rdf:resource="#PatikaObject"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="description">

<rdfs:domain rdf:resource="#PatikaObject"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

APPENDIX A. OWL DEFINITION 121

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="goTerm">

<rdfs:comment>A GO term associated with this object.</rdfs:comment>

<rdfs:domain rdf:resource="#PatikaObject"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="author">

<rdfs:comment> ID of the author who created this object</rdfs:comment>

<rdfs:domain rdf:resource="#PatikaObject"/>

<rdfs:range rdf:resource="&xsd;int"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

</owl:DatatypeProperty>

<!--**-->

<!--Section 2: Interactions -->

<!--**-->

<owl:Class rdf:ID="Interaction">

<rdfs:comment> Interaction</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#PatikaObject"/>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="targetNode">

<rdfs:comment>Target Node of this interaction</rdfs:comment>

<rdfs:domain rdf:resource="#Interaction"/>

<rdfs:range rdf:resource="#PatikaNode"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<owl:inverseOf rdf:resource="#inEdges"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="sourceNode">

<rdfs:comment>Source Node of this interaction</rdfs:comment>

<rdfs:domain rdf:resource="#Interaction"/>

<rdfs:range rdf:resource="#PatikaNode"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<owl:inverseOf rdf:resource="#outEdges"/>

</owl:ObjectProperty>

<!--**-->

<!--Section 2.1: Mechanistic Interactions -->

<!--**-->

<owl:Class rdf:ID="MechanisticInteraction">

<rdfs:comment>

Mechanistic interactions define relations between mechanistic nodes

at the chemical level of detail.

APPENDIX A. OWL DEFINITION 122

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#Interaction"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#sourceNode"/>

<owl:allValuesFrom rdf:resource="#MechanisticNode"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#targetNode"/>

<owl:allValuesFrom rdf:resource="#MechanisticNode"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="ReactionInteraction">

<rdfs:comment>

Abstract interaction class to define relations between states and

transitions

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#MechanisticInteraction"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="PreTInteraction">

<rdfs:comment>

Abstract interaction class for defining interactions that has a state

as their source and transition as their target.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#ReactionInteraction"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#sourceNode"/>

<owl:allValuesFrom rdf:resource="#State"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#targetNode"/>

<owl:allValuesFrom rdf:resource="#Transition"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

APPENDIX A. OWL DEFINITION 123

<owl:Class rdf:ID="Substrate">

<rdfs:comment>

A substrate relation is a pre transition interaction, which indicates

that the state is consumed by the transition.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#PreTInteraction"/>

</rdfs:subClassOf>

</owl:Class>

<owl:DatatypeProperty rdf:ID="exhaustive">

<rdfs:comment>Indicates whether activation of the target transition

exhausts the substrate</rdfs:comment>

<rdfs:domain rdf:resource="#Substrate"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Activator">

<rdfs:comment>

An activator relation is a pre transition interaction. It describes

the enabling or facilitating of the transition via the source state.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#PreTInteraction"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Inhibitor">

<rdfs:comment>

An inhibitor relation is a pre transition interaction. It describes

the disabling or impeding of the transition via the source state.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#PreTInteraction"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Product">

<rdfs:comment>

A product relation is a directed relation with a transition as its

source and a state as its target. It indicates that the state is

produced by the transition.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#ReactionInteraction"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#sourceNode"/>

APPENDIX A. OWL DEFINITION 124

<owl:allValuesFrom rdf:resource="#Transition"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#targetNode"/>

<owl:allValuesFrom rdf:resource="#State"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Bind">

<rdfs:comment>

A bind relation is an undirected relation with two

complex members as their source and target. It

describes a non-covalent bonding between these two

states. If all binding relations were known for a

complex, then the graph defined by binding relations

and members would be connected.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#MechanisticInteraction"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#sourceNode"/>

<owl:allValuesFrom rdf:resource="#ComplexMemberState"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#targetNode"/>

<owl:allValuesFrom rdf:resource="#ComplexMemberState"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:DatatypeProperty rdf:ID="Stochiometry">

<rdfs:comment>Stochiometry indicates the relative number of

chemicals that are produced/consumed per reaction</rdfs:comment>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Substrate"/>

<owl:Class rdf:about="#Product"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

APPENDIX A. OWL DEFINITION 125

<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<!--**-->

<!--Section 2.1: Bioentity Interactions -->

<!--**-->

<owl:Class rdf:ID="BioentityInteraction">

<rdfs:comment>

Bioentity interactions describe relations between bioentities

but not states. They represent incomplete information, and

always map to one or more mechanistic level interaction,

although latter one might not be identified yet.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#Interaction"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#sourceNode"/>

<owl:allValuesFrom rdf:resource="#BioEntity"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#targetNode"/>

<owl:allValuesFrom rdf:resource="#BioEntity"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="PPI">

<rdfs:comment>

PPI is an undirected relation, indicating that two

proteins are observed to interact with each other in

a Y2H or co-precipitation system, i.e. there is at

least one state of entity A that somehow interacts

with B. One or more mechanistic level relations might

be associated with this entity level relation.

For example a state 1 of protein A might be bound by

protein B, where state 2 of protein A might be bound

and cleaved by B. Even the nature of the chemical

reaction does not necessarily be same/similar.

Compartment information and n-ary relations can not

be captured by PPI. Some sample databases that

contain PPI data include incyte, DIP, BIND, IntAct,

PIM, ProNet and Mint.

</rdfs:comment>

<rdfs:subClassOf>

APPENDIX A. OWL DEFINITION 126

<owl:Class rdf:about="#BioentityInteraction"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Other">

<rdfs:comment>

Other is a reserved for cases that does not fit the other

interaction types, such as literature cooccurence, or

microarray clusters.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#BioentityInteraction"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="GeneticRegulation">

<rdfs:comment>

GR is a directed relation, indicating that at least

one state of source node activates/inhibits expression

of at least one DNA state of the target. Although there

is combinatorial information on GR, we are yet to

incorporate this to our ontology. Some sample databases

that contain GR data include Transfac, RegulonDB and ooTFD.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#BioentityInteraction"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Derived">

<rdfs:comment>

Derived is an undirected relation derived from mechanistic graph.

</rdfs:comment>

<rdfs:subClassOf>

<owl:Class rdf:about="#BioentityInteraction"/>

</rdfs:subClassOf>

</owl:Class>

<!--**-->

<!--Section: Patika Node -->

<!--**-->

<owl:Class rdf:ID="PatikaNode">

<rdfs:subClassOf>

<owl:Class rdf:about="#PatikaObject"/>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="inEdges">

<rdfs:comment>Interactions coming to this node</rdfs:comment>

APPENDIX A. OWL DEFINITION 127

<rdfs:range rdf:resource="#Interaction"/>

<rdfs:domain rdf:resource="#PatikaNode"/>

<owl:inverseOf rdf:resource="#targetNode"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="outEdges">

<rdfs:comment>Interactions coming to this node</rdfs:comment>

<rdfs:range rdf:resource="#Interaction"/>

<rdfs:domain rdf:resource="#PatikaNode"/>

<owl:inverseOf rdf:resource="#sourceNode"/>

</owl:ObjectProperty>

<!--**-->

<!--Section: Bioentity -->

<!--**-->

<owl:Class rdf:ID="BioEntity">

<rdfs:subClassOf rdf:resource="#PatikaNode"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#inEdges"/>

<owl:allValuesFrom rdf:resource="#BioentityInteraction"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#outEdges"/>

<owl:allValuesFrom rdf:resource="#BioentityInteraction"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="states">

<rdfs:comment>States of this bioentity</rdfs:comment>

<rdfs:range rdf:resource="#SimpleState"/>

<rdfs:domain rdf:resource="#BioeEntity"/>

<owl:inverseOf rdf:resource="#ownerBioEntity"/>

</owl:ObjectProperty>

<!--**-->

<!--Section: Mechanistic Node -->

<!--**-->

<owl:Class rdf:ID="MechanisticNode">

<rdfs:subClassOf rdf:resource="#PatikaNode"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#inEdges"/>

<owl:allValuesFrom rdf:resource="#MechanisticInteraction"/>

APPENDIX A. OWL DEFINITION 128

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#outEdges"/>

<owl:allValuesFrom rdf:resource="#MechanisticInteraction"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="ownerAbstractions">

<rdfs:comment>Abstractions that own this node</rdfs:comment>

<owl:inverseOf rdf:resource="#abstractionMembers"/>

<rdfs:range rdf:resource="#Abstraction"/>

<rdfs:domain rdf:resource="#MechanisticNode"/>

<rdf:type rdf:resource="&owl;TransitiveProperty"/>

</owl:ObjectProperty>

<!--**-->

<!--Section: Abstraction -->

<!--**-->

<owl:Class rdf:ID="Abstraction">

<rdfs:subClassOf rdf:resource="#MechanisticNode"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="abstractionMembers">

<rdfs:domain rdf:resource="#Abstraction"/>

<rdfs:range rdf:resource="#MechanisticNode"/>

<rdf:type rdf:resource="&owl;TransitiveProperty"/>

<owl:inverseOf rdf:resource="#ownerAbstractions"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="RegularAbstraction">

<rdfs:subClassOf rdf:resource="#Abstraction"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#inEdges"/>

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

0

</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#outEdges"/>

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

0

</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

APPENDIX A. OWL DEFINITION 129

</owl:Class>

<owl:Class rdf:ID="IncompleteAbstraction">

<rdfs:subClassOf rdf:resource="#Abstraction"/>

</owl:Class>

<owl:Class rdf:ID="HomologyAbstraction">

<rdfs:subClassOf rdf:resource="#Abstraction"/>

</owl:Class>

<!--**-->

<!--Section: State -->

<!--**-->

<owl:Class rdf:ID="State">

<rdfs:subClassOf rdf:resource="#MechanisticNode"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#outEdges"/>

<owl:allValuesFrom>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#PreTInteraction"/>

<owl:Class rdf:about="#Bind"/>

</owl:unionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#inEdges"/>

<owl:allValuesFrom>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Product"/>

<owl:Class rdf:about="#Bind"/>

</owl:unionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="CompoundState">

<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>

<owl:Class rdf:ID="HomologyState">

APPENDIX A. OWL DEFINITION 130

<rdfs:subClassOf rdf:resource="#HomologyAbstraction"/>

<rdfs:subClassOf rdf:resource="#CompoundState"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#abstractionMembers"/>

<owl:allValuesFrom rdf:resource="#SimpleState"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="IncompleteState">

<rdfs:subClassOf rdf:resource="#IncompleteAbstraction"/>

<rdfs:subClassOf rdf:resource="#CompoundState"/>

</owl:Class>

<owl:Class rdf:ID="Complex">

<rdfs:subClassOf rdf:resource="#CompoundState"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="complexMembers">

<rdfs:domain rdf:resource="#Complex"/>

<rdfs:range rdf:resource="#ComplexMemberState"/>

<owl:inverseOf rdf:resource="#ownerComplex"/>

</owl:ObjectProperty>

<!--**-->

<!--Section: Simple State -->

<!--**-->

<owl:Class rdf:ID="SimpleState">

<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="ownerBioEntity">

<rdfs:comment>Owner bioentity of this state</rdfs:comment>

<rdfs:range rdf:resource="#BioEntity"/>

<rdfs:domain rdf:resource="#SimpleState"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<owl:inverseOf rdf:resource="#states"/>

</owl:ObjectProperty>

<!--**-->

<!--Section: State Variables -->

<!--**-->

<owl:DatatypeProperty rdf:ID="chemicalType">

<rdfs:comment>Chemical type of this state</rdfs:comment>

<rdfs:domain rdf:resource="#SimpleState"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:range>

<owl:DataRange>

<owl:oneOf>

APPENDIX A. OWL DEFINITION 131

<rdf:List>

<rdf:first rdf:datatype="&xsd;string">DNA</rdf:first>

<rdf:rest>

<rdf:List>

<rdf:first rdf:datatype="&xsd;string">RNA</rdf:first>

<rdf:rest>

<rdf:List>

<rdf:first rdf:datatype="&xsd;string">Protein</rdf:first>

<rdf:rest>

<rdf:List>

<rdf:first rdf:datatype="&xsd;string">

Physical Factor

</rdf:first>

<rdf:rest>

<rdf:List>

<rdf:first rdf:datatype="&xsd;string">

Small Molecule

</rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/>

</rdf:List>

</rdf:rest>

</rdf:List>

</rdf:rest>

</rdf:List>

</rdf:rest>

</rdf:List>

</rdf:rest>

</rdf:List>

</owl:oneOf>

</owl:DataRange>

</rdfs:range>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="insideRegion">

<rdfs:comment>The region which this state resides in</rdfs:comment>

<rdfs:range rdf:resource="#Region"/>

<rdfs:domain rdf:resource="#SimpleState"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="dockedMembrane">

<rdfs:comment>The membrane which this state is docked</rdfs:comment>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Membrane"/>

<owl:Class rdf:about="#MembraneSubregion"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

APPENDIX A. OWL DEFINITION 132

<rdfs:domain rdf:resource="#SimpleState"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="ComplexMemberState">

<rdfs:subClassOf rdf:resource="#SimpleState"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="ownerComplex">

<rdfs:domain rdf:resource="#ComplexMemberState"/>

<rdfs:range rdf:resource="#Complex"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<owl:inverseOf rdf:resource="#complexMembers"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="UbiqueState">

<rdfs:subClassOf rdf:resource="#SimpleState"/>

</owl:Class>

<!--**-->

<!--Section: Transition -->

<!--**-->

<owl:Class rdf:ID="Transition">

<rdfs:subClassOf rdf:resource="#MechanisticNode"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#inEdges"/>

<owl:allValuesFrom rdf:resource="#PreTInteraction"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#outEdges"/>

<owl:allValuesFrom rdf:resource="#Product"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="IncompleteTransition">

<rdfs:subClassOf rdf:resource="#IncompleteAbstraction"/>

<rdfs:subClassOf rdf:resource="#Transition"/>

</owl:Class>

<owl:Class rdf:ID="HomologyTransition">

<rdfs:subClassOf rdf:resource="#HomologyAbstraction"/>

<rdfs:subClassOf rdf:resource="#Transition"/>

<rdfs:subClassOf>

<owl:Restriction>

APPENDIX A. OWL DEFINITION 133

<owl:onProperty rdf:resource="#abstractionMembers"/>

<owl:allValuesFrom rdf:resource="#Transition"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<!--**-->

<!--Section: Compartments -->

<!--**-->

<owl:Class rdf:ID="Region">

<rdfs:comment>

A region is a cellular location in its broadest sense

</rdfs:comment>

</owl:Class>

<owl:DatatypeProperty rdf:ID="RegionName">

<rdfs:comment>Name of this region</rdfs:comment>

<rdfs:domain rdf:resource="#Region"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="RegionID">

<rdfs:comment>Unique ID of this region</rdfs:comment>

<rdfs:domain rdf:resource="#Region"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Compartment">

<rdfs:comment>

A compartment is a region with a well defined boundary.

Membranes and membrane enclosed spaces are compartments.

Compartments are neighbor to each other.</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Region"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasSubregion">

<rdfs:domain rdf:resource="#Compartment"/>

<rdfs:range rdf:resource="#Subregion"/>

<owl:inverseOf rdf:resource="#subregionOf"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Membrane">

<rdfs:comment>

A membrane is a compartment, that forms a closed lipid sack.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Compartment"/>

</owl:Class>

APPENDIX A. OWL DEFINITION 134

<owl:ObjectProperty rdf:ID="encapsulates">

<rdfs:comment>

Unique space encapsulated by this membrane.

Encapsulates relation implies neighborhood

</rdfs:comment>

<rdfs:domain rdf:resource="#Membrane"/>

<rdfs:range rdf:resource="#Space"/>

<owl:inverseOf rdf:resource="#encapsulatedBy"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="insideOf">

<rdfs:comment>

Unique space this membrane is insideof.

Insideof relation implies neighborhood

</rdfs:comment>

<rdfs:domain rdf:resource="#Membrane"/>

<rdfs:range rdf:resource="#Space"/>

<owl:inverseOf rdf:resource="#contains"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Space">

<rdfs:comment>

A space is a compartment, encapsulated by a membrane.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Compartment"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="encapsulatedBy">

<rdfs:comment>

Unique compartment encapsulating this membrane.

EncapsulatedBy relation implies neighborhood

</rdfs:comment>

<rdfs:domain rdf:resource="#Space"/>

<rdfs:range rdf:resource="#Membrane"/>

<owl:inverseOf rdf:resource="#encapsulates"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="contains">

<rdfs:comment>

Membranes inside this space. Contains relation implies neighborhood

</rdfs:comment>

<rdfs:domain rdf:resource="#Space"/>

<rdfs:range rdf:resource="#Membrane"/>

<owl:inverseOf rdf:resource="#contains"/>

</owl:ObjectProperty>

APPENDIX A. OWL DEFINITION 135

<owl:Class rdf:ID="Subregion">

<rdfs:comment>

A loosely defined region, must be a subregion of a compartment.

A subregion does not have neighborhood relations but inherits

all neighborhood relations of its compartment.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Region"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="subregionOf">

<rdfs:domain rdf:resource="#Subregion"/>

<rdfs:range rdf:resource="#Compartment"/>

<owl:inverseOf rdf:resource="#hasSubregion"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="MembraneSubregion">

<rdfs:comment>A subregion of a membrane</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Subregion"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#subregionOf"/>

<owl:allValuesFrom rdf:resource="#Membrane"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="SpaceSubregion">

<rdfs:comment>A subregion of a space</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Subregion"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#subregionOf"/>

<owl:allValuesFrom rdf:resource="#Space"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="neighborOf">

<rdfs:comment>

Extra property for defining neighborhoods that does not fit to

inclusion paradigm. e.g. ER

</rdfs:comment>

<rdfs:domain rdf:resource="#Compartment"/>

<rdfs:range rdf:resource="#Compartment"/>

<rdf:type rdf:resource="&owl;SymmetricProperty"/>

</owl:ObjectProperty>

<!--**-->

APPENDIX A. OWL DEFINITION 136

<!--Section: Compartments -->

<!--**-->

</rdf:RDF>

