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Abstract. This paper investigates the theory behind the steady state analysis of large, sparse Markov chains (MCs)
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1. Introduction. Markov chains (MCs) are a popular mathematical tool to describe real systems
from various application areas like engineering, computer science or economics. For system analysis often
one needs the steady state distribution of the MC to compute result measures for the modeled system.
The problem in the continuous-time case is then to solve

πQ = 0 subject to πe = 1,(1.1)

where Q is the infinitesimal generator or generator matrix (i.e., continuous-time Markov chain, CTMC) of
order n underlying the modeled system, π ≥ 0 is its (row) stationary probability vector, and e is the column
vector of ones of appropriate length. We assume that the n states of Q are numbered starting from 0 and Q
is irreducible, implying π > 0 and π is also the steady state vector. The nonnegative off-diagonal elements
of Q represent exponential transition rates between different states and its diagonal elements are negated
row sums of its off-diagonal elements. Hence, Q has row sums of zero (i.e., Qe = 0), is a singular matrix
of rank (n − 1), and (1.1) represents a homogeneous linear system subject to a normalization condition,
so that its solution vector π can be uniquely determined [25, Ch. 1]. At this level, states of the CTMC
are numbered by consecutive integers. However, in almost all applications CTMCs result from some high
level model like a stochastic automata network (SAN), a queueing network (QN) or a stochastic Petri net
(SPN). In all these cases, the state space is multidimensional and is mapped for solution onto a set of
consecutive integers. The multidimensional structure can be exploited in a compact representation of Q
and can also be exploited to develop fast solvers for the computation of π.

Practical problems arise due to the state space size of MCs resulting from applications which often grows
exponentially with the number of components in the specification. A popular way of dealing with this so
called “state space explosion problem” is to employ Kronecker (or tensor) based representations of Q which
remain compact even for considerably large state spaces. In the Kronecker based approach, the system of
interest is modeled so that it is formed of smaller interacting components, and its larger underlying MC
is neither generated nor stored but rather represented using Kronecker products of the smaller component
matrices. This introduces significant storage savings at the expense of some overhead in the solution
phase. In order to analyze large, structured Markovian models efficiently, various algorithms for vector-
Kronecker product multiplication are devised [15, 16, 13] and used as kernels in iterative solution methods.
The most effective solvers known for Kronecker representations of dimension four or larger are multilevel
(ML) methods [11] and block successive over-relaxation (BSOR) preconditioned projection methods [12]
as recently shown empirically by comparing different solvers on a large number of HMMs. Unfortunately,
solvers using BSOR [10, 26] are sensitive to the ordering of components, the block partitionings chosen,
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and the amount of fill-in in the factorized diagonal blocks so that a robust implementation for arbitrary
models is difficult to achieve.

In this paper, we investigate the theory behind the steady state analysis of large, sparse MCs with
the class of ML methods proposed in [11] using concepts from algebraic multigrid (AMG) [6, Ch. 8]
and iterative aggregation-disaggregation (IAD) [25, Ch. 6]. Our motivation is to better understand the
convergence characteristics of the class of ML methods and to have a clearer formulation that will aid
their implementation. Convergence analysis of a two-level IAD method for MCs and its equivalence to
AMG is provided in [19]. Another paper that investigates the convergence of a two-level IAD method
for MCs using concepts from multigrid is [20]. Here we consider more than two levels, different types of
smoothers, different types of cycles, and different orders of aggregation. In doing this, we use restriction
(or aggregation) and prolongation (or disaggregation) operators of multigrid, and employ the Kronecker
based approach for HMMs in [11]. This is due to three reasons. First, the hierarchy present in the HMM
description suggests a natural definition of grids (or levels). This simplifies the description of the class of
ML methods. Second, with the HMM description, one can store the aggregated MC at each level during
implementation compactly in Kronecker form. It is not clear how the same effect can be achieved with a
MC in sparse format (see [18]). Third, Kronecker operations to define large MCs underlying structured
representations are natural for many application areas since complex systems are usually composed of
interacting components. Almost all MCs resulting from applications can be represented as HMMs and this
representation can be derived from the specification using an appropriate modeling tool [1]. Otherwise,
the HMM formalism used in this paper to describe the class of ML methods for large, sparse MCs has no
influence on the theoretical results derived.

The next section introduces the Kronecker based description of CTMCs underlying HMMs on a simple
test case. The third section presents the proposed class of ML methods for HMMs with multiple macrostates
and discusses how they work. The fourth section provides the convergence analysis. The fifth section
illustrates one step of the ML method on the simple test case and the sixth section concludes the paper.

In what follows, calligraphic uppercase letters denote sets and lists, uppercase letters denote matrices,
sets are defined using curly brackets, lists are defined using square brackets, matrices (and vectors) are
defined using brackets, | · | denotes the cardinality of a set (list) when its argument is a set (list), ∅ denotes
the empty set, || · || denotes the norm of a vector, ·T denotes the transpose operator, and diag(·) represents
a diagonal matrix having its vector argument along its diagonal.

2. Hierarchical Markovian Models. Hierarchical Markovian models (HMMs) are defined using
the operations of Kronecker product and Kronecker sum [27]. First we introduce these operations.

Definition 2.1. The Kronecker product of two matrices X ∈ IRrX×cX and Y ∈ IRrY ×cY is written as
X ⊗ Y and yields the matrix Z ∈ IRrXrY ×cXcY , whose elements satisfy ziXrY +iY ,jXcY +jY

= xiX ,jX
yiY ,jY

.
The Kronecker sum of two square matrices U ∈ IRrU×rU and V ∈ IRrV ×rV is written as U ⊕ V and yields
the matrix S ∈ IRrU rV ×rU rV , which is defined in terms of two Kronecker products as S = U⊗IrV

+IrU
⊗V .

Here IrU
and IrV

denote identity matrices of orders rU and rV , respectively. Both Kronecker product and
Kronecker sum are associative and defined for more than two matrices.

HMMs consist of multiple low level models (LLMs) which can be perceived as components, and a high
level model (HLM) that defines how LLMs interact. The HLM is characterized by a single matrix, whereas
each LLM is characterized by multiple matrices that define its interaction with other LLMs. The order
of each LLM matrix is equal to the number of states of the particular component to which the matrix
belongs. A formal definition of HMMs can be found in [8, pp. 387–390]. Here we extend the definition
from [12] and introduce HMMs on a running example. We refer to the CTMC underlying an HMM as the
matrix Q. We name the states of the HLM as macrostates, those of Q as microstates, and remark that
macrostates define a partition of the microstates.

Definition 2.2. In a given HMM, let K be the number of LLMs, S(k) = {0, 1, . . . , |S(k)| − 1} be
the state space of LLM k for k = 1, 2 . . . ,K, S(K+1) = {0, 1, . . . , |S(K+1)| − 1} be the state space of the
HLM, S(k)

j be the partition of states of LLM k mapped to macrostate j ∈ S(K+1) so that ∪jS(k)
j = S(k)

and S(k)
i ∩ S(k)

j = ∅ when i 6= j, t0 be a local transition (one per LLM), Ti,j be the set of LLM non-local
transitions in element (i, j) of the HLM matrix, and Dj be the diagonal correction matrix that sums the
rows of Q corresponding to macrostate j to zero. Then the diagonal block (j, j) of Q corresponding to
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element (j, j) of the HLM matrix is given by

Q(j, j) =
K⊕

k=1

Q
(k)
t0 (S(k)

j ,S(k)
j ) +

∑
te∈Tj,j

K⊗
k=1

Q
(k)
te

(S(k)
j ,S(k)

j ) +Dj ,(2.1)

and, when there are multiple macrostates, the off-diagonal block (i, j) of Q corresponding to element (i, j)
of the HLM matrix is given by

Q(i, j) =
∑

te∈Ti,j

K⊗
k=1

Q
(k)
te

(S(k)
i ,S(k)

j ).(2.2)

where Q(k)
te

(S(k)
i ,S(k)

j ) is a submatrix of order (|S(k)
i |× |S

(k)
j |) including all transitions1 between states from

S(k)
i and S(k)

j for LLM k under te.
We remark that Dj can be expressed as a sum of Kronecker products:
Proposition 2.3. If Dj is the diagonal correction matrix that sums the rows of Q corresponding to

macrostate j to zero, then

Dj = −
K⊕

k=1

diag(Q(k)
t0 (S(k)

j ,S(k)
j )e)−

∑
i∈S(K+1)

∑
te∈Tj,i

K⊗
k=1

diag(Q(k)
te

(S(k)
j ,S(k)

i )e) for j ∈ S(K+1).

In order to enable the efficient implementation of numerical solvers, most of the timeDj is precomputed
and stored explicitly as a vector. However, the off-diagonal part of Q is never stored explicitly, but
represented in core through Definition 2.2 as sums of Kronecker products of small matrices, which are
generally very sparse and therefore held in row sparse format [25, pp. 80–81].

For a definition of mapping used in the next proposition, see, for instance, [23, pp. 192–197].
Proposition 2.4. When the multidimensional states of Q are identified by the tuple (s(1), s(2), . . . ,

s(K), j), where s(k) ∈ S(k) is the state of LLM k for k = 1, 2, . . . ,K and j ∈ S(K+1) is the corresponding
macrostate, the Kronecker product operation orders the state space of Q lexicographically, where each state
is linearized through the one-to-one, onto mapping

(s(1), s(2), . . . , s(K), j) ←→
K∑

k=1

s(k)
K∏

l=k+1

|S(l)
j |+

j−1∑
i=0

K∏
k=1

|S(k)
i | ∈ {0, 1, . . . , n− 1}.

where n =
∑|S(K+1)|−1

j=0

∏K
k=1 |S

(k)
j |.

The microstates corresponding to each macrostate result from the Cartesian (or cross) product [23, pp.
123–124] of the state space partitions of LLMs that are mapped to that particular macrostate. In contrast
to other representations of CTMCs using Kronecker operators (e.g., [25, Ch. 9]), HMMs are generated
in a way that only reachable states are considered [7, 8]. Note that each macrostate in an HLM may
have a different number of microstates if LLMs have partitioned state spaces. When there are multiple
macrostates, Q is effectively a block matrix having as many blocks in each dimension as |S(K+1)|. The
diagonal and off-diagonal blocks of this partitioning are respectively the Qj,j and Qi,j matrices defined by
(2.1) and (2.2). Due to the Kronecker structure suggested by Definitions 2.1 and 2.2, each of the blocks
defined by the HLM matrix is also formed of blocks, and hence HMMs have nested block partitionings
[10, 26].

Now, let us consider HMM test which gives rise to a (5×5) CTMC. The example is chosen deliberately
to be very small since later we will be stepping through the ML method on this example.

Example 1. The HLM of 2 states describes the interaction among two LLMs (i.e., K = 2) each of
which has 3 states. All states are numbered starting from 0. The mapping between LLM states and HLM
states and the number of microstates are given in Table 2.1. In this example, Q has the following states in

1In this section, the concept of transition is used to refer to those that take place at the HMM level, except for this case
where it is used to refer to nonzeros in a matrix at the state level.
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Table 2.1
Mapping between LLM states and HLM states in test.

LLM 1 LLM 2 HLM # of microstates
{0,1} {0,1} {0} 2 . 2 = 4
{2} {2} {1} 1 . 1 = 1

its rows and columns: {0, 1}×{0, 1}×{0} ∪ {2}×{2}×{1} = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (2, 2, 1)}.
One can think of these five states written in the given order as corresponding to the integers 0 through 4.

The values of the nonzeros in Q are determined by the rates of the transitions and their associated
matrices. In Example 1, two transitions denoted by t0 and t1 take place and affect the LLMs. Transition
t0 covers all local transitions inside the LLMs, whereas transition t1 is captured by the following (2 × 2)
HLM matrix:

0 1

0
1

(
t1

t1

)
.(2.3)

To each transition in the HLM matrix corresponds a Kronecker product of two (i.e., number of LLMs,
K) LLM matrices. The matrices associated with those LLMs that do not participate in a transition are
identity. LLM 1 participates in t1 with the matrix Q(1)

t1 and LLM 2 participates in t1 with the matrix Q(2)
t1 .

In this example, the transition t1 affects exactly two LLMs.
Other than Kronecker products due to the transitions in (2.3), there is a Kronecker sum implicitly

associated with each diagonal element of the HLM matrix. Each Kronecker sum is formed of two (i.e., K)
LLM matrices corresponding to local transition t0. In the HLM matrix of test in (2.3), there does not exist
any non-local transition along the diagonal. In general, this need not be so, as can be seen from Definition
2.2.

In our example, the second term in (2.1) is missing, and the matrices associated with t0 and t1 are
given by

Q
(1)
t0 =

 0 1 0
1 0 0
0 0 0

 , Q
(1)
t1 =

 0 0 2
0 0 1
1 0 0

 , Q
(2)
t0 =

 0 1 0
1 0 0
0 0 0

 , Q
(2)
t1 =

 0 0 1
0 0 0
1 0 0

 .

Then the CTMC underlying HMM test can be obtained from

Q =

 Q
(1)
t0 ({0, 1}, {0, 1})

⊕
Q

(2)
t0 ({0, 1}, {0, 1}) Q

(1)
t1 ({0, 1}, {2})

⊗
Q

(2)
t1 ({0, 1}, {2})

Q
(1)
t1 ({2}, {0, 1})

⊗
Q

(2)
t1 ({2}, {0, 1}) Q

(1)
t0 ({2}, {2})

⊕
Q

(2)
t0 ({2}, {2})

+D,(2.4)

where D is the diagonal correction matrix that sums the rows of Q to zero; hence,

Q =


−4 1 1 0 2

1 −2 0 1 0
1 0 −3 1 1
0 1 1 −2 0
1 0 0 0 −1

 .(2.5)

The steady state vector of Q in four decimal digits of precision is

π =
(

0.1750 0.1500 0.1000 0.1250 0.4500
)
.

If we neglect the diagonal of Q which is handled separately, from Definition 2.2 it follows that each
nonzero element of the HLM matrix is essentially a sum of Kronecker products, since Kronecker sums can
be expressed as sums of Kronecker products. This has a very nice implication on the choice of grids in
the proposed ML method when LLM aggregation is used in forming the coarser grids. LLMs 1 through K
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and the HLM define the least coarsest (in other words, the finest) grid. This grid is Q and in our example
has five states. Regarding the intermediate grids, let us assume that LLMs are aggregated starting from 1
up to K. Thus LLMs 2 through K and the HLM define the first coarser grid when LLM 1 is aggregated.
In our example, this grid has the states in {(0, 0), (1, 0), (2, 1)}, where the first state in each tuple is an
LLM 2 state and the second state in each tuple is the corresponding HLM state. The HLM and LLMs 3
through K define the second coarser grid when LLMs 1 and 2 are aggregated. In our example, this grid is
the coarsest grid corresponding to the HLM and has the states {(0), (1)}. There are no other LLMs left to
be aggregated in our example; otherwise aggregation continues with the next LLM.

Now, let us concentrate on the sizes of the grids defined by the LLMs and the HLM for the assumed
order in which LLMs are aggregated. In Example 1, the grids defined in this way by LLMs 1-2 and the
HLM, LLM 2 and the HLM, the HLM have respectively the sizes (5×5), (3×3), (2×2) (see Table 2.1 and
(2.1)-(2.2)). Clearly, we are not limited to aggregating LLMs in the order 1 through K, and can consider
other orderings. The number of possible orderings of LLMs equals K!

In the next section, we introduce the class of ML methods with the grid choices suggested by the
Kronecker structure of HMMs and remark that, just like Q, none of the grids except the coarsest is
explicitly generated.

3. A class of ML methods. The class of ML methods presented in this section for HMMs with
multiple macrostates have the capability of using (V, W, F) cycles [28], (power, Jacobi over-relaxation—
JOR, successive over-relaxation—SOR) methods as smoothers, and (fixed, cyclic, dynamic) orders in which
LLMs can be aggregated in a cycle. These parameters are respectively denoted by C, S, and O. We
remark that C ∈ {V,W,F}, S ∈ {POWER, JOR, SOR}, and O ∈ {FIXED,CY CLIC,DY NAMIC}.
In a particular ML solver, C, S, and O are fixed at the beginning.

Algorithm 1 is the driver of the ML solver. It starts executing at the finest grid involving the LLMs
and the HLM, and then invokes the recursive ML function in Algorithm 2 with the order of aggregation
in the list C. Each pass through the body of the repeat-until loop in Algorithm 1 corresponds to one cycle
of the ML method. Observe that steps 3 through 8 in Algorithm 2 are almost identical to the statements
between steps 3 and 4 in Algorithm 1.

The variable γ in the two algorithms determines the number of recursive calls to the ML function. It
is initialized to 2 for a W- or an F-cycle and to 1 for a V-cycle before ML starts executing for the first
time. After this point, there are two places where the value of γ changes, and these happen only for an
F-cycle. Hence, for a V-cycle γ remains 1, and for a W-cycle it remains 2, meaning for V- and W-cycles
1 and 2 recursive calls are made to the ML function on the next coarser grid, respectively. On the other
hand, for an F-cycle γ is set to 1 at the boundary case of the recursion (see step 2 in Algorithm 2). Hence,
an F-cycle can be seen as a recursive call to a W-cycle followed by a recursive call to a V-cycle. After
the F-cycle is over, γ is reset to 2 in step 4 of Algorithm 1 so as to be ready for a new ML cycle [28, pp.
174-175].

Each ML cycle starts and ends with some number of iterations using the smoother S. See respectively
the two statements after step 3 and and before step 4 in Algorithm 1. The same is true for each execution
of the recursive ML function at intermediate grids as can be seen in steps 3 and 8 of Algorithm 2. The first
two arguments of the call to S in both algorithms represent respectively the grid to be used in the smooth-
ing process and the vector to be smoothed. The user is given the flexibility to specify different numbers of
pre- and post-smoothings in the two algorithms. Hence, we have the nonnegative integer pairs of parame-
ters (MIN OUT PRE,MAX OUT PRE), (MIN OUT POST , MAX OUT POST ) for the finest grid
handled by Algorithm 1, and (MIN IN PRE,MAX IN PRE), (MIN IN POST,MAX IN POST )
for the coarser grids handled by Algorithm 2.

For each pair of parameters (MIN ∗,MAX ∗), S performs MAX ∗ smoothings when MIN ∗ ≥
MAX ∗. When MIN ∗ < MAX ∗, S performs an adaptive number of smoothings using the two pa-
rameters ρ and RES COUNT as follows. Upon entry to S, the residual norm of the current solution
vector is computed and recorded. Then MIN ∗ smoothings are performed and the residual norm of the
solution vector is recomputed. If the ratio of the two residual norms is less than ρ, then S stops execut-
ing; otherwise, smoothings continue till MAX ∗ iterations or the ratio of residual norms of two solution
vectors RES COUNT iterations apart are less than ρ. Note that the computation of the residual vector
requires an extra implicit vector-grid multiply when S = SOR. However, this is performed only every
RES COUNT smoothings once S is beyond MIN ∗ smoothings. The parameter w in the call to S is the
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relaxation parameter for JOR and SOR.

Algorithm 1. ML Driver.
main()
D = [1, 2, . . . ,K + 1]; Q̃D = Q; xD = initial approximation; it = 0; cyc = 0; stop = FALSE; (step 1)
if (C == W or C == F ) then (step 2)
γ = 2;

else
γ = 1;

repeat (step 3)
x
′

D = S(Q̃D, xD, w,MIN OUT PRE,MAX OUT PRE, ρ,RES COUNT, ν1);
C = D − [head(D)];
Q̃C = Px

′
D
Q̃DRD; xC = x

′

DRD;
if (γ == 1) then
yC = ML(Q̃C , xC , C, γ);

else
yC = ML(Q̃C , xC , C, γ);
yC = ML(Q̃C , yC , C, γ);

yD = yCPx
′
D
;

y
′

D = S(Q̃D, yD, w,MIN OUT POST,MAX OUT POST, ρ,RES COUNT, ν2);
if (C == F ) then (step 4)
γ = 2;

xD = y
′

D; it = it+ ν1 + ν2; cyc = cyc+ 1; (step 5)
normalize(xD); r = −xDQ̃D; (step 6)
if (it ≥MAX IT or time ≥MAX TIME or ‖r‖ ≤ STOP TOL) then (step 7)
stop = TRUE;

else if (O == DYNAMIC) then (step 8)
sort LLM indices D1,D2, . . . ,DK into increasing order of ‖rk‖,
where rk is the residual associated with LLM k and is computed from r;

else if (O == CY CLIC) then
circular shift(D1,D2, . . . ,DK);

until(stop);
take xD as the steady state vector π of the HMM;

Algorithm 2. Recursive ML Function on LLMs in D.
function ML(Q̃D, xD,D, γ)
if (|D| == 1) then
y
′

D = solve(Q̃D, xD) subject to y
′

De = 1; (step 1)
if (C == F ) then (step 2)
γ = 1;

else
x
′

D = S(Q̃D, xD, w,MIN IN PRE,MAX IN PRE, ρ,RES COUNT, ν1); (step 3)
C = D − [head(D)]; (step 4)
Q̃C = Px

′
D
Q̃DRD; xC = x

′

DRD; (step 5)
if (γ == 1) then (step 6)
yC = ML(Q̃C , xC , C, γ);

else
yC = ML(Q̃C , xC , C, γ);
yC = ML(Q̃C , yC , C, γ);

yD = yCPx
′
D
; (step 7)

y
′

D = S(Q̃D, yD, w,MIN IN POST,MAX IN POST, ρ,RES COUNT, ν2); (step 8)
return(y

′

D);
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The ML solver starts with xD which is usually set to the uniform distribution and r as the corresponding
residual vector. We remark that the smoothers of choice require two vectors of length n and two vectors
(three in SOR) as long as the maximum number of microstates per macrostate in the HMM. One of
the vectors of length n in SOR is required for the computation of residuals in the implementation of
DYNAMIC ordering of LLMs for aggregation. Furthermore, if one turns off the call(s) in Algorithm 1 to
Algorithm 2, Algorithm 1 reduces to an iterative solver in which (ν1 + ν2) iterations are performed on Q
with the iterative method S at each cycle. This is a useful feature for debugging.

The order of aggregating LLMs in each ML cycle is determined by the list D defined in Algorithm 1.
The elements of D from its head to its tail are denoted respectively by D1,D2, . . . ,DK+1. The subscripts
of these elements indicate their positions in D. In each ML cycle, the HLM is always the last model to
be handled due to its special position in the hierarchy. Hence, DK+1 is given the value (K + 1) and is
associated with the HLM; the tail of D always has this value. Initially, LLM k is associated with element
Dk, which has the value k for k = 1, 2, . . . ,K (see step 1 of Algorithm 1). In each ML cycle, LLMs are
aggregated according to these values starting from the element at the head of the list (see the second
statement in the repeat-until loop of Algorithm 1). Hence, LLM D1 is the first LLM to be aggregated.

In the FIXED order of aggregating LLMs, the initial assignment of values to the elements of D does
not change after the ML method starts executing; this is the default order. In the CY CLIC order, at
the end of each ML cycle a circular shift of elements D1 through DK in the list is performed; this ensures
some kind of fairness in aggregating LLMs in the next ML cycle. On the other hand, the DYNAMIC
order sorts the elements D1 through DK according to the residual norms mapped (or restricted) to the
corresponding LLM at the end of the ML cycle, and aggregates the LLMs in this sorted order in the next
ML cycle (see step 8 of Algorithm 1). This ensures that LLMs which have smaller residual norms are
aggregated earlier at finer grids. We expect small residual norms to be indicative of good approximations
in those LLMs. Note that at each intermediate grid, the recursive ML function is invoked for the next
coarser grid with the list of LLMs in C, which is formed by removing the LLM at the head of the incoming
list D (i.e., head(D)) by aggregation (see step 4 in Algorithm 2). Once the list of LLMs is exhausted,
that is (K + 1) is the only value remaining in list D, backtracking from recursion starts by solving a linear
system as large as the HLM matrix (see step 1 in Algorithm 2).

Before we discuss the operation that computes the next coarser grid Q̃C from the grid Q̃D using the
smoothed vector x

′

D (see step 5 in Algorithm 2), let us define the state spaces of the grids used in the ML
method for large, sparse MCs in terms of a mapping [23, pp. 192–197].

Definition 3.1. Let SD and SC respectively denote the state spaces of Q̃D and Q̃C. Then the mapping
fD : SD −→ SC represents the transformation of states in SD to states in SC; it is surjective (i.e., onto),
it satisfies

∃sD ∈ SD, fD(sD) = sC for each sC ∈ SC ,

and |SC | ≤ |SD|. When |SC | = |SD|, the mapping becomes bijective (i.e., one-to-one onto).
From Definition 3.1 and [23, pp. 179], we have the next proposition.
Proposition 3.2. If f̃D denotes the converse of fD, then f̃D is a relation from SC to SD, and will

not be a mapping unless |SC | = |SD| (i.e., fD is bijective).
Proposition 3.2 says that, if there is at least one state in SC to which multiple states from SD are

mapped under fD (i.e., |SC | < |SD|), then the converse of fD cannot be a function; it is just a relation.
For HMMs, the Kronecker structure (see Definition 2.2 and Proposition 2.4) and the order of component

aggregation determine SD and SC as in the next proposition.
Proposition 3.3. In Algorithms 1 and 2, the components in D and C respectively define SD and SC

for HMMs, and

SD = ∪j∈S(K+1) ×|D|k=1 S
(Dk)
j and SC = ∪j∈S(K+1) ×|C|k=1 S

(Ck)
j ,

where × is the Cartesian product operator. Furthermore,

|SD| =
|S(K+1)|−1∑

j=0

|D|∏
k=1

|S(Dk)
j | and |SC | =

|S(K+1)|−1∑
j=0

|C|∏
k=1

|S(Ck)
j |.
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At the finest level in Algorithm 1, |SD| = n.
Observe from Definition 2.2 that SD and SC for HMMs given in Proposition 3.3 satisfy the mapping

fD : SD −→ SC in Definition 3.1.
Now we return to the computation of the coarser grid and the coarser approximation. For each state

sC ∈ SC , the columns of the grid Q̃D corresponding to the states in SD that get mapped to the same state
sC are summed. The aggregation on the columns of Q̃D is also performed on the columns of the smoothed
row vector x

′

D yielding the vector xC in step 5 of Algorithm 2. These are achieved by using the restriction
[22] (or aggregation) operator defined next.

Definition 3.4. The (|SD| × |SC |) restriction operator RD for the mapping fD : SD −→ SC has its
(sD, sC)th element given by

rD(sD, sC) =
{

1 if fD(sD) = sC
0 otherwise for sD ∈ SD and sC ∈ SC .

Proposition 3.5. The restriction operator RD is nonnegative (i.e., RD ≥ 0), has only a single nonzero
with the value one in each row and therefore row sums of one (i.e., RDe = e). Furthermore, since there
is at least one nonzero in each column of RD (i.e., eTRD > 0), it is also the case that rank(RD) = |SC |.
Thus the product Q̃DRD yields a column aggregated grid whose row sums (i.e., Q̃DRDe = Q̃De) are zero
if Q̃D has row sums of zero (i.e., Q̃De = 0).

For each state sC ∈ SC , the rows of Q̃DRD corresponding to the states in SD that are mapped to the
same state sC are multiplied with the corresponding normalized elements of the smoothed row vector x

′

D
and summed. This is achieved by using the prolongation [22] (or disaggregation) operator defined next.

Definition 3.6. The (|SC | × |SD|) prolongation operator Px
′
D

for the mapping fD : SD −→ SC has its
(sC , sD)th element given by

px
′
D
(sC , sD) =

{
x
′

D(sD)/
∑

sD∈SD,fD(sD)=sC
x
′

D(sD) if fD(sD) = sC
0 otherwise

for sD ∈ SD and sC ∈ SC .

Proposition 3.7. If x
′

D > 0, the prolongation operator Px
′
D

is nonnegative (i.e., Px
′
D
≥ 0), has

the same nonzero structure as the transpose of RD (i.e., RT
D), a single nonzero in each column (i.e.,

eTPx
′
D
> 0), and at least one nonzero in each row, implying rank(Px

′
D
) = |SC |. Furthermore, when

x
′

D > 0, each row of Px
′
D

is a probability vector, implying Px
′
D

has row sums of one (i.e., Px
′
D
e = e) just

like RD. Thus premultiplying Q̃DRD by Px
′
D

yields the (|SC | × |SC |) square grid Q̃C, which has row sums

of zero regardless of the norm of x
′

D.
The prolongation operator depends not only on SD and SC , but also on the smoothed vector x

′

D, which
is indicated by using the subscript x

′

D rather than D. This implies that the elements of Q̃C depend on x
′

D
and will be different in each cycle of the ML solver.

Lemma 3.8. If x
′

D > 0, then Px
′
D
RD = IC, where IC is the identity matrix of order |SC |.

Proof. The identity follows from Propositions 3.5 and 3.7 by the facts that Px
′
D
≥ 0, RD ≥ 0, Px

′
D

has
the same nonzero structure as RT

D, Px
′
D
e = e, and eTRT

D = eT .

When x
′

D > 0, we can state the next definition [21, p. 387] using RD(Px
′
D
RD)Px

′
D

= RD(IC)Px
′
D

=
RDPx

′
D

from Lemma 3.8, RD ≥ 0, RDe = e and Px
′
D
≥ 0, Px

′
D
e = e from Propositions 3.5 and 3.7,

respectively.
Corollary 3.9. When x

′

D > 0, the (|SD| × |SD|) matrix

Hx
′
D

= RDPx
′
D

defines a nonnegative projector (i.e., Hx
′
D
≥ 0 and H2

x
′
D

= Hx
′
D
) which satisfies Hx

′
D
e = e.

Lemma 3.10. If x
′

D > 0, then x
′

DHx
′
D

= x
′

D.
Proof. The identity follows from the definitions of restriction and prolongation operations (see Defini-

tions 3.4 and 3.6) and the fact that the restricted and then prolonged row vector is x
′

D.
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The convergence analysis in section 4 is based on showing that the coarser grid Q̃C is an irreducible
CTMC and xC > 0 if the finer grid Q̃D is an irreducible CTMC and x

′

D > 0. This has been done for HMMs
with one macro state in [9, p. 348]. In section 4, we show the results for the mapping f : SD −→ SC in
Definition 3.1.

Step 7 in Algorithm 2 corresponds to the opposite of what is done on x
′

D in step 5; that is, it performs
disaggregation using the newly computed vector yC and the prolongation operator Px

′
D

(which is based on

the smoothed vector x
′

D) to obtain the vector yD. The next result follows from Proposition 3.7
Proposition 3.11. If yC > 0 and x

′

D > 0, then yD = yCPx
′
D
> 0, since eTPx

′
D
> 0.

Similar aggregation and disaggregation operations are performed in Algorithm 1 at the finest grid Q.
The Kronecker representation of Q̃C for an HMM with one macrostate is given in [9, p. 347]. Here we

extend it to multiple macrostates and show that Q̃C can be expressed as a sum of Kronecker products as
in Definition 2.2 using

∑
i,j∈S(K+1) |Ti,j | vectors each of length at most maxj∈S(K+1)(

∏|C|
k=2 |S

(Ck)
j |) and the

matrices corresponding to the components in C excluding (K+1), which denotes the HLM (see Proposition
3.3). More specifically, we have the next definition.

Definition 3.12. If h = D1 is the index of the aggregated component, then the sCth element of the
vector corresponding to the teth term in block (i, j) of the aggregated CTMC Q̃C is defined as

a(C,te),(i,j)(sC) =

(∑
sD∈SD,fD(sD)=sC

x
′

D(sD) a(D,te),(i,j)(sD) (eT
sD(h)Q

(h)
te

(S(h)
i ,S(h)

j )e)
)

xC(sC)
for sC ∈ SC , te ∈ Ti,j , and i, j ∈ S(K+1),

where a(D,te),(i,j) = e if D corresponds to the finest level, sD(h) ∈ S(h), and esD(h) is the sD(h)th column
of the identity matrix of order |S(h)

i |. Hence,

Q̃C(j, j) =
|C|−1⊕
k=1

Q
(Ck)
t0 (S(Ck)

j ,S(Ck)
j ) +

∑
te∈Tj,j

|C|−1⊗
k=1

diag(a(C,te),(j,j))Q
(Ck)
te

(S(Ck)
j ,S(Ck)

j )

−
|C|−1⊕
k=1

diag(Q(Ck)
t0 (S(Ck)

j ,S(Ck)
j )e)

−
∑

i∈S(K+1)

∑
te∈Tj,i

|C|−1⊗
k=1

diag(a(C,te),(j,i)) diag(Q(Ck)
te

(S(Ck)
j ,S(Ck)

i )e) for j ∈ S(K+1),

Q̃C(i, j) =
∑

te∈Ti,j

|C|−1⊗
k=1

diag(a(C,te),(i,j))Q
(Ck)
te

(S(Ck)
i ,S(Ck)

j ) for i, j ∈ S(K+1), i 6= j.

Observe from Proposition 2.3 that the last two terms of Q̃C(j, j) return a diagonal matrix which sums
the rows of Q̃C(j, j) to zero. Furthermore, the vectors a(D,te),(i,j) for te ∈ Ti,j and i, j ∈ S(K+1) at the
finest level consist of all ones, and therefore need not be stored. When the recursion ends at the HLM,
Q̃C is a (|S(K+1)| × |S(K+1)|) CTMC, and therefore is generated and stored explicitly in sparse format
so that it can be solved using a direct method. We remark that a(C,te),(i,j) = e for those te which have
all Q(Ck)

te
(S(Ck)

i ,S(Ck)
j ) as diagonal matrices of size (|S(Ck)

i | × |S(Ck)
j |) with ones along their diagonal for

k = 1, 2, . . . , |C| − 1 and i, j ∈ S(K+1). Since component matrices forming Q̃C(i, j) for i, j ∈ S(K+1), i 6= j,
can very well be rectangular, we refrain from using I, and remark that such vectors need not be stored
either.

The next section presents the convergence analysis of the proposed class of ML methods for large,
sparse Markov chains.

4. Convergence analysis. Let D represent the current level and C represent the next coarser level
in the ML cycle as in Algorithms 1 and 2. Let SD and SC denote respectively the state spaces of Q̃D and
Q̃C , and assume that the mapping of states from SD to the states in SC is onto and satisfies |SC | ≤ |SD| as
in Definition 3.1. The results that are presented in this section for Algorithms 1 and 2 are general in that
the Kronecker representation of the grids particular to HMMs is not utilized.
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4.1. Irreducibility of the coarser grids. Recall that RD ≥ 0, RDe = e, eTRD > 0 from Proposition
3.5, and if x

′

D > 0, then Px
′
D
≥ 0, Px

′
D
e = e, eTPx

′
D
> 0 from Proposition 3.7. Now, consider the definition

of irreducibility in [21, p. 209] and [25, p. 13].
Definition 4.1. Let G(A) = (V, E) be the directed graph (digraph) associated with a square matrix A,

where V is the set of vertices (or nodes) and E is the set of directed edges (or arcs). Then V has as many
vertices as the order of A and E has a directed edge from vertex i to j if and only if ai,j 6= 0. The digraph
G(A) is said to be strongly connected, if for each pair of vertices (i, j), there is a sequence of directed edges
leading from i to j. The matrix A is said to be irreducible if and only if G(A) is strongly connected. In MC
terminology, the vertices in the graph correspond to states. A state is said to be reachable from another
state if there is a path of transitions that lead to the state from the other state, and by definition a state is
reachable from itself. A MC is irreducible if each state is reachable from every other state.

Proposition 4.2. Irreducibility concerns transitions that appear in the off-diagonal part of a CTMC
and the nonzeros corresponding to rates of these transitions have positive values.

Now, we are in a position to state and prove a lemma for Algorithms 1 and 2 that will be used in the
convergence analysis.

Lemma 4.3. The coarser grid Q̃C = Px
′
D
Q̃DRD is an irreducible CTMC and xC = x

′

DRD > 0 if the

finer grid Q̃D is an irreducible CTMC and x
′

D > 0.
Proof. First, we show that Q̃C = Px

′
D
Q̃DRD is an irreducible CTMC using Definition 4.1 and Proposi-

tion 4.2. Without losing generality, consider the pair of different states sD, s′D ∈ SD. Through f : SD −→ SC
in Definition 3.1, these pair of states are mapped respectively to the states sC , s′C ∈ SC (i.e., f(sD) = sC
and f(s′D) = s′C). Since Q̃D is irreducible, there exists a path of transitions from sD to s′D in SD in the
form sD = s1, s2, . . . , sm = s′D, where m ≤ |SD|, sk ∈ SD, and q̃D(sk, sk+1) > 0 for k ∈ {1, 2, . . . ,m − 1}.
Mapping this path onto SC yields the path sC = t1, t2, . . . , tm = s′C , where f(sk) = tk ∈ SC . Now, let etk

denote the tkth column of IC . Then, in the mapped path, we either have tk = tk+1 or q̃C(tk, tk+1) > 0,
where the latter follows from

q̃C(tk, tk+1) = eT
tk
Q̃Cetk+1 = (eT

tk
Px

′
D
)Q̃D(RDetk+1) ≥ px

′
D
(tk, sk)q̃D(sk, sk+1)rD(sk+1, tk+1),

since xD(sk) > 0 (implying px
′
D
(tk, sk) > 0 from Definition 3.6), q̃D(sk, sk+1) > 0, and f(sk+1) = tk+1

(implying rD(sk+1, tk+1) = 1 from Definition 3.4). Thus we conclude, s′C is reachable from sC .
We have effectively shown that each state in Q̃C is reachable from every other state. The question

that arises at this point is whether a row of Q̃C can become zero after the restriction. The answer is no,
as long as SC has multiple states (i.e., |SC | > 1), since all states in SD that are mapped to a particular
state in SC cannot have all their transitions among themselves. This would imply that Q̃D is reducible,
which is a contradiction. Furthermore, since the row sums of Q̃C are zero (i.e., Q̃Ce = (Px

′
D
Q̃DRD)e =

Px
′
D
Q̃D(RDe) = Px

′
D
Q̃De = 0 because Q̃D is a CTMC and Q̃De = 0), its diagonal must be equal to its

negated off-diagonal row sums. Hence, Q̃C is an irreducible CTMC.
Now, we show that xC > 0. Since xC = x

′

DRD, x
′

D = eT diag(x
′

D) where diag(x
′

D) is the diagonal
matrix with x

′

D along its diagonal, diag(x
′

D)RD has the same nonzero structure as RD, and eTRD > 0, we
have xC = x

′

DRD = (eT diag(x
′

D))RD = eT (diag(x
′

D)RD) > 0 when x
′

D > 0.
Corollary 4.4. If Q̃D is an irreducible CTMC, x

′

D > 0, and x
′

DQ̃D = 0, then xCQ̃C = 0, where
Q̃C = Px

′
D
Q̃DRD and xC = x

′

DRD.

Proof. We have xCQ̃C = (x
′

DRD)(Px
′
D
Q̃DRD) = (x

′

DRDPx
′
D
)Q̃DRD = (x

′

DHx
′
D
)Q̃DRD = (x

′

D)Q̃DRD =

(x
′

DQ̃D)RD = 0, since x
′

DHx
′
D

= x
′

D from Lemma 3.10 and x
′

DQ̃D = 0 by assumption.
Proposition 4.5. If πD = π > 0 denotes the steady state vector of the irreducible grid QD = Q

at the finest level D, then the irreducible grid obtained by exact aggregation at the next coarser level C is
QC = PπDQDRD and has the steady state vector πC = πDRD > 0. The result extends to all adjacent pairs
of levels D and C as long as level D has the exact irreducible grid QD and its steady state vector πD is used
to compute the irreducible grid QC at the next coarser level C.

The proposition follows from πCQC = (πDRD)(PπDQDRD) = (πDRDPπD )QDRD = (πDHπD )QDRD =
(πD)QDRD = (πDQD)RD = 0 since πDHπD = πD from Lemma 3.10 and πDQD = 0 by assumption.
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The next subsection specifies sufficient conditions for a converging smoother to provide improved
solutions at each level.

4.2. Convergence of the smoothers. By definition at the finest level in Algorithm 1 and by
construction at the coarser levels in Algorithm 2, the matrix Q̃D is an irreducible CTMC when x

′

D > 0 (see
Lemma 4.3). Now, consider the nontransposed homogeneous singular linear system in the next definition
(cf. (1.1)).

Definition 4.6. The problem at level D in the ML method is to solve

π̃DQ̃D = 0 subject to π̃De = 1,

where π̃D > 0 is the steady state vector of the irreducible CTMC Q̃D.
Proposition 4.7. At the finest level D, the steady state vector of the irreducible CTMC Q̃D satisfies

π̃D = π since Q̃D = Q.
Now, consider the splitting of Q̃D in the next definition.
Definition 4.8. Let Q̃D be split as

Q̃D = DD − UD − LD = MD −ND,

where DD, UD, and LD are respectively the diagonal, negated strictly upper-triangular, and negated strictly
lower-triangular parts of Q̃D, and MD is nonsingular (i.e., M−1

D exists).
Proposition 4.9. If Q̃D is an irreducible CTMC, each of the terms DD, UD, and LD in the splitting

of Q̃D is nonpositive (i.e., DD ≤ 0, UD ≤ 0, and LD ≤ 0); furthermore, q̃D(sD, sD) 6= 0 for all sD ∈ SD,
implying D−1

D and (DD − UD)−1 exist.
The next definition involving the iteration matrices of the POWER, JOR, and SOR smoothers follows

from [25, Ch. 3].
Definition 4.10. If Q̃D is an irreducible CTMC, then the POWER, JOR, and SOR smoothers are

based on different splittings of Q̃D, where each yields an iteration matrix of the form

TD = NDM
−1
D

and the sequence of approximations

x
(m+1)
D = x

(m)
D TD for m = 0, 1, . . . .

The particular splittings corresponding to the three smoothers are

MPOWER
D = −αID, NPOWER

D = −α(ID + Q̃D/α),
MJOR
D = DD/ω, NJOR

D = (1− ω)DD/ω + LD + UD,

MSOR
D = DD/ω − UD, NSOR

D = (1− ω)DD/ω + LD,

where α ∈ [maxsD∈SD |q̃D(sD, sD)|,∞) is the uniformization parameter of POWER and ω ∈ (0, 2) is the
relaxation parameter of JOR and SOR. The JOR and SOR splittings reduce to Jacobi and Gauss-Seidel
(GS) splittings for ω = 1. Hence, the iteration matrices corresponding to the three splittings are

TPOWER
D = ID + Q̃D/α,

T JOR
D = (1− ω)ID + ω(LD + UD)D−1

D and TSOR
D = ((1− ω)DD/ω + LD)(DD/ω − UD)−1.

The next lemma specifies a fixed point for the iteration matrices of the POWER, JOR, and SOR
smoothers.

Lemma 4.11. For the smoother S = {POWER, JOR, SOR} at level D, the steady state vector π̃D of
Q̃D satisfies π̃DTD = π̃D, where TD is the iteration matrix of the corresponding smoother.

Proof. The proof rests on the particular form of the iteration matrices in Definition 4.10 and the fact
that π̃DQ̃D = 0 in Definition 4.6. For POWER, we have

π̃DT
POWER
D = π̃DID + π̃DQ̃D/α = π̃D.
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For JOR, we have

π̃DT
JOR
D = π̃D(1− ω)ID + π̃Dω(LD + UD)D−1

D = (1− ω)π̃D + ωπ̃D(DD − Q̃D)D−1
D

= (1− ω)π̃D + ωπ̃D(ID − Q̃DD−1
D ) = (1− ω)π̃D + ωπ̃D − ωπ̃DQ̃DD−1

D = π̃D

since LD + UD = DD − Q̃D from Definition 4.8. For SOR, we have

π̃DT
SOR
D = π̃D((1− ω)DD/ω + LD)(DD/ω − UD)−1 = π̃D(DD/ω − UD − Q̃D)(DD/ω − UD)−1

= π̃D(ID − Q̃D(DD/ω − UD)−1) = π̃D − π̃DQ̃D(DD/ω − UD)−1 = π̃D

since (1− ω)DD/ω + LD = DD/ω − UD − Q̃D from Definition 4.8.
Before we state another lemma, we recall the definitions of primitivity and M-matrix from [25, p. 352

and p. 170] and remark that detailed information concerning M-matrices may be found in [4].
Definition 4.12. Let σ(A) denote the set of eigenvalues (or spectrum) of the square matrix A (i.e.,

σ(A) = {λ | Av = λv, v 6= 0}) and let ρ(A) be the spectral radius of A (i.e., ρ(A) = {max |λ| | λ ∈ σ(A)}).
A nonnegative, irreducible matrix B is said to be primitive if it has a single eigenvalue with magnitude
ρ(B).

Definition 4.13. Any square matrix A of the form A = sI − B with s > 0 and B ≥ 0 for which
s ≥ ρ(B) is called an M-matrix.

Proposition 4.14. The negated CTMC −Q̃D is a singular M-matrix.
The next proposition follows from [21, p. 640] and [25, p. 118].
Proposition 4.15. For the irreducible CTMC Q̃D, the matrix eπ̃D has the steady vector of Q̃D in

each of its rows, and therefore is positive (i.e., eπ̃D > 0), a probability matrix (i.e., eπ̃De = e), and of rank
1.

Corollary 4.16. When Q̃D has a single state (i.e., |SD| = 1), Q̃D = 0, and π̃D = 1.
For HMMs, Corollary 4.16 applies at the coarsest level when the HLM has one macrostate.
Now, we are in a position to state and prove a lemma, which is essential in characterizing the conver-

gence of the three smoothers.
Lemma 4.17. If the smoother S ∈ {POWER, JOR, SOR} satisfies α ∈ (maxsD∈SD |q̃D(sD, sD)|,∞)

and ω ∈ (0, 1), then the iteration matrix TD associated with the irreducible CTMC Q̃D is nonnegative,
irreducible, primitive, and has a spectral radius and an eigenvalue of one; furthermore, TD = WDBDW

−1
D ,

where BD is a probability matrix and WD is a nonnegative, diagonal matrix having the right eigenvector
of TD corresponding to one along its diagonal, implying limm→∞ Tm

D = (WDe)π̃D/(π̃DWDe) > 0 and is of
rank 1. When POWER is the smoother, WD = ID and TD is a probability matrix, implying limm→∞ Tm

D =
eπ̃D > 0.

Proof. First, we show the nonnegativeness of the iteration matrices under the given assumptions using
Definition 4.8, Proposition 4.9, and Definition 4.10. The nonnegativeness of TPOWER

D for
α ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) follows from ID + DD/α ≥ 0, −(LD + UD)/α ≥ 0, and TPOWER

D =
(ID + DD/α) − (LD + UD)/α. Similarly, the nonnegativeness of T JOR

D for ω ∈ (0, 1) follows from
(1 − ω)ID ≥ 0, LD + UD ≤ 0, and D−1

D ≤ 0. On the other hand, the nonnegativeness of TSOR
D for

ω ∈ (0, 1) follows from (1 − ω)DD/ω + LD ≤ 0 and (DD/ω − UD)−1 ≤ 0 since −(DD/ω − UD) is a
nonsingular M-matrix [21, p. 626].

The irreducibilities of TPOWER
D and T JOR

D follow in a straightforward manner from the irreducibility
of Q̃D (see Proposition 4.2), since they have the same off-diagonal nonzero structure as Q̃D. On the other
hand, TSOR

D is the product of (1 − ω)DD/ω + LD and (DD/ω − UD)−1, both of which are negative with
negative diagonals for ω ∈ (0, 1). Note that this implies a positive diagonal in TSOR

D . Now, the nonzero
structure of the former TSOR

D factor below the diagonal is the same as that of LD and the nonzero structure
of the latter TSOR

D factor is given by the transitive closure of G(DD/ω−UD) [17, p. 72]. Hence, the product
of the two factors will yield at least as many nonzeros as there are in Q̃D, implying the irreducibility of
TSOR
D . Furthermore, α ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1) ensure positive diagonals in TPOWER

D ,
T JOR
D , and TSOR

D , and hence, iteration matrices that are primitive (or aperiodic). Using the fact in Lemma
4.11 that π̃D > 0 is the left eigenvector corresponding to the iteration matrices TPOWER

D , T JOR
D , and TSOR

D ,
we conclude that each of the nonnegative, irreducible, and primitive iteration matrices has a spectral radius
and an eigenvalue of one from the Perron-Frobenius Theorem [21, p. 673]. Powers of such iteration matrices
converge to constant, positive matrices [21, p. 674].
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Now, recall that if T ≥ 0 with ρ(T ) > 0 and v > 0 such that Tv = ρ(T )v, then T/ρ(T ) is similar to
a probability matrix [4, p. 49]. That is, for a nonnegative and irreducible matrix T with positive, right
eigenvector v, there exists a diagonal matrix W with w(i, i) = v(i) such that B = W−1TW is a probability
matrix. Since TD is nonnegative, is irreducible, and ρ(TD) = 1, after setting T = TD we must have
TD = WDBDW

−1
D , where BD is a probability matrix and WD is a nonnegative, diagonal matrix having the

positive, right eigenvector of TD along its diagonal. Hence, Tm
D = WDB

m
DW

−1
D for m ≥ 0. Now, since π̃D >

0 (see Definition 4.6) is a fixed point of TD from Lemma 4.11, it must be unique because TD is nonnegative
and irreducible [21, p. 673]. Consequently, we have π̃DTm

D = π̃D, or π̃DWDB
m
DW

−1
D = π̃D. But this

can be written as π̃DWDB
m
D = π̃DWD. Taking the limit, we obtain π̃DWD limm→∞Bm

D = π̃DWD, which
implies limm→∞Bm

D = e(π̃DWD)/(π̃DWDe), since WD is a nonnegative, diagonal matrix and limm→∞Bm
D

must have the same probability vector in each of its rows. Then, limm→∞ Tm
D = WD(limm→∞Bm

D )W−1
D =

(WDe)π̃D/(π̃DWDe). Since the numerator is an outer product and the denominator is a scalar, the limiting
matrix is of rank 1. For the POWER smoother, we remark that TPOWER

D e = (ID + Q̃D/α)e = e +
(Q̃De)/α = e since Q̃De = 0. Hence, TPOWER

D is a probability matrix, WD = ID, and powers of TPOWER
D

converge to the probability matrix eπ̃D which has the steady state vector π̃D of Q̃D in its rows as shown
in [25, p. 16].

Using Lemma 4.17, the next proposition expresses the pre- and post-smoothings at level D concisely.
Proposition 4.18. Given the irreducible CTMC Q̃D, after ν1 iterations of pre-smoothings at level D

with the smoother S, the smoothed vector becomes

x
′

D = xDT
ν1
D > 0;

after ν2 iterations of post-smoothings at level D with S, the smoothed vector becomes

y
′

D = yDT
ν2
D > 0.

The next definition follows from Theorem 4.4 in [24, pp. 45–46] and is introduced to aid the charac-
terization of the nonasymptotic convergence behavior of smoothings.

Definition 4.19. Let SD ∈ IR|SD|×|SD| be nonsingular (i.e., S−1
D exists). Then the function defined

as

‖w‖SD = ‖wSD‖1 for w ∈ IR1×|SD|

is a vector norm2.
The next theorem characterizes the nonasymptotic convergence behavior of the smoothings through

a lemma for positive probability matrices based on the discussion in [2, pp. 270–271] and proved in the
appendix, and two results on nonnegative, irreducible matrices similar to positive matrices [5, p. 371 and
p.375]. We remark that a similar theorem may be stated for the initial approximation yD.

Theorem 4.20. Given the initial approximation x(0)
D = xD > 0 for the irreducible CTMC Q̃D and the

smoother S ∈ {POWER, JOR, SOR} with iteration matrix TD such that xT
D 6∈ Range(ID −TT

D ), if T ν1
D is

nonnegative (i.e., T ν1
D ≥ 0), irreducible, and satisfies any of the three conditions:

(i) T ν1
D is positive (i.e., T ν1

D > 0),
(ii) T ν1

D has a positive row iD (i.e., eT
iD
T ν1
D > 0) for some iD ∈ SD or a positive column jD (i.e.,

T ν1
D ejD > 0) for some jD ∈ SD,

(iii) T ν1
D has a zero element in position (iD, jD) (i.e., eT

iD
T ν1
D ejD = 0) for some iD, jD ∈ SD,

(a) all other elements in row iD are positive (i.e., eT
iD
T ν1
D ekD > 0 for kD ∈ SD, kD 6= iD) and

eT
iD
T ν1
D eiD > eT

jD
T ν1
D ejD , or

(b) all other elements in column jD are positive (i.e., eT
kD
T ν1
D ejD > 0 for kD ∈ SD, kD 6= jD) and

eT
iD
T ν1
D eiD < eT

jD
T ν1
D ejD ,

then

‖aDx
′

D − π̃D‖SD ≤
(

1− min
iD,jD∈SD

gD(iD, jD)
)
‖aDxD − π̃D‖SD ,

2This norm should not be confused with the elliptical norm [21, p. 288] defined as ‖w‖SD = ‖wSD‖2
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where x
′

D = xDT
ν1
D , GD is a positive probability matrix (i.e., GD > 0, GDe = e) defined as GD = S−1

D T ν1
D SD

for some SD ≥ 0 such that 0 < miniD,jD∈SD gD(iD, jD) ≤ 1/|SD|, π̃D is the steady state vector of Q̃D, and
aD = (π̃DSDe)/(xDSDe).

Proof. From Corollary 3 and Theorem 4 in [5], if T ν1
D is nonnegative, is irreducible, and satisfies either

of the conditions (ii) or (iii), then it is similar to a positive matrix, that is, X−1
D T ν1

D XD = HD > 0 for
some (|SD|× |SD|) nonnegative matrix XD. Condition (i) is a special case for which XD = ID. Since these
imply σ(HD) = σ(T ν1

D ) and we have ρ(T ν1
D ) = 1 from Lemma 4.17, HD > 0 must be similar to a positive

probability matrix GD as in Y −1
D HDYD = GD > 0, where YD is a nonnegative, diagonal matrix having the

positive, right eigenvector of HD along its diagonal. Now, let SD = XDYD to obtain T ν1
D = SDGDS

−1
D ,

where SD ≥ 0, GD > 0, and Ge = e.
For a sequence of converging approximations, one needs to ensure for the initial approximation that

xT
D 6∈ Range(ID−TT

D ) [3, pp. 26–28]; otherwise, there will be no improvement. Furthermore, since π̃D is the
unique, positive fixed point of T ν1

D such that π̃De = 1 from Lemma 4.11, the unique, positive fixed point of
GD with unit 1-norm must be ψD = (π̃DSD)/(π̃DSDe). Now, rewrite x

′

D = xDT
ν1
D using T ν1

D = SDGDS
−1
D

to obtain x
′

DSD = xDSD(GD). Since xD > 0, SD ≥ 0, and SD has full rank, we have x
′

D > 0. Furthermore,
note that x

′

DSDe = xDSD(GDe) = xDSDe. Letting x
′

D = (x
′

DSD)/(xDSDe) and xD = (xDSD)/(xDSDe),
we have from Lemma A.1 in the Appendix

‖x
′

D − ψD‖1 ≤
(

1− min
iD,jD∈SD

gD(iD, jD)
)
‖xD − ψD‖1.

The result follows by taking each of (x
′

D −ψD) and (xD −ψD) into SD parantheses, multiplying bothsides
of the inequality by π̃DSDe, letting aD = (π̃DSDe)/(xDSDe), and using Definition 4.19.

Theorem 4.20 indicates that the normalized solution vector, aDxD, improves with ν1 pre-smoothings
if T ν1

D is positive or has a(n) (almost) positive row or column. Now, observe that the ordering of
grids suggested by O ∈ {FIXED,CY CLIC,DY NAMIC} has no effect on the assumptions of The-
orem 4.20 and the parameters MIN IN PRE, MAX IN PRE, MIN IN POST , MAX IN POST ,
MIN OUT PRE, MAX OUT PRE, MIN OUT POST , MAX OUT POST , ρ, RES COUNT in Al-
gorithms 1 and 2 determine ν1 and ν2 at each level. Note from Lemma 4.17 that as ν1 increases, T ν1

D
converges to a positive, rank 1 matrix. Hence, there is a value of ν1 > 0 for which the assumptions of
Theorem 4.20 hold. We remark that Q̃D is almost always sparse and the iteration matrices associated with
the POWER and JOR smoothers have the same off-diagonal nonzero structure as that of Q̃D. Hence,
compared to POWER and JOR, the SOR smoother has a higher chance of satisfying the conditions
of Theorem 4.20 for a smaller value of ν1, since its iteration matrix is likely to have a larger number of
nonzeros as suggested in the proof of Lemma 4.17. Similar arguments are valid for post-smoothings. In
summary, the smoothings can always be enforced to yield improved positive approximations at each level.

4.3. Convergence of the ML solver. Using the results in the previous subsections, we show that
under certain conditions the devised class of ML methods provide converging iterations for different choices
of the cycle parameter C ∈ {V,W,F}.

First, we define the ML iteration matrix at level D in Algorithms 1 and 2 using Propositions 3.5, 3.7,
4.15, and 4.18. Note that when there are only two levels, the W- and F-cycles are not defined, and the
V-cycle yields an IAD solver. In order not to complicate the notation further, we refrain from introducing
an index for the cycle number to the matrices and vectors at this point.

Definition 4.21. Let TML
D denote the ML iteration matrix that operates at level D on xD > 0 to give

yD > 0 at a particular cycle using the smoother S ∈ {POWER, JOR, SOR} associated with the irreducible
CTMC Q̃D, where α ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1), and similarly let TML

C and TML
B denote

the ML iteration matrices that operate at the next two coarser levels C and B, respectively. Then

y
′

D = xDT
ML
D ,

where

TML
D =


T ν1
D RDT

ML
C Px

′
D
T ν2
D if C = V

T ν1
D RD(TML

C )2Px
′
D
T ν2
D if C = W

T ν1
D RDT

ML
C TML′

C Px
′
D
T ν2
D if C = F

,
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TML′

C = T ν1
C RCT

ML′

B Px
′
C
T ν2
C , x

′

D = xDT
ν1
D ,

and when Q̃C is the coarsest grid and solved exactly, TML
C = TML′

C = (ey
′

C)/(xCe) > 0, where y
′

C = π̃C.
Corollary 4.22. When POWER is the smoother and xD > 0 satisfies xDe = 1, the ML iteration

matrix TML
D for C ∈ {V,W,F} is a positive probability matrix (i.e., TML

D > 0, TML
D e = e) and therefore

has a spectral radius of one (i.e., ρ(TML
D ) = 1).

Proof. For the POWER smoother, at the coarsest level C we have TML
C = TML′

C = eπ̃C from Definition
4.21 when xDe = 1, implying a positive probability matrix, which has a spectral radius and an eigenvalue
value of one. This forms the base case. Now, let us assume that the result is true for all levels from
the coarsest up to an arbitrary level C; this is the inductive hypothesis. We show that the result must
be true for the next finer level D. Noting that RDe = e from Proposition 3.5, (TML

C )e = e from the
inductive hypothesis, Px

′
D
e = e from Proposition 3.7, and TDe = e from Lemma 4.17, we have TML

D e =
T ν1
D RDT

ML
C Px

′
D
T ν2
D e = T ν1

D RDT
ML
C (Px

′
D
e) = T ν1

D RD(TML
C e) = T ν1

D (RDe) = T ν1
D e = e for the V-cycle. The

result follows similarly for W- and F-cycles.
The interpretation of TML

D for V- and W-cycles is as follows. If the recursive call(s) to level C are turned
off, then only (ν1 + ν2) iterations are performed on xD with the smoother S. Otherwise, the smoothed
solution vector is restricted to level C (i.e., xDT ν1

D is the smoothed solution vector and xDT
ν1
D RD is the

restricted solution vector), the restricted solution vector is improved respectively one or two times with
the iteration matrix TML

C , the improved solution vector is projected back to level D, and smoothed. The
interpretation of TML

D for an F-cycle is similar to that for V- and W-cycles with the difference that the
restricted solution vector is improved with the iteration matrix TML

D once followed by the iteration matrix
of the V-cycle. This is exactly what is meant with a W-cycle followed by a V-cycle at each level.

The next lemma follows from Lemma 4.3, Lemma 4.17, and Definition 4.21.
Lemma 4.23. If Q̃D is an irreducible CTMC, xD > 0, and the smoother S ∈ {POWER, JOR, SOR}

satisfies α ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1), then the ML iteration matrix TML
D for C ∈

{V,W,F} is positive (i.e., TML
D > 0).

Proof. The proof is by induction. At the coarsest level C, we have TML
C = TML′

C > 0 from Definition
4.21. This is the base case, and implies (TML

C )2 = TML
C TML′

C > 0. Now, let us assume that the statement
is true for all levels from the coarsest up to an arbitrary level C. This is the inductive hypothesis. Now,
we show that the statement must be true for the next finer level D. Since Px

′
D
≥ 0 and each column of

Px
′
D

has one nonzero element from Proposition 3.7, the (|SC | × |SD|) matrices TML
C Px

′
D
, (TML

C )2Px
′
D
, and

TML
C TML′

C Px
′
D

are positive. Furthermore, since RD ≥ 0 and each row of RD has one nonzero element from

Proposition 3.5, the (|SD| × |SD|) matrices RDTML
C Px

′
D
, RD(TML

C )2Px
′
D
, and RDT

ML
C TML′

C Px
′
D

are also
positive. Then the result follows from Lemma 4.17 by the fact that the iteration matrix associated with
the smoother is nonnegative and irreducible, implying at least one nonzero in each row and column of TD
which pre- and post-multiplies the positive matrices RDTML

C Px
′
D
, RD(TML

C )2Px
′
D
, and RDTML

C TML′

C Px
′
D
.

The next result follows from Lemma 4.23 in that the positivity of TML
D implies its irreducibility and a

positive diagonal, and hence its primitivity [4, p. 47].
Corollary 4.24. If Q̃D is an irreducible CTMC, xD > 0, and the smoother S ∈ {POWER, JOR,

SOR} satisfies α ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1), then the ML iteration matrix TML
D for

C ∈ {V,W,F} is irreducible and primitive.
The next lemma shows that the steady state vector, πD, of the exactly aggregated grid, QD, is the

unique, positive, unit 1-norm fixed point of the ML iteration matrix, TML
D , at level D upon convergence.

Lemma 4.25. If Q̃D is an irreducible CTMC and equal to QD, xD = πD, and the smoother S ∈
{POWER, JOR, SOR} satisfies α ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1), then the ML iteration
matrix TML

D for C ∈ {V,W,F} has the unique, positive fixed point πD (i.e., πDTML
D = πD) such that

πDe = 1; furthermore, ρ(TML
D ) = 1 and y

′

D = πD.
Proof. The proof is by induction. At the coarsest level C, we have Q̃C = QC and xC = πC > 0,

implying TML
C = TML′

C = eπC > 0 from Definition 4.21. This positive matrix is stochastic and has the
unique, positive fixed point πC such that πCe = 1. Furthermore, it has a spectral radius of one and
y
′

C = xCT
ML
C = πC(eπC) = (πCe)πC = πC . This is the base case, and yields (TML

C )2 = TML
C TML′

C =
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(eπC)(eπC) = e(πCe)πC = eπC > 0. Now, let us assume that the statement is true for all levels from the
coarsest up to an arbitrary level C. This is the inductive hypothesis. Now, we show that the statement
must be true for the next finer level D.

Since xD = πD > 0 is the fixed point of TD from Lemma 4.11, πDRD = πC from Definition 3.4,
πCT

ML
C = πC by the inductive hypothesis, and πCPπD = πD from Definition 3.6, the result follows from

Definition 4.21 for the V-cycle as y
′

D = πDT
D
ML = (πDT ν1

D )RDTML
C PπDT

ν2
D = (πDRD)TML

C PπDT
ν2
D =

(πCTML
C )PπDT

ν2
D = (πCPπD )T ν2

D = πDT
ν2
D = πD. The result follows similarly for W- and F-cycles after

interchanging TML
C respectively with (TML

C )2 and TML
C TML′

C . The uniqueness and positiveness of the fixed
point of TML

D follows from Lemma 4.23 by the fact that TML
D is positive [21, p. 666]. Clearly the spectral

radius of TML
D is one.

The next theorem characterizes the nonasymptotic convergence behavior of the ML solver with the
initial approximation xD by defining a unique, positive, unit 1-norm fixed point for the particular cycle.

Theorem 4.26. If TML
D is the ML iteration matrix that operates at level D on xD > 0, such that

xT
D 6∈ Range(ID−TT

D ), to give y
′

D > 0 at a particular cycle using the smoother S ∈ {POWER, JOR, SOR}
associated with the irreducible CTMC Q̃D, where α ∈ (maxsD∈SD |q̃D(sD, sD)|,∞) and ω ∈ (0, 1), then
TML
D /ρ(TML

D ) has a spectral radius of one and a vector φD as its unique, positive fixed point (i.e.,
φD(TML

D /ρ(TML
D )) = φD) such that φDe = 1. Furthermore, TML

D /ρ(TML
D ) = ZDHDZ

−1
D , where HD

is a positive probability matrix (i.e., HD > 0, HDe = e) and ZD is a nonnegative, diagonal matrix having
the positive, right eigenvector of TML

D /ρ(TML
D ) along its diagonal. The unique, positive fixed point of HD

is given by ψD = (φDZD)/(φDZDe) (i.e., ψDHD = ψD) such that ψDe = 1. Finally,

‖(bD/ρ(TML
D ))y

′

D − φD‖ZD ≤
(

1− min
iD,jD∈SD

hD(iD, jD)
)
‖bDxD − φD‖ZD ,

where bD = (φDZDe)/(xDZDe) and 0 < miniD,jD∈SD hD(iD, jD) ≤ 1/|SD|. At the coarsest level,
‖(bD/ρ(TML

D ))y
′

D−φD‖ZD = 0 if the system is solved directly. When POWER is the smoother, ZD = ID,
HD = TML

D , ρ(TML
D ) = 1, ψD = φD, and bD = 1.

Proof. Recall from Lemma 4.23 that TML
D > 0. Since ρ(TML

D ) > 0 for TML
D 6= 0, the matrix

TML
D /ρ(TML

D ) is also positive, it satisfies σ(TML
D /ρ(TML

D )) = {λ/ρ(TML
D ) | λ ∈ σ(TML

D )}, and therefore
has a spectral radius of one. The uniqueness and positiveness of the fixed point φD follows from Corollary
4.24. The row vector φD > 0 is assumed to be normalized so as to have unit 1-norm (i.e., φDe = 1).

To prove the second part, recall Corollary 4.24 and the result in [4, p. 49] which is also used in the
proof of Lemma 4.17. These imply that TML

D /ρ(TML
D ) must have a positive, right eigenvector ζD for which

TML
D /ρ(TML

D ) = ZDHDZ
−1
D ,

where ZD = diag(ζD), HD > 0, and HDe = e. In other words,

HD = Z−1
D (TML

D /ρ(TML
D ))ZD

is a probability matrix similar to TML
D /ρ(TML

D ) and its positivity follows from TML
D /ρ(TML

D ) > 0 and
ζD > 0. Note that it does not matter whether ζD is normalized or not, since HD is defined in terms of ZD
and Z−1

D . The uniqueness and positiveness of the fixed point ψD follows from HD > 0. The row vector
φD > 0 is assumed to be normalized so as to have unit 1-norm (i.e., φDe = 1) and it is given by ψD = φDZD
since HD and TML

D /ρ(TML
D ) are related by a similarity transformation, where the transformation matrix

is ZD.
To prove the last part, rewrite

y
′

D = ρ(TML
D )xD(TML

D /ρ(TML
D ))

using TML
D /ρ(TML

D ) = ZDHDZ
−1
D > 0 as

(y
′

DZD)/(ρ(TML
D )xDZDe) = (xDZD)HD/(xDZDe),

which is equivalent to y
′

D = xDHD. Since xD > 0, y
′

D > 0, ρ(TML
D ) > 0, and ζD > 0, we have xD =

(xDZD)/(xDZDe) > 0, implying xDe = 1, and y
′

D = (y
′

DZD)/(ρ(TML
D )xDZDe) > 0. Furthermore, since
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HD > 0, HDe = e, and xDe = 1, we obtain y
′

De = 1. Then, from Lemma A.1 we have

‖y
′

D − ψD‖1 ≤
(

1− min
iD,jD∈SD

hD(iD, jD)
)
‖xD − ψD‖1.

The result follows by taking each of (y
′

D−ψD) and (xD−ψD) into ZD parantheses, multiplying both sides
of the inequality by φDZDe, letting bD = (φDZDe)/(xDZDe), and using Definition 4.19. The part for the
coarsest level follows from Definition 4.21 by the fact that TML

D = (ey
′

D)/(xDe) and ρ(TML
D ) = 1/(xDe),

implying TML
D /ρ(TML

D ) = HD = ey
′

D and ZD = ID. For the POWER smoother, Corollary 4.22 implies
ZD = diag(e) = ID, and therefore, the respective results.

The ML iteration matrix, TML
D , changes at each cycle due to the dependence of Px

′
D

on x
′

D, and
therefore, the ML iteration is non-stationary. At the end of each cycle, the solution vector at the finest
level D, y

′

D, is normalized to be unit 1-norm and then assigned to xD so as to start the next cycle. As long
as x

′

D 6= πD, the aggregated CTMC Q̃C at the next coarser level can only be approximative. Theorem 4.26
indicates that the normalized solution vector, bDxD, improves with respect to the fixed point φD with a
converging smoother as long as xD > 0 is not in the range of (I−TML

D )T . For the solution to improve with
respect to steady state vector π̃D at each level, one requires sufficient conditions on the smoother as in
Theorem 4.20. Then xD at the finest level will improve from one cycle to the next, implying an improvement
in the aggregated CTMC at each level, and thus an improved solution at each level. Then, recalling from
Lemma 4.25 that Q̃D = QD and ρ(TML

D ) = 1 upon convergence, ρ(TML
D ) and φD must be approaching one

and πD, respectively, while the subdominant eigenvalue of TML
D in magnitude is approaching zero with an

increasing number of cycles.
In [11], extensive numerical experiments have been conducted with the ML solver on HMMs. Therein,

the values chosen for the parameters of the POWER, JOR, and SOR smoothers are α =
maxsD∈SD |q̃D(sD, sD)|/0.999 and ω = 1, and the initial approximation is the uniform distribution. Fur-
thermore, at least one pre- and one post-smoothing is performed at each level and the coarsest system is
solved using Gaussian elimination. Hence, POWER is enforced to yield a converging smoother, and the
JOR and SOR iteration matrices are nonnegative. Although, ω = 1 does not guarantee converging JOR
and SOR smoothers (see Lemma 4.10), the results indicate that convergence may still be achieved. Hence,
we conclude that the conditions stated in Theorem 4.20 for the smoothers are sufficient for convergence,
but not necessary.

The next section presents the results of an ML cycle.

5. A sample ML cycle. In this section, we walk through one ML cycle on the CTMC in Example
1 with the initial approximation

x(0) =
(

0.2000 0.2000 0.2000 0.2000 0.2000
)

using the parameters C = V and O = FIXED. These parameters imply that V is the cycle type (i.e.,
γ = 1) and FIXED is the ordering of components for aggregation. The computations are performed in
IEEE double (i.e., about 16 decimal digits of) precision. For brevity, we present the results with four digits
after the decimal point. Note that, from r(0) = −x(0)Q and o(0) = x(0)−π, we respectively have the initial
residual vector

r(0) =
(

0.2000 0.0000 0.2000 0.0000 −0.4000
)

with ‖r(0)‖∞ = 0.4000

and the initial error vector

o(0) =
(

0.0250 0.0500 0.1000 0.0750 −0.2500
)

with ‖o(0)‖∞ = 0.2500,

which satisfy r(0)e = 0 and o(0)e = 0. We consider two cases in the next two subsections, and for clarity
we denote the three levels respectively by D, C, B as in Definition 4.21.

5.1. With smoothings. In this part, one pre- and one post-smoothing is performed at each level
using S = SOR and ω = 0.5. That is, SOR is enforced to be a converging smoother and (MIN IN PRE,
MAX IN PRE, MIN IN POST,MAX IN POST , MIN OUT PRE, MAX OUT PRE, MIN
OUT POST , MAX OUT POST ) = (1, 1, 1, 1, 1, 1, 1, 1).
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• Finest level, going down: The repeat-until loop in main() starts by smoothing xD = x(0) for
D = [1, 2, 3] with one iteration of the SOR splitting

Q̃D = MD −ND =


−8 1 1 0 2

0 −4 0 1 0
0 0 −6 1 1
0 0 0 −4 0
0 0 0 0 −2

−

−4 0 0 0 0
−1 −2 0 0 0
−1 0 −3 0 0

0 −1 −1 −2 0
−1 0 0 0 −1

(5.1)

obtained by using ω = 0.5 in Definition 4.10. Note that

TSOR
D = NDM

−1
D =


0.5000 0.1250 0.0833 0.0521 0.5417
0.1250 0.5312 0.0208 0.1380 0.1354
0.1250 0.0312 0.5208 0.1380 0.3854
0.0000 0.2500 0.1667 0.6042 0.0833
0.1250 0.0312 0.0208 0.0130 0.6354

 , yet ρ(TSOR
D ) = 1.

Observe that TSOR
D has at least one positive row; hence, Theorem 4.20 applies. Since xD = x(0) > 0,

from x
′

D = xDT
SOR
D we have

x
′

D =
(

0.1750 0.1938 0.1625 0.1891 0.3563
)
,

and x
′

D > 0 is not a unit 1-norm vector. Aggregating LLM 1 gives C = [2, 3],

RD =


1 0 0
0 1 0
1 0 0
0 1 0
0 0 1

 and Px
′
D

=

 0.5185 0 0.4815 0 0
0 0.5061 0 0.4939 0
0 0 0 0 1.0000

 .

Hence, the states {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (2, 2, 1)} defined by D are mapped onto the
aggregated states {(0, 0), (1, 0), (2, 1)} defined by C. The coarser grid is given by

Q̃C = Px
′
D
Q̃DRD =

 −2.5185 1.0000 1.5185
1.0000 −1.0000 0.0000
1.0000 0.0000 −1.0000

 .

Note that Q̃Ce = 0 as expected. The restricted solution is obtained from xC = x
′

DRD as

xC =
(

0.3375 0.3828 0.3563
)
.

At this point the recursive call ML(Q̃C , xC , C, 1) is made.
• Coarser level, going down: The recursive call ML(Q̃C , xC , C, 1) starts by smoothing xC for C = [2, 3]

with one iteration of the SOR splitting

Q̃C = MC−NC =

 −5.0370 1.0000 1.5185
0.0000 −2.0000 0.0000
0.0000 0.0000 −2.0000

−
 −2.5185 0.0000 0.0000
−1.0000 −1.0000 0.0000
−1.0000 0.0000 −1.0000

(5.2)

obtained by using ω = 0.5 in Definition 4.10. Note that

TSOR
C = NCM

−1
C =

 0.5000 0.2500 0.3796
0.1985 0.5993 0.1507
0.1985 0.0993 0.6507

 , yet ρ(TSOR
C ) = 1.

Observe that TSOR
D > 0; hence, Theorem 4.20 applies. Furthermore, from Lemma 4.11 π̃C =

(0.2842 0.2842 | 0.4316). Now, since xC = (0.3375 0.3828 | 0.3563), from x
′

C = xCT
SOR
C we have

x
′

C =
(

0.3155 0.3491 0.4177
)
.
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Aggregating LLM 2 gives B = [3],

RC =

 1 0
1 0
0 1

 and Px
′
C

=
(

0.4747 0.5253 0
0 0 1.0000

)
.

Hence, the states in {(0, 0), (1, 0), (2, 1)} defined by C are mapped onto the aggregated states in
{(0), (1)} defined by B, the HLM matrix in this case. The coarser grid is given by

Q̃B = Px
′
C
Q̃CRC =

(
−0.7208 0.7208

1.0000 −1.0000

)
.

Note that Q̃Be = 0 as expected. The restricted solution is obtained from xB = x
′

CRC as

xB =
(

0.6646 0.4177
)
.

At this point the recursive call ML(Q̃B, xB,B, 1) is made.
• Coarsest level: The recursive call ML(Q̃B, xB,B, 1) executes the then part of the if-statement

since only the HLM is left in B, and returns with the result of the call to solve(Q̃B, xB), where
xB = (0.6646 | 0.4177) and xBe = 1.0823. Since Q̃B is (2× 2), a direct method is employed, xB is
not used, and

y
′

B = π̃B =
(

0.5811 0.4189
)

is obtained. An extra condition has to be enforced since Q̃B is singular and the right-hand side is
zero. This condition is y

′

Be = 1. Note that Definition 4.21 yields the matrix

TML
B = ey

′

B/(xBe) = 0.9240
(

0.5811 0.4189
0.5811 0.4189

)
,

which satisfies y
′

B = xBT
ML
B > 0, σ(TML

B ) = {0, 0.9240}, ρ(TML
B ) = 1/xBe = 0.9240, and

φB = (bB/ρ(TML
B ))/y

′

B from Theorem 4.26.
• Finer level, going up: Once the call returns with yB = (0.5811 | 0.4189), prolongation is performed

following yC = yBPx
′
C
, and we have

yC =
(

0.2758 0.3053 0.4189
)
.

The recursive call ML(Q̃C , xC , C, 1) ends by smoothing yC for C = [2, 3] with one iteration of the
SOR splitting in (5.2). Since yC = (0.2758 0.3053 | 0.4189), from y

′

C = yCT
SOR
C we have

y
′

C =
(

0.2817 0.2935 0.4233
)
.

Note that Definition 4.21 yields the ML iteration matrix

TML
C =

 0.2940 0.3063 0.4418
0.2469 0.2572 0.3710
0.2469 0.2572 0.3710

 ,

which satisfies y
′

C = xCT
ML
C , σ(TML

C ) = {0, 0.9222}, ρ(TML
C ) = 0.9222, and φC = (bC/ρ(TML

C ))/y
′

C
from Theorem 4.26.
• Finest level, going up: Once the call returns with yC = (0.2817 0.2935 | 0.4233), prolongation is

performed following yD = yCPx
′
D
, and we have

yD =
(

0.1461 0.1485 0.1356 0.1449 0.4233
)
.

The recursive call ML(Q̃D, xD,D, 1) ends by smoothing yD for D = [1, 2, 3] with one iteration of
the SOR splitting in (5.1). Since yD = (0.1461 0.1485 0.1356 0.1449 | 0.4233), from y

′

D = yDT
SOR
D

we have

y
′

D =
(

0.1615 0.1509 0.1189 0.1399 0.4326
)
.
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Note that Definition 4.21 yields the ML iteration matrix

TML
D =


0.2000 0.1869 0.1473 0.1733 0.5359
0.1385 0.1294 0.1019 0.1200 0.3709
0.1873 0.1750 0.1379 0.1623 0.5019
0.1608 0.1502 0.1184 0.1393 0.4307
0.1208 0.1128 0.0889 0.1046 0.3235

 ,

which satisfies y
′

D = xDT
ML
D , σ(TML

D ) = {0, 0.9301}, ρ(TML
D ) = 0.9301, and φD = (bD/ρ(TML

D ))y
′

D
from Theorem 4.26.

Hence, the improved solution is returned as y
′

D and copied to xD. Then xD is normalized to be the
unit 1-norm vector

x(1) =
(

0.1609 0.1503 0.1184 0.1394 0.4310
)
,

which yields from r(1) = −x(1)Q the improved residual vector

r(1) =
(
−0.0562 0.0004 0.0551 0.0100 −0.0092

)
with ‖r(1)‖∞ = 0.0562 < ‖r(0)‖∞

and from o(1) = x(1) − π the improved error vector

o(1) =
(
−0.0141 0.0003 0.0184 0.0144 −0.0190

)
with ‖o(1)‖∞ = 0.0190 < ‖o(0)‖∞.

Note that r(1) and o(1) are zero sum vectors as expected.
For this problem, the ML solver convergences to a tolerance of STOP TOL = 10−8 in 14 cycles and

the maximum norm of the residual vector r upon convergence is in the order 10−9 (i.e., ‖r‖∞ ≈ 10−9). If
convergence had not taken place, the next cycle would start with the improved xD. On the other hand,
When POWER with α = 0.999 and JOR with ω = 0.5 are used as smoothers, the ML solver converges
respectively in 12 and 14 cycles with ‖r‖∞ ≈ 10−9. In passing we remark that, although it does not satisfy
the assumptions of Theorems 4.20 and 4.26, SOR with ω = 1 (i.e., GS) as the smoother converges within
one cycle to machine precision for this problem.

5.2. Without smoothings. Now, consider the same cycle without any smoothings. That is, all pa-
rameters are the same except (MIN IN PRE, MAX IN PRE, MIN IN POST , MAX
IN POST , MIN OUT PRE, MAX OUT PRE, MIN OUT POST , MAX OUT POST ) =
(0, 0, 0, 0, 0, 0, 0, 0), and therefore ν1 + ν2 = 0. For this case, we observe the following.

• Finest level, going down: We have

RD =


1 0 0
0 1 0
1 0 0
0 1 0
0 0 1

 and PxD =

 0.5000 0 0.5000 0 0
0 0.5000 0 0.5000 0
0 0 0 0 1

 ,

implying the coarser grid

Q̃C = PxDQ̃DRD =

 −2.5000 1.0000 1.5000
1.0000 −1.0000 0.0000
1.0000 0.0000 −1.0000


and the restricted solution

xC = xDRD =
(

0.4000 0.4000 0.2000
)
.

• Coarser level, going down: We have

RC =

 1 0
1 0
0 1

 and PxC =
(

0.5000 0.5000 0
0 0 1.0000

)
,
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implying the coarser grid

Q̃B = PxC Q̃CRC =
(
−0.7500 0.7500

1.0000 −1.0000

)
and the restricted solution

xB = xCRC =
(

0.8000 0.2000
)
.

• Coarsest level: A direct method is employed to give

yB =
(

0.5714 0.4286
)
.

• Finer level, going up: The call from the coarsest level returns with yB to give

yC = yBPxC =
(

0.2857 0.2857 0.4286
)
.

• Finest level, going up: The call from the coarser level returns with yC to give

yD = yCPxD =
(

0.1429 0.1429 0.1429 0.1429 0.4286
)
.

For this cycle, the ML iteration matrix at the finest level can be computed to be TML
D = eyD from

Definition 4.21. Note that the prolongation operator will not change in future cycles, which implies no
improvement, and hence no convergence.

6. Conclusion. In this paper, the convergence of a class of multilevel (ML) methods for large, sparse
Markov chains (MCs) is investigated. The particular class of ML methods are inspired by algebraic multi-
grid and iterative aggregation-disaggregation, and have the capability of using (V, W, F) cycles, (power,
Jacobi over-relaxation—JOR, successive over-relaxation—SOR) methods as smoothers, and (fixed, cyclic,
dynamic) orders in which coarser MCs can be formed by aggregation in a cycle. A detailed convergence
analysis is carried out. The conditions sufficient for convergence are an irreducible MC, a positive initial
approximation from an appropriate subspace, an onto mapping of states from a finer MC to a coarser MC
at each level, a uniformization parameter larger than the minimum magnitude of the diagonal elements for
the power method, a relaxation parameter less than one for JOR and SOR, a sufficient number of pre- and
post-smoothings at each level so as to ensure a smoothing matrix which is positive or has a(n) (almost)
positive row/column, and the accurate solution of the coarsest system at each cycle.

Appendix.
Lemma A.1. Let v be a probability vector (i.e., v ≥ 0 and ve = 1), G be a positive probability matrix

(i.e., G > 0, Ge = e) with state space S, z = vG, and ψ be the unique, positive fixed point of G (i.e.,
ψ > 0, ψG = ψ) such that ψe = 1. Then z > 0, ze = 1, and

‖z − ψ‖1 ≤
(

1− min
i,j∈S

g(i, j)
)
‖v − ψ‖1,

where 0 < mini,j∈S g(i, j) ≤ 1/|S|.
Proof. The positivity of z follows from z = vG since v ≥ 0 (with v(j) > 0 for at least one j ∈ S) and

G > 0, and its unit 1-norm follows from ze = v(Ge) = ve = 1 since Ge = e and ve = 1. Furthermore from
z = vG, we have

z(i) =
∑
j∈S

g(j, i)v(j) for i ∈ S.

Then using ψ = ψG, we can write

z(i)− ψ(i) =
∑
j∈S

g(j, i)(v(j)− ψ(j)) for i ∈ S.
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Since v ≥ 0 and ψ > 0 such that ve = ψe = 1, it is impossible to satisfy v(j) ≥ ψ(j) for all j ∈ S unless
v = ψ. When v = ψ, we also have z = ψ, which proves the result trivially. Therefore, we consider the sets

X = {j | v(j) ≥ ψ(j), j ∈ S} such that X 6= ∅ and X ⊂ S

and

Y = {j | z(j) ≥ ψ(j), j ∈ S} such that Y 6= ∅ and Y ⊂ S.

Then, S − X = {j | v(j) < ψ(j), j ∈ S} and S − Y = {j | z(j) < ψ(j), j ∈ S}. Now, for i ∈ S we clearly
have

z(i)− ψ(i) =
∑
j∈X

g(j, i)(v(j)− ψ(j)) +
∑

j∈(S−X )

g(j, i)(v(j)− ψ(j)),

which implies ∑
j∈(S−X )

g(j, i)(v(j)− ψ(j)) ≤ z(i)− ψ(i) ≤
∑
j∈X

g(j, i)(v(j)− ψ(j))

due to the definition of X . Observe that the summations on the left and right respectively evaluate to
negative and positive values.

Since G is positive and has row sums of one, its minimum element is positive and is maximized if one
is equally distributed across all rows. That is [2, p. 268],

0 < min
i,j∈S

g(i, j) ≤ 1/|S|.

First, consider summing both sides of

z(i)− ψ(i) ≤
∑
j∈X

g(j, i)(v(j)− ψ(j))

over i ∈ Y so as to obtain∑
i∈Y

(z(i)− ψ(i)) ≤
∑
i∈Y

∑
j∈X

g(j, i)(v(j)− ψ(j)) ≤
∑
j∈X

(∑
i∈Y

g(j, i)

)
(v(j)− ψ(j))

≤
(

1− min
i,j∈S

g(i, j)
)∑

j∈X
(v(j)− ψ(j)),

where
∑

i∈Y g(j, i) ≤ 1−mini,j∈S g(i, j) follows from 0 < mini,j∈S g(i, j) ≤ g(i, j) by the fact that |Y| < |S|.
Since each term in the final summations are positive and 1−mini,j∈S g(i, j) > 0, this can be rewritten as∑

i∈Y
|z(i)− ψ(i)| ≤

(
1− min

i,j∈S
g(i, j)

)∑
j∈X
|v(j)− ψ(j)|.

due to the definitions of X and Y.
Next, consider summing both sides of∑

j∈(S−X )

g(j, i)(v(j)− ψ(j)) ≤ z(i)− ψ(i)

over i ∈ (S − Y) so as to obtain∑
i∈(S−Y)

∑
j∈(S−X )

g(j, i)(v(j)− ψ(j)) ≤
∑

i∈(S−Y)

(z(i)− ψ(i))

∑
j∈(S−X )

 ∑
i∈(S−Y)

g(j, i)

 (v(j)− ψ(j)) ≤
∑

i∈(S−Y)

(z(i)− ψ(i))

(
1− min

i,j∈S
g(i, j)

) ∑
j∈(S−X )

(v(j)− ψ(j)) ≤
∑

i∈(S−Y)

(z(i)− ψ(i)),
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where
∑

i∈(S−Y) g(j, i) ≤ 1 − mini,j∈S g(i, j) follows in a similar way as before; however, this time each
term in the final summations are negative. Therefore, we can write∑

i∈(S−Y)

|z(i)− ψ(i)| ≤
(

1− min
i,j∈S

g(i, j)
) ∑

j∈(S−X )

|v(j)− ψ(j)|

due to the definitions of (S − X ) and (S − Y).
Combining the two inequalities, which involve absolute values, side by side, we obtain∑

i∈S
|z(i)− ψ(i)| ≤

(
1− min

i,j∈S
g(i, j)

)∑
j∈S
|v(j)− ψ(j)|.

But, this is equivalent to

‖z − ψ‖1 ≤
(

1− min
i,j∈S

g(i, j)
)
‖v − ψ‖1

and the result is proved.
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