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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.
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ABSTRACT

PATTERN INFORMATION EXTRACTION FROM
CRYSTAL STRUCTURES

Erhan Okuyan

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Ug̃ur Güdükbay

December, 2005

Determining crystal structure parameters of a material is a quite important issue

in crystallography. Knowing the crystal structure parameters helps to understand

physical behavior of material. For complex structures, particularly for materials

which also contain local symmetry as well as global symmetry, obtaining crystal

parameters can be quite hard. This work provides a tool that will extract crystal

parameters such as primitive vectors, basis vectors and space group from atomic

coordinates of crystal structures. A visualization tool for examining crystals is

also provided. Accordingly, this work presents a useful tool that help crystallog-

raphers, chemists and material scientists to analyze crystal structures efficiently.

Keywords: crystal, crystallography, chemistry, material science, pattern recogni-

tion, primitive vectors, basis vectors, space group, symmetry.
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ÖZET

KRİSTAL YAPILARDAN KALIP BİLGİSİ ÇIKARMA

Erhan Okuyan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Ug̃ur Güdükbay

Aralık, 2005

Maddelerin kristal parametrelerinin belirlenmesi, kristallografi de önemli bir

konudur. Kristal parametrelerinin bilinmesi, maddelerin fiziksel özelliklerinin

anlaşılmasına yardımcı olur. Karmaşık yapılı maddelerde, özellikle eg̃er madde

global simetri yanında lokal simetri de barındırıyorsa, kristal parametrelerinin be-

lirlenmesi oldukça zor olabilir. Bu çalışmada, primitif vektörler, temel vektörler

ve uzay grubu gibi kristal parametrelerini, kristal yapısını oluşturan atomların

koordinat bilgilerini kullanarak belirleyecek bir araç ortaya çıkarılmıştır. Ayrıca,

kristalleri incelemeye yarayan bir görüntüleme aracı da sunulmuştur. Dolayısıyla,

bu çalışma, kristal bilimcilere, madde bilimcilere ve kimyacılara, kristal yapılarını

daha verimli bir şekilde analiz etmeyi sag̃layan faydalı bir araç sunmaktadır.

Anahtar sözcükler : kristal, kristallografi, kimya, madde bilimi, kalıp algılama,

primitif vektörler, temel vektörler, uzay gurubu, simetri.
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Chapter 1

Introduction

Obtaining parameters of crystal structures is a quite important issue in crys-

tallography. Crystal structure of a material is closely related with its physical

properties. Accordingly, obtaining crystal parameters of a material will help to

understand its physical behavior. In material science, crystal parameters are

used to classify materials. This classification helps to analyze materials effec-

tively. Particularly, for complex cases such as alloys whose atomic ratios can

change, such classification is quite useful to analyze physical properties.

In crystallography, mainly x-ray diffraction techniques are used to determine

crystal structure of materials. This technique uses x-ray absorbance data to reveal

crystal geometry [9, 11]. These techniques generally give satisfactory results.

However, there are cases where obtained results are confusing or insufficient. In

those cases, crystallographers have to test several crystal geometries manually.

Scientists may also work on theoretical materials, where no sample is available.

For those cases, x-ray diffraction techniques are not applicable. Accordingly,

a tool that can find crystal parameters from atomic coordinates could be very

useful.

The aim of this work is to extract pattern information in any crystal structure

from raw atomic coordinates by calculating primitive vectors and basis vectors,

and identifying the space group. This task is relatively easy for a human on

1



CHAPTER 1. INTRODUCTION 2

simple structures. However, it becomes quite hard for complex structures and

usage of a computerized system becomes necessary. Another complication of

this process is the existance of molecular structures in crystals. There are many

molecular materials that form crystals. These molecular materials can be simple

molecules such as H2O, or they can be quite complex biological materials such

as DNA or protein. Accordingly, a computerized approach is essential to handle

such complex cases.

Since crystals are repeated patterns of atomic positioning in 3D space, it can

be quite hard to understand crystal geometry. Accordingly, a 3D visualization

tool is essential to understand crystal geometry. Secondary motivation of this

work is to provide a good 3D visualization tool that allows users to explore

crystal structure effectively. In this way, this work will be useful for people

learning crystallography, as well as professionals. The visualization tool works on

unit cell data that is either extracted from atomic coordinates or provided by the

user directly. This tool allows observing unit cells in several angles, combining

several unit cells to obtain larger crystal segments, showing or hiding several atom

types, cutting crystal to obtain desired surfaces, dumping atomic coordinates that

are shown, etc. Accordingly, the visualization tool helps scientists to understand

crystal geometry effectively.

In this work, it is also assumed that sufficiently large volume of crystal struc-

ture is given as input data. It is assumed that atomic coordinates of atoms,

which lie inside such volume, is generated within a small error margin and these

atomic coordinates are used as input data. Each atoms type, which is given in

input data, should also be identified. Since there can be more than one alter-

native combinations of primitive vector triplets and basis vector sets to define a

crystal structure, the tool is designed to be semi-automatic so that it will ask the

user the preferred primitive vector triplet alternative and preferred origin choice,

throughout the analysis.

In this thesis, a framework that extracts parameters from crystal structure

data is presented. Obtained crystal parameters are primitive vectors, basis vectors

and space group number. Alternative unit cell parameters, such as the lengths of



CHAPTER 1. INTRODUCTION 3

primitive vectors and the angles between them are also calculated. The algorithms

use atomic coordinates in crystal structure as input data.

The rest of the thesis is organized as follows. Chapter 2 presents terminology

and related work. The details of the proposed algorithms are explained in Chapter

3, implementation details are explained in Chapter 4 and experimental results can

be found in Chapter 5. Finally, Chapter 6 gives conclusions and possible future

extensions.



Chapter 2

Background and Related Work

Crystal structure of a material is determined by relative positioning of atoms.

The aim of this work will be to determine the relative positioning of atoms that

is repeated throughout the crystal structure (pattern information). Since the

subject is quite related to crystallography it is better to give some background

information about it.

2.1 Background

In this section brief descriptions of some basic crystallographic terms, which are

used frequently in this work, will be given. Descriptions are gathered from several

sources, [2, 18, 9, 4, 11], and given in a summarized manner.

Crystal: Crystal is the term used for some solid material structure. It gen-

erally consists of single atoms or ions, but it may also contain molecules. In

crystals atoms are placed at certain relative coordinates. They don’t move under

normal conditions. Every atom or molecule forming the crystal, interacts with

all other atoms or molecules. Every unit structure attracts with each other with

some physical forces. There are no bonds between any unit structures forming

the crystal, hence there is no molecular formula either, as in H2O formula. The

4



CHAPTER 2. BACKGROUND AND RELATED WORK 5

formula of a crystal simply represents the ratio of atoms or molecules forming

the crystal. For example, CaCl2 formula indicates that there are 2 Cl atoms for

every Ca atom in CaCl2 crystals. Crystals are formed by repetitions of unit cells,

which can be defined as small identical construction blocks of crystals. Thus,

crystal structures follow some pattern.

Unit Cell: Unit cells are small construction blocks of crystals. The shape of a

unit cell can be rectangular box, hexagonal box or trapezoid. Basically, unit cells

can be considered as a 3D geometric shape that can be placed side by side and

fill some space completely. In general, the shape of a unit cell can be defined as a

paralleloid. Accordingly six parameters are used to define a unit cell. In general

representation, which consider unit cell shape as a paralleloid, there will be three

different types of edges. The lengths of each edges and the angles between any

two of these three edges will define the unit cell. In crystallographic terminology,

lengths of these three edges are named as a,b and c. The angle between a and b

is called γ, the angle between a and c is called β and the angle between b and

c is called α. These six parameters define the unit cell. Another representation

of unit cells is the vectoral representation. For a paralleloid, there will be three

edges, intersecting at each corner of the paralleloid. Accordingly, if a corner of

the paralleloid is considered as the origin, three vectors will be obtained from

three edges which intersect at origin. These three vectors are called Primitive

Vectors. The vectoral representation of unit cells is more popular and it is used

in this work.

Basis: Basis defines the atomic placement within each unit cell. Crystal

structure is formed by repetition of unit cells and the basis can be considered as

the pattern that is repeated. Basis is represented as a list of vectors of atoms

in unit cells. Basis includes a record for each atom which lies inside the unit

cell. Each record contains information regarding this atoms type and its vectoral

position. The vectoral position of an atom is calculated by using the same point

as origin, which is used while calculating the primitive vectors.

Together with primitive vectors, basis defines the whole crystal structure.

Basically, primitive vectors can be considered as the translation vectors. In a
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crystal structure, any point which is obtained by translation of a basis atom by

any integer combination of three primitive vectors will also contain an identical

atom. For example, CsCl’s crystal structure is shown in Figure 2.1.

Figure 2.1: CsCl Unit Cell

Primitive Vectors in Å unit:

V1 = [4.02, 0.0, 0.0]

V2 = [0.0, 4.02, 0.0]

V3 = [0.0, 0.0, 4.02]

Basis Vectors in Å unit:

B1 = Cl, [0.0, 0.0, 0.0]

B2 = Cs, [2.01, 2.01, 2.01]

The primitive vectors, V1,V2,V3, and the basis vectors, B1 and B2, defines the

crystal structure. Since Cl atom is at the origin, these vectors imply that there

will be a Cl atom at every point which is an integer combination of V1,V2 and V3,

such as (8.04, 4.02, 0.0),(0.0,−4.02, 0.0) and (4.02, 4.02, 4.02) points. Accordingly,

Cs atoms will be placed at every point obtained by the translation of B2 with any

integer combination of V1,V2 and V3, such as (10.05, 6.03, 2.01),(2.01,−2.01, 2.01)

and (6.03, 6.03, 6.03). All crystal structures can be defined in terms of 3 primitive

vectors and a set of basis vectors.
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Space Group: Unit cells show some symmetry properties. For example,

CsCl structure shown in Figure 2.1, has a rotational symmetry of 90 degrees.

If you rotate the crystal structure, around one of the primitive vectors, by any

integer multiple of 90 degrees, an identical placement would be obtained. There

are several symmetry operations other than this rotational symmetry operation,

such as mirror symmetries, translational symmetries, etc. Crystal structures are

categorized into 230 groups, according to the symmetry operations they satisfy.

These groups are called space groups. It is proven that any crystal structure

must belong to one of these 230 space groups. Accordingly for any given crystal

structure a corresponding space group can be found.

Crystallography: It is a branch of inorganic chemistry which studies crys-

tals. It is particularly focused on the techniques that will reveal crystal struc-

tures of materials. Mainly, x-rays diffraction techniques are used for this purpose.

Crystals diffracts x-rays with some particular angles, depending on the crystal

geometry. Other than x-ray diffraction techniques, crystallography focuses on

physical behaviors of crystals.

2.2 Previous Work

Extracting pattern information from atomic coordinates of a crystal structure is

not a common problem. It can be used as an uncommon method in order to

solve several problems one can met in crystallography. Accordingly, there is no

significant amount of research directly related to this subject. However, since

this subject is quite relevant to several other common subjects, there are several

works that can partially help to this work. These works can be grouped into

three main categories. The first category is crystallographic tools. For example,

Computational Crystallography Toolbox [10], is one of the open source programs in

this category. These tools allow users to define their own unit cell, by entering unit

cell parameters. Users can examine atomic placements, perform several analyses,

etc. Basically these tools help users to examine unit cell structure with every

known detail and to understand the crystal structure more clearly. However,
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since every essential unit cell parameter should be given to those tools as user

input, their work is simply performing some parameter conversions, calculating

some unit cell parameters which can be calculated using input parameters and

providing a user interface.

The second category of previous works is crystallographic visualization tools.

RasMol [17] program, is one of the well known example of this category. These

tools aim to provide a good understanding on crystal geometry. They allow

users to examine crystal structures from every aspect in 3D space. They provide

several drawing models, such as ball model, ball-stick model, wire frame model,

etc. They allow users to enable or disable showing some atom types, determining

their colors and sizes, etc. They allow users to examine crystal structure other

than unit cell perspective. In other words, by allowing to build multi-cells and

allowing to cut the crystal structure according to user defined planes, these tools

allow users to shape the crystal structure according to their desires. Several

other properties can be added to this list. Basically it can be summarized that

these visualization tools allow user to build his own crystal structure by giving

unit cell parameters and shaping crystal according to his desires. They also

provide a 3D visualization environment with numerous graphical alternatives.

Generally crystallographic visualization tools are combined with crystallographic

tools explained in the first category, in order to provide a more helpful utility.

Crystal Maker [12] and Crystal Builder [13] programs are two important examples

of such combinations.

Third type of works are related to pattern recognition, computer vision and

3d shape matching areas. Basically, since crystals follow some pattern, methods

proposed in these areas can be used to find such patterns. Accordingly, several

works done in these areas, such as several methods proposed in [15] and [14], can

be used in this work.

In general there are several works partially related to this subject. However,

since this work focusses on an uncommon problem, there are no directly related

previous work, in our knowledge.



Chapter 3

Framework for Pattern

Information Extraction

In any crystal structure, if a point is translated by any integer combinations of

primitive vectors, an identical point is obtained. In order to two atoms being

identical, these two atoms should belong to same atom type and their view of

the crystal structure should be same. In other words, in order to two atoms A

and B being identical, for every atom C in the crystal structure, there should be

a corresponding atom C ′ with the same atom type with C, where C’s relative

distance to A is equal to C ′’s relative distance to B. Accordingly any atom A

in a crystal structure, is identical to other atoms Ai,j,k, for all integer values

of i,j and k, which the vector Ai,j,k − A is equal to V1 × i + V2 × j + V3 × k

where V1,V2 and V3 are primitive vectors. This observation leads to the fact that

for two identical atoms A and B in any crystal structure, the vector obtained

by coordinate differences of A and B will be an integer multiple of primitive

vectors. Furthermore, by the definition of primitive vectors, for any atom A,

there should be an identical atom Ai,j,k for all integer values of i,j and k where

Ai,j,k’s coordinate differs from A’s coordinate by V1 × i + V2 × j + V3 × k. These

observations are the heart of the proposed framework. Because these observations

imply that if identical atoms can be grouped together, difference vectors between

every pair of identical atoms in each group can be extracted. Set of these vectors

9
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will include all integer combinations of primitive vectors. Accordingly, primitive

vectors can be calculated by using these extracted vectors. Afterwards calculating

the basis vectors and space group can be done. In this section, these procedures

will be explained in detail.

3.1 Stages of Proposed Framework

In the first part of proposed framework, reading and indexing the atomic coor-

dinates in input data are performed. Indexing should support retrieving points,

which lie inside a given volume, efficiently. Second part of the framework is

grouping the identical atoms together. Two atoms are considered identical if

they belong to same atom type, and if they see the rest of the crystal structure

same. With this definition, it is assumed that crystal structure is infinity big.

This is not a realistic assumption. However since crystal structures are relatively

quite big compared to atomic sizes, this assumption does not posses a practi-

cal problem. Grouping of identical atoms require detecting identical atoms and

putting them in same group. After the grouping algorithm completed, vectors,

which are the coordinate differences between every atom couple in every group,

are extracted. Then, some of these vectors are eliminated in the filtering out

redundant vectors phase, since they are not qualified to be a primitive vector.

Afterwards, primitive vectors can be calculated. Then the user is asked to select

a primitive vector triplet. Since there will be many vector triplets, which can be

used as primitive vectors, asking user about his primitive vector preferences is a

logical choice. In this way, the user is allowed select primitive vectors, which looks

the best. Afterwards basis vectors can be calculated. However, this calculation

requires the origin to be defined. In principle, any point can be used as origin and

valid basis vectors can be calculated. However, users generally prefer to select

some atoms position or some certain point which leads to a simple unit cell geom-

etry, as origin. Accordingly, the user should be asked for origins position. For

this purpose the clustering is done. The aim of the clustering process is grouping

atoms, which can be used as a basis vector set. Afterwards, the coordinates of

atoms of a cluster are shown to user so that he can select the origin. After the
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origin is determined, the basis atoms can be found. At this point, the space group

of the crystal structure can be identified. It is simply done by testing if every

symmetry operations of each space group are supported by the crystal structure.

Figure 3.1, summarizes the stages of the proposed framework.

Figure 3.1: The flow diagram of the proposed framework

3.1.1 The Algorithm for Grouping Identical Atoms

Grouping identical atoms together is a quite crucial task for this analysis. For

two atoms to be identical, they should belong to the same atom type and relative

positioning of them to their neighbors should be the same. Theoretically A and

B are identical atoms if for every atom C there exists another atom C ′ in the

crystal structure with the same atom type of C, where C’s vectoral distance

to A is equal to C ′’s vectoral distance to B. In other words, for every atom

around A, there should be a corresponding atom with same type around B with

the exact relative positioning. Unless A and B are same atoms, this definition

requires crystal structure to be infinitely big in order to A and B being identical.
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However, practically it is sufficient to make sure there always are a corresponding

atom around B for all atoms around A, which are closer to some relatively big

distance.

If you translate any point in crystal structure by any integer multiples of

primitive vectors, you will obtain an identical point. Let V1,V2 and V3 be primitive

vectors. These three vectors will define a paralleloid, which can be considered

as the unit cell of crystal. If you take an atom, A, as the origin, then primitive

vectors will define a volume VA, which can be considered as the unit cell paralleloid

starting from A’s coordinates. Assume we are to check if A and B are identical.

Then, it will be sufficient to check if the volumes VA and VB matches. Because, any

point which does not lie inside VA or VB can be translated by integer combinations

of primitive vectors to another point that lie inside these volumes. Accordingly,

any point outside the volume has an identical corresponding point, which lie

inside these volumes. Therefore, if any point outside these volumes will cause

a mismatch, than it is guaranteed that some point inside the volume will also

cause a mismatch. Accordingly, checking if the volumes of two atoms defined by

primitive vectors matches, is sufficient to detect if these atoms are identical.

Since primitive vectors are unknown, it is not possible to determine the vol-

umes of atoms that primitive vectors would define. However, trying to match

some volumes, which include that volumes, will give correct results. In this work,

cubic volumes around each atom were used. The reason for using a cubic volume

is, searching all atoms in a rectangular boundary is much more efficient than

searching all atoms in any random shaped volumes. In this work half of the

edge length of this cube is called matching range. The boundary from minus

matching range to matching range, at each axis around the atom is used as this

atoms matching volume. The user is asked to determine a value for matching

range parameter. User should select matching range parameter so that matching

volume would be large enough to contain unit cell of crystal. Too low values

may cause wrong results, while higher values increases the execution times. In

general, users should make a safe guess about this parameter. For most cases,

selecting a matching range value which make matching volume to cover about

10-20 atoms, will give correct results, since atoms which are not identical tend to
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have significantly different positioning.

The algorithm for grouping identical atoms simply calculates matching vol-

umes of each atom and it groups atoms with identical matching volumes. The

algorithm tries to match each atom with previously found groups. If an atom

matches with some group, it is included into this group. Otherwise, it forms an-

other group. In order to calculate matching volume of an atom, it is necessary to

make sure every part of the matching volume of this atom should be inside crystal

segment given in the input data. Otherwise, incomplete matching volumes will

be obtained and they would cause invalid mismatches. In this work, it is assumed

that the input crystal structure is sufficiently big. In order to format the shape of

the crystal structure and limiting the number of atoms that will be used during

the analysis to a reasonable number, a parameter, cut out treshold, is introduced.

While reading input coordinates, any atom, whose absolute x,y or z coordinate

values exceeds cut out treshold value is ignored. Another parameter process range

defines the volume whose boundaries are minus process range to process range at

each axis. The atoms that lie inside this volume are actually analyzed. Process

range parameter should be selected smaller than cut out treshold parameter by

at least matching range. Accordingly, the volume defined by process range para-

meter lies inside the volume that is defined by cut out treshold parameter. Atoms

which lie in the process volume, which is defined by process range parameter are

guaranteed to have complete matching volumes. Both process range and cut out

treshold parameters are asked to user. Too low values may not be sufficient to

obtain the result, while too high values increase runtime.

Matching volume of an atom A is simply a list of all atoms, whose coordinate

differences with A at each axis, are smaller than matching range value. This list

contains these atoms relative coordinates to A and their atom types. Calculating

the matching volume of an atom can be considered as a range search query with

the corresponding boundary parameters. It is explained in data structures and

indexing section in more detail. After matching volume of an atom is calculated,

the list that define matching volume is sorted according to coordinate values

of atoms in that list. Accordingly, while comparing two matching volume lists,

linear scans of them would be sufficient.
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GroupList=NULL;
foreach Atom A in ProcessVolume do

MV=CalculateMatchingVolume(A);
Sort(MV);
foreach Group G in GroupList do

if A.MatchingVolume matches G.MatchingVolume then
G.Insert(A);
break;

if A is not matched to any group then
G=new Group();
G.MatchingVolume=MV;
G.Insert(A);

Algorithm 1: The algorithm for grouping identical atoms

Ideally, the number of groups should be equal to the number of basis vectors.

However, several reasons such as incomplete crystal segments, errors in crystal

structures or errors in atomic coordinates may cause generation of more groups.

Elimination of such groups is explained in error handling section. The algorithm

for grouping identical atoms is given in Algorithm 1.

3.1.2 The Algorithm for Finding Primitive Vectors

If you translate any point in crystal structure by an integer combination of prim-

itive vectors, you will obtain an identical point and vice versa. The grouping

algorithm creates groups of identical atoms. Accordingly any atom inside a group

can be translated to another atom in the same group, by some integer combina-

tion of primitive vectors. In other words, the vectoral distance between any two

atom A and B in the same group is equal to some integer combination of prim-

itive vectors. Accordingly, a list, which contains vectoral distances between all

atom pairs in a group, can be created. This list contains all integer combinations

of primitive vectors in some boundary. This list should also include all three

primitive vectors, since a primitive vector itself is also an integer combination

of primitive vectors. Therefore, it is possible to select any three vectors from

created vector list and checking if they can produce all other vectors in the list
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as their integer combinations. Accordingly, vector triplets, which can be used as

primitive vectors, can be extracted from this list. Details of procedures are given

in subsections.

3.1.2.1 The Algorithm for Extracting Vectors

Extracting vectors is a simple process. The algorithm simply takes each atom

pair in a group, and adds the vectoral distance of these two atoms to the vectors

list. If the algorithm for grouping identical atoms had been worked as expected,

every group should produce non-conflicting vector lists. Since process volume

cuts the crystal at some random place, it may cover some parts of some unit cells

and it may leave other parts outside. Accordingly, number of atoms in each group

will not be the same. Therefore, the lists produced from each group will not be

identical. However, differences will be in terms of including or not including some

vectors. Such vectors which appear at one groups list and which do not appear

at other list will be big vectors since simpler vectors can be produced by closer

pairs of identical atoms, which any selection of process volume can cover. These

simpler vectors will be common for all lists. Accordingly, every list carries enough

information to find the primitive vectors. So deriving the list for just one group

is sufficient. However, for some cases such as presence of coordinate errors or

structural errors of crystal, calculating a list for each group and merging these

lists might be a better choice. Such cases will be explained in error handling

section in detail.

Every atom pair in a group defines a vector. Considering there can be thou-

sands of atoms in a group, the number of vectors that can be generated from

a group can be quite large. Most of the genereted vectors would be identical

to some other generated vector. Accordingly, number of distinct vectors would

be much smaller. Nevertheless, the number of vectors can still be high. It is

quite unlikely that a desired primitive vector set containing a long vector. Ac-

cordingly, eliminating long vectors would reduce the number of extracted vectors

to a reasonable number. In this work, vectors whose length is larger than some

predefined value are eliminated. The algorithm for extracting vectors is given in
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Algorithm 2.

G=Most Crowded Group;
VLIST=NULL;
for i=0 to G.Count-2 do

for j=i+1 to G.Count-1 do
V =G.Atom[i] - G.Atom[j];
if V .Length< C then VLIST+=V ;

return VLIST;

Algorithm 2: The algorithm for extracting vectors

3.1.2.2 The Algorithm for Filtering Out Redundant Vectors

Three primitive vectors should be able to produce all other vectors as their integer

combination. Consider two vectors V1 and V2. Moreover, let V2 be c× V1, where

c is an integer constant. Then V2 cannot be a primitive vector unless c is equal

to -1. This proposition can be proven by contradiction. Assume V2 is a primitive

vector together with P and Q vectors. If c equals to -1, −1× V2 will produce V1.

Otherwise in order to produce V1, P and Q should have an integer combination

equal to k × V1, where k is equal to i× c− 1 or i× c + 1 for some integer value

of i. This means that, P and Q have some linear combination that will produce

V2. Accordingly P ,Q and V2 are not orthogonal, thus cannot be a primitive

vector triplet. So it is unnecessary to test a candidate primitive vector triplet

which includes a vector, which is an integer multiple of another vector in the list.

Accordingly removing such vectors from the vectors list will improve runtime

performance. The first step of this procedure is sorting the vector list. Sorting

is done according to the absolute x value first. The vectors with equal absolute

x values are sorted according to their absolute y values and the vectors whose

absolute x and absolute y values are equal are sorted according to their absolute

z values. Such sorting is crucial for the algorithm. Because, in this way a vector

V2 which is an integer multiple of the vector V1 is guaranteed to come later in

the list. Accordingly, for any vector in the list only checking the rest of the list

is sufficient. Even though complexity remains quadratic, runtime performance

improves significantly. In this procedure, vectors that are -1 times of another
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vector are also eliminated. The reason for this elimination is for any primitive

vector triplets, you can multiply any of three primitive vectors by -1 and still

obtain a valid primitive vector set. Accordingly, in this work instead leaving

such vectors in the list and decreasing performance, eight different combinations

of primitive vectors are calculated after primitive vectors are found. Since this

approach helps to reduce the number of vectors in the list significantly, there is a

significant performance improvement. The algorithm for filtering out redundant

vectors is given in Algorithm 3.

Sort(VLIST);
V1=VLIST.FirstVector;
V2=NULL;
while V1 != NULL do

V2=V1.NextVector;
while V2 != NULL do

tmp=V2.NextVector;
if V2 is an integer multiple of V1 then

Remove(V2);

V2=tmp;

V1=V1.NextVector;

return VLIST;

Algorithm 3: The algorithm for filtering out redundant vectors

3.1.2.3 The Algorithm for Calculating Primitive Vectors

After the redundant vectors are eliminated, a list of vectors is obtained which can

form primitive vector triplet alternatives. Naive way to calculate the primitive

vectors is taking every vector triples, which can be derived from the vector list

and checking if every other vectors in the list can be produced in terms of integer

combination of these vectors. However, this procedure has a O(n4) time complex-

ity where n is the number of vectors in the list. Even though filtering redundant

vectors reduces the list size significantly, still there will be many vectors in the

list. Accordingly checking every vector triplet is not a desirable solution. Fortu-

nately, a simplification is possible. Scientists generally prefer primitive vectors as

small as possible. However, for some cases, since another three primitive vectors
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present a more understandable geometric representation, users may prefer those

vectors. Nevertheless, in any case desired primitive vector triplets will not con-

tain too big vectors. Accordingly sorting the vector list according to the lengths

of the vectors and limiting the set of vectors that can be in a primitive vector

triplet can be an efficient solution. For this purpose, a parameter is asked to user.

This parameter defines the set of vectors that will be used to derive candidate

primitive vector sets. Three vectors that will form a candidate primitive vector

triplet, will be selected from shortest vectors whose number is limited by the pa-

rameter taken from the user. Since setting this parameter to values around 100

is sufficient, this procedure becomes quite fast. The algorithm for calculating the

primitive vector alternatives is given in Algorithm 4.

SortByLength(VLIST);
PVLIST=NULL;
VLEN=min(VLIST.Count,MaxNumOfPV Candidates);
for i=0 to VLEN-1 do

for j=i+1 to VLEN-2 do
for k=j+1 to VLEN-3 do

isPV=true;
for t=0 to VLIST.Count-1 do

if VLIST[i],VLIST[j] and VLIST[k] cannot produce
VLIST[t] then

isPV=false;
break;

if isPV then
PVLIST+=new
PrimitiveVector(VLIST[i],VLIST[j],VLIST[k]);

return PVLIST;

Algorithm 4: The algorithm for calculating primitive vector alternatives

In order to check if given three vectors V1,V2 and V3 can produce the vector

V , it is necessary to solve the following equation.

V = i× V1 + j × V2 + k × V3

Since all 4 vectors are 3 dimensional, given equation will result in a linear equation

set of three equation with three unknowns; i,j and k. Solving such equation set is
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a relatively easy operation and can be done quite fast. If integer solutions can be

found for i,j and k, it is concluded that vectors V1,V2 and V3 can produce vector

V . If solutions are not all integers or no particular solution could be found, then it

is understood that V cannot be produced by some integer combinations of given

vectors, thus the vectors V1,V2 and V3 can not be a primitive vector alternative.

After finding all vector triplets, which can be used as primitive vector sets,

user is asked to select one or more primitive vector set alternatives. The algorithm

for extracting basis vectors and identifying space group, continues according to

the user’s selections.

3.1.3 The Clustering Algorithm

Crystal structure is defined by primitive vectors and basis vectors. Basis vectors

are atomic coordinate vectors of atoms, which lie inside the paralleloid defined

by primitive vectors. Accordingly, in order to define basis vectors, determining

the origin point is required. In principle, any point can be used as origin and the

basis vectors, which perfectly define crystal structure together with the primitive

vectors, can be calculated. However using a random point as origin is not a

desired solution. Scientists usually prefer using a certain atoms coordinate as

origin. For example, in Figure 2.1, one of the Cl atom’s coordinate is used as

origin. Accordingly Cl atoms are placed on corners of unit cell cube. If Cs atoms

coordinates were used then figure would show Cs’s on the corners and a Cl on

the center of the cube. Another point could also be used as origin. Currently

basis vectors of CsCl structure are given in Å unit as;

B1 = Cl, [0, 0, 0]

B2 = Cs, [2.01, 2.01, 2.01]

Assume the middle point of Cs and Cl atoms were used as origin. Then basis

vectors would be;

B1 = Cl, [3.01, 3.01, 3.01]

B2 = Cs, [1.00, 1.00, 1.00]
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This definition will also be valid but unit cell structure will be harder to under-

stand since this definition is not geometrically as powerful as first representation.

Accordingly leaving origin selection to user is a better desicion.

Scientists generally select an atoms coordinates as origin. Since every atom

in a group is identical, proposing one atom for each group is sufficient. However,

proposing a random atom from each group is not a desired solution. Users should

be able to observe relative positioning between proposed atoms. For example, in

the CsCl structure user should see coordinate differences between two neighbor

Cl and Cs atoms are [2.01,2.01,2.01]. If the random atoms were proposed for each

group, seeing these relations would not be possible. Accordingly, atoms should

be clustered according to relative distances. Clustering should be done so that

atoms in a cluster will be as close to each other as possible. Accordingly, the

relative coordinates of atoms in a cluster can be observed easily.

The clustering is performed iteratively. First, each cluster has to have one

atom from each group. Therefore, the initial step of the clustering process is,

assigning each atom of the most crowded group to a different cluster. After that,

remaining groups are iteratively processed. In order to process a group G, for

all clusters and for all atoms in G, an atom-cluster pair is found whose atom

to cluster center distance is minimum. Afterwards, a direction vector is defined

by using this pair, as atoms relative coordinate according to the cluster center.

After the direction vector is found, for all clusters C in the clusters list, if there

is an atom A whose relative distance to C is equal to the direction vector, it

is assigned to C. It is necessary to find a direction vector since the clusters

should be identical. It is clear that cluster atoms should be as close as possible.

However, this restriction is not sufficient. Consider the CsCl structure. For

each Cs atom there are 8 Cl atoms with the same minimum distance to the Cs

atom. If instead of calculating the direction vector, the atom with the minimum

distance were selected, any of these 8 Cl atoms could be used. Since for different

clusters Cl atoms with different relative positioning can be selected, the clusters

may not be identical. Accordingly, calculating direction vectors and performing

assignments according to these vectors is necessary in order to obtain identical

clusters. After assignments are completed, if there are clusters which no atoms
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are assigned for the last group, these clusters are eliminated. The reason for this

elimination is a cluster clearly has to contain one atom of each group. Otherwise,

cluster will be incomplete. Around surfaces of crystals, such incomplete clusters

can be seen. However, they are not suitable to be presented as origin alternatives

to the user. Accordingly, these clusters are eliminated. After all clusters are

obtained, they are sorted according to their center distances to origin of input

data. The cluster with smallest center distance to origin is returned and shown

to the user. Accordingly the simplest coordinates are shown to the user. The

clustering algorithm is given in Algorithm 5.

ClusterList=NULL;
foreach Atom A in most crowded group do

ClusterList+=new Cluster(A);

foreach Group G that is not processed do
MinDist=∞ ;
MinAtom=NULL ;
MinCluster=NULL ;
foreach Atom A in G do

foreach Cluster C in ClusterList do
D= distance between C and A ;
if D < MinDist then

MinDist=D;
MinAtom=A;
MinCluster=C;

DV=MinAtom.Coordinates-MinCluster.Coordinates;
foreach Cluster C in ClusterList do

foreach Atom A in G do
if A.Coordinates==C.Coordinates+DV then

C.Assign(A);
break;

foreach Cluster C in ClusterList do
if C.AtomCount < NumOfProcessedGroups then

Remove(C);

Sort(ClusterList);
return First Cluster;

Algorithm 5: The clustering algorithm
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The aim of this algorithm is simply providing user a candidate basis set to

select the origin. Taking the atoms closest to the origin of input data from

each group, could produce a good solution with much better runtime complexity.

However, with the clustering algorithm used in this work, a geometrically more

meaningful cluster will be obtained. Since this cluster will be closer to the desired

basis set, seeing relations between atoms will be easier. After the coordinates of

atoms in a cluster are shown to the users, they select the origin. Users can select

one atom from the proposed list or they can enter coordinates of origin manually.

After the origin is determined, the basis vectors can be found.

3.1.4 The Algorithm for Finding Basis Vectors

Basis vectors can be defined as the coordinates of atoms, which lie inside the

unit cell paralleloid, defined by the primitive vectors and the origin. The data

structure used in this work, can only answer rectangular boundary search queries.

Accordingly, it is not possible to query only the atoms lying inside the unit cell

paralleloid. However, the boundaries of the rectangular prism, which contains the

unit cell paralleloid, can be calculated and these boundaries can be used to query

the data structure. Assume xi,yi and zi are x, y and z coordinates of ith primitive

vector. Accordingly the minimum x value of the rectangular boundary will be the

minimum of 0, x1, x2, x3, x1 + x2, x1 + x3, x2 + x3, x1 + x2 + x3 values while the

maximum x value of the boundary is the maximum of given values. Minimum

and maximum y and z values are found similarly. After finding the boundary

values for the query, all atoms that lie inside this rectangular prism are obtained

by querying the data structure. These atoms should be checked in order to see

if they lie inside the unit cell paralleloid. Let V1,V2 and V3 be primitive vectors.

Any point P which lie inside the paralleloid defined by these primitive vectors

can be expressed as P = i × V1 + j × V2 + k × V3 where i,j and k are numbers

in the range of [0,1). Since P and the primitive vectors are all 3 dimensional

vectors, given expression represents a 3 unknown 3 equation linear equation set.

Solving that equation set for an atom and checking if i,j and k numbers are all

in [0,1) range, will show if this atom lies inside the paralleloid thus if it is in the
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basis set.

While performing such calculations, it is important to translate all coordinate

values to the new coordinate system defined by the new origin value that user

selected. An old coordinate value can be translated into new coordinate system by

simply subtracting the origin’s coordinate from the old coordinate values. Since

it will be costly to translate every point to new coordinate system, it is better to

do the translations whenever required during the procedure. The algorithm for

finding basis vctors is given in Algorithm 6.

B=FindBoundaries(V1,V2,V3);
Translate(B,Origin);
AtomList=RangeSearch(B);
BasisList=NULL;
foreach Atom A in AtomList do

if isInParalleloid(Translate(A,-Origin)) then
BasisList+=A;

return BasisList;

Algorithm 6: The algorithm for calculating basis vectors

3.1.5 The Algorithm for Identifying Space Group

The space group of a crystal structure is determined by checking if it supports

some symmetry operations. There are several symmetry operations, such as

rotations, mirror operations, glide operations, etc. Crystal structure is tested to

see which symmetry operations it supports. According to the set of symmetry

operations it supports, it is classified into one of 230 predefined space groups.

Any crystal structure should belong to one of these space groups [4]. The aim

of this procedure is finding which space group that analyzed crystal structure

belongs.

A symmetry operation can be considered as a 3D coordinate operation, which

translates a point into an identical point. Consider a simple cubic lattice struc-

ture. In other words, consider a 3D mesh, which there is an identical atom at
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every point with coordinates (i, j, k) where i,j and k are all integers. Take any

point as the origin. Assume (0, 0, 0) is selected as origin for simplicity. Afterwards

rotate the crystal structure 90 degrees clockwise around z axis passing through

the origin. This operation brings points with coordinates (a, b, c) into new coor-

dinates (b,−a, c). Since b,−a and c are all integers and in the simple cubic lattice

there are identical atoms at every point with integer coordinates, given symme-

try operation is supported. Many symmetry operations are defined similar to the

one given in the example. In general, any symmetry operation can be defined in

terms of a rotation operation and a translation operation performed afterwards

[11]. Accordingly, symmetry operations can be expressed by using a rotation ma-

trix and a translation vector. Thus, applying a symmetry operation on a point

can be expressed as a matrix vector multiplication and a vector addition.

For a crystal structure, in order to belonging to a space group, it should

support a certain set of symmetry operations specific to this space group. A

crystal structure may support all symmetry operations of more than one space

groups. In those cases, the space group, which contain the highest symmetry

operations is considered as the space group that crystal structure.There are 230

space groups. These space groups are ordered so that low symmetry groups

have low group numbers and high symmetry groups have high group numbers.

For example, cubic lattice class contains high symmetry groups. Space groups

belonging to cubic lattice class supports more symmetry operations than any

other space groups belonging to other classes. Accordingly, space groups 195-230

are used for cubic lattice class. On the other hand triclinic lattice class contains

lowest symmetry space groups. The first and the second space groups are used for

this class. Space group 1 contains only one symmetry operation, which contains

an identity rotation matrix and a zero translation vector. Accordingly, every

structure supports every symmetry operations of the first space group.

In order to identify the space group of a crystal structure, it should be tested

to see if it supports every symmetry operation of each space group. If the crystal

structure supports every symmetry operations of a space group, then it supports

the space group. The space group with the highest group number, which crystal

structure support, can be returned as the space group of the crystal structure.
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Checking if a symmetry operation is supported by a crystal structure can be

done by applying that operation on several crystal points, which covers the basis

set. If the symmetry operation is supported, the translated point should be

identical to the original point. There are two available coordinate systems for

this procedure. The first one fractional coordinate system and the second one

is Cartesian coordinate system. For each alternative, appropriate space group

symmetry matrices and vectors should be used. If fractional coordinates are

used, the Cartesian coordinates of each point that are to be tested, should be

converted into the fractional coordinates. Afterwards symmetry operations can

be applied, and the fractional coordinates of the translated point can be obtained.

Then the coordinates of the translated point can be converted into Cartesian

coordinates and checking if an identical atom is obtained can be done. However, if

the Cartesian coordinates are to be used, then all symmetry matrices and vectors

should be modified according to primitive vectors. In this work, the fractional

coordinates are used. Converting a few test points coordinates into fractional

coordinates is easier than modifying whole symmetry matrices and vectors. In

addition, the symmetry matrices and vectors are generally given in fractional

coordinates. Accordingly using fractional coordinates is easier and also more

canonical way.

Testing if a crystal structure supports a symmetry operation might seem like a

quite easy task. However, it has some complications. Firstly, using any primitive

vectors will not work for each space group. For example, consider NaCl structure.

It’s primitive vectors and basis vectors can be written as,

V1 = [a, a, 0]

V2 = [a, 0, a]

V3 = [0, a, a]

B1 = Na, [0, 0, 0]

B2 = Cl, [0.5, 0.5, 0.5]

NaCl’s space group is given as 225 [7]. One of the symmetry operation of group

225, translates a point at (x,y,z) to the point (x,y+0.5,z+0.5). Clearly this sym-

metry operation fails for Na atom at the origin, since there are no Na atoms
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located at (0,0.5,0.5) point. Accordingly, this test show that NaCl structure

does not belong to 225th space group. However, instead of using the primitive

vectors given above, another vector set which define a cubic unit cell can be used.

Then primitive vectors and basis vectors can be written as,

V1 = [2a, 0, 0]

V2 = [0, 2a, 0]

V3 = [0, 0, 2a]

B1 = Na, [0, 0, 0]

B2 = Na, [0.5, 0.5, 0]

B3 = Na, [0.5, 0, 0.5]

B4 = Na, [0, 0.5, 0.5]

B5 = Cl, [0.5, 0, 0]

B6 = Cl, [0, 0.5, 0]

B7 = Cl, [0, 0, 0.5]

B8 = Cl, [0.5, 0.5, 0.5]

In this configuration, every point in the basis set support given symmetry opera-

tion. This example shows that primitive vector selection is important. In general,

in order to test if the crystal structure belongs to a space group from the cubic

lattice class, a vector set defining a cubic unit cell should be used. Besides, any

vector set which result in some cubic unit cell cannot be used. Primitive vectors

should define the minimal cubic unit cell. For example, consider the vectors

V1 = [4a, 0, 0]

V2 = [0, 4a, 0]

V3 = [0, 0, 4a]

for NaCl structure. This unit cell can be considered as a combination of eight

previously defined unit cells putted together to form a bigger cube. The problem

with this unit cell is that it supports every symmetry operation in 229th space
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group. 229th space group contain 96 symmetry operations. 48 of them have [0 0

0] translation vectors. These 48 operations can also be found in 225th group, so

they are supported by NaCl structure. Other 48 operations of 229th group are,

exactly same set of operations except they have [0.5,0.5,0.5] translation vectors,

instead of [0,0,0] vectors. The problem is, [0.5,0.5,0.5] translations done with

the vectors in multi unit cell is equivalent to the [1,1,1] translation done with

the vectors which define minimal cubic unit cell. Accordingly, these 48 symmetry

operations are trivially supported with the vectors defining the multi unit cell.

Then, space group is found as 229 since it has higher group number. So, in

order to test a cubic lattice class, a vector set that defines minimal cubic unit

cell should be used. Similarly, in order to test other lattice classes, vector sets

defining minimal unit cells of those classes should be used. There are seven

lattice classes [2, 9, 18, 4]. Accordingly, seven different sets of vectors should be

derived and used. In order to derive such vector sets, primitive vectors should

be used. Each integer combination of primitive vectors defines a valid vector.

Three orthogonal vectors define a valid unit cell. Accordingly, several choices of

integer combinations of primitive vectors are used to define a set of valid vectors.

Afterwards each combination of three vectors from the set of derived valid vectors

is checked in order to see if these vectors define a unit cell belonging to one of

these seven classes. If the answer is yes, this unit cell is recorded and these vectors

are used in space groups tests belonging to this lattice class. In order to improve

performance and guarantee to obtain the minimal unit cell, vector triplets that

are to be checked are sorted before performing the checks. The algorithm is

designed so that, the vector triplets with smaller vectors, are tested before the

vector triplets with larger vectors. Accordingly, the minimal unit cells belonging

to each lattice class are obtained before other unit cells belonging to same class.

Therefore, once a unit cell is found for a class, other unit cells belonging to same

class are discarded. The procedures used to identify the space group number are

given in Algorithm 7 and 8.

Valid vectors are generated as integer combinations of primitive vectors. It is

clear that infinitely many vectors can be generated by this approach. To limit

the number of valid vectors to a reasonable number, only vectors generated by
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ValidVects=NULL;
for i=-

√
K to

√
K do

for j=i to
√

K do
for k=j to

√
K do

if i2 + j2 + k2 < K then
ValidVects+=i× V1 + j × V2 + k × V3;

Sort(ValidVects);
return ValidVects;

Algorithm 7: The algorithm for deriving valid vectors

using the integers i,j and k which satisfy inequality i2 + j2 + k2 < K where K

is a predefined constant, as coefficients to primitive vectors are accepted as valid

vectors. After valid vectors are defined, set of valid vectors are sorted according

to their lengths. Accordingly, smaller vectors comes earlier.

The procedure starts with deriving the set of valid vectors. Then an integer

array containing the index numbers of three vectors that will define a vector

triplet is generated. Afterwards this array is sorted, so that vector triplets with

small vector indices, thus small vector lengths, comes earlier in the list. Then

according to this list, every vector triplet is checked to see if it defines a unit cell,

belonging to one of seven lattice classes. If a vector triplet matches to a class,

which no previous match has been found, then it is recorded.

In theory, for any lattice class, a unit cell can be generated from any primitive

vector set. However, such unit cells are generally quite big unit cells. It is quite

unlikely that crystal structure belongs to a space group of such classes with quite

big unit cells. In this work, if a relatively small unit cell cannot be generated for

a lattice class, then no space group belonging to this class are tested. Defining

relatively small unit cell is done by limiting the integer multipliers of primitive

vectors to derive the valid vectors. By this way, the number of valid vectors is

also limited to a reasonable number, thus processing time is not effected badly.

After determining vector sets for each class, the test points should be gathered.

In principle, set of test points should cover at least one identical point to each
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ValidVects=DeriveValidVects();
PVCNT=0;
for i=0 to ValidVects.Count-1 do

for j=i to ValidVects.Count-1 do
for k=j to ValidVects.Count-1 do

PVCoefficients[PVCNT][0]=i;
PVCoefficients[PVCNT][1]=j;
PVCoefficients[PVCNT][2]=k;
PVCNT++;

Sort(PVCoefficients);
for i=1 to 7 do Classes[i]=NULL;
for i=0 to PVCNT do

V1=ValidVects[PVCoefficients[PVCNT][0]];
V2=ValidVects[PVCoefficients[PVCNT][1]];
V3=ValidVects[PVCoefficients[PVCNT][2]];
if V1,V2 and V3 are not orthogonal then continue;
ClsId=ClassOf(V1,V2 and V3);
if Classes[ClsId]!=NULL then

continue;

else
Classes[ClsId]=SetOf(V1,V2,V3);

return Classes;

Algorithm 8: The algorithm for deriving unit cells of lattice classes

point in the basis set. However, using all atoms within some volume, which can

contain a unit cell, will also work. In this work, a cubic volume around the

origin, which is big enough to cover any possible unit cell, is determined and all

atoms lying in this volume are used as test points. The rest of the procedure is

simply testing every symmetry operation of space groups with every test points.

Space groups are tested starting from the space group with highest group number.

When crystal structure supports all symmetry operations of a space group, this

space group is returned. The algorithm for identifying the space group is given

in Algorithm 9.

The algorithm for identifying the space group starts with loading the space

group data. Space group data consist of a small information and symmetry

operations of each space group. Then primitive vectors defining unit cells of each
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SpaceGroups=loadSpaceGroupData();
Classes=derivePVofClasses();
volume=determineBoundaries();
TestPoints=returnAllAtoms(volume);
for i=230 to 1 do

S=SpaceGroups[i];
UC=Classes[ClassOf(S)];
if UC==NULL then continue;
isSupported=1;
foreach Symmetry operation M,V of S do

foreach Point P in TestPoints do
C=getFractionalCoordinatesOf(P,UC);
Q=M×C+V;
C=getCartesianCoordinatesOf(Q,UC);
if There is no atom of type P at C then

isSupported=0;
break;

if !isSupported then
break;

if IsSupported then
return S;

Algorithm 9: The algorithm for identifying the space group

lattice class are generated as explained in the algorithm for deriving unit cells of

lattice classes. After that, the volume containing the test points is defined. After

the volume is determined, all atoms within the volume are used as test points.

Then for each space group starting from the one with the highest group num-

ber, test is performed. In order to perform the test, appropriate unit cell pa-

rameters for currently tested space group are determined. Afterwards for each

symmetry operation, every test point is tested. Testing a point is simply done by

applying the operation on the test point and checking if an atom with the same

type exists in the coordinates of the translated point. Whenever all symmetry

operations of a space group are supported by all test points, this space group is

returned as the space group that crystal structure belongs.
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3.2 Data Structures and Indexing

Data structures and indexing methods are quite important to solve this problem

efficiently. Input data is queried several times throughout the analysis. Accord-

ingly, efficiency of data structure effects both complexity and runtime perfor-

mance significantly.

In the grouping algorithm, matching volumes of each atom is compared with

matching volumes of previously found groups. Accordingly matching volumes

of each atom should be found. Vector algorithms and the clustering algorithm

do not use input data. The algorithm for finding basis vectors require finding all

atoms lying inside the paralleloid defined by primitive vectors and the origin. The

algorithm for identifying the space group performs several point search queries.

Accordingly, data structure should answer queries that ask all atoms lying inside a

sphere or a paralleloid and queries searching the atom at a given point. Basically,

matching volume of an atom should contain all atoms that are closer than some

certain distance to query atom. This definition defines a sphere whose origin is

the center of the query atom. Fortunately, for the grouping algorithm, a volume,

which contain defined spherical boundary, will also work. Using a bigger matching

volume will reduce the performance, since there will be more data to compare.

However, using cubic matching volumes instead of spherical ones become possible.

There are many efficient data structures that can answer rectangular boundary

search queries. However, the data structures that can answer spherical queries

are not that efficient. Some methods that answer spherical queries use the data

structures that answer rectangular range queries to index and query the data.

While querying the data they query the bounding cube of the query volume and

filters out undesired points afterwards. Some other methods use complex indexing

techniques, which reduce the asymptotic complexity, but due to the complexity

of the data structure, runtime performance will not be as improved. In addition,

those methods will not be compatible with the queries required in the algorithm

for finding basis vectors.

Querying random paralleloid volumes is not an easy task. However, for the

analysis performed in this work, it has low importance. Since the basis vectors
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are calculated once for each primitive vector set alternatives selected by the user,

random paralleloid queries will be called a few times. Accordingly, using rec-

tangular boundaries of bounding volume of this paralleloid will work sufficiently.

Considering for most of the crystal structures angles between primitive vectors

are in between 60 and 120 degrees, bounding volume will not be much bigger

than the volume of the paralleloid. Accordingly using rectangular query volumes

will be efficient enough.

To store and index input data there are several data structure alternatives.

In this work, octree structure is used. In this work, the crystal structure given

in the input data is assumed to be in cubic shape. Accordingly indexing the

volume with the octree structure will be efficient. Since the crystal structures

are homogeneous, the number of atoms per volume will not differ significantly

at different parts of crystal. Therefore, the octree structure will be balanced by

nature. Accordingly, the octree structure is quite suitable for indexing the input

data.

Octree is a tree structure with eight children. Each node of the octree structure

is associated with some cubic volume. Each child of an octree node is associated

with one eight of its parents volume, formed by halving parents volume at each

axis. Internal octree nodes contain child pointers. They do not contain actual

records. Actual records are stored in leaf nodes. The number of records stored in

a leaf node depends on the implementation. In this work, leaf nodes store only

one record. The reason for that decision is, range queries that will be used in

this work, will query relatively small volumes and several point searches will be

done. If leaf nodes store more records, then since linear scan of each leaf node

that intersect with the query volume would be required, lots of linear scans would

be necessary compared to actual output size. Particularly, in the algorithm for

identifying space group, lots of point searches will be required. Accordingly, one

record per node approach will give better performance.

The octree structure without records is a simple root without any children.

Accordingly, it is a leaf node. Records are iteratively inserted into the structure.

If a record is inserted into an internal node, the corresponding child is found



CHAPTER 3. FRAMEWORK FOR PATTERN INFORMATION EXTRACTION33

and the insertion is recursively redirected to this child. If a record is inserted

into an empty leaf node, it simply becomes that leaf node’s data. If the leaf

node is full, then it becomes an internal node and empty children leaf nodes are

allocated. Then the data that this leaf node was carrying and the record that is

to be inserted can be inserted on this internal node. Data insertion procedure for

octree structures is given in Algorithm 10.

Insert(P,N)
if N is Leaf then

if N is not empty then
OldData=N.Data;
ConvertIntoInternalNode(N);
Insert(OldData,N);
Insert(P,N);

else
N.Data=P;

else
foreach Child C of N do

if P lies in volume of C then
Insert(P,C);
break;

Algorithm 10: The algorithm for insertion into the octree structure

Converting a leaf node into an internal node can be done in several ways. The

first way is reallocating the node so that it can be big enough to be an internal

node. After that children leaf nodes are allocated. Another way is allocating a

new internal node without allocating the first child. Then setting the leaf node to

convert, as the first child and replacing the positions of newly allocated internal

node and the old leaf node. This alternative will have the same effect with the

first alternative with fewer allocations. The third way is defining node structure

big enough to be an internal node or a leaf node. Thus, whenever a convertion is

required, just allocating children nodes and setting required parameters would be

sufficient. There can be several other alternatives but the differences will not be

so major. In this work, the third approach is used because of its simplicity. The

conversion procedure of a leaf node into an internal node is given in Algorithm
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11.

ConvertIntoInternalNode(N)
N.Data=NULL;
for i=0 to i<8 do

C=Allocate Childi;
C.Data=NULL;
C.Children=NULL;
if i%2==0 then

C.xmin=N.xmin;
C.xmax=(N.xmax+N.xmin)/2;

else
C.xmax=N.xmax;
C.xmin=(N.xmax+N.xmin)/2;

if i%4<2 then
C.ymin=N.ymin;
C.ymax=(N.ymax+N.ymin)/2;

else
C.ymax=N.ymax;
C.ymin=(N.ymax+N.ymin)/2;

if i%8<4 then
C.zmin=N.zmin;
C.zmax=(N.zmax+N.zmin)/2;

else
C.zmax=N.zmax;
C.zmin=(N.zmax+N.zmin)/2;

Algorithm 11: The algorithm for converting a leaf node into an internal node in
the octree structure

Allocating a node large enough to be a leaf node or an internal node, is not the

best approach in terms of the runtime performance of octree creation procedure or

the space requirement. However, better approaches will not improve the time and

space requirements significantly and they introduce undesired code complexity.

Mainly, the critical part of the data structures performance is the query times.

Octree initialization and data insertion parts can be done quite fast and their

performances are mostly limited by IO operations. In terms of the query times,

all insertion methods are identical. Because, all operations used in the queries,

are in-memory operations. Accordingly, the search technique just follows the
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links. As long as the octree structure is preserved, query times will be identical.

When a query is executed, the pointers in the records are set, so that the output

of the query will form a linked list. Accordingly, while returning a query result,

only a pointer to that linked list is returned. Since while answering a query no

output is copied, the performance improves.

Range search queries can be efficiently answered by the octree structure. The

search procedure finds all the points that lie inside the query boundary. Then it

forms a linked list from these points and returns this linked list. The procedure

that performs range search queries on the octree structure is given in Algorithm

12.

NodeSearch(Boundary,Node,LinkedListTail)
Result=NULL;
if Node is Leaf then

if Node.Data==NULL then Return LinkedListTail;
if Node.Data is in Boundary then

Node.Data.Next=NULL;
LinkedListTail.Next=Node.Data;
Return Node.Data;

else
Return LinkedListTail;

else
Result=LinkedListTail;
foreach Child C of Node do

if Volume of C intersects with Boundary then
Result=Search(Boundary,C,Result);

Return Result;

RangeSearch(Boundary)
Head=new Atom;
Head.Next=NULL;
Search(Boundary,Root,Head);
Return Head.Next;

Algorithm 12: The boundary search algorithm performed in the octree structure

The end of the linked list is given to each recursive function. If this function
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finds some records that satisfies the query boundary, it appends these records to

the end of the linked list obtained from the caller and returns the new end of the

linked list. The range search algorithm performed on the octree structure runs

the node search procedure, which recursively searches the structure.

There are other data structures used in this framework. In the grouping

algorithm, created groups are stored in the arrays. Arrays are sufficient since

they support efficient sorting algorithms such as quick sort and they allow linear

scan of the records. Similarly, extracted vectors, found primitive vector sets,

created clusters are all stored in arrays. Since only sorting and sequential scans

are required on these data, using arrays is a quite efficient way. However, atom

records should be stored differently. As explained earlier atom data’s are stored

in octree structure. However, it is also required to obtain all atoms belonging to

some group, or some cluster. In order to be able to obtain such atoms efficiently,

free next pointers are added to the atom record. One pointer is used to link

atoms in the same group, one pointer is used for atoms in the same cluster and

one pointer is used in linking octree query output. Accordingly, all atoms in a

cluster or in a group connected with a linked list structure. A forth next pointer

is also required to link all atoms which are in the process volume. Four pointers

per atom record increases space requirement significantly, but it still is in the

reasonable limits. However, an improvement is possible. At any time during

the pattern extraction process, at most three pointers are actively used at the

same time. Accordingly storing three pointers and sharing these three pointers,

is possible. This approach also does not require any pointer swap operations.

While the clustering algorithm is running no range search queries are required.

After the clustering algorithm completed and the origin candidates are shown to

user, there is no need to store cluster information. Accordingly the clustering

algorithm can use the pointer that is used in the range search queries, without a

problem.

Another data structure used in algorithms, is used to index matching vol-

umes of groups during the grouping algorithm. For each matching volume, a

distinct octree structure is created. In order to, not disturbing the main octree

structure used in the range search queries, the records of such matching volumes
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are duplicated. Accordingly, for each group there will be an independent octree

structure of their matching volumes. The linked list structure returned from the

range search is used as the atom’s matching volume. It is not indexed since this

operation requires duplication of records, which is quite costly. Since the number

of groups is much smaller than the number of atoms, such approach minimizes

the total complexity, while avoiding too much overhead.

3.3 Error Handling

Error handling is a quite important issue in this problem. Due to the sensitivities

of the devices or the imperfections in crystal structures, input data can contain

errors. Generally, scientists are able to generate ideal input data. However, due

to several reasons they might not be able to generate ideal data. Also for some

cases, scientists may prefer to introduce some errors in order to give some flexi-

bility to the input. For example, the atomic radiuses cannot be known for certain

[2]. An atoms radius changes small amounts in different materials. For example,

Cl− ion’s radius is not the same in the NaCl structure and in the KCl structure.

Accordingly, several estimations are done in order to be able to give some approx-

imate radius values of atoms. There are several measurement standards and thus

several atom-radius tables, such as CPK’s, ionic, covalent and Van-Der-Walls ra-

diuses [5], S&P [16] and VFI radiuses [1], etc. Generally, scientists can obtain

approximate radius values from the appropriate table. However, obtained values

will have a small error margin. Accordingly, scientists may prefer to introduce

some errors to input data, in order to cover atomic radius errors. These errors

are mostly small position differences of atoms.

For some cases, another type of error, missing atoms, can be introduced.

Missing atoms can be described as, the absence of an atom in a certain place

in the crystal structure where it should exist in the perfect crystal [18]. These

imperfections are seen quite frequently in the crystal structures, which are formed

quite rapidly. Scientists might wonder if a crystal structure is in some certain

form they expected and contain many imperfections, or it has another form.
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For those cases, the analysis proposed in this work help scientists to reveal the

actual pattern in the crystal data, thus reveal crystals form. Users can introduce

this kind of errors to the input data for this kind of analysis. All these errors,

causes the algorithms proposed in this framework to fail, if errors are not handled

differently.

The most common errors are small atomic coordinate errors in the input data.

Since the measurement devices have limited sensitivity and atomic radiuses can-

not be known for certain, these types of errors can be seen quite often. It is logical

to expect some small coordinate error in every coordinate values. The parameter,

EPS, is used for this purpose. EPS represents the amount of maximum coordi-

nate errors in each axis that can be seen in the input data. In other words, if an

atoms coordinates are given as [x,y,z] in the input data, then actual coordinates

can be; [x± EPS,y± EPS,z± EPS]. The value of EPS parameter depends on the

introduced error range on atomic coordinates. Ideally, EPS should be 0. On the

other hand, a value that is significantly smaller than the radius of the smallest

atom in the input data, will also work accurately. Setting EPS parameter to

high values may reduce the accuracy. It is recommended to set EPS to the max-

imum value of error margin in the atomic coordinates. It is also recommended to

use better data if the coordinate errors are higher than %20 of the radius of the

smallest atom.

Second type of error is the missing atoms in the crystal structure. Although

this type of errors effect many algorithms discussed previously, they mostly affect

the grouping algorithm. The following parts explain how the errors are handled

for each algorithm.

1. The Grouping Algorithm: The grouping algorithm is the algorithm that

is affected most from the errors. The grouping algorithm groups identical

atoms together by comparing matching volumes of the atoms. Any error

in the input data will cause two atoms that should belong to same group

seeing crystal structure differently, thus not being identical. Accordingly the

algorithm should be modified so that it will consider two matching volumes

identical if the differences between these matching volumes can be caused
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by errors. In the original algorithm, comparing two matching volumes is

done by linear scans of two lists, which contain sorted relative coordinates

of atoms lying in each matching volumes. Since the relative coordinates

are assumed to be perfectly accurate in the original algorithm, two lists

of matching volume’s should be identical in terms of points in the lists

and the order of these points, in order to being matched. However, since

atom coordinates can contain errors, this method will not work. An atoms

coordinates are given with an error margin ±EPS at each axis. Accordingly,

relative coordinates of two atoms will be obtained with an error margin

of ±2EPS. This error margin can easily change the order in the sorted

matching volume list. So comparing two sorted lists with linear scans will

not work. The naive way two compare two matching volume’s would be,

trying to find a corresponding point for every point in one of the matching

volumes in the another matching volume. However, this quadratic time

approach can be improved easily. For this purpose, indexes on the matching

volumes are used.

The most important type of error for the grouping algorithm is missing

atoms. Missing atoms in the crystal structures affects the grouping al-

gorithm deeply. Since matching volume of an atom is a significantly big

volume which contain several atoms, any atom is also placed in several

other atoms matching volumes’. Accordingly, if any atom is missing, no

atom which includes this missing atom in its matching volume will be able

to match with its actual group. Accordingly, even a few number of miss-

ing atoms will cause the grouping algorithm to fail if no modifications are

done. Another parameter is used to handle this type of errors. This para-

meter show how many atom mismatches are allowed while comparing two

matching volumes. In other words, if an atom is missing, it will also be

missing in some atoms matching volume. So while trying to find this atoms

group, it will cause mismatches between this atoms matching volume and

the groups matching volume, which this atom should belong to. So this

parameter shows how many such mismatches are allowed to still consider

compared matching volumes identical. In general, in the crystal structures,

probability of an atom’s being missing is very low. However, since there



CHAPTER 3. FRAMEWORK FOR PATTERN INFORMATION EXTRACTION40

are many atoms in a crystal, several missing atoms can be seen. Allow-

ing a small number of mismatches, corrects most errors in the grouping

algorithm. Probability of a mismatch occurring in a matching volume is a

relatively small probability. However, occurring more than one mismatches

in the same matching volume is a much smaller probability. So by set-

ting this parameter to some small number, most of the error cases can be

corrected without reducing the accuracy. With small modifications in the

matching procedure and indexing method for the matching volume data, it

is possible to handle most cases that cause errors in the grouping algorithm.

Accordingly, obtaining sufficient information to continue pattern extraction

process will be possible.

The number of groups will be much smaller than the number of atoms

processed in the grouping algorithm. Accordingly, indexing matching vol-

umes of the groups, and trying to find a corresponding point in the group’s

matching volume by using this index for every point in atom’s matching

volume, will be a good choice. Creating and maintaining the index on

each group’s matching volume will be easy and it will not bring too much

overhead, since the number of groups would be low. Appropriate index

structure would be the one that can answer range search queries with small

ranges efficiently. Octree structure is quite suitable for this purpose.

The grouping algorithm, initially tries to find a group for the atom that it is

processing. If it cannot find a corresponding group, this atom defines a new

group. Accordingly in the original algorithm first atoms matching volume

of each group is used as the matching volume of the group. If there were

no errors, this approach works perfectly. However, first atoms matching

volume can contain errors. Accordingly, this approach should be corrected.

Atomic coordinate errors cause small errors in relative coordinates of the

matching volumes. However, errors of this type are not quite important. In

order to say two relative coordinates matches, the difference between their

coordinate values should be smaller than 4EPS at each axis. Otherwise,

it is certain that these relative coordinates do not match. As long as EPS

value is small enough, coordinate errors will not cause any problem. Mainly,

the reason to recommend using input data with error margin smaller than



CHAPTER 3. FRAMEWORK FOR PATTERN INFORMATION EXTRACTION41

%20 of the smallest atoms radius is, preventing such invalid matches. When

an atoms group is found, it is possible to interpolate the groups matching

volume and the atoms matching volume in order to obtain more accurate

relative coordinates. However, it is not possible to reduce 4EPS error mar-

gin even further. Accordingly, this interpolation will not have a significant

effect. Instead, it brings lots of computational overhead. Thus, the interpo-

lation of the matching volumes is not used in this work. Important problem

comes from the missing atoms. If the matching volume of the first atom

contains a missing atom, than this will cause a mismatch with any atom’s

matching volume. Allowing a small number of mismatches corrects most

cases, but if the atom’s matching volume also contains missing atoms, then

this atom may not match to such group even though it should. A small

modification corrects this problem. While testing if an atom matches with

a group, if for a point P in the atom’s matching volume, no corresponding

point in the groups matching volume could be found, but atom matches

to this group anyway, then P is inserted into the groups matching volume.

Since atom’s matching volume cannot contain extra atoms which should not

exist, groups matching volume should have a missing atom corresponding

to P . By inserting P , this missing can be fulfilled.

Such modifications cover most of the cases that cause errors in the grouping

algorithm. But still there can be errors. These errors cause some atoms

not matching to the groups that they should match. Accordingly, these

errors cause creation of unwanted groups. Since those error cases are rare,

such unwanted groups contain a small number of atoms. Accordingly, by

simply filtering out such groups, only desired ones can be obtained. For

this purpose, a parameter, which defines the minimum number of atoms in

the group, is used. If the number of atoms belonging to a group is smaller

than this value, then this group is eliminated. In principle, the value of

this parameter should be determined according to the input size and the

expected number of groups to be created. For example, in NaCl structure,

there should be two groups. Actual groups contain about half of the atoms

given in the input data. A reasonable input contains thousands of atoms.

Unwanted groups mostly contain a few atoms. Therefore, using a value
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about 20 should be ideal. However, if the input quality is poor, or the

input crystal structure is not complete, there will be many groups with

respectively high number of atoms. For those cases increasing the value of

this parameter might work. The modified version of the grouping algorithm

is given in Algorithm 13.

GroupList=NULL;
foreach Atom A in ProcessVolume do

MV=CalculateMatchingVolume(A);
foreach Group G in GroupList do

MismatchCount=0;
NoMatchedAtoms=NULL;
foreach Atom B in MV do

Boundary=B.Coordinates±4× EPS ;
R=RangeSearch(G.MatchingVolume,Boundary);
if R==NULL then

MismatchCount++;
NoMatchedAtoms+=B;

if MismatchCount > AllowedMatchCountDifference then
break;

if A.MatchingVolume matches G.MatchingVolume then
G.Insert(A);
foreach Atom B in NoMatchedAtoms do

G.MatchingVolume.Insert(B);

break;

if A not matches to any group then
G=new Group();
GMV=Duplicate(MV);
G.MatchingVolume=Index(GMV);
G.Insert(A);

Algorithm 13: The algorithm for grouping identical atoms with the error handling
mechanism

2. Vector Operations: Vector operations do not affected from errors as

much as the grouping algorithm. No major modifications will be required

to handle erroneous cases. Only changes should be done to handle possible

differences that could be seen on vectors’ values due to coordinate errors.

Basically, a vector represents the relative coordinate differences between
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two identical atoms. Accordingly a vectors coordinates will have an error

margin of ±2EPS. This margin should be considered in the algorithm for

filtering out redundant vectors and the algorithm for calculating primitive

vectors. Just considering these error margins will be sufficient to handle

error cases in vector operations. However, some improvements are possible.

In the vector extraction phase, several vectors are extracted. Most of these

extracted vectors are duplicates. Consider CsCl structure shown in Figure

2.1. In this structure, every Cl atoms are identical. Accordingly the relative

coordinate differences between any two Cl atoms will be a vector. Consider

we put crystal structure in our coordinate system, where Cs atoms are

placed on the positions (x,y,z) where absolute values of x,y and z are all

even, and Cl atoms are placed on the positions (x’,y’,z’) where absolute

values of x′,y′ and z′ are all odd. In this coordinate system, any two atoms

A and B with the coordinates (x,y,z) and (x+i,y+j,z+k) where i,j and k are

all even, are identical and produces identical vectors. It is obvious that there

will be lots of atom couples for any i,j and k values. If no errors existed, all

these identical vectors would be equal. But since there is an error margin,

two vectors that should be identical can differ as much as 4EPS at each axis.

Taking the average values of the identical vectors will reduce the expected

value of errors in extracted vectors. Obtained average vector values will

still have an error margin of ±2EPS. It is not possible to reduce this value,

since it is assumed that the error value is a random parameter. However,

by taking averages, expected error value will be reduced significantly.

The missing atoms may cause some vectors, not being extracted. This is an

unlikely case since each vector is duplicated many times. Only big vectors

are not duplicated that frequently, but those vectors are not quite useful

too. Accordingly, missing atoms will not cause a significant problem. On

the other hand, an improvement is also possible. In the original algorithm,

only most crowded group is used to extract vectors. Since there were no

missing atoms or no coordinate errors, this approach works perfectly. How-

ever, extracting vectors from all groups will improve the accuracy for the

cases where error is present. With this approach, most of the missing atom

problems are corrected. Besides, more importantly, since more atom pairs
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would produce the same vector, expected error range on each vector’s co-

ordinates will be reduced.

Small modifications are required to handle error cases in the algorithm for

extracting vectors. For each extracted vector, a count parameter is also

stored. This parameter show how many times this vector was extracted

before. It is used to take averages. Another modification is using every

group instead of only one as in the original algorithm. The algorithm for

extracting vectors in the presence of errors is presented in Algorithm 14.

VLIST=NULL;
foreach Group G do

for i=0 to G.Count-2 do
for j=i+1 to G.Count-1 do

V = G.Atom[i] - G.Atom[j];
if V .Length ≥ C then continue;
foreach Vector Y in VLIST do

if V and Y are closer than 4EPS at each axis then
Y .Coordinates=Y.Count×Y.Coordinates+V.Coordinates

Y.Count+1
;

Y .Count++;
break;

if V didn’t matched to any previous Vector then
V .Count=1;
VLIST+=V ;

return VLIST;

Algorithm 14: The algorithm for extracting vectors with error handling mecha-
nism

Filtering out redundant vectors phase is quite similar to original one. Only

difference is while deciding if a vector is integer multiple of other one, the

differences that can be caused by errors are taken into consideration. Since

the error ranges are known, testing if a vector is an integer multiple of

another vector is a quite easy task. Accordingly, a small modification to

handle this test is sufficient.

While calculating primitive vectors, procedure is a bit more complicated

than filtering out redundant vectors phase. As explained earlier aim of this
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procedure is testing primitive vector candidates consisting of three vectors,

in order to see if they can produce all other vectors as their integer combi-

nations. This operation is done by trying to find the integer values of i,j

and k for the equation V = i × V1 + j × V2 + k × V3. Since each vector

will have an error margin of ±2EPS, finding integer solutions might not

be possible. However, since error margins will be much smaller than the

sizes of the vectors, i,j and k values should be close to integer values if the

primitive vector candidates can produce V . Accordingly, it is possible to

solve this equation and eliminate primitive vector candidates which results

i,j and k values which are not close enough to integer values. This elimina-

tion can eliminate most of the primitive vector set alternatives that should

be eliminated. Afterwards another test is used to make the final decision.

The equation given above can be rewritten as,

V ± 2EPS = i× (V1 ± 2EPS) + j × (V2 ± 2EPS) + k × (V3 ± 2EPS)

Accordingly, it can be written as

V ± (2× EPS × (i + j + k + 1)) = i× V1 + j × V2 + k × V3

Since the calculated i,j and k values cannot be too distant to their actual

integer values, converting these values to the closest integer values is logical.

Then these integer i,j and k values and the vector parameters can be used

to test if the given equation holds. If the answer is yes, it is concluded that

V1,V2 and V3 can produce V as their integer combination. These modifica-

tions will be sufficient to handle errors in the calculating primitive vectors

phase.

3. The Clustering Algorithm: The clustering algorithm does not affected

from errors significantly. Only difference is, considering an atom could be

found within some range rather than on a single point. This difference is

handled similar to previous algorithms. Other than this difference, cluster-

ing works perfectly in erroneous cases.

4. The Algorithm for Finding Basis Vectors: Finding the basis vectors

phase require major modification to handle erroneous cases. Given proce-

dure for ideal input data cannot handle error cases. Basic assumption made
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in the original algorithm was all basis vectors should be placed inside the

unit cell paralleloid defined by the primitive vectors. However, since atomic

coordinates can contain errors, a point that should be inside the paralleloid

can be placed outside and a point that should be outside of the paralleloid

can be placed inside. This is a quite common situation, since generally the

origin and the primitive vectors are selected in a way to place the atoms

at the corners, edges or faces of the unit cells. For example, for the CsCl

structure shown in Figure 2.1, Cl’s coordinates are selected as origin. Ac-

cordingly a Cl atom is placed at each corner of the unit cell paralleloid.

Only the one placed at the origin should be in basis list. With ideal data,

simply returning every atom whose fractional coordinates are in [0, 1) range

at each axis, works perfectly. However, this distinction cannot work on the

data containing coordinate errors.

Modifications should base on the fact that, equal number of atoms belong-

ing to each group should be placed in every unit cell. For this purpose, the

clustering algorithm can be used. Basically, the aim of clustering the data

is providing user a candidate basis list. Accordingly, with some modifica-

tions a procedure that will return desired basis vectors can be obtained.

Basic modification is done on the direction vector calculation part. In the

original clustering algorithm, atom-cluster pairs with the smallest distances

are found and used to calculate the direction vector. However, in find-

ing basis vectors algorithm, direction parameters comes from the unit cell

structure. In other words, direction vector should be selected so that every

atom belonging to same cluster should belong to the same unit cell paral-

leloid. Another modification is using the origin of the unit cell as the cluster

center, instead of using average coordinates of the atoms as in the original

clustering algorithm. Rest of the procedure remains the same, except a

few additions. In the original clustering algorithm, after the clusters are

calculated, the atoms belonging to the cluster that is closest to origin, were

returned. However, for finding basis vectors algorithm, this approach may

not work. A cluster contains one atom per each group. On the other hand,

user might use a vector set which is not primitive. For example, in face cen-

tered cubic crystal structure, primitive vectors are V1 = [0, a, a],V2 = [a, 0, a]



CHAPTER 3. FRAMEWORK FOR PATTERN INFORMATION EXTRACTION47

and V3 = [a, a, 0]. And this structure contains one basis atom placed at

origin. But due to geometric simplicity users often prefer the vector set

V1 = [2a, 0, 0],V2 = [0, 2a, 0] and V3 = [0, 0, 2a], with 4 basis atoms. Accord-

ingly, user is allowed to enter such vector triplets manually in order to be

used as primitive vector set. In order to handle such cases, some additions

to original clustering algorithm are required. Firstly, user is expected to en-

ter valid vectors. In other words, each vectors that the user enters should be

some integer combination of the primitive vectors. Moreover, three vectors

that the user enters should be orthogonal in order to define a valid volume.

If the user enters valid vectors, then it is guaranteed that unit cell contains

either the whole cluster or no part of that cluster. In other words, a unit

cell will contain equal number of atoms belonging to each group. Since the

clustering procedure used in the algorithm for finding basis vectors, deter-

mines the shape of each cluster according to the volume defined by given

vectors, a unit cell can be filled completely with clusters and no part of

those clusters left outside. After clusters are derived, for each cluster, av-

erage coordinates of atoms belonging to this cluster are assigned as center

value. Then atoms of every cluster whose center lies inside the unit cell

paralleloid defined by given vectors, are returned. Since if a cluster should

be inside a unit cell, then the average coordinates of the atoms should also

be inside the unit cell. Instead of using average coordinates, previously set

center value or any atoms coordinates could also be used. However, using

the average coordinates is safer in the presence of errors. Because, using an

atoms coordinates can be risky since coordinate errors can put this atom

outside of paralleloid incorrectly. The algorithm for finding basis vectors

with error handling mechanism is given in Algorithm 15.

5. The Algorithm for Identifying the Space Group: Space groups are

defined in order to present symmetry properties of crystal structures. A

small difference in the primitive vectors or basis vectors can change the

symmetry properties, thus space group significantly. For example, NaCl

structure and T lF structures are quite close structures. NaCl has a cubic

unit cell and its space group number is 225. T lF ’s structure can be consid-

ered as slightly distorted NaCl structure. It’s unit cell is not cubic. Axis
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lengths differs a small amount, making unit cell orthorhombic. Accordingly,

it cannot support symmetry operations that cubic unit cells can support,

thus its space group number is 69. Distortions in T lF are as small as a

certain level of noise can cause. Accordingly in the presence of errors, it

is quite easy to confuse NaCl and T lF structures. In general, it can be

said that identifying space group in the presence of error is quite difficult.

Giving wrong results is quite possible. If the error tolerance were set to a

high level, then distorted materials would be treated as higher symmetry

materials. Otherwise, high symmetry materials would be treated as low

symmetry materials. Accordingly it is strongly recommended to use ideal

data, and set the EPS parameter to a quite low value, in order to identify

the space group of a material correctly.

There are a few modifications possible for identifying the space group in

the presence of errors. In the original algorithm, some point searches are

performed, in order to find some certain atoms. However, presence of er-

rors can change the atoms coordinates. Therefore, instead of performing

point searches, range searches with small boundaries determined accord-

ing to error margins should be performed. This modification is simply a

trivial correction to handle coordinate errors. Another modification that

could help is, instead of finding the highest symmetry space group and fin-

ishing the procedure; every space group could be tested. Afterwards all

space groups, which are supported by the crystal structure can be listed

as a possible space group. Then, the user could manually analyze those

alternatives. These two modifications help to identify space group number

in the presence of errors. However, unfortunately, there are no possible so-

lutions, that can help to distinguish structural distortions and distortions

caused by errors. Accordingly identifying the space group procedure cannot

be considered reliable in the presence of errors.
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FindBasisVectors(V ects,Origin)
ClusterList=NULL;
foreach Atom A in most crowded group do

C=new Cluster(A);
C.Center=A.Coordinates;
ClusterList+=C;

P=The paralleloid defined by V ects and starting from Origin;
C=Find the closest cluster to Origin whose center lies inside P;
DV=C.Coordinates-Origin.Coordinates;
foreach Cluster C in ClusterList do

C.Center-=DV;

foreach Unprocessed Group G do
MinDist=∞ ;
MinAtom=NULL ;
MinCluster=NULL ;
foreach Atom A in G do

foreach Cluster C in ClusterList do
if A lies inside paralleloid defined by V ects starting from
C.Center then

D= distance between C and A ;
if D < MinDist then

MinDist=D;
MinAtom=A;
MinCluster=C;

DV=MinAtom.Coordinates-MinCluster.Coordinates;
foreach Cluster C in ClusterList do

if There is an atom A in G at C.Coordinates+DV then
C.Assign(A);

foreach Cluster C in ClusterList do
if C.AtomCount < NumOfProcessedGroups then

Remove(C);

ReturnList=NULL;
foreach Cluster C in ClusterList do

C.Center=Average atom coordinates of C;
if C.Center lies inside P then

ReturnList+=C.AtomList;

return ReturnList;

Algorithm 15: The algorithm for finding basis vectors with error handling mech-
anism



Chapter 4

Implementation

In this chapter, implementation details will be described. In the first section,

programming environment will be introduced. In the second section, data struc-

tures used will be explained. Finally, in the third section, the algorithms will be

discussed. The complexity analysis of the algorithms will also be done in this

section.

4.1 Programming Environment

The name of the tool we implemented is BilKristal. The implementation consist

of three sub-programs, Analyzer,VisualizationTool and UserInterface. Analyzer

program performs the pattern extraction analysis and calculates the unit cell

parameters. VisualizationTool uses unit cell parameters and provides a good vi-

sualization tool to observe the crystal structure. UserInterface program provides

a good user interface to the user. It also handles interactions with the user and

other sub-programs. Main reason to have three different sub-programs instead of

one, is the desire to obtain high performance program with good user interface.

As known well, C language is one of the best languages in terms of performance.

Programs that require performance, are generally written by using C language.

Since the pattern information extraction from the crystal structures is a hard

50
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job, which require lots of computation power, using a high performance language

is essential. For the visualization part, it is not quite essential to use a high

performance language since; usually graphic cards determine the performance of

the visualization phase. Accordingly, the effect of the programming language on

the performance would not be much. Nevertheless, using a high performance

language is preferable. So, Analyzer and VisualizationTool programs are written

in C language. Since these two programs are not logically bounded, they are

written as two separate programs instead of one program. With this approach,

the implementation phase becomes simpler and a little performance improvement

is obtained.

UserInterface program provides interactions with the user. Accordingly, it

requires a good user interface. C++ with .NET platform provides the necessary

environment for developing programs with good user interfaces. C++ .NET

language is a relatively fast language too. Accordingly, UserInterface program is

implemented in C++ .NET language. By separating these programs, instead of

writing one program, the implementation phase become easier and simpler.

In the following sections, these three sub-programs will be explained in more

detail.

4.1.1 Analyzer

Analyzer is the program that executes the pattern extraction algorithms. The

unit cell parameters are found by the Analyzer program. It obtains initial para-

meters, such as the input data path and the analysis constants such as EPS, as

argument list while it is started. It receives other parameters, which are deter-

mined throughout the analysis, such as the origin choice or the primitive vector

selections of the user, via the input. It gives its results by writing on temporary

files. It also writes several commands indicating the results are written or the

program is waiting for the input, the percentage values showing the progress of

the analysis and several other comments, to output. Simply, the Analyzer reads
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the input data, performs the analysis according to the given parameters and out-

puts the results. Analyzer is written in C language by using Microsoft Visual

C++ 6.0 development tool. It is a console application and it is not designed to

be a stand-alone program.

4.1.2 VisualizationTool

VisualizationTool is responsible for visual representation of the crystal structure.

It uses the unit cell parameters as input. It provides several features to visu-

alize the crystal structure more effectively. It is also written in C language by

using Microsoft Visual C++ 6.0 development tool. It also uses OpenGl graphic

libraries to handle the graphics. Glut library is also used as well as the standard

OpenGl libraries in the VisualizationTool program. Similar to Analyzer program,

VisualizationTool is also a console application and does not have a user interface

other than created display window. And, it is not designed to be a stand-alone

program too.

The VisualizationTool program obtains required parameters from a file, which

is created by the UserInterface program. This file contain the unit cell parameters

such as the primitive vectors and the basis vectors as well as atom parameters

such as the color and the radius values of each atom type in the basis set. Initially

a single unit cell is shown. Afterwards according to the users choices, graphics

is altered. The user informs the VisualizationTool program about his choices

by using two different ways. The first one is using the interactions with display

window. This method is implemented by using Gluts event handling mechanisms.

Display window is capable to understand the mouse and the keyboard inputs. The

user can use the mouse to rotate the 3D environment. In order to perform the

rotation, simply dragging the screen is sufficient. The user can also use the arrow

keys, and PageUp, PageDown keys to rotate the screen around three different

axes. The user also can change the camera’s distance to the center point of the

3D environment by using Home and End keys. Accordingly, camera can get closer

or distant to the crystal structure. There are also other keys designed as shortcut

keys, which are programmed to perform several actions.
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VisualizationTool can also interact with user via the UserInterface program.

Users can interact with the user interface that UserInterface program provided.

The UserInterface redirects the users commands to the VisualizationTool pro-

gram via writing into VisualizationTool ’s input. The VisualizationTool program

contains a thread, which checks it’s input continuously for incoming commands.

Accordingly, users interaction with the user interface provided by the UserInter-

face program can be understood.

There are several actions that the user can perform with the VisualizationTool.

Most important ones can be explained as follows;

1. Creating Multi-Cells: The first type of action is the creating multi-cells.

The VisualizationTool basically draws a single unit cell by translating the

coordinate system by some integer combination of the primitive vectors and

drawing each basis atom afterwards. Defining multi-cells is done by deter-

mining the repetition numbers for each primitive vector. These repetition

numbers represent the integer coefficients that are used to determine the

translation vector of the coordinate system. There are two repetition num-

bers for each primitive vector. First number is the minimum value and the

second one is the maximum value of those integer coefficients. In general,

a unit cell is drawn for each integer coefficient combinations, whose integer

coefficients for each primitive vector lies in between those minimum and

maximum values. For example, consider 0 is used as the minimum rep-

etition numbers and 1 is used as the maximum repetition number for all

primitive vectors. Then 8 unit cells are drawn which lies in the unit cell

that primitive vectors, 2V1, 2V2 and 2V3 define. Similarly consider the case

that minimum and maximum repetition values for each vector are V1:0,0 ,

V2:1,3, V3:-1,1. Then 9 unit cells are drawn, which lies in the unit cell that

primitive vectors, V1, 3V2 and 3V3 define and using V2 − V3 point as the

origin.

2. Changing Drawing Options: The user is allowed to change some draw-

ing options. The first option is the draw size. By default, each atom is

drawn with it’s original size. However, generally crystal structures are well
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packed and understanding the crystal structure as it is, can be hard. Scaling

each atoms radius to a smaller value can help the user to understand the

crystal structure. Accordingly, the user is allowed to select a scaling ratio.

The second option is enabling or disabling to show sticks. Sticks are used

to connect touching atoms, when they are scaled to a smaller size and not

touching anymore. Generally, they are quite helpful and desired. However

since the users are not forced to give radius values of atoms in our work, the

stick model might not be accurate. Accordingly showing the sticks might

not be desired. User can enable or disable to show sticks. The third draw

option is enabling or disabling to draw unit cells, complete. By default, for

a single unit cell, only the basis atoms are drawn. However, generally, these

basis atoms do not give information about the unit cell geometry. Consider

the CsCl structure shown in Figure 2.1. It only contain 2 basis atoms, one

Cs and one Cl. Accordingly, these two atoms do not provide a cubic unit

cell geometry. In general, for single unit cells, the desired drawing is the one

given in the Figure 2.1, which is a cube where there are Cl atoms at each

corner and a Cs atom at the center. In this view, some atoms belonging to

the neighbor unit cells are also included into the drawing. This view can be

considered as the set of all atoms, which are placed inside or on any faces

of the unit cell paralleloid that the primitive vectors define. By enabling

or disabling the draw unit cells complete option, user can obtain this view

or only basis atoms. Both views can be desirable for several situations.

Another two drawing options are enabling or disabling to show controls

and primitive vectors on the display window. If the drawing controls is

enabled, list of keyboard shortcuts that can be used on the display window

are shown. Similarly, if drawing the primitive vectors are enabled, they are

drawn on the display window.

3. Enabling or Disabling to Draw Certain Atom Types: There is a

part in the user interface which can be considered as the legend. At this

part, every atom types in the crystal are listed. Colors of those atom types

are also indicated, so that user can identify them. In addition, a checkbox

for each atom type that the user can enable or disable drawing of that

atom type, are also included. Accordingly, user can show or not show some
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certain atom types, thus examine the crystal structures with different views.

4. Defining Cut Planes: Another important feature that the Visualization-

Tool provides is defining cut planes. A cut plane can be described as a

plane where crystal structure is divided into two parts. It is defined by

three numeric values and a cut operation. These three numeric values are

given in the crystal indexing system [9] and they define the plane. The

crystal indexing system considers primitive vectors as its three main axes.

In order to define a plane in the crystal indexing system, values where this

plane intersects with each of these main axes should be calculated. In-

verses of those values according to multiplication, defines this plane. For

example, consider primitive vectors, V1,V2 and V3 are assumed to be main

axes. And let plane P intersects each main axes at (iV1, 0, 0),(0, jV2, 0) and

(0, 0, kV3) points respectively. Then (1
i
, 1

j
, 1

k
) are the values that define the

plane P in the crystal indexing system. Cut operations are simple compar-

ison operators such as >,<,≥,≤,=. Any atom, which does not satisfy a cut

operation, will not be drawn. In order to define cut planes, the crystal in-

dexing system is used because it is the common indexing system for planes

in crystallography. The user is allowed to define as many cut planes as he

desires. Accordingly, he can shape the crystal structure into any convex

polyhedral shape he desires.

5. Dumping Atomic Coordinates: Dumping the atomic coordinates into a

file is another important action that the user can perform. After performing

several operations, users might want to obtain the list of atomic coordinates.

User might want to use those coordinate values as input to other utilities.

Accordingly, user is allowed to dump atomic coordinates of all atoms that

are currently shown on the screen, into a file. User can select to dump

fractional coordinates or Cartesian coordinates.

6. Animations: User can use the animation options to see the crystal struc-

ture in three dimensional way. In order to have the sense of depth from

a scene on the computer screen, several methods are available. Some of

these methods require special hardware, such as 3D glasses. However, with
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motion, 3D view can be obtained much easier. In this work, small anima-

tions are used to provide the motion that is required to obtain the 3D view.

Animations used in VisualizationTool are simple combinations of rotations

around three main axis. Since the aim of the animation is helping the user

to observe the crystal structure in a 3D environment, different types of an-

imations might be distracting, thus they weren’t used in this work. The

user can select animation style and speed. 5 different animation styles are

defined. These styles are the rotations around three axes, rotations around

a user defined vectos and a random combination of rotations around main

axis. In general, even though the animation property is quite simple, it

works quite efficiently. The user can observe the crystal structure quite

efficiently with the help of the animation property.

Figure 4.1: The crystal visualization tool screenshot
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In Figure 4.1, a screenshot of the VisualizationTool program can be seen. The

toolbox at the left belong to the UserInterface program and display window at

the right belongs to the VisualizationTool program.

4.1.3 UserInterface

UserInterface is the main program that the user interacts with. It provides a user

interface for the Analyzer and the VisualizationTool programs. It is written in

C++ .NET language by using Microsoft Visual Studio .NET 2003 development

tool. It handles the interactions with the user. It receives input data and analysis

parameters from uthe ser and it runs the Analyzer program accordingly. In

order to execute the Analyzer program it uses the Processing libraries of .NET

environment. The Analyzer program’s console window is not shown to user. The

input and the output of the Analyzer program are redirected to the UserInterface

program, thus interactions between those two programs are done via these IO

streams. The Analyzer program uses it’s output to inform UserInterface about

it’s current state of the analysis. For example, the Analyzer program informs

the UserInterface about which algorithm is finished, the completed percentage

of the current algorithm, etc. Temporary files are also used to exchange mass

amount of data, such as the list of possible primitive vectors. The UserInterface

shows the primitive vector alternatives, the origin alternatives and the results to

the user according to the data that the Analyzer provided. Similarly it transmits

the user’s choice of primitive vector alternatives, origin, etc. to the Analyzer

program. The UserInterface program also informs the user about the progress of

algorithms.

After the Analyzer program finishes, results are shown to user. The user

can see the unit cell structure extracted from the input data by selecting the

visualize option. Then the UserInterface program runs the VisualizationTool

program with the corresponding parameters. The UserInterface program also

provides a user interface that allow the user to change some visual properties of

the unit cell structure, to combine several unit cells, etc. Interactions between

the UserInterface and the VisualizationTool programs are done in a similar way
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to the UserInterfaces interaction with the Analyzer. However, in this case users

can also interact with the VisualizationTool program directly.

The UserInterface program also provides an interface to run the Visualization-

Tool program according to the unit cell parameters that user provided directly.

Accordingly, the BilKristal tool can also be used as a crystallographic visualiza-

tion tool.

4.2 Data Structures

Several data structures are used in this implementation. Most of these data

structures, are used in the Analyzer program. In the UserInterface program,

some of the data structures that are used in the Analyzer program are also used.

In the VisualizationTool program, mainly three different data structures are used.

In Appendix A, these data structures can be seen.

Most important data structures that are used in the Analyzer program can

be listed as follows.

• Point structure: The basic data structure used in this framework is the

point structure. It represents an atoms coordinates given in the input data.

It also contains information representing the atom type.

• Octree node structure: The second data structure used in Analyzer pro-

gram is the octreeNode structure. This structure is used to index atomic

coordinates in octree structure. It contain fields showing the volume as-

signed to this node, pointers to children nodes, pointer to data record, etc.

• Group structure:Another data structure used in the algorithms is the

group structure. It is used by the algorithm for grouping identical atoms.

It contains fields representing the atom type of this group and matching

volume of this group. It also stores linked list pointers connecting every

atom belonging to this group.
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• Vector structure: The vector structure represents the vectors. These

structures are created in the algorithm for extracting the vectors and they

are used throughout the vector operations. This structure contain three

fields that represent the vectors lengths at each axis.

• Primitive vector structure: The primitiveVector represents a primitive

vector set. It is mainly used in the vector operations. It contain three

vector structures representing three vectors of the primitive vector set. It

also contain several other fields representing some unit cell parameters that

this primitiveVector structure define.

Since three vector structures stored in the primitiveVector are sufficient to

define the unit cell perfectly, other fields of the primitiveVector structure are

redundant. However, since sorting primitive vector structures is required,

those redundant data are included to the data structure. Many valid primi-

tive vector alternatives will be calculated during the analysis. Sorting these

alternatives and finding the most user friendly one would be an important

task. Sorting the primitive vectors require using those redundant values.

Accordingly, instead of calculating those values several times during the

sorting procedure, calculating them once and spending some extra memory

space is preferred in this work.

• Cluster structure: The cluster structure is used to represent clusters.

This structure contains fields representing the center of the cluster. The

structure also stores a linked list connecting every point belonging to this

cluster.

• Basis point structure: The basisPoint structure represents a basis vector.

This structure contains a point structure that stores the coordinates of the

basis vector. This structure also store fractional coordinates of the basis

vector.

• Space group structure: The spaceGroup structure contains information

about a space group. The structure contains some inforation about the

space group, such as the group number an a description. The structure also

stores data representing symmetry operations of the space group.
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The UserInterface program also uses several data structures. However, most

of these data structures are identical with the ones used in the Analyzer program.

Since these two programs interact with each other, they should agree on the data

structures that are to be exchanged. Other than those duplicate data structures,

the UserInterface program uses simple data structures such as, linked lists and

arrays.

The VisualizationTool uses three important data structures. These data struc-

tures can be listed as follows.

• Point structure: The point structure is quite similar to the point structure

used in the Analyzer program. It represents an atom that is to be drawn.

Accordingly, this structure contains coordinate values of the atom. This

structure also stores other parameters representing the atom type such as

the color or the radius of the atom.

• Stick structure: The stick structure represents the sticks that are drawn

between two touching atoms. It is a quite simple structure. This structure

simply contains two pointers to two atoms which the stick should be drawn

in between.

• Cut Plane Structure: The cutPlane structure represents the cut planes

that user defines. This structure simply stores plane parameters in the

crystal indexing system and the cut operation.

4.3 Algorithms

The algorithms are mostly used in the Analyzer program. In the UserInterface

program mostly user interface routines and IO procedures are used. In the Visu-

alizationTool program, simple procedures that are used to perform event handling

and drawing are written. These procedures are implemented using general pro-

gramming techniques. Accordingly in this section, algorithms that are used in

the Analyzer program are explained.
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4.3.1 Reading Input Data

In this work, it is assumed that the input data contain a record for each atom

in the crystal structure. A record contains an atom type descriptor and atomic

coordinates of the atom. A record should be written in one line in the data file.

Two sample lines are given as follows.

Na -5.66 2.83 -14.15

Cl -2.83 5.66 -11.32

The Analyzer simply reads the input data line by line. It checks if the atomic

coordinates lie inside some cubic volume defined according to the starting pa-

rameters. If atomic coordinates are outside that volume, it skips that line and

continues. Otherwise, a point data is created with the information given in this

line. A unique id number is assigned to each distinct atom type descriptor.

These unique id numbers are used as the atom type id number throughout the

algorithms. After the id number is assigned to the point data, program checks

if the atomic coordinates lie inside the processing volume. If the coordinates lie

inside, created point structure is inserted into the link list that stores points that

are to be analyzed. Otherwise, point is inserted into another linked list. While

reading the data, the maximum and the minimum values of x,y and z coordinates

of the atoms, which are not skipped, are also noted. These values will be used

while initializing the octree structure.

Algorithmic complexity of this procedure is linear time. More precisely it can

be written as O(N + S) where N is the number of lines which are not skipped

and S is the number of lines that are skipped.

4.3.2 Indexing Input Data

Indexing the input data is done by using the octree structure. A specific imple-

mentation of the octree structure is used in this work. Firstly, volumes that are

assigned to each node are constant and should be specified while creating the



CHAPTER 4. IMPLEMENTATION 62

node. Some implementation of the octree structure, use dynamic volumes, but

since the crystal structures can be considered homogeneous, using static volumes

will not bring an overhead. Instead, with achieved simplicity the runtime per-

formance improves. Another property of the octree structure that is used in this

work is it contains only one data record per node and only leaf nodes store data.

In this way, swap operations are not needed. For a random data, one data per

node rule can be considered as a quite bad choice since the high number of points

can be placed in a small volume. For those cases, the access times increases

significantly. However for homogeneously distributed data, such as the crystal

data, this approximation allows to access any point in logarithmic time. There

are some search techniques, such as storing multiple data records per node while

keeping them sorted, which allow logarithmic access times with modified search

routines. However, one record per leaf node approach is preferred in this work

because of its simplicity. Some extra space is required in this implementation.

However, such space requirement is not quite high, thus acceptable.

The first step of indexing input data is initializing the octree structure. The

initialization can be described by simply creating the root node and assigning

some maximum volume that root node. The maximum and the minimum values

of x, y and z coordinates, which are calculated while reading the input data, are

used to define the volume used in initialization. After the initialization completed,

created point structures are inserted into the octree structure iteratively. An

insertion has logarithmic time complexity. Accordingly inserting all points will

have O(Nlog(N)) complexity. The space requirement will be linear.

4.3.3 The Algorithm for Grouping Identical Atoms

In the algorithm, matching volumes of each atom that are to be analyzed are

calculated. Since the crystal data is homogeneous, the number of atoms in each

matching volume can be considered constant. If we call this constant M , than

obtaining the matching volume of an atom has a time complexity of O(log(N) +

M), since accesses to the boundaries of the matching volume can be done in

logarithmic time and maintaining the linked list of the output can be done in
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linear time.

After the matching volume of an atom is obtained, for each previously found

group atom’s matching volume is compared with group’s matching volume, in

order to see if they match. Matching volume’s of the groups are indexed with the

octree structure. So checking if two matching volumes matches can be done in

O(Mlog(M)) time. If the matching volumes matches, then the atom’s group is

determined. Atoms can be inserted into the atom list of the corresponding group

in constant time and the procedure continues with the next atom. However, if the

atom does not match with any group, a new group should be created. Creation of

a new group requires copying of atom’s matching volume into group’s matching

volume, and indexing it. This procedure can be executed in O(M + Mlog(M))

time.

If we call G to the number of groups that will be generated throughout the

grouping algorithm and A to the number of atoms that are to be analyzed, then

the time complexity will be O(Alog(N)+AM+GAMlog(M)+GM+GMlog(M)).

The first part, Alog(N) + AM , represents the complexity of obtaining matching

volumes of every atom that are to be analyzed. The second part, GAMlog(M),

shows the matching volume comparisons of every atom with every group. Finally,

the last part, GM + GMlog(M), represents the creation times of each group. In

the worst case, number of groups can be equal to N , which is the case that every

atom defining a group. In that case, the complexity will be O(NAMlog(M)).

However, this is a very unlikely case. Most of the time, the number of groups

that will be generated is a small number, if a valid crystal data is used. Thus,

for the average case, G can be considered as a small constant value. Accordingly,

the complexity reduces to O(Alog(N) + AMlog(M)).

4.3.4 Vector Operations

The vector operations contain four algorithms. The first algorithm is the algo-

rithm for extracting vectors. In this procedure, for every group G, for each atom

belonging to this group, a vector which represents the relative distance between
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this atom and the reference point of G, is created. Totally A − G vectors are

created and accordingly this procedure has O(A) time complexity where A is the

number of atoms to analyze. After the vectors are generated, they are sorted.

By applying a few linear scans on the sorted list, vectors, which are identical, are

combined. Since the sorting has a time complexity O(Alog(A)), this algorithm

has an overall time complexity of O(Alog(A)).

The second algorithm is the algorithm for filtering out redundant vectors.

This operation is done by comparing every pair of vectors produced by the ex-

tracting vectors algorithm, in order to see if one of the vectors is integer multiple

of the other one. Such vectors which are integer multiples of other vectors are

eliminated. Another sorting is performed after eliminating those vectors. The

time complexity of this algorithm will be, O(V 2) where V is the number of vec-

tors produced in the extracting vectors algorithm. This leads to a worst case

complexity of O(A2), since V can be as much as A − G and G can be 1. Even

though the quadratic time complexity seems high, the runtime performance of

this algorithm is much better. The extracting vectors algorithm often produces

much less number of vectors than A. Accordingly, runtime performance can be

expected to be quite reasonable, even though the quadratic worst-case complexity.

The third algorithm is the algorithm for calculating primitive vector candi-

dates. For this purpose, every triplets of vectors is tested in order to see if they

can produce every vector in the vector list as their integer combinations. This

algorithm has a time complexity of O(A4). However, the number of vectors that

can be in a vector triplet, is limited to a relatively small constant. Accordingly

worst case complexity reduces to O(P 3A), where P is equal to this constant.

The fourth algorithm is the algorithm for purifying primitive vector candi-

dates. This procedure is simply a sorting, which brings the primitive vector

candidates, which look nicer to the user to front. Accordingly, it has a time

complexity of O(PV Clog(PV C)), where PV C is the number of primitive vector

candidates calculated by the previous algorithm. Since the upper bound of PV C

is P × (P − 1) × (P − 2)), the worst case complexity of this algorithm can be

written as O(P 3log(P )).
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Overall worst case time complexity of the vector operations is,

O(Alog(A)) + O(A2) + O(P 3A) + O(P 3log(P ))

where P is equal to the parameter representing maximum number of vectors

which can form a primitive vector candidate. Since log(P ) is much smaller than

A, the given worst case complexity reduces to O(A2 + P 3A).

4.3.5 The Clustering Algorithm

In the clustering algorithm, firstly the groups are sorted according to the num-

ber of atoms in their lists. Then a cluster is created for every atom in the most

crowded group. This operation takes O(G0) time, where Gi represents number

of atoms belonging to ith group. After that, every group is processed concur-

rently. To process a group a direction vector is calculated. Direction vector can

be described as the minimum distance between a cluster center and an atom

belonging to the group that is currently processed. Finding the direction vector

require to check every cluster-atom pairs and it can be done in O(G0Gi) time,

since the number of clusters can be as much as G0. After the direction vector

is calculated, for each cluster an atom is found whose atom to cluster center

distance is equal to the direction vector. This operation also has O(G0Gi) time

complexity. After the assignments are completed, the procedure continues with

the next group. Accordingly, overall time complexity for the clustering algorithm

is O(Gi)+O(
∑G−1

i=1 G0G(i)). This expression reduces to O(G0∗(A+1−G0) when

the summation is evaluated. This expression is maximal when G0 = (A + 1)/2.

Accordingly the worst case complexity is O(A2).

4.3.6 The Algorithm for Finding Basis Vectors

This algorithm is quite similar to the clustering algorithm. The first part of the

algorithm is creating initial clusters for each atom of the most crowded group.

Since the size of the most crowded group can be at most A, this part has O(A)

complexity. Then the origins are assigned to each cluster as cluster centers. This
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procedure requires scanning of all clusters in order to find the closest suitable

cluster to calculate the direction vector. Afterwards another scan is done for

assigning cluster centers. Accordingly this part also has a O(A) time complexity.

After that, for each group, atoms of the processing group are assigned to a cluster

as in the clustering algorithm. Only difference is, while finding the direction

vector, the atom should lie inside the unit cell paralleloid defined by given vectors

starting from the cluster center. This constraint requires a constant time check,

thus the complexity of this part of the algorithm is identical to the same part given

in the clustering algorithm. After calculating clusters, each cluster is scanned to

assign the average coordinates of atoms as cluster centers. While doing this

scan, clusters are also checked in order to see if they should be in the output.

This procedure has O(A) time complexity. Since this algorithm brings additional

O(A) time complexity to the clustering algorithm whose complexity is O(A2),

this procedures worst case complexity is also O(A2).

4.3.7 Identifying Space Group

In order to say a crystal structure matches to a space group, every point in the

set of test points should support every symmetry operation of that space group.

While applying each symmetry operation, appropriate vector set should be used.

In other words, in order to test a space group belonging to some lattice class,

the vector set, which define the minimal unit cell belonging to same lattice class,

should be used. Since every space groups are tested, vector sets that define unit

cells belonging to each lattice class should be generated. This operation is done

by creating a set of vectors, which are derived from the primitive vectors as their

integer combinations and testing several vector triplets from this set. In this

implementation, total number of such vector triplets that are tested is limited to

a reasonable number, 39,711. The combinations of the derived vectors, which are

to be used, are pre-computed. This limitation may cause not being able to find

vectors that define the unit cells belonging to some lattice classes. However, it

is essential to limit this number in order to be able to finish this procedure in

reasonable time. Since these 39,711 vector sets are selected so that they cover
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all small unit cells, it is quite unlikely that this approach causes invalid results,

since it is quite unlikely for a big unit cell defining the crystal characteristics.

Selecting the set of test points is done according to the primitive vectors. A

volume that is guaranteed to cover at least one atom identical to each atom in

the basis set, should be used. This restriction can be guaranteed by covering all

atoms, which lie inside the unit cell paralleloid defined by the primitive vectors.

Accordingly, the boundary of the test volume is defined according to the primitive

vectors. The maximum and the minimum values in the set of 0, V1.x, V2.x, V3.x,

V1.x + V2.x, V1.x + V3.x, V2.x + V3.x, V1.x + V2.x + V3.x values are used as the

boundary values of x axis. Boundaries of y and z axes can be found similarly.

Then the atoms that lie inside this boundary, are used as test points. However,

the number of total test points is also limited to a relatively high number, 1000.

The reason for this restriction is to avoid unnecessarily high number of test points

that can be obtained due to irregular unit cells. This approach might theoretically

cause errors, but it is a quite unlikely case.

The algorithm for identifying space group requires knowing symmetry opera-

tions of each space group. In this implementation, we obtained the space group

data of 273 space groups (some space groups have more than one form depending

on the origin or the axis selections), from Bilbao Crystallography Server [6]. The

source of symmetry operations was stated as International Tables for Crystallog-

raphy, 1982 [8], which can be considered as the most common reference tables

used in crystallography. Downloaded data are converted into a more suitable

form, a data file. Every time the Analyzer program is started, this data file is

read and the space group data are loaded into the data structure explained in

data structures section.

Checking if a symmetry operation is supported on a point, consists of two

parts. The first part is applying the symmetry operation and obtaining the

translated point. The second part is checking if an identical point exists at the

coordinates of the translated point. The first part has constant time complexity

while the second part has the logarithmic time complexity since it require a

point search. There are 273 space groups to test and the number of symmetry
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operations of each space group is constant. Since the number of test points are

also bounded by a constant value, the complexity of the algorithm for identifying

space group is O(log(N)). The number of vector sets that are tested in order

to find a vector set for each lattice class is also constant. Accordingly, the part

that finds those vector sets has a constant time complexity. Accordingly overall

complexity of this algorithm can be written as O(log(N)).

4.3.8 Overall Complexity

Overall complexity can be found by adding individual complexities. Accordingly,

overall complexity is,

O(N +E)+O(Nlog(N))+O(Alog(N)+AMlog(M))+O(A2 +P 3A)+2×O(A2)+O(log(N))

where N represents the number of points in the octree structure, A represents the

number of points to analyze, E represents the number of lines in the input data

that are skipped, M represents the average number of points in the matching

volume and P represents the maximum number of vectors which can form a

primitive vector to test. Obtained expression can be collapsed into

O(E + Nlog(N) + AMlog(M) + A2 + P 3A)

as a more compact form of the average case complexity.



Chapter 5

Results and Performance

In this section, we tested our framework with several test data. We tried to

cover materials on every crystallographic class. In test environment section, test

data will be explained in detail. In experimental results section, outputs of the

tool are compared with the actual crystal parameters. Partial outputs of the

algorithms are also discussed. In the performance evaluation section, execution

times of each stage of the framework for each input data will be given and these

times are compared with the average case complexities of the algorithms. In the

error handling section, a set of test data with different error margins are used to

examine the error tolerance of the framework.

5.1 Test Environment

In order to test the framework, several test data are generated. At least one

material belonging to each crystallographic class is tested. For low symmetry

classes, such as triclinic and monoclinic lattices, randomly chosen primitive vector

sets and basis vector sets are used. Accordingly, a more complex input data

could be obtained and the algorithms could be tested more effectively. For other

crystallographic classes, the real crystal parameters of actual materials are used.

Crystal parameters are obtained from [7]. Data generation is done automatically

69
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by using a program. To generate the data, each basis vector is translated by

some integer combinations of the primitive vectors. If the translated point lies

inside a predefined cubic volume centered at the origin, the point is written to

the file. This operation is repeated with different integer combinations of the

primitive vectors, until the predefined volume fills completely. Accordingly, cubic

crystal segments are obtained. Boundaries of this predefined volume are selected

as -20.0 to 20.0 at each axis. In this way, it is guaranteed to obtain input data

which can be used by the default threshold parameter, 20.0, used in the Analyzer

program. Since any point, which does not lie inside this predefined volume, is

not included into the output, there will be incomplete unit cells. In addition, the

atomic ratios in the input data will not be equal to the atomic ratios in the unit

cell. Accordingly, generated data do not leak any extra information about the

material. For each material, two sets of data are generated. The first set is the

ideal input data and generated as explained. The second data contains coordinate

errors and missing atoms. Generation of the second set of data is done similar to

the first set. Basic difference is after calculating the actual position of a point,

a small amount of noise is added to the coordinate values. Value of this noise is

set to ±0.03. This value is sufficiently large for a generated data. Accordingly

testing with this level of noise should be sufficient to evaluate the framework.

Other difference is, even though a point is qualified to be written into the output

file, with 0.0001 probabilities it does not written. With the given probability a

few missing atoms are expected in the input data.

Nine real and two randomly generated materials are used in the testing phase.

Real materials are, NaCl, La2O3, Cu3Au, PtS, Al3Ti, Mg, CoSn, αHg and T lF .

For triclinic and monoclinic lattice classes randomly generated unit cells are used.

For triclinic class, a big unit cell is generated. 14 basis vectors with five different

atom types are randomly distributed inside the unit cell. For monoclinic class a

smaller unit cell is derived. Six basis vectors with three different atom types are

used. Analysis are applied on these material’s ideal and noisy data. During the

analysis, default values of the analysis parameters are used. Detailed information

about materials and the test results can be found in the experimental results

section.
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5.2 Experimental Results

In this section test results of eleven different materials are given. The tests

are performed on both ideal and noisy data. As mentioned earlier, the tool

proposes several choices to the user throughout the analysis, such as primitive

vector set alternatives or origin choices. Throughout the tests, the most user-

friendly primitive vector set and the origin are selected. The results are rounded

to two decimal digits. In the first part, calculated primitive vectors and basis

vectors are given and compared with the actual values. Besides, small descriptions

of each structure are given in this part. In the second part, the outputs of the

intermediate stages are given and discussed. Finally, space group results are

discussed in the third part.

5.2.1 Primitive Vectors and Basis Vectors

Extracted primitive vectors and basis vectors information for each structure are

given as follows:

1. NaCl:

Figure 5.1: NaCl Unit Cell

NaCl has a cubic unit cell as shown in Figure 5.1. However, primitive unit

cell is smaller. As given in the Table 5.1, three equal length vectors with

60 degrees of α,β and γ angles, present a more compact unit cell.
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Actual Primitive Vectors Ideal Data Output Noisy Data Output
V1 [0 2.83 2.83] [0 2.83 2.83] [0 2.81 2.82]
V2 [2.83 0 2.83] [2.83 0 2.83] [2.82 0 2.80]
V3 [2.83 2.83 0] [2.83 2.83 0] [2.82 2.82 0]

Table 5.1: Primitive vectors of NaCl structure

As shown in Table 5.1, with the ideal data, primitive vectors are calculated

without errors and with the noisy data small distortions occur. However,

considering the error margin in atomic coordinates is ±0.03, which results in

an error margin of ±0.06 on vectors, given distortions are quite acceptable.

Accordingly primitive vectors are calculated successfully for both data.

Actual Basis Vectors Ideal Data Output Noisy Data Output
B1 Na,[0 0 0] Na,[0 0 0] Na,[0 0 0]
B2 Cl,[2.83 2.83 2.83] Cl,[2.83 2.83 2.83] Cl,[2.82 2.82 2.86]

Table 5.2: Basis vectors of NaCl structure

Similar to the primitive vector calculation, basis vectors were also accurately

found with the ideal data while small but acceptable distortions are observed

with the noisy data. So for this material the tool worked successfully with

either data.

2. Cu3Au:

Figure 5.2: Cu3Au Unit Cell
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Cu3Au has a cubic unit cell shown in Figure 5.2. Primitive vectors also

represent a cubic unit cell. A unit cell contains one Au and three Cu atoms

as the basis vectors. For Cu3Au, primitive vectors are calculated accurately

Actual Primitive Vectors Ideal Data Output Noisy Data Output
V1 [3.14 0 0] [3.14 0 0] [3.13 0 0]
V2 [0 3.14 0] [0 3.14 0] [0 3.13 0]
V3 [0 0 3.14] [0 0 3.14] [0 0 3.13]

Table 5.3: Primitive vectors of Cu3Au structure

with the ideal data and a small distortion which is about 0.01, was observed

with the noisy data.

Actual Basis Vectors Ideal Data Output Noisy Data Output
B1 Au,[0 0 0] Au,[0 0 0] Au,[0 0 0]
B2 Cu,[0 1.57 1.57] Cu,[0 1.57 1.57] Cu,[0.03 1.55 1.55]
B3 Cu,[1.57 0 1.57] Cu,[1.57 0 1.57] Cu,[1.55 -0.03 1.58]
B4 Cu,[1.57 1.57 0] Cu,[1.57 1.57 0] Cu,[1.57 1.54 -0.01]

Table 5.4: Basis vectors of Cu3Au structure

Basis vectors are calculated correctly with ideal data. With the noisy data

at most 0.03 differences are seen at the coordinate values. This value is not

higher than the noise level in the input data, thus acceptable.

3. La2O3:

Figure 5.3: La2O3 Unit Cell
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La2O3 has a cubic unit cell shown in Figure 5.3. Similar to the NaCl

structure, primitive vectors of this structure, define a more compact unit

cell.

Actual Primitive Vectors Ideal Data Output Noisy Data Output
V1 [-2.57 2.57 2.57] [-2.57 2.57 2.57] [-2.57 2.57 2.55]
V2 [2.57 -2.57 2.57] [2.57 -2.57 2.57] [2.55 -2.56 2.57]
V3 [2.57 2.57 -2.57] [2.57 2.57 -2.57] [2.60 2.55 -2.58]

Table 5.5: Primitive vectors of La2O3 structure

Similar to previous structures, primitive vectors are found accurately with

the ideal data and with the noisy data, acceptable results are obtained.

Actual Basis Vectors Ideal Data Output Noisy Data Output
B1 La,[0 0 0] La,[0 0 0] La,[0 0 0]
B2 O,[2.57 0 0] O,[2.57 0 0] O,[2.56 0.01 -0.01]
B3 O,[0 2.57 0] O,[0 2.57 0] O,[0.02 2.54 0.01]
B4 O,[0 0 2.57] O,[0 0 2.57] O,[0.01 0.03 2.53]

Table 5.6: Basis vectors of La2O3 structure

Basis vectors are found accurately with ideal data. With noisy data, some

distortions observed, but results are still acceptable.

4. PtS:

Figure 5.4: PtS Unit Cell
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PtS has a tetragonal unit cell shown in Figure 5.4. The primitive vectors

also define a tetragonal unit cell.

Actual Primitive Vectors Ideal Data Output Noisy Data Output
V1 [1.48 0 0] [1.48 0 0] [1.46 0 0]
V2 [0 1.48 0] [0 1.48 0] [0 1.47 0]
V3 [0 0 3.29] [0 0 3.29] [0 0 3.28]

Table 5.7: Primitive vectors of PtS structure

While finding the primitive vectors program gave accurate results with the

ideal data and the results with 0.02 error margin are obtained with the

noisy data. Accordingly, both results are acceptable.

Actual Basis Vectors Ideal Data Output Noisy Data Output
B1 Pt,[0 0.74 0] Pt,[0.74 0 1.65] Pt,[0 0 0]
B2 Pt,[0.74 0 1.65] Pt,[0 0.74 0] Pt,[0.75 0.76 1.65]
B3 S,[0 0 0.82] S,[0 0 2.47] S,[-0.02 0.72 0.84]
B4 S,[0 0 2.47] S,[0 0 0.82] S,[0.01 0.71 2.46]

Table 5.8: Basis vectors of PtS structure

As shown in Table 5.8, correct results are obtained with ideal data. How-

ever, order of basis vectors changed. Since basis vectors define a set, order is

not important. Accordingly, results obtained with ideal data are accurate.

To obtain basis vectors with the noisy data, a different origin has been used.

Accordingly, all basis points are translated to a new point. Selected origin

point was, B1 of the actual basis vectors. If every basis point of the actual

basis vector set is translated by -B1, the following basis set is obtained.

B1 = Pt, [0, 0, 0]

B2 = Pt, [0.74,−0.74, 1.65]

B3 = S, [0,−0.74, 0.82]

B4 = S, [0,−0.74, 2.47]
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Since the y coordinates of some basis vectors are negative, those vectors

should be translated by V2. Those translations produce the new set:

B1 = Pt, [0, 0, 0]

B2 = Pt, [0.74, 0.74, 1.65]

B3 = S, [0, 0.74, 0.82]

B4 = S, [0, 0.74, 2.47]

Results obtained by noisy data are equivalent to this set with acceptable

error margins. Accordingly, acceptable basis vectors are found with both

data.

5. Al3Ti:

Figure 5.5: Al3Ti Unit Cell

Al3Ti also has a tetragonal unit cell shown in Figure 5.5. However, it’s

primitive vectors represent a more compact unit cell.

Actual Primitive Vectors Ideal Data Output Noisy Data Output
V1 [1.81 0 0] [1.81 0 0] [1.80 0 0]
V2 [0 1.81 0] [0 1.81 0] [0 1.80 0]
V3 [0.91 0.91 1.91] [0.91 0.91 1.91] [0.89 0.90 1.90]

Table 5.9: Primitive vectors of Al3Ti structure
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As shown in Table 5.9 acceptable results are obtained with both data. With

ideal data, results are accurate and with noisy data, small distortions ob-

served.

Actual Basis Vectors Ideal Data Output Noisy Data Output
B1 Ti,[0 0 0] Ti,[0 0 0] Ti,[0 0 0]
B2 Al,[0.91 0.91 0] Al,[0.91 0.91 0] Al,[0.92 0.93 -0.01]
B3 Al,[0.91 0 0.95] Al,[0.91 0 0.95] Al,[0.90 0.02 0.96]
B4 Al,[0 0.91 0.95] Al,[0 0.91 0.95] Al,[0 0.89 0.92]

Table 5.10: Basis vectors of Al3Ti structure

Similar to the previous structures, with the ideal data accurate results and

with the noisy data acceptable results are obtained.

6. Mg:

Figure 5.6: Mg Unit Cell

Mg has a hexagonal unit cell shown in Figure 5.6. Its crystal structure is

called hexagonal closed pack (hcp), which is proven to be one of the densest

packing for identical atoms [3].

As shown in Table 5.11, with ideal data, exact values are obtained. However,

with noisy data situation is different. If −V1 was used instead of V1 in actual

primitive vectors, an equivalent primitive vector set to the one obtained with

noisy data would be obtained. Accordingly, the tool has found another valid

primitive vector set with noisy data. Actually, such output is intentionally
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Actual Primitive Vectors Ideal Data Output Noisy Data Output
V1 [0.86 -1.49 0] [0.86 -1.49 0] [0.83 1.48 0]
V2 [0.86 1.49 0] [0.86 1.49 0] [-0.85 1.50 0]
V3 [0 0 2.81] [0 0 2.81] [0 0 2.81]

Table 5.11: Primitive vectors of Mg structure

selected with noisy data, in order to demonstrate the tool’s ability to find

alternative primitive vector sets.

Actual Basis Vectors Ideal Data Output Noisy Data Output
B1 Mg,[0.86 0.50 0.7] Mg,[0 0 0] Mg,[0 0 0]
B2 Mg,[0.86 -0.50 2.1] Mg,[0.86 0.50 1.40] Mg,[-0.03 1.01 1.41]

Table 5.12: Basis vectors of Mg structure

In actual basis vectors no atoms coordinate was chosen as the origin. How-

ever, one of the atoms coordinate is used as basis with the the. Accordingly,

the calculated basis vectors and the actual basis vectors have different val-

ues. Let define new basis vector set based on actual vector set by using

B1’s coordinates as origin. Then the following set would be obtained;

B1 = Mg, [0, 0, 0]

B2 = Mg, [0,−1.00, 1.40]

Afterwards if B2 is translated with V2 then the following set is obtained.

B1 = Mg, [0, 0, 0]

B2 = Mg, [0.86, 0.50, 1.40]

This basis vector set is identical to the set that is obtained with the ideal

data. Accordingly, obtained results are accurate with ideal data.

The basis vector set obtained with the noisy data is accurate, if actual

basis vector set id convertible to the obtained basis vector set with a set of
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translations. If B2’s coordinates are considered as origin, then the obtained

set would be,

B1 = Mg, [0, 1.00,−1.40]

B2 = Mg, [0, 0, 0]

If B1 is translated by V3, following set is obtained

B1 = Mg, [0, 1.00, 1.40]

B2 = Mg, [0, 0, 0]

which is identical to the basis vector set obtained with noisy data aside

from small noise. Accordingly, the results can be considered accurate.

7. CoSn: CoSn has a hexagonal unit cell shown in Figure 5.7. As in Mg

structures two different primitive vector alternative is used to obtain the

results.

Figure 5.7: CoSn Unit Cell

Actual Primitive Vectors Ideal Data Output Noisy Data Output
V1 [1.23 -2.13 0] [-1.23 2.13 0] [1.23 -2.12 0]
V2 [1.23 2.13 0] [1.23 2.13 0] [1.23 2.12 0]
V3 [0 0 4.02] [0 0 4.02] [0 0 4.02]

Table 5.13: Primitive vectors of CoSn structure

As shown in Table 5.13, primitive vectors obtained with the noisy data are

equivalent to actual primitive vectors aside from small distortions. However,
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for primitive vectors obtained with ideal data, −V1 of the actual primitive

vectors are used as V1. Accordingly, both alternatives are valid and accept-

able.

Actual Basis Vectors Ideal Data Output Noisy Data Output
B1 Sn,[0 0 0] Sn,[0 0 0] Sn,[0 0 0]
B2 Sn,[1.23 0.71 2.01] Sn,[0 1.42 2.01] Sn,[1.27 0.71 2.01]
B3 Sn,[1.23 -0.71 2.01] Sn,[0 2.84 2.01] Sn,[1.24 -0.69 2.03]
B4 Co,[0.62 -0.36 0] Co,[-0.62 1.07 0] Co,[0.63 -1.07 -0.02]
B5 Co,[0.62 0.36 0] Co,[0.62 1.07 0] Co,[0.62 1.05 -0.01]
B6 Co,[1.23 0 0] Co,[0 2.13 0] Co,[1.23 0.03 -0.03]

Table 5.14: Basis vectors of CoSn structure

CoSn structure has six basis vectors. Luckily, one of them was used as

origin. While getting the results, the same atom is selected as origin, in

order to make the validation of the results easier. Since the primitive vectors

obtained with the noisy data are equivalent to actual primitive vectors,

obtained basis vector set is also quite similar. Some distortions are observed

but it is easy to see these two sets are identical. However, for the basis set

obtained with the ideal data, further checks are needed. Using fractional

coordinates is a more convenient way to see such changes. Basis set of

actual basis vectors with the fractional coordinates are,

B1 = Sn, [0, 0, 0]

B2 = Sn, [
1

3
,
2

3
,
1

2
]

B3 = Sn, [
2

3
,
1

3
,
1

2
]

B4 = Co, [
1

2
, 0, 0]

B5 = Co, [0,
1

2
, 0]

B6 = Co, [
1

2
,
1

2
, 0]

If −V1 were used to calculate fractional coordinates instead of V1, fractional

coordinates of the actual basis set would be,

B1 = Sn, [0, 0, 0]
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B2 = Sn, [
−1

3
,
2

3
,
1

2
]

B3 = Sn, [
−2

3
,
1

3
,
1

2
]

B4 = Co, [
−1

2
, 0, 0]

B5 = Co, [0,
1

2
, 0]

B6 = Co, [
−1

2
,
1

2
, 0]

Translating these vectors with V1 results in the following set;

B1 = Sn, [0, 0, 0]

B2 = Sn, [
2

3
,
2

3
,
1

2
]

B3 = Sn, [
1

3
,
1

3
,
1

2
]

B4 = Co, [
1

2
, 0, 0]

B5 = Co, [0,
1

2
, 0]

B6 = Co, [
1

2
,
1

2
, 0]

This vector set is identical to the vector set obtained with ideal data. Ac-

cordingly, basis vector results are acceptable for both data.

8. αHg:

Figure 5.8: αHg Unit Cell
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Actual Primitive Vectors Ideal Data Output Noisy Data Output
V1 [2.0 0.33 0.33] [1.99 0.33 0.33] [0.34 1.95 0.29]
V2 [0.33 2.0 0.33] [0.33 1.99 0.33] [1.96 0.34 0.33]
V3 [0.33 0.33 2.0] [0.33 0.33 1.99] [0.37 0.27 1.98]

Table 5.15: Primitive vectors of αHg structure

αHg is one form of Hg crystals. It can be considered as cubic structure,

which is distorted by increasing the diagonal length. The unit cell of αHg

can be seen in Figure 5.8.

Primitive vectors that are obtained with ideal data have small errors in

lengths, probably caused by double’s precision and the rounding errors.

Noisy data result contain more distortions. However, error margins are

acceptable. Accordingly, primitive vectors obtained by either data are valid

and acceptable. αHg has one basis vector, which is placed at the origin.

Actual Basis Vectors Ideal Data Output Noisy Data Output
B1 Hg,[0 0 0] Hg,[0 0 0] Hg,[0 0 0]

Table 5.16: Basis vectors of αHg structure

Accordingly, both results are trivially accurate.

9. T lF :

Figure 5.9: T lF Unit Cell

T lF has a similar structure with NaCl structure as can be seen from Figure
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5.1 and Figure 5.9. However, its unit cell is not cubic like the NaCl unit cell.

T lF has an orthorhombic unit cell. It can be considered as the distorted

form of the cubic unit cell of NaCl.

Actual Primitive Vectors Ideal Data Output Noisy Data Output
V1 [0 1.17 1.08] [0 1.17 1.08] [0 1.17 1.06]
V2 [1.11 0 1.08] [1.11 0 1.08] [1.11 0 1.07]
V3 [1.11 1.17 0] [1.11 1.17 0] [1.11 1.14 0]

Table 5.17: Primitive vectors of T lF structure

T lF has primitive vectors similar to the NaCl structure. The vector set

obtained with the ideal data are accurate and vector set obtained with the

noisy data has acceptable errors.

Actual Basis Vectors Ideal Data Output Noisy Data Output
B1 Tl,[0 0 0] Tl,[0 0 0] Tl,[0 0 0]
B2 F,[0 0 1.08] F,[0 0 1.08] F,[0.03 0.06 1.06]

Table 5.18: Basis vectors of T lF structure

Similar to NaCl, T lF also has two basis vectors. With ideal data, accurate

results are obtained. With noisy data obtained error margin is acceptable.

10. Randomly Generated Monoclinic Material: This material is randomly gen-

erated. It has a monoclinic unit cell. Unit cell parameters are predetermined

and basis vectors are randomly placed inside the unit cell. a, b and c para-

meters are set to 4.0,5.0 and 6.0 respectively while β parameter is set to 72

degrees.

Actual Primitive Vectors Ideal Data Output Noisy Data Output
V1 [4.00 0.00 0.00] [4.00 0.00 0.00] [3.99 0.00 0.00]
V2 [0.00 5.00 0.00] [0.00 5.00 0.00] [0.00 4.99 0.00]
V3 [1.85 0.00 5.71] [1.85 0.00 5.71] [1.84 0.00 5.71]

Table 5.19: Primitive vectors of random monoclinic data
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As Table 5.19 imply, primitive vectors are calculated accurately with ideal

data and almost accurately with noisy data.

Actual Basis Vectors Ideal Data Output Noisy Data Output
B1 0,[2.27 3.35 1.94] 0,[2.27 3.35 1.94] 0,[2.27 3.34 1.95]
B2 0,[0.44 3.45 1.37] 0,[0.44 3.45 1.37] 0,[0.42 3.45 1.35]
B3 1,[4.27 2.90 3.54] 1,[4.27 2.90 3.54] 1,[4.26 2.87 3.55]
B4 1,[3.39 0.25 2.57] 1,[3.39 0.25 2.58] 1,[3.39 0.25 2.58]
B5 2,[4.37 1.35 3.48] 2,[4.37 1.35 3.48] 2,[4.40 1.37 3.46]
B6 2,[4.42 4.75 2.40] 2,[4.42 -0.25 2.40] 2,[4.40 -0.22 2.42]

Table 5.20: Basis vectors of random monoclinic data

In order to generate this unit cell, three atom types are used and two basis

vectors of each type are generated. Since the data generation is random,

none of the points is considered as the origin in the generated basis set.

In order to make comparisons easier, (0 0 0) point were also chosen as

origin in the program. Accordingly, basis vectors given in actual data and

basis vectors obtained from the outputs should match without requiring

any translations. Basis vectors obtained with ideal data matches to the

actual basis vectors except one place, B6. Instead obtaining [4.42 4.75

2.40] value as B6, vector set obtained with the ideal data contains [4.42

-0.25 2.40] value. These two coordinates are identical coordinates since

they differ by V2. Accordingly, given output is scientifically correct and

acceptable. However, this point does not lie inside the unit cell paralleloid

defined by the primitive vectors. Accordingly preferred point would be [4.42

4.75 2.40]. This problem is caused by error handling mechanisms used in

the algorithm for finding basis vectors. Small coordinate errors can cause

a basis vector, which should be on a corner, on an edge or on a face of

the unit cell to be left outside. Accordingly, in order to handle such cases,

basis vector coordinates are allowed to have small negative values. Since

the ideal data is also analyzed by assuming it can contain errors, [4.42 -0.25

2.40] value is allowed and preferred over [4.42 4.75 2.40] since it is closer to

the origin of the unit cell. Since this situation is scientifically correct and

the desired vector can be easily generated manually, this problem is not
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quite important, thus results are perfectly acceptable.

Basis vectors obtained with noisy data are quite similar to the ones obtained

with the ideal data. Basis vectors contain acceptable errors. Accordingly,

for random monoclinic data acceptable results are obtained with both ideal

data and noisy data.

11. Randomly Generated Triclinic Material: This data is randomly generated

with predefined unit cell parameters. In order to generate the unit cell, a,b

and c are set to 7.0,6.0 and 4.0 respectively and α,β and γ are set to 118,

81 and 75 degrees respectively. As the parameters imply, a relatively big

triclinic unit cell is obtained. Volume of this unit cell is significantly bigger

than any other unit cells previously analyzed. Accordingly, this generated

data contain less information about the pattern of the crystal. Therefore, it

can be considered as a good test data in order to observe the performance

of framework with relatively poor input data.

Actual Primitive Vectors Ideal Data Output Noisy Data Output
V1 [7.00 0.00 0.00] [7.00 0.00 0.00] [6.99 0.00 0.00]
V2 [1.55 5.80 0.00] [1.55 5.80 0.00] [1.55 5.79 0.00]
V3 [0.63 -2.11 3.34] [0.63 -2.11 3.34] [0.63 -2.11 3.33]

Table 5.21: Primitive vectors of random triclinic data

As Table 5.21 imply primitive vectors are calculated accurately with ideal

data and almost accurately with noisy data.

While generating this unit cell, 14 basis vectors are generated belonging

to four different atom types. Accordingly, a big, more complex unit cell

is obtained. During the analysis, similar to the test done with random

monoclinic data, (0 0 0) point is selected as the origin in order to make

comparisons easier. Obtained basis vectors matched to actual data except

three vectors. Found B3, B8 and B12 vectors differ from the ones in the

actual data. These differences are identical to the ones discussed in the

random monoclinic data results part. As in the monoclinic data, these dif-

ferences come from the error handling mechanisms of the finding primitive
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Actual Basis Vectors Ideal Data Output Noisy Data Output
B1 0,[4.12 3.17 1.14] 0,[4.12 3.17 1.14] 0,[4.15 3.16 1.11]
B2 0,[1.22 3.49 0.80] 0,[1.22 3.49 0.80] 0,[1.20 3.47 0.77]
B3 0,[6.45 5.00 1.17] 0,[4.89 -0.80 1.17] 0,[4.87 -0.79 1.18]
B4 1,[6.70 -0.06 0.37] 1,[6.70 -0.06 0.37] 1,[6.72 -0.04 0.39]
B5 1,[6.75 2.05 2.07] 1,[6.75 2.05 2.07] 1,[6.75 2.04 2.06]
B6 1,[4.84 -0.66 1.50] 1,[4.84 -0.66 1.50] 1,[4.82 -0.67 1.50]
B7 2,[6.47 0.27 2.04] 2,[6.47 0.28 2.04] 2,[6.45 0.30 2.06]
B8 2,[8.11 4.62 1.40] 2,[6.56 -1.18 1.40] 2,[6.55 -1.15 1.41]
B9 2,[3.02 0.16 3.04] 2,[3.02 0.16 3.04] 2,[3.01 0.19 3.01]
B10 2,[0.64 -1.00 1.77] 2,[0.64 -1.00 1.77] 2,[0.63 -1.01 1.74]
B11 2,[7.84 4.31 0.70] 2,[7.84 4.31 0.70] 2,[7.82 4.29 0.69]
B12 2,[1.99 -0.96 3.17] 2,[1.37 1.15 -0.17] 2,[1.34 1.13 -0.14]
B13 3,[4.14 0.01 2.37] 3,[4.14 0.01 2.37] 3,[4.17 0.01 2.36]
B14 4,[3.81 3.75 0.40] 4,[3.81 3.75 0.40] 4,[3.79 3.77 0.40]

Table 5.22: Basis vectors of random triclinic data

vectors algorithm. Accordingly, results are scientifically correct and can be

considered accurate. Results obtained with the noisy data are quite close

to the ones obtained with the ideal data. Accordingly, both results can be

considered accurate.

As shown in the experimental results, framework is quite successful with ideal

data. Almost all cases exact primitive vectors and basis vectors are found. For

some cases, coordinate errors with error margin ±0.01 are obtained. However

those cases are quite rare and they possibly caused by the double precision sen-

sitivity and the rounding. For some test data, some basis vectors were replaced

with another identical basis vector, which lies outside the unit cell. This situa-

tion occurred due to the error handling mechanisms in the finding basis vectors

algorithm. Considering the given output is still scientifically correct and the de-

sired vectors can be obtained either manually or repeating the analysis with lower

EPS values, such cases can be considered unimportant. Accordingly, with the

ideal data obtained primitive vector and basis vector results can be considered

accurate.



CHAPTER 5. RESULTS AND PERFORMANCE 87

With noisy data, obtained results were quite similar to the ones that are

obtained with the ideal data. Some distortions with small error margins are

observed in the results. The level of distortions was acceptable considering the

noise levels in the input data. Accordingly the framework can be considered

succesfull with the noisy data.

5.2.2 Results of Intermediate Stages

As explained previously, there are several algorithms used during the analysis

that give intermediate results. In this section, the results of these intermediate

stages are analyzed, in order to examine each algorithms efficiency individually.

The first algorithm to examine is the algorithm for grouping identical atoms.

In this algorithm, initially each group is derived. Afterwards groups with small

number of atoms are eliminated. The first column in Table 5.23, represents the

total number of generated groups and the second column represents the number

of groups left after the elimination of weak groups. The second and the third

algorithms are, algorithm for extracting vectors algorithm and al algorithm for

filtering out redundant vectors. The third column represents the number of vec-

tors generated after the execution of the extracting vectors algorithm and the

fourth column represents the number of vectors left after the redundant vectors

are filtered out. Other algorithms do not give quantifiable intermediate results.

However, commenting on the results of the calculating primitive vector alterna-

tives algorithm, purify primitive vectors algorithm and the clustering algorithm

is possible.

As shown in Table 5.23, first two columns contain the same values for all input

types. This observation states that no groups were found whose atom count is

smaller than some certain number, thus no elimination of groups took place.

Those values are also equivalent to the number of atoms in the primitive unit

cells for each input type. Accordingly, the grouping algorithm worked perfectly

and produced desired results for all input data. The reason for not obtaining

any weak groups is the quality of input data. The input data used in the testing

phase are generated so that the crystal structure is complete in the volumes that
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Number of
Generated
Groups

Number of
Reduced
Groups

Number of
Extracted
Vectors

Number of
Reduced
Vectors

NaCl 2 2 42 21
NaCl (noisy) 2 2 50 22
La2O3 4 4 26 13
La2O3 (noisy) 4 4 26 13
Cu3Au 4 4 80 37
Cu3Au (noisy) 4 4 80 37
PtS 4 4 292 121
PtS (noisy) 4 4 292 124
Al3Ti 4 4 328 137
Al3Ti (noisy) 4 4 343 156
Mg 2 2 280 121
Mg (noisy) 2 2 296 158
CoSn 6 6 98 43
CoSn (noisy) 6 6 98 43
αHg 1 1 296 124
αHg (noisy) 1 1 296 219
T lF 2 2 774 331
T lF (noisy) 2 2 774 384
Monoclinic 6 6 21 10
Monoclinic (noisy) 6 6 22 10
Triclinic 14 14 18 8
Triclinic (noisy) 14 14 19 9

Table 5.23: The results of the intermediate stages for different materials

are used in the analysis. However, if this were not the case, then the first column

of the table would contain higher values, and the second column were storing the

same values. Accordingly, some weak groups would have been eliminated.

The third column contain values representing the number of vectors after ex-

traction of vectors completed, and the fourth column contain values representing

the number of vectors left after redundant vectors has been filtered out. These

two columns were given in order to see the efficiency of the filtering out redundant

vectors algorithm. The algorithm for filtering out redundant vectors eliminates

the vectors that are an integer multiple of another extracted vector. Accordingly,
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the aim of this algorithms is increasing the performance by reducing the number

of vectors in the vector set that the analysis will continue. As the table implies,

the numbers varies significantly for different input types. Accordingly, no general

comment can be made. However, for most cases, the algorithm eliminates half

of the extracted vectors. Another observation that can be made is, for all input

types sufficient number of vectors are extracted. This observation is important

due to an optimization, in the extracting vectors algorithm. While extracting

vectors, if an extracted vectors length is higher than some respectively high pre-

defined value, it is discarded. The reason for such elimination is, the long vectors

are highly unlikely to be a primitive vector. Accordingly, eliminating quite long

vectors will improve the performance without causing the data loss. The values

in the third column show that the predefined value used to eliminate long vectors

is selected appropriately.

After the redundant vectors are filtered out, every primitive vector candidate,

which consist of vector triplets, are tested in order to see if they can be used

as a primitive vector set. The maximum number of vectors, that can be used

to form a vector triplet that is to be tested is limited to some number whose

default value is 150. If the number of vectors left after the redundant vectors

are filtered out, is higher than this value, then the shortest vectors are used. As

shown in the table, some values in the fourth column is higher than the dafault

value of this parameter, 150, and some of them are smaller. For the ones that

are smaller, the algorithm for filtering out redundant vectors, clearly increases

the performance significantly. However, for the other ones no performance im-

provement is achieved. Even though no performance increase is obtained for such

cases, still filtering out redundant vectors is useful, since it eliminates the vectors,

which cannot be in any primitive vector set. Executing this algorithm helps the

smallest vectors that will be used to form primitive vector alternatives to test,

being more meaningful. Accordingly, it helps the quality.

In general, the algorithm for extracting vectors and the algorithm for filtering

out redundant vectors can be considered quite efficient. Since, the framework

was able to calculate the primitive vectors accurately, for all input data, results

of these two algorithms can be considered accurate too.
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The algorithm for purifying primitive vectors works on the output of the cal-

culating primitive vectors algorithm. The aim of this algorithm is sorting the

primitive vector alternatives, so that the most desired forms of the primitive vec-

tors comes to the top places. While running the analyzer program, after this

algorithm completed, the program lists the primitive vector alternatives to the

user. The user selects at least one alternative in order to continue to the analy-

sis. Performance of the algorithm for purifying primitive vectors determines the

order of the list. In general, with the ideal input data, the most desired primi-

tive vector alternatives could be found at the top places. For some cases, small

modifications are needed in order to obtain a better-looking structure, such as

swapping two vectors or multiplying a vector by -1. However, desired primitive

vector set could be obtained quite easily. Considering this analysis is designed

to be a semi-automatic analysis, the algorithm for purifying primitive vectors

could be considered quite successful with the ideal data. However, with noisy

data, obtained results were not as satisfactory. As given in previous sections, in

the presence of error, primitive vectors contain small distortions. Accordingly,

a,b,c,α,β and γ parameters of the unit cells also contain some distortions. These

parameters are used to determine which primitive vectors are more preferable

by the user. For example, instead of random angle values, some certain angle

values are preferred, such as 90 degrees or 120 degrees. In the presence of errors,

since those parameters will contain distortions, determining the order of primi-

tive vector alternatives also becomes harder. With the noisy data, the desired

primitive vector alternative could not be found at the top places for all cases.

For some cases, generally with high error levels, most desired form could not be

found in the list at all. Accordingly, with noisy data, user occasionally needs to

examine several alternatives to pick the best and he rarely needs to select a less

desired alternative. However, for most cases , user was able to select a desired

primitive vector alternative with a small effort, with the reasonable level of er-

ror. Accordingly the algorithm for purifying primitive vectors can be considered

successful.

In general, the algorithm for calculating primitive vector alternatives is not

an algorithm to judge. It simply applies a certain procedure on a given set and
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returns the output. For almost all cases, it’s output is certain and correct. How-

ever, for some cases, which the input data with high error margins were used, this

algorithm may present some primitive vector alternatives, which actually should

not be validated. For example, consider a simple cubic structure, where there is

an atom placed at the coordinates (i, j, k) where i,j and k are all integers. Then

one primitive vector alternative would be V1 = [1.0, 0.0, 0.0],V2 = [0.0, 1.0, 0.0]

and V3 = [0.0, 0.0, 1.0]. Consider a vector Y = [1.0, 0.1, 0.0], exists in the set of

vectors along with V1. Ideally, this case should never happen, but if the error

margins are high, it is possible to see such cases. Then the vector set, V1,Y and

V3 would be tested. Since V2 = 10 × (Y − V1), this vector set can generate any

vector that the vector set V1,V2 and V3 can generate. Accordingly, such vector

sets are considered as primitive vector alternatives. These cases are observed with

the input data with high error margins and it is not a common case. Such kind

of primitive vector alternatives could easily be distinguished and eliminated by

the user since they define unit cells with quite low volumes. This type of errors

is one of the reasons that the tool is designed to be semi-automated. Otherwise,

this type of primitive vector sets might cause to obtain wrong results.

5.2.3 Results of the Space Group Identification Stage

The algorithm for indentifying the space group is affected from the errors signif-

icantly. In the presence of errors, accuracy of the space group information may

drop significantly. Since the presence of errors is too crucial for this algorithm,

three different tests are performed for each test material. In the first test, ideal

data are used and EPS is set to a low value, 0.001. In the second test the ideal

data and the default EPS values are used. Finally, in the third test the noisy

data and default EPS values are used. Test results are given in Table 5.24.

For cubic structures; NaCl,La2O3,Cu3Au, tetragonal structures; PtS,Al3Ti

and hexagonal structures; Mg,CoSn, the space groups are found correctly in all

three tests. None of these structures are some distorted form of a higher symmetry

structure. Accordingly, these materials are in the highest symmetry form that

their structures allow. There is no way that these materials can be confused with
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Known
Space Group

Number

Ideal Data
EPS=0.001

Ideal Data
Default EPS

Noisy Data
Default EPS

NaCl 225 225 225 225
La2O3 229 229 229 229
Cu3Au 221 221 221 221
PtS 131 131 131 131
Al3Ti 139 139 139 139
Mg 194 194 194 194
CoSn 191 191 191 191
αHg 166 166 166 166
T lF 69 69 138 138
Monoclinic 1 1 1 1
Triclinic 1 1 1 1

Table 5.24: The results of the space group identification stage

another higher symmetry structure even in the presence of reasonable level on

noise. Thus, their space groups were identified accurately. The space group of

the trigonal structure, αHg, has also been identified accurately in all three tests.

However, it is necessary to stress out possible errors that can be observed with

structures similar to αHg. The αHg structure can be considered as a distorted

simple cubic structure. It’s unit cell can be considered as a simple cube, whose

diagonal length increased. Accordingly α, β and γ angles, which are the angles

between each primitive vector pair, are all equal and smaller than 90 degrees.

αHg structure has different forms, depending on such angles. According to the

environmental properties such as the temperature and the pressure, those angles

change their values within some range. Accordingly, αHg’s unit cell might become

quite close to simple cube unit cell. In the test data, those angles were set to

70 degrees. Accordingly, the unit cell parameters differ from simple cubes unit

cell parameters more than the errors can cause. Therefore, the space group could

be identified accurately in all three tests. However, if those angles were set to

a value close to 90 degrees, such as 88 degrees, it is quite likely to obtain 221st

space group, which represents the simple cube structure in the second and in the

third tests.
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For monoclinic data, space group is found as 1, which is a triclinic space group.

This might seem erroneous, but since basis vectors are randomly assigned inside

the monoclinic unit cell, generated crystal structure show no symmetry what so

ever. Accordingly, this structure belongs to first space group. While generating

this data, the main concern was testing other algorithms of the framework, such

as the algorithms for calculating finding primitive vectors and basis vectors. Ac-

cordingly, instead of seeking monoclinic symmetry, data is designed to present

more complex crystal structure, which will test those algorithms of the frame-

work more efficiently. The algorithm for identifying space group is mainly tested

by using close structures such as Mg and CoSn and all three structures in the

cubic lattice class, etc. These structures symmetrically differs a small amount,

as the close space group numbers indicate. Identifying those small differences

constitutes the main challenge for the algorithm for identifying the space group.

Accordingly not using a test data showing monoclinic symmetry, does not posses

a problem. In general, the algorithm identified the space group of randomly

generated test data, accurately in all three tests.

Some problems are observed with T lF structure. T lF is a distorted version

of NaCl structure. In other words, a high symmetry structure is converted into

a low symmetry structure due to small distortions. In the second and in the

third tests, default EPS values are used, which informs the Analyzer program

about the possibility of errors in the input data. Accordingly, algorithm performs

its analysis in the flexibility of given error margin. This flexibility leads T lF

structure to match a higher symmetry group. Cases like T lF , are the main

reason to strongly recommend using ideal data and setting the EPS parameter

to a low value, in order to get reliable space group result.

In general, the space group results can be considered successful. For all test

materials except T lF , correct results are obtained for all three tests. It would be

safe to say, for materials, which are not some distorted form of a higher symmetry

structure; results can be considered accurate even in the presence of reasonable

level of noise. However, for materials which are some distorted forms of a higher

symmetry structure, identified space group may not be reliable unless ideal data

is used and the EPS parameter is set to a low value.
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Results of this algorithm are characteristically different from the other algo-

rithms used in analysis. For example, if the input were containing errors, then

these errors affects the values of primitive vectors. The effect will be proportional

to the error margin in the input data, thus with reasonable error margins, cal-

culated primitive vectors can be sensitive enough. However, errors might cause

a structure to match a completely irrelevant space group. Accordingly, result

obtained with the presence of errors, might not give any meaningful information

about the space group of the material at all. Accordingly, using ideal data and

quite low EPS values are strongly recommended. However, if it is not possible,

user should manually check other lower symmetry space groups that the tool also

returns.

5.3 Performance Evaluation

In this section, the runtime performance of Analyzer program is discussed. In

Table 5.25, execution times of each procedure, obtained with each test data are

given. Runtime values are given in terms of milliseconds. These values were

logged by the Analyzer program and they only represent the time passed during

the execution of the specified algorithm. While testing runtime performances,

UserInterface program was also running, in order to provide user interactions.

Accordingly, this program might cause some fluctuations in the runtime perfor-

mances, due to its CPU requirements. However, since this program was not

performing heavy calculations, this effect should be small.

First two columns represent the number of atom coordinates in the input data.

First row represents the number of all atoms in the input data while second row

represents number of all atoms that are to be analyzed. The tool discards any

atom, which does not lie inside some predefined volume. While generating the

data, no such atoms were generated, in order to keep the performance evaluation

phase simpler. Accordingly, no atoms in the input data were discarded.
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NaCl 3371 1331 130 0 40 10 0 20 10 141 0
nNaCl 3375 1331 151 10 40 10 0 20 20 30 0
La2O3 3375 2197 140 0 81 10 0 10 30 180 20
nLa2O3 3375 2197 140 10 80 10 0 10 30 191 20
Cu3Au 7813 4631 181 20 300 10 10 80 120 71 70
nCu3Au 7807 4626 200 20 371 10 0 90 130 30 70
PtS 36396 17598 500 121 12958 20 10 2484 1612 30 741
nPtS 36169 17594 541 120 12738 20 0 3616 2243 21 742
Al3Ti 41513 20213 571 110 16494 30 0 3204 2083 20 792
nAl3Ti 41509 20209 601 130 17195 20 0 3685 2674 90 821
Mg 17752 8954 311 30 2333 20 0 2273 641 20 361
nMg 17750 8953 331 40 2473 20 0 5008 541 10 351
CoSn 17107 8979 300 50 2043 10 0 181 340 50 160
nCoSn 17105 8784 301 50 2113 10 0 170 321 30 158
αHg 8865 4573 201 20 330 10 0 2053 0 20 0
nαHg 8863 4573 221 20 360 10 10 4817 0 10 0
T lF 46397 22707 621 140 14020 40 20 5729 5147 161 2033
nT lF 45995 22703 650 131 15001 40 10 3858 5168 20 2041
Monoclinic 3360 1824 160 10 50 10 0 0 10 20 0
nMonoclinic 3360 1825 161 10 50 10 0 10 10 20 0

Triclinic 6631 3460 221 30 280 10 0 40 30 30 10
nTriclinic 6620 3445 230 20 280 0 0 0 20 10 10

Table 5.25: The execution times of the stages of the framework for different
materials

The third column represents the time required to read the input data and

the fourth column represent the time spent while indexing the data by using

the octree structure. Both values increases while the number of atoms in the

input data increases. In general, reading the data requires much more time

than indexing the data. Since IO operations are much slower than in-memory

operations, this situation is normal.

The fifth column represents the time spent while grouping identical atoms.

The grouping algorithm is based on comparing matching volumes, in order to
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determine each atoms group. Since during the tests, the default matching range

parameter is used, the matching volumes of the materials that are denser in terms

of the number of atoms per volume, contains more atoms. Accordingly, those

materials would require more time trying to match atom’s and group’s matching

volumes.

It is stated that one of the most dominant part of the grouping algorithm’s

runtime complexity is O(GAMlog(M)), where G represents the number of groups,

A represents the number of atoms to process and M represents the number of

atoms in each atoms matching volumes. Since the volumes of the crystal seg-

ments used in the analysis are equal for every test material, values in the first

column are roughly proportional to the number of atoms per volume values of

each material. Thus, they are proportional to the M value. As shown in Table

5.25, materials with high atom count values also have much higher execution

times of the grouping algorithm. Since there are other parameters acting on the

algorithm’s runtime complexity, atom count and the execution time relation is

not quite clear. In general, the grouping algorithm can be considered sufficiently

fast, since the runtime performances are in reasonable limits. However, for some

cases this algorithm can be one of the algorithms that have a major contribution

to the overall execution time.

Sixth seventh and eight columns represent vector operations, the algorithm for

extracting vectors, the algorithm for filtering out redundant vectors and the al-

gorithm for calculating primitive vector alternatives respectively. The algorithm

for extracting vectors turns out to be quite fast. It took less than 50 millisec-

onds for any material. The algorithm for filtering out redundant vectors was

even faster. For most cases, it’s runtime was even immeasurable. It is mentioned

that even though the worst-case complexity of the algorithm for filtering out re-

dundant vectors is higher than the algorithm for extracting vectors, the runtime

performance would be better. These runtime results support that prediction.

The algorithm for calculating primitive vector alternatives is the dominant time

consuming vector operation. Basically, it checks every vector triplets obtained

from the vector set, in order to see if they could produce all other vectors in that
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vector set by their integer combinations. In order to reduce the tuntime complex-

ity, an optimization is done by limiting the number of vectors that can be used

to form a primitive vector alternative, to a relatively small number. Accordingly,

this algorithm’s runtime complexity is reduced to reasonable levels. In the ta-

ble, eighth column show irregular values for different input data. Cross checking

the runtime performance of this algorithm with the number of vectors remained

after the redundant vectors are filtered out, which is given in Table 5.23, show

that the input materials which require higher processing times for this algorithm

also has higher number of vectors left after the algorithm for filtering out redun-

dant vectors completed. In general, the algorithm for calculating primitive vector

alternatives can be considered as the most time consuming operation after the

grouping algorithm.

The ninth column shows the clustering times. For some input materials such

as αHg, the clustering is quite fast. During the clustering algorithm, each atom

of the first group defines a cluster. Since the αHg structure has only one group,

it’s clustering is trivial, thus quite fast. The clustering algorithm performs cross

checks with all atoms belonging the group that is processing and each cluster, for

every group other than the first one. Therefore, since having too many groups will

reduce the number of clusters, it will decrease the processing time. For random

triclinic data, which has 14 groups and CoSn which has 6 groups, the clustering

times are much smaller than other structures. In general, if the number of atoms

to process is high, then the clustering time also tend to be high. However if the

number of groups is high or equal to one, the clustering time drops significantly.

The tenth column represents the processing times of the identifying the space

group algorithm. This algorithm does not depend on the input material signifi-

cantly. The runtime complexity of this algorithm is logarithmic time. Therefore,

in theory, all inputs materials should have similar processing times. However,

some optimizations change this situation. Finding one symmetry operation which

is not supported by the crystal structure is sufficient to conclude that the crystal

structure does not support the space group. Accordingly, checking the rest of

the symmetry operations can be avoided. As the table implies, the inputs whose

processing times are higher are generally higher symmetry structures. Since a
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higher symmetry structure tends to support more symmetry operation, it ben-

efits from the short circuit property described above much less. Accordingly, it

has higher processing times.

The eleventh column represents the runtime of the the finding basis vectors

algorithm. Since this algorithm is quite similar to the clustering algorithm, the

runtime results are quite similar to the clustering times.

In general, the dominant time-consuming algorithm was the grouping algo-

rithm for most cases. The algorithm for calculating primitive vector alternatives

and the clustering algorithm also demanded significant processing times for some

input materials. However, it is not possible to generalize time requirements of the

algorithms since they depend on inputs characteristics significantly. In general,

the runtime performance of the whole analysis can be considered quite satisfac-

tory. Whole analysis completed under 30 seconds for any input data. This value

can be considered quite successful considering the algorithms were focused on the

accuracy rather than the runtime performance.

Memory requirement of algorithms was quite reasonable throughout the tests.

The Analyzer program used under 40 Megabytes of memory during the tests with

any input data. The UserInterface program also required about 20 Megabytes of

memory. The VisualizationTool program required about 10 Megabytes of mem-

ory. Accordingly, the overall system require at most 60 Megabytes of memory at

anytime throughout it’s usage. This amount is quite reasonable considering the

memory capacities of recent computers. Accordingly, memory requirements can

also be considered quite satisfactory.

5.4 Error Handling

The algorithms can perform quite well in the presence of the reasonable level

of coordinate errors. The noisy data used in the tests were containing ±0.03Å

coordinate errors at each axis. This level of noise is sufficient to cover almost

all of the cases that this framework should handle. On the other hand, in this
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section, the proposed framework is tested with further levels of coordinate errors

in order to see the algorithm’s error tolerances. During the following tests, the

calculated primitive vectors and the basis vectors are examined. Since it is stated

that the space group information might be unreliable under the presence of errors,

the space group results obtained from the following tests were not included into

discussion. The NaCl structure is used as the test structure. The error margins,

±0.2Å, ±0.4Å, ±0.6Å, ±0.8Å and ±1.0Å are used to generate the test data.

While performing the analysis, the error margin values used during the data

generation phase are also given to the tool as the EPS value. If the default

EPS value, which is equal to 0.05Å, were used, then no calculations could be

done. Since the NaCl structure is used, the target primitive vectors will be V1 =

[2.830, 2.830, 0.000], V2 = [2.830, 0.000, 2.830] and V3 = [0.000, 2.830, 2.830] in Å

unit. This form of the primitive vectors is the most desired one but there are also

other valid primitive vector alternatives that the Analyzer program can find. The

target basis vectors in the fractional coordinates should be B1 = Na, [0.0, 0.0, 0.0]

and B2 = Cl, [0.5, 0.5, 0.5], considering the coordinates of a Na atom is selected

as the origin. Similarly, there are also other valid basis vector sets. Each test

performed with these error margins will be described individually.

1. ±0.2Å Error Level: With this error margin, the grouping algorithm

produced 2 groups and eliminated none. The primitive vectors are cal-

culated as V1 = [2.630,−2.862, 0.000], V2 = [2.758, 0.000, 2.773] and V3 =

[0.000,−2.780, 2.803]. These primitive vectors are in the same form with

the target primitive vectors, but this form is also valid. The values can

be considered sufficiently close to the target primitive vectors. A vector

can contain ±2EPS coordinate errors, which in this case is equal to ±0.4.

Since the highest coordinate error is found as 0.2, the primitive vector

results can be considered satisfactory. The basis vectors were found as,

B1 = Na, [0.0, 0.0, 0.0] and B2 = Cl, [0.55, 0.52, 0.48]. These values can also

be considered correct within this error margin. Accordingly, the framework

could be considered quite successful to handle this level of error.

2. ±0.4Å Error Level: With this error margin, the grouping algorithm



CHAPTER 5. RESULTS AND PERFORMANCE 100

produced 2 groups and eliminated none. The primitive vectors are cal-

culated as V1 = [2.555, 2.793, 0.000], V2 = [−0.170, 2.790, 2.655] and

V3 = [2.690, 0.124, 2.778]. These primitive vectors are in the form of

target primitive vectors. The values can be considered sufficiently close

to the target primitive vectors. The highest difference of the coordinate

values is calculated as 0.275, which is quite small considering the possi-

ble difference of ±2EPS, which is 0.8. The basis vectors were found as

B1 = Na, [0.0, 0.0, 0.0] and B2 = Cl, [0.55, 0.51, 0.55]. These values can also

be considered correct within this error margin. Accordingly, the framework

handles this error level successfully.

3. ±0.6Å Error Level: With this error margin, the grouping algorithm

produced 2 groups and eliminated none. The primitive vectors are cal-

culated as V1 = [2.778, 2.773,−0.102], V2 = [0.000, 2.845, 2.765] and V3 =

[2.837,−0.056, 2.798]. These primitive vectors are also in the form of the

target primitive vectors. The values can be considered sufficiently close

to the target primitive vectors. The highest difference of the coordi-

nate values is calculated as 0.102, where it can be as much as ±2EPS,

which is 1.2. The basis vectors were found as B1 = Na, [0.0, 0.0, 0.0] and

B2 = Cl, [0.50, 0.42, 0.55]. These values can also be considered correct

within this error margin. Increased precision in the calculating primitive

vectors part while increasing the error margin can be considered as an inter-

esting coincidence. In the framework, some techniques are used to improve

the quality of the vectors, such as averaging close vectors in order to reduce

the effects of high errors. Accordingly, it is quite unlikely to calculate prim-

itive vectors, which contain errors close to 2EPS. However, no techniques

that will work more precisely with the data containing higher error margin

were used. Thus, this situation can be considered as just a coincidence.

4. ±0.8Å Error Level: With this error margin, the grouping algorithm still

produced 2 groups and eliminated none. However, in this test no remotely

acceptable primitive vectors were calculated. The tool proposed several

primitive vector alternatives but none of them were close to any valid form

of the actual primitive vectors. Accordingly, calculating primitive vectors
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part failed with this error margin. After selecting some proposed primitive

vector alternative, the tool proposed a list of atoms to choose as the origin.

This means, the clustering could be done. Since the list were containing

one Na and one Cl atoms whose relative distance show that these atoms

were neighbors, the clustering can also be considered correct. However, the

tool was unable to calculate any basis vectors. Accordingly, the framework

failed within this error margin.

5. ±1.0Å Error Level: The results obtained with this error margin is quite

similar to the ones obtained with ±0.8 error margin. Only the clustering

part worked correctly. Calculated primitive vectors were unacceptable and

no basis vectors could be found. Accordingly, the framework failed for this

error margin too.

In general, the error tolerance of the framework can be considered quite well.

The tests show that, even with the data containing ±0.6 error margin, accurate

results are obtained for NaCl structure. Considering Na’s radius is 1.16 and Cl’s

radius is 1.67 in NaCl structure, ±0.6 error level can be considered as a quite large

value. It was recommended that the error margin should be smaller than 25% of

the radius of the smallest atom in the input data. For NaCl structure, analysis

were successful with the error margins even more than 50% of the radius of the

smallest atom in the input data. However, for more sensitive materials, such as

crystals in hexagonal lattice class, 25% can be considered a safer upper limit.

The primitive vectors of these crystals are closer to each other and the matching

volumes of atoms in different groups are closer. Accordingly, the coordinate

errors can cause problems more easily for those structures. However, with the

error margin less than 25% of the radius of the smallest atom in the input data,

the analysis would be successful.

Even though the framework has high error tolerance, it is recommended to

use ideal data if possible. The main reason for that recommendation is, despite

analysis can succeed with erroneous data, the primitive vectors and the basis

vectors will contain small errors. These errors would in acceptable ranges, but

they will not completely accurate. With ideal data, the tool can calculate exact
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values. Another reason to use the ideal data is the space group operations. The

space group identification stage is effected from the errors significantly. Therefore,

with erroneous data relying on obtained space group results might be deceptive.

Accordingly, whenever possible, ideal data should be used.

5.5 Discussion

The results, the performance evaluation and the error analysis show that the

proposed framework and the algorithms that are used in different stages are quite

successful. Always correct results are obtained with ideal data. The runtime

performances were also quite good. However, with noisy data some problems are

observed. The basic problem was small deviations in the results. The primitive

vectors and the basis vectors were containing small errors. These errors were

in acceptable ranges considering the error margin of the input data. However,

there were other inconveniences. As known, this work is designed to be a semi-

automatic system. The user is expected to give some inputs throughout the

analysis. After the analysis is started, the user is asked about two things, the

primitive vector sets to continue the analysis with and the origin choice. The tool

is designed so that it will present better alternatives of primitive vector sets in

higher places. Actually, sole functionality of the algorithm for purifying primitive

vector alternatives is ordering valid primitive vector alternatives according to

users preference. With the ideal data, this algorithm was quite successful. Desired

primitive vector alternatives could be found on one of the top places. However,

with the noisy data, finding the desired vectors could be harder. Since during the

tests, the desired vectors were manually selected, this difficulty was not reflected

in the experimental results section. Another problem with the noisy data is the

possibility of obtaining invalid primitive vector sets. As explained previously,

these invalid primitive vectors do not cause any significant problem since the

user can identify them quite easily. However, they cause inconvenience to user.

Finally, the last but may be the most important problem with the noisy data was

the space group results. During the tests, the presence of noise, or informing the

tool about the possibility of noise by using default EPS value, caused incorrect
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results with T lF structure. Even though all other structure’s space groups were

identified accurately with the noisy data, T lF example shows that the space

group results might contain errors if ideal data and low EPS values were not

used. Since T lF structure is a slightly distorted form of a higher symmetry

structure, the algorithm for identifying space group’s sensitivity to the errors is

quite natural. Accordingly, the algorithm can be considered accurate. However,

user should be aware of this sensitivity of this algorithm, while using the tool.
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Conclusion

The aim of this work is to extract pattern information from crystal structures by

using atomic coordinates. Determining pattern information of crystal structures,

such as primitive vectors, basis vectors and space group, has great importance

in crystallography, chemistry and material sciences, since physical behavior of

materials are directly related to those crystal parameters. This work provides a

tool that can help scientists to identify and classify crystal structures. This work

also provides a good crystal visualization tool that allows scientists to observe

crystal structures in 3D environment.

Since this subject is not quite common, there were no directly related previous

works. Accordingly, a new framework is proposed. Some approaches that are used

in other areas such as 3D shape matching and pattern recognition are adapted

to this problem and some new approaches are devised. There are two main

challenges for proposing the framework. The first challange is obtaining accurate

results while achieving reasonable runtime performance. Several critical decisions,

such as limitations on inputs of intermediate stages, are taken for this purpose.

Several computational optimizations are also proposed. The second challenge is

handling erroneous input data. In order to overcome this problem the algorithm

for finding basis vectors is rewritten and other algorithms are modified.

This work is tested with several data showing various characteristics. Test
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data was generated by using real crystal parameters, with different error levels.

Some randomly generated data are also included into tests. Experimental results

and error analysis show that framework is capable to give accurate results even

in the presence of reasonable levels of errors. Runtime performances were also

quite satisfactory. Accordingly, proposed framework can be considered efficient

and accurate.

6.1 Future Work

In this work, a tool, which extracts pattern information from crystal coordinates,

is presented. The results were quite satisfactory with ideal data. On the other

hand, small distortions were observed with noisy data. Since the levels of distor-

tions were smaller than the error margin that errors in the input data could cause,

the tool was considered successful with noisy data. Even though the levels of dis-

tortions were acceptable, the precision of the results can be improved. Several

techniques that can improve the precision of output, were also proposed. Some

of those techniques were not used in the implementation in order to achieve good

runtime performance. On the other hand, since runtime performance turned out

to be quite satisfactory, those techniques can be used to improve the precision of

results with erroneous data.

This work can also be considered as a crystallographic visualization tool. The

visualization tool provided in BilKristal, presents several features, such as defining

multi cells, defining cut planes, using animations etc. Even though most of the

required features are included into this tool, it still can be improved. Currently

the visualization part of the BilKristal tool, can be considered as a practical tool

that performs required operations in a simple way. However, various options,

different graphical model choices etc. could improve the visualization tool.

The main technique used in crystallography is x-ray diffraction analysis. Ac-

cordingly, integration of this work with x-ray diffraction techniques can be quite

useful for crystallographers. Since most of the data that crystallographers use are
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based on x-ray diffraction analysis, such integration could be quite helpful. To-

gether with the improvements described before, a quite powerful crystallography

tool can be obtained.
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Appendix A

Data Structures

Data structures used in Analyzer program are listed as follows.

1. Point structure:

typedef struct point{

int type;

double x;

double y;

double z;

struct point *next;

struct point *next2;

struct point *gnext;

}point;

2. Octree node structure:

typedef struct octreeNode{

struct octreeNode *children[8];

point *data;

double xmax;

double xmin;
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double ymax;

double ymin;

double zmax;

double zmin;

struct octreeNode *parent;

} octTreeNode;

3. Group structure:

typedef struct group{

int atomtype;

point *ref;

point *idlist;

point *list;

int idatcnt;

int atomcnt;

struct group *next;

}group;

4. Vector structure:

typedef struct VECTOR{

double x;

double y;

double z;

}VECTOR;

5. Primitive vector set structure:

typedef struct PRI_VECTS{

VECTOR v1;

VECTOR v2;

VECTOR v3;

double V1L;

double V2L;
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double V3L;

double VLAVG;

double volume;

double alpha;

double beta;

double gamma;

double AngleValue;

int VectorValue;

struct PRI_VECTS *next;

}PRI_VECTS;

6. Cluster structure:

typedef struct cluster{

double cx;

double cy;

double cz;

point *newpnt;

int curnumofpnts;

point *list;

struct cluster *prev;

struct cluster *next;

}cluster;

7. Basis point structure:

typedef struct BasisPoint{

point bp;

double fx;

double fy;

double fz;

} BasisPoint;

8. Space group structure:
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typedef struct SpaceGroup{

int groupNumber;

char name[256];

int numOfOperations;

int numOfTotalOperations;

double *RMatrix;

double *TVector;

}SpaceGroup;

Data structures used in VisualizationTool program are listed as follows.

1. Point structure:

typedef struct point{

double x;

double y;

double z;

double radius;

int R;

int G;

int B;

}point;

2. Stick structure:

typedef struct stick{

point *P1;

point *P2;

struct stick *next;

}stick;

3. Cut Plane structure:

typedef struct cutPlane{



APPENDIX A. DATA STRUCTURES 113

double i;

double j;

double k;

int operation;

struct cutPlane *next;

}point;


