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ii



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Uğur Güdükbay
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ABSTRACT

PARALLEL SPARSE MATRIX-VECTOR MULTIPLIES
AND ITERATIVE SOLVERS

Bora Uçar

Ph.D. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

August, 2005

Sparse matrix-vector multiply (SpMxV) operations are in the kernel of many

scientific computing applications. Therefore, efficient parallelization of SpMxV

operations is of prime importance to scientific computing community. Previous

works on parallelizing SpMxV operations consider maintaining the load balance

among processors and minimizing the total message volume. We show that the to-

tal message latency (start-up time) may be more important than the total message

volume. We also stress that the maximum message volume and latency handled

by a single processor are important communication cost metrics that should be

minimized. We propose hypergraph models and hypergraph partitioning methods

to minimize these four communication cost metrics in one dimensional and two

dimensional partitioning of sparse matrices. Iterative methods used for solving

linear systems appear to be the most common context in which SpMxV operations

arise. Usually, these iterative methods apply a technique called preconditioning.

Approximate inverse preconditioning—which can be applied to a large class of

unsymmetric and symmetric matrices—replaces an SpMxV operation by a se-

ries of SpMxV operations. That is, a single SpMxV operation is only a piece of a

larger computation in the iterative methods that use approximate inverse precon-

ditioning. In these methods, there are interactions in the form of dependencies

between the successive SpMxV operations. These interactions necessitate parti-

tioning the matrices simultaneously in order to parallelize a full step of the subject

class of iterative methods efficiently. We show that the simultaneous partitioning

requirement gives rise to various matrix partitioning models depending on the

iterative method used. We list the partitioning models for a number of widely

used iterative methods. We propose operations to build a composite hypergraph

by combining the previously proposed hypergraph models and show that par-

titioning the composite hypergraph models addresses the simultaneous matrix

partitioning problem. We strove to demonstrate how the proposed partitioning
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methods—both the one that addresses multiple communication cost metrics and

the other that addresses the simultaneous partitioning problem—help in practice.

We implemented a library and investigated the performances of the partitioning

methods. These practical investigations revealed a problem that we call message

ordering problem. The problem asks how to organize the send operations to min-

imize the completion time of a certain class of parallel programs. We show how

to solve the message ordering problem optimally under reasonable assumptions.

Keywords: Sparse matrices, parallel matrix-vector multiplication, iterative meth-

ods, preconditioning, approximate inverse preconditioner, hypergraph partition-

ing.



ÖZET

PARALEL SEYREK MATRİS-VEKTÖR ÇARPIMI VE

DOLAYLI YÖNTEMLER

Bora Uçar

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Ağustos, 2005

Seyrek matris-vektör çarpımı (MxV) bir çok bilimsel hesaplama uygula-

masının çekirdeğini oluşturmaktadır. Dolayısıyla, MxV çarpımlarının par-

alelleştirilmesi, bilimsel hesaplama çevrelerinin önem verdiği bir konudur. Bu

konuda yapılmış çalışmalar yük dengelemeye ve toplam haberleşme hacmini

azaltmaya odaklanmıştır. Bu tezde, toplam haberleşme sayısının da önemli

olabileceği gösterilmiştir. Ayrıca, işlemcilere düşen en büyük haberleşme

hacminin ve sayısının niceliğinin de önemli olabileceği gösterilmiştir. Bu dört

haberleşme ölçütünün azaltılmasını sağlayacak hiperçizge modelleri ve bu mod-

ellerin bölümlenmesini sağlayacak yöntemler önerilmiştir. Bu önerilen model-

lerin ve yöntemlerin, tek boyutlu ve iki boyutlu matris bölümlendirilmesinde

nasıl kullanılacağı gösterilmiştir. MxV işleminin en çok kullanıldıgı yer lineer

sistem çözümlemelerinde kullanılan dolaylı yöntemlerdir. Bu dolaylı yöntemler

çoğu zaman matris iyileştirme teknikleri kullanırlar. Matrislerin yaklaşık ters-

leriyle iyileştirme tekniği, bir çok simetrik ve simetrik olmayan matris çeşitlerine

uygulanabilen ve çokça kullanılan bir tekniktir. Bu teknik, temel olarak, MxV

işleminin yerine ardışık MxV işlemlerini koyar. Yani, bir MxV işlemi, matrislerin

yaklaşık tersleriyle iyileştirme tekniğini kullanan dolaylı yöntemlerde daha büyük

bir hesaplama işleminin sadece küçük bir parçasıdır. Ardışık MxV çarpımlarının

arasında etkileşim vardır. Bu etkileşimler, verimli paralelleştirme için matris-

lerin bir arada bölümlendirilmesini zorunlu kılmaktadır. Bu tezde, bir arada

bölümlendirmenin, değişik dolaylı yöntemler için değişik matris bölümlendirme

modellerine yol açtıgı gösterilmiştir. Sıkça kullanılan bir çok dolaylı yöntemin

hangi matris bölümlendirme modelleriyle paralelleştirilebileceği gösterilmiştir.

Bu matris bölümlendirme modellerinin elde edilmesini sağlamak için, önceden

önerilmiş hiperçizge modellerini birleştirerek bileşik hiperçizge modelleri geliştiren
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işlemler tanımlanmıştır. Bileşik hiperçizge modellerinin bölümlenmesi ile ma-

trislerin bir arada bölümlendirilebileceği gösterilmiştir. Yukarıda bahsedilen

çalışmaların pratikte işe yarayıp yaramadıklarını görmek için, paralel MxV

işlemini yapan bir program yazdık. Bu programla yaptığımız deneyler sırasında,

daha genel bir paralel program sınıfının çalışma süresinin gönder işlemlerinin

sırasına bağlı olduğunu gördük. En iyi gönder işlemi sırasının bazı varsayımlar

altında nasıl bulunabileceğini gösterdik.

Anahtar sözcükler : Seyrek matrisler, paralel matris-vektör çarpımı, dolaylı

yöntemler, matris iyileştirme, matrislerin yaklaşık tersleriyle iyileştirme,

hiperçizge bölümleme.
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Chapter 1

Introduction

This thesis is devoted to parallelizing sparse matrix-vector multiply (SpMxV)

operations. Parallelization of SpMxV operations is an important problem not

only because these operations abound in scientific computing, but also because

SpMxV operations characterize a wide range of applications which have irregular

computational patterns. An SpMxV can be considered as a reduction operation

from input space to output space. Hence, solving problems arising in the paral-

lelization of SpMxV operations amounts to solving many such problems arising

in a broader context. Besides, the SpMxV operation is a fine-grain computation.

That is, it is hard to achieve satisfactory speedup and scalability in the parallel

SpMxV operations. Therefore, guaranteeing speedup and scalability for SpMxV

will most probably guarantee speedup and scalability in applications that are

similar in nature.

We address the SpMxV parallelization problem in the context of iterative

methods in which SpMxV operations are performed at each iteration. Such

methods are used in so many applications including Google’s PageRank com-

putations [79], image deblurring [75], and linear system solutions [5]. An efficient

parallelization of SpMxV computations requires the distribution of nonzeros of

the input matrix among processors in such a way that the computational loads

of the processors are almost equal and the cost of interprocessor communication

is low. The nonzero distribution can be one dimensional (1D) or two dimensional

1



CHAPTER 1. INTRODUCTION 2

(2D). In 1D rowwise distribution, nonzeros in a row are assigned to the same

processor. Similarly, in 1D columnwise distribution, nonzeros in a column are as-

signed to the same processor. In other words, 1D partitioning approach preserves

the row or column integrities. In 2D distribution, the row or column integrities

are not preserved and the distribution can be done even on a nonzero basis, i.e.,

nonzeros can be assigned to processors arbitrarily.

The standard graph partitioning model has been widely used for 1D partition-

ing of square matrices with symmetric nonzero pattern. This model represents

the SpMxV operation as a weighted undirected graph and partitions the vertices

in such a way that the parts are equally weighted and the total weight of the

edges crossing between the parts is minimized. The partitioning constraint and

objective correspond to, respectively, maintaining the computational load bal-

ance and minimizing the total message volume. In recent works, Çatalyürek and

Aykanat [19, 20], and Hendrickson [49] mentioned the limitations of this stan-

dard approach. First, it tries to minimize a wrong objective function, since the

edge-cut metric does not model the actual communication volume. Second, it

can only express square matrices and produce symmetric partitioning by enforc-

ing identical partitions on the input and output vectors. Symmetric partitioning

is desirable for parallel iterative solvers working on symmetric matrices, because

it avoids the communication of vector entries during the linear vector operations

between the input vectors and output vectors. However, this symmetric parti-

tioning is a limitation for the iterative solvers working on unsymmetric square or

rectangular matrices when the input and output vectors do not undergo linear

vector operations.

Recently, Çatalyürek, Aykanat, and Pınar [3, 20, 21, 82] proposed hypergraph

models for partitioning unsymmetric square and rectangular matrices as well as

symmetric matrices with the flexibility of producing unsymmetric partitions on

the input and output vectors. Hendrickson and Kolda [52] proposed a bipartite

graph model for partitioning rectangular matrices with the same flexibility. A

distinct advantage of the hypergraph model over the bipartite graph model is

that the hypergraph model correctly encodes the total message volume into its

partitioning objective. Several recently proposed alternative partitioning models
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for parallel computing are discussed in the excellent survey by Hendrickson and

Kolda [51]. As noted in the survey, most of the partitioning models mainly con-

sider minimizing the total message volume. However, the communication over-

head is a function of the message latency (start-up time) as well. Depending on

the machine architecture and the problem size, the communication overhead due

to the message latency may be much higher than the overhead due to the message

volume [35]. None of the works, listed in the survey, addresses minimizing the

total message latency. Furthermore, the maximum message volume and latency

handled by a single processor are also crucial cost metrics to be considered in

partitionings. As also noted in the survey [51], new approaches that encapsulate

these four communication-cost metrics are needed. In Chapter 3, we propose a

two phase approach for minimizing these four communication-cost metrics in 1D

partitioning of sparse matrices. The material presented in there appears in the

literature as [99].

The literature on 2D matrix partitioning is rare. The 2D checkerboard par-

titioning approaches proposed in [56, 72, 76] are suitable for dense matrices or

sparse matrices with structured nonzero patterns that are difficult to exploit. In

particular, these approaches do not exploit sparsity to reduce the communication

volume. Çatalyürek and Aykanat [19, 23, 24] proposed hypergraph models for

2D sparse matrix partitionings. In the checkerboard partitioning model, a matrix

is partitioned into row and column blocks. In the jagged-like model, matrix is

first partitioned into row blocks (or column blocks), and then each row block (or

column block) is partitioned into column blocks (or row blocks) independently. In

the fine-grain model, a matrix is partitioned on nonzero basis. Later, Vastenhouw

and Bisseling [105] proposed another 2D partitioning approach. Their approach

partitions the matrix into two rectangular blocks each of which further partitioned

recursively. This approach produces non-Cartesian partitionings. The fine-grain

model is reported to achieve better partitionings than the other models in terms

of the total communication volume metric [23]. However, it also generates worse

partitionings than the other models in terms of the total number of messages

metric [23]. In Chapter 4, we adopt our two phase approach from Chapter 3 to
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minimize the four communication-cost metrics in 2D partitioning of sparse ma-

trices. The work presented in Chapter 4 is independent of the 2D partitioning

model. However, we specifically discuss the fine-grain case, because other 2D

partitioning models reduce the total number of messages implicitly. The work

presented in Chapter 4 appears in the literature as [97].

Usually, iterative methods used for solving linear systems employ precondi-

tioning techniques. Roughly speaking, preconditioning techniques modify the

given linear system to accelerate convergence. Applications of explicit precondi-

tioners in the form of approximate inverses or factored approximate inverses are

amenable to parallelization. Because, these techniques require SpMxV operations

with the approximate inverse or factors of the approximate inverse at each step.

In other words, preconditioned iterative methods perform SpMxV operations with

both coefficient and preconditioner matrices in a step. Therefore, parallelizing a

full step of these methods requires the coefficient and preconditioner matrices to

be well partitioned, e.g., processors’ loads are balanced and communication costs

are low in both multiply operations. To meet this requirement, the coefficient

and preconditioner matrices should be partitioned simultaneously. Simultaneous

partitioning problem is formulated in terms of bipartite graph partitioning [52].

However, the formulation is based on the cut edges and hence has the same short-

coming in capturing the total communication volume. In Chapter 5, we propose

methods to combine previously proposed hypergraph models [21] to build com-

posite hypergraph models for partitioning the preconditioner and coefficient ma-

trices simultaneously. In particular, we show how to use the composite models to

obtain 1D partitions on a matrix and its approximate inverse preconditioner for

efficiently parallelizing a full step in the preconditioned iterative methods. Our

contribution in Chapter 5 is that we extend hypergraph models to obtain simul-

taneous partitionings on more than one matrix with the goals of minimizing the

total communication volume and maintaining the computational load balance.

The work presented in Chapter 5 is submitted to a journal [102].

The SpMxV algorithms that are based on 2D partitionings of the matrices and

the sparse matrix-sparse matrix-vector multiply operations that are performed in

the preconditioned iterative methods possess a common trait. In these operations,
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the computations take place between two irregular communication phases. Such

settings give rise to a problem that we call message ordering problem. In such

cases, the order in which messages are sent affects the completion time of the

parallel programs. We formally define the message ordering problem in Chapter 6

and solve it optimally under reasonable assumptions. The work presented in this

chapter appears in [101].

We have developed a library which provides efficient implementation of Sp-

MxV operations. The library includes subroutines which operate on 1D and 2D

partitioned matrices. The library also provides building blocks of the iterative

methods. The algorithms implemented in the library are fine tuned in order to

overlap communications and computations to the most possible extent. To the

best of our knowledge, none of the publicly available libraries have the same

extent in overlapping computations and communications. The internals of the li-

brary are discussed in Chapter 7. A preliminary version of the material presented

in Chapter 7 appears in [98].



Chapter 2

Preliminaries

In this chapter, we review parallel algorithms for matrix-vector multiplies [52,

95, 98, 99] and summarize the hypergraph partitioning methods [21, 99] which

enable efficient parallelization.

2.1 Parallel SpMxV based on 1D partitioning

Suppose that the rows and columns of an m× n matrix A are permuted into a

K ×K block structure

ABL =



















A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AK1 AK2 · · · AKK



















(2.1)

for rowwise or columnwise partitioning, where K is the number of processors.

Block Akℓ is of size mk × nℓ , where
∑

k mk = m and
∑

ℓ nℓ = n. In rowwise

partitioning, each processor Pk holds the k th row stripe [Ak1 · · ·AkK ] of size

mk×n. In columnwise partitioning, Pk holds the k th column stripe [AT
1k · · ·A

T
Kk]

T

of size m×nk . In rowwise partitioning, the row stripes should have nearly equal

6
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number of nonzeros for having the computational load balance among processors.

The same requirement exists for the column stripes in columnwise partitioning.

2.1.1 Row-parallel algorithm

Consider matrix-vector multiply of the form y ← Ax, where y and x are column

vectors of size m and n, respectively, and the matrix is partitioned rowwise.

A rowwise partition of matrix A defines a partition on the output vector y .

The input vector x is assumed to be partitioned conformably with the column

permutation of matrix A. In particular, y and x vectors are partitioned as

y = [yT
1 · · · y

T
K ]T and x = [xT

1 · · ·x
T
K ]T , where yk and xk are column vectors of

size mk and nk , respectively. That is, processor Pk holds xk and is responsible

for computing yk .

In [52, 86, 87, 95, 99], authors discuss the implementation of parallel SpMxV

operations where the matrix is partitioned rowwise. The common algorithm

executes the following steps at each processor Pk :

1. For each nonzero off-diagonal block Aℓk , send sparse vector x̂ℓ
k to processor

Pℓ , where x̂ℓ
k contains only those entries of xk corresponding to the nonzero

columns in Aℓk .

2. Compute the diagonal block product yk
k = Akk × xk , and set yk = yk

k .

3. For each nonzero off-diagonal block Akℓ , receive x̂k
ℓ from processor Pℓ , then

compute yℓ
k = Akℓ × x̂k

ℓ , and update yk = yk + yℓ
k .

Since the matrix is distributed rowwise, we call the above algorithm row-parallel.

In Step 1, Pk might be sending the same xk -vector entry to different processors

according to the sparsity pattern of the respective column of A. This multicast-

like operation is referred to here as expand operation.
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2.1.2 Column-parallel algorithm

Consider matrix-vector multiply of the form y ← Ax, where y and x are column

vectors of size m and n, respectively, and the matrix A is partitioned colum-

nwise. The columnwise partition of matrix A defines a partition on the input

vector x. The output vector y is assumed to be partitioned conformably with

the row permutation of matrix A. In particular, y and x vectors are partitioned

as y = [yT
1 · · · y

T
K ]T and x = [xT

1 · · ·x
T
K ]T , where yk and xk are column vectors

of size mk and nk , respectively. That is, processor Pk holds xk and is respon-

sible for computing yk . Since the matrix is distributed columnwise, we derive a

column-parallel algorithm for this case. The column-parallel algorithm executes

the following steps at processor Pk :

1. For each nonzero off-diagonal block Aℓk , form sparse vector ŷk
ℓ which con-

tains only those results of yk
ℓ = Aℓk×xk corresponding to the nonzero rows

in Aℓk . Send ŷk
ℓ to processor Pℓ .

2. Compute the diagonal block product yk
k = Akk × xk , and set yk = yk

k .

3. For each nonzero off-diagonal block Akℓ receive partial-result vector ŷℓ
k from

processor Pℓ , and update yk = yk + ŷℓ
k .

The multinode accumulation on the wk -vector entries is referred to here as fold

operation.

2.2 Parallel SpMxV based on 2D partitioning

Consider the matrix-vector multiply of the form y ← Ax, where y and x are

column vectors of size m and n, respectively, and the matrix is partitioned in two

dimensions among K processors. The vectors y and x are partitioned as y =

[yT
1 · · · y

T
K ]T and x = [xT

1 · · ·x
T
K ]T , where yk and xk are column vectors of size mk

and nk , respectively. As before we have
∑

k mk = m and
∑

ℓ nℓ = n. Processor
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Pk holds xk and is responsible for computing yk . Nonzeros of a processor Pk can

be visualized as a sparse matrix Ak

Ak =

























Ak
11 · · · Ak

1k · · · Ak
1K

...
. . .

...
. . .

...

Ak
k1 · · · Ak

kk · · · Ak
kK

...
. . .

...
. . .

...

Ak
K1 · · · Ak

Kk · · · Ak
KK

























(2.2)

of size m × n, where A =
∑

Ak . Here, the blocks in row-block stripe

Ak
k∗ = {Ak

k1, · · · , A
k
kk, · · · , A

k
kK} have row dimension of size mk . Similarly, the

blocks in column-block stripe Ak
∗k = {Ak

1k, · · · , A
k
kk, · · · , A

k
Kk} have column di-

mension of size nk . The x-vector entries that are to be used by processor Pk are

represented as xk = [xk
1, · · · , x

k
k, · · · , x

k
K ], where xk

k corresponds to xk and other

xk
ℓ are belonging to some other processor Pℓ . The y -vector entries that proces-

sor Pk computes partial results for are represented as yk = [yk
1 , · · · , y

k
k , · · · , y

k
K ],

where yk
k corresponds to yk and other yk

ℓ are to be sent to some other processor

Pℓ . Since the parallelism is achieved on nonzero basis rather than complete rows

or columns, we derive a row-column-parallel SpMxV algorithm. This algorithm

executes the following steps at each processor Pk :

1. For each ℓ 6= k having nonzero column-block stripe Aℓ
∗k , send sparse vector

x̂ℓ
k to processor Pℓ , where x̂ℓ

k contains only those entries of xk corresponding

to the nonzero columns in Aℓ
∗k .

2. Compute the column-block stripe product yk = Ak
∗k × xk

k .

3. For each nonzero column-block stripe Ak
∗ℓ , receive x̂k

ℓ from processor Pℓ ,

then compute yk = yk + Ak
∗ℓ × x̂k

ℓ , and set yk = yk
k .

4. For each nonzero row-block stripe Ak
ℓ∗ , form sparse partial-result vector ŷk

ℓ

which contains only those results of yk
ℓ = Ak

ℓ∗ × xk corresponding to the

nonzero rows in Ak
ℓ∗ . Send ŷk

ℓ to processor Pℓ .

5. For each ℓ 6= k having nonzero row-block stripe Aℓ
k∗ receive partial-result

vector ŷℓ
k from processor Pℓ , and update yk = yk + ŷℓ

k .
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2.3 Hypergraph partitioning

A hypergraph H = (V,N ) is defined as a set of vertices V and a set of nets N .

Every net ni is a subset of vertices. The vertices of a net are also called its pins.

The size of a net ni is equal to the number of its pins, i.e., |ni| . The set of nets

that contain vertex vj is denoted by Nets(vj), which is also extended to a set of

vertices appropriately. The degree of a vertex vj is denoted by dj = |Nets(vj)| .

Weights can be associated with vertices. We use w(vj) to denote the weight of

the vertex vj .

Π = {V1, · · · ,VK} is a K -way vertex partition of H = (V,N ) if each part Vk

is non empty, parts are pairwise disjoint, and the union of parts gives V . In Π, a

net is said to connect a part if it has at least one pin in that part. The connectivity

set Λi of a net ni is the set of parts connected by ni . The connectivity λi = |Λi|

of a net ni is the number of parts connected by ni . A net is said to be cut if it

connects more than one part and uncut otherwise. The cut and uncut nets are

also referred to as external and internal nets. In Π, weight of a part is the sum

of the weights of vertices in that part, e.g., w(Vk) =
∑

vj∈Vk
w(vj).

In the hypergraph partitioning problem, the objective is to minimize the cut-

size:

cutsize(Π) =
∑

ni∈N

(λi − 1). (2.3)

This objective function is widely used in the VLSI community [71] and in

the scientific computing community [3, 21, 99], and it is referred to as the

connectivity−1 cutsize metric. The partitioning constraint is to maintain a

balance on part weights, i.e.,

Wmax −Wavg

Wavg

≤ ǫ, (2.4)

where Wmax is the weight of the part with the maximum weight, Wavg is the



CHAPTER 2. PRELIMINARIES 11

average part weight, and ǫ is a predetermined imbalance ratio. This problem is

NP-hard [71].

A recent variant of the above problem is the multi-constraint hypergraph

partitioning problem [19, 24, 65] in which each vertex has a vector of weights

associated with it. In this problem, the partitioning objective is the same as that

given in Eq. 2.3, however, the partitioning constraint is to satisfy a balancing

constraint associated with each weight. Another variant is the multi-objective

hypergraph partitioning [1, 90, 92] in which there are two or more objectives to

be minimized. Specifically, a given net contributes different costs to different

objectives.

The multilevel approach [17, 55] is frequently used in graph and hyper-

graph partitioning tools. The approach consists of three phases: coarsening,

initial partitioning, and uncoarsening. In the first phase, a multilevel cluster-

ing is applied starting from the original graph/hypergraph by adopting vari-

ous matching/clustering heuristics until the number of vertices in the coarsened

graph/hypergraph falls below a predetermined threshold. In the second phase,

a partition is obtained on the coarsest graph/hypergraph using various heuris-

tics. In the third phase, the partition found in the second phase is successively

projected back towards the original graph/hypergraph by refining the projected

partitions on the intermediate level graphs/hypergraphs using various heuristics.

A common refinement heuristic is FM, which is a localized iterative improvement

method proposed for graph/hypergraph bipartitioning by Fiduccia and Matthey-

ses [38] as a faster implementation of the KL algorithm proposed by Kernighan

and Lin [67]. The multilevel paradigm overcame the localized nature of the re-

finement heuristics and led to successful partitioning tools [22, 47, 54, 63, 66].

The multilevel paradigm is also used in addressing the aforementioned variants

of the hypergraph partitioning problem.
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2.4 Hypergraph models for 1D partitioning

It is inherent in the parallel SpMxV algorithms given above and existent in the

literature [21, 51, 52, 99] that in partitioning a matrix the key is to find permuta-

tion matrices P and Q such that most of the nonzeros of the matrix PAQ = ABL

(Eq. 2.1) are in the diagonal blocks. If the matrix is partitioned rowwise, then

the permutation P denotes both the partition on the rows of the matrix and the

partition on the output vector. The permutation Q denotes the partition on the

input vector.

The previously proposed computational hypergraph models [21] find permuta-

tions P and Q by modeling sparse matrices with hypergraphs. In the column-net

hypergraph model, the matrix A is represented as a hypergraph H = (VR,NC)

for rowwise decomposition. Vertex and net sets VR and NC correspond to the

rows and columns of A, respectively. There exist one vertex vi and one net nj

for each row i and column j , respectively. The net nj contains the vertices cor-

responding to the rows that have a nonzero in column j . That is, vi ∈ nj if and

only if aij 6= 0. Each vertex vi corresponds to the atomic task of computing the

inner product of the row i with the column vector x. Hence, the computational

weight associated with the vertex vi is equal to the number of nonzeros in row

i. The nets of H represent the dependency relations of the atomic tasks on the

x-vector entries. Therefore, each net nj denotes the set of atomic tasks that need

xj .

Figure 2.1 shows a matrix and its column-net hypergraph model. In the

figure, the white and black circles represent, respectively, the vertices and nets,

and straight lines show pins. A four-way partition on the hypergraph is shown

by four big circles encompassing the vertices of the hypergraph.

Given a partition Π on a column-net hypergraph H , the permutations P

and Q can be found as follows. The permutation P is completely defined by

the vertex partition. The rows corresponding to the vertices in Vk are mapped

to processor Pk and therefore permuted before the rows corresponding to the

vertices in Vℓ for 1 ≤ k < ℓ ≤ K . In Fig. 2.1, the permutation on the rows of A
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Figure 2.1: A matrix, its column-net hypergraph model, and a four-way rowwise
partitioning.

is shown by the permuted row indices, where the horizontal solid lines separate

row stripes that belong to different processors. There are many ways to define

permutation Q under the partition Π. However, we seek consistent permutations

which map the column j , associated with net nj , into any one of the parts in

Λj . For example, in Fig. 2.1, the net c5 connects the parts P1 , P2 , and P4 .

Therefore, column 5 should be mapped either to the part P1 or P2 or P4 in

any consistent permutation. The figure shows a consistent permutation on the

columns of A, where the vertical dashed lines separate virtual column stripes that

belong to different processors. Once the permutations are found, the rows of the

matrix and the vectors are distributed among the processors as discussed in §2.1.1

and §2.1.2. For example, in Fig. 2.1, the processor P2 is set to be responsible

for computing the inner products of x with the rows 4, 9, and 12 which reside

in the second row stripe. In the figure, P2 holds x4, x5, x7, x9 , and x16 and thus

expands x5 to the processors P1 and P4 . Observe that the net c5 connects the

parts P1 , P2 , and P4 . This association between the connectivity of nets and the

communication requirements is not accidental as shown by the following theorem.

Theorem 2.1 Let Π be a partition on the column-net hypergraph model of a
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given matrix A. Let P be the row permutation induced by the vertex partition Π,

and Q be a consistent column permutation. Then, the cutsize of the partition Π

quantifies the total communication volume in the row-parallel y ← Ax multiply.

Proof. Consider the internal nets. Because of the consistency of the permuta-

tion Q, the x-vector entries associated with these nets are mapped to the unique

processor that needs them. Hence, no communication occurs for the x-vector

entries associated with the internal nets. Consider an external net ne with the

connectivity set Λe . Each processor in the set Λe needs xe . One of them owns

xe as imposed by the consistent permutation Q. The owner should send xe to

each processor in Λe . That is, for each xe there are a total of |Λe| − 1 = λe − 1

messages carrying xe . The overall sum of these quantities matches the cutsize

definition given in Eq. 2.3. Details can be found in [21].

Using Theorem 2.1, it is concluded in [21] that hypergraph partitioning ob-

jective and constraint correspond, respectively, to minimizing the total commu-

nication volume and maintaining the computational load balance. In Fig 2.1, the

cutsize and hence the total communication volume is five words, and the part

weights and hence the computational loads of the processors are 12, 12, 11, and

11.

In [21], the permutation Q is generated by using a policy which maps ni to the

part holding vi . This policy is chosen to generate symmetric partitioning. Note

that if symmetric partitioning is required, then there is no freedom in defining

Q. If, however, unsymmetric partitioning is allowed, it is possible to exploit the

leeway in defining a consistent permutation to achieve several goals. For example,

we [99] exploit the leeway to minimize the total number of messages and to obtain

balance on the communication volume loads of the processors, where these two

metrics are defined in terms of sends. Vastenhouw and Bisseling [105] exploit

the leeway in order to minimize the maximum communication volume load of a

processor defined in terms of sends and receives.

The row-net hypergraph model for sparse matrices [21] can be used to ob-

tain columnwise partitioning on a matrix A. In the row-net model, the vertices
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Figure 2.2: A matrix, its row-net hypergraph model, and a four-way columnwise
partitioning.

and nets represent the columns and rows of A, respectively. Figure 2.2 shows a

matrix and its row-net hypergraph model. Partitioning the row-net hypergraph

minimizes the total communication volume in column-parallel SpMxV and main-

tains balance on the computational loads of the processors through generating

permutation matrices P and Q as before. In this model, Q is completely de-

termined by the vertex partition on the hypergraph, and P is required to be a

consistent permutation. In the figure, the vertical solid lines separate column

stripes, and the horizontal dashed lines separate virtual row stripes that belong

to different processors. The column stripes determine the computational loads of

processors. The virtual row stripes designate which processor will fold on which

y -vector entries. For example, in Fig. 2.2, the processor P2 is set to be responsible

for folding the y -vector entries that correspond to the rows in the second virtual

row stripe. Therefore, the processors P1 and P4 have to send their contribution

for y4 to P2 . Again, there is the same association between the connectivity of the

nets and the total communication volume. In the figure, the cutsize and hence

the total communication volume is five words.



Chapter 3

Communication cost metrics for

1D SpMxV

This chapter addresses the problem of one-dimensional partitioning of structurally

unsymmetric square and rectangular sparse matrices for parallel matrix-vector

and matrix-transpose-vector multiplies. The objective is to minimize the com-

munication cost while maintaining the balance on computational loads of proces-

sors. Most of the existing partitioning models consider only the total message

volume hoping that minimizing this communication-cost metric is likely to re-

duce other metrics. However, the total message latency (start-up time) may be

more important than the total message volume. Furthermore, the maximum

message volume and latency handled by a single processor are also important

metrics. We propose a two-phase approach that encapsulates the minimization

of all these four communication-cost metrics. The objective in the first phase

is to minimize the total message volume while maintaining the computational-

load balance. The objective in the second phase is to encapsulate the remaining

three communication-cost metrics. We propose communication-hypergraph and

partitioning models for the second phase. We then present several methods for

partitioning communication hypergraphs. Experiments on a wide range of test

matrices show that the proposed approach yields very effective partitioning re-

sults. A parallel implementation on a PC cluster verifies that the theoretical

16
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improvements shown by partitioning results hold in practice.

3.1 Introduction

Repeated matrix-vector and matrix-transpose-vector multiplies that involve the

same large, sparse, structurally unsymmetric square or rectangular matrix are the

kernel operations in various iterative algorithms. For example, iterative meth-

ods such as the conjugate gradient normal equation error and residual methods

(CGNE and CGNR) [42, 86] and the standard quasi-minimal residual method

(QMR) [40], used for solving unsymmetric linear systems, require computations

of the form y ← Ax and w ← AT z in each iteration, where A is an unsymmet-

ric square coefficient matrix. The LSQR [80] method, used for solving the least

squares problem, and the Lanczos method [42], used for computing the singular

value decomposition, require frequent computations of the form y ← Ax and

w ← AT z , where A is a rectangular matrix. Iterative methods used in solving

the normal equations that arise in interior point methods for linear programming

require repeated computations of the form y ← AD2AT z , where A is a rectan-

gular constraint matrix and D is a diagonal matrix. Rather than forming the

coefficient matrix AD2AT , which may be quite dense, the above computation

is performed as w ← AT z , x ← D2w and y ← Ax. The surrogate constraint

method [77, 78, 96, 107], which is used for solving the linear feasibility problem,

requires decoupled matrix-vector and matrix-transpose vector multiplies involv-

ing the same rectangular matrix.

In the framework of this chapter, we assume that no computational depen-

dency exists between the input and output vectors x and y of the y ← Ax

multiply. The same assumption applies to the input and output vectors z and

w of the w ← AT z multiply. In some of the above applications, the input vector

of the second multiply is obtained from the output vector of the first one—and

vice versa—through linear vector operations because of intra- and inter-iteration

dependencies. So, linear operations may occur only between the vectors that

belong to the same space. In this setting, w and x are input-space vectors,
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whereas z and y are output-space vectors. These assumptions hold naturally in

some of the above applications that involve a rectangular matrix. Since input-

and output-space vectors are of different dimensions, they cannot undergo linear

vector operations. In the remaining applications, which involve a square matrix,

a computational dependency does not exist between input- and output-space

vectors because of the nature of the underlying method. Our goal is the paral-

lelization of the computations in the above iterative algorithms through rowwise

or columnwise partitioning of matrix A in such a way that the communication

overhead is minimized and the computational-load balance is maintained.

In this chapter, we do not address the efficient parallelization of matrix-vector

multiplies involving more than one matrix with different sparsity patterns. Han-

dling such cases requires simultaneous partitioning of the participating matrices

in a method that considers the complicated interaction among the efficient par-

allelizations of the respective matrix-vector multiplies. The most notable cases

are the preconditioned iterative methods that use an explicit preconditioner such

as an approximate inverse [6, 11, 46] M ≈ A−1 . These methods involve matrix-

vector multiplies with M and A. The present work can be used in such cases

by partitioning matrices independently. However, this approach would suffer

from communication required for reordering the vector entries between the two

matrix-vector multiplies. We address the simultaneous partitioning problem in

Chapter 5.

In this chapter, we propose a two-phase approach for minimizing multiple com-

munication-cost metrics. The objective in the first phase is to minimize the total

message volume while maintaining the computational-load balance. This objec-

tive is achieved through partitioning matrix A within the framework of the exist-

ing 1D matrix partitioning methods. The partitioning obtained in the first phase

is an input to the second phase so that it determines the computational loads of

processors while setting a lower bound on the total message volume. The objec-

tive in the second phase is to encapsulate the remaining three communication-cost

metrics while trying to attain the total message volume bound as much as possi-

ble. The metrics minimized in the second phase are not simple functions of the
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cut edges or hyperedges or vertex weights defined in the existing graph and hy-

pergraph models even in the multi-objective [90] and multi-constraint [64] frame-

works. Besides, these metrics cannot be assessed before a partition is defined.

Hence, we anticipate a two phase approach. Pınar and Hendrickson [83] also

adopt a multiphase approach for handling complex partitioning objectives. Here,

we focus on the second phase and do not go back and forth between the phases.

Therefore, our contribution can be seen as a post-process to the existing parti-

tioning methods. For the second phase, we propose a communication-hypergraph

partitioning model. The vertices of the communication hypergraph, with proper

weighting, represent primitive communication operations, and the nets represent

processors. By partitioning the communication hypergraph into equally weighted

parts such that nets are split among as few vertex parts as possible, the model

maintains the balance on message-volume loads of processors and minimizes the

total message count. The model also enables incorporating the minimization of

the maximum message-count metric.

We present how to perform matrix-vector and matrix-transpose vector multi-

plies with the same coefficient matrix in §3.2 and suggest the reader review the

background material on the parallel matrix-vector multiplies and hypergraph par-

titioning problem given in Chapter 2. The proposed communication-hypergraph

and partitioning models are discussed in §3.3. Section 3.4 presents three methods

for partitioning communication hypergraphs. Experimental results are presented

and discussed in §3.5.

3.2 Background

Recall from Chapter 2 that we permute the rows and columns of an m × n

matrix A into a K ×K block structure
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ABL =



















A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AK1 AK2 · · · AKK



















(3.1)

for rowwise or columnwise partitioning, where K is the number of processors.

Block Akℓ is of size mk × nℓ , where
∑

k mk = m and
∑

ℓ nℓ = n. In rowwise

partitioning, each processor Pk holds the k th row stripe [Ak1 · · ·AkK ] of size mk×

n. In columnwise partitioning, Pk holds the k th column stripe [AT
1k · · ·A

T
Kk]

T of

size m× nk .

3.2.1 Matrix-vector and matrix-transpose-vector multi-

plies

Consider an iterative algorithm involving repeated matrix-vector and matrix-

transpose-vector multiplies of the form y ← Ax and w ← AT z . A rowwise

partition of A induces a columnwise partition of AT . So, the partition on the z

vector defined by the columnwise partition of AT will be conformable with that

on the y vector. That is, z = [zT
1 · · · z

T
K ]T and y = [yT

1 · · · y
T
K ]T , where zk and

yk are both of size mk for k = 1, . . . , K . In a dual manner, the columnwise

permutation of A induces a rowwise permutation of AT . So, the partition on the

w vector induced by the rowwise permutation of AT will be conformable with

that on the x vector. That is, w = [wT
1 · · ·w

T
K ]T and x = [xT

1 · · ·x
T
K ]T , where wk

and xk are both of size nk for k = 1, . . . , K .

We use a column-parallel algorithm for w ← AT z and use the row-parallel

algorithm for y ← Ax thus obtain a row-column-parallel algorithm. In y ← Ax,

processor Pk holds xk and computes yk . In w ← AT z , Pk holds zk and computes

wk .
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(a) (b)

Figure 3.1: 4×4 block structures of a sample matrix A: (a) ABL for row-parallel
y ← Ax and (b) (AT )BL for column-parallel w ← AT z .

3.2.2 Analyzing communication requirements of SpMxV

Here, we restate and summarize the facts given in [20, 52] for the communication

requirement in the row-parallel y ← Ax and column-parallel w ← AT z . We

will use Fig. 3.1 for a better understanding of these facts. Figure 3.1 displays

4 × 4 block structures of a 16 × 26 sample matrix A and its transpose. In

Fig. 3.1(a), horizontal solid lines identify a partition on the rows of A and on

vector y , whereas vertical dashed lines identify virtual column stripes inducing a

partition on vector x. In Fig. 3.1(b), vertical solid lines identify a partition on the

columns of AT and on vector z , whereas horizontal dashed lines identify virtual

row stripes inducing a partition on vector w . The computational-load balance is

maintained by assigning 25, 26, 25, and 25 nonzeros to processors P1, P2, P3 , and

P4 , respectively.

FACT 1 The number of messages sent by processor Pk in row-parallel y ← Ax

is equal to the number of nonzero off-diagonal blocks in the kth virtual column

stripe of A. The volume of messages sent by Pk is equal to the sum of the

number of nonzero columns in each off-diagonal block in the k th virtual column
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stripe.

In Fig 3.1(a), P2 , holding x-vector block x2 = x[8 : 14], sends vector x̂3
2 =

x[12 : 14] to P3 because of nonzero columns 12, 13, and 14 in A32 . P3 needs

those entries to compute y[9], y[10], and y[12]. Similarly, P2 sends x̂4
2 = x[12]

to P4 because of the nonzero column 12 in A42 . So, the number of messages

sent by P2 is 2 with a total volume of 4 words. Note that P2 effectively expands

x[12] to P3 and P4 .

FACT 2 The number of messages sent by processor Pk in column-parallel

w ← AT z is equal to the number of nonzero off-diagonal blocks in the kth col-

umn stripe of AT . The volume of messages sent by Pk is equal to the sum of

the number of nonzero rows in each off-diagonal block in the kth column stripe of

AT .

In Fig. 3.1(b), P3 , holding z -vector block z3 = z[9 : 12], computes the off-

diagonal block products w3
2 = (AT )23 × z3 and w3

4 = (AT )43 × z3 . It then

forms vectors ŵ3
2 and ŵ3

4 to be sent to P2 and P4 , respectively. ŵ3
2 contains

its contribution to w[12 :14] due to the nonzero rows 12, 13, and 14 in (AT )23 .

Accordingly, ŵ3
4 contains its contribution to w[25 : 26] due to the nonzero rows

25 and 26 in (AT )43 . So, P3 sends 2 messages with a total volume of 5 words.

FACT 3 Communication patterns of y ← Ax and w ← AT z multiplies are

duals of each other. If a processor Pk sends a message to Pℓ containing some xk

entries in y ← Ax, then Pℓ sends a message to Pk containing its contributions

to the corresponding wk entries in w ← AT z .

Consider the communication between processors P2 and P3 . In y ← Ax, P2

sends a message to P3 containing x[12 : 14], whereas in w ← AT z , P3 sends a

dual message to P2 containing its contributions to w[12 :14].

FACT 4 The total number of messages in y ← Ax or w ← AT z multiply is

equal to the number of nonzero off-diagonal blocks in A or AT . The total volume
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of messages is equal to the sum of the number of nonzero columns or rows in each

off-diagonal block in A or AT , respectively.

In Figure 3.1, there are 9 nonzero off-diagonal blocks, containing a total of 13

nonzero columns or rows in A or AT . Hence, the total number of messages in

y ← Ax or w ← AT z is 9, and the total volume of messages is 13 words.

3.3 Models for minimizing communication cost

In this section, we present our hypergraph partitioning models for the second

phase of the proposed two-phase approach. We assume that a K -way rowwise

partition of matrix A is obtained in the first phase with the objective of minimiz-

ing the total message volume while maintaining the computational-load balance.

3.3.1 Row-parallel y ← Ax

Let ABL denote a block-structured form (see Eq. 3.1) of A for the given rowwise

partition.

3.3.1.1 Communication-hypergraph model

We identify two sets of columns in ABL : internal and coupling. Internal columns

have nonzeros only in one row stripe. The x-vector entries that are associated

with these columns should be assigned to the respective processors to avoid un-

necessary communication. Coupling columns have nonzeros in more than one row

stripe. The x-vector entries associated with the coupling columns, referred to as

xC , necessitate communication. The proposed approach considers partitioning

these xC -vector entries to reduce the total message count and the maximum

message volume. Consequences of this partitioning on the total message volume

will be addressed in §3.3.4.
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(a) (b) (c)

Figure 3.2: Communication matrices (a) C for row-parallel y ← Ax (b) CT for
column-parallel w ← AT z , and (c) the associated communication hypergraph
and its 4-way partition.

We propose a rowwise compression of ABL to construct a matrix C , referred

to here as the communication matrix, which summarizes the communication re-

quirement of row-parallel y ← Ax. First, for each k = 1, . . . , K , we compress

the k th row stripe into a single row with the sparsity pattern being equal to

the union of the sparsities of all rows in that row stripe. Then, we discard the

internal columns of ABL from the column set of C . Note that a nonzero entry

ckj remains in C if coupling column j has at least one nonzero in the k th row

stripe. Therefore, rows of C correspond to processors in such a way that the

nonzeros in row k identify the subset of xC -vector entries needed by processor

Pk . In other words, nonzeros in column j of C identify the set of processors that

need xC [j]. Since the columns of C correspond to the coupling columns of ABL ,

C has NC = |xC | columns each of which has at least 2 nonzeros. Figure 3.2(a)

illustrates communication matrix C obtained from ABL shown in Fig. 3.1(a).

For example, the 4th row of matrix C has nonzeros in columns 7, 12, 19, 25, and

26 corresponding to the nonzero coupling columns in the 4th row stripe of ABL .

So, these nonzeros summarize the need of processor P4 for xC -vector entries

x[7], x[12], x[19], x[25], and x[26] in row-parallel y ← Ax.

Here, we exploit the row-net hypergraph model for sparse matrix representa-

tion [20, 21] to construct a communication hypergraph from matrix C . In this

model, communication matrix C is represented as a hypergraph HC = (V,N )
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on NC vertices and K nets. Vertex and net sets V and N correspond to the

columns and rows of matrix C , respectively. There exist one vertex vj for each

column j , and one net nk for each row k . So, vertex vj represents xC [j], and

net nk represents processor Pk . Net nk contains vertices corresponding to the

columns that have a nonzero in row k , i.e., vj ∈ nk if and only if ckj 6= 0.

Nets(vj) contains the set of nets corresponding to the rows that have a nonzero

in column j . In the proposed model, each vertex vj corresponds to the atomic

task of expanding xC [j]. Figure 3.2(c) shows the communication hypergraph ob-

tained from the communication matrix C . In this figure, white and black circles

represent, respectively, vertices and nets, and straight lines show the pins of nets.

3.3.1.2 Minimizing total latency and maximum volume

Here, we will show that minimizing the total latency and maintaining the bal-

ance on message-volume loads of processors can be modeled as a hypergraph

partitioning problem on the communication hypergraph. Consider a K -way par-

tition Π = {V1, · · · ,VK} of communication hypergraph HC . Without loss of

generality, we assume that part Vk is assigned to processor Pk for k = 1, . . . , K .

The consistency of the proposed model for accurate representation of the total

latency requirement depends on the condition that each net nk connects part Vk

in Π, i.e., Vk ∈ Λk . We first assume that this condition holds and discuss the

appropriateness of the assumption later in §3.3.4.

Since Π is defined as a partition on the vertex set of HC , it induces a processor

assignment for the atomic expand operations. Assigning vertex vj to part Vℓ is

decoded as assigning the responsibility of expanding xC [j] to processor Pℓ . The

destination set Ej in this expand operation is the set of processors corresponding

to the nets that contain vj except Pℓ , i.e., Ej = Nets(vj) − {Pℓ} . If vj ∈ nℓ ,

then |Ej| = dj−1, otherwise |Ej| = dj . That is, the message-volume requirement

of expanding xC [j] will be dj − 1 or dj words in the former and latter cases.

Here, we prefer to associate a weight of dj − 1 with each vertex vj because

the latter case is expected to be rare in partitionings. In this way, satisfying

the partitioning constraint in Eq. 2.4
(

Wmax−Wavg

Wavg
≤ ǫ

)

relates to maintaining the
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Figure 3.3: Generic communication-hypergraph partitions for showing incom-
ing and outgoing messages of processor Pk in (a) row-parallel y ← Ax, and
(b) column-parallel w ← AT z .

balance on message-volume loads of processors. Here, the message-volume load

of a processor refers to the volume of outgoing messages. We prefer to omit the

incoming volume in considering the message-volume load of a processor with the

assumption that each processor has enough amount of local computation that

overlaps with incoming messages in the network.

Consider a net nk with the connectivity set Λk in partition Π. Let Vℓ be a

part in Λk other than Vk . Also, let vj be a vertex of net nk in Vℓ . Since vj ∈ Vℓ

and vj ∈ nk , processor Pℓ will be sending xC [j] to processor Pk due to the

associated expand assignment. A similar send requirement is incurred by all other

vertices of net nk in Vℓ . That is, the vertices of net nk that lie in Vℓ show that Pℓ

must gather all xC -vector entries corresponding to vertices in nk∩Vℓ into a single

message to be sent to Pk . The size of this message will be |nk∩Vℓ| words. So, a net

nk with the connectivity set Λk shows that Pk will be receiving a message from

each processor in Λk except itself. Hence, a net nk with the connectivity λk shows

λk − 1 messages to be received by Pk because Vk ∈ Λk (due to the consistency

condition). The sum of the connectivity−1 values of all K nets, i.e.,
∑

nk
(λk −

1), will give the total number of messages received. As the total number of

incoming messages is equal to the total number of outgoing messages, minimizing

the objective function in Eq. 2.3
(

cutsize(Π) =
∑

ni∈N
(λi − 1)

)

corresponds to

minimizing the total message latency.
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Figure 3.3(a) shows a partition of a generic communication hypergraph to

clarify the above concepts. The main purpose of the figure is to show the num-

ber rather than the volume of messages, so multiple pins of a net in a part are

contracted into a single pin. Arrows along the pins show the directions of the

communication in the underlying expand operations. Figure 3.3(a) shows proces-

sor Pk receiving messages from processors Pℓ and Pm because net nk connects

parts Vk , Vℓ , and Vm . The figure also shows Pk sending messages to three dif-

ferent processors Ph , Pi , and Pj due to nets nh , ni , and nj connecting part Vk .

Hence, the number of messages sent by Pk is equal to |Nets(Vk)| − 1.

3.3.2 Column-parallel w ← AT z

Let (AT )BL denote a block-structured form (see Eq. 3.1) of AT for the given

rowwise partition of A.

3.3.2.1 Communication-hypergraph model

A communication hypergraph for column-parallel w ← AT z can be obtained

from (AT )BL as follows. We first determine the internal and coupling rows to

form wC , i.e., the w -vector entries that necessitate communication. We then

apply a columnwise compression, similar to that in §3.3.1.1, to obtain commu-

nication matrix CT . Figure 3.2(b) illustrates communication matrix CT ob-

tained from the block structure of (AT )BL shown in Fig. 3.1(b). Finally, we ex-

ploit the column-net hypergraph model for sparse matrix representation [20, 21]

to construct a communication hypergraph from matrix CT . The row-net and

column-net hypergraph models are duals of each other. The column-net repre-

sentation of a matrix is equivalent to the row-net representation of its transpose

and vice versa. Therefore, the resulting communication hypergraph derived from

CT will be topologically identical to that of the row-parallel y ← Ax with dual

communication-requirement association. For example, the communication hy-

pergraph shown in Fig. 3.2(c) represents communication matrix CT as well. In

this hypergraph, net nk represents processor Pk as before. However, vertices of
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net nk denote the set of wC -vector entries for which processor Pk generates par-

tial results. Each vertex vj corresponds to the atomic task of folding on wC [j].

Hence, Nets(vj) denote the set of processors that generate a partial result for

wC [j].

3.3.2.2 Minimizing total latency and maximum volume

Consider a K -way partition Π = {V1, · · · ,VK} of communication-hypergraph

HC with the same part-to-processor assignment and consistency condition as in

§3.3.1.2. Since the vertices of HC correspond to fold operations, assigning a

vertex vj to part Vℓ in Π is decoded as assigning the responsibility of folding on

wC [j] to processor Pℓ . Consider a net nk with the connectivity set Λk . Let Vℓ

be a part in Λk other than Vk . Also, let vj be a vertex of net nk in Vℓ . Since

vj ∈ Vℓ and vj ∈ nk , processor Pk will be sending its partial result for wC [j] to

Pℓ because of the associated fold assignment to Pℓ . A similar send requirement is

incurred to Pk by all other vertices of net nk in Vℓ . That is, the vertices of net nk

that lie in Vℓ show that Pk must gather all partial wC results corresponding to

vertices in nk∩Vℓ into a single message to be sent to Pℓ . The size of this message

will be |nk ∩ Vℓ| words. So, a net nk with connectivity set Λk shows that Pk

will be sending a message to each processor in Λk except itself. Hence, a net nk

with the connectivity λk shows λk − 1 messages to be sent by Pk , since Vk ∈ Λk

(due to the consistency condition). The sum of the connectivity−1 values of all

K nets, i.e.,
∑

nk
(λk − 1), will give the total number of messages to be sent. So,

minimizing the objective function in Eq. 2.3 corresponds to minimizing the total

message latency.

As vertices of HC represent atomic fold operations, the weighted sum of ver-

tices in a part will relate to the volume of incoming messages of the respective

processor with vertex degree weighting. However, as mentioned earlier, we pre-

fer to define the message-volume load of a processor as the volume of outgoing

messages. Each vertex vj of net nk that lies in a part other than Vk incurs one

word of message-volume load to processor Pk . In other words, each vertex of net

nk that lies in part Vk relieves Pk of sending a word. Thus, the message-volume
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load of Pk can be computed in terms of the vertices in part Vk as |nk|−|nk∩Vk| .

Here, we prefer to associate unit weights with vertices so that maintaining the

partitioning constraint in Eq. 2.4 corresponds to an approximate message-volume

load balancing. This approximation will prove to be a reasonable one if the net

sizes are close to each other.

Figure 3.3(b) shows a partition of a generic communication hypergraph to

illustrate the number of messages. Arrows along the pins of nets show the direc-

tions of messages for fold operations. Figure 3.3(b) shows processor Pk sending

messages to processors Pℓ and Pm because net nk connects parts Vk , Vℓ , and

Vm . Hence, the number of messages sent by Pk is equal to λk − 1.

3.3.3 Row-column-parallel y ← Ax and w ← AT z

To minimize the total message count in y ← Ax and w ← AT z , we use the same

communication hypergraph HC with different vertex weightings. As in §3.3.1.2

and §3.3.2.2, the cutsize of a partition of HC quantifies the total number of

messages sent both in y ← Ax and w ← AT z . This property is in accordance

with Facts 3 and 4 given in §3.2.2. So, minimizing the objective function in

Eq. 2.3 corresponds to minimizing the total message count in row-column-parallel

y ← Ax and w ← AT z .

Vertex weighting for maintaining the message-volume balance needs special

attention. If there is a synchronization point between w ← AT z and y ← Ax, the

multi-constraint partitioning [64] should be adopted with two different weightings

to impose a communication-volume balance in both multiply phases. If there

is no synchronization point between the two multiplies (e.g., y ← AAT z ), we

recommend to impose a balance on aggregate message-volume loads of processors

by associating an aggregate weight of (dj − 1) + 1 = dj with each vertex vj .
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3.3.4 Remarks on partitioning models

Consider a net nk which does not satisfy the consistency condition in a partition

Π of HC . Since Vk /∈ Λk , processor Pk will be receiving a message from each

processor in Λk in row-parallel y ← Ax. Recall that Pk needs the xC -vector

entries represented by the vertices in net nk independent of the connectivity

between part Vk and net nk . In a dual manner, Pk will be sending a message

to each processor in Λk in column-parallel w ← AT z . So, net nk with the

connectivity λk will incur λk incoming or outgoing messages instead of λk −

1 messages determined by the cutsize of Π. That is, our model undercounts

the actual number of messages by one for each net dissatisfying the consistency

condition. In the worst case, this deviation may be as high as K messages

in total. This deficiency of the proposed model may be overcome by enforcing

the consistency condition through exploiting the partitioning with fixed vertices

feature, which exists in some of the hypergraph-partitioning tools [2, 22]. We

discuss such a method in §3.4.1.

Partitioning xC -vector entries affects the message-volume requirement de-

termined in the first phase. The message-volume requirement induced by the

partitioning in the first phase is equal to nnz(C)−NC for row-parallel y ← Ax.

Here, nnz(C) and NC denote, respectively, the number of nonzeros and the

number of columns in communication matrix C . Consider xC [j] corresponding

to column j of C . Assigning xC [j] to any one of the processors corresponding

to the rows of C that have a nonzero in column j will not change the message-

volume requirement. However, assigning it to some other processor will increase

the message-volume requirement for expanding xC [j] by one word. In a partition

Π of communication hypergraph HC , this case corresponds to having a vertex

vj ∈ Vk while vj /∈ nk . In other words, processor Pk holds and expands xC [j]

although it does not need it for local computations. A dual discussion holds for

column-parallel w ← AT z , where such a vertex-to-part assignment corresponds

to assigning the responsibility of folding on a particular wC -vector entry to a

processor which does not generate partial result for that entry. In the worst case,

the increase in the message-volume may be as high as NC words in total for both
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types of multiplies. In hypergraph-theoretic view, the total message volume will

be in between
∑

k |nk|−|V| and
∑

k |nk| , where
∑

k |nk| = nnz(C) and |V| = NC .

The proposed communication-hypergraph partitioning models exactly encode

the total number of messages and the maximum message volume per processor

metrics into the hypergraph partitioning objective and constraint, respectively,

under the above conditions. The models do not directly encapsulate the metric

of maximum number of messages per processor, however, it is possible to address

this metric within the partitioning framework. We give a method in §3.4.3 to

address this issue.

The allowed imbalance ratio (ǫ) is an important parameter in the proposed

models. Choosing a large value for ǫ relaxes the partitioning constraint. Thus,

large ǫ values enable the associated partitioning methods to achieve better par-

titioning objectives through enlarging the feasible search space. Hence, large ǫ

values favor the total message-count metric. On the other hand, small ǫ values

favor the maximum message-volume metric by imposing a tighter constraint on

the part weights. Thus, ǫ should be chosen according to the target machine archi-

tecture and problem characteristics to trade the total latency for the maximum

volume.

3.3.5 Illustration on the sample matrix

Figure 3.2(c) displays a 4-way partition of the communication hypergraph, where

closed dashed curves denote parts. Nets and their associated parts are kept close

to each other for a better appearance. Note that the consistency condition is

satisfied for the given partition. In the figure, net n2 with the connectivity set

Λ2 = {V1,V2,V3} shows processor P2 receiving messages from processors P1

and P3 in row-parallel y ← Ax. In a dual manner, net n2 shows P2 sending

messages to P1 and P3 in column-parallel w ← AT z . Since the connectivities of

nets n1, n2, n3 , and n4 are, respectively, 2, 3, 3, and 2, the total message count is

equal to (2− 1) + (3− 1) + (3− 1) + (2− 1) = 6 in both types of multiplies. So,

the proposed approach reduces the number of messages from 9 (see §3.2.2) to 6
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(a) (b)

Figure 3.4: Final 4× 4 block structures: (a) ABL for row-parallel y ← Ax, and
(b) (AT )BL for column-parallel w ← AT z , induced by 4-way communication-
hypergraph partition in Fig. 3.2(c).

by yielding the given partition of xC -vector (wC -vector) entries.

In the proposed two-phase approach, partitioning xC -vector entries in the

second phase can also be regarded as re-permuting coupling columns of ABL

obtained in the first phase. In a dual manner, partitioning wC -vector entries

can be regarded as re-permuting coupling rows of (AT )BL . Figure 3.4 shows the

re-permuted ABL and (AT )BL matrices induced by the sample communication-

hypergraph partition shown in Fig. 3.2(c). The total message count is 6 as enu-

merated by the total number of nonzero off-diagonal blocks according to Fact 4

thus matching the cutsize of the partition given in Fig. 3.2(c).

As seen in Fig 3.2(c), each vertex in each part is a pin of the net associated

with that part. So, for both types of multiplies, the sample partitioning does

not increase the total message volume and it remains at its lower bound which is
∑

k |nk| − |V| = (5 + 6 + 7 + 5)− 10 = 13 words. This value can also be verified

from the re-permuted matrices given in Fig. 3.4 by enumerating the total number

of nonzero columns in the off-diagonal blocks according to Fact 4.
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For row-parallel y ← Ax, the message-volume load estimates of processors are

2, 2, 4, and 5 words according to the vertex weighting proposed in §3.3.1.2. These

estimates are expected to be exact since each vertex in each part is a pin of the net

associated with that part. This expectation can be verified from the re-permuted

ABL matrix given in Fig. 3.4(a) by counting the number of nonzero columns in

the off-diagonal blocks of the virtual column stripes according to Fact 1.

For column-parallel w ← AT z , the message-volume load estimates of proces-

sors are 2, 2, 3, and 3 words according to the unit vertex weighting proposed in

§3.3.2.2. However, the actual message-volume loads of processors are 3, 4, 4, and

2 words. These values can be obtained from Fig. 3.4(b) by counting the number

of nonzero rows in the off-diagonal blocks of the virtual row stripes according to

Fact 2. The above values yield an estimated imbalance ratio of 20% and an ac-

tual imbalance ratio of 23%. The discrepancy between the actual and estimated

imbalance ratios is because of the differences in net sizes.

3.4 Algorithms for communication-hypergraph

partitioning

We present three methods for partitioning communication hypergraphs. Method

PaToH-fix is presented to show the feasibility of using a publicly available tool

to partition communication hypergraphs. Method MSN involves some tailoring

towards partitioning communication hypergraphs. Method MSNmax tries to in-

corporate the minimization of the maximum message count per processor into

the MSN method. In these three methods, minimizing the cutsize while main-

taining the partitioning constraint corresponds to minimizing the total number

of messages while maintaining the balance on communication-volume loads of

processors according to the models proposed in §3.3.1.2 and §3.3.2.2.
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3.4.1 PaToH-fix: Recursive bipartitioning with fixed ver-

tices

We use the multilevel hypergraph-partitioning tool PaToH [22] for partitioning

communication hypergraphs. Recall that the communication-hypergraph par-

titioning differs from the conventional hypergraph partitioning because of the

net-to-part association needed to satisfy the consistency condition mentioned in

§3.3.1.2 and §3.3.2.2. We exploit the partitioning with fixed vertices feature

supported by PaToH to achieve this net-to-part association as follows. The com-

munication hypergraph is augmented with K zero-weighted artificial vertices of

degree one. Each artificial vertex v∗
k is added to a unique net nk as a new pin

and marked as fixed to part Vk . This augmented hypergraph is fed to PaToH for

K -way partitioning. PaToH generates K -way partitions with these K labeled

vertices lying in their fixed parts thus establishing the required net-to-part asso-

ciation. A K -way partition Π = {V1, . . . ,VK} generated by PaToH is decoded

as follows. The atomic communication tasks associated with the actual vertices

assigned to part Vk are assigned to processor Pk, whereas v∗
k does not incur any

communication task.

3.4.2 MSN: Direct K -way partitioning

Most of the partitioning tools, including PaToH, achieve K -way partitioning

through recursive bisection. In this scheme, first a 2-way partition is obtained,

then this 2-way partition is further bipartitioned recursively. The connectivity−1

cutsize metric (see Eq. 2.3) is easily handled through net splitting [21] during re-

cursive bisection steps. Although the recursive-bisection paradigm is successful

in K -way partitioning in general, its performance degrades for hypergraphs with

large net sizes. Since communication hypergraphs have nets with large sizes,

this degradation is also expected to be notable with PaToH-fix. In order to al-

leviate this problem, we have developed a multilevel direct K -way hypergraph

partitioner (MSN) by integrating Sanchis’s direct K -way refinement (SN) algo-

rithm [88] to the uncoarsening step of the multilevel framework.
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The coarsening step of MSN is essentially the same as that of PaToH. In

the initial partitioning step, a K -way partition on the coarsest hypergraph is

obtained by using a simple constructive approach which mainly aims to satisfy

the balance constraint. In MSN, the net-to-part association is handled implicitly

rather than by introducing artificial vertices. This association is established in the

initial partitioning step through associating each part with a distinct net which

connects that part, and it is maintained later in the uncoarsening step. In the

uncoarsening step, the SN algorithm, which is a generalization of the two-way FM

paradigm to K -way refinement [31, 89], is used. SN, starting from a K -way initial

partition, performs a number of passes until it finds a locally optimum partition,

where each pass consists of a sequence of vertex moves. The fundamental idea

is the notion of gain, which is the decrease in the cutsize of a partition due to a

vertex moving from a part to another. The local search strategy adopted in the

SN approach repeatedly moves a vertex with the maximum gain even if that gain

is negative, and records the best partition encountered during a pass. Allowing

tentative moves with negative gains brings restricted hill-climbing ability to the

approach.

In the SN algorithm, there are K − 1 possible moves for each vertex. The al-

gorithm stores the moves from a source part in K−1 associated priority queues—

one for each possible destination part. So, the algorithm uses K(K − 1) priority

queues with a space complexity of O(NCK), which may become a memory prob-

lem for large K . The moves with the maximum gain are selected from each of

these K(K − 1) priority queues and the one that maintains the balance criteria

is performed. After the move, only the move gains of the vertices that share a

net with the moved vertex may need to be updated. This may lead to updates

on at most 4K − 6 priority queues. Within a pass, a vertex is allowed to move

at most once.
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3.4.3 MSNmax: Considering the maximum message la-

tency

The proposed models do not encapsulate the minimization of the maximum mes-

sage latency per processor. By similar reasoning in defining the message-volume

load of a processor as the volume of outgoing messages, we prefer to define the

message-latency load of a processor in terms of the number of outgoing mes-

sages. Here, we propose a practical way of incorporating the minimization of the

maximum message-count metric into the MSN method. The resulting method is

referred to here as MSNmax. MSNmax differs from MSN only in the SN refine-

ment scheme used in the uncoarsening phase. MSNmax still relies on the same

gain notion and maintains updated move gains in K(K−1) priority queues. The

difference lies in the move selection policy, which favors the moves that reduce

the message counts of overloaded processors. Here, a processor is said to be over-

loaded if its message count is above the average by a prescribed percentage (e.g.,

we used 25%). For this purpose, message counts of processors are maintained

during the course of the SN refinement algorithm.

For row-parallel y ← Ax, the message count of a processor can be reduced by

moving vertices out of the associated part. Recall that moving a vertex from a

part corresponds to relieving the associated processor from the respective atomic

expand task. So, only the priority queues of the overloaded parts are considered

for selecting the move with the maximum gain. For column-parallel w ← AT z ,

the message count of a processor Pk can be reduced by reducing the connectivity

of the associated net nk through moves from the parts in Λk−{Pk} . So, only the

priority queues of the parts that are in the connectivity sets of the nets associated

with the overloaded parts are considered. For both types of parallel multiplies,

moves selected from the restricted set of priority queues are likely to decrease

the message counts of overloaded processors besides decreasing the total message

count.
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Table 3.1: Properties of unsymmetric square and rectangular test matrices.

M ×N matrix A K ×NC communication matrix C
K = 24 K = 64 K = 128

Name M N NNZ NC NNZ NC NNZ NC NNZ
lhr14 14270 14270 321988 11174 25188 12966 31799 13508 36039
lhr17 17576 17576 399500 13144 29416 16070 38571 16764 46182
onetone1 36057 36057 368055 8137 20431 11458 30976 13911 39936
onetone2 36057 36057 254595 3720 9155 6463 16259 11407 27264
pig-large 28254 17264 75018 1265 3347 1522 4803 1735 6193
pig-very 174193 105882 463303 4986 12015 6466 16185 7632 20121
CO9 10789 14851 101578 4458 9226 7431 21816 7887 25070
fxm4-6 22400 30732 248989 769 1650 2010 4208 4223 8924
kent 31300 16620 184710 5200 10691 11540 28832 14852 49976
mod2 34774 31728 165129 4760 9870 8634 18876 10972 24095
pltexpA4 26894 70364 143059 1961 4218 3259 7858 5035 13397
world 34506 32734 164470 5116 10405 9569 20570 13610 30881

3.5 Experiments

We have tested the performance of the proposed models and associated parti-

tioning methods on a wide range of large unsymmetric square and rectangular

sparse matrices. Properties of these matrices are listed in Table 3.1. The first

four matrices, which are obtained from University of Florida Sparse Matrix Col-

lection [32], are from the unsymmetric linear system application. The pig-large

and pig-very matrices [48] are from the least squares problem. The remain-

ing six matrices, which are obtained from Hungarian Academy of Sciences OR

Lab1, are from miscellaneous and stochastic linear programming problems. In

this table, the NNZ column lists the number of nonzeros of the matrices.

We have tested K = 24, 64, and 128-way rowwise partitionings of each

test matrix. For each K value, K -way partitioning of a test matrix forms a

partitioning instance. Recall that the objective in the first phase of our two-

phase approach is minimizing the total message volume while maintaining the

computational-load balance. This objective is achieved by exploiting the recently

proposed computational-hypergraph model [21]. The hypergraph-partitioning

1ftp://ftp.sztaki.hu/pub/oplab
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tool PaToH [22] was used with default parameters to obtain K -way rowwise par-

titions. The computational-load imbalance values of all partitions were measured

to be below 6 percent.

For the second phase, communication matrix C was constructed for every

partitioning instance as described in §3.3.1.1 and §3.3.2.1. Table 3.1 displays

properties of these communication matrices. Then, the communication hyper-

graph was constructed from each communication matrix as described in §3.3.1.1

and §3.3.2.1. Note that communication-matrix properties listed in Table 3.1 also

show communication-hypergraph properties. That is, for each K value, the table

effectively shows a communication hypergraph on K nets, NC vertices, and NNZ

pins.

The communication hypergraphs are partitioned using the proposed meth-

ods discussed in §3.4. In order to verify the validity of the communication hy-

pergraph model, we compare the performance of these methods with a method

called Naive. This method mimics the current state of the art by minimizing

the communication overhead due to the message volume without spending any

explicit effort towards minimizing the total message count. The Naive method

tries to obtain a balance on the message-volume loads of processors while attain-

ing the total message-volume requirement determined by the partitioning in the

first phase. The method adopts a constructive approach which is similar to the

best-fit-decreasing heuristic used in solving the NP-hard K -feasible bin packing

problem [58]. Vertices of the communication hypergraph are assigned to parts in

the decreasing order of vertex weights. Each vertex vj is allowed to be assigned

only to the parts in Nets(vj) to avoid increases in the message volume. Here,

the best-fit criterion corresponds to assigning vj to a part in Nets(vj) with the

minimum weight thus trying to obtain a balance on the message-volume loads.

The partitioning methods, PaToH-fix, MSN, and MSNmax incorporate ran-

domized algorithms. Therefore, they were run 20 times starting from different

random seeds for K -way partitioning of every communication hypergraph. Ran-

domization in the Naive method were realized by random permutation of the ver-

tices before sorting. Averages of the resulting communication patterns of these
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Table 3.2: Performance of the methods with varying imbalance ratios in 64-way
partitionings.

Matrix Partition Total msg Max vol
Method ǫ=0.1 ǫ=0.3 ǫ=0.5 ǫ=1.0 ǫ=0.1 ǫ=0.3 ǫ=0.5 ǫ=1.0

lhr17 Naive 1412 — — — 373 — — —
PaToHfix 817 726 724 700 643 755 858 1042
MSN 745 662 625 592 678 793 895 1177
MSNmax 731 684 649 638 676 799 920 1119

pig-very Naive 2241 — — — 161 — — —
PaToHfix 1333 1176 1151 1097 272 316 361 448
MSN 1407 1199 1137 1019 284 343 398 526
MSNmax 1293 1142 1040 967 298 354 411 530

fxm4-6 Naive — — — 312 — — — 67
PaToHfix 212 193 193 188 70 75 81 105
MSN 244 205 199 172 72 83 96 114
MSNmax 247 213 208 165 70 85 94 103

runs are displayed in the following tables. In these tables, the Total msg and

Total vol columns list, respectively, the total number and total volume of mes-

sages sent. The Max msg and Max vol columns list, respectively, the maximum

number and maximum volume of messages sent by a single processor.

The following parameters and options are used in the proposed partitioning

methods. PaToH-fix were run with the coarsening option of absorption clustering

using pins (ABS HPC), and the refinement option of Fiduccia-Mattheyses (FM). The

scaled heavy-connectivity matching (SHCM) of PaToH was used in the coarsening

step of the multilevel partitioning methods MSN and MSNmax. ABS HPC is the

default coarsening option in PaToH-fix. It is a quite powerful coarsening method

that absorbs nets into supervertices, which helps FM-based recursive-bisection

heuristics. However, we do not want nets being absorbed in MSN and MSNmax

to be able to establish net-to-part association in the initial partitioning phase.

So, SHCM, which does not aim to absorb nets, was selected.

Table 3.2 shows performance of the proposed methods with varying ǫ in 64-

way partitioning of three matrices each of which is the largest (in terms of the

number of nonzeros) in its application domain. The performance variation is dis-

played in terms of the total message-count and maximum message-volume metrics
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because these two metrics are exactly encoded in the proposed models. Recall

that Naive is a constructive method and its performance does not depend on ǫ.

So, the performance values for Naive are listed under the columns correspond-

ing to the attained imbalance ratios. As seen in Table 3.2, by relaxing ǫ, each

method can find partitions with smaller total message counts and larger max-

imum message-volume values. It is also observed that imbalance values of the

partitions obtained by all of the proposed methods are usually very close to the

given ǫ. These outcomes are in accordance with the discussion in § 3.3.4. As seen

in the table, all of the proposed methods perform significantly better than the

Naive method even with the tightest constraint of ǫ = 0.1. However, the detailed

performance results are displayed for ǫ = 1.0 (i.e., Wmax ≤ 2Wavg in Eq. 2.4) in

the following tables. We chose such a relaxed partitioning constraint in order to

discriminate among the proposed methods. It should be noted here that imbal-

ance ratios for the message-volume loads of processors might be greater than the

chosen ǫ value because of the approximation in the proposed vertex weighting

scheme. For example, with ǫ = 1.0, the methods PaToH-fix, MSN, and MSNmax

produce partitions with actual imbalance ratios of 0.94, 1.26, and 1.35 for matrix

lhr17, respectively.

Table 3.3 displays the communication patterns for K = 64- and 128-way

partitions in row-parallel y ← Ax. The bottom of the table shows the average

performance of the proposed methods compared with the Naive method. These

values are obtained by first normalizing the performance results of the proposed

methods with respect to those of the Naive method for every partitioning instance

and then averaging these normalized values over the individual methods.

In terms of the total message-volume metric, Naive achieves the lowest values

as seen in Table 3.3. This is expected since Naive attains the total message

volume determined by the partitioning in the first phase. The increase in the

total message-volume values for the proposed methods remain below 66% for

all partitioning instances. As seen in the bottom of the table, these increases

are below 41% on the average. Note that the total message-volume values for

Naive are equal to the differences of the NNZ and NC values of the respective

communication matrix (see Table 3.1). Also note that the NNZ values of the
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Table 3.3: Communication patterns for K -way row-parallel y ← Ax.

K = 64 K = 128
Matrix Part. Total Max Total Max

method msg vol msg vol msg vol msg vol
lhr14 Naive 1318 18833 43.9 308 2900 22531 47.6 204

PaToH-fix 676 28313 34.0 813 1417 32661 47.8 627
MSN 561 26842 24.4 975 1247 30796 31.6 577
MSNmax 640 24475 19.2 897 1348 28758 22.7 535

lhr17 Naive 1412 22501 45.6 373 3675 29418 58.9 265
PaToH-fix 700 34515 36.5 1042 1867 42623 54.3 750
MSN 592 32530 26.3 1177 1453 40009 34.0 736
MSNmax 638 31149 22.0 1119 1599 38557 26.8 689

onetone1 Naive 1651 19518 39.9 332 4112 26025 47.4 231
PaToH-fix 663 26789 27.2 714 1639 35741 39.1 580
MSN 545 27109 24.1 1008 1384 35129 31.1 688
MSNmax 610 24012 20.9 950 1507 31345 26.4 642

onetone2 Naive 995 9796 30.4 186 2049 15857 28.6 139
PaToH-fix 429 12940 17.8 381 804 20983 25.1 423
MSN 406 13236 17.1 510 787 20649 22.1 422
MSNmax 420 12389 15.1 485 807 18850 20.4 381

pig-large Naive 1220 3281 39.4 60 2723 4458 39.6 47
PaToH-fix 759 4363 40.5 144 1764 5805 52.5 142
MSN 619 4108 34.5 153 1551 5752 43.0 115
MSNmax 682 3812 35.6 138 1678 5185 35.0 100

pig-very Naive 2241 9719 56.5 161 4574 12489 78.7 117
PaToH-fix 1097 14725 59.8 448 2533 18567 97.8 398
MSN 1019 14349 54.5 526 2389 17317 77.3 320
MSNmax 967 14008 55.4 530 2501 15729 80.5 317

CO9 Naive 1283 14385 41.0 369 1645 17183 48.9 289
PaToH-fix 622 19221 34.6 567 1191 23575 35.8 434
MSN 521 18352 27.1 687 904 20727 28.9 412
MSNmax 513 17736 23.1 684 800 21281 25.6 492

fxm4-6 Naive 312 2198 13.6 67 562 4701 15.9 64
PaToH-fix 188 2856 11.8 105 361 5746 13.8 129
MSN 172 2746 10.1 114 338 5647 12.2 129
MSNmax 165 2543 8.9 103 322 5386 11.7 124

kent Naive 342 17292 14.1 547 1020 35124 21.9 602
PaToH-fix 235 21200 9.2 621 740 42328 15.8 631
MSN 190 21539 8.9 905 596 39774 19.6 866
MSNmax 201 19666 7.0 773 614 40012 13.0 830

mod2 Naive 376 10242 22.4 366 811 13123 33.8 240
PaToH-fix 294 16683 19.8 606 658 21409 22.6 431
MSN 254 13353 15.2 604 575 17329 18.7 391
MSNmax 231 14400 12.5 639 548 19009 14.4 408

pltexpA4 Naive 507 4599 21.9 116 1013 8362 25.6 99
PaToH-fix 257 5553 17.7 243 579 10163 22.8 208
MSN 245 5828 15.3 241 556 9705 21.7 213
MSNmax 264 5321 13.2 214 546 9582 19.4 206

world Naive 534 11001 27.4 387 1785 17271 44.1 222
PaToH-fix 362 18355 21.2 603 1036 26514 35.6 488
MSN 315 14765 16.8 595 902 23927 24.8 476
MSNmax 287 16243 14.8 680 886 23762 20.6 476

Normalized averages over Naive
Naive 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PaToH-fix 0.56 1.41 0.81 2.03 0.59 1.38 0.91 2.38
MSN 0.48 1.34 0.68 2.37 0.51 1.29 0.75 2.30
MSNmax 0.49 1.28 0.60 2.26 0.52 1.24 0.63 2.21
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communication matrices listed in Table 3.1 show the upper bounds on the total

message-volume values for the proposed partitioning methods.

In terms of the maximum message-volume metric, the proposed partitioning

methods yield worse results than the Naive method by a factor between 2.0 and

2.4 on the average as seen in the bottom of Table 3.3. This performance difference

stems from three factors. First, Naive is likely to achieve small maximum message-

volume values since it achieves the lowest total message-volume values. Second,

the best-fit-decreasing heuristic adopted in Naive is an explicit effort towards

achieving a balance on the message volume. Third, the relaxed partitioning

constraint (ǫ = 1.0) used in the proposed partitioning methods leads to higher

imbalance ratios among the message-volume loads of processors.

In terms of the total message-count metric, all of the proposed methods yield

significantly better results than the Naive method in all partitioning instances.

They reduce the total message count by a factor between 1.3 and 3.0 in 64-way,

and between 1.2 and 2.9 in 128-way partitionings. As seen in the bottom of

Table 3.3, the reduction factor is approximately 2 on the average. Comparing

the performance of the proposed methods, both MSN and MSNmax perform

better than PaToH-fix in all partitioning instances, except 64-way partitioning

of plexpA 4 and 128-way partitioning of onetone2, leading to a considerable

performance difference on the average. This experimental finding confirms the

superiority of the direct K -way partitioning approach over recursive-bisection

approach. There is no clear winner between MSN and MSNmax. MSN performs

better than MSNmax in 14 out of 24 partitioning instances, leading to a slight

performance difference on the average.

In terms of the maximum message-count metric, all of the proposed methods

again yield considerably better results than the Naive method in all instances,

except 64- and 128-way partitionings of pig matrices. However, the performance

difference between the proposed methods and the Naive method is not as large

as that in the total message-count metric. Comparing the performance of the

proposed methods, both MSN and MSNmax perform better than PaToH-fix in



CHAPTER 3. COMMUNICATION COST METRICS FOR 1D SPMXV 43

all partitioning instances, except 128-way partitioning of kent, leading to a con-

siderable performance difference on the average. MSNmax is the clear winner in

the maximum message-count metric as expected. As seen in the bottom of the

table, MSNmax yields, respectively, 40% and 37% less maximum message counts

than Naive, for 64 and 128-way partitionings, on the average.

We have also experimented with the performance of the proposed methods for

64-way and 128-way partitionings for column-parallel w ← AT z and row-column-

parallel y ← AAT z on the test matrices. Since very similar relative performance

results were obtained in these experiments, we omit presentation and discussion

of these experimental results due to the lack of space.

It is important to see whether the theoretical improvements obtained by our

methods in the given performance metrics hold in practice. For this purpose,

we have implemented row-parallel y ← Ax and row-column-parallel y ← AAT z

multiplies using the LAM/MPI 6.5.6 [18] message passing library. The parallel

multiply programs were run on a Beowulf class [94] PC cluster with 24 com-

pute nodes. Each node has a 400Mhz Pentium-II processor and 128MB memory.

The interconnection network is comprised of a 3COM SuperStack II 3900 man-

aged switch connected to Intel Ethernet Pro 100 Fast Ethernet network interface

cards at each node. The system runs the Linux kernel 2.4.14 and the Debian

GNU/Linux 3.0 distribution.

Within the current experimental framework, MSNmax seems to be the best

choice for communication-hypergraph partitioning. So, parallel running times of

the multiply programs are listed in Table 3.4 only for MSNmax partitioning results

in comparison with those of the Naive method. Communication patterns for the

resulting partitions are also listed in the table in order to show how improvements

in performance metrics relate to improvements in parallel running times.

As seen in Table 3.4, the partitions obtained by MSNmax lead to considerable

improvements in parallel running times compared with those of Naive for all

matrices. The improvements in parallel running times are in between 4% and

40% in y ← Ax, and between 5% and 31% in y ← AAT z . In row-parallel

y ← Ax, the lowest percent improvement of 4% occurs for matrix kent despite



CHAPTER 3. COMMUNICATION COST METRICS FOR 1D SPMXV 44

Table 3.4: Communication patterns and parallel running times in msecs for 24-
way row-parallel y ← Ax and row-column-parallel y ← AAT z .

y ← Ax y ← AAT z
Matrix Part. Total Max Parl Total Max Parl

method msg vol msg vol time msg vol msg vol time
lhr14 Naive 414 14014 23 603 2.57 838 28028 46 1177 5.07

MSNmax 176 19580 12 1601 1.90 342 42456 27 1960 3.95
lhr17 Naive 393 16272 22 691 2.79 792 32544 45 1159 5.71

MSNmax 168 24510 17 2229 2.20 334 48554 23 2112 4.38
onetone1 Naive 362 12294 19 546 2.52 728 24588 41 788 5.49

MSNmax 152 15153 16 1403 1.85 262 34304 24 1586 4.37
onetone2 Naive 205 5435 12 297 1.60 412 10870 24 419 3.24

MSNmax 102 6294 9 690 1.31 186 15234 16 715 2.44
pig-large Naive 325 2082 23 108 2.06 650 4164 42 162 3.41

MSNmax 151 2872 20 276 1.28 312 5554 26 271 2.35
pig-very Naive 497 7029 23 354 3.51 994 14058 46 456 7.33

MSNmax 228 10214 23 937 2.74 428 20538 29 963 5.95
CO9 Naive 122 4768 11 437 1.74 244 9536 22 1184 3.34

MSNmax 68 6834 9 750 1.35 152 13700 16 1430 2.99
fxm4-6 Naive 113 881 11 44 1.57 226 1762 27 108 3.18

MSNmax 58 1005 7 96 0.95 120 2038 15 124 2.31
kent Naive 57 5491 5 488 1.12 114 10982 9 972 2.27

MSNmax 41 5783 5 541 1.08 86 12596 7 1025 2.12
mod2 Naive 79 5110 11 617 1.74 158 10220 22 1586 3.67

MSNmax 59 7764 7 779 1.53 130 15890 14 2148 3.50
pltexpA4 Naive 106 2257 9 146 1.25 212 4514 20 225 2.46

MSNmax 60 2543 8 256 0.93 120 5410 14 314 2.08
world Naive 79 5289 9 667 1.89 158 10578 19 2204 3.73

MSNmax 65 8316 7 836 1.66 134 13638 16 2442 3.38
Normalized averages over Naive

Naive 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MSNmax 0.55 1.33 0.79 2.10 0.78 0.56 1.37 0.65 1.52 0.82
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the modest improvement of 28% achieved by MSNmax over Naive in total message

count. The reason seems to be the equal maximum message counts obtained by

these partitioning methods. The highest percent improvement of 40% occurs for

matrix fxm4-6 for which MSNmax achieves significant improvements of 49% and

36% in the total and maximum message counts, respectively. However, the higher

percent improvements obtained by MSNmax for matrix lhr14 in message-count

metrics do not lead to higher percent improvements in parallel running time. This

might be attributed to MSNmax achieving lower percent improvements for lhr14

in message-volume metrics compared with those for fxm4-6. These experimental

findings confirm the difficulty of the target problem.

Table 3.5 displays partitioning times for the three largest matrices selected

from different application domains. The Phase 1 time and Phase 2 time columns

list, respectively, the computational-hypergraph and communication-hypergraph

partitioning times. Sequential matrix-vector multiply times are also displayed

to show the relative preprocessing overhead introduced by the partitioning meth-

ods. All communication-hypergraph partitionings take significantly less time than

computational-hypergraph partitionings except partitioning communication hy-

pergraph of lhr17 with PaToH-fix. As expected, the communication hypergraphs

are smaller than the respective computational hypergraphs. However, some com-

munication hypergraphs might have very large net sizes because of the small

number of nets. Matrix lhr17 is an example of such a case with the large aver-

age net size of nnz(C)/K = 1225 in the communication hypergraph versus the

small average net size of nnz(A)/N = 22 in the computational hypergraph. This

explains the above exceptional experimental outcome because running times of

matching heuristics, used in the coarsening step of PaToH, increase with the sum

of squares of net sizes [21] (see also Theorem 5.5 in [52]).

Comparing the running times of communication-hypergraph partitioning

methods, Naive takes an insignificant amount of time as seen in Table 3.5. Di-

rect K -way partitioning approaches are expected to be faster than the recursive-

bisection based PaToH-fix because of the single coarsening step as compared
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Table 3.5: 24-way partitioning and sequential matrix-vector multiply times in
msecs.

Matrix Partitioning times Seq.
Phase 1 Phase 2 y=Ax

Method Time Method Time time
lhr17 PaToH 6100 Naive 32 19.56

PaToH-fix 13084
MSN 3988
MSNmax 3885

pig-very PaToH 20960 Naive 12 30.37
PaToH-fix 2281
MSN 1086
MSNmax 1022

fxm4-6 PaToH 2950 Naive 2 13.19
PaToH-fix 58
MSN 112
MSNmax 81

with K − 1 = 23 coarsening steps. As expected, MSN and MSNmax take con-

siderably less time than PaToH-fix except in partitioning communication-hyper-

graph of fxm4-6, which has a moderate average net size. As seen in the table,

the second-phase methods MSN and MSNmax introduce much less preprocess-

ing overhead than the first phase. The partitionings obtained by MSNmax for

lhr17, pig-very, and fxm4-6 matrices lead to speedup values of 8.89, 11.1, and

13.9, respectively, in row-parallel matrix-vector multiply on our 24-processor PC

cluster.



Chapter 4

Communication cost metrics for

2D SpMxV

In the previous chapter, we showed how to encapsulate the minimization of the

total volume, the total message count, the maximum volume and the maximum

message count handled by a single processor in 1D partitioning of sparse matrices.

The work in the previous chapter addressed unsymmetric partitionings, i.e., the

partitions on the input and output vectors were different. In this chapter, we

adopt the methods proposed in the previous chapter to address the minimization

of aforementioned four communication cost metrics in 2D partitioning of sparse

matrices. The work presented here enables generation of symmetric partitionings

as well as unsymmetric partitionings.

We show a two-phase approach for minimizing various communication-cost

metrics in fine-grain partitioning of sparse matrices for parallel processing. In

the first phase, we obtain a partitioning with the existing tools on the matrix

to determine computational loads of the processor. In the second phase, we

try to minimize the communication-cost metrics. For this purpose, we develop

communication-hypergraph partitioning models. We experimentally evaluate the

contributions on a PC cluster.

47
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4.1 Preliminaries

In the fine-grain hypergraph model of Çatalyürek and Aykanat [23], an m × n

matrix A with Z nonzeros is represented as a hypergraph H = (V,N ) with

|V| = Z and |N | = m + n for 2D partitioning. There exists one vertex vij

for each nonzero aij . There exists one net ri for each row i and one net cj

for each column j . Each row-net ri and column-net cj contain all vertices vi∗

and v∗j , respectively. Each vertex vij corresponds to scalar multiplication aijxj .

Hence, the computational weight associated with a vertex is 1. Each row-net ri

represents the dependency of yi on the scalar multiplications with ai∗ ’s. Each

column-net cj represents the dependency of scalar multiplications with a∗j ’s on

xj . With this model, the problem of 2D partitioning a matrix among K pro-

cessors can be modeled as the K -way hypergraph partitioning problem. In this

model, minimizing the cutsize while maintaining balance on the part weights cor-

responds to minimizing the total communication volume and maintaining balance

on the computational loads of the processors. An external column-net represents

the communication volume requirement on a x-vector entry. This communica-

tion occurs in expand phase, just before the scalar multiplications. An external

row-net represents the communication volume requirement on a y -vector entry.

This communication occurs in fold phase, just after the scalar multiplications.

Çatalyürek and Aykanat assign the responsibility of expanding xi and folding yi

to the processor that holds aii to obtain symmetric partitioning. Note that for

the unsymmetric partitioning case, one can assign xi to any processor holding

a nonzero in column i without any additional overhead. A similar opportunity

exists for yi . In the symmetric partitioning case, however, xi and yi may be

assigned to a processor holding nonzeros both in the row and column i. In this

chapter, we try to exploit the freedom in assigning vector elements to address the

four communication-cost metrics in fine-grain partitioning of sparse matrices.

A 10×10 matrix with 37 nonzeros and its 4-way fine-grain partitioning is given

in Fig. 4.1(a). In the figure, the partitioning is given by the processor numbers

for each nonzero. The computational load balance is achieved by assigning 9, 10,

9, and 9 nonzeros to processors in order.
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Figure 4.1: (a) A 10 × 10 matrix and a 4-way partitioning, (b) communication
matrix Cx , and (c) communication matrix Cy .

4.2 Minimizing the total number of messages

Given a K -way fine-grain partitioning of a matrix, we identify two sets of rows

and columns; internal and coupling. The internal rows or columns have nonzeros

only in one part. The coupling rows or columns have nonzeros in more than one

part. The set of x-vector entries that are associated with the coupling columns,

referred to here as xC , necessitate communication. Similarly, the set of y -vector

entries that are associated with the coupling rows, referred to here as yC , ne-

cessitate communication. Note that when symmetric partitioning requirement

arises, we add to xC those x-vector entries whose corresponding entries are in yC

and vice versa. The proposed approach considers partitioning of these xC and

yC vector entries to reduce the total message count and the maximum message

volume per processor. The other vector entries are needed by only one processor

and should be assigned to the respective processors to avoid redundant commu-

nication.

We propose constructing two matrices Cx and Cy , referred to here as commu-

nication matrices, that summarize the communication on x- and y -vector entries,

respectively. The matrix Cx has K rows and |xC | columns. For each row k , we
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insert a nonzero in column j if processor Pk has nonzeros in column correspond-

ing to xC [j] in the fine-grain partitioning. Hence, the rows of Cx correspond to

processors in such a way that the nonzeros in the row k identify the subset of xC

vector entries that are needed by processor Pk . The matrix Cy is constructed

similarly. This time we put processors in columns and yC entries in rows. Fig-

ure 4.1(b) and (c) show the communication matrices Cx and Cy for the sample

matrix given in (a).

4.2.1 Unsymmetric partitioning model

We use row-net and column-net hypergraph models for representing Cx and Cy ,

respectively. In the row-net hypergraph model, matrix Cx is represented as hy-

pergraph Hx for columnwise partitioning. Vertex and net sets correspond to the

columns and rows of matrix Cx , respectively. There exist one vertex vj and one

net ni for each column j and row i, respectively. Net ni contains the vertices

corresponding to the columns which have a nonzero in row i. That is, vj ∈ ni if

Cx[i, j] 6= 0. In the column-net hypergraph model of Cy , the vertex and net sets

correspond to the rows and columns of the matrix Cy , respectively, with similar

construction. Figure 4.2(a) and (b) show communication hypergraphs Hx and

Hy .

A K -way partition on the vertices of Hx induces a processor assignment for

the expand operations. Similarly, a K -way partition on the vertices of Hy induces

a processor assignment for the fold operations. In unsymmetric partitioning case,

these two assignment can be found independently. In [99] and Chapter 3, we

showed how to obtain such independent partitionings in order to minimize the four

communication-cost metrics. The results of that work are immediately applicable

to this case.
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Figure 4.2: Communication hypergraphs: (a)Hx , (b) Hy , and (c) a portion of H
corresponding to the communication matrices grin in Fig. 4.1.

4.2.2 Symmetric partitioning model

When we require symmetric partitioning on the vectors x and y , the partition-

ings on Hx and Hy cannot be obtained independently. Therefore, we combine

hypergraphs Hx and Hy into a single hypergraph H as follows. For each part

Pk , we create two nets xk and yk . For each xC [i] and yC [i] pair, we create a

single vertex vi . For each net xk , we insert vi into its vertex list if processor

Pk needs xC [i]. For each yk , we insert vj into its vertex list if processor Pk

contributes to yC[j]. We show vertices v4 and v7 of H in Fig. 4.2(c). Since the

communication occurs in two distinct phases, vertices have two weights associ-

ated with them. The first weight of a vertex vi is the communication volume

requirement incurred by xC [i]; hence we associate weight di − 1 with the vertex

vi . The second weight of a vertex vi is the communication volume requirement

incurred by yC[i]; as in [99] we associate a unit weight of 1 with each vi .

In a K -way partition of H , an xk -type net spanning λxk parts necessitates

λxk − 1 messages to be sent to processor Pk during the expand phase. The

sum of these quantities over all xk -type nets thus represents the total number

of messages sent during the expand phase. Similarly, a yk -type net spanning

λyk parts necessitates λyk − 1 messages to be sent by Pk during the fold phase.

Again, the sum of these quantities over all yk -type nets represents the total num-

ber of messages sent during the fold phase. The sum of the connectivity − 1
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values for all nets thus represents the total number of messages in fine-grain par-

titioning of matrices. Therefore, by minimizing the objective function in Eq. 2.3
(

cutsize(Π) =
∑

ni∈N
(λi − 1)

)

, partitioning H minimizes the total number of

messages. The vertices in part Vk represent the x-vector entries to be expanded

and the respective y -vector entries to be folded by processor Pk . The load of

the expand operations are exactly represented by the first components of vertex

weights if for each vi ∈ Vk we have vi ∈ xk . If, however, vi /∈ xk , the weight of

a vertex for the expand phase will be one less than the required. We hope these

shortages to occur, in some extent, for every processor to cancel the diverse effects

on communication-volume load balance. The weighting scheme for the fold oper-

ations is adopted with the rationale that every yC [i] assigned to a processor Pk

will relieve Pk from sending a unit-volume message. If the net sizes are close to

each other than this scheme will prove to be a reasonable one. As a result, balanc-

ing part sizes for the two set of weights, e.g., satisfying Eq. 2.4
(

Wmax−Wavg

Wavg
≤ ǫ

)

,

will relate to balancing communication-volume loads of processors in the fold and

expand phases, separately.

In the above discussion, each net is associated with a certain part and hence

a processor. This association is not defined in the standard hypergraph parti-

tioning problem. We can enforce this association by adding K special vertices,

one for each processor Pk , and inserting those vertices to the nets xk and yk .

Fixing those special vertices to the respective parts and using partitioning with

fixed vertices feature of hypergraph partitioning tools [2, 22] we can obtain the

specified partitioning on H . However, existing tools do not handle fixed vertices

within multi-constraint framework. Therefore, instead of obtaining balance on

communication-volume loads of processors in the expand and fold phases sepa-

rately, we add up the weights of vertices and try to obtain balance on aggregate

communication-volume loads of processors.
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Table 4.1: Properties of test matrices and partitioning times.

Matrix Size Part.
N NNZ Mthd Time

CO9 10789 249205 PTH 11.43
CHy 0.66

CQ9 9278 221590 PTH 9.60
CHy 0.65

creb 9648 398806 PTH 26.71
CHy 2.51

ex3s1 17443 679857 PTH 48.88
CHy 13.58

fom12 24284 329068 PTH 22.07
CHy 13.76

fxm3 41340 765526 PTH 37.73
CHy 0.29

lpl1 39951 541217 PTH 27.04
CHy 5.09

mod2 34774 604910 PTH 32.83
CHy 2.18

pds20 33874 320196 PTH 18.65
CHy 6.09

pltex 26894 269736 PTH 14.29
CHy 1.11

world 34506 582064 PTH 30.84
CHy 2.50

4.3 Experiments

We have conducted experiments on the matrices given in Table 4.1. In the table,

N and NNZ show, respectively, the dimension of the matrix and the number

of nonzeros. Part.Mthd give the partitioning method applied: PTH refers to the

fine-grain partitioning of Çatalyürek and Aykanat [23], CHy refers to partition-

ing communication hypergraphs with fixed-vertex option and aggregate vertex

weights. For these two methods, we give timings under the column Part.Time,

in seconds.

The results of the experiments are given in Table 4.2. The Srl.Time column

lists the timings for serial SpMxV operations in milliseconds. We used PaToH [22]
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library to obtain 24-way fine-grain partitionings on the test matrices. In all

partitioning instances, the computational-load imbalance were below 7 percent.

For each partitioning method, we dissect the communication requirements into

the expand and fold phases. For each phase, we give total volume of messages,

maximum volume-load of a processor, total number of messages, and maximum

number of messages per processor. In order to see whether the improvements

achieved by method CHy in the given performance metrics hold in practice, we also

give timings, best among 20 runs, for parallel SpMxV operations, in milliseconds,

under the column Prll.Time. All timings are obtained on machines equipped

with 400 MHz Intel Pentium II processor and 64 MB RAM running Linux kernel

2.4.14 and Debian GNU/Linux 3.0 distribution. The parallel SpMxV routines

are implemented using LAM/MPI 6.5.6 [18].

To compare our method against PTH, we opted for obtaining symmetric par-

titioning. For each matrix, we run PTH 20 times starting from different random

seeds and selected the partition which gives the minimum in total-volume-of-

messages metric. Then, we constructed the communication hypergraph with

respect to PTH’s best partitioning and run CHy 20 times, again starting from

different random seeds, and selected the partition which gives the minimum in

total-number-of-messages metric. Timings for these partitioning methods are for

a single run. In all cases, running CHy adds at most half of the time required by

PTH to the framework of fine-grain partitioning.

In all of the partitioning instances, CHy reduces the total number of messages

to somewhere between 0.47 (fom12) and 0.74 (CO9) of PTH. In all partitioning

instances, CHy increases the total volume of messages to somewhere between 1.32

(creb) and 1.86 (pds20) of PTH. This is expected, because a vertex vi may be

assigned to a part Vk while Pk does not need any of xC [i] or yC [i]. However,

reductions in parallel running times are seen for all matrices except lpl1. The

highest speed-ups achieved by PTH and CHy are 5.96 and 6.38, respectively, on

fxm3.
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Table 4.2: Communication patterns and running times for 24-way parallel Sp-
MxV.

Matrix Part. Expand Phase Fold Phase Prll. Srl.
Mthd Total Max Total Max Time Time

vol msg vol msg vol msg vol msg

CO9 PTH 2477 290 524 21 4889 358 473 22 4.55 12.54
CHy 5121 223 318 22 7367 259 714 18 4.05

CQ9 PTH 2642 313 471 23 4973 370 430 22 4.82 11.13
CHy 5108 218 356 20 7249 264 729 16 4.09

creb PTH 9344 490 750 23 12660 504 871 23 6.64 19.3
CHy 13047 313 715 23 16157 341 1068 20 5.92

ex3s1 PTH 7964 312 602 22 26434 356 1762 20 8.39 33.52
CHy 19537 195 1128 23 36347 270 2252 16 7.91

fom12 PTH 7409 228 559 23 21208 228 1143 13 5.03 19.86
CHy 16713 96 983 10 28151 119 1541 8 4.03

fxm3 PTH 1843 212 279 23 2662 236 282 17 6.39 38.13
CHy 3299 142 215 16 4027 156 456 15 5.97

lpl1 PTH 7646 226 1062 20 13752 253 961 17 5.73 29.81
CHy 15079 166 892 22 20582 186 1507 12 5.83

mod2 PTH 5015 267 845 23 9421 278 1135 22 6.92 30.81
CHy 10523 181 656 23 14142 198 1517 17 5.92

pds20 PTH 5373 299 557 23 13548 317 956 19 5.23 17.82
CHy 14066 177 794 18 21302 201 1436 13 4.95

pltex PTH 1883 167 172 16 7065 273 508 20 4.27 14.64
CHy 4533 89 311 16 8828 139 782 10 3.63

world PTH 4934 300 794 23 9710 316 1295 23 7.35 29.63
CHy 10679 181 656 23 14854 205 1745 18 6.05



Chapter 5

Preconditioned iterative methods

This chapter addresses the parallelization of the preconditioned iterative methods

that use explicit preconditioners such as approximate inverses. Efficient paral-

lelization of a full step in these methods requires the coefficient and preconditioner

matrices to be well partitioned. We first show that different methods impose dif-

ferent partitioning requirements for the matrices. Then, we develop hypergraph

models to meet those requirements. In particular, we develop models that enable

us to obtain partitionings on the coefficient and preconditioner matrices simul-

taneously. Experiments on a set of unsymmetric sparse matrices show that the

proposed models yield effective partitioning results. A parallel implementation

of the right preconditioned BiCGStab method on a PC cluster verifies that the

theoretical improvements obtained by the models hold in practice.

5.1 Introduction

We consider the parallelization of the preconditioned iterative methods that use

explicit preconditioners such as approximate inverses or factored approximate

inverses. Our objective is to develop methods for obtaining one dimensional (1D)

partitions on a coefficient matrix and its preconditioner matrix or factors of the

preconditioner matrix simultaneously to efficiently parallelize a full step of the

56
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preconditioned iterative methods. We assume preconditioner matrices or their

sparsity patterns are available beforehand. It has been shown that the rates of

convergence of iterative methods depend on the partitioning method when the

preconditioners are built from partitioned coefficient matrices [30]. With the

above assumption in mind, we neither deteriorate nor improve the effects of the

selected preconditioners on the rate of convergence. Our assumption is justified in

applications where the preconditioner matrices can be reused, see for example [14]

and a discussion on it in [12]. More adequately, some preconditioner constructing

methods [69, 70] require a priori sparsity patterns for the preconditioner matrices,

and some works on generating desirable sparsity patterns for these methods exist

in the literature [27, 28, 59].

Approximate inverse preconditioning techniques explicitly compute and store

a sparse matrix M ≈ A−1 to be used as a preconditioner. Application of such pre-

conditioners merely require one or two matrix-vector multiply operations. That is,

iterative methods that use approximate inverse preconditioners perform matrix-

vector multiply operations both with the coefficient and preconditioner matrices.

Two types of approximate inverses exist in the literature. In the first type, an

approximate inverse is stored as a single matrix, whereas in the second type

it is stored as a product of two matrices. The second type of preconditioners

are referred to as factored approximate inverses. Among the most notable ap-

proximate inverse preconditioners are AINV and its variants by Benzi, Tuma,

Meyer, Cullum, and Haws [7, 8, 9, 10]; SPAI by Grote and Huckle [46]; FSAI by

Kolotilina and Yeremin [69, 70]; MR by Chow and Saad [29]. See [6, 11, 43] for a

recent survey and the use of the approximate inverse preconditioning techniques.

See [74, 86] for a general treatment of the preconditioning techniques.

Hendrickson and Kolda [51] give a thorough survey of the graph partition-

ing models used for partitioning sparse matrices for parallel processing. In these

models, the partitioning constraint of maintaining balance on part weights cor-

responds to maintaining computational load balance. The partitioning objective

of minimizing the cutsize of a partition defined over the edges or hyperedges re-

lates to minimizing the total communication volume. Among those models, the

hypergraph models by Çatalyürek, Aykanat, and Pınar [3, 20, 21, 82] and the
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bipartite graph model by Hendrickson and Kolda [52, 68] are said to have more

expressive power than the other models [21, 49, 51, 52]. These models have the

flexibility of producing unsymmetric partitions on the input and output vectors

of the sparse matrix-vector multiplies. A distinct advantage of the hypergraph

models over both the standard graph and the bipartite graph models is that the

partitioning objective in the hypergraph models is an exact measure of the total

communication volume, whereas the objective in the graph models is an approx-

imation [21, 49, 51, 52]. As noted in the survey [51] and in [49], all these graph

and hypergraph models, except the bipartite graph model, are used to optimize a

single sparse matrix-vector multiply operation. However, matrix-vector multiply

operations are only a piece of a larger computation in the preconditioned iterative

methods. Therefore, new partitioning models that optimize a full step in these

iterative methods are needed as also stated by Hendrickson [49].

Since the proposed models are built using computational hypergraph models

for sparse matrix partitioning [21], we suggest the reader review these models

(discussed in Chapter 2). We discuss a procedure to analyze iterative methods

in order to determine partitioning requirements for efficient parallelization and

illustrate the procedure on a well known iterative method in §5.3. The partition-

ing requirements of a number of widely used iterative methods are also given in

the same section. We propose methods to build composite hypergraph models

for meeting the partitioning requirements in the preconditioned iterative methods

in §5.4. We discuss the applicability of the composite hypergraph models to a

few additional scientific applications and relate the models to some existing works

in §5.5. The proposed methods are evaluated both theoretically and practically

in §5.6.

5.2 Background

The iterative methods that use approximate inverse preconditioners perform

matrix-vector multiplies with both coefficient and preconditioner matrices. Usu-

ally, these multiply operations are performed on after another without any other
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intermittent computation. In other words, the computational core of these meth-

ods is a chain of matrix-vector multiplies.

5.2.1 Matrix-chain-vector multiplies

Consider the computations of the form y ← A1A2 · · · z . Rather than forming

the matrix-chain-product A1A2 · · ·, which may be quite dense, the above com-

putation is performed as a sequence of matrix-vector multiplies. In particular,

the computations of the form y ← AMz are performed as x ← Mz and then

y ← Ax. If the matrices A and M are partitioned rowwise and columnwise re-

spectively, then the parallel matrix-chain-vector multiply executes the following

steps:

1. Execute the column-parallel algorithm given in §2.1.2 to obtain x←Mz .

2. Execute the row-parallel algorithm given in §2.1.1 to obtain y ← Ax.

In this parallel algorithm, if the permutation on the rows of M is different than

the permutation on the columns of A, then the x-vector entries should be re-

ordered in between the two multiplies. Since the reordering requires communica-

tion it should be avoided. In other words, the permutations on the columns of A

and rows of M should be the same. To meet this requirement matrices should

be partitioned simultaneously.

5.3 Determining partitioning requirements

In iterative methods, all vectors that participate in a linear vector operation

should be partitioned conformably in order to avoid the communication of the

vector entries during the operation. To obtain such conformable partitionings, we

classify the vectors according to their relations to the inputs and outputs of the

matrix-vector multiplies. In particular, we call a vector to be in the input-space
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of a matrix A if it is multiplied with A or it undergoes linear vector operations

with other input-space vectors. Accordingly, we call a vector to be in the output-

space of a matrix A if it is obtained by multiplying A with another vector or it

undergoes linear vector operations with other output-space vectors. For example,

in y ← Ax multiply, the y vector is in the output-space of A, whereas x is in

the input-space of A.

In some iterative methods, e.g., the conjugate gradients [42], the input-space

and out-space of the A matrix coincide, i.e., the input-space vectors undergo

linear vector operations with the output-space vectors. Such methods require

symmetric partitioning PAP T in which all vectors are partitioned conformably

with the permutation P . In some other methods, the input-space and output-

space of A differ. Such methods allow unsymmetric partitioning PAQ in which

all output-space vectors are partitioned conformably with P , whereas all input-

space vectors are partitioned conformably with Q. If the method involves more

than one multiply with different matrices, the output-space of one matrix may

coincide with the input-space of another one. In this case, the output-space

permutation for the first one becomes an input-space permutation for the other

one.

All vectors in a full step of an iterative algorithm should be analyzed in terms

of their relations to the input- and output-spaces of all matrices to determine

the partitioning requirements. We analyze the right preconditioned BiCGStab1

method [104] given in Fig. 5.1 and determine its partitioning requirements as

an example. There are ten vectors in the method: r ,b, r̃ ,x,p,v , p̂ ,s, ŝ , and t.

Because of the linear vector operations in lines 1,2,4,7,10,14,15,19,20, and 21,

the vectors r ,b, r̃ ,p,v ,s,t, and x should be partitioned conformably. All these

vectors are in the output-space of A because of the matrix-vector multiplies in

the lines 13 and 18. We are left with the vectors p̂ and ŝ. Because of the

matrix-vector multiplies in the lines 13 and 18, these two are in the input-space

1Please note that the given code works with preconditioned x vector, i.e, the solution vector
x obtained at the termination is a solution to AMx = b . That is, in order to get a solution
to Ax = b we have to multiply x with the approximate inverse preconditioner M at the
termination. However, using p̂ and ŝ instead of p and s in line 20 would yield the solution to
Ax = b without any other operations as given by Barret et. al [5].
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BiCGStab(A,M,x,b)#Solve Ax=b using the right preconditioner M
begin

(1) r(0) = b−AMx(0) for some initial x(0) = x

(2) r̃ = r(0)

(3) for i = 1, 2, · · · do

(4) ρi−1 = r̃T r(i−1)

(5) if ρi−1 = 0 method fails
(6) if i = 1

(7) p(i) = r(i−1)

(8) else

(9) βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)

(10) p(i) = r(i−1) + βi−1

(

p(i−1) − ωi−1v
(i−1)

)

(11) endif

(12) p̂ = Mp(i)

(13) v(i) = Ap̂

(14) αi = ρi−1/r̃
T v(i)

(15) s = r(i−1) − αiv
(i)

(16) check norm of s ; if small enough; set x(i) = x(i−1) + αip
(i) and stop

(17) ŝ = Ms
(18) t = Aŝ
(19) ωi = tT s/tT t

(20) x(i) = x(i−1) + αip
(i) + ωis

(21) r(i) = s− ωit
(22) check convergence; continue if necessary
(23) for continuation it is necessary that ωi 6= 0
(24) endfor

end

Figure 5.1: Preconditioned BiCGStab using the approximate inverse M as a right
preconditioner.
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Table 5.1: Iterative methods and partitioning requirements.

Method Partitioning Number of distinct
requirement vector partitionings

BiCGStab right precond. [5, 46] PAMP T 2
BiCGStab right factor. precond. [5] PAM1M2P

T 3

symmetric GMRES right precond. [25] PAP T –PMP T 1
GMRES right precond. [86] PAMP T 2
GMRES left precond. [86] PMAP T 2

TFQMR symmetric precond [41] PAP T –PM2M1P
T 2

TFQMR original form [39] PM1AM2P
T 3

CGNE [86] PAQ–PMP T 2

CGNR [86] QAP T –PMP T 2

CGS right precond. [5] PAMP T 2

PCG [5, 42, 70] PAP T –PMMT P T 2
PAP T –PMP T 2

of A, and thus can have a different partition Q. Since we have completed the

classification of vectors, we can determine the partitioning requirements for the

A and M matrices. The input- and output-spaces of A differ. Therefore, the

partitioning requirement for the A matrix is PAQ. The vectors p̂ and ŝ are

in the output-space of M because of the matrix-vector multiplies in the lines 12

and 17. Therefore, the output-space of M coincides with the input-space of A.

Similarly, the input-space of M coincides with the output-space of A through

vectors p and s. Therefore, the partitioning requirement for the M matrix is

QT MP T . The overall requirement is thus PAQ and QT MP T . We express this

requirement as PAMP T to simplify the notation.

We examined a number of widely used preconditioned iterative methods whose

codes are given in the literature. We noticed that different methods have different

partitioning requirements as shown in Table 5.1. Several caveats are necessary

for the table to be useful.

1. We analyze the methods in their original form as given in the references,

i.e., we do not consider any type of code optimizations for performance
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gains.

2. If any two matrices are written consecutively, then the two matrix-vector

multiplies involving the matrices follow each other without any interleaving

synchronization. In such cases, the input-space of the first matrix and

the output-space of the second matrix coincide. In other words, there is an

arbitrary permutation matrix and its transpose in between the two matrices

which designates a distinct vector partitioning. For example, PAMP T

means unsymmetric partitions PAQ for A and QT MP T for M . We write

the number of distinct vector partitionings for each method in the rightmost

column of Table 5.1.

3. Listing two partitioning requirements separated by “–” means that there is

at least one synchronization point between the two matrix-vector multiplies.

Therefore, we distinguish the partitioning requirement PAP TPMP T from

PAP T –PMP T . The first one only states that the output-spaces of the

matrices coincide with the input-spaces of the matrices. The second par-

titioning requirement, however, further states that the two matrix-vector

multiplies are interleaved with synchronizations.

4. Factored approximate inverse M1M2 can be used (table contains such an ex-

ample for BiCGStab) instead of M by just writing the factors consecutively

in place of M to determine their partitioning requirement. For example,

the use of a factored approximate inverse in the right preconditioned CGNE

necessitates PAQ–PM1M2P
T which in turn gives the requirements PAQ,

PM1R , and RT M2P
T .

5. The given requirements are independent of the dimensions along which the

matrices are partitioned. That is, matrices can be partitioned rowwise or

columnwise, whichever is preferred.

In choosing a partitioning dimension, three issues should be considered. The

first issue is the individual matrix characteristics, i.e., the number of nonzeros per

rows and columns. If, for example, a matrix has dense rows but no dense columns,

then it is advisable to partition it along the columns [52]. Partitioning along the
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rows will probably lead to a poor load balance among the processors. Besides, a

dense row will span a large number of column segments in the off-diagonal blocks

of the block structure and thus will lead to a high volume of communication.

However, in columnwise partitioning it will be easy to balance the computational

loads. Furthermore, a dense row will span at most one nonzero row segment in

each off diagonal blocks of the block structure and thus will contribute at most

one word of communication volume per each off diagonal block.

The second issue in choosing a partitioning dimension is the relation between

the partitioning requirement and the set of atomic tasks to be partitioned. For

example, in the PAMP T case, we have four partitioning choices for the pair of A

(of size m×n) and M (of size n×m) matrices: rowwise-rowwise (RR), rowwise-

columnwise (RC), columnwise-rowwise (CR), and columnwise-columnwise (CC).

In the RR scheme, the partitioning determines the output-space permutation for

the two matrices. Since the output-spaces of the two matrices differ there are a

total of m + n tasks to partition. In the CC scheme, the partitioning determines

the input-space permutation. Since the input-spaces differ there are a total of

n+m tasks to partition. In the RC and CR schemes, the partitioning determines

the permutation for the coinciding input- and output-spaces. Therefore, in the

RC and CR schemes, the number of tasks reduces to m and n, respectively.

The third issue is the arrangement of computations and communications.

Consider the partitioning requirement of PAMP T for the multiplies of the form

y ← AMz which are performed as x ← Mz and then y ← Ax. For each

multiply, there exists an expand or a fold communication operation. The par-

titioning dimension determines whether these communications take place before

or after the local computations. In the RC partitioning scheme, the fold and ex-

pand operations take place successively in between the two multiplies. There are

dependencies between these two communication operations; before expanding a

particular x-vector entry it should be folded. Because of these dependencies, the

successive fold and expand operations are likely to incur a local synchronization

point which separates the two multiplies. Therefore, processors’ loads should be

balanced for individual matrix-vector multiplies in this partitioning scheme. The
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RR and CC schemes have either an expand or a fold in between the two multi-

ply operations. Such communications do not incur synchronization points under

the assumption that each processor has enough local computation which overlaps

with the incoming messages. If the two matrices have comparable number of

nonzeros, processors’ loads should be balanced for individual matrix-vector mul-

tiplies in these two partitioning schemes for scalability. The CR scheme is unique

in that the two multiply operations are performed without any communication in

between the two multiplies. In this partitioning scheme, processors’ loads should

be balanced in terms of their total loads in the two multiplies.

5.4 Building composite hypergraph models

We combine individual hypergraph representations of the coefficient matrix A

and the preconditioner matrix M or its factors M1 and M2 into a composite

hypergraph whose partitioning meets the requirements given in §5.3. We define

four operations to combine the hypergraph representations of the individual ma-

trices. These four operations are called vertex amalgamation, vertex weighting,

vertex insertion, and pin addition. The first operation is used to enforce identical

partitions on the vertices of the individual hypergraphs. The second operation is

used to enable load balancing. The last two operations are used to define map-

ping policies for the nets of the individual hypergraphs. The key point in all these

operations is to preserve the identities of the nets of the individual hypergraphs.

In the following discussion, we assume that A is to be partitioned rowwise,

and M and M1 are to be partitioned columnwise, and M2 is to be partitioned

rowwise. That is, we have column-net hypergraphs for A and M2 and row-net

hypergraph for M1 .

Vertex amalgamation. This operation is used to enforce identical partitions

along the partitioning dimensions of the matrices. In this operation, the vertices

of the individual hypergraphs are combined into a single vertex. The nets of the

resulting composite is set to the union of the nets of the constituent vertices. For
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example, in the PAP T –PMP T case, we amalgamate the row-vertex ri(A) with

the column-vertex ci(M) into vi so that Nets(vi) = Nets (ri(A))∪Nets(ci(M))

(see Fig. 5.2(b)). In a partitioning, vi being in a part Vk shows the processor Pk

being responsible for performing multiplications with the ith row of A and the

ith column of M .

Vertex weighting. This operation is used to enable load balancing. Remem-

ber that in some of the iterative methods there are synchronization points between

different matrix-vector multiplies. That is, computations occur in phases. There-

fore, we define multiple weights for vertices; one for each computation phase. For

a certain phase, the weight of a vertex is set to the weight of the constituent

vertex in the hypergraph of the matrix associated with that phase. Consider

right preconditioned symmetric-GMRES [25] and its partitioning requirement

PAP T –PMP T . As seen in Fig. 5.2(b), we amalgamate vertices of the individual

hypergraphs. Since the application of the preconditioner M occurs in a differ-

ent phase, the vertex shown has two weights. The first weight represents the

computational load associated with the ith row of A, i.e., |ri(A)| . The second

weight represents the computational load associated with the ith column of M ,

i.e., |ci(M)| . In some cases, different matrix-vector multiplies occur successively

without any interleaving synchronization. In these cases, the weight of a compos-

ite vertex is set to the sum of the weights of the constituting vertices. Consider

the TFQMR method using symmetric preconditioning and its partitioning re-

quirement PAP T –PM1M2P
T . Since M1 and M2 are partitioned columnwise

and rowwise, respectively, there is no synchronization between their respective

matrix-vector multiplies. Therefore, the weights of ci(M1) and ri(M2) are added

up as seen in Fig. 5.2(c).

Vertex insertion. This operation is used to make mapping policies for the

nets. It is used to have the same partitioning for the vectors associated with

two different set of nets when the partitioning on vertices is different than what

is required. A new dummy vertex di is created whose nets are the ith nets

of the individual hypergraphs and a policy on mapping these nets with di is

made. Consider the partitioning requirement PAMP T . As shown in Fig. 5.2(a),
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Figure 5.2: Composite hypergraph models for different partitioning requirements.
The di vertices are created while building the composite hypergraphs. The nets
of the di vertices are fully shown. Other vertices are coming from the individual
hypergraphs. We use ci(·) and ri(·) to represent, respectively, the ith column
and ith row of the matrices. We use |ci(·)| and |ri(·)| to represent the number
of nonzero elements in the ith column and row respectively. The weights of
the vertices are given in between 〈 ’s and 〉 ’s next to the vertices. The nets are
labeled with a single ri(·) or a single ci(·) according to their counterparts in the
individual hypergraphs. The dashed lines originating from a net and pointing at
some vertex displays the mapping policy on the respective net. These policies
are made in the vertex insertion and pin addition operations.
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we create the vertex di and connect it to the column-net ci(A) and the row-

net ri(M). The vertex di being in a part Vk shows that the processor Pk is

responsible for folding and holding the ith entries of the vectors in the output-

space of M , and it also shows that Pk is responsible for expanding and holding the

ith entries of the vectors in the input-space of A. Note that the computational

cost associated with di depends on the connectivity of its nets. Therefore, we

cannot assign exact weights to those vertices before partitioning take place.

Pin addition. This operation is used to define mapping policies for the

nets. Different than the vertex insertion operation, the pin addition operation

connects the nets to the existing vertices. Recall that we obtain partitioning on

the vectors associated with nets by mapping a net to a part holding one of its

vertices. Suppose all vertices of a net are permuted according to P , and we seek

another permutation Q on the vectors associated with that net. In this case, we

connect the net to an appropriate vertex which will be permuted according to

Q and make the mapping policy for that net. Consider the BiCGStab method

with the factored approximate inverse preconditioner M1M2 and the method’s

partitioning requirement PAM1M2P
T . Since we partition M2 by rows, and

the vectors in its input-space are to be partitioned with P T conforming to the

rowwise partition of A, we connect the net ci(M2) to the vertex ri(A) as shown

in Fig. 5.2(e). The pins along which the policies are made must be present in a

composite hypergraph. If they are missing in the individual hypergraphs, then

they must be added. In Figs. 5.2(a)–(f), existence of all pins along the direction of

the dashed lines (mapping policies) that are not pointing to a dummy vertex are

subject to pin-addition operation. The existence of other pins, for example the

one between the composite vertex and the nets ci(A) and ri(M) in Fig. 5.2(a),

depends on the sparsity patterns of the matrices.

Given a partition on the composite hypergraph, we extract the row and col-

umn permutation matrices for each matrix. The partition on the vertices define a

permutation for either the rows or the columns of each of the matrices according

to the partitioning dimensions. To define permutations for the other dimensions

of the matrices, we obtain a consistent permutation on the nets of the composite
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hypergraph and then project this permutation to the nets of the individual hyper-

graphs. While forming the composite hypergraph, we define a mapping policy for

some nets. These policies enable us to map those nets consistently. The remain-

ing nets are not restricted to be mapped with a specific vertex; we arbitrarily

map these nets to a part in their connectivity set. Observe that the resulting

permutation on the composite hypergraph is consistent, whereas the projected

permutations on the individual hypergraphs do not have to be as such, because

of the vertex insertion and pin addition operations. However, the consistency of

the permutation on the nets of the composite hypergraph is sufficient to have the

following theorem.

Theorem 5.1 The cutsize of a partition in a composite hypergraph formed by ap-

plying the above operations on individual hypergraph representations of a number

of matrices quantifies the total volume of communication in the respective sparse

matrix-vector multiplies.

Proof. In order to prove the theorem, we again add the connectivity of the

external nets under a consistent permutation.

There are two types of external nets. The first type of nets are those that

have at least one original vertex in each part in their connectivity set. These nets

are handled using the same arguments in the proof of Theorem 2.1.

The second type of nets are those that are connected to a part only through

the newly added vertices. Observe that each such net contains one newly added

vertex which defines the permutation policy. Consider a column net ci of this

type. Let Pk ∈ Λi be the part that holds the new vertex vi . The other vertices

of the net ci represent the atomic inner product operations that needs the vector

entry, say xi , associated with ci . Since we map the net ci with the vertex vi ,

the owner of xi is Pk . Hence, Pk has to send xi to the processors in Λi − {Pk} .

Therefore, the volume of communication associated with net ci is again λi − 1.

The row nets of the second type are handled similarly. Therefore, the overall sum

of the connectivity−1 of the nets again corresponds to the total communication

volume.



CHAPTER 5. PRECONDITIONED ITERATIVE METHODS 70

Guidelines for combining hypergraphs. To build a composite hypergraph

the followings should be applied.

G1. Determine partitioning requirements for each matrix through analyzing vec-

tor operations as discussed in §5.3.

G2. Decide on the partitioning dimension. Generate row-net hypergraph model

for the matrices to be partitioned columnwise. Generate column-net hyper-

graph model for the matrices to be partitioned rowwise.

G3. Apply vertex operations:

(i) If the partitioning requirements impose identical partitions on any

two vertices, then apply vertex amalgamation to those vertices.

(ii) For each vertex of the composite hypergraph, apply the vertex

weighting operation. If there is no synchronization point between the as-

sociated matrix-vector multiplies or there is a local synchronization point

and the matrices do not have comparable number of nonzeros, then add up

the weights of the constituting vertices, else associate multiple weights.

G4. Apply net operations (make policies on mapping nets):

(i) If a net ought to be mapped with a specific vertex, then make a

policy for that net. If the net is not connected to the specific vertex, then

apply the pin addition operation.

(ii) If two nets ought to be mapped together and independent of the

existing vertices, then apply vertex insertion.

Illustration. Consider the right preconditioned BiCGStab method and its

partitioning requirement PAMP T obtained in §5.3 according to G1. Let A

and M be the matrices shown in Fig. 5.3(b). Suppose that A is to be parti-

tioned columnwise and M is to be partitioned rowwise. We generate row-net

and column-net hypergraph models of A and M , respectively according to G2 as

shown in Figs. 2.2 and 2.1. The partitioning requirement imposes identical parti-

tionings on the columns of A and rows of M . Hence, we amalgamate vertices of
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Figure 5.3: (a) A composite hypergraph formed by row-net hypergraph of A
and column-net hypergraph of M and a partitioning which meets the require-
ment PAMP T . The pins of the internal nets are not shown. (b) A columnwise
partitioning of A and a rowwise partitioning of M induced by the composite
hypergraph partitioning.
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A and M according to G3.i. The method has no synchronization point between

the two multiplies, and the separated expand and fold operations do not cause

synchronization. Therefore, we just add the vertex weights. Corresponding nets

of the two hypergraphs have to be permuted together and independent of the

existing vertices. Therefore, we apply vertex insertion according to G4.ii. The

resulting hypergraph is shown in Fig 5.3(a). In this figure, the dummy vertices

are shaded. Other vertices and nets are inherited from the previous figures. In

order to distinguish the nets, the source matrix names are written next to them.

The pins of the internal nets are not shown for the sake of clarity. The nets have

to be permuted to the part that holds the associated dummy vertices. The per-

mutations on the matrices induced from the composite hypergraph partitioning

are shown in Fig. 5.3(b). As seen from the figure, the cutsize and hence the total

volume of communication is 10 where each multiply contributes five.

5.5 Further notes

5.5.1 Revisiting hypergraph models for 1D partitioning

Consider the computations of the form y ← Ax under rowwise partitioning of the

matrix A. Since we partition A, x, and the resulting vector y , there should be

three types of vertices in a hypergraph: y -vertices, row-vertices, and x-vertices.

Each y -vertex depends on a particular row-vertex, i.e., yi and ri are connected

with a specific net ni(y, r) for all i. Since the x-vertices are the sources that the

computations depend on, the row-vertices depend on the x-vertices, i.e., xi is

connected to the row-vertices which correspond to the rows that have nonzeros in

column i with a specific net ni(x, r). Figure 5.4(a) shows the hypergraph. In this

hypergraph, there are m+m+n vertices and m+n nets. This hypergraph model

is the most general model for 1D rowwise partitioning, because by partitioning

the vertices of this hypergraph we can specify partitions on all operands of the

matrix-vector multiply operation.

Now, we show how to modify the hypergraph specified above by applying the
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(c) 1D symmetric partitioning model with the owner computes rule.

Figure 5.4: (a) All operands of the SpMxV operation are partitioned. (b) Vertex
amalgamation operation is applied to enforce the owner computes rule. (c) Vertex
amalgamation operation is applied to obtain 1D symmetric partitioning.
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operations proposed in this chapter to obtain 1D unsymmetric and symmetric

partitionings. First, we can apply owner computes rule, i.e., yi should be com-

puted by the processor which owns ri . This requires amalgamating the vertices

yi and ri for all i. A portion of the resulting hypergraph is shown in Fig. 5.4(b).

Since nets of size one does not contribute to the partitioning cost, we can delete

the net ni(y, r) from the model. Partitioning the resulting hypergraph will pro-

duce nonsymmetric partitions. Suppose we are seeking symmetric partitions, i.e.,

the processor which owns ri and yi should own xi . This time, we have to amalga-

mate the vertices yi/ri and xi for all i. A portion of the resulting hypergraph is

shown in Fig. 5.4(c). Partitioning the resulting hypergraph will produce symmet-

ric partitions. Note that the hypergraph shown in Fig. 5.4(c) is the column-net

hypergraph model discussed in [21]. Observe that the vertex amalgamation op-

eration between the vertex xi and yi/ri connects the ith vertex to the ith net.

This observation clarifies the issue that in 1D computational hypergraph model

of Çatalyürek and Aykanat, all of the diagonal entries of the matrices should be

nonzero if symmetric partitioning is sought.

We think that it is possible to simplify building composite models through

using the generalized hypergraph models. We will report this issue in [102]

5.5.2 Investigations on the composite models

Consider the partitioning requirements for the CGNE and CGNR methods given

in Table 5.1. In the CGNE method, when the matrix A is partitioned rowwise,

we have a leeway in defining a consistent column permutation for A as shown in

Fig. 5.2(f). Similarly, when the matrix A is partitioned columnwise, we have the

same leeway in defining a consistent row permutation for A in the CGNR method

which requires QAP –PMP T . In such cases, we can use this freedom to minimize

other communication cost metrics as mentioned in Chapter 3. However, since the

techniques in [99, 105] can only be applied to the communications regarding A,

we expect a limited improvement here.

Consider composite hypergraphs in which two nets are permuted with a

dummy vertex as shown in Figs. 5.2(a) and 5.2(e). These dummy vertices are
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added to have a vertex partition induce a particular permutation on the nets.

Without changing the computational load distribution, any two nets that share

a dummy vertex can be re-permuted. In [97], we used this freedom in permuting

two nets together to minimize multiple communication cost metrics in 2D parti-

tioning of sparse matrices. In a similar vein, we can construct a communication

hypergraph HC = (VN ,NΠ) for a composite hypergraph H = (V,N )—in the

form of Fig. 5.2(a) or 5.2(e)—and its partitioning Π. For each column-net ci(A)

and row-net ri(M) pair, we create a single vertex vi ∈ VN . For each part Pk , we

create two nets ak and mk and connect them by inserting a new vertex marked as

fixed to the k th part during partitioning HC . We insert vertex vi to the pin-list

of the net ak if column-net ci(A) connects k th part under the given partition Π

of H . Similarly, we insert vertex vi to the pin-list of the net mk if row-net ri(M)

connects k th part in Π. In a partition ΠC of the communication hypergraph

HC , a vertex vi in a given part can be used to permute both column-net ci(A)

and row-net ri(M) to that part. As shown in [97], minimizing the cutsize of

ΠC minimizes the total number of messages, and maintaining balance on part

weights using a loosely specified vertex weight relates to maintaining balance on

the communication volume loads of processors.

5.5.3 Generalizations and related work

The computational structure of the preconditioned iterative methods is similar

to the computational structure of a more general class of scientific computations

including multi-phase, multi-physics, and multi-mesh simulations.

In multi-phase simulations, there are a number of computational phases sep-

arated by global synchronization points. The existence of the global synchro-

nizations necessitates each phase to be load balanced individually. In our model,

the multiple weights associated with vertices are used to achieve this goal. The

works in [64, 106] also uses multiple weights for the parallelization of multi-phase

simulations.

In multi-physics simulations, a variety of materials and processes are analyzed

by using different physics procedures. In this type of simulations, computations
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as well as the memory requirements are not uniform across the mesh [91]. For

scalability issues, processor loads should be balanced in terms of these two com-

ponents. The multi-constraint partitioning framework also addresses this kind of

problems [91].

In multi-mesh simulations, a number of grids with probably different dis-

cretization schemes and with arbitrary overlaps are used. The existence of

overlapping regions/grid points necessitates simultaneous partitioning of the

grids [91]. This simultaneous partitioning should balance the computational loads

of the processors and minimize the communication cost due to interactions within

an individual grid as well as the interactions among the different grids. The ver-

tex amalgamation operation used in our models can be applied to overlapped

regions to build the composite hypergraph. With the use of vertex weighting op-

erations, our models thus can be used to address the partitioning problem in the

multi-mesh computations. Although the simultaneous partitioning seems to be

more adequate for this type of problems, independent partitioning is also possi-

ble. In fact, Plimpton et al. [85] reported promising results on using independent

partitionings for a two grid system.

In some contact/impact problems there is a priori knowledge about the to

be contacting surfaces. Karypis [61] and Plimpton et al. [84] report an imple-

mentation [57] which uses this information to decompose the underlying mesh

among processors. The implementation uses the graph model and adds edges

between the to be contacting surface elements. Partitioning such a graph using

two-constraints balances the loads of processors both for the finite element analy-

sis phase and for the contact detection phase, meanwhile by minimizing the edge

cut the partitioning algorithm minimizes the communication cost. By modeling

the interactions among the to be contacting surface elements with hypergraphs,

we can build a composite hypergraph to address this kind of problems. However,

the implementation in [57] is reported to suffer from load imbalances and to be

limited to a small number of processors [84].

In obtaining partitionings for two or more computation phases interleaved

with synchronization points, our models lead to the minimization of the overall
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sum of the total volume of communication in all phases. For the preconditioned it-

erative methods, minimizing the overall sum of communication volume will likely

minimize the communication cost in one step of these methods. However, in

more sophisticated simulations, the magnitude of the interactions in one phase

may be different than that of the interactions in another one. In such settings,

minimizing the total volume of communication in each phase separately may be

advantageous [90]. This problem can be formulated as a multi-objective hyper-

graph partitioning problem [1, 92] on the composite hypergraphs.

As discussed above, our models can be applied to the multi-phase, multi-

physics, and multi-mesh computations but subject to the following limitations.

The dependencies must remain the same throughout the computations; our meth-

ods cannot be used, for example, in adaptive mesh refinement. The weights

assigned to elements, for load balancing issues, should be static and available

before the partitioning takes place; hence our methods cannot be used for ap-

plications whose computational requirements vary in time [50]. If, however, the

computational loads changes gradually in time, then our methods can be used to

re-partition the total load at certain time intervals. Another point is that some

problems are more suitable to geometric partitioning methods; contact detection

without a priori knowledge of the contacting surfaces, for example, should be

performed on geometrically close elements [16, 61, 84]. Our methods, in their

current forms, will probably be of little help in those problems. To be useful, the

models should be enriched with some geometric constructs as is done in [61].

The multiphase mesh partitioning method of Walshaw et al. [73, 106]

and multi-constraint/multi-objective graph partitioning methods of Karypis et

al. [64, 90] also address the partitioning problem in the scientific computations

mentioned above. These two works are built upon undirected graph model.

Therefore, the limitations of the graph model exist in these formulations. For

example, these two models can obtain only symmetric partitionings; we think

that only the requirement of PAP T –PMP T , among those given in Table 5.1,

can be met using these models. Other than the inherent limitations, there is

another restriction in the multiphase mesh partitioning formulation of Walshaw

et al. that only a subset of nodes should be active at a given computation
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phase. Within this respect, our methods and multi-constraint/multi-objective

graph partitioning methods of Karypis et al. seem to be superior to multiphase

mesh partitioning method in modeling different type of computations, where ours

being unique in handling unsymmetric dependencies, in producing unsymmetric

partitionings, and in modeling the total communication volume exactly.

5.6 Experiments

We chose the right preconditioned BiCGStab method to evaluate the proposed

simultaneous partitioning method. We used a set of unsymmetric sparse matri-

ces which were obtained from University of Florida Sparse Matrix Collection [32].

Approximate inverse preconditioners were obtained using SPAI version 3.0 [45].

Factored approximate inverses were obtained using AINV [13]. These two pro-

grams have parameters that affect the quality of the preconditioner matrices.

However, we set the parameters in such a way that the number of nonzeros of the

approximate inverse or the total number of nonzeros of the factors of the approx-

imate inverse is at most twice and at least half of the number of nonzeros of the

coefficient matrix. We adjusted the tolerance parameter eps, number of nonzero

entries allowed per step mn, and the number of steps ns in SPAI. In AINV, we

adjusted the drop tolerance parameter τ . The properties of the matrices, approx-

imate inverses, and factors of the approximate inverses are given in Table 5.2. In

the table, the coefficient matrices are listed with a suffix of A; the approximate

inverse matrices are listed with a suffix of M ; the factors of the approximate

inverse matrices are listed with suffixes of Z and W , where approximate in-

verse is equivalent to ZW . The composite hypergraphs were partitioned using

PaToH [22] with default parameters. The imbalance among processors’ loads is

kept below 10% in all partitioning instances. Throughout this section, we use

“SPAI-matrices” to refer to a pair of a coefficient matrix and its approximate

inverse preconditioner. Similarly, we use “AINV-matrices” to refer to a triplet of

coefficient matrix and the factors of its approximate inverse preconditioner.

Since the partitioning tool PaToH incorporates randomized algorithms, it was
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Table 5.2: Properties of test matrices.

number of number of nonzeros
rows/cols total average row col

Matrix row/col min max min max
Zhao1-A 33861 166453 4.9 3 6 2 7
big-A 13209 91465 6.9 3 12 3 12
cage11-A 39082 559722 14.3 3 31 3 31
cage12-A 130228 2032536 15.6 5 33 5 33
epb2-A 25228 175027 6.9 3 87 3 87
epb3-A 84617 463625 5.5 3 6 3 7
mark3jac060-A 27449 170695 6.2 2 44 2 47
olafu-A 16146 1015156 62.9 24 89 24 89
stomach-A 213360 3021648 14.2 7 19 6 22
xenon1-A 48600 1181120 24.3 1 27 1 27

SPAI
Zhao1-M 33861 180988 5.3 1 11 1 16
big-M 13209 109088 8.3 2 22 1 21
cage11-M 39082 424708 10.9 2 51 2 21
cage12-M 130228 1444650 11.1 1 62 2 21
epb2-M 25228 244453 9.7 2 177 2 21
epb3-M 84617 532851 6.3 2 20 2 20
mark3jac060-M 27449 276586 10.1 1 37 1 21
olafu-M 16146 719873 44.6 5 114 4 46
stomach-M 213360 2910283 13.6 2 120 2 46
xenon1-M 48600 878143 18.1 1 35 1 21

AINV; M = ZW
Zhao1-Z 33861 179803 5.3 1 13 1 28
Zhao1-W 33861 57832 1.7 1 5 1 6
big-Z 13209 56302 4.3 1 11 1 13
big-W 13209 56314 4.3 1 13 1 11
cage11-Z 39082 302775 7.7 1 26 1 110
cage11-W 39082 299939 7.7 1 26 1 32
epb2-Z 25228 116161 4.6 1 13 1 22
epb2-W 25228 107620 4.3 1 36 1 19
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run 20 times starting from different random seeds for partitioning composite and

individual hypergraphs. Averages of the resulting communication patterns of

these runs are displayed in the following tables. Although the main objective

in the simultaneous partitioning method is the minimization of the total com-

munication volume, the results for the total number of messages, the maximum

volume and the maximum number of messages handled by a single processor are

also given.

5.6.1 Composite versus individual hypergraph partition-

ing

In this section, we analyze how the proposed composite hypergraph partitioning

models compare with the individual hypergraph partitioning models. We can use

the individual hypergraph partitioning models in two different approaches.

The first approach is to obtain independent partitionings on the matrices

by partitioning the computational hypergraph models of the coefficient and the

preconditioner matrices. This approach requires vector reordering in between the

two matrix-vector multiplies. We discuss this approach in §5.6.1.1.

The second approach is to use the same partition for the coefficient and pre-

conditioner matrices. For this purpose, we partition the coefficient matrices by

rows or columns and apply the resulting partitions to the preconditioner matrices

as well. This approach disregards the sparsity pattern of the preconditioner ma-

trices. However, the sparsity pattern of the approximate inverse preconditioners

are related to the sparsity pattern of the coefficient matrices [27, 59]. Therefore,

the partitions on the coefficient matrices are likely to induce effective partitions

on the preconditioners as well. To justify this reasoning, we show the relation

between the sparsity patterns of the coefficient matrices and the approximate

inverses in Table 5.3. As seen in the table, the relation between the sparsity

patterns of the coefficient and preconditioner matrices varies; almost half of the

nonzeros of Zhao1-M are covered by the nonzeros of Zhao1-A, and only %12 of

the nonzeros of mark3jac060-M are covered by the nonzeros of mark3jac060.
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Table 5.3: The relation between the sparsity patterns of the coefficient matrices
the approximate inverses. In this table, we use A and M to represent the set of
the positions of the nonzeros in the corresponding matrices.

Matrix number of nonzeros
A ∪M A \M M \A A∩M

A∪M

Zhao1 234205 67752 53217 0.48
big 147632 56167 38544 0.36
cage11 780776 221054 356068 0.26
cage12 2784199 751663 1339549 0.25
epb2 333794 158767 89341 0.26
epb3 773107 309482 240256 0.29
mark3jac060 397706 227011 121120 0.12
olafu 1357370 342214 637497 0.28
stomach 5182305 2160657 2272022 0.14
xenon1 1520936 339816 642793 0.35

Another reason for using the same partitioning for the coefficient and pre-

conditioner matrices is the following. Parallel construction of the approximate

inverse preconditioners produces preconditioners in such a way that the initial

partitions on the coefficient matrices become partitions on the preconditioner ma-

trices. For example, the left approximate inverse preconditioners can be efficiently

constructed rowwise when the coefficient matrix A is partitioned rowwise [28].

The construction yields the same rowwise partition on the approximate inverse

M . Equivalently, a right approximate inverse preconditioner can be efficiently

constructed columnwise when the coefficient matrix A is partitioned columnwise.

We discuss using the same partitioning for the coefficient and preconditioner ma-

trices in §5.6.1.2.

5.6.1.1 Independent partitioning on the matrices

For SPAI-matrices, we choose the partitioning dimensions as columnwise-rowwise

(CR) and rowwise-columnwise (RC) for the A and M matrices in the given order.

Tables 5.4 and 5.5 display the average communication patterns of the simul-

taneous and the individual partitionings for SPAI-matrices. The tables also show
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the volume of communication required to reorder the vector entries—in an iter-

ation of the BiCGStab method—when the matrices are partitioned individually.

Suppose that symmetric partitionings PAP T and QMQT were obtained on the

A and M matrices. Then, for each iteration we have to reorder p̂ and ŝ from

Q to P after the matrix-vector multiplies at lines 12 and 17 of the BiCGStab

method (see Fig. 5.1), respectively. We also have to reorder v and t from P to Q

before the vector update at line 15 and the inner product at line 19, respectively.

The volume of communication in the reordering operation is obtained according

to the permutation matrices that give the best volume for the individual ma-

trices. The actual total volume of communication in the individual partitioning

method can be obtained by adding the volume of reordering operations to the

total volumes of the individual partitionings. In all of the partitioning instances,

the volume of communication in the reordering operation itself is higher than the

volume of communication in the simultaneous partitioning. These high volumes

of communication and the associated message start-up overheads prohibit the use

of the individual partitioning method. For example, the individual partitioning

method incurs higher total communication volume than the proposed simulta-

neous partitioning method by factors that vary between 2.8 (cage12) and 24.6

(epb3) with an overall average factor of 8.6 for 32-way CR partitioning. The av-

erage factor in 64-way CR partitioning is 6.7. For RC partitioning, the average

factors are 5.8 and 4.2 for 32- and 64-way partitionings, respectively.

Table 5.6 displays the averages of the communication patterns of the 32-

and 64-way simultaneous and individual partitionings for AINV-matrices. Due

to lack of space we give only the experiments in which the partitioning dimen-

sions are chosen as columnwise-rowwise-columnwise (CRC) for the A, Z , and

W matrices in the given order. For AINV-matrices, the individual partitioning

method requires two additional reordering operations which are necessary for the

chains of matrix-vector multiplies at lines 12 and 17 of the BiCGStab method.

For AINV-matrices, the minimum ratio of the communication volumes in the

individual partitionings (including the reordering cost) to those of the simulta-

neous partitionings is 2.7 which is obtained for the 64-way partitioning of the

cage11 matrix. The maximum ratio is 14.9 which is obtained for the 32-way
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Table 5.4: Communication patterns for 32-way simultaneous and individual par-
titionings for SPAI-matrices.

Simultaneous partitioning Individual partitioning
Volume Message Volume Message Reorder

Matrix tot max tot max tot max tot max Volume
CR C/R

Zhao1-A 9419 453 248.1 13.2 8131 340 217.6 11.4
Zhao1-M 7927 415 251.8 13.4 7174 334 250.8 13.8 135412
big-A 2455 128 162.1 8.9 2071 91 150.9 7.5
big-M 2357 133 169.4 9.8 1946 91 155.8 7.8 52828
cage11-A 47979 2473 601.5 26.4 42424 2068 444.1 21.3
cage11-M 29021 1515 640.8 27.2 24460 1189 495.0 23.3 148924
cage12-A 162030 8313 783.8 29.9 142434 6771 614.1 27.4
cage12-M 93273 4783 815.0 30.4 76776 3519 660.2 28.8 488032
epb2-A 4846 317 233.8 15.8 4162 243 212.7 15.0
epb2-M 4943 287 186.8 10.7 3918 188 161.8 9.4 100912
epb3-A 5938 315 168.1 9.2 3705 166 126.5 6.1
epb3-M 7262 380 169.2 9.1 4478 203 141.9 7.3 317008
mark3jac060-A 13519 631 347.7 17.5 9735 377 266.7 12.1
mark3jac060-M 14578 697 324.0 16.9 11648 460 298.3 14.2 109508
olafu-A 10390 672 155.2 9.2 8394 444 127.9 7.2
olafu-M 18197 1180 197.6 11.2 15023 890 152.4 8.4 62312
stomach-A 34872 1864 187.8 10.4 26075 976 178.9 7.6
stomach-M 41181 2022 193.7 10.7 30306 1221 152.6 7.1 853440
xenon1-A 21833 1085 291.4 14.5 19090 824 242.6 11.9
xenon1-M 29525 1431 314.1 15.8 23634 1003 262.6 13.3 180032

RC R/C
Zhao1-A 9815 564 245.8 12.8 7801 347 218.1 11.7
Zhao1-M 10386 568 244.2 12.7 8326 386 234.7 13.2 135444
big-A 3536 214 185.4 10.1 2083 92 152.9 7.7
big-M 5022 292 189.3 9.9 3521 173 161.9 8.2 52824
cage11-A 59783 3988 787.0 30.6 42539 1993 446.6 21.6
cage11-M 46953 2263 776.5 29.4 31419 1483 557.5 25.4 150560
cage12-A 192970 10335 923.9 31.0 142734 6222 613.9 26.9
cage12-M 141307 7303 915.5 31.0 95652 4397 722.0 29.8 511804
epb2-A 6919 516 331.0 19.8 3944 221 207.7 11.4
epb2-M 7889 515 240.9 14.1 4823 232 173.6 9.9 100912
epb3-A 12771 1248 244.7 16.2 4840 204 143.3 7.5
epb3-M 13461 1383 242.3 16.1 4720 218 141.4 7.5 337660
mark3jac060-A 14277 760 390.1 19.7 9693 394 327.8 15.8
mark3jac060-M 15896 756 355.2 18.3 12589 524 311.7 14.9 109796
olafu-A 15169 999 209.7 13.1 8469 451 126.8 7.2
olafu-M 23002 1325 259.0 15.6 14601 817 153.4 8.8 62648
stomach-A 53375 3853 225.2 13.3 26217 978 177.9 7.7
stomach-M 62102 3981 230.0 13.7 32674 1329 161.1 7.5 853440
xenon1-A 26536 1398 349.9 19.1 19018 813 242.8 12.1
xenon1-M 34745 1734 376.1 20.1 23484 983 264.2 12.8 191872
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Table 5.5: Communication patterns for 64-way simultaneous and individual par-
titionings for SPAI-matrices.

Simultaneous partitioning Individual partitioning
Volume Message Volume Message Reorder

Matrix tot max tot max tot max tot max Volume
CR C/R

Zhao1-A 13026 327 592.2 17.0 11421 237 529.0 13.1
Zhao1-M 10809 305 598.0 17.4 9857 234 583.8 16.4 135080
big-A 3666 98 336.5 9.2 3210 69 326.3 8.6
big-M 3562 102 352.8 9.8 3054 70 339.4 8.8 52824
cage11-A 63779 1732 1585.7 39.5 58177 1463 1173.2 30.9
cage11-M 38714 1249 1709.0 43.5 32937 835 1262.2 33.5 153784
cage12-A 207077 6111 2229.6 51.1 185531 4711 1626.4 40.4
cage12-M 119287 3678 2366.2 52.5 98493 2552 1731.2 44.3 504628
epb2-A 6731 259 463.5 22.2 5984 172 439.5 18.6
epb2-M 7215 211 381.2 12.4 5967 138 343.6 10.8 99904
epb3-A 8167 227 365.7 10.9 5713 130 298.1 7.5
epb3-M 9759 282 370.2 11.1 6846 164 305.9 8.0 338468
mark3jac060-A 17447 498 945.7 24.3 13331 319 724.1 16.9
mark3jac060-M 18970 533 923.2 25.4 15567 358 887.5 20.1 109788
olafu-A 16743 569 363.4 11.3 14012 356 294.3 8.2
olafu-M 29348 1102 518.2 16.1 25137 696 399.6 11.2 63492
stomach-A 47689 1343 424.9 12.5 36800 706 371.3 8.0
stomach-M 57755 1588 447.1 12.9 44232 966 391.1 8.7 853440
xenon1-A 29644 769 663.5 18.1 26710 593 542.4 15.3
xenon1-M 40270 1066 744.2 20.8 33597 754 614.0 16.5 194380

RC R/C
Zhao1-A 13734 399 619.0 17.0 10811 238 517.4 13.3
Zhao1-M 14551 420 612.5 16.4 11756 280 568.7 15.4 135348
big-A 5453 197 410.0 12.8 3215 68 327.9 8.8
big-M 7610 223 422.6 12.2 5447 140 347.1 9.1 52804
cage11-A 79052 3482 2265.8 56.0 58272 1452 1164.6 31.7
cage11-M 61304 1627 2203.7 48.6 42512 1057 1470.5 38.8 151840
cage12-A 248253 8193 2959.2 60.6 185191 4217 1617.2 40.9
cage12-M 180128 4976 2879.7 58.6 122513 3246 1991.8 48.8 510824
epb2-A 10610 515 766.9 29.9 5527 166 430.2 13.7
epb2-M 11694 437 492.7 17.1 7411 181 353.9 11.5 100912
epb3-A 17911 985 525.7 19.5 7250 155 312.0 7.5
epb3-M 18512 938 518.4 19.3 7057 172 295.6 7.9 333320
mark3jac060-A 19503 643 1094.3 29.6 12676 285 953.9 24.6
mark3jac060-M 21096 525 996.0 24.7 16563 408 891.5 20.1 109780
olafu-A 23870 1041 532.2 18.8 13912 370 292.6 8.2
olafu-M 36427 1071 696.5 21.8 24735 641 399.1 11.3 57372
stomach-A 77080 3239 552.2 18.7 37219 717 370.3 8.0
stomach-M 89479 3418 574.5 18.8 47965 1028 391.2 8.9 853440
xenon1-A 36044 1049 808.0 24.5 26669 594 545.3 14.8
xenon1-M 46970 1183 904.5 25.9 33241 729 604.0 15.1 178388
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Table 5.6: Communication patterns for 32- and 64-way simultaneous and indi-
vidual partitionings for AINV-matrices.

Simultaneous partitioning Individual partitioning
CRC C/R/C

Volume Message Volume Message Reorder
Matrix tot max tot max tot max tot max Volume

K = 32
Zhao1-A 11191 515 261.2 13.4 8131 340 217.6 11.4
Zhao1-Z 9132 476 278.6 14.8 7877 1134 293.9 23.4
Zhao1-W 1711 108 211.4 11.2 76 11 17.8 2.1 198860
big-A 2443 113 157.5 8.4 2071 91 150.9 7.5
big-Z 1486 85 150.7 8.4 1217 63 146.7 7.3
big-W 1496 80 149.1 8.2 1218 60 147.8 7.2 76250
cage11-A 49562 2381 508.1 23.9 42424 2068 444.1 21.3
cage11-Z 21612 1200 545.5 25.9 16277 1119 354.2 19.6
cage11-W 20323 1050 537.9 25.1 16127 808 336.9 16.9 220128
epb2-A 7028 393 470.1 27.1 4162 243 212.7 15.0
epb2-Z 2637 174 174.2 9.8 1395 131 105.8 8.6
epb2-W 2454 162 168.3 9.1 923 75 116.7 9.6 147538

K = 64
Zhao1-A 15258 365 635.0 17.9 11421 237 529.0 13.1
Zhao1-Z 12811 332 698.4 20.7 10808 1630 676.9 38.1
Zhao1-W 2494 84 464.9 13.7 170 13 43.5 2.6 198614
big-A 3730 91 343.9 10.4 3210 69 326.3 8.6
big-Z 2262 71 323.2 9.4 1861 50 309.8 8.8
big-W 2305 68 319.4 9.4 1859 49 309.7 7.8 77630
cage11-A 65430 1828 1276.5 32.5 58177 1463 1173.2 30.9
cage11-Z 28640 925 1367.2 40.9 22023 956 799.8 26.9
cage11-W 27397 766 1351.0 36.4 21676 572 743.6 21.6 227770
epb2-A 10313 328 1050.8 39.2 5984 172 439.5 18.6
epb2-Z 3967 152 372.7 11.8 2058 121 233.9 9.3
epb2-W 3786 143 349.3 10.3 1431 71 209.4 12.8 150522

partitioning of the big matrix. The average of the ratios for 32- and 64-way

partitionings are 10.1 and 7.2, respectively. The extremely high communication

volumes introduced by the reordering operations again prohibit the application

of the individual partitioning method. The minimum and maximum ratios in the

32- and 64-way RCR partitionings are sightly better than those in the CRC case

(2.21 and 13.0) implying a slightly better average (8.6 and 6.5 for 32- and 64-way

partitionings, respectively) but still not tolerable. Details can be found in [100].

Consider the difference between the total communication volumes of the simul-

taneous and individual partitionings (without the reordering cost). The increases
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in the total communication volume values for the simultaneous partitionings re-

main below 26% of those of the individual partitionings, on the average, for the

32-way CR partitioning instances. The minimum and the maximum of these

increases are 13% (Zhao1) and 61% (epb3). The 64-way CR partitionings give

better ratios. The average increase is 20% with the minimum and the maximum

being 12% and 43% which are obtained for the same matrices. In fact, for each

matrix the 64-way CR partitioning gives smaller percent increase than the 32-way

CR partitioning. We investigated the 8- and 16-way CR partitionings as well

(see [100]) and observed that for each matrix in our data set the larger the number

of parts, the smaller the percent increases. The same relation holds for 8-, 16-, 32-

, and 64-way RC partitioning case, except for the 32- and 64-way partitionings of

the epb2 and mark3jac060 matrices. It also holds for most of the CRC and RCR

partitioning of AINV-matrices. Details can be found in [100]. The reason behind

this may be the following. The cutsize function almost always increases mono-

tonically with the increasing K . In other words, the flexibility of finding better

partitions reduces with the increasing K . At the limit, where K = V and all the

nets are in cut, the cutsize of a composite hypergraph will be equivalent to the

sum of the cutsizes of the individual hypergraphs (i.e., nnz(A) + nnz(M)− 2m)

that forms it. Therefore, the difference between the total communication volumes

has to converge to zero.

5.6.1.2 Using the same partitioning

Partitioning a coefficient matrix and then applying the resulting partition to

the preconditioner matrix results in columnwise-columnwise (CC) or rowwise-

rowwise (RR) partitioning on the A and M matrices. Recall that for CC and

RR partitioning schemes, there is a communication phase in between the two

matrix-vector multiplies. Since the A and M matrices have comparable number

of nonzeros (see Table 5.2), processors’ loads for the two matrix-vector multiplies

should be balanced separately, i.e., a two-constraint formulation is necessary.

The individual row-net hypergraph model of A can be used to obtain a CC

partitioning on A and M . In order to obtain load balance for the two multiplies,
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the vertices of A are assigned two weights which correspond to the number of

nonzeros in the respective columns of A and M matrices. That is, vi has weights

〈|ci(A)|, |ci(M)|〉 . Similarly, the column-net hypergraph model of A, with two

weights on the vertices, can be used to obtain an RR partitioning on A and M .

The composite hypergraph model for the CC partitioning scheme is built by

creating row-net hypergraph models of A and M , applying pin addition operation

between net ri(A) and vertex ci(M) and also between net ri(M) and vertex ci(A)

for each i, and applying vertex weighting operation in such a way that the vertices

coming from A have weights 〈|ci(A)|, 0〉 and the vertices coming from M have

weights 〈0, |ci(M)|〉 . The composite hypergraph model for the RR partitioning

scheme is built similarly by interchanging the roles of rows and columns.

Tables 5.7 and 5.8 display the averages of the communication patterns of the

32- and 64-way partitioning of the SPAI-matrices with the composite and indi-

vidual hypergraph models. The right most columns in these tables show the im-

provements achieved by the composite hypergraph partitioning as the percentage

of the total communication volumes found by partitioning the individual hyper-

graph of A. The minimum percent improvements are obtained for the Zhao1

matrices in all cases. The maximum percent improvements are obtained for the

mark3jac060 matrices in all cases. As seen in Table 5.3, the Zhao1 matrices have

the highest number of common nonzeros, and the mark3jac060 matrices have

the least number of common nonzeros. Although, the stomach matrices have

%14 common nonzeros (second minimum) the improvements achieved for these

matrices are almost half of the those obtained for the mark3jac060 matrices. The

average of the improvements is %20 in Tables 5.7 and 5.8 both for CC and RR

partitioning choices.

We have also experimented with the 32- and 64-way, CC and RR partition-

ings using single constraint formulation. In the single constraint formulation, the

weight of a vertex vi is set to the sum of the number of nonzeros in the ith columns

of A and M for the CC partitioning. Both the composite hypergraph formula-

tion and the individual hypergraph formulation were able to obtain balance on

the total loads of the processors. Both formulations could not obtain balance
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Table 5.7: Communication patterns for 32-way CC and RR composite and indi-
vidual hypergraph partitionings for SPAI-matrices.

Individual partitioning Simultaneous partitioning
Volume Message Volume Message Percent

Matrix tot max tot max tot max tot max Gain
CC

Zhao1-A 9228 385 205.0 11.0 9256 392 217.6 11.2 7
Zhao1-M 10847 489 207.8 11.0 9331 420 217.4 11.2
big-A 2691 128 177.1 9.4 2519 136 161.8 8.4 19
big-M 5358 256 188.3 10.0 4016 189 169.7 8.9
cage11-A 49634 2138 554.0 23.8 48096 2147 545.5 24.6 19
cage11-M 55307 2482 663.1 27.8 36739 1875 534.7 24.4
cage12-A 164456 7199 805.3 29.9 161042 7224 736.4 28.6 18
cage12-M 172098 7725 885.2 30.9 114446 6103 718.6 29.8
epb2-A 6410 317 382.4 19.1 6259 313 341.4 18.1 15
epb2-M 8620 410 220.7 11.3 6587 368 215.4 12.4
epb3-A 8169 555 199.3 11.8 7851 519 190.5 11.1 25
epb3-M 14290 850 202.5 11.8 8992 577 193.8 11.4
mark3jac060-A 11155 471 310.8 16.6 13146 518 318.1 15.1 31
mark3jac060-M 29590 1241 303.2 16.8 15158 644 290.8 14.6
olafu-A 12455 670 174.3 10.2 10275 593 130.7 7.2 28
olafu-M 24120 1307 240.2 13.8 15905 930 162.2 9.8
stomach-A 34714 1596 221.8 11.7 40865 2618 213.5 11.4 16
stomach-M 72997 3376 233.7 12.1 49987 3099 216.2 11.5
xenon1-A 21809 933 265.8 14.1 19571 829 252.8 12.4 22
xenon1-M 35264 1513 306.7 15.8 25116 1144 269.6 13.8

RR
Zhao1-A 8829 372 201.1 10.0 8697 381 224.1 11.9 6
Zhao1-M 8787 383 203.4 10.1 7871 356 224.6 12.2
big-A 2682 126 178.4 9.7 2484 127 165.4 8.4 20
big-M 3641 170 191.1 10.1 2543 131 169.1 8.8
cage11-A 50521 2179 571.8 25.1 46893 2621 506.9 23.6 19
cage11-M 45057 1935 684.1 28.0 30468 1390 531.1 24.2
cage12-A 166189 7185 790.0 29.8 156384 8709 696.9 30.1 18
cage12-M 142088 6160 875.0 30.9 96906 4172 704.6 28.6
epb2-A 6186 371 365.1 20.2 5817 470 297.9 17.4 17
epb2-M 8009 409 223.9 12.2 5939 341 209.6 11.4
epb3-A 8967 678 220.0 12.8 8376 593 187.7 11.2 21
epb3-M 12786 836 224.5 13.2 8788 592 193.9 11.2
mark3jac060-A 12851 526 483.6 24.3 11793 501 344.6 16.4 36
mark3jac060-M 26559 1158 507.2 26.1 13569 566 323.0 15.8
olafu-A 12762 719 172.5 10.6 9846 598 132.2 8.2 29
olafu-M 24535 1239 237.9 13.9 16657 888 160.4 8.7
stomach-A 36049 1718 217.2 11.2 40160 2652 215.1 11.2 13
stomach-M 62622 2857 229.5 11.9 45415 3101 218.8 11.6
xenon1-A 20993 904 249.5 12.4 19683 907 249.3 12.8 17
xenon1-M 33878 1427 288.9 14.8 25768 1108 265.9 13.8
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Table 5.8: Communication patterns for 64-way CC and RR composite and indi-
vidual hypergraph partitionings for SPAI-matrices.

Individual partitioning Simultaneous partitioning
Volume Message Volume Message Percent

Matrix tot max tot max tot max tot max Gain
CC

Zhao1-A 12982 271 543.7 13.8 12892 283 558.2 14.6 8
Zhao1-M 15406 359 550.6 13.8 13116 311 560.6 14.5
big-A 4089 101 378.0 11.3 3849 109 332.8 9.3 18
big-M 8082 204 412.9 12.5 6114 154 358.9 10.3
cage11-A 67198 1610 1511.1 36.9 64928 1641 1456.4 36.9 18
cage11-M 72710 1803 1886.3 43.7 49361 1362 1410.2 37.2
cage12-A 213360 5079 2249.8 49.0 208209 5054 2004.5 44.9 18
cage12-M 218227 5396 2659.7 54.9 146726 4357 1904.1 48.6
epb2-A 9820 268 907.0 27.4 9357 263 782.1 27.9 16
epb2-M 12913 335 491.7 15.8 9766 314 457.6 15.0
epb3-A 11764 483 508.9 17.0 11293 414 425.0 13.1 26
epb3-M 21010 761 521.2 18.1 13063 443 427.1 13.8
mark3jac060-A 15676 367 900.8 24.3 18090 380 911.1 22.8 34
mark3jac060-M 42608 954 1009.5 28.2 20183 506 894.6 22.9
olafu-A 19802 562 402.3 13.0 16733 476 321.9 8.8 26
olafu-M 38318 1102 653.0 20.2 26470 731 431.6 13.4
stomach-A 50980 1239 488.4 13.6 57777 1916 488.6 13.4 19
stomach-M 107817 2664 536.4 15.2 71060 2310 501.3 13.8
xenon1-A 30510 671 608.3 17.1 27683 601 567.9 14.9 21
xenon1-M 49568 1111 753.9 20.7 35520 836 624.6 16.8

RR
Zhao1-A 12502 269 541.0 13.9 12131 284 557.6 14.8 8
Zhao1-M 12523 277 550.4 14.2 10896 251 561.4 14.7
big-A 4068 98 377.6 11.6 3783 104 347.1 10.3 20
big-M 5548 138 414.2 12.6 3904 112 359.5 10.8
cage11-A 68374 1607 1536.0 37.6 63612 1877 1324.9 35.8 19
cage11-M 60385 1384 1932.8 44.7 41030 974 1376.5 34.2
cage12-A 216501 4888 2248.7 48.3 203197 6290 1857.8 49.2 18
cage12-M 183548 4205 2670.7 54.1 125836 2979 1887.8 43.1
epb2-A 9611 367 873.5 30.4 8545 402 640.8 25.4 19
epb2-M 11649 308 484.2 16.1 8590 257 431.9 14.3
epb3-A 12441 519 468.8 15.2 11607 434 396.2 12.7 22
epb3-M 18036 637 480.6 15.5 12201 420 410.1 12.8
mark3jac060-A 18107 426 1396.2 40.0 15891 399 1016.0 26.2 36
mark3jac060-M 34929 899 1483.6 46.8 18005 420 960.5 25.2
olafu-A 20273 585 410.3 12.8 16173 478 325.9 10.2 26
olafu-M 39026 982 642.5 20.0 27911 724 435.4 12.1
stomach-A 52582 1301 484.9 12.8 58230 2007 486.5 13.1 13
stomach-M 90605 2103 532.9 14.0 66561 2253 502.3 13.2
xenon1-A 29597 660 590.9 16.4 27615 648 559.5 15.1 17
xenon1-M 47909 1047 729.2 20.1 36437 797 620.5 16.1
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on the loads of the processors for the individual matrix-vector multiplies, since

these formulations ignore the fact that there is a local synchronization between

the two multiply operations. The composite hypergraph partitioning approach

again obtained better solutions than the individual hypergraph partitioning. The

best and worst improvements are again obtained for the mark3jac060 and Zhao1

matrices. The average of the improvements is %17. See [100] for the details.

5.6.2 Effects of partitioning dimensions on the simultane-

ous partitioning

Comparing the lower and upper halves of the Tables 5.4 and 5.5, we see that

CR partitioning scheme yields better total communication volume than the RC

scheme. The ratio of the average total communication volume in the CR parti-

tioning to that in the RC partitioning is around 0.74 for the data given in the

Tables 5.4 and 5.5. This ratio remains the same for the 8- and 16-way parti-

tionings given in the Table 5.9. The standard deviation of these ratios is around

0.13 for each K = 8, 16, 32, 64. Note that the matrices in our data set do not

have dense rows or dense columns. Therefore, it is expected that the rowwise and

columnwise partitionings of the matrices will result in comparable results. This

theoretical expectation is verified by the data given in the total communication

volume column under the individual partitioning header in Tables 5.4 and 5.5. In

the light of this observation, we can deduce that the performance difference be-

tween the CR and RC partitioning schemes is mainly due to the two-constraint

formulation in the RC scheme. This degradation in the multi-constraint for-

mulation is in concordance with the previously reported results [64, 106]. The

degradation in our case stems from two facts. First, the additional balance con-

straints shrink the search space. Second, the heuristics in PaToH are not very

well tailored toward handling the multiple vertex weights.
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5.6.3 Parallelization results

It is important to see whether the theoretical improvements obtained by the

proposed simultaneous partitioning method hold in practice. For this purpose,

we have implemented a parallel program for the BiCGStab method. The program

uses LAM/MPI 6.5.6 [18] message passing library. The tests were carried out on

a Beowulf class [94] PC cluster with 24 nodes. Each node has a 400MHz Pentium-

II processor and 128 MB memory. The interconnection network is comprised of

a 3COM Superstack II 3900 managed switch connected to Intel Ethernet Pro

100 Fast Ethernet network interface cards at each node. The system runs Linux

kernel 2.4.20 and the Debian GNU/Linux 3.0 distribution.

We are not concerned with the numerics of the preconditioners and the

BiCGStab method. Therefore, for each matrix we let the BiCGStab run for

100 iterations and measure the average running time of a single iteration. In

order to guarantee 100 iterations, we set ρ and ω of the BiCGStab method (see

Fig. 5.1) to 1.0 after computing their actual values. The speed up values corre-

sponding to these running times are given in Table 5.9 under the column Sp./up.

Note that we shortened the matrix name mark3jac060 to mark3 060 to fit the

table into the page. The given speed up values are the averages of 20 runs cor-

responding to different partitionings. In order to show how the improvements

obtained by the proposed method relate to parallel running times, we give the

average communication patterns of the partitionings in same table as well.

As seen from Table 5.9, the CR partitioning gives better speedup values than

the RC partitioning for all matrices. On the average, CR obtains speedup values

of 6.3 and 9.9 for 8- and 16-way partitionings, respectively, where the highest

speedups are 7.3 (epb3) and 14.1 (stomach). Meanwhile, RC obtains speedups

of 5.8 and 8.4, on the average, for 8-way and 16-way partitionings, respectively,

where the the highest speedups are 7.2 (epb3) and 12.7 (stomach). The worst

speedups for 8-way partitioning are obtained for the cage11 matrix by both of the

partitioning schemes. The worst speedups for 16-way partitioning are obtained

for the big and cage11 matrices by the CR and RC schemes, respectively. As

seen from Table 5.9, the cage11 matrix-pair has inferior communication pattern
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than all but the cage12 matrix-pair in terms of the total and maximum number

of messages metrics. Therefore, we were already expecting to have the worst

speedups with the cage matrices. The big matrix has the smallest number of

nonzeros. This low granularity of computations may be the reason behind having

the worst speedup with 16-way CR partitioning of the big matrix. The same

reasoning may also explain why we obtain better speedups in cage12 than those

in cage11.

We have also experimented with the CRC and RCR partitioning schemes

for AINV-matrices (see [100]). The speedup values are not as good as those

given in Table 5.9 as expected, because of the three load balance constraints (see

Fig. 5.2(e)) and more communication phases. The best speedups for 8- and 16-

way CRC partitionings are 6.7 and 8.9, respectively. The best speedups for 8-

and 16-way RCR partitionings are 6.4 and 8.9, respectively.

5.6.4 Partitioning timings

Lastly, we comment on the additional partitioning overhead introduced by si-

multaneous partitioning instead of individual partitionings. Let the sum of the

times elapsed in individual partitionings (of the SPAI- and AINV-matrices) be

1.0. Then, the average running times of the simultaneous partitioning of the

SPAI-matrices with the CR and RC schemes are 1.4 and 1.2, respectively, for all

K = 8, 16, 32, and 64. The average running times of the simultaneous partition-

ing of the AINV-matrices with both the CRC and RCR schemes are close to 1.4.

These increases are acceptable because the simultaneous partitioning method ob-

tains much smaller total communication volume than the individual partitioning

method combined with the reordering cost. Timings for the CR and RC parti-

tionings for SPAI-matrices are given in Tables 5.10 and 5.11. Timings for the

CRC and RCR partitioning schemes of AINV-matrices are given in Tables 5.12

and 5.13.
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Table 5.9: Communication patterns for 8- and 16-way simultaneous partitionings
for SPAI-matrices and the respective speed up values.

8-way 16-way
Volume Message Sp. Volume Message Sp.

Matrix tot max tot max up tot max tot max up
CR

Zhao1-A 4098 746 32.2 5.7 6.2 6444 586 96.7 9.3 8.7
Zhao1-M 3514 694 32.2 5.6 5478 551 97.0 9.3
big-A 1032 201 31.4 5.7 5.7 1581 156 73.2 7.5 7.3
big-M 989 191 31.9 5.6 1527 150 75.3 7.5
cage11-A 24424 4144 54.6 7.0 5.5 34835 3314 201.2 14.8 8.1
cage11-M 14663 2439 55.1 7.0 21010 1917 208.9 15.0
cage12-A 87542 14306 56.0 7.0 5.9 122878 11925 230.3 15.0 9.4
cage12-M 50962 7839 56.0 7.0 71066 6136 233.1 15.0
epb2-A 2326 429 39.0 6.4 6.4 3357 371 102.8 9.6 8.6
epb2-M 2242 438 35.0 6.5 3335 335 84.7 8.4
epb3-A 2354 442 23.9 4.3 7.3 3971 393 66.0 6.5 12.4
epb3-M 3003 536 23.9 4.3 5023 496 66.3 6.5
mark3 060-A 5249 960 35.2 6.3 5.8 9370 786 115.0 11.3 8.7
mark3 060-M 6323 1182 32.2 6.0 10287 964 105.3 11.0
olafu-A 3908 960 25.8 5.0 6.7 6489 781 66.2 6.8 10.6
olafu-M 6749 1449 28.0 5.4 11258 1285 77.8 7.8
stomach-A 14614 2815 21.1 4.0 7.1 24436 2351 67.2 7.0 14.1
stomach-M 16193 3206 21.4 4.0 28014 2652 67.8 7.1
xenon1-A 10848 2037 36.2 6.5 6.7 15998 1496 113.2 11.3 11.2
xenon1-M 14437 2523 37.7 6.7 21459 2032 117.8 11.8

RC
Zhao1-A 4146 905 33.2 5.8 5.9 6728 734 95.5 9.3 8.1
Zhao1-M 4362 771 33.1 5.6 7141 716 95.5 9.3
big-A 1467 320 33.9 5.8 5.2 2408 280 84.7 8.8 6.4
big-M 2084 433 34.0 5.8 3326 366 85.9 8.4
cage11-A 30373 6054 55.9 7.0 4.2 43335 4599 227.0 15.0 5.5
cage11-M 24447 4302 55.9 7.0 34339 3151 227.4 15.0
cage12-A 107187 17621 56.0 7.0 4.4 147504 12516 239.8 15.0 6.2
cage12-M 80949 15047 56.0 7.0 109472 10885 239.7 15.0
epb2-A 3074 646 46.7 6.8 6.1 4555 560 132.1 12.9 8.6
epb2-M 3789 814 43.8 6.5 5388 633 109.5 10.6
epb3-A 6347 1907 39.8 6.8 7.2 8490 1244 108.3 11.7 11.7
epb3-M 6766 1937 39.5 6.8 8991 1480 108.0 11.8
mark3 060-A 5568 981 40.7 6.7 5.7 9792 906 137.4 13.0 7.4
mark3 060-M 6417 1213 38.6 6.8 11099 1027 126.3 12.2
olafu-A 5605 1088 30.5 5.8 6.0 9325 1012 86.0 9.1 8.6
olafu-M 9075 1947 33.5 6.2 14636 1636 99.8 10.2
stomach-A 21139 4354 27.4 5.3 7.1 35856 4255 81.5 8.8 12.7
stomach-M 24538 5221 27.6 5.7 41254 4660 82.8 8.9
xenon1-A 12654 2322 39.6 6.9 6.1 18800 1797 126.2 12.2 9.2
xenon1-M 16486 2974 40.8 7.0 24477 2286 131.6 12.9
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Table 5.10: Average CR partitioning times for the SPAI-matrices in seconds.

K Matrix Individual partitioning Simultaneous Ratio
A M partitioning

8 Zhao 2.28 2.00 6.76 1.6
big 0.69 0.80 2.56 1.7
cage11 7.23 5.19 15.64 1.3
cage12 34.35 22.78 65.08 1.1
epb2 1.24 1.73 4.41 1.5
epb3 3.58 4.54 12.67 1.6
mark3jac060 1.88 2.21 5.64 1.4
olafu 4.81 5.11 12.19 1.2
stomach 22.98 25.36 63.52 1.3
xenon1 6.49 8.54 17.06 1.1

16 Zhao 2.86 2.57 8.66 1.6
big 0.92 1.03 3.20 1.6
cage11 9.23 6.50 19.86 1.3
cage12 43.88 28.90 83.61 1.1
epb2 1.63 2.16 5.72 1.5
epb3 4.81 5.99 16.70 1.5
mark3jac060 2.40 2.85 7.38 1.4
olafu 6.32 6.73 15.87 1.2
stomach 30.66 33.38 84.00 1.3
xenon1 8.75 9.76 23.33 1.3

32 Zhao 3.70 3.08 10.17 1.5
big 1.07 1.23 3.77 1.6
cage11 10.93 7.57 23.66 1.3
cage12 52.27 33.82 100.56 1.2
epb2 2.04 2.71 6.91 1.5
epb3 5.93 7.23 20.54 1.6
mark3jac060 2.89 3.58 8.85 1.4
olafu 7.71 8.54 19.35 1.2
stomach 37.86 40.91 104.06 1.3
xenon1 10.58 11.72 28.50 1.3

64 Zhao 4.02 3.56 11.58 1.5
big 1.33 1.52 4.36 1.5
cage11 12.61 8.74 27.02 1.3
cage12 58.87 43.86 116.01 1.1
epb2 2.43 3.18 8.05 1.4
epb3 6.85 8.64 23.95 1.5
mark3jac060 3.29 4.17 10.22 1.4
olafu 9.33 10.28 22.70 1.2
stomach 46.33 48.32 123.63 1.3
xenon1 12.45 13.80 33.21 1.3
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Table 5.11: Average RC partitioning times for the SPAI-matrices in seconds.

K Matrix Individual partitioning Simultaneous Ratio
A M partitioning

8 Zhao 2.24 2.34 5.90 1.3
big 0.71 0.95 2.30 1.4
cage11 7.27 5.99 14.89 1.1
cage12 34.70 26.32 62.06 1.0
epb2 1.25 1.73 4.04 1.4
epb3 3.98 4.59 11.54 1.3
mark3jac060 1.79 2.39 4.90 1.2
olafu 4.85 5.30 11.54 1.1
stomach 22.99 25.21 57.59 1.2
xenon1 6.69 7.34 16.07 1.1

16 Zhao 2.86 3.04 7.51 1.3
big 0.88 1.14 2.93 1.4
cage11 9.08 7.46 19.05 1.2
cage12 43.84 32.48 79.21 1.0
epb2 1.65 2.32 5.23 1.3
epb3 5.24 6.06 15.17 1.3
mark3jac060 2.28 3.04 6.40 1.2
olafu 6.33 7.01 14.93 1.1
stomach 30.55 32.97 75.71 1.2
xenon1 8.64 9.75 21.38 1.2

32 Zhao 3.30 3.62 8.88 1.3
big 1.09 1.46 3.50 1.4
cage11 10.83 8.92 22.76 1.2
cage12 51.80 38.05 95.57 1.1
epb2 1.99 2.81 6.25 1.3
epb3 6.45 7.31 18.59 1.4
mark3jac060 2.74 3.86 7.71 1.2
olafu 7.77 8.68 18.19 1.1
stomach 38.10 40.81 93.57 1.2
xenon1 10.69 11.68 26.44 1.2

64 Zhao 3.77 4.16 10.27 1.3
big 1.34 1.69 4.13 1.4
cage11 12.59 10.20 26.17 1.1
cage12 59.33 43.34 110.08 1.1
epb2 2.39 3.31 7.33 1.3
epb3 7.55 8.69 21.73 1.3
mark3jac060 3.25 4.45 9.03 1.2
olafu 9.32 10.46 21.43 1.1
stomach 44.92 48.42 117.00 1.3
xenon1 12.48 13.80 30.87 1.2
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Table 5.12: Average CRC partitioning times for the AINV-matrices in seconds.

K Matrix Individual partitioning Simultaneous Ratio
A Z W partitioning

8 Zhao 2.28 1.71 0.60 6.44 1.4
big 0.69 0.50 0.47 2.37 1.4
cage11 7.23 3.52 3.51 16.61 1.2
epb2 1.24 1.01 0.79 4.41 1.5

16 Zhao 2.86 2.28 0.77 8.09 1.4
big 0.92 0.61 0.60 2.99 1.4
cage11 9.23 4.48 4.40 21.22 1.2
epb2 1.63 1.20 1.01 5.63 1.5

32 Zhao 3.70 2.75 0.90 9.57 1.3
big 1.07 0.74 0.79 3.64 1.4
cage11 10.93 5.31 5.35 25.16 1.2
epb2 2.04 1.51 1.21 6.79 1.4

64 Zhao 4.02 3.28 1.01 11.08 1.3
big 1.33 0.84 0.89 4.27 1.4
cage11 12.61 6.29 6.21 29.25 1.2
epb2 2.43 1.68 1.46 7.98 1.4

Table 5.13: Average RCR partitioning times for the AINV-matrices in seconds.

K Matrix Individual partitioning Simultaneous Ratio
A Z W partitioning

8 Zhao 2.24 2.30 0.59 7.40 1.4
big 0.71 0.54 0.46 2.308 1.3
cage11 7.27 4.78 4.68 19.17 1.1
epb2 1.25 1.01 0.84 4.59 1.5

16 Zhao 2.86 2.85 0.73 9.34 1.5
big 0.88 0.62 0.62 2.94 1.4
cage11 9.08 5.80 5.86 24.32 1.2
epb2 1.65 1.31 1.06 5.91 1.5

32 Zhao 3.30 3.53 0.83 11.19 1.5
big 1.09 0.75 0.76 3.53 1.4
cage11 10.83 6.99 6.90 29.16 1.2
epb2 1.99 1.58 1.30 7.16 1.5

64 Zhao 3.77 4.10 1.01 12.93 1.5
big 1.34 0.89 0.91 4.17 1.3
cage11 12.59 8.01 7.89 33.36 1.2
epb2 2.39 1.82 1.54 8.44 1.5



Chapter 6

Message ordering

We consider a certain class of parallel program segments in which the order of

messages sent affects the completion time. We give characterization of these

parallel program segments and propose a solution to minimize the completion

time. With a sample parallel program, we experimentally evaluate the effect of

the solution on a PC cluster.

6.1 Introduction

We consider a certain class of parallel program segments with the following char-

acteristics. First, there is a small-to-medium grain computation between two

communication phases which are referred to as pre- and post-communication

phases. Second, local computations cannot start before the pre-communication

phase ends, and the post-communication phase cannot start before the compu-

tation ends. Third, the communication in both phases is irregular and sparse.

That is, the communications are performed using point-to-point send and receive

operations, where the sparsity refers to small number of messages having small

sizes. These traits appear, for example, in the sparse-matrix vector multiply

y ← Ax, where matrix A is partitioned on the nonzero basis and also in the

sparse matrix-chain-vector multiply y ← ABx, where matrix A is partitioned

97
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along columns and matrix B is partitioned conformably along rows. In both ex-

amples, the x-vector entries are communicated just before the computation and

the y -vector entries are communicated just after the computation.

There has been a vast amount of research in partitioning sparse matrices

to effectively parallelize scientific computations by achieving computational load

balance and by minimizing the communication overhead [21, 23, 24, 51, 52]. As

noted in [51], most of the existing methods consider minimization of the total

message volume. Depending on the machine architecture and problem charac-

teristics, communication overhead due to message latency may be a bottleneck

as well [35]. Furthermore, the maximum message volume and latency handled

by a single processor also have crucial impact on the parallel performance as

shown in [97, 99] and Chapters 3 and 4. However, optimizing these metrics is not

sufficient to minimize the total completion time of the subject class of parallel

programs. Since the phases do not overlap, the receiving time of a processor, and

hence the issuing time of the corresponding send operation play an important

role in the total completion time.

There may be different solutions to the above problem. One may consider bal-

ancing the number of messages per processor both in terms of sends and receives.

This strategy would then has to partition the computations with the objectives

of achieving computational load balance, minimizing total volume of messages,

minimizing total number of messages, and also balancing the number of messages

sent/received on the per processor basis. However, combining these objectives

into a single function to be minimized would challenge the current state of the

art. For this reason, we take these problems apart from each other and decompose

the overall problem into stages, each of which involving a certain objective. We

first use standard models to minimize the total volume of messages and maintain

the computational load balance across processors using effective methods, such

as hypergraph partitioning [21]. Then, we minimize the total number of messages

and maintain a loose balance on the communication volume loads of processors,

and in the meantime we address the minimization of the maximum number of

messages sent by a single processor [97, 99]. After this stage, the communication

pattern is determined. In this chapter, we suggest to append one more stage in
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which the send operations of processors are ordered to address the minimization

of the total completion time.

6.2 Message ordering problem and a solution

We make the following assumptions. The computational load imbalance is negligi-

ble. All processors begin the pre-communication phase at the same time because

of the possible global synchronization points and balanced computations that ex-

ist in the other parts of the parallel program. The parallel system has a high

latency overhead so that the message transfer time is dominated by the start-up

cost due to small message volumes. By the same reasoning, the receive operation

is assumed to incur negligible cost to the receiving processor. For the sake of

simplicity, the send operations are assumed to take unit time. Under these as-

sumptions, once a send is initiated by a processor at time ti , the sending processor

can continue with some other operation at time ti+1 , and the receiving processor

receives the message at time ti+1 . This assumption extends to concurrent mes-

sages destined for the same processor. The rationale behind these assumptions

is that, the start-up costs for all messages destined for a certain processor truly

overlap with each other.

Let send-lists S1(p) and S2(p) denote the set of messages, distinguished by

the ranks of the receiving processors, to be sent by processor Pp in the pre- and

post-communication phases, respectively. For example, ℓ ∈ S1(p) denotes the

fact that processor Pℓ will receive a message from Pp in the pre-communication

phase. For ℓ ∈ S1(p), we use s1(p, ℓ) to denote the completion time of the

message from Pp to Pℓ , i.e., Pp issued the send at time s1(p, ℓ) − 1, and Pℓ

received the message at time s1(p, ℓ). We use s2(p, ℓ) for the same purpose for

the post-communication phase. Let W be the amount of computation performed

by each processor. Let

r1(p) = max
j:p∈S1(j)

{s1(j, p)} (6.1)
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denote the point in time at which processor Pp receives its latest message in the

pre-communication phase. Then, Pp will enter the computation phase at time

c1(p) = max{|S1(p)|, r1(p)}, (6.2)

i.e., after sending all of its messages and receiving all messages destined for it in

the pre-communication phase. Let

r2(p) = max
j:p∈S2(j)

{s2(j, p)} (6.3)

denote the point in time at which processor Pp receives its latest message in the

post-communication phase. Then, processor Pp will reach completion at time

cp = max{c1(p) + W + |S2(p)|, r2(p)}, (6.4)

i.e., after completing its computational task as well as all send operations in the

post-communication phase and after receiving all post-communication messages

destined for it. Using the above notation, our objective is

minimize{max
p
{cp}}, (6.5)

i.e., to minimize the maximum completion time. The maximum completion time

induced by a message order is called the bottleneck value, and the processor that

defines it is called the bottleneck processor. Note that the objective function

depends on the time points at which the messages are delivered.

In order to clarify the notations and assumptions, consider a six-processor

system as shown in Fig. 6.1(a). In the figure, the processors are synchronized

at time t0 . The computational load of each processor is of length five-units

and shown as a gray rectangle. The send operation from processor Pk to Pℓ is

labeled with skℓ on the right-hand side of the time-line for processor Pk . The
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corresponding receive operation is shown on the left-hand side of the time-line

for processor Pℓ . For example, processor P1 issues a send to P3 at time t0

and completes the send at time t1 which also denotes the delivery time to P3 .

Also note that P3 receives a message from P5 at the same time. In the figure,

r1(1) = c1(1) = t5 , r2(1) = t10 and c1 = t15 . The bottleneck processor is P1 with

the bottleneck value tb = t15 .

Reconsider the same system where the messages are sent according to the

order as shown in Fig. 6.1(b). In this setting, P1 is also a bottleneck processor

with value tb = t11 .

Note that if a processor Pp never stays idle then it will reach completion at

time |S1(p)| + W + |S2(p)| . The optimum bottleneck value cannot be less than

the maximum of these values. Therefore, the order given in Fig. 6.1(b) is the best

possible. Let Pq and Pr be the maximally loaded processors in the pre- and post-

communication phases respectively, i.e., |S1(q)| ≥ |S1(p)| and |S2(r)| ≥ |S2(p)|

for all p. Then, the bottleneck value cannot be larger than |S1(q)|+W + |S2(r)| .

The setting in Fig. 6.1(a) attains this worst possible bottleneck value.

Observe that in a given message order, the bottleneck occurs at a processor

with an outgoing message. Meaning that, for any bottleneck processor that re-

ceives a message at time tb , there is a processor which finishes a send operation

at time tb . Therefore, for a processor Pp to be a bottleneck processor we require

c′p = c1(p) + W + |S2(p)| (6.6)

as a bottleneck value. Hence, our objective reduces to

minimize{max
p
{c′p}}. (6.7)

Also observe that the bottleneck processor and value remains as is, for any or-

der of the post-communication messages. Therefore, our problem reduces to

ordering the messages in the pre-communication phase. From these observations
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(a) A sample message order which produces worst completion time.
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(b) A sample message order which produces best completion time.

Figure 6.1: Worst and best order of the messages.
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we reach the intuitive idea of assigning the maximally loaded processor in the

post-communication phase to the first position in each send-list. This will make

the processor with maximum |S2(·)| to enter the computation phase as soon as

possible. Extending this to the remaining processors we develop the following

algorithm. First, each processor Pp determines its key-value key(p) = |S2(p)| .

Second, each processor obtains the key-values of all other processors with an

all-to-all communication on the key-values. Third, each processor Pp sorts its

send-list S1(p) in descending order of the key-values of the receiving processors.

These sorted send-lists determine the message order in the pre-communication

phase, where the order in the post-communication phase is arbitrary.

Theorem 6.1 The above algorithm obtains the optimal solution that minimizes

the maximum completion time.

Proof. We take an optimal solution and then modify it to have each send-list

sorted in descending order of key-values.

Consider an optimal solution. Let processor Pb be the bottleneck processor

finishing its sends at time tb . For each send-list in the pre-communication phase,

we perform the following operations.

For any Pℓ with keyb ≤ keyℓ where Pb and Pℓ are in the same send-list

S1(p), if s1(p, ℓ) ≤ s1(p, b), then we are done, if not swap s1(p, ℓ) and s1(p, b).

Let ts = s1(p, ℓ) before the swap operation. Then, we have ts + W + keyℓ ≤ tb

before the swap. After the swap we will have ts + W + keyb and th + W + keyℓ

for some th < ts , for processors Pb and Pℓ . These two values are less than tb .

For any Pj with keyj ≤ keyb where Pj and Pb are in the same send-list

S1(q), if s1(q, b) ≤ s1(q, j), then we are done, if not swap s1(q, b) and s1(q, j).

Let ts = s1(q, b) before the swap operation. Then, we have ts + W + keyb ≤ tb .

After the swap operation we will have ts +W + keyj and th +W + keyb for some

th < ts for processors Pj and Pb , respectively. Clearly, these two values are less

than or equal to tb .

For any Pu and Pv that are different from Pb with keyu ≤ keyv in a send-list
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S1(r), if s1(r, v) ≤ s1(r, u), then we are done, if not swap s1(r, u) and s1(r, v).

Let ts = s1(r, v) before the swap operation. Then, we have ts + W + keyv ≤ tb .

After the swap operation we will have ts +W +keyu and th +W +keyv for some

th < ts , for Pu and Pv respectively. These two values are less than or equal to tb .

Therefore, for each optimal solution we have an equivalent solution in which all

send-lists in the pre-communication phase are sorted in decreasing order of the

key values. Since the sorted order is unique with respect to the key values, the

above algorithm is correct.

6.3 Experiments

In order to see whether the findings in this chapter help in practice we have im-

plemented a simple parallel program which is shown in Fig 6.2. In this figure,

each processor first posts its non-blocking receives and then sends its messages in

the order as they appear in the send-lists. In order to simplify the effects of the

message volume on the message transfer time, we set the same volume for each

message. We have used LAM [18] implementation of MPI and mpirun command

without -lamd option. The parallel program were run on a Beowulf class [94]

PC cluster with 24 nodes. Each node has a 400MHz Pentium-II processor and

128MB memory. The interconnection network is comprised of a 3COM Super-

Stack II 3900 managed switch connected to Intel Ethernet Pro 100 Fast Ethernet

network interface cards at each node. The system runs Linux kernel 2.4.14 and

Debian GNU/Linux 3.0 distribution.

We extracted the communication patterns of some row-column-parallel sparse

matrix-vector multiply operations on 24 processors. Table 6.1 lists minimum and

maximum number of send operations per processor under columns min and max.

Total number of messages is given under the column tot.

For each test case, we have run the parallel program of Fig. 6.2 with small

message lengths of 8, 64, 512, and 1024-bytes to justify the practicality of the

assumptions made in this work. We have experimented with the best and worst
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MPI_Barrier(MPI_COMM_WORLD);

startTime = MPI_Wtime();

for(iter = 0; iter < MAXITER; iter++){

communication(preSendList, preSendCount, preRecvList,

preRecvCount, sendBuf, recvBuf, iter);

computation(sendBuf, recvBuf);

communication(postSendList, postSendCount, postRecvList,

postRecvCount, sendBuf, recvBuf, iter + 1);

MPI_Barrier(MPI_COMM_WORLD);

}

totTime = 1000.0*MPI_Wtime() - 1000.0*startTime;

(a) A parallel program segment.

void computation(MSSGTYPE *sendBuf, MSSGTYPE *recvBuf){

int i,j;

for(i = 0; i < numProcs; i++){

int indi = mssgSizes * i;

for(j = 0; j < mssgSizes; j++)

sendBuf[indi+j]=(sendBuf[indi+j] +

recvBuf[indi+j])/(MSSGTYPE)2;

}

}

(b) Local computation performed at each processor.

void communication(int *sList, int sCnt, int *rList,

int rCnt, MSSGTYPE *sBuf, MSSGTYPE *rBuf, int tag){

int i; MPI_Request reqs[rCnt]; MPI_Status stats[rCnt];

for(i = 0 ; i < rCnt; i++){

int p = rList[i], ind = p*mssgSizes;

MPI_Irecv(&rBuf[ind], mssgSizes, bMPITYPESTR, p,

tag, MPI_COMM_WORLD,&reqs[i]);

}

for(i = 0; i < sCnt; i++){

int p = sList[i], ind = myId * mssgSizes;

MPI_Send(&sBuf[ind], mssgSizes,bMPITYPESTR, p,

tag, MPI_COMM_WORLD);

}

if(rCnt > 0) MPI_Waitall(rCnt, reqs, stats);

}

(c) Implementation of pre- and post-communication phases.

Figure 6.2: A simple parallel program
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Table 6.1: Communication patterns and parallel running times on 24 processors.

Completion time
Communication Mssg unit milliseconds

Data pattern order Max Message length (bytes)
min max tot {c′p} 8 64 512 1024

1-PRE 5 21 290 best 38 4.3 4.4 5.5 7.2
1-POST 6 22 358 worst 42 4.8 5.0 6.2 7.8

2-PRE 3 23 313 best 39 4.9 5.0 6.0 7.3
2-POST 11 22 370 worst 45 5.3 5.4 6.7 7.8

3-PRE 10 23 490 best 45 6.3 6.4 7.8 9.7
3-POST 15 23 504 worst 46 6.6 6.6 8.2 10.1

4-PRE 6 22 312 best 41 4.5 4.6 5.9 7.3
4-POST 10 20 356 worst 42 5.3 5.6 6.8 8.2

5-PRE 5 23 228 best 36 4.0 4.1 4.9 5.9
5-POST 7 13 228 worst 36 4.4 4.6 5.6 6.6

6-PRE 1 23 212 best 35 4.1 4.1 5.1 6.0
6-POST 4 17 236 worst 40 4.5 4.6 5.8 6.7

7-PRE 3 20 226 best 29 3.7 3.7 4.5 5.3
7-POST 7 17 253 worst 37 3.9 3.9 5.0 5.9

8-PRE 2 23 267 best 43 4.7 4.7 6.1 7.6
8-POST 4 22 278 worst 45 5.7 5.9 7.0 8.1

9-PRE 3 16 167 best 35 3.7 4.0 4.8 5.6
9-POST 4 20 273 worst 36 4.3 4.3 5.3 6.0

10-PRE 2 23 300 best 46 4.7 4.7 6.3 8.0
10-POST 10 23 316 worst 46 5.6 5.7 7.1 8.3

W (Computation time): 0.00 0.01 0.06 0.11
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orders. The best message orders are generated according to the algorithm pro-

posed in § 6.2. The worst message orders are obtained by sorting the send-lists

in increasing order of the key-values of the receiving processors. In all cases, we

used the same message order in the post-communication phase. The running are

presented in milliseconds in Table 6.1. We give the best among 20 runs (see [44]

for choosing best in order to obtain reproducible results). In the table, we also

give maxp{c′p} for worst and best orders with W = 0. In all cases, the best order

always gives better completion time than the worst order. In theory, however, we

did not expect improvements for the 5th and 10th cases, in which the two orders

give the same bottleneck value. This unexpected outcome may be resulting from

the internals of the process that handles the communication requests. We are

going to investigate this issue.



Chapter 7

SpMxVLib: A library for parallel

matrix vector multiplies

We provide parallel matrix-vector multiply routines for 1D and 2D partitioned

square and rectangular sparse matrices. We clearly give pseudocodes that perform

necessary initializations for parallel execution. We show how to maximize the

overlap between communication and computation through the proper usage of

compressed sparse rows and column storage formats of the sparse matrices.

7.1 Introduction

Parallel sparse matrix vector multiplies (SpMxV) of the form y ← Ax resides

in the kernel of many scientific computations. One-dimensional (1D) [20, 21,

68, 53, 62, 99] and two-dimensional (2D) [23, 24, 105] partitioning methods are

proposed to balance the computational loads of the processors while minimizing

the communication overhead. In this chapter, we describe software that perform

parallel SpMxV operations under 1D and 2D partitionings. Our aim is to ease

the development of iterative methods. We give coding of the BiCGSTAB method

as an example.

108
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As noted in [95], software packages that implement only the parallel SpMxV

operations are not common for several reasons. First, matrix-vector multiply

is a simple operation; developers write their own routine. Second, there are

different sparse matrix storage formats that fits different applications; it is difficult

to design softwares that apply to all areas. Recently published sparse BLAS

standard [36] even does not specify a data structure for storing sparse matrices.

Rather, it allows complete freedom for sparse BLAS library developers to optimize

their own libraries [37]. However, there are numerous software packages (see

the sparse iterative solvers having parallel mode in Dongarra’s survey [33]) that

include utilities for performing distributed SpMxV operations; see for example

PETSc [4], Aztec [60, 95], and PSPARSLIB [87].

Common features of existing software utilities for SpMxV operations are as

follows. Most of the packages target 1D partitioned matrices, where y and x

vectors have the same processor assignment as that of the rows or the columns of

the matrix. This symmetric partitioning on the input and output vectors restricts

the packages to square matrices. Some packages enable the user of the library

to plug the necessary communication subroutines which are called between the

partial executions of the SpMxV routines in a reverse communication [34] loop.

The characteristics of our software are as follows. Its SpMxV routines ap-

ply to 1D and 2D partitioned matrices of any shape. It can handle symmetric

and unsymmetric partitionings on the input and output vectors. Our software

uses point-to-point communication operations internally to exploit sparsity during

communications, i.e., there does not exist any redundancy in the communication.

To our knowledge, there does not exist any package that uses point-to-point com-

munication when the matrices have 2D partitions. Also, we are not aware of any

SpMxV libraries targeting rectangular matrices. Our package include entry-level

matrix construction process as prescribed in Sparse BLAS standard [36]. There

are software utilities to set-up communication data structures using the parti-

tioning indicators. The software exploits compressed sparse column (CSC) and

compressed sparse row (CSR) formats to achieve maximum communication and

computation overlap.
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In a parallel SpMxV implementation based on 1D partitioning, matrix, input

vector, and output vector are partitioned among the processors using two parti-

tioning indicators. One of the indicators describes both a partition on the matrix

and a conformal partition on the input or output vector. The second indicator

describes a partition on the remaining vector. In a parallel SpMxV implemen-

tation based on 2D partitioning, there are three partitioning indicators: on the

output vector y , on the input vector x, and on the nonzeros of A. In some

applications, the partitioning on the output vector is required to be the same

as the partitioning on the input vector to avoid communication of vector entries

during vector operations. In such cases, the two partitioning indicators on the

input and output vectors coincide.

We have discussed the SpMxV operations under 1D and 2D partitioning of

the sparse matrices in §2.1 and §2.2 respectively. It is worth noting that the

pseudocodes given for multiplication routines imply a possibility of overlapping

communication and computation (the third step in the row-parallel and column-

parallel algorithms). We suggest reader review the Sections 2.1 and 2.2 on par-

allel SpMxV operations. Section 7.2 describes two sparse matrix storage formats

and how to implement sequential SpMxV operations using these storage formats.

In §7.3, we discuss necessary steps to realize efficient implementation of the Sp-

MxV routines. We clearly give pseudocodes that set up communication and list

issues that should be resolved to design parallel SpMxV routines along with our

decisions. In §7.4, we give the interface of the library and its usability through

actual implementations.

7.2 CSR and CSC storage formats

The most popular storage formats for the sparse matrices are the compressed

sparse row (CSR) and compressed sparse column (CSC) formats [86]. In these

formats, an m× n matrix A having z nonzeros is stored with three arrays. The

first array is of size z and stores the nonzero entries of the matrix A row by row or
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column by column in the CSR and CSC formats, respectively. The second array

is again of size z . In the CSR and CSC formats, this array stores, respectively,

the column indices and the row indices of the nonzeros. The third array is of size

m + 1 and n + 1 in the CSR and CSC formats, respectively. In the CSR format,

the third array contains pointers to the beginning of each row in the first two

arrays. In the CSC format, the third array contains pointers to the beginning of

each column in the first two arrays.

Consider a 5× 5 matrix

A =























1.1 0.0 0.0 1.4 0.0

2.1 2.2 0.0 2.4 0.0

3.1 0.0 3.3 3.4 3.5

0.0 0.0 4.3 4.4 0.0

0.0 0.0 0.0 0.0 5.5























. (7.1)

In the CSR format, the matrix A given above is stored as follows:

AA 1.1 1.4 2.1 2.2 2.4 3.1 3.3 3.4 3.5 4.3 4.4 5.5

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

Since the matrix A given in Eq. 7.1 has 12 nonzeros, the array AA is of size 12 and

stores the nonzeros row by row. The array JA is of size 12 and stores the column

indices of the nonzeros again row by row. The array IA of size 6 holds pointers to

the beginning of each row in arrays AA and JA. In particular, the values of the

nonzeros in row i can be accessed by AA[j] for all j in IA[i] ≤ j < IA[i+1]. The

algorithm SpMxV-CSR given in Figure 7.1 shows the SpMxV operation using the

CSR storage format.
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SpMxV-CSR(AA, JA, IA, m,n, x, y )

1: for i = 1 to m do

2: tmp← 0
3: js← IA[i]
4: je← IA[i+1]
5: for j = js to je − 1 do

6: tmp← tmp + AA[j] × x[JA[j]]
7: y[i]← tmp

SpMxV-CSC(AA, IA, JA, m,n, x, y )

1: for i = 1 to m do y[i]← 0
2: for j = 1 to n do

3: tx← x[j]
4: is← JA[j]
5: ie← JA[j+1]
6: for i = is to ie− 1 do

7: y[IA[i]]← y[IA[i]] + AA[i]× tx

Figure 7.1: SpMxV using the CSR and CSC storage formats.

In the CSC format, the matrix A given in Eq. 7.1 is stored as follows:

AA 1.1 2.1 3.1 2.2 3.3 4.3 1.4 2.4 3.4 4.4 3.5 5.5

IA 1 2 3 2 3 4 1 2 3 4 3 5

JA 1 4 5 7 11 13

The array AA is again of size 12 and stores the nonzeros. The array IA of size 12

stores the row indices of the nonzeros. The array JA of size 6 holds pointers to

the beginning of each column in arrays AA and IA. In particular, the values of the

nonzeros in column j can be accessed by AA[i] for all i in JA[j] ≤ i < JA[j+1].

The algorithm SpMxV-CSC given in Figure 7.1 shows the SpMxV operation using

the CSC storage format.

7.3 Implementation details

In order to implement the above algorithms, one has to follow some initialization

steps:

1. Provide partitioning indicators on x and y vectors.

In our implementation a central processor reads these partitioning indicators

from different files and broadcast them to the other processors. We chose to
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provide each processor with partitioning indicators as a whole, i.e., each processor

gets two arrays of size m and n one for the output vector and one for the input

vector, respectively. Note that processors usually need only a small portion of

these partition arrays. The rationale behind our choice is to enable the library

handle arbitrary partitionings. That is, a processor can hold an x-vector entry

and thus expand it even if it has not got a single nonzero in the corresponding

column of A. Similarly, a processor can be set to be responsible for folding on a

y -vector entry even if it does not generate partial result for that entry. We refer

reader to our previous work [99] to get taste of such unusual partitionings. Note

that these indicators are usually available; however it is possible to efficiently

construct them as discussed by Pınar [81] and Tunimaro et.al. [95]. If the matrix

partitioning is 1D, then one of the partitioning indicators is used to partition the

matrix as well.

2. Provide matrix nonzeros and x-vector entries to the processors.

A central processor reads the matrix and vector entries and distribute them

according to the partitions on the matrix and the vector. If the matrix partition-

ing is 2D, then the central processor reads partitioning indicator on the nonzeros

of A from a file. In distributing the matrix, the central processor sends all the

matrix entries of a processor in a single message.

3. Determine the communication pattern.

This is a complicated task that takes more time than SpMxV operation. We

show the pseudocode, which is executed by each processor, for setting-up com-

munication pattern for 2D case in Fig. 7.2. By removing lines pertaining to the y

vector, the communication set-up procedure for 1D rowwise-partitioned matrices

can be obtained. Similarly, the communication set-up procedure for 1D column-

wise partitioned matrices can be obtained by removing the lines pertaining to the

x vector. As seen in the figure, a certain processor sweeps (lines 1–9) its nonze-

ros to mark global indices of x-vector entries that it needs and global indices of

y -vector entries on which it generates partial results. Note that after that sweep,
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processors know which x-vector entries are to be received from which processor,

and which y -vector entries are to be sent to which processor. Here, a processor

increments the counters corresponding to its rank to compute its local matrix’s

row and column dimensions. Two additional sweeps over row indices (lines 10–

12) and column indices (lines 13–15) are necessary to handle arbitrary input and

output vector partitionings. After the all-to-all communication (line 16), proces-

sors know the number of x-vector entries to be sent and the number of y -vector

partial results to be received on per processor basis. After allocating necessary

space, each processor become ready to exchange the indices of the vector entries

to be communicated later in SpMxV routines. In lines 18–23, processors build

the lists that hold global indices of the vector entries. In the remaining of the

method, processors exchange those global index lists. After executing the de-

picted steps, each processor obtain the information on the vector entries’ indices

to be sent and to be received. Besides, each processor obtain the row and column

dimensions for the sparse matrix in its memory.

4. Determine local indices.

For row-parallel algorithm, it is customary to renumber the x-vector entries

that are accessed by processors in such a way that entries those belong to the same

processor have contiguous indices; see [87, 95]. Analogously, for column-parallel

algorithm, the y -vector entries that are to be sent to the same processor are

renumbered contiguously. Combining these, it is preferable to renumber the x-

vector entries to be received from the same processor contiguously and y -vector

entries to be sent to the same processor contiguously in 2D case. In previous

works [87, 95], developers renumbered the local vector entries starting from 0, and

then continue on the external vector entries. We choose to renumber the vector

entries according to the rank of the processors responsible on the corresponding

vector entry. For example, processor Pk gives label to the external vector entries

belonging to some other processor Pj where j < k , then gives labels to the

local vector entries and then continues with labeling the external vector entries

belonging to some other processor Pℓ where k < ℓ. Note that processor Pk can

give labels to external vector entries belonging to a processor Pℓ in any order;

x[i] can get label that is less than the label of x[j] even processor Pℓ labels x[j]
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before x[i]. Since processors communicate global indices in the algorithm given

in Fig. 7.2 this does not cause any problem.

5. Set local indices for vector entries to be sent and to be received and also

for matrix entries.

This is a straightforward task that is done locally by each processor. Each

processor sweeps the local data structures holding the global indices of local

matrix, xSendList, xRecvList, ySendList, and yRecvList.

6. Assemble the local sparse matrix.

The local matrix is assembled using the labels determined in Step 4.

In [87, 95], developers store the local matrix in CSR format for 1D rowwise-

partitioned matrices. Considering their labeling procedure, this conceptually re-

sults in splitting the matrix into two, that is, Aloc and Acpl . Here Aloc contains

nonzeros aij where x[j] belongs to the associated processor, and Acpl contains

nonzeros aic where x[c] belongs to some other processor. Remember that the

mentioned works address symmetric partitioning on x and y vectors, hence Aloc

is a square matrix. In [87], developers mention that the matrices Aloc and Acpl

can be stored in any format.

In our implementation, we explicitly split a processor’s matrix into two sparse

matrices Aloc and Acpl for row-parallel algorithm. Here Aloc contains all nonze-

ros aij where x[j] is local to the processor even if y[i] belongs to some other

processor and Acpl contains all nonzeros aie where x[e] belongs to some other

processor. We store Aloc and Acpl in CSC format. Our aim is to maximize

communication and computation overlap without incurring any extra operation.

In [87], developers perform the first two steps of the row-parallel algorithm given

in §2.1.1 by overlapping communication in the first step with the computation in

the second one. After receiving all external x-vector entries, they continue with

multiplication using Acpl instead of the third step of the multiply algorithms

given in §2.1.1 and §2.1.2. With our approach, we again obtain the same overlap

in the first two steps and also achieve communication and computation overlap in
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the third step as well, i.e., we implement the third step of row-parallel algorithm

as given in §2.1.1 and §2.1.2. When a processor receives a message in the third

step containing some external x-vector entries, it can continue multiplying before

waiting all external x-vector entries to arrive through exploiting the CSC format.

Note that, using CSC format instead of CSR here is essential. In this format,

we have explicit and immediate access to the row indices that has nonzeros in

a given column. Hence, given an x[j] one can update those y[i]’s where there

is a nonzero aij sequentially without any search. Similarly, for column-parallel

algorithm, we store Aloc and Acpl in CSR format to maximize the communica-

tion and computation overlap. In using CSR format here, our gain is the overlap

between the messages a processor receives and the associated gathering of partial

sums in step 3 of the column-parallel algorithm given in §2.1.2. In row-column

parallel algorithm, we benefit both of the overlaps by using the same constructs

in row and column-parallel algorithms.

7.4 Examples using the library

In Fig. 7.3, we give the listing of the interface to the library and a call to external

BiCGSTAB solver we have developed using the SpMxV routines of the library.

We used LAM implementation [18] of message passing interface (MPI). In Fig. 7.3,

buMatrix data structure is used the store the sparse matrices, either in CSR or

CSR format. The data structure also has fields to hold number of rows, columns,

and nonzeros and to distinguish the storage formats. Each local matrix will be of

this type (loc and cpl in the figure). The parMatrix structure is used to store

distributed matrices for SpMxV operation. It has loc and cpl fields to store Aloc

and Acpl as discussed in Section 7.3. The parMatrix structure also has fields to

describe and implement communications. The communication handle in is used

in communications regarding the input vectors of the SpMxV operation. The

handle out is used in communications regarding the output vectors of SpMxV

operations. We carry those communication handles along with matrices, however,

they are used with vectors that appear in a SpMxV operation with the associated

matrix. The field scheme designates the partitioning scheme on the matrix, which
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SetupComm2D(A, xpartvec, ypartvec)
begin

(1) for each nonzero aij in A do #i and j are global indices
(2) if i is not marked then

(3) mark i
(4) increase ySendCount to processor p=ypartvec[i]
(5) put p into ySendList
(6) if j is not marked then

(7) mark j
(8) increase xRecvCount from processor p=xpartvec[j]
(9) put p into xRecvList
(10) for i=1..M do

(11) if i is not marked and myId=ypartvec[i] then

(12) mark i; increase ySendCount[myId]
(13) for j=1..N do

(14) if j is not marked and myId=xpartvec[j] then

(15) mark j; increase xRecvCount[myId]
(16) AlltoAll communication #send xRecvCounts, receive into xSendCounts;

#send ySendCounts, receive into yRecvCounts
(17) #allocate space for indices to be sent and to be received
(18) for each column j do

(19) if j is marked then

(20) put j into xIndexRecv list for processor p=xpartvec[j]
(21) for each row i do

(22) if i is marked then

(23) put i into yIndexSend list for processor p=ypartvec[i]
(24) for each processor in xRecvList do

(25) send xIndexRecv list to processor p
(26) for each processor in xSend list do

(27) receive into xIndexSend list for processor p
(28) for each processor in ySendList list do

(29) send yIndexSend list to processor p
(30) for each processor in yRecvList list do

(31) receive into yIndexRecv list for processor p
end

Figure 7.2: Setting up communication for 2D partition.
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is used to decide on the SpMxV subroutine to call.

In Fig. 7.3, initParLib initializes the library. Note that this call creates

a communication world under the current communication world (in the figure,

the parent communication world is MPI’s default MPI COMM WORLD). We hide the

world that library’s communication exist from the user, however, there are nec-

essary subroutines which returns library’s communication world handle. Such a

distinct communication world is necessary in order to distinguish messages that

are performed inside and outside the library (see Chapter 5 in [93]) to avoid

message conflicts. The routine readMatrixCoordinates fills coordinate format

storage area through communication. In setup2D, the initialization steps dis-

cussed in Section 7.3 are executed. It also assembles the matrices Aloc and Acpl

from the coordinate format. The vector x is created with size

A->loc->n - A->in->recv->all[numProcs].

This is the size of the local x-vector entries which is mostly available explicitly

without above computation. Note that matrices loc and cpl have column di-

mension A->loc->n. We choose to decouple the size of the local vectors from

the local matrices’ dimensions to free the user from parallel programming details.

Similarly, vector b generated at the end of mxv routine holds only the entries of

b that are folded in this processor. Finally, we delete the library’s communica-

tion world by a call quitParLib. After this call, any attempts to call library’s

facilities will fail with a proper message.

We have developed BiCGSTAB [5, 104] to test the usability of the developed

SpMxV library and give the code in Fig. 7.4. Once we have designed the SpMxV

routine with proper interface, development of iterative methods becomes an easy

task. One has to deal with vector operations only. We have provided a few linear

vector operations such as dotv, normv, and v plus cw as well. These operations

perform dot product of two vectors, compute the norm of a vector, and compute

“scalar c w plus v” as in SAXPY of BLAS1, however, we choose to have different

resulting vector. With these routines, the code looks like its pseudocode listing

given in §5.3.
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int main(int argc, char *argv[]) {

int myId, numProcs, i,partScheme;

int *rowIndices, *colIndices; double *val;

buMatrix *mtrx, *loc, *cpl;

parMatrix *A;

comm *in, comm *out;

buVector *x, *b;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numProcs);

MPI_Comm_rank(MPI_COMM_WORLD, &myId);

mtrx = (buMatrix*) malloc(sizeof(buMatrix));

loc = (buMatrix *) malloc(sizeof(buMatrix));

cpl = (buMatrix *) malloc(sizeof(buMatrix));

in = allocComm();

out = allocComm();

initParLib(MPI_COMM_WORLD);

partScheme = PART_2D;

readMatrixCoordinates(&rowIndices, &colIndices, &val,

&(mtrx->nnz), &(mtrx->gm), &(mtrx->gn), &(mtrx->outPart),

&(mtrx->inPart), argv[1], MPI_COMM_WORLD);

setup2D(rowIndices, colIndices, val, mtrx->nnz,

mtrx, loc, cpl, in, out, MPI_COMM_WORLD);

A = (parMatrix *) malloc(sizeof(parMatrix));

A->loc = loc; A->cpl = cpl; A->in = in; A->out = out;

A->scheme = partScheme;

x = allocVector(A->loc->n - A->in->recv->all[numProcs]);

for(i = 0 ; i < x->sz; i++)

x->val[i] = 1;

b = (buVector *)malloc(sizeof(buVector));

b->sz = 0;

mxv(A, x, b, MPI_COMM_WORLD); /*compute b = A.1*/

for( i = 0 ; i < x->sz; i++) /*reset x to zero*/

x->val[i] = 0.0;

bicgstab( A, x, b, 200, 1.0e-12, MPI_COMM_WORLD);

freeMatrix(mtrx); freeMatrix(loc); freeMatrix(cpl); free(A);

freeVector(x); freeVector(b); freeComm(out); freeComm(in);

quitParLib(MPI_COMM_WORLD);

MPI_Finalize();

}

Figure 7.3: A simple C program that uses library with 2D partitioning.
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void bicgstab(parMatrix *A, buVector *x, buVector *b,

int maxIter, double tol, MPI_Comm parentComm){

buVector *rhat, *r, *p, *v, *w, *z;

double c, old_rho, rho, alpha, old_omega, omega, beta;

double res, res0;

int k, myId, inSz, outSz;

c = -1.0; old_rho = 1.0; alpha = 1.0; old_omega = 1.0;

z = (buVector *)malloc(sizeof(buVector));

z->sz = 0;

mxv(A, x, z, parentComm);

v_plus_cw(b, z, c, r);

inSz = x->sz; outSz = z->sz;

p = allocVector(inSz); v = allocVector(inSz);

r = allocVector(outSz); rhat = allocVector(outSz);

w = allocVector(inSz + outSz); /*a local, temporary vector*/

vcopy_vv(r, rhat);

res0 = normv(b); k = 0;

do {/*main BiCGSTAB loop*/

k ++;

rho = dotv(rhat, r);

beta = (rho / old_rho) * (alpha / old_omega);

/*compute new p */

v_plus_cw(p, v, -old_omega, z); /*z=p -old_omega . v*/

v_plus_cw(r, z, beta, p); /*p = r - beta . z*/

/*compute new v, r, and alpha*/

mxv(A, p, v, parentComm);

alpha = rho/dotv(rhat, v);

v_plus_cw(r, v, -alpha, r);

if(normv(r)/res0 < tol){v_plus_cw(x, p, alpha, x); break;}

/*compute new omega*/

mxv(A, r, z, parentCOMM);

omega = dotv_div_dotv(z, r, z, z); /* <z.r>/<z.z> */

/*compute new x and new r*/

v_plus_cw(x, p, alpha, w);

v_plus_cw(w, r, omega, x);

v_plus_cw(r, z, -omega, r);

res = normv(r);

old_rho = rho;

old_omega = omega;

} while ( (res/res0 > tol) && (k < maxIter) );

freeVectors(p, v, w, z, r, rhat);

}

Figure 7.4: A simple C program that uses library to develop BiCGSTAB.
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7.5 Experiments

We have conducted experiments on a few sparse matrices. Properties of these

matrices are listed in Table 7.1. In the table, m denotes the number of rows,

n denotes the number of columns and z denotes the number of nonzeros of the

matrices. The matrices are obtained from University of Florida Sparse Matrix

Collection [32], Matrix Market [15], and [48].

The matrices are partitioned among 24 processors using PaToH software [22]

to obtain rowwise, columnwise, fine-grain on nonzero basis, and checkerboard

partitionings [21, 23, 24] to test our 1D and 2D parallel algorithms. We report

the timings in Table 7.2 in milliseconds. Timings are obtained using MPI Wtime()

function. The columns having label R list the time consumed while reading the

matrix, the vectors, and the partitioning indicators and providing each processor

with the necessary data. The columns having labels S list the time consumed

during setting up the communication and local matrix data structures. The

columns having labels M list the time for an SpMxV operation.

Except for the matrix bcsstk25, the row-column-parallel algorithm based

on checkerboard partitioning is the best among algorithm-partitioning combina-

tions. The algorithm based on fine-grain partitioning is the worst except for ma-

trix pig-very. In order to investigate these results, we give the communication

pattern for parallel SpMxV computations. In Table 7.3, we give the commu-

nication pattern for row-parallel and column-parallel algorithms. In Table 7.4,

we give the communication pattern for row-column-parallel algorithm based on

fine-grain partitioning. In Table 7.5 we give the communication pattern for row-

column-parallel algorithm based on checkerboard partitioning. For the checker-

board partitioning, we assumed a processor mesh of size 6× 4. In these tables,

communication patterns are specified by giving the total number of messages, the

maximum number of messages per processor, the total volume of messages, and

the maximum volume of messages per processor. These metrics refer to the send

operations. Note that PaToH minimizes the total volume metric; in fine-grain

partitioning case it minimizes the sum of the volumes in fold and expand steps;
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Table 7.1: Properties of test matrices.

Matrix m n z
memplus 17758 17758 126150
bcsstk25 15439 15439 252241
onetone2 36057 36057 254595
pig-very 174193 105882 463303
lhr34 35152 35152 799064

Table 7.2: Parallel times on 24 processors. R reading time (msecs.), S setup
time (msecs.), M SpMxV time (msecs.).

1D partitioning 2D partitioning
Row-Parallel Column-Parallel Fine Grain Checkerboard

Matrix R S M R S M R S M R S M
memplus 1220 25 3.25 1260 27 3.14 1890 42 4.95 1880 35 1.97
bcsstk25 1950 53 1.53 2000 47 1.37 3340 72 1.68 3360 38 1.66
onetone2 2550 70 2.24 2600 39 1.97 3880 58 3.77 3880 58 2.11
pig-very 6900 1060 5.63 6980 139 6.72 9530 187 6.03 8950 165 5.46
lhr34 6590 54 6.02 6310 56 4.56 10850 82 6.23 10620 89 5.96

in checkerboard partitioning case it minimizes the total volumes in fold and ex-

pand phases separately. Note that in all cases except the pig-very matrix, the

total number of messages are doubled in fine-grain partitionings. Hence, even in

the case of memplus in which total volume in fine-grain partitioning shrinks to

1/3 of other partitionings, the row-column-parallel algorithm based on fine-grain

partitioning takes more time than the other SpMxV options. Note also that the

checkerboard partitioning produces the smallest total number of messages in all

cases. Combined with the advantage of bounding the maximum number of mes-

sages per processor, the checkerboard partitioning delivers the fastest SpMxV,

where there are significant differences on the metrics pertaining to the number of

messages.
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Table 7.3: Communication pattern for parallel SpMxV based on 1D partitionings.

Row-Parallel Column-Parallel
Matrix Msg Volume Msg Volume

Tot Max Tot Max Tot Max Tot Max
memplus 522 23 12016 1070 509 23 10754 1689
bcsstk25 59 4 6855 377 62 5 6702 403
onetone2 132 7 5959 556 103 8 7890 835
pig-very 511 23 10196 1573 496 23 24172 3686
lhr34 233 15 24184 1482 239 13 24967 1323

Table 7.4: Communication pattern for parallel SpMxV based on 2D fine-gain
partitionings.

Matrix Expand Fold
Msg Volume Msg Volume

Tot Max Tot Max Tot Max Tot Max
memplus 488 23 2407 347 472 23 2298 127
bcsstk25 47 4 1227 92 56 4 6094 362
onetone2 173 20 2783 349 132 10 3653 260
pig-very 525 23 12781 1553 61 5 169 19
lhr34 167 11 4185 449 234 13 22631 1533

Table 7.5: Communication pattern for parallel SpMxV based on 2D checkerboard
partitionings.

Matrix Expand Fold
Msg Volume Msg Volume

Tot Max Tot Max Tot Max Tot Max
memplus 118 5 5998 365 72 3 6005 556
bcsstk25 10 1 1679 230 48 3 5717 450
onetone2 35 4 1332 266 65 3 7360 647
pig-very 116 5 6200 714 72 3 17497 957
lhr34 60 5 11261 792 72 3 20131 1324



Chapter 8

Conclusions

8.1 Summary

In Chapter 3, we proposed a two-phase approach that encapsulates multiple

communication-cost metrics in one-dimensional partitioning of structurally un-

symmetric square and rectangular sparse matrices. The objective of the first

phase was to minimize the total message volume and maintain computational-load

balance within the framework of the existing 1D matrix partitioning methods. For

the second phase, communication-hypergraph models were proposed. Then, the

problem of minimizing the total message latency while maintaining the balance

on message-volume loads of processors was formulated as a hypergraph partition-

ing problem on communication hypergraphs. Several methods were proposed for

partitioning communication hypergraphs. One of these methods was tailored to

encapsulate the minimization of the maximum message count per processor. We

tested the performance of the proposed models and the associated partitioning

methods on a wide range of large unsymmetric square and rectangular sparse

matrices. In these experiments, the proposed two-phase approach achieved sub-

stantial improvements in terms of the communication-cost performance metrics.

We also implemented parallel matrix-vector and matrix-matrix-transpose-vector

multiplies using MPI to see whether the theoretical improvements achieved in the

124
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given performance metrics hold in practice. Experiments on a PC cluster showed

that the proposed approach can achieve substantial improvements in parallel run

times.

In Chapter 4, we extended the two-phase approach of Chapter 3 to the 2D

partitioning of matrices. We proposed communication-hypergraph models for

the 2D partitioned matrices. Different from the 1D case, we developed models to

obtain symmetric and unsymmetric partitioning on the input and output vectors.

We tested the performance of the proposed models on practical implementations.

In Chapter 5, we demonstrated that hypergraph models are able to capture the

application of multiple matrices. In particular, we developed models that allow

simultaneous partitioning of a matrix and an approximate inverse preconditioner

or the factors of an approximate inverse preconditioner. These points were raised

by Hendrickson and Kolda [52]. We defined four operations to combine the pre-

viously proposed hypergraph models into a composite hypergraph. We showed

how a partition on the composite hypergraph defines partitions on two or more

matrices simultaneously. Further investigations on the proposed four operations

shed light on the hypergraph models for 1D partitioning of sparse matrices. In

particular, we described the creation of hypergraph models for 1D partitioning

by starting from an intuitive hypergraph model and then applying the proposed

operations. The computational structure of the preconditioned iterative methods

abounds in scientific computing applications. We discussed the applicability of

the proposed models in certain scientific computations. We showed the efficiency

of the proposed composite hypergraph models through in-depth experimentation.

In Chapter 6, we addressed the problem of minimizing the completion time of

a certain class of parallel program segments in which there is a small-to-medium

grain computation between two irregular communication phases. We showed

that the order in which the messages are sent affects the completion time and

showed how to order the messages optimally. Experimental results on a PC cluster

verified the existence of the specified problem and the validity of the proposed

solution.

In Chapter 7, we presented a library developed for parallelizing sparse matrix
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vector multiply operations which includes algorithms for 1D and 2D partitioned

matrices. The matrices can be square and rectangular. The library can handle

vector distributions that are different than the matrix distribution. In our imple-

mentation of the SpMxV routines, processors perform scalar multiplications as

soon as the associated data are available, e.g., the routines overlap communication

and computation to the most possible extent.

8.2 Future work

Parallel matrix-vector multiply, y ← Ax, is one of the basic parallel reduction

algorithms. Here, the x-vector entries are the input, and the y -vector entries are

the output of the reduction operation. The matrix A corresponds to the mapping

from the inputs to the outputs. Çatalyürek and Aykanat [24] briefly lists several

practical problems that involve this correspondence. One concrete example is [26]

which uses hypergraph models to decompose the computations. We think that

the works presented in Chapters 3, 4, and 5 are applicable in distributed dataset

applications. We will follow the literature on distributed dataset applications to

identify new problems.

In Chapter 4, a sophisticated hypergraph partitioning tool that can handle

fixed vertices in the context of multi-constraint partitioning was needed. Since

the existing tools do not handle this type of partitioning, we are considering to

develop such a method.

The experiments in Chapter 6 were conducted on hypothetical programs. In

order to build a sound experimental framework for the methods proposed in

there, we are trying to set up experiments to observe the findings of this chapter

in parallel sparse matrix-vector multiplies. A generalization of the problem given

in Chapter 6 addresses parallel programs that have multiple computation phases

interleaved with communications. These kind of programs include multi-physics

and multi-mesh simulations. We do not know the computational complexity of

this general message ordering problem. We are going to investigate this problem
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in the near future.

The SpMxV library presented in Chapter 7 requires improvements to be set

publicly available. The most important improvement needed is to couple the li-

brary with matrix partitioning tools such as PaToH [22] to simplify the parallel

code development process. Another improvement needed is to implement a refer-

ence model for the vectors, matrices, and communicators using integers to enable

inter-operability of the library with Fortran codes and to hide the complexity of

data structures.

Another research direction, not as immediate as those given above, is to de-

velop sparse matrix partitioning methods for heterogeneous computing systems.

Heterogeneity comes into scene in two dimensions: heterogeneity in computing

powers and heterogeneity in network access capabilities of the processors. We

find handling the heterogeneity in computing powers to be easier than handling

the heterogeneity in network access capabilities. Within this respect, we have

done a work on task assignment in heterogeneous computing systems with homo-

geneous interconnection network [103]. The work in [103] addresses partitioning

computational domains that are represented as undirected graphs, e.g., the de-

pendencies between the tasks are binary and bidirectional. We are considering

to extend our work on partitioning computational domains represented as graphs

to partitioning computational domains represented as hypergraphs in order to

address partitioning of the sparse matrices for heterogeneous computing systems.
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[22] U. V. Çatalyürek and C. Aykanat. PaToH: A multilevel hypergraph parti-

tioning tool, version 3.0. Technical Report BU-CE-9915, Computer Engi-

neering Department, Bilkent University, 1999.

[23] U. V. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2d

decomposition of sparse matrices. In Proceedings of International Parallel

and Distributed Processing Symposium (IPDPS), 8th International Work-

shop on Solving Irregularly structured Problems in Parallel (Irregular 2001),

April 2001.
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