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ABSTRACT

MOTION CAPTURE FROM SINGLE VIDEO
SEQUENCE

İbrahim Demir

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Güdükbay

August, 2006

3D human pose reconstruction is a popular research area since it can be used

in various applications. Currently most of the methods work for constrained en-

vironments, where multi camera views are available and camera calibration is

known, or a single camera view is available, which requires intensive user effort.

However most of the currently available data do not satisfy these constraints,

thus they cannot be processed by these algorithms. In this thesis a framework

is proposed to reconstruct 3D pose of a human for animation from a sequence of

single view video frames. The framework for pose construction starts with back-

ground estimation. Once the image background is estimated, the body silhouette

is extracted by using image subtraction for each frame. Then the body silhou-

ettes are automatically labeled by using a model-based approach. Finally, the 3D

pose is constructed from the labeled human silhouette by assuming orthographic

projection. The proposed approach does not require camera calibration. The

proposed framework assumes that the input video has a static background and

it has no significant perspective effects and the performer is in upright position.

Keywords: motion capture, framework, single camera, uncalibrated camera,

vision-based, animation.
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ÖZET

TEK VİDEO DİZİSİNDEN HAREKET YAKALANMASI

İbrahim Demir

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. Dr. Uğur Güdükbay

Ağustos, 2006

Üç boyutlu insan pozunun elde edilmesi çeşitli uygulama alanlarının ol-

masından dolayı popüler bir konudur. Şu anda var olan yöntemlerin çoğunun

çeşitli kısıtlamalara dayanması uygulamada bazı zorluklar doğurmaktadır. Bu

yöntemlerin getirmiş olduğu kısıtlamalar birden fazla kamera görüntüsüne ve

kamera ayarlarının bilinmesine ihtiyaç duyulması veya tek kamera görüntüsü

nedeniyle kullanıcının yoğun çabasına ihtiyaç duyulmasıdır. Çoğu zaman bu

kısıtlamalardan dolayı mevcut veriler üzerinde bu yöntemler uygulanamamak-

tadır. Bu tezde bu kısıtlamalara bağlı olmadan tek kameradan elde edilen

videodan üç boyutlu animasyonda kullanılacak insan pozunun elde edilmesi için

bir çerçeve çalışma önerilmektedir. Buna göre video karelerindeki arka plan

hesaplanmakta, daha sonra görüntü çıkarma yöntemi ile her bir video karesin-

deki insan silueti bulunmaktadır. Daha sonra vücudun parçaları iki boyutlu

resim üzerinde otomatik olarak tanımlanmaktadır. Son adım olarak da vücut

parçaları tanımlanmış olan siluetten dikey izdüşüm kullanılarak üç boyutlu poz

oluşturulmaktadır. Bu tezde sunulan yöntem çoklu video zorunluluğu veya kam-

era kalibrasyonu gerektirmemektedir. Bu tezde anlatılan çerçeve çalışma video-

nun değişmeyen bir arka planın olması, videonun dikey izdüşümünü etkileye-

cek perspektif etkisinin fazla olmaması ve görüntüdeki kişinin ayakta olması

varsayımlarına dayanmaktadır.

Anahtar sözcükler : hareket yakalanması, çerçeve, tek kamera, görme temelli,

animasyon.
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Chapter 1

Introduction

Human pose reconstruction is a popular research area since it can be used in

various applications. Motion capture and motion synthesis are expensive and

time consuming tasks for articulated figures, such as humans. Human pose esti-

mation based on computer vision principles is inexpensive and widely applicable

approach. In computer vision literature the term human motion capture is usu-

ally used in connection with large scale body analysis ignoring the fingers, hands

and the facial muscles, which is the case in our work.

The motion capture problem we try to solve can be defined as follows: given a

single stream of video frames of a performer, compute a 3D skeletal representation

of the motion of sufficient quality to be useful for animation. The animation

generation is an application of motion capture where the required accuracy is not

as high as in some other applications, such as medicine [8].

In this thesis, a model-based framework is proposed to reconstruct the 3D pose

of a human for animation from a sequence of video frames obtained from a single

view. The proposed framework for pose reconstruction starts with background

estimation. Once the background is estimated, the body silhouette is extracted

for each frame by using image subtraction. Then, the 2D body segments are

automatically labeled on the human body silhouette by using a model-based

approach. Finally, the 3D pose is constructed from the labeled human silhouette

1



CHAPTER 1. INTRODUCTION 2

by assuming orthographic projection. The approach proposed in this thesis does

not require camera calibration and it uses a video sequence obtained from a

single camera. The proposed framework assumes that the input video has a

static background and it has no significant perspective effects and the performer

is in upright position.

Our approach for constructing the 3D pose is close to the approach defined in

[16], but in our approach the necessary user interaction is significantly reduced.

In order to construct the 3D pose, the joint coordinates of the human figure are

needed. Unlike the other approach [16] which gets the corresponding points from

the user input, our approach computes these points automatically.

We tested the proposed framework on various video sequences and obtained

reasonable constructions of the human figure motion.

1.1 Organization of the Thesis

This thesis is organized as follows: Chapter 2 introduces human motion capture

techniques and gives a summary of the related work in this area. In Chapter 3,

we propose our framework for human motion capture from a video sequence

obtained from a single camera and animation by using the captured motion data.

In Chapter 4, we give visual results for different videos produced by the proposed

framework. We also interpret the results and comment on the performance of the

proposed framework. Finally, Chapter 5 gives conclusions.



Chapter 2

Background and Related Work

This chapter discusses human motion control techniques, motion capture tech-

niques in general, non-vision based motion capture techniques, vision-based mo-

tion capture techniques with and without markers and single image processing

techniques to find correspondence points in an image.

2.1 Human Motion Control Techniques

There are mainly two motion control techniques for animating articulated figures:

kinematics and dynamics. Kinematics methods use time-based joint rotation val-

ues to control the animation while dynamics methods use force-based simulation

of movements [11]. Creating data for these techniques can be done manually by

talented animators or can be captured automatically by different types of devices

[17, 18]. Motion control techniques are summarized in the following sections.

2.1.1 Kinematics

Kinematics approaches obtain the motion parameters by considering position,

velocity, and acceleration without being concerned with the forces that cause the

3
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motion. Kinematics methods can be classified into two parts: Forward Kine-

matics and Inverse Kinematics. Forward Kinematics directly sets the motion

parameters like the position, the orientation of joints at specific times for each

joint, whereas Inverse Kinematics uses nonlinear programming techniques and

the positions of the end-effectors to determine the position and the orientation of

the joints in the hierarchy.

2.1.2 Dynamics

Dynamics approaches obtain the motion parameters by using dynamic motion

equations considering the forces, the torques, and the physical properties of the

objects. The dynamic methods can be classified into two parts: Forward Dynam-

ics and Inverse Dynamics. Forward Dynamics computes the motion parameters

by applying forces on the objects, whereas Inverse Dynamics computes the nec-

essary forces for a specific motion.

2.2 Motion Capture

Motion capture is an attractive way of creating the motion parameters for com-

puter animation. It can provide the realistic motion parameters. It permits an

actor and a director to work together to create a desired pose, that may be dif-

ficult to describe with enough specificity to have an animator recreate manually

[8]. The application areas of motion capture techniques can be summarized as

follows [15]:

Virtual reality : interactive virtual environments, games, virtual studios, char-

acter animation, film, advertising

Smart surveillance systems: access control, parking lots, supermarkets,

vending machines, traffic.

Advanced user interfaces: advanced user interfaces.
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Motion analysis and synthesis: annotations of videos, personalized train-

ing , clinical studies of medicine.

Motion capture is an effective way of creating the motion data for an ani-

mation [8]. Quality for animations caused challenging requirements on capture

systems. To date, capture systems that meet these requirements have required

specialized equipment that is expensive. Computer vision can make animation

data easier to obtain.

Ideally, the capture of motion data should be easily available, inexpensive.

Using standard video cameras is an attractive way of providing these features.

The use of a single camera is a particularly attractive way. It offers the lowest

cost, simplified setup, and the potential use of legacy sources such as films [8].

Human motion capture systems generate data that represents measured hu-

man movement, based on different technologies. According to used technology,

human motion capture systems can be classified as non-vision based, vision based

with markers, vision based without markers.

2.2.1 Non-vision Based Motion Capture

In non-vision based systems, sensors are attached to the human body to collect

movement information. Some of them have a small sensing footprint that they

can detect small changes such as finger or toe movement [19]. Each kind of sensor

has advantages and limitations [15].

Advantages of magnetic trackers:

• real-time data output can provide immediate feedback,

• no post processing is required,

• they are less expensive than optical systems,

• no occlusion problem is observed,
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• multiple performers are possible.

Disadvantages of magnetic trackers:

• the trackers are sensitivity to metal objects,

• cables restricts the performers,

• they provide lower sampling rate than some optical systems,

• the marker configurations are difficult to change.

Advantages of electromechanical body suits:

• they are less expensive than optical and magnetic systems,

• real-time data is possible,

• no occlusion problem is observed,

• multiple performers are possible.

Disadvantages of electromechanical body suits:

• they provide lower sampling rate,

• they are difficult to use due to the amount of hardware,

• configuration of sensors is fixed.

2.2.2 Vision-Based Motion Capture with Markers

In 1973, Johansson explored his famous Moving Light Display (MLD) psycho-

logical experiment to perceive biological motion [10]. In the experiment, small

reflective markers are attached to the joints of the human performers. When the
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patterns of the movements are observed, the integration of the signals coming

from the markers resulted in recognition of actions. Although the method faces

the challenges such as errors, non-robustness and expensive computation due to

environmental constraints, mutual occlusion and complicated processing, many

marker based tracking systems are available in the market.

This is a technique that uses optical sensors, e.g. cameras, to track human

movements, which are captured by placing markers upon the human body. Hu-

man skeleton is a highly articulated structure and moves in three-dimension. For

this reason, each body part continuously moves in and out of occlusion from the

view of the cameras, resulting in inconsistent and unreliable motion data of the

human body.

One major drawback of using optical sensors and markers, they cannot sense

joint rotation accurately. This is a major drawback in representing a real 3D

model [20]. Optical systems has advantages and limitations [15].

Advantages of optical systems are as follows:

• they are more accurate,

• larger number of markers are possible,

• no cables restricts the performers,

• they produces more samples per second,

Disadvantages of optical systems :

• they require post-processing,

• they are expensive (between 100, 000 and 250, 000),

• occlusion is a problem in these systems.

• environment of the capturing must be away from yellow light and reflective

noise,
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2.2.3 Vision-Based Motion Capture without Markers

The marker-based tracking systems are restrictive to some extent due to the

mounted markers as discussed in the previous Section 2.2.2. As a less restrictive

motion capture technique, markerless-based systems are capable of overcoming

the mutual occlusion problem as they are only concerned about boundaries or

features on human bodies. This is an active and promising but also challenging

research area in the last decade. The research with respect to this area is still

ongoing [19].

The markerless-based motion capture technique exploits external sensors like

cameras to track the movement of the human body. A camera can be of a res-

olution of a million pixels. This is one of the main reasons that optical sensors

attracted people’s attention. However, such vision-based techniques require in-

tensive computational power [5].

As a commonly used framework, 2D motion tracking only concerns the human

movement in an image plane, although sometimes people intend to project a 3D

structure into its image plane for processing purposes. This approach can be

catalogued with and without explicit shape models [19].

The creation of motion capture data from a single video stream seems like a

plausible idea. People are able to watch a video and understand the motion, but

clearly, the computing the human motion parameters from a video stream is a

challenging task [8].

Vision-based motion capture techniques usually include initialization and

tracking steps.

2.2.3.1 Initialization

A system starts its operation with correct interpretation of the current scene.

The initialization requires camera calibration, adaptation to scene characteristics

and model initialization. Camera calibration is defined as parameters that are
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required for translating a point in a 3D scene to its position in the image. Some

systems find initial pose and increment it from frame to frame whereas in other

systems the user specifies the pose in every single frame. Some systems have

special initialization phase where the start pose is found automatically whereas in

others the same algorithm is used both for initialization and pose estimation [14].

2.2.3.2 Tracking

Tracking phase extracts specific information, either low level, such as edges, or

high level, such as head and hands. Tracking consists of three parts [14]:

1. Figure-ground segmentation: the human figure is extracted from the rest of

the image.

2. Representation: segmented images are converted to another presentation to

reduce the amount of information.

3. Tracking over time: how the subject should be tracked from frame to frame.

2.3 Single Image Processing

In this section, we explain how to find a corresponding point in an image according

to orthographic projection as explained in [16].

A point in 3D when projected to orthographic scene can be represented by 2D

coordinates. Let (X, Y, Z) be a point in the 3D world and (u, v) be its projection

on the 2D plane.

(
u

v

)
= s

(
1 0 0

0 1 0

)
X

Y

Z

 (2.1)
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These two points can be expressed with Equation 2.1 [16] under scaled ortho-

graphic projection. Figure 2.1 shows the projection of a line with length l, onto

the image under scaled orthographic projection. The projection of the two end

points (X1, Y1, Z1) and (X1, Y2, Z2) are represented by (u1, v1) and (u2, v2) on the

image respectively. If the scale factor s of the projection model is known, we can

calculate the relative depth of the line denoted by ∂Z as shown in Equation 2.2

[16].

Figure 2.1: Projection of a line (adapted from [16]).
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l2 = (X1 −X2)
2 + (Y1 − Y2)

2 + (Z1 − Z2)
2

(u1 − u2) = s (X1 −X2)

(v1 − v2) = s (Y1 − Y2)

∂Z = (Z1 − Z2)

∂Z =

√
l2 −

(
(u1 − u2)

2 + (v1 − v2)
2)

s2

(2.2)

Figure 2.2: The ambiguity under orthographic projection (adapted from [12]).
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These analysis shows us how to compute the 3D corresponding of a point on

the image as a function of the scale parameter s. In this thesis we use the height

of human observed on the image to compute scale parameter s. We use the s

parameter found from the height to all body parts to find 3D joint coordinates.

For the computed value of s two distinct solutions are possible. We do not know

whether the each segment on the image is at rear or at front. This ambiguity is

shown in Figure 2.2.



Chapter 3

Motion Capture and Animation

System

Capturing the human motion parameters has various challenging problems. Thus,

the solution for such a problem requires various methods and algorithms. In this

section we give an overview of our framework, and the details of each stage.

The proposed framework finds the posture of a human if the joint corre-

spondences on the image and the depth direction of the each body segment are

provided. The user specifies the joint correspondences on the image and the

depth direction of body segments by using the mouse. In [16], including the joint

correspondences, are provided by the user. Our aim is to use image processing

algorithms and computer graphics and computer vision techniques to extract the

human motion parameters (namely body postures) with minimal user efforts.

When the joint angles are calculated, remaining information needed to construct

3D pose is the depth information (inward or outward) of each body part, which

rarely changes during a video frame sequence. The user only has to interact

whenever a body segment changes its depth direction.

13
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Figure 3.1: Proposed framework for human motion capture from single video
sequence and animation using the motion capture data.



CHAPTER 3. MOTION CAPTURE AND ANIMATION SYSTEM 15

3.1 Proposed Framework

The proposed framework for human motion capture and animation is shown in

Figure 3.1. For capturing the 3D pose from the given image sequence the first

stage estimates the background of the video to find the silhouette of the performer

on each frame of the video. Then, we find the silhouette of the performer by

subtracting the estimated background from each frame. The extracted silhouette

of the performer is given as input to the 2D pose extractor. The 2D pose extractor

finds the joint coordinates of the performer on the image by using a model-

based approach. A 2D stick human model (see Figure 3.3) is fitted onto the

silhouette. In this way, the joint coordinates of the performer are matched to

the joint coordinates of the 2D stick human model. The joint coordinates of the

2D stick model will be given as input to the 3D pose estimator. The 3D pose

estimator computes the 3D joint configurations from the 2D joint coordinates and

the depth information of the human model for each body part. Finally, the 3D

human model is animated based on the 3D joint configurations computed from

the video sequence.

3.1.1 Human Modeling

The computer generated human model should make simple the accurate position-

ing of the segments during motion, deform the skin where the muscles and tissue

are taken into account realistically during the movement, generate realistic facial

expressions, realistic modeling of hair, etc. All of these issues are research topics

in their own right [13]. There are standardization efforts to address these issues,

such as MPEG-4 [1] or Humanoid Animation (H-Anim) standard [2] developed by

The Humanoid Animation Working Group of Web3D Consortium. Since the aim

of our work is to extract the posture of a human in an image sequence, we do not

go into details of human body modeling and animation. But human body model

used to find human pose must be explained before going further. We describe

the human model used for finding the human pose below.
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Modeling the skeleton is the trivial part of the human body modeling [13].

The skeleton can be represented as a collection of simple rigid objects connected

by joints. The joints are arranged in a hierarchical manner. These models, called

articulated bodies, can have various degrees of articulation. The number and

the hierarchy of joints and limbs and the degrees of freedom (DOF) of the joints

determine the complexity of model. The DOF of a joint is the independent

position variable that is necessary to specify the state of a joint. The joints can

rotate in one, two, or three orthogonal directions. The number of these orthogonal

directions determines DOF of a joint. A human skeleton may have many DOFs.

However, when the number of DOFs increases, the methodology, which is used

for controlling the joints, becomes more complex.

For the sake of our model-based framework, we have to think about tradeoff

between the accuracy of the representation and the number of parameters for the

model that needs to be estimated. In our work, we are interested in large body

movements of human motion. Hands or facial expressions are not considered. To

reduce the computational complexity of the model we use a simple 3D articulated

human model to capture the motion. Our articulated human model consists of

10 cylindrical parts representing head, torso, right upper leg, right lower leg, left

upper leg, left lower leg, right upper arm, right lower arm, left upper arm, and

left lower arm (see Figure 3.2). Each cylindrical part has two parameters: radius

and length. For each cylindrical part there are up to three rotation parameters:

θX , θY , and θZ . Totally, there are 23 DOFs for the human model: 3 DOFs for

the global positioning of the human body, 1 DOF for the head, 3 DOFs for the

torso, 2 DOFs for the right upper leg, 2 DOFs for the right lower leg, 2 DOFs for

the left upper leg, 2 DOFs for the left lower leg, 2 DOFs for the right upper arm,

2 DOFs for the right lower arm, 2 DOFs for the left upper arm, 2 DOFs for the

left lower arm (see Figure 3.3).
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Figure 3.2: Human model tree.

Table 3.1: The ratios of the lengths of different parts of the human model to the
length of the human model.

Length Ratio

Height 175/175
Head 25/175
Torso 52/175
Upper arm 25/175
Lower arm 35/175
Upper leg 46/175
Lower leg 52/175
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Figure 3.3: The human model used in our implementation.
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Table 3.2: The ratios of the radii of different parts of the human model to the
length of the human model.

Radius Ratio

Head 20/175
Torso 40/175
Upper arm 10/175
Lower arm 10/175
Upper leg 20/175
Lower leg 20/175

Table 3.3: The joint limits in the human model.

Body part Start limit (degrees) End limit (degrees)

Neck 45 135
Waist 45 135
Right hip 240 300
Left hip 240 300
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3.1.2 Background Estimation

We need to estimate background to extract the silhouette of the performer on

the video. If the single video is prepared by the user then we can get exact

background of video easily. If the video we are working is taken from a public

resource we have to estimate the background. We do that by finding the regions

on video frames that do not change. We label these regions as background. By

analyzing a few frames, the background is estimated. We use an efficient graph-

based image segmentation algorithm to decrease the lighting effect when deciding

whether a region is changing or not [7]. Pixels that are inside the same segment

are set to the same color.

3.1.2.1 Efficient Graph Based Image Segmentation

We use the graph-theoretic approach proposed by Felzenszwalb and Huttenlocher

for image segmentation [7]. In this approach, they define a predicate for measur-

ing the evidence for a boundary between two regions using a graph-based repre-

sentation of the image. They measure the evidence for a boundary by comparing

intensity differences across the boundary and the intensity differences between

the neighboring pixels within each region. This segmentation algorithm produces

segmentations that satisfy global properties.

An undirected graph G = (V, E) is constructed for the image. Each vertex

vi ∈ V corresponds to a pixel in the image and each edge (vi, vj) ∈ E corresponds

to the pairs of neighboring pixels. Each edge (vi, vj) ∈ E has a corresponding

weight w(vi, vj), which is a non-negative measure of dissimilarity between the two

pixels connected by that edge. A segmentation S is a partition of the vertex set

V into components such that each component C ∈ S corresponds to a connected

component in a graph G
′
=
(
V, E

′)
where E

′ ⊆ E.

In other words, any segmentation is a subset of the edges in E. In general,

we want the elements in a component to be similar and the elements in different

components to be dissimilar. This means that the edges between two vertices in
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the same component should have relatively low weights, and the edges between

vertices in different components should have higher weights.

The algorithm is computationally efficient, running in O (n log n) time for n

image pixels and with low constant factors, which makes it suitable for video

applications.

3.1.3 Silhouette Extraction

Silhouette is the main feature extracted from the video frames and used in our

framework. Our 2D pose extractor takes the silhouette of performer on the frame

as input and process the silhouette to find 2D joint coordinates of the performer.

We use the background estimation method explained in the previous section to

detect the silhouette on a frame. We use simple thresholding image subtraction to

detect the body silhouette on the image. The main goal of the image subtraction

algorithms is to detect foreground objects. In our case, the foreground object

is the silhouette of the performer. We detect the silhouette on a frame as the

difference between the frame and the background. We apply the threshold value

to decide whether pixel of the frame belongs to the silhouette or the background.

If the absolute value of the difference between the pixel of the frame with the

background pixel is greater than the specified threshold, then the pixel is taken

as a silhouette pixel, otherwise the pixel is regarded as a background pixel.

3.1.4 2D Pose Extractor

The aim of this part to find the joint coordinates of the performer by using the

human silhouette. We extract the joint coordinates of human actor by using a

model-based technique. We model the human as an assembly of cylinders. We

match the silhouette with the human model iteratively. After fitting the human

model onto the silhouette, we can use the joint coordinates of the human model

as the joint coordinates of the performer.
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During the 2D pose extraction, we do not know whether a leg is a left leg

(arm) or right leg (arm). When we talk about the 2D pose extraction we use left

leg to mean the leg that is on the left of image. The distinction of left and right

is actually done during the 3D pose estimation. For the 2D pose extraction we

have to be sure that the segments on the left of image are identified as left and

the segments on the right of the image are identified as right.

The process of finding the 2D pose starts by detecting the torso location. We

locate the y coordinate of the torso from the relative ratios shown in Table 3.1.

We take the horizontal middle point of the silhouette as x coordinate of the torso.

Then by using Algorithm 1, we find how much the torso is rotated around the

normal axis of image plane, as shown in Figure 3.4. Then by using Algorithm 1,

we detect the head rotation. We analyze the contour of the silhouette by using

Algorithm 2 to find how much the lower left leg angle, lower right leg angle, upper

left arm angle, upper right arm angle, lower left arm angle, lower right arm angle

rotated around the normal axis of the image plane. Then, we find the rotation

angle of the upper left leg and the upper right leg by Algorithm 1, as shown in

Figures 3.5 and 3.6. After finding each rotation angle we find the foreshortening

of each segment by using Algorithm 6. Finding foreshortening of the upper arm

and the torso is shown in Figures 3.9 and 3.8, respectively.

3.1.4.1 Finding Orientation of Body Parts

Algorithm 1 finds how much one or more body segments rotated around the

normal axis of the image. The technique used in Algorithm 1 is close to the

method used in [9]. Before going further we have to define the similarity between

to images.

3.1.4.2 Measuring Similarity

We measure similarity between two images I1 and I2 by an operator S (I1, I2)

as described in [9]. The similarity operator only considers the area difference
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between the two shapes; i.e, the ratio of the positive error p (represents the ratio

of the number of pixels in the silhouette but not in the human model to the total

number of pixels of the human model and the silhouette) and the negative error

n (represents the ratio of the number of pixels in the human model but not in the

silhouette to the total number of pixels of the human model and the silhouette)

which are calculated as

p =

(
I1 ∩ IC

2

)
(I1 ∪ I2)

(3.1)

n =

(
I2 ∩ IC

1

)
(I1 ∪ I2)

(3.2)

where IC denotes the complement of I. The similarity between the two shapes

I1 and I2 is calculated as

S (I1, I2) = e−p−n (1− p) (3.3)

Algorithm 1 takes the fragment of the human silhouette that contains the

body segments to be searched as input. The algorithm also takes the lower and

upper joint angle limits. The lower and upper joint angle limits used in our

implementation are listed in Table 3.3.
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S ← PartialSilhouetteContainingSegmentsToBeSearched;
startAngle ← startAngle;
endAngle ← endAngle;
numberOfDivision ← 8;
minimumStepAngle ← 1◦;
searchAngleInterval ← (endAngle− startAngle);
stepAngle ← (searchAngleInterval/numberOfDivision);
angleThatMaximizes ← (endAngle + startAngle)/2;
maximumSimilarity ← 0;
while searchAngleInterval > minimumStepAngle do

angForBegin ← angleThatMaximizes− searchAngleInterval/2;
if angForBegin < startAngle then

angForBegin ← startAngle;

end
angForEnd ← angleThatMaximizes + searchAngleInterval/2;
if angForEnd > endAngle then

angForEnd ← endAngle;

end
if stepAngle is 0 then

stepAngle ← minimumStepAngle;

end
angleForBodyPart ← angForBegin;
while angleForBodyPart ≤ angForEnd do

currentModelPose ← DrawBodyPart();
similarityResult ←
MeasureSimilarity(S,currentModelPose);
if similarityResult > maximumSimilarity then

maximumSimilarity ← similarityResult;
angleThatMaximizes ← angleForBodyPart;

end
angleForBodyPart ← angleForBodyPart + StepAngle;

end
searchAngleInterval ←
2× (searchAngleInterval/numberOfDivision);
stepAngle ← 2× (stepAngle/numberOfDivision);

end
return angleThatMaximizes

Algorithm 1: The algorithm to find how much the given segment(s) ro-
tated around the normal axis of the image.
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Figure 3.4: The iterative estimation of the torso angle.
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Figure 3.5: The iterative estimation of the upper left leg angle.
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Figure 3.6: The iterative estimation of the upper right leg angle.
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We divide the angle range specified by the lower and upper limits to a number

of intervals and we measure how well the silhouette is covered by the segments

for each interval. We find the division (angle) that covers the silhouette best.

We narrow the search interval at each iteration by selecting the next search in-

terval for the joint angle as the division that gives best covering result merged

with its neighbor divisions since there is a possibility the best angle can be in

these divisions. We recursively continue to narrow the search interval and when

the search interval is smaller than a threshold value the algorithm returns the

angle that corresponds to the best fitting. Examples of the application of this

algorithm for the torso, the upper left leg, and the upper right leg are shown in

Figures 3.4, 3.5, and 3.6, respectively.

3.1.4.3 Contour Analyzing Method

This method is used to find how much the segments of the body (lower left leg,

upper right leg, upper left arm, lower left arm, upper right arm, and lower right

arm) rotated around the normal axis of the image plane. We use contour analysis

to find angles. We do not use Algorithm 1 for the arm segments because of

the high possibility of occlusion with other parts. For lower legs, we cannot use

Algorithm 1 because we have to first find the upper legs. This is because we do

not know the end points of the upper legs. Trying to find the upper leg angle by

using Algorithm 1 is also not appropriate. Since the upper legs occluded by cloths

or being adjacent to each other that makes it difficult to find the joint angles for

them. For this reason, we use Algorithm 2 that is based on contour analysis on

the lower legs. After finding the angle of the lower legs by using Algorithm 2 we

find upper leg angles by using Algorithm 1. While finding the upper leg angle

with Algorithm 1 we combine the upper leg and the lower leg into a single unit,

as shown in Figures 3.5 and 3.6. For some segments, Algorithm 1 gives better

results if the segment is combined with other segments. For example, while we

are determining the torso angle, the torso and the head are also taken together

as shown in Figure 3.4. The head helps to find the torso angle easily. By the

same logic, since the lower leg angles are found with the contour analysis method,

knowing the lower leg angle helps to find the upper leg angles easily as shown in
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Figures 3.5 and 3.6.

The contours of the left arm, the right arm and the lower left leg and the lower

right leg are extracted from the silhouette by traversing horizontal scan lines over

the silhouette. For this purpose, a curve is extracted for each part. For the lower

left leg and the lower right leg we compute the joint angle from the curves as

shown in Algorithm 2.

S ← Silhouette;
LeftArmPoints ← GetLeftArmCurve(S );
RightArmPoints ← GetRightArmCurve(S );
LeftLowerKneePoints ← GetLeftLowerKneeCurve(S );
RightLowerKneePoints ← GetRightLowerKneeCurve(S );
/*LLA stands for LeftLowerArm */

/*LUA stands for LeftUpperArm */

/*RLA stands for RightLowerArm */

/*RUA stands for RightUpperArm */

/*LLK stands for LeftLowerKnee */

/*RLK stands for RightLowerKnee */

LeftArmAngles ← FindArmAngles(LeftArmPoints);
LLAAngle ← LeftArmAngles.Lower;
LUAAngle ← LeftArmAngles.Upper;
RightArmAngles ← FindArmAngles(RightArmPoints);
RLAAngle ← RightArmAngles.Lower;
RUAAngle ← RightArmAngles.Upper;
LLKAngle ← FindAngle(LeftLowerKneePoints);
RLKAngle ← FindAngle(RightLowerKneePoints);
LLKLineList ← KneeScanLinesLeft(S );
RLKLineList ← KneeScanLinesRight(S );
if
KneeCrossed(LeftLowerKneeLineList,RightLowerKneeLineList)
then

Swap(LLKAngle,RLKAngle );

end
return LLAAngle, LUAAngle, RLAAngle, RUAAngle, LLKAngle,
RLKAngle

Algorithm 2: The algorithm to find the limb angles.
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armPointList ← armpointlist;
lowerArmAngle ← 0;
upperArmAngle ← 0;
elbowCornerIndex ← FindElbowCorner(armPointList );
if elbowCornerIndex is −1 then

angle ← FindAngle(armPointList );
lowerArmAngle ← angle ;
upperArmAngle ← angle ;

else
startIndexUpper ← 0;
endIndexUpper ← elbowCornerIndex ;
startIndexLower ← elbowCornerIndex ;
endIndexLower ← ArmPointList.Length− 1;
UpperArmPoints ←
GetPoints(armPointList,startIndexUpper,endIndexUpper);
LowerArmPoints ←
GetPoints(armPointList,startIndexLower,endIndexLower);
lowerArmAngle ← FindAngle(LowerArmPoints);
upperArmAngle ← FindAngle(UpperArmPoints);

end
return lowerArmAngle,upperArmAngle

Algorithm 3: The algorithm to find the arm angle.
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armPointList ← ArmPointList;
minimumCornerDistance ← 4;
minimumCornerAngleDifference ← 10;
listOfPossibleCorners ← CreateEmptyList();
for i← minimumCornerDistance to armPointList.Length− 1 do

startIndexUpper ← 0;
endIndexUpper ← i;
startIndexLower ← i;
endIndexLower ← armPointList.Length− 1;
upperArmPoints ←
GetPoints(armPointList,startIndexUpper,endIndexUpper);
lowerArmPoints ←
GetPoints(armPointList,startIndexLower,endIndexLower);
ArmAngles.Lower ← FindAngle(lowerArmPoints);
ArmAngles.Upper ← FindAngle(upperArmPoints);
cornerAngleDifference ←
Absolute(ArmAngles.Upper-ArmAngles.Lower);
if
cornerAngleDifference ≥ minimumCornerAngleDifference
then

Add(listOfPossibleCorners,i,cornerAngleDifference);

end
end
cornerIndex ← −1;
if listOfPossibleCorners.Length ≥ 0 then

cornerIndex ←
FindIndexOfMaxDifference(listOfPossibleCorners);

end
return cornerIndex

Algorithm 4: The algorithm to find the elbow corner.
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For the arms, we have to find two angles: one for the lower arm and one

for the upper arm. We extract the two angles from the arm curves by trying to

find potential elbow corners on their point lists. We use Algorithm 4 to find the

elbows. Algorithm 4 tries some points as if they are elbow corners and checks

whether enough angle difference exists for the upper and lower segments. If there

are more than one candidate point to be the elbow, Algorithm 4 selects the elbow

point that gives the largest angle difference between the upper arm and the lower

arm. If an elbow is found, the arm curve is divided into two pieces from the

elbow and the corresponding angle is computed for each segment like in lower

leg segments. If there is no elbow detected then the angle is computed from the

whole arm curve and the lower and upper arm are assigned the same angle value

that is computed from the whole arm curve.

Figure 3.7: The crossed left and right lower legs.
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If the legs cross each other, as in Figure 3.7, we cannot determine which one

is left and which one is right. We use Algorithm 5 to detect whether the lower

legs cross each other. If Algorithm 5 decides that the legs cross each other, then

we swap the left and right lower leg in 2D pose extraction process.

/*LLL stands for LeftLowerLeg */

/*RLL stands for RightLowerLeg */

LLLLineList ← LeftLowerLegLineList;
RLLLineList ← RightLowerLegLineList;
OneKneeStarted ← false;
TwoKneeStarted ← false;
TwoKneeCrossed ← true;
for i← 0 to LLL.Length− 1 do

if LLLLineList[i] intersects RLLLineList[i] then
if TwoKneeStarted then

TwoKneeCrossed ← false;
break;

end
OneKneeStarted ← true;

else
if OneKneeStarted then

TwoKneeStarted ← true;

else
TwoKneeCrossed ← false;
break;

end
end

end
if TwoKneeStarted is false then

TwoKneeCrossed ← false;

end
return TwoKneeCrossed

Algorithm 5: The algorithm to detect whether the lower legs cross each
other.
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Algorithm 5 goes over the lower parts of the silhouette by following the scan

lines and produces a line segment list for the parts inside the silhouette. Then

it analyzes the list of lines to decide whether lower legs cross each other. If we

observe that the line lists at the beginning of lower silhouette parts start with one

line and becomes two lines for the remaining scan lines then we conclude that the

legs cross each other. In such a case, we swap the angle values of the left lower

leg with that of the right lower leg.

3.1.4.4 Finding Foreshortening Angle of a Body Part

We can find how much a segment is foreshortened based on the orthographic

projection. However, we cannot detect the direction of the foreshortening. We

get foreshortening direction from the user. Algorithm 6 finds how much one or

more body segments foreshortened. The algorithm does not care the direction

of the foreshortening. The algorithm finds the relative ratio that is a measure of

the foreshortening angle.

Algorithm 6 takes the fragment of the human silhouette that contains the body

segment to be searched as input. The algorithm tries to find the best ratio that

covers the segment being searched. The algorithm starts with an initial target

ratio interval (0, 1). Then, it iteratively narrows the target interval and finds the

best ratio that covers the segment. At each iteration, ratio interval is divided to a

number of intervals we specified and for each ratio value that corresponds to each

division, we measure how well the silhouette is covered by the segment. We find

the division (ratio) that covers the silhouette best. We recursively continue to

narrow the search interval and when the search interval is smaller than a threshold

ratio, the algorithm returns the ratio that maximizes the fitting. Examples of the

application of this algorithm are shown in Figures 3.8and 3.9.
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S ← PartialSilhouetteContainingSegmentsToBeSearched;
beginPoint ← beginPoint;
endPoint ← beginPoint;
length ← DistanceOf(beginPoint,endPoint );
startRatio ← 0;
endRatio ← 1;
numberOfDivision ← 5;
minimumStepRatio ← 1/length;
searchRatioInterval ← (endRatio− startRatio);
StepRatio ← (searchRatioInterval/numberOfDivision);
RatioThatMaximizes ← (endRatio + startRatio)/2;
maximumSimilarity ← 0;
while searchRatioInterval > minimumStepRatio do

ratioForBegin ← RatioThatMaximizes− searchRatioInterval/2;
if ratioForBegin < startRatio then

ratioForBegin ← startRatio;

end
ratioForEnd ← RatioThatMaximizes + searchRatioInterval/2;
if ratioForEnd > endRatio then

ratioForEnd ← endRatio;

end
ratioForBodyPart ← ratioForBegin;
while ratioForBodyPart ≤ ratioForEnd do

currentModelPose ← DrawBodyPart();
similarityResult ←
MeasureSimilarity(S,currentModelPose);
if similarityResult > maximumSimilarity then

maximumSimilarity ← similarityResult;
RatioThatMaximizes ← ratioForBodyPart;

end
ratioForBodyPart ← ratioForBodyPart + StepRatio;

end
searchRatioInterval ←
2× (searchRatioInterval/numberOfDivision);
StepRatio ← 2× (StepRatio/numberOfDivision);

end
return RatioThatMaximizes

Algorithm 6: The algorithm to find the absolute foreshortening.
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Figure 3.8: The iterative estimation of the foreshortening ratio of the torso.

Figure 3.9: The iterative estimation of the foreshortening ratio of the upper arm.
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3.1.5 3D Pose Estimation

This stage estimates the 3D pose of the performer on the video. Given 2D joint

coordinates and foreshortening direction of each body segment, 3D pose can be

constructed under orthographic projection.

For the whole body, we take the orientation of the body as input from the

user. The body can be in one of the six orientations: left, right, backward left,

backward right, forward left, forward right. We also use horizontal foreshortening

of the torso with the orientation of the body taken from the user to find how much

the performer is rotated around the y-axis of the image. From the orientation,

we also determine the left leg (arm) and the right leg (arm). Finally, we use

the 3D pose found for each key frame to animate the character. We use linear

interpolation to calculate the intermediate poses of the human body.



Chapter 4

Experimental Results

4.1 Visual Results

We tried our method on two videos that we got from public resources. The first

one is a walking video [3] and the second one is a dancing video [4]. The walking

sequence consists of 82 frames and it is illustrated in Figures 4.1. The dancing

sequence consists of 200 frames and it is illustrated in Figures 4.2. The video

frame, which our method is applied on, and the extracted silhouette from the

video frame and the pose we constructed is depicted in each figure. We created

an animation for each video by using key-framing technique. For dancing video,

we applied our method to 33 key-frames. For the walking video, we applied our

method to 17 key-frames. While selecting the key-frames, we preferred the ones

with low occlusion in order to get better results. We used linear interpolation

technique to create intermediate frames. In dancing and walking videos we needed

user interaction in a few frames to find the 2D joint coordinates because of high

occlusion.

38
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4.2 Performance Analysis

We implemented the proposed system on a PC platform with Intel Celeron 2.70

GHz processor, 512 MB Main Memory and Intel(R) 82852/82855 GM/GME

graphics card. We implemented the proposed system by using Microsoft C#

.NET platform.

It takes nearly one second to find the 2D joint coordinates of a human body

from a single video frame. The video frame size does not affect the performance

significantly since we normalize the silhouette to a fixed size.

4.3 Effectiveness of the Proposed Framework

In previous works using the orthographic projection, the user specifies the joint

coordinates for each video frame and the foreshortening direction of each segment.

In our proposed framework we find the 2D joint coordinates from image auto-

matically and only take the foreshortening direction and the body orientation.

Our proposed framework only needs the user input that rarely changes during a

motion, which requires minimal user intervention.

In the walking video we experimented, the orientation of the body does not

change during the whole video (82 frames). In the dancing video we experimented,

the orientation of the body changes 7 times along the 200 frames. For the interac-

tions required to specify the foreshortening direction, 52 changes occurred along

the 82 frames in the walking video , 44 changes occurred along the 200 frames

in the dancing video. In the dancing video, 8 user inputs are needed, and in the

walking video, 7 user inputs needed for the highly occluded parts in a few frames.

14 user inputs (coordinates of joints) are needed for each video frame in previous

methods [16], which are determined automatically in our implementation.

For the walking video, if we use the approach presented in [16] we need 17×
14 + 52 = 290 user inputs, where 17 is the number of key frames used to prepare

the animation, 14 is the number of joint coordinates specified for each frame,
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52 is the number of user interactions needed for specifying the foreshortening

directions. But with our proposed work 52 + 1 + 7 = 60 user inputs are needed.

52 is the number of user interactions needed for the foreshortening directions, 1

is the number of the user interactions needed for the orientation of the body and

7 is the number of user interactions needed for highly occluded parts.

For the dancing video, if we use the approach presented in [16], we need 33×
14 + 44 = 506 user inputs, where 33 is the number of frames used to prepare the

animation, 14 is the number of user interactions necessary for specifying the joint

coordinates and 44 is the number of user interactions needed for specifying the

foreshortening directions. But with our proposed work 44+7+8 = 59 user inputs

needed, where 44 is the number of user interactions needed for specifying the

foreshortening directions, 7 the number of user interactions needed for specifying

the orientation of the body and 7 the number of user interactions needed for

specifying the joint angles of the highly occluded segments.
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(1) (2)

Figure 4.1: The results obtained by applying the proposed framework to the
frames of a public walking video. The input frame (top), the extracted silhouette
(middle), and the reconstructed 3D pose of the human in the video (bottom).
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(3) (4)

Figure 4.1: (continued).
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(5) (6)

Figure 4.1: (continued).
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(7) (8)

Figure 4.1: (continued).
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(9) (10)

Figure 4.1: (continued).
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(1) (2)

Figure 4.2: The results obtained by applying the proposed framework to the
frames of a public dancing video. The input frame (top), the extracted silhouette
(middle), and the reconstructed 3D pose of the human in the video (bottom).
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(3) (4)

Figure 4.2: (continued).
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(5) (6)

Figure 4.2: (continued).
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(7) (8)

Figure 4.2: (continued).
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(9)

Figure 4.2: (continued).



Chapter 5

Conclusions and Future Work

This thesis proposes a framework for constructing the 3D human pose from a video

sequence obtained from a single view. The proposed framework does not require

camera calibration and requires minimal user intervention. Videos taken from

public resources can be processed by the proposed framework. The framework

assumes the input video has a static background and the video has no significant

perspective effects.

We model the human body as an assembly of cylinders and we assume that

the lengths of these cylinders are known at least relative to one another.

The proposed framework uses orthographic projection. By considering the

foreshortening of the segments, the 3D pose of the human in the video can be re-

constructed under orthographic projection. However, the method proposed in [16]

requires intensive user interaction; the user has to specify the joint coordinates on

the images and the foreshortening direction for each segment. We calculate the

joint coordinates automatically from the video images and succeeded to reduce

the user interaction to 12-21% during the pose construction. By using the 3D

poses constructed, we produced animations of the human walking and dancing.

An animator has to control both the appearance and the movement of the

characters. Since there are many degrees of freedom to be controlled, controlling

51
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the movement of characters is a difficult task that requires skill and labor. For this

reason, the animators usually begin their work by sketching the coarse version of

the movements on key poses. They rework and refine the key poses to produce the

final animation [6]. Our proposed framework can help the professional animators

an initial version of the motion that can be refined.

One of the apparent results of our human pose estimation framework is to en-

able non-skilled computer users to use computer animation. The main advantage

of our approach over the other approaches is to be able to create the 3D pose that

can be easily mapped onto different characters, or modified to fit the needs of a

specific animation. Since our approach requires less user interaction and has less

constraints, it can be used to construct motion libraries from public resources.
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