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ABSTRACT

MODELS AND ALGORITHMS FOR
PARALLEL TEXT RETRIEVAL

Berkant Barla Cambazoğlu

Ph.D. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

January, 2006

In the last decade, search engines became an integral part of our lives. The cur-

rent state-of-the-art in search engine technology relies on parallel text retrieval.

Basically, a parallel text retrieval system is composed of three components: a

crawler, an indexer, and a query processor. The crawler component aims to lo-

cate, fetch, and store the Web pages in a local document repository. The indexer

component converts the stored, unstructured text into a queryable form, most

often an inverted index. Finally, the query processing component performs the

search over the indexed content. In this thesis, we present models and algo-

rithms for efficient Web crawling and query processing. First, for parallel Web

crawling, we propose a hybrid model that aims to minimize the communication

overhead among the processors while balancing the number of page download re-

quests and storage loads of processors. Second, we propose models for document-

and term-based inverted index partitioning. In the document-based partitioning

model, the number of disk accesses incurred during query processing is minimized

while the posting storage is balanced. In the term-based partitioning model, the

total amount of communication is minimized while, again, the posting storage

is balanced. Finally, we develop and evaluate a large number of algorithms for

query processing in ranking-based text retrieval systems. We test the proposed

algorithms over our experimental parallel text retrieval system, Skynet, currently

running on a 48-node PC cluster. In the thesis, we also discuss the design and

implementation details of another, somewhat untraditional, grid-enabled search

engine, SE4SEE. Among our practical work, we present the Harbinger text clas-

sification system, used in SE4SEE for Web page classification, and the K-PaToH

hypergraph partitioning toolkit, to be used in the proposed models.

Keywords: Search engine, parallel text retrieval, Web crawling, inverted index

partitioning, query processing, text classification, hypergraph partitioning.
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ÖZET

PARALEL METİN GETİRME İÇİN
MODELLER VE ALGORİTMALAR

Berkant Barla Cambazoğlu

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Ocak, 2006

Son on yılda arama motorları hayatımızla bütünleşik bir hale gelmişlerdir. Arama

motorları teknolojisi şu anda paralel metin getirmeye dayanmaktadır. Bir par-

alel metin getirme sistemi temel olarak üç bileşenden oluşmaktadır: tarayıcı,

indeksleyici ve sorgu işleyici. Tarayıcı bileşeni Ağ’da bulunan sayfaları bulmayı,

getirmeyi ve yerel bir metin ambarında saklamayı amaçlar. İndeksleme bileşeni

saklanmış olan düzensiz metinleri sorgulanabilir bir yapıya dönüştürür ki bu yapı

çoğu zaman bir ters dizindir. Sorgu işleme bileşeni ise indekslenmiş içerik üzerinde

aramayı gerçekleştirir. Bu tezde, etkin Ağ tarama ve sorgu işleme için modeller

ve algoritmalar önerilmiştir. Paralel Ağ tarama için, işlemciler arası iletişim mik-

tarını en aza indiren ve işlemcilerin sayfa indirme isteklerinin sayısını ve saklama

yüklerini dengeleyen karma bir model önerilmiştir. Ek olarak, metin ve kelime

bazlı ters dizin bölümleme için modeller önerilmiştir. Metin bölümlemeye dayalı

modelimizde saklama yükü dengelenirken sorgu işleme sırasında karşılaşılacak

disk erişim miktarı en aza indirilmektedir. Kelime bölümlemeye dayalı mod-

elimizde ise yine saklama yükü dengelenirken toplam iletişim hacmi en aza

indirilmektedir. Bunlara ek olarak, sıralamaya dayalı metin getirme sistem-

leri için çok sayıda sorgu işleme algoritması uygulanmış ve değerlendirilmiştir.

Önerilen algoritmalar 48 düğümlü bir PC kümesi üzerinde çalışmakta olan deney-

sel paralel metin getirme sistemimiz Skynet üzerinde denenmiştir. Tezde ayrıca

gride uyarlanmış SE4SEE arama motorumuzun tasarım ve uygulama detay-

ları tartışılmıştır. Pratikteki katkılarımız arasından, SE4SEE içinde kullanılan

Harbinger metin sınıflandırma sistemi ve önerilen modellerde kullanılmak üzere

geliştirilen K-PaToH hiperçizge bölümleme aracı sunulmuştur.

Anahtar sözcükler : Arama motoru, paralel metin getirme, Ağ tarama, ters dizin

bölümleme, sorgu işleme, metin sınıflandırma, hiperçizge bölümleme.
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Chapter 1

Introduction

1.1 Motivation

The exponential rate at which the Web grows led to an explosion in the amount

of publicly accessible digital text media. In the last decade, various text re-

trieval systems addressed the issues in discovery, fetching, storage, compression,

indexing, querying, filtering, and presentation of this vast content. In this age of

information, search engines act as important services, providing the community

with the information hidden in the Web and, due to their frequent use, stand as

an integral part of our lives. The last decade has witnessed the design and imple-

mentation of several state-of-the-art search engines [100]. The wide-spread use of

these systems resulted in an increase in the number of submitted user queries. At

the time of this writing, the Google search engine, a popular search engine on the

Web, has indexed more than four billion Web pages. Today, the popular search

engines process millions of user queries per day over their index. This explains

the heavy research interest on text retrieval well.

Currently, text retrieval research is focused on the two major criteria by which

the systems are evaluated: effectiveness and efficiency. Effectiveness is a measure

of the quality of the returned results. The two frequently used metrics for effec-

tiveness are precision and recall. Precision is the ratio of the number of retrieved

1
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documents that are relevant to the total number of retrieved documents. Recall

is the ratio of the number of retrieved documents that are relevant to the number

of relevant documents.

So far, most research is concentrated on the effectiveness part, and it is highly

speculated that the research on effectiveness in text retrieval is about to reach

its limits. Efficiency criteria, which is used to evaluate the computational per-

formance of retrieval systems, took relatively little interest. We believe that effi-

ciency and effectiveness are two closely related issues. Improving efficiency can in-

directly improve effectiveness via relaxation on some query processing thresholds

and cutoff values (e.g., term count limits on the size of user queries, thresholds in

similarity calculations between documents and queries, and cutoff values in doc-

ument ranking and presentation). Consequently, we believe that the efficiency

component deserves more attention than it currently had.

During the last two decades, text retrieval research addressed the issues mostly

in sequential computer systems. The massive size of today’s document collections

when coupled with the ever-growing number of users querying the documents in

these collections necessitates parallel computing systems. Although both parallel

computing and text retrieval research lend their roots to several decades ago, re-

search on parallel text retrieval is relatively young and evolving. Unfortunately,

so far, most efforts towards efficient retrieval remained as a trade secret due to

the commercial nature of the text retrieval systems. This thesis focuses on effi-

cient query processing in parallel text retrieval systems, in particular on efficient

parallel Web crawling, inverted index organizations, and query processing.

1.2 Background

A traditional search engine is typically composed of three pipelined compo-

nents [5]: a crawler, an indexer, and a query processor. The crawler component

is responsible for locating, fetching, and storing the content on the Web. The

downloaded content is concurrently parsed by an indexer and transformed into
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Figure 1.1: Architecture of a traditional search engine.

an inverted index [113, 133], which represents the content in a compact and ef-

ficiently queryable form. The query processor is responsible for evaluating user

queries over the index and returning the users pages relevant to their queries.

Figure 1.1 depicts the picture of a general architecture for a traditional shared-

nothing parallel text retrieval system. This is the architecture for which we are

developing models and algorithms. In this architecture, the Web is partitioned

among a number of software programs, called Web crawlers. Each crawler is

responsible for downloading a subset of pages on the Web. The crawlers locate the

pages by following the hyperlinks among the pages. After they are downloaded,

the pages are stored in the local hard disks of the processors. A concurrently

running indexer is responsible for converting the documents into a queryable form,

which is often an inverted index. The constructed inverted index is partitioned

and stored in a distributed manner among the local disks of the processors in

the parallel system. While all these happen in the background, the users submit

queries to the retrieval system through a user interface. A submitted query is

sent to the central broker, where it is split into subqueries. These subqueries are

then submitted to index servers. Index servers access their local disks, determine

the set of documents matching the subquery, and send these answer sets back to

the central broker. The central broker merges these partial answer sets and puts

the documents into a sorted order according to the similarity of the documents

to the query. Finally, the user is returned a set of best-matching documents.
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1.3 Contributions

The contributions of this thesis can be categorized into two as theoretical and

practical. The theoretical contributions, which are presented in Chapters 2, 3,

and 4, include the proposed models and algorithms that aim to improve the effi-

ciency of Web crawling and query processing in both sequential and/or parallel

text retrieval systems. The practical contributions, which are presented in Chap-

ters 5, 6, 7, and 8, involve the software systems developed throughout the study.

These systems are implemented mostly to evaluate the practical performance of

the proposed, theoretical models. In what follows, we list a brief overview of our

particular contributions together with the organization of the thesis.

In Chapter 2, we give a taxonomy of implementations for Web crawling and

present a page-to-processor assignment model for efficient parallel Web crawling.

The proposed model is a hybrid model that combines our previously proposed

Web crawling models [21, 117], which are based on graph and hypergraph par-

titioning, into a single more powerful model. This hybrid model minimizes the

total inter-processor communication overhead while balancing the page storage

loads of processors as well as the page download requests issued by the processors.

In Chapter 3, we propose two inverted index partitioning models for term-

based and document-based indexing in parallel and distributed text retrieval

systems [25]. The proposed hypergraph-partitioning-based models aim to im-

prove the query processing efficiency of the text retrieval system, by producing

an intelligent assignment of posting entries to the processors. Specifically, in the

term-based inverted index partitioning model, the total volume of communication

among the index servers and the central broker is minimized while the posting

storage load of index servers is balanced. In the document-based partitioning

model, the number of disk accesses performed by the index servers to retrieve the

inverted lists is minimized while, again, the posting storage is balanced.

In Chapter 4, we introduce a taxonomy for the query processing algorithms

in ranking-based text retrieval systems using inverted indices. We investigate

the complexity of a large number of query processing implementations, several of
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which are proposed by us [18]. We conduct a comparative study on the perfor-

mance of these implementations in terms of their time and space efficiency. We

report performance results over a large collection of Web pages.

In Chapter 5, we introduce our prototype parallel text retrieval system,

Skynet. Although Skynet has all the ingredient a traditional search engine would

require, it is by no means developed as a fully-functional, complete search en-

gine. In particular, this system is designed and implemented in order to act as

a test-bed on which we would evaluate the models and algorithms proposed in

Sections 3 and 4.

In Chapter 6, we describe the design details and an architectural overview of

our SE4SEE (Search Engine for South-East Europe) application [19, 24]. SE4SEE

is a grid-enabled Web search engine, which we developed as a regional applica-

tion throughout the EU-funded SEE-GRID FP-6 project, utilizing our expertise

in Web crawling and text classification. The SE4SEE application can be defined

as a personalized, on-demand, category-based, country-specific search engine. In

this chapter, we provide performance results for this search engine over a geo-

graphically distributed grid infrastructure.

In Chapter 7, we present our prototype text classification system, Harbinger,

as well as the machine learning toolkit that the classification system utilizes [20].

Although we have other ongoing works that this system uses, the Harbinger text

classification system is mainly employed in SE4SEE for the purpose of classifying

Web pages into categories. We provide a manual for this system in Appendix B.

Finally, in Chapter 8, we provide algorithmic details of a multi-level direct K-

way hypergraph partitioning implementation, namely the K-PaToH toolkit [6].

This implementation is important in that the solution qualities of the proposed

models presented in Chapters 2 and 3 heavily rely on the solution quality of the

hypergraph partitioning. Experiments presented in this chapter indicate that K-

PaToH proves to be more efficient in terms of both execution time and solution

quality compared to our previously used hypergraph partitioning tool PaToH.
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Figure 1.2: The graph representing the dependency between the contributions of
the thesis.

Since this is a rather lengthy thesis, we provide the dependency graph in Fig-

ure 1.2 to the reader in order to visualize the inter-relation between the contri-

butions of the thesis. The text on the arcs represents the type of the dependency

between the chapters of the thesis. Chapters 2, 3, and 4 should be read in that

order since the content in these chapters respectively mention Web crawling, in-

verted index partitioning, and query processing, which are the three components

successively pipelined in a text retrieval system. If the reader has no background

knowledge on hypergraph partitioning, we highly recommend reading Chapter 8

(at least Section 8.1) because the models described in Chapters 2 and 3 require

a good understanding of hypergraphs and hypergraph partitioning. For the sake

of the presentation, in these chapters, we partially duplicate some background

information about hypergraph partitioning. The reader interested in practical

work may safely move to Chapter 5, where we present the implementation of the

Skynet parallel text retrieval system, and Chapter 6, where we present the details

of our grid-enabled search engine, SE4SEE.



Chapter 2

Parallel Web Crawling Model

The need to quickly locate, gather, and store the vast amount of material on

the Web necessitates crawling the Web via parallel computing systems. In this

chapter, we propose a model, based on multi-constraint hypergraph partitioning,

for efficient data-parallel Web crawling. The model aims to balance the amount

of data downloaded and stored by the processors as well as balancing the number

of page download requests issued by the processors. The model also minimizes

the total communication overhead incurred during the link exchange between the

processors.

Section 2.1 makes an introduction to Web crawling and introduces a taxonomy

of parallel Web crawling architectures. Section 2.2 presents an overview of the

issues in parallel Web crawling. Section 2.3 surveys the previous work, mostly

on data-parallel Web crawling. Section 2.4 defines the hypergraph partitioning

problem. In Section 2.5, we present the proposed Web crawling model, which

is based on hypergraph partitioning. In Section 2.6, performance results are

provided on a sample Web repository for the proposed model. The chapter is

concluded in Section 2.7 together with some future work.

7
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2.1 Introduction

Web crawling is the process of locating, fetching, and storing the pages on the

Web. The computer programs that perform this task are referred to as Web

crawlers. The Web crawlers have vital importance for the search engines, which

keep a cache of the Web pages for providing quick access to the information in

them. In order to enlarge their cache and keep the information within up-to-date,

search engines run crawlers to download the content on the Web. Unfortunately,

only a few search engine designs [100] are published in the literature due to the

commercial value they have. Similarly, the crawling process and the details of

Web crawlers mostly remain as a black art.

In general terms, the working of a Web crawler is as follows. A typical Web

crawler, starting from a set of seed pages, locates new pages by parsing the

downloaded pages and extracting the hyperlinks (in short links) within. Extracted

links are stored in a FIFO fetch queue for further retrieval. Crawling continues

until the fetch queue gets empty or a satisfactory number of pages are downloaded.

In short, the link structure of the Web is followed to explore and retrieve the

content on the Web. Usually, many crawler threads execute concurrently in order

to overlap network operations with the processing in the CPU, thus increasing

the throughput of page download.

The dynamically changing topology of the Web (new page additions and dele-

tions, changes in the inter-page links), and the changes in pages’ content requires

the crawling process to be a continuous process. Furthermore, due to the enor-

mous size of the Web and the limitations on data transfer rates at accessing the

pages, crawling is a slow process. It is reported by the Google search engine that

crawling the whole Web requires a full month of downloading even with the huge

computing infrastructure Google has. Currently, crawling the Web by means of

sequential computing systems is infeasible due to the need for vast amounts of

storage, computational power, and high download rates.

The recent trend in construction of cost-effective PC clusters makes the Web

crawling problem an appropriate target for parallel computing. In parallel Web
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crawling, each processor is responsible from downloading a subset of the pages.

The processors can be coordinated in three different ways: independent, master-

slave, and data-parallel. In the first approach, each processor independently

traverses a portion of the Web and downloads a set of pages pointed by the links

it discovered. Since some pages are fetched multiple times, in this approach, there

is an overlap problem, and hence, both storage space and network bandwidth are

wasted. In the second approach, each processor sends its links, extracted from the

pages it downloaded, to a central coordinator. This coordinator, then assigns the

collected URLs to the crawling processors. The weakness of this approach is that

the coordinating processor becomes a bottleneck. In the third approach, pages

are partitioned among the processors such that each processor is responsible from

fetching a non-overlapping subset of the pages. Since some pages downloaded by

a processor may have links to the pages in other processors, these inter-processor

links need to be communicated in order to obtain the maximum page coverage

and to prevent the overlap of downloaded pages. In this approach, each processor

freely exchanges its inter-processor links with the others.

In this work, our focus is on data-parallel Web crawling architectures. In

these architectures, the partitioning of the Web among the processors (i.e., page-

to-processor assignment) is usually hierarchical or hash-based. The hierarchical

approach assigns pages to processors according to URL domains. This approach

suffers from the imbalance in processor workloads since some domains contain

more pages than the others. In the hash-based approach, either single pages or

sites as a whole are assigned to the processors. This approach solves the load

balancing problem implicitly. However, in this approach, there is a significant

communication overhead since inter-processor links, which must be communi-

cated, are not considered while creating the page-to-processor assignment.

2.2 Issues in Parallel Crawling

The working of parallel crawling system is somewhat similar to that of a sequen-

tial crawling system. However, there exist several issues [39] in assignment of Web
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pages to crawlers, coordination of crawler activities, and minimization of paral-

lelization overheads. In this section, we present a discussion of the important

issues in parallel Web crawling, some of which also apply to sequential crawling

systems.

• Overlap: In a shared-nothing parallel crawling system, if crawlers are work-

ing independent of each other, there is a possibility that the same pages

will be downloaded multiple times by different crawlers. This may result

in an overhead in storage, use of network bandwidth, and use of process-

ing resources. Therefore, a clever implementation should always avoid the

download of the same page by more than one crawlers.

• Page assignment: To prevent overlaps, several techniques can be employed

to assign pages to crawlers. In one approach, each page may be uniquely

assigned to a crawler in the parallel system. A hash function may be used

to map the URL of a page to a crawler. A more coarse-grain assignment ap-

proach is to assign sites to crawlers as a whole. For example, a crawler could

be responsible from downloading Microsoft pages while another crawler

downloads pages in the Yahoo site. An even coarser approach is to as-

sign pages to crawlers depending on the URL domains. In this approach,

for example, the pages in the .com domain may be downloaded by the same

crawler, whereas the pages in the .edu domain are downloaded by another.

• Coverage: Another important issue is the ability to locate the pages. A

successful crawling system should be able to locate the whole set of pages

which are linked by other pages. If there is no communication among the

crawlers (i.e., the Firewall scheme in [39]), it is possible that some pages on

the Web will never be located.

• Quality: Depending on the path the pages are traversed, the quality of in-

dexing may be greatly affected. In general, it is beneficial to crawl high

quality pages earlier. In parallel Web crawling, if each crawler indepen-

dently crawls its portion of the Web, the quality of the retrieved content

may be worse than that of a sequential crawler.
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• Inter-processor communication: In order to address the issues of cover-

age and quality, inter-processor communication is required. The crawlers

pass the inter-processor links, of which source and destination pages are

assigned to different processors, among themselves via point-to-point com-

munication. This way, it becomes possible to locate the pages which are

accessible by inter-processor links. The frequency that the inter-processor

links are passed also determines the quality of the crawling. In general, if

the links are more frequently communicated, the quality of the page scores

increases.

• Subnetwork/Web server overload: During the crawling process, the Web

servers should not be overwhelmed with download requests from the

crawlers. A crawler that tries to download a whole site in a short amount

of time may turn into a denial of service attack. A clever crawling system

should be able to distribute the page download requests submitted to the

Web servers in a balanced manner. A similar issue arises for the subnet-

works. The bandwidth consumption must be balanced, and no subnetworks

must be overwhelmed with requests.

• Revisit frequency: It should take a similar amount of time for the crawlers

to crawl their portions of the Web. This way, freshness of the indexed pages

may be close to optimum. An unbalanced load distribution may cause some

pages to be crawled several times, whereas some pages are not crawled at

all. An adaptive page revisit strategy may be superior in that frequently

updated pages are also frequently crawled.

2.3 Previous Work

In the literature, there are many studies concentrating on different issues in Web

crawling, such as URL ordering for retrieving high-quality pages earlier [8, 41],

partitioning the Web for efficient multi-processor crawling [21, 112], distributed

crawling [15, 131], and focused crawling [35, 50]. Despite this vast amount of

effort, due to the commercial value of the developed applications, it is still difficult
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to obtain robust, and customizable crawling software [68, 109].

The page-to-processor assignment problem in data-parallel Web crawling was

addressed by a number of authors. Cho and Garcia-Molina [39] used the site-

hash-based assignment technique with the belief that it will reduce the num-

ber of inter-processor links when compared to the page-hash-based assignment

technique. Boldi et al. [15] applied the consistent hashing technique, a method

assigning more than one hash values for a site, in order to handle the failures

among the crawling processors. Teng et al. [112] used a hierarchical, bin-packing-

based page-to-processor assignment approach. Cambazoglu et al. [22] proposed

a graph-partitioning-based model for page-to-processor assignment. This model

correctly encapsulates the total volume of communication during the link ex-

change. The same authors recently proposed another model [117], which encap-

sulates the number of messages transmitted during the link exchange. In both

models, the page storage amounts and number of page download requests of the

processors are balanced. The model proposed in this work combines these graph-

and hypergraph-partitioning-based models into a single model.

2.4 Hypergraph Partitioning Problem

A hypergraph H=(V,N ) consists of a set of vertices V and a set of nets N [12].

Each net nj ∈N connects a subset of vertices in V. The set of vertices connected

by a net nj are called as the pins of net nj . Multiple weights w1
i , w

2
i , . . . , w

M
i may

be associated with a vertex vi ∈V. A cost cj is assigned as the cost of each net

nj ∈N .

Π={V1,V2, . . . ,VK} is said to be a K-way partition of H if each part Vk is a

nonempty subset of V, parts are pairwise disjoint, and the union of the K parts

is equal to V. A partition Π is said to be balanced if each part Vk satisfies the

balance criteria

W m
k ≤ (1 + ε)W m

avg, for k=1, 2, . . . , K and m=1, 2, . . . , M. (2.1)
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In Eq. 2.1, each weight W m
k of a part Vk is defined as the sum of the weights

wm
i of the vertices in that part. W m

avg is the weight that each part should have in

the case of perfect load balancing. ε is the maximum imbalance ratio allowed.

In a partition Π of H, an edge is said to be cut if its pair of vertices fall into

two different parts and uncut otherwise. In Π, a net is said to connect a part if

it has at least one pin in that part. The connectivity set Λj of a net nj is the set

of parts connected by nj. The connectivity λj = |Λj| of a net nj is equal to the

number of parts connected by nj. If λj =1, then nj is an internal net. If λj >1,

then nj is an external net and is said to be at cut.

After these definitions, the K-way, multi-constraint hypergraph partitioning

problem can be stated as the problem of dividing a hypergraph into two or more

parts such that a partitioning objective defined over the nets is minimized while

the multiple balance criteria (Eq. 2.1) on the part weights are maintained. In

this work, as the partitioning objective, we use the connectivity-1 metric

χ(Π) =
∑

ni∈N
ci(λi − 1), (2.2)

in which each net contributes ci(λi − 1) to the cost χ(Π) of a partition Π.

2.5 Parallel Web Crawling Model

In this section, we propose a model based on multi-constraint hypergraph par-

titioning for load-balanced and communication-efficient data-parallel crawling.

A major assumption in our model is that the crawling system runs in sessions.

Within a session, if a page is downloaded, it is not downloaded again, that is,

each page can be downloaded just once in a session. The crawling system, after

downloading enough number of pages, decides to start another crawl session and

recrawls the Web. For efficient crawling, our model utilizes the information (i.e.,

the Web graph) obtained in the previous crawling session and provides a better

page-to-processor mapping for the following crawling session. We assume that
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Figure 2.1: An example to the graph structure of the Web.

between two consecutive sessions, there are no drastic changes in the Web graph

in terms of page sizes and the topology of the links.

We describe the proposed model using the sample Web graph shown in Fig-

ure 2.1. In this graph, which is assumed to be created in the previous crawling

session, there are 7 sites. Each site contains several pages, which are represented

by small squares. The directed lines between the squares represent the links be-

tween the pages. There may be multi-links (e.g., (i1, i3)) and bidirectional links

between the pages (e.g., (g5, g6)). In the figure, inter-site links are displayed as

dashed lines. In presentation of the model, we will assume that, in Figure 2.1,

each page contains a unit amount of text, and each link has a unit size.

In our model, we represent the link structure between the pages by a hyper-

graph H= (V,N ). In this representation, each page pi corresponds to a vertex
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vi. Two weights, w1
i and w2

i , are associated with each vertex vi. The weight w1
i

of vertex vi is equal to the size (in bytes) of page pi and represents the download

and storage overhead for page pi. The weight w2
i of vertex vi is equal to 1 and

represents the overhead of requesting pi. This overhead mainly involves the cost

of domain name resolution for the page URL.

There are two types of nets in N : two-pin nets and multi-pin nets. There

exists a two-pin net nj between vertices vh and vi if and only if page ph has a

link to page pi or vice versa. Multiple links between the same pair of pages are

collapsed into a single two-pin net. The cost cj of a two-pin net nj is equal to

the total string length (in bytes) of the links (pi, pj) and (pj, pi) (if any) between

pages pi and pj divided by the transfer rate of the network (in MB/s). This cost

corresponds to the communication overhead of transmitting the links between

two processors via point-to-point communication over the network in case pi and

pj are mapped to different processors.

For each page pi that has one or more outgoing links to other pages, a multi-

pin net ni is placed in the hypergraph. Vertex vi and the vertices corresponding

to the pages linked by pi form the pins of the multi-pin net ni. As the cost ci of

multi-pin net ni, a fixed message startup cost (in seconds) is assigned. This cost

represents the cost of preparing a single network packet containing the links of

page pi.

In a K-way partition Π=(V1,V2, . . . ,VK) of hypergraph H, each vertex part

Vk corresponds to a subset Pk of pages to be downloaded by processor Pk. That

is, every page pi ∈Pk, represented by a vertex vi ∈Vk, is fetched and stored by

processor Pk. In this model, maintaining the balance on part weights W 1
k and W 2

k

(Eq. 2.1) in partitioning hypergraph H, respectively balances the download and

storage overhead of processors as well as the number of page download requests

issued by the processors. Minimizing the partitioning objective χ(Π) (Eq. 2.2)

corresponds to minimizing the total overhead of inter-processor communication

that will be incurred during the link exchange between the processors.

Figure 2.2 shows a 3-way partition for the hypergraph corresponding to the

sample Web graph in Figure 2.1. For simplicity, the two-pin nets and multi-pin
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Figure 2.2: A 3-way partition of the hypergraph representing the sample Web
graph in Figure 2.1.
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nets are separately displayed in Figures 2.2(a) and 2.2(b), respectively. In this

example, almost perfect load balance is obtained since weights (for both weight

constraints) of the three vertex parts V1, V2, and V3 are respectively 13, 14, and

14. Hence, according to this partition, each processor Pk, which is responsible

from downloading all pages pi ∈Pk, is expected to fetch and store almost equal

amounts of data in the next crawling session. In the figure, the pins of the cut

nets are displayed with dotted lines. In Figure 2.2(a), two-pin cut nets represent

the inter-processor links, which must be communicated between the processors.

For example, due to the two-pin net connecting vertices m5 and d1 a link is

transferred from processor P2 to P1. In Figure 2.2(b), multi-pin nets represent

the message startup cost of processors. The connectivity-1 cost incurred to the

cut by a multi-pin nets gives the number of processors to which a message must

be send. For example, due to the cut net which connects vertices m5, m6, y2, and

d1, processor P2 must send a message to 3−1=2 processors (i.e., P1 andP3). The

total number of messages is (3−1)×1+(2−1)×7=9.

2.6 Experiments

2.6.1 Dataset

Experiments are conducted on a large (8 GB) Web repository, made publicly

available by Google Inc.1. There are 913,569 Web pages in this repository. The

number of links between the pages is 4,480,218. There are 680,199 multi-pin nets

and 4,480,218 two-pin nets in the hypergraph representing the repository. The

number of multi-pin nets is less than the number of Web pages in the repository

since some pages do not contain links to other pages. Average net size is 7.59 for

multi-pin nets. The total number of pins is 14,120,853. The number of pins due

to the multi-pin and two-pin nets are respectively 5,160,417 and 8,960,436.

1Google Web repository. Available at: http://www.google.com/programming-contest/
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Figure 2.3: The load imbalance in the number of page download requests and
storage loads with increasing number K of processors.

2.6.2 Results

We conducted experiments comparing two Web partitioning schemes, RR and HP.

The RR scheme is the round-robin assignment scheme, in which pages are assigned

to processors in a round-robin fashion. This scheme corresponds to the hash-based

page assignment scheme previously used in the literature. The HP scheme is the

hypergraph-partitioning-based page assignment scheme introduced in this work.

For multi-constraint partitioning of the constructed hypergraph, the state-of-the-

art hypergraph partitioning tool PaToH [33] is used with default parameters.

The maximum allowed imbalance ratio is set to 0.01 for both constraints. In

the experiments, a Gigabit network with a 7.6 ns/byte transfer rate and a fixed

message startup cost of 100 ns is assumed.

Figure 2.3 displays the imbalance values obtained by the RR and HP schemes.

In the figure, RR-1 and HP-1 represent the page storage imbalance for the RR and

HP schemes, respectively. HP-2 represents the imbalance in the number of page

download requests issued by the processors. Since RR almost perfectly balances

the number of page download requests for all numbers of processors, these results

are not displayed. According to Figure 2.3, HP performs better in load balancing
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Table 2.1: Communication costs (in seconds) of the partitioning schemes with
increasing number K of processors

Message startup Link transfer Total cost
K RR HP RR HP RR HP
2 58.4 3.7 680.8 18.0 739.2 21.7
4 139.0 6.6 1021.6 30.5 1160.7 37.1
8 229.9 9.8 1191.8 43.3 1421.7 53.1
16 310.9 11.2 1276.9 48.4 1587.8 59.6
32 368.7 12.5 1319.4 52.2 1688.0 64.8
64 404.3 13.3 1340.6 55.1 1744.9 68.4
128 424.9 15.2 1351.4 63.4 1776.2 78.6
256 436.0 18.4 1356.7 76.6 1792.6 95.0

especially as the number of processors increases. At small numbers of processors,

the RR scheme already achieves good imbalance values. The HP scheme display

almost similar behavior in balancing the storage load (HP-1) and the number of

page download requests (HP-2).

Since there is a large performance gap between the RR and HP schemes in

minimizing the communication overhead, we display the experimental results as

a table for better visibility. Table 2.1 contains the total message startup and

data transfer costs observed (in seconds) during the link exchange with increas-

ing number K of processors. On the average, the HP scheme performs around

95% better in reducing the costs of both message startup and link transfer. In

general, the overhead due to the total message startup cost increases relatively

faster than the overhead of link transfer with increasing number of processors.

Although, in our scenario, the total message startup cost seems to be relatively

less important, in a faster network (e.g., a 10Gb/s network), this overhead can be

dominant. Overall, there is a considerable performance gain in reducing the total

communication overhead in favor of the proposed hypergraph-partitioning-based

model.
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2.7 Conclusions and Future Work

In this chapter, we proposed a hybrid model, which combines two previously

proposed Web crawling models. According to the theoretical experiments con-

ducted, the model appears to be quite successful in minimizing the inter-processor

communication overheads during the link exchange in data-parallel Web crawl-

ing systems. However, we believe that the experiments need to be repeated on a

real-life system to observe the improvement in practice. As an on-going work, we

are working on a site-based model, where, instead of pages, the sites are assigned

to processors for download. This work will enable us to work on larger datasets,

which, otherwise, we could not partition due to the memory limitations of the

current sequential hypergraph partitioning tools.



Chapter 3

Inverted Index Partitioning

Models

Shared-nothing, parallel text retrieval systems require an inverted index, repre-

senting a document collection, to be partitioned among a number of processors.

In general, the index can be partitioned based on either the terms or documents

in the collection, and the way the partitioning is done greatly affects the query

processing performance of the system. In this chapter, we propose two novel

inverted index partitioning models for efficient query processing on parallel text

retrieval systems that employ the term- or document-based inverted index orga-

nizations [25]. The proposed models formulate the index partitioning problem

as a hypergraph partitioning problem. Both models aim to balance the posting

storage loads of processors. As the partitioning objective, the term-based parti-

tioning model tries to minimize the total volume of communication, whereas the

document-based model tries to minimize the total number of accesses to the disks

during query processing.

The chapter is organized as follows. Section 3.1 introduces inverted indices

and sequential query processing. Section 3.2 briefly presents parallel text retrieval

architectures together with the inverted index organizations and query processing

on intra-query-parallel architectures. Section 3.3 overviews the previous works on

21
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inverted index partitioning. In Section 3.4, we provide some background and no-

tation about hypergraph partitioning. Section 3.5 provides the details of the

proposed inverted index partitioning models. Section 3.6 gives experimental re-

sults verifying the validity of the proposed work. Section 3.7 concludes.

3.1 Introduction

3.1.1 Inverted Index Structure

The basic duty of a text retrieval system is to process user queries and present

the users a set of documents relevant to their queries. For small document col-

lections, processing of a query can be performed over the original collection via

full text search. However, for efficient query processing over large collections,

an intermediate representation of the collection (i.e., and indexing mechanism)

is required. Until the early 90’s signature files and suffix arrays were available

as a choice for the text retrieval system designers. In the last decade, inverted

index data structure replaced these structures and currently appears to be the

only choice for indexing large document collections.

An inverted index is composed of a set of inverted lists L= {I1, I2, . . . , IT},
where T = |T | is the size of the vocabulary T of the indexed document collection

D, and an index pointing to the heads of the inverted lists. The index part is

usually small to fit into the main memory, but inverted lists are stored on the

disk. Each list Ii ∈L is associated with a term ti ∈T . An inverted list contains

entries (called postings) for the documents containing the term it is associated

with. A posting p∈Ii consists of a document id field p.d = j and a weight field

p.w =w(ti, dj) for a document dj in which term ti appears. w(ti, dj) is a weight

which shows the degree of relevance between ti and dj using some metric.

Figure 3.1(a) shows the toy document collection that we will use throughout

the examples in this chapter. This document collection D contains D =8 docu-

ments, and its vocabulary T has T =8 terms. There are P =21 posting entries,
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(b) Inverted index structure(a) Toy collection
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Figure 3.1: The toy document collection used throughout the chapter.

in the set P of postings. Figure 3.1(b) shows the inverted index built for this

document collection.

3.1.2 Query Processing

In query processing, it is important to pick the related documents and present

them to the user in the order of documents’ similarity to the query. For this

purpose, many models have been proposed in the literature [125]. Some examples

are the boolean, vector-space, fuzzy-set, and probabilistic models. Among these,

the vector-space model, due to its simplicity, robustness, speed, and ability to

catch partial matches, is the most widely accepted model [104].

In the vector-space model, the similarity sim(Q, dj) between a query Q =

{tq1, tq2, . . . , tqQ
} of size Q and a document dj is computed using the cosine simi-

larity measure, which can be simplified as

sim(Q, dj) =

∑Q
i=1 w(tqi

, dj)√∑Q
i=1 w(tqi

, dj)2
, (3.1)

assuming all query terms have equal importance. The tf-idf (term frequency-

inverse document frequency) weighting scheme [104] is usually used to compute

the weight w(ti, dj) of a term ti in a document dj as
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w(ti, dj) =
f(ti, dj)√

|dj|
× ln

D

f(ti)
, (3.2)

where f(ti, dj) is the number of times term ti appears in document dj , |dj| is the

total number of terms in dj, f(ti) is the number of documents containing ti, and

D is the number of documents in the collection. Throughout the thesis, the tf-idf

weighting scheme is used together with the vector-space model [125].

Processing of a user query follows several stages in a traditional sequential

text retrieval system. While processing a user query Q= {tq1 , tq2, . . . , tqQ
}, each

query term tqi
is considered in turn and is processed as follows. First, inverted list

Iqi
is fetched from the disk. All postings in Iqi

are traversed, and the weight p.w

in each posting p ∈ Iqi
is added to the score accumulator for document p.d. After

all inverted lists are processed, documents are sorted in decreasing order of their

scores, and highly-ranked documents are returned to the user. The interested

reader may refer to Chapter 4 for more details on sequential query processing.

3.2 Parallel Text Retrieval

3.2.1 Parallel Text Retrieval Architectures

In practice, parallel text retrieval architectures can be classified as: inter-query-

parallel and intra-query-parallel architectures. In the first type, each processor

in the parallel system works as a separate and independent query processor. In-

coming user queries are directed to client query processors on a demand-driven

basis. Processing of each query is handled solely by a single processor. Intra-

query-parallel architectures are typically composed of a single central broker and

a number of client processor, each running an index server responsible from a

portion of the inverted index. In this architecture, the central broker redirects an

incoming query to all client query processors in the system. All processors col-

laborate and contribute processing of the query and compute partial answer sets
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of documents. The partial answer sets produced by the client query processors

are merged at the central broker into a final answer set, as a final step.

In general, inter-query-parallel architectures obtain better query processing

throughput, whereas intra-query-parallel architectures are better at reducing

query response times. Further advantages, disadvantages, and a brief comparison

are provided in [9]. In this work, our focus is on intra-query-parallel text retrieval

systems on shared-nothing parallel architectures.

3.2.2 Inverted Index Organizations

In a K-processor, shared-nothing, intra-query-parallel text retrieval system, the

inverted index is partitioned among K index servers. The partitioning must be

performed taking the storage load of index servers into consideration. If there

are |P| posting entries in the inverted index, each index server Sj in the set

S={S1, S2, . . . , SK} of index servers should keep approximately equal amount of

posting entries as shown by

SLoad(Sj) �
|P|
K

, for 1 ≤ j ≤ K, (3.3)

where SLoad(Sj) is the storage load of index server Sj . The storage imbalance

should be kept under a satisfactory value.

In general, partitioning of the inverted index can be performed in two different

ways: term-based or document-based partitioning. In the term-based partitioning

approach, each index server Sj locally keeps a subset Lt
j of the set L of all inverted

lists, where

Lt
1 ∪ Lt

2 ∪ . . . ∪ Lt
K = L (3.4)

with the condition that
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Lt
i ∩ Lt

j = ∅, for 1 ≤ i, j ≤ K, i �= j. (3.5)

In this technique, all processors are responsible from processing their own set

of terms, that is, inverted lists are assigned to index servers as a whole. If an

inverted list Ii is assigned to index server Sj (i.e., It
ji =Ii), any index server Sk

other than Sj has It
ki =∅.

Alternatively, the partitioning can be based on documents. In the document-

based partitioning approach, each processor is responsible from a different set of

documents, and an index server stores only the postings that contain the docu-

ment ids assigned to it. Each index server Sj keeps a set Ld
j ={Ij1, Ij2, . . . , IjT}

of inverted lists containing subsets Id
ji of every inverted list Ii∈L, where

Id
1i ∪ Id

2i ∪ . . . ∪ Id
Ki = Ii, for 1 ≤ i ≤ T (3.6)

with the condition that

Id
ji ∩ Id

ki = ∅, for 1 ≤ j, k ≤ K, j �= k, 1 ≤ i ≤ T, (3.7)

and it is possible to have Id
ji =∅.

In Figure 3.2(a) and Figure 3.2(b), the term- and document-based partition-

ing strategies are illustrated on our toy document collection for a 3-processor

parallel system. The approach followed in this example is to assign the postings

to processors in a round-robin fashion according to term and document ids. This

technique is used in [114].

3.2.3 Parallel Query Processing

Processing of a query in a parallel text retrieval system follows several steps.

These steps slightly differ depending on whether term-based or document-based
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a) Term-based inverted index partitioning b) Document-based inverted index partitioning
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Figure 3.2: 3-way term- and document-based partitions for the inverted index of
our toy collection.

inverted index partitioning schemes are employed. In term-based partitioning,

since the whole responsibility of a query term is assigned to a single processor,

the central broker splits a user query Q = {tq1, tq2, . . . , tqQ
} into K subqueries.

Each subquery Qi contains the query terms whose responsibility is assigned to

index server Si, that is, Qi = {qj : tqj
∈Q ∧ Iqj

∈Lt
i}. Then, the central broker

sends the subqueries over the network to index servers. Depending on the query

content, it is possible to have Qi =∅, in which case no subquery is sent to index

server Si. In document-based partitioning, postings of a term are distributed on

many processors. Hence, unless a K×T -bit term-to-processor mapping is stored

in the central broker, each index server is sent a copy of the original query, that

is, Qi =Q.
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Once an index server receives a subquery, it immediately accesses its disk

and reads the inverted lists associated with the terms in the subquery. For each

query term tqj
∈ Qi, inverted list Ij is fetched from the disk. The weight p.w

of each posting p ∈ Ij is used to update the corresponding score accumulator

for document p.d. When all inverted lists are read and accumulator updates are

completed, index server Si transfers the accumulator entries (document ids and

scores) in the memory to the central broker over the network, forming a partial

answer set Ai for query Q.

During this period, the central broker may be busy with directing other queries

to index servers. For the final answer set to the query to be generated, all partial

answer sets related with the query must be gathered at the central broker. The

central broker merges the received K partial answer sets A1,A2, . . . ,AK and

returns the most relevant (highly-ranked) document ids as the complete answer

set to the user submitted query Q.

3.2.4 Evaluation of Inverted Index Organizations

The term-based and document-based partitioning schemes have their own ad-

vantages and disadvantages. In the term-based partitioning scheme, accessing a

term’s inverted list requires a single disk access, but reading the list may take

long time since the whole list is stored at a single index server. Similarly, the par-

tial answer sets transmitted by the index servers are long. Hence, the overhead

of term-based partitioning is mainly at the communication. The communication

overhead becomes a bottleneck in parallel architectures where the communication-

to-computation ratio is low, or in the case that the entire set of inverted lists are

stored in the primary memory, or in cases where the partial answer sets contain

additional information such as the positions of the terms in the documents. Previ-

ously proposed term-based partitioning schemes do not take this communication

overhead into consideration during the partitioning of the inverted index.

In document-based partitioning, the inverted lists retrieved from the disk are

shorter in length, and hence posting I/O is faster. Moreover, in case the user
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Table 3.1: A comparison of the previous works on inverted index partitioning

Authors Tomasic and Jeong and Riberio-Neto and
Garcia-Molina Omiecinski Baeza-Yates

Year 1993 1995 1999
Target shared-nothing multi-disk shared-nothing
architecture parallel PC parallel
Ranking model boolean boolean vector-space
Partitioning model round-robin load-balanced load-balanced
Dataset synthetic synthetic real-life

is interested in only the top s documents, no more than s accumulator entries

need to be communicated over the network since no document with a rank of

s+1 in a partial answer set can take place among the top s documents in the

global ranking. However, in document-based partitioning, O(K) disk accesses are

required to read the inverted list of a term since the complete list is distributed at

many processors. The disk accesses are the dominating overhead in total query

processing time, especially in the presence of slow disks and a fast network. If

the documents are assigned to sites in a random manner, as done in the previous

works, too many disk accesses may be observed.

3.3 Previous Works

There are a number of works on inverted index partitioning problem in parallel

text retrieval systems. We briefly overview three publications here. Table 3.1

summarizes and compares these previous works on inverted index partitioning.

Tomasic and Garcia-Molina [114] examine four different techniques to parti-

tion the inverted index on a shared-nothing distributed system for different hard-

ware configurations. The system and disk organizations described in their work

respectively correspond to the term- and document-based partitioning schemes

we previously described. The authors verify the performance of the techniques by
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simulation over a synthetic dataset and use the boolean model for similarity cal-

culations between documents and queries. Their results indicate that document-

based partitioning performs well for long documents, whereas term-based parti-

tioning is better on short-document collections.

Jeong and Omiecinski [73] investigate the performance of the two partitioning

schemes for a shared-everything multiprocessor system with multiple disks. As

in [114], they use the boolean ranking model and work on synthetic datasets.

They conduct experiments especially on term skewness. For term-based parti-

tioning, they propose two heuristics for load balancing. In their first heuristic,

they partition the posting file with equal posting size instead of equal number of

terms. In their second heuristic, they also consider the term frequencies besides

posting sizes. The results of their simulation show that term-based partitioning

is better when term distribution is less skewed in the document collection, and

document-based partitioning should be preferred otherwise.

Baeza-Yates and Ribeiro-Neto [103] apply the two partitioning schemes on

a shared-nothing parallel system. In their work, they refer to the term- and

document-based partitioning schemes as global and local index organizations,

respectively. For document ranking, they use the vector-space model and conduct

their experiments on a real-life document collection. Their results show that

term-based partitioning performs better than document-based partitioning in the

presence of fast communication channels.

3.4 Hypergraph Partitioning Overview

A hypergraph H=(V,N ) consists of a set of vertices V and a set of nets N [12].

Each net nj ∈N connects a subset of vertices in V. The set of vertices connected

by a net nj are called as the pins of net nj and are denoted as Pins(nj). The

size of a net nj is equal to the number of its pins, that is, size(nj)= |Pins(nj)|.
Similarly, the nets connecting a vertex vi are called as the nets of a vertex and

are denoted as Nets(vi). The degree of a vertex vi is equal to the number of its
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nets, that is, deg(vi)= |Nets(vi)|. Each vertex vi∈V is associated with a weight

wi. Each net nj ∈N is associated with a cost cj .

Π={V1,V2, . . . ,VK} is a K-way vertex partition if each part Vk is nonempty,

parts are pairwise disjoint, and the union of parts gives V. In Π, a net is said to

connect a part if it has at least one pin in that part. The connectivity set Λj of a

net nj is the set of parts connected by nj. The connectivity λj = |Λj| of a net nj

is equal to the number of parts connected by nj . If λj =1, then nj is an internal

net. If λj >1, then nj is an external net and is said to be at cut.

In Π, the weight of a part is equal to the sum of the weights of vertices in that

part. A partition Π is said to be balanced if each part Vk satisfies the balance

criterion

Wk ≤ Wavg(1 + ε), for k=1, 2, . . . , K, (3.8)

where each weight Wk of a part Vk is defined as the sum of the weights wi of the

vertices in that part, Wavg is the weight that each part should have in the case of

perfect load balancing, and ε is the maximum imbalance ratio allowed.

Given all these definitions, the K-way hypergraph partitioning problem [2]

can be defined as finding a partition Π for a hypergraph H = (V,N ) such that

the balance criterion on part weights (Eq. 3.8) is maintained while an objective

function defined over the nets is optimized. There are several objective func-

tions developed and used in the literature. The metric used in this work is the

connectivity metric

χ(Π) =
∑

ni∈N
ciλi, (3.9)

in which each net contributes ciλi to the cost χ(Π) of a partition Π.



CHAPTER 3. INVERTED INDEX PARTITIONING MODELS 32

3.5 Inverted Index Partitioning Models based

on Hypergraph Partitioning

3.5.1 Proposed Work

In the previous works on term- and document-based inverted index partition-

ing, assignment of postings to index servers is performed without considering

the association between the documents and terms. Here, we propose two novel

inverted index partitioning models that lessens the overall query processing over-

head in intra-query-parallel text retrieval systems. In the proposed models, the

inverted index is viewed as a hypergraph and hypergraph partitioning heuristics

are employed to obtain a partition of the inverted index. For simplicity, in our

term-based model, we assume that the terms appear in the queries with equal

probabilities. Similarly, in our document-based model, we assume that the doc-

uments are requested with equal probability. For both models, extensions are

possible to the unequal probability case.

3.5.2 Term-Based Partitioning Model

In our hypergraph-partitioning model for term-based inverted index partitioning,

the inverted index is represented as a hypergraph Ht = (Vt,N t). The terms in

the vocabulary T correspond to the vertices of vertex set Vt. That is, a term

ti, which is an atomic task to be completely processed by an individual index

server, is represented as a vertex vi∈Vt. As the weight of vertices, the number of

posting entries in the inverted list of the corresponding term is assigned, that is,

wi =PSize(ti). This weight represents the storage overhead of inverted list It
i .

The documents in collection D correspond to the nets in the hypergraph.

That is, we represent a document dj by a net nj ∈N t. The net costs are all set

to 1, that is, cj =1. This cost represents the cost of transmitting an accumulator

over the network. A pin is placed between a vertex vi and a net nj if and only

if document dj contains term ti. Hence, in this model, the degree |Nets(vi)| of a
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vertex vi is equal to the number of postings in the inverted list Ii and also the

vertex weight wi.

In this model, a K-way partition Πt = {Vt
1,Vt

2, . . . ,Vt
K} of hypergraph Ht

obtained by hypergraph partitioning corresponds to the set {Lt
1,Lt

2, . . . ,Lt
K} of

partial inverted indices to be distributed on K index servers S={S1,S2, . . . ,SK}.
Due to the load balance constraint in Eq. 3.8, it is guaranteed that each index

server will have similar amounts of posting entries after the partitioning. Hence,

a balance is obtained at the index servers in terms of posting storage.

In a partition Πt, the connectivity λj of a net nj shows the number of index

servers that will transmit an accumulator for document dj , and hence the vol-

ume of communication that will be incurred due to dj. Consequently, minimizing

the partitioning objective (Eq. 3.9) during the partitioning minimizes the total

volume of communication that will be incurred during the transmission of accu-

mulators from the index servers to the central broker in case each document in

the collection is requested exactly once in query processing.

Figure 3.3 illustrates this with an example. Figure 3.3(a) shows hypergraph

Ht representing our toy inverted index and a 2-way partition Πt obtained on

this hypergraph. In Figure 3.3(b) and Figure 3.3(c), the resulting local inverted

indices are displayed. According to this partition, net n4 and n7 are at the cut.

Hence, when either document d4 or d7 is requested, both index servers will send

accumulators about these documents. For internal nets, only one index server

will send an accumulator. For example, although net n3 is connected to many

vertices, after the partitioning, it remains as an internal net, and hence, when

document d3 is requested only index server S2 will transmit an accumulator.

In the example of Figure 3.3, the part weights W1 =9 and W2 =12 correspond

to the storage loads (i.e., the number of posting entries) for index servers S1

and S2, respectively. If each document is requested once, the total number of

accumulators to be transmitted by the index servers is 2×2+6×1=10, which is

exactly equal to the λ-way cut cost of partition Πt.
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Πt = {Vt
1,Vt

2}

(a) A 2-way partition Πt of hypergraph Ht for the term-based partitioning model.

(b) Local inverted index Lt
1 at index server S1. (c) Local inverted index Lt

2 at index server S2.
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Figure 3.3: A 2-way, term-based partition of the toy collection.

3.5.3 Document-Based Partitioning Model

Our document-based partitioning model uses the dual of the hypergraph in the

previous model. In this representation, each document di∈D is represented by a

vertex vi∈Vd. For each vertex vi, the vertex weight wi is set equal to the degree

|Nets(vi)| of vi. This weight shows the number of posting entries that must be

stored for document di.

There exists a corresponding net nj ∈N d for each term tj ∈Vd in vocabulary

T . The cost cj of a net nj is assigned as 1, i.e., cj = 1. This cost represents

the cost of the disk access for retrieving an inverted list from the disk. A vertex

vi is a pin of a net nj if and only if term tj appears in document di. In this

setting, the degree deg(vi) of a vertex vi is equal to the number of distinct terms

in the document, that is, |Nets(vi)| = |di|. Similarly, the size |Pins(nj)| of a
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net nj is equal to the number of documents in which term tj appears, that is,

|Pins(nj)|= |Ij|.

In a K-way partition Πd = (Vd
1 ,Vd

2 , . . . ,Vd
K) of hypergraph Hd, each vertex

part Vd
k corresponds to a subset Dk of documents whose responsibility is assigned

to index server Sk. In other words, every posting in the form of (i, w(tj, di)) is

stored by index server Sk if and only if vi ∈Vd
k and di ∈Dk. Balancing the part

weights Wk according to the balance criterion in Eq. 3.8 effectively balances the

storage load of processors since each index server is assigned almost equal amount

of postings.

The connectivity set Λj of a net nj corresponds to the set of index servers

where inverted list Ij will be distributed. Each index server Sk stores a partial

list Id
kj and responds to a subquery containing term tj . The connectivity λj of

a net nj gives the number of disk accesses the overall system must perform to

retrieve the inverted lists for term tj . Consequently, minimizing the partitioning

objective χ(Π) (Eq. 3.9) corresponds to minimizing the total number of disk

accesses incurred in case every term in the vocabulary is submitted to the system

as a single query.

Figure 3.4 illustrates this with an example. Figure 3.4(a) displays hypergraph

Hd representing our toy collection and its 2-way partition Πd in the document-

based model. In Figure 3.4(b) and Figure 3.4(c), the resulting local inverted

indices are displayed. In partition Πd, the only cut net is n3, with a connectivity

of λ3 =2. This means that when term t3 appears in a query, it will be necessary to

perform 2 disk accesses in the text retrieval system. All other terms will require

a single disk access since their representative nets are all internal.

In the example of Figure 3.4, parts weights W1 = 10 and W2 = 11, as in the

previous model, show the posting storage amounts of the two index servers. The

connectivity cost 2×1+7×1=9 of the partition indicates that if all terms in the

vocabulary are submitted in a query, the total number of disk accesses incurred

will be 9.
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Πd = {Vd
1 ,Vd

2 }

(b) Local inverted index Ld
1 at index server S1. (c) Local inverted index Ld

2 at index server S2.

(a) A 2-way partition Πd of hypergraph Hd for the document-based partitioning model.
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Figure 3.4: A 2-way, document-based partition of the toy collection.

3.6 Experimental Results

3.6.1 Dataset

In the experiments, Financial Times Limited (1991–1994) document collection,

known as the FT database, of TREC Disk 4 is used. During the preparation

of the global inverted index standard stop-word elimination and cleansing tech-

niques are followed. After preprocessing, the collection obtained contains 210,157

documents, and the total number of distinct terms in the collection is 275,478.

The total number of postings in the inverted index is 30,949,837. In the HP

scheme, the maximum allowed imbalance ratio is set to 0.10. In the experiments

conducted for the term-based inverted index partitioning, accumulators are as-

sumed to be of 8 bytes.
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Figure 3.5: The load imbalance in posting storage with increasing number K of
index servers in term-based inverted index partitioning.

We provided performance results for three different inverted index partitioning

schemes: RR, LB, and HP. RR is the partitioning scheme employed in [114]. In

this scheme, alphabetically sorted terms (or documents) are assigned to the index

servers in a round-robin fashion. LB is the partitioning scheme introduced in [73].

In this scheme, terms are sorted in decreasing order of document frequency. Then,

K parts are obtained on this sorted list such that each part contains almost equal

amount of postings. We extend the same method to document-based partitioning.

HP is the partitioning scheme of the proposed model. In this scheme, depending

on the the type of the organization, a hypergraph representing the inverted index

is created. Then, the state-of-the-art hypergraph partitioning tool PaToH [33] is

used to partition this hypergraph.

3.6.2 Results on Term-Based Partitioning

Figure 3.5 shows the load imbalance values obtained by the three partitioning

schemes in posting storage of index servers for term-based inverted index par-

titioning. As expected, the LB and HP schemes perform relatively better than

the RB scheme in load balancing, due to the explicit effort towards balancing the

posting storage. In general, LB performs slightly better than HP. At 64 index
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Figure 3.6: The total volume of communication incurred in query processing with
increasing number K of index servers in term-based inverted index partitioning.

servers, the imbalance values are 48.71%, 12.31%, and 15.27% for the RR, LB,

and HP schemes, respectively.

Figure 3.6 shows the total volume of communication that will be incurred dur-

ing the transmission of accumulators from index servers to the central broker with

the assumption that every document in the collection is requested once during

query processing. The performance of HP in minimizing the communication vol-

ume is especially notable at high numbers of index servers. At 64 index servers,

the HP scheme incurs 15.26% and 13.39% less total volume of communication

than the RR and LB schemes, respectively.

3.6.3 Results on Document-Based Partitioning

Figure 3.7 shows the load imbalance values obtained by the three partitioning

schemes in posting storage of index servers for document-based inverted index

partitioning. According to this figure, in document-based inverted index parti-

tioning, the imbalance values obtained by all schemes are relatively lower com-

pared to term-based inverted index partitioning (Figure 3.5). This is basically

due to the fact that documents follow a uniform size distribution, whereas terms
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Figure 3.7: The load imbalance in posting storage with increasing number K of
index servers in document-based inverted index partitioning.

follow a Zipf-like distribution, which causes a great variation in inverted index

sizes. At 64 index servers, the imbalance values observed are 3.01%, 0.12%, and

0.09% for the RR, LB, and HP schemes, respectively.

Figure 3.8 shows the total number of disk accesses incurred in the three differ-

ent partitioning schemes with the assumption that each term in the vocabulary

is submitted as a query. At all numbers of index servers, the HP scheme out-

performs the RR and LB schemes in reducing the number of disk accesses. In

general, the increasing number of index servers seem to favor the HP scheme. In

particular, the improvement of HP over LB rises from 24.8% at 8 index servers to

28.36% at 64 index servers. This behavior is due to the fact that, as the number

of index servers increases, the number of pins per part decreases, and hence the

hypergraph partitioning heuristics have a better solution space in optimizing the

objective function.
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Figure 3.8: The total number of disk accesses incurred in query processing with
increasing number K of index servers in document-based inverted index parti-
tioning.

3.7 Conclusions

Although the proposed inverted index partitioning models have no benefit in

minimizing the query processing times of individual queries, they are beneficial

in reducing the use of system resources (i.e., the network in case of the term-

based partitioning model and the disks in case of the document-based partitioning

model). These schemes may turn out to be useful in improving overall system

efficiency, especially in systems where the resources are shared by other software

modules such as a parallel Web crawler, running on the same parallel system with

the query processor. In the future, we plan to conduct practical experiments to

observe the effect of the proposed partitioning models on a real-life parallel text

retrieval system.



Chapter 4

Query Processing Algorithms

Similarity calculations and document ranking form the computationally expen-

sive parts of query processing in ranking-based text retrieval. In this chapter of

the thesis, eleven alternative implementation techniques are presented for these

calculations [18]. The implementations are classified under four different cate-

gories, and their asymptotic time and space complexities are investigated. To

our knowledge, six of these techniques are not discussed in the literature before.

Furthermore, analytical experiments are carried out on a 30 GB document collec-

tion to evaluate the practical performance of different implementations in terms

of query processing time and space consumption. Advantages and disadvantages

of each technique are illustrated under different querying scenarios, and several

experiments that investigate the scalability of the implementations are presented.

The chapter is organized as follows. In Section 4.1, we provide some back-

ground information on query processing in ranking-based text retrieval systems.

In Section 4.2, we give pointers to the related work on efficient query processing.

In Section 4.3, we describe the implementation techniques and present an analysis

of their asymptotic time and space complexities. In Section 4.4, we evaluate the

practical performance of each technique on a large (30 GB) document collection.

In Section 4.5, we present a discussion on advantages and disadvantages of the

techniques and conclude.

41
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4.1 Introduction

In the last decade, a shift has been observed from the boolean model of query pro-

cessing to the more effective ranking-based model. In text retrieval systems em-

ploying the ranking-based model, similarity calculations are performed between

a user query and the documents in a collection. As a result of these calculations,

the user is presented a set of relevant documents, ranked in decreasing order of

similarity to the query. The similarity calculations and document ranking, which

form the major source of overhead in query processing, can be implemented in

many ways, using different data structures and algorithms. The main focus of this

work is on advantages and disadvantages of these data structures and algorithms.

Although other strategies may also be employed [45] a document collection

is usually represented by an inverted index [113, 133]. An inverted index is

composed of two parts: a set of inverted lists and an index into these lists. The

set of inverted lists L={I1, I2, . . . , IT} of size T , where T is the number of distinct

terms in the collection, contains a list Ii for each term ti in the collection. The

index part contains a pointer to each term’s inverted list. Each inverted list Ii

keeps entries, called postings, about the documents in which term ti appears.

A posting p ∈ Ii includes a document id field p.d = j and a weight field p.w =

w(ti, dj) for a document dj containing term ti, where w(ti, dj) is a weight [63]

which indicates the degree of relevance between ti and dj.

In construction of the inverted index, usually, the tf-idf (term frequency-

inverse document frequency) weighting scheme [104] is used to compute w(ti, dj).

In this work, we use the tf-idf variant (also shown in Eq. 3.2 of Chapter 3)

w(ti, dj) =
f(ti, dj)√

|dj|
× ln

D

f(ti)
, (4.1)

where f(ti, dj) is the number of times term ti appears in document dj , |dj| is the

total number of terms in dj, f(ti) is the number of documents containing ti, and

D is the number of documents.
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In processing a query, only the inverted lists associated with the query terms

are used. Specifically, if we have a query Q={tq1, tq2, . . . , tqQ
} of Q distinct query

terms, we work on a partial inverted index LQ⊂L of Q inverted lists, in which

each list Iqi
∈LQ is associated with query term tqi

∈Q. The similarity sim(Q, dj)

of query Q to a document dj can be calculated using the cosine function [104].

Since, in Eq. 4.1, we already approximated cosine normalization by the
√
|dj|

factor [86], the cosine similarity metric can be simplified as

sim(Q, dj) =
∑

tqi∈Q
w(tqi

, dj), (4.2)

assuming that all query terms have equal importance. That is, to calculate the

similarity between query Q and document dj, we need to accumulate the weights

w(tqi
, dj) for each query term tqi

∈Q in a memory location dedicated to document

dj. These memory locations are called accumulators. An accumulator a typically

keeps an integer document id field a.d and a floating point score field a.s, which

contains the accumulated similarity value for document a.d. After all accumulator

updates are completed, sorting them in decreasing order of finalized a.s values

gives a ranking of documents.

Both time and space are critical in ranking-based text retrieval. Especially,

in cases where the inverted index is completely stored in volatile memory (a

common practice for Web search engines) and disk accesses are avoided, similarity

calculations and document ranking directly determine the query processing times.

Considering the existence of search engines which indexed more than 4 billion

pages, it is easily seen that space consumption is also a critical issue. In this work,

we present eleven alternative implementations under four different categories for

query processing in ranking-based text retrieval, taking time and space needs into

consideration. To our knowledge, six of these implementations are not discussed

in any publication before.
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4.2 Related Work

In the literature, ranking-based text retrieval is well-studied in terms of both ef-

fectiveness [30, 42, 123] and efficiency [30, 91]. Some of the basic query processing

techniques are described in classical information retrieval books [9, 57, 104, 125].

Many optimizations are proposed for decreasing query processing times and ef-

ficiently using the memory [16, 65, 92, 96, 101, 110, 118]. Wong93, These opti-

mizations are based on limiting the number of processed query terms and postings

(short-circuit evaluation) or limiting the memory allocated to accumulators. They

mainly differ in their choice for the processing order of postings and when to stop

processing them.

Buckley and Lewit [16] proposed an algorithm which traverses query terms in

decreasing order of frequencies and limits the number of processed query terms

by not evaluating the inverted lists for high-frequency terms whose postings are

not expected to affect the final ranking. Harman and Candela [64] used an inser-

tion threshold on query terms, and the terms whose score contribution are below

this threshold are not allowed to allocate new accumulators. Moffat et al. [96]

proposed two heuristics which place a hard limit on the memory allocated to

accumulators. Turtle and Flood [118] presented simulation results for the perfor-

mance analysis of two optimizations techniques, which employ term-ordered and

document-ordered inverted list traversal. Wong and Lee [126] proposed two op-

timization heuristics which traverse postings in decreasing magnitude of weights.

For a similar strategy, Persin [101] used thresholds for allocation and update of

accumulators.

These optimizations can be classified as safe or approximate [118]. Safe op-

timizations guarantee that best-matching documents are ranked correctly. Ap-

proximate optimizations may trade effectiveness for efficiency producing a partial

ranking, which does not necessarily contain the best-matching documents, or may

present them in an incorrect order. Our focus in this work is not on partial query

evaluation or approximate optimizations. We investigate the complexities of im-

plementations and data structures in total document ranking as well as their

performance in practice.
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Throughout the chapter, we take an information retrieval point of view in

analyzing various implementation techniques. However, there exists a significant

amount of related work in the database literature. The interested reader may

refer to prior works by Lehman and Carey [87], Goldman et al. [59], Bohannon

et al. [14], Hristidis et al. [71], Elmasri and Navathe [52], and Ilyas et al [72].

4.3 Query Processing Implementations

The analysis presented in this work are based on processing of a single query

Q = {tq1, tq2 , . . . , tqQ
} with Q distinct terms over a document collection with D

documents. u denotes the total number of postings in the processed Q inverted

lists Iqi
∈ LQ, all of which are stored in the volatile memory. The number of

distinct document ids in these postings is denoted by e. The text retrieval system

returns the most relevant (highly ranked) s documents to the user as the result

of the query. Table 4.1 displays the notation used in the chapter.

Although other orderings are possible, the postings in our inverted lists are

ordered by increasing document id since this ordering is strictly required by some

of the algorithms we implemented. Moreover, this ordering is necessary in case

inverted index is compressed [11, 132]. In postings, we store normalized tf scores

(f(ti, dj)/
√
|dj|), thus eliminating the need to lookup the document lengths (|dj|)

and allocate a large array to store them. This way, the main space demand

is for the accumulators and the postings in the inverted lists. The idf compo-

nent (ln(D/f(ti))) is not precomputed in postings but computed during query

processing, allowing easy updates over the inverted index.

In a query processing implementation, depending on the operations on accu-

mulators, we distinguish five phases which affect the processing time of a query:

creation, update, extraction, selection, and sorting. Descriptions of these phases

are given below.

• Creation: Each document di is associated with an accumulator ai, initial-

ized as ai.d = i and ai.s = 0. Depending on the implementation, either
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Table 4.1: The notation used in the work

Symbol Description
T The number of distinct terms in the collection
D The number of documents in the collection
ti A term in the collection
di A document in the collection
|di| The total number of terms in di

L The set of inverted lists
Ii The inverted list associated with ti

p.d, p.w Document id and weight fields of a posting p
f(ti, dj) The number of times ti appears in dj

f(ti) The number of documents containing ti
Q A user query
Q The number of distinct terms in Q
LQ The partial set of inverted lists processed in answering Q

a.d, a.s Document id and score fields of an accumulator a
u The total number of postings in all Ii∈LQ
e The number of postings with distinct document ids in all Ii∈LQ
s The number of documents to be returned to the user
B The number of buckets in the hashing implementation

previously allocated locations are used as accumulators or space is dynam-

ically allocated for accumulators as needed. In this phase, some auxiliary

data structures may also be allocated and initialized.

• Update: Once an accumulator ai is created for a document di, the weight p.w

of each posting p where p.d= i is simply added to the score of accumulator

ai, i.e., ai.s=ai.s + p.w. It is necessary and sufficient to perform u updates

since each posting incurs a single update.

• Extraction: The accumulators with nonzero scores (i.e., ai.s > 0) whose

updates are completed can be extracted. Such accumulators are located and

passed to the selection phase as input. Since an accumulator is extracted

exactly once, there are always e extraction operations.

• Selection: This phase compares each extracted accumulator score with the

previously extracted ones and selects the accumulators having the top s

scores. This way, the set Stop of best-matching documents is constructed.
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Figure 4.1: A classification for query processing implementations.

• Sorting: The accumulators in Stop are sorted in decreasing order of their

scores, and their document ids are returned to the user in this sorted order.

The asymptotic run-time costs for the creation, update, extraction, selection

and sorting phases are represented by TimeC, TimeU, TimeE, TimeS, and TimeR,

respectively. We represent the total run-time cost of an implementation by TimeT

and the storage cost by S. In all analysis, we strictly have e≤D, e≤ u, s≤ e,

and u≤QD. Moreover, we assume s
D, Q
T , and u=O(D).

Depending on the processing order of postings, we make a broad classification

of query processing implementations as term-ordered (TO) and document-ordered

(DO). We further classify TO processing as static (TO-s) and dynamic (TO-d),

according to the strategy used in allocation of accumulators. Similarly, we classify

DO processing as multiple (DO-m) and single (DO-s), according to the number

of accumulators allocated. For TO-s, TO-d, DO-m, and DO-s approaches, we

present 4, 3, 2, and 2 implementations, respectively (Figure 4.1). To the best of

our knowledge, the implementations TO-s4, TO-d1, TO-d2, TO-d3, DO-m1, and

DO-m2 are not discussed in a previous publication.



CHAPTER 4. QUERY PROCESSING ALGORITHMS 48

TO-s(Q, A)
for each accumulator ai∈A do

INITIALIZE ai as ai.d= i and ai.s=0
for each query term tqj

∈Q do
for each posting p∈Iqj

do
UPDATE ap.d.s as ap.d.s+p.w

Stop =∅
INSERT the accumulators having the top s scores into Stop

SORT the accumulators in Stop in decreasing order of their scores
RETURN Stop

Figure 4.2: The algorithm for TO-s implementations.

4.3.1 Implementations for Term-Ordered (TO) Process-

ing

In TO processing, inverted lists are sequentially processed. The postings of a

term are completely exhausted before the postings of the next term are processed.

Extraction and selection phases are performed in an interleaved manner. In TO-s,

D accumulators are allocated statically. In TO-d, at most e accumulators are

allocated on demand, thus saving space if D is very high.

4.3.1.1 Implementations with Static Accumulator Allocation (TO-s)

In TO-s implementations, an array A of D accumulators is statically allocated.

Each array element ai =A[i] is used as an accumulator. Before processing a query,

accumulator fields are initialized as ai.d = i and ai.s = 0. Similarity updates for

document di are performed over ai.s. Creation and update phases are the same

for all TO-s implementations. These implementations mainly differ in extraction,

selection, and sorting phases. The algorithm for TO-s implementations is given

in Figure 4.2. In this section, we describe four different TO-s implementations.
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TO-s1: accumulator array, accumulators with nonzero scores sorted

The most naive implementation is to sort all accumulators in A in decreasing

order of their scores and return the document ids in the first s accumulators. If

e
D, most accumulators are never updated and their score fields remain zero.

In this case, it is better to first pick the nonzero accumulators and then sort

those [125]. Costs for this approach are as follows:

• Creation: Array A of D accumulators is allocated, and its accumulators

are initialized. This type of allocation is a one-time O(D)-cost operation

independent of the number of incoming queries. However, reinitialization

of the accumulators between consecutive queries require O(e) operations.

Hence, TimeC =O(e).

• Update: Each term qj is considered in turn, and for each posting p ∈ Iqj

with p.d = i, an update is performed over the corresponding accumulator

field ai.s, i.e., ai.s= ai.s + p.w. This phase involves reading and writing a

total of u values between two locations. Hence, TimeU =O(u).

• Extraction: Since it is not known which accumulators have nonzero score

fields, the whole A array must be traversed to locate them. During this

traversal, nonzero accumulators are picked and stored at the first e elements

of array A. Traversing the whole array and checking the score fields require

O(D) comparisons. Hence, TimeE =O(D).

• Selection: This phase involves no work since the top s scores to be selected

already reside within the first e array elements. TimeS =O(1).

• Sorting: Sorting the first e array elements in decreasing order of the scores

gives a ranking. The document ids in the first s array elements are returned

as the set Stop of best-matching documents. Sorting has a cost of TimeR =

O(e lg e).

The running time of this implementation is TimeT =O(e+u+D+1+e lge)=

O(D + e lg e). The storage overhead is S=O(D).
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TO-s2: accumulator array, max-priority queue for nonzero accumula-

tors

An improvement over TO-s1 is to use a max-priority queue implemented as a

binary heap Hmax to select the top s accumulator scores [96]. The max-heap

Hmax contains e accumulators, keyed by their scores. This approach avoids the

cost of sorting the whole set of nonzero accumulators if s<e.

• Creation, Update: Similar to TO-s1. TimeC = O(e), TimeU = O(u). Note

that array A can be used in order to store the accumulators in Hmax. Hence,

no extra storage is necessary for implementing the max-priority queue.

• Extraction: Similar to TO-s1. TimeE =O(D).

• Selection: Extracted accumulators in the first e elements of array A are

treated as elements of heap Hmax, using their score fields as the key and

document id fields as the data. Since there are e extracted accumulators,

the heap can be built with O(e) operations. After building, the root of

Hmax keeps the accumulator with the highest score. The top s accumulators

are obtained by repeatedly performing s extract-max operation on Hmax.

TimeS =O(e + s lg e).

• Sorting: This phase involves no work since accumulators are extracted from

Hmax in sorted order during the selection phase. TimeR =O(1).

TimeT =O(e + u + D + e + s lg e) + 1=O(D + s lg e). S=O(D).

TO-s3: accumulator array, min-priority queue for top s accumulators

A variation over TO-s2 is to employ, instead of a max-priority queue, a min-

priority queue implemented as a min-heap Hmin [125]. At any time, the min-heap

Hmin contains at most s accumulators, keyed by their scores.

• Creation, Update: Similar to TO-s1. TimeC =O(e), TimeU =O(u).



CHAPTER 4. QUERY PROCESSING ALGORITHMS 51

• Extraction: The A array is traversed, and nonzero accumulators are passed

to the selection phase. TimeE =O(D).

• Selection: As long as the number of accumulators in Hmin is less than

s, extracted accumulators are simply added to Hmin. Once it contains s

accumulators, Hmin is built. After this point, the root of Hmin keeps asmin,

the accumulator with the minimum score observed so far. The score a.s

of each extracted accumulator a is compared with asmin.s. If the incoming

score a.s is less than the current minimum asmin.s, the accumulator a is

simply ignored. Otherwise, accumulator asmin is removed from Hmin, and

the extracted accumulator a is inserted into Hmin. Building the min-heap

from the first s extracted accumulators has a cost of O(s). In the worst

case, all remaining accumulators must be inserted into Hmin. This has a

cost of O((e−s) lg s). Hence, TimeS =O(s + (e−s) lg s).

• Sorting: Accumulators in Hmin are sorted in decreasing order of scores.

TimeR =O(s lg s).

TimeT =O(e + u + D + (s+(e−s) lg s) + s lg s)=O(D + e lg s). S =O(D).

TO-s4: accumulator array, s-th largest score selection

This method relies on the observation that the accumulator with the smallest

score to be entered into the set Stop of top s accumulators can be located in

linear time.

• Creation, Update: Similar to TO-s1. TimeC =O(e), TimeU =O(u).

• Extraction: This phase involves no work. TimeE =O(1).

• Selection: The accumulator with the s-th largest score can be selected in

worst-case linear time by the median-of-medians selection algorithm [44]

over the accumulators in A. Instead of this algorithm, the randomized

selection algorithm [44], which has expected linear-time complexity, could

be used for run-time efficiency in practice. This algorithm returns as-th, the
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accumulator having the s-th largest score and places the remaining s−1

accumulators that should appear in Stop in the array elements following

as-th. Hence, Stop is formed with O(D) operations. TimeS =O(D).

• Sorting: Accumulators in Stop are sorted in decreasing order of scores.

TimeR =O(s lg s).

TimeT =O(e + u + 1 + D + s lg s)=O(D + s lg s). S =O(D).

4.3.1.2 Implementations with Dynamic Accumulator Allocation (TO-

d)

If e
D, array A contains too many unused accumulators and hence wastes lots of

space. In such a case or the case where array A is too large to fit into the volatile

memory, it may be a good idea to use a dynamic data structure D and allow

on-demand space allocation for accumulators. In this approach, accumulators

are stored in nodes of D and are located using their document ids as keys. In this

section, AVL tree [83], hashing [70], and skip list [102] alternatives are investigated

for this purpose. In what follows, we discuss these three alternatives, starting

with the AVL tree. Our time analysis for the hashing and skip list alternatives

are expected-time analysis. The algorithm for TO-d implementations is given in

Figure 4.3.

TO-d1: AVL tree of accumulators, min-priority queue for top s accu-

mulators

In this implementation, an AVL tree T containing at most e nodes is used to

store the accumulators. Each node of T keeps an accumulator, pointers to its

left and right children, and a balance factor. An AVL tree implementation is

preferred over a binary search tree implementation since the postings are stored

in each inverted list in increasing order of document ids. In the case of a binary

search tree implementation, with such a posting storage scheme, new accumulator

insertions may quickly turn the tree into a linked list. Hence, we prefer the AVL
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TO-d(Q, D)
for each query term tqi

∈Q do
for each posting p∈Iqi

do
if ∃ an accumulator a∈D with a.d=p.d then

UPDATE a.s as a.s+p.w
else

ALLOCATE a new accumulator a
INITIALIZE a as a.d=p.d and a.s=p.w
D=D∪{a}

Stop =∅
for each a∈D do

SELECT(Stop, a)
SORT the accumulators in Stop in decreasing order of their scores
RETURN Stop

SELECT(S, a)
if |S|<s then

S=S∪{a}
else

LOCATE asmin, the accumulator with the minimum score in S
if a.s>asmin.s then

S=(S−{asmin})∪{a}

Figure 4.3: The algorithm for TO-d implementations.

tree data structure, which dynamically balances the height of the tree, making

accumulator search less costly.

• Creation: If an accumulator needs to be updated in T and it is not already

there, a tree node is dynamically allocated to store the accumulator. The

cost of node allocation is constant, i.e., O(1). Hence, TimeC =O(e).

• Update: For each posting p, nodes of T are searched to locate the accu-

mulator to be updated, where a.d = p.d. If the accumulator is found, its

score field a.s is updated as a.s+p.w. Otherwise, a new node is allocated

and inserted into T , initializing the accumulator in the node as a.d = p.d

and a.s=p.w. The update cost for an accumulator is proportional with the

height of the AVL tree. Hence, TimeU =O(u lg e).

• Extraction: When all updates are completed, accumulators can be extracted
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from nodes of T in any order. Each extracted accumulator is passed to the

selection phase. Traversing the AVL tree has a cost of TimeE =O(e).

• Selection: The min-priority queue mechanism of TO-s3 is used. TimeS =

O(s + (e−s) lg s).

• Sorting: Similar to TO-s3. TimeR =O(s lg s).

TimeT = O(e + u lg e + e + (s + (e−s) lg s) + s lg s) = O(u lg e). The storage

overheads are O(e) for the AVL tree and O(s) for the min-priority queue. S =

O(e).

TO-d2: hashing of accumulators, min-priority queue for top s accumu-

lators

Another implementation alternative which offers dynamic allocation is hashing.

Since e is not known until all postings are completely processed, hashing tech-

niques that require static allocation (such as open addressing) cannot be used.

Here, we use hashing with chaining [70]. In this implementation, accumulators

are placed into B buckets, where each bucket keeps a linked list of accumulators.

The bucket b for an accumulator a is determined by applying a hash function on

the document id field (e.g., b=a.d mod B).

• Creation: Selecting the appropriate number B of buckets is the most impor-

tant step in this implementation. Allocating too many buckets may increase

space consumption. On the contrary, if too few buckets are allocated, the

number of accumulators per bucket increases. Since accumulators are se-

quentially searched in each bucket, this increases the query processing time.

In this implementation, B pointers are needed to keep the list heads. Each

list node stores an accumulator and has a pointer to the next node in the

linked list. It is necessary to dynamically allocate a total of e list nodes.

Hence, TimeC =O(B + e).

• Update: For a posting p, the bucket to be searched is determined by hashing

p.d to a bucket. The accumulators in a bucket are searched by following the



CHAPTER 4. QUERY PROCESSING ALGORITHMS 55

links between list nodes. If an accumulator with a.d=p.d is found, its score

is updated. If the end of the list is reached or an accumulator with a greater

document id is found, the search ends. In this case, a new node which

contains an accumulator is allocated, initialized using p, and then inserted

into the list. List nodes are maintained in increasing order of document

ids. Each bucket stores e/B list nodes on the average. Hence, these many

comparisons are necessary to locate an accumulator. TimeU =O(ue/B).

• Extraction: Accumulators are extracted from the buckets and passed to the

selection phase. Since exactly e nodes must be extracted, TimeE =O(e).

• Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e−s) lg s), TimeR =

O(s lg s).

TimeT =O((B+e)+ue/B+e+(s+(e−s) lg s)+s lg s)=O(ue/B+e lg s). The

storage overheads are O(B + e) for the hash table and O(s) for the min-priority

queue. S =O(B + e).

TO-d3: skip list of accumulators, min-priority queue for top s accumu-

lators

Yet another alternative is to use a skip list S to store and search the accumula-

tors. Skip lists balance themselves probabilistically rather than explicitly (e.g.,

rotations in AVL trees). Although they have bad worst-case time complexities,

they have good expected-time complexities for insert and find operations and

perform well in practice.

• Creation: A list node is dynamically allocated in S to store an accumulator

and a set of forward pointers to the following list nodes. The number of

forward pointers in each node is determined randomly, but it is limited from

above. Since e list nodes must be allocated, TimeC =O(e).

• Update: For each posting p, the nodes in S are searched to locate the

accumulator to be updated, where a.d = p.d. For this purpose, forward

pointers are used and the skip list is traversed in a manner similar to binary
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search. If the accumulator is located in S, its score field is updated as

a.s=a.s+p.w. Otherwise, a new node is allocated and inserted into S after

initializing its accumulator as a.d=p.d and a.s=p.w. The expected update

cost for an accumulator is O(lg e). Hence, TimeU =O(u lg e).

• Extraction: Nodes of S are visited sequentially, and accumulators are passed

to the selection phase. TimeE =O(e).

• Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e−s) lg s), TimeR =

O(s lg s).

TimeT = O(e + u lg e + e + (s + (e−s) lg s) + s lg s) = O(u lg e). The storage

overheads are O(e) for the skip list and O(s) for the min-priority queue. S =O(e).

4.3.2 Implementations for Document-Ordered (DO) Pro-

cessing

Two important features in the inverted index structure let us devise another query

processing strategy. First, the postings of a term are stored in increasing order

of document ids. That is, while traversing an inverted list, once a document

id is seen in a posting, there cannot be a smaller document id in one of the

succeeding postings in that list. Second, the number of query terms is limited.

We have Q terms to be processed. These observations allow us to process the

inverted lists in parallel instead of processing them consecutively. This way, it

is possible to compute a complete score for a document before all postings in

the lists are completely processed. In DO processing, update, extraction, and

selection phases are performed in an interleaved manner. The implementations

differ in their choice for the number of accumulators allocated, the data structures

employed to store the accumulators, and the processing order of the list heads.
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4.3.2.1 Implementations with Multiple Accumulator Allocation (DO-

m)

Implementations in the DO-m category use a structure M, which contains at most

Q accumulators at any time. Also, an array h of Q elements is used to locate

the first unprocessed posting in each inverted list, i.e., each element h[i] points

at the posting Ih[i]
qi

∈Iqi
that will be processed next in list Iqi

. Each accumulator

a ∈M is associated with a single inverted list. Accumulators contain a list id

field, which is initialized as a.� = i if accumulator a is associated with inverted

list Iqi
. Although any posting with a document id of a.d from any inverted list

may update the score field a.s, only the postings from list Iqa.�
may initialize a.d.

The document id a.d of each accumulator a is equal to a document id in one of

the postings in Iqa.�
. No two accumulators in M can have the same document id

and list id. The structure M can be implemented by a sorted array or a dynamic

data structure. These alternatives are described below. The algorithm for DO-m

implementations is given in Figure 4.4.

DO-m1: sorted array of accumulators, array of posting pointers, min-

priority queue for top s accumulators

In this approach, Q accumulators are kept in an array sorted in decreasing order

of document ids.

• Creation: An accumulator array A and an array h for marking current list

heads, each of size Q, are allocated. The cost of allocating both arrays is

O(Q). After the allocation, each h[i] is initialized to point at the first post-

ing I1
qi
∈Iqi

, i.e., h[i] = 1. In processing a query, there are e initializations

over the accumulators in A. Hence, TimeC =O(e + Q).

• Update, Extraction: The following procedure is repeated until all postings

are processed. If there are less than Q occupied accumulators in A, updates

are performed over the accumulators using the postings at the current list

heads (pointed by h) which are not currently associated with an accumu-

lator in A. In processing of a posting p = Ih[i]
qi

, array A is searched for an
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DO-m(Q, M)
�1 =0, �2 =1, M=∅, and Stop =∅
for each query term tqi

∈Q do
h[i]=1, i.e., the current head of Iqi

is its first posting I1
qi

while |LQ|>0 do
while |LQ|>0 and |M|< |LQ| do

if �1 =0 then
�=�2

else
�=�1

p=Ih[�]
q�

if ∃ an accumulator a∈M with a.d=p.d then
UPDATE a.s as a.s+p.w
h[�]=h[�]+1
if h[�]> |Iq�

| then
LQ=LQ−{Iq�

}
if �1 =0 then

�2 =�2+1
else

ALLOCATE an accumulator a
INITIALIZE a as a.d=p.d, a.s=p.w, and a.�=�
M=M∪ {a}
h[�]=h[�]+1
if �1 =0 then

�2 =�2+1
while |LQ|>0 and |M|= |LQ| do

LOCATE admin, the accumulator with the min. document id in M
M=M−{admin}
�1 =admin.�
SELECT(Stop, admin)
if h[�]> |Iq�

| then
LQ=LQ−{Iq�

}
SORT the accumulators in Stop in decreasing order of their scores
RETURN Stop

Figure 4.4: The algorithm for DO-m implementations.
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accumulator with a.d=p.d. If it is found, a is updated using p. Otherwise, a

new accumulator is created in A and is initialized as a.d=p.d, a.s=p.w, and

a.�= i. If all Q accumulators in A are occupied, i.e., associated with a list,

the accumulator admin with the minimum document id is located, extracted,

and passed to the selection phase. Then, h[admin.�] is incremented by 1, and

hence it points to the posting p=Ih[admin.�]
qadmin.�

to be processed next. Since the

A array is maintained in decreasing order of document ids, an accumulator

can be located in O(lg Q) time using binary search. Although update of

an accumulator is an O(1)-time operation once it is located, insertion of a

new accumulator after a failed search requires shifting O(Q) accumulators

in the array. Considering the fact that there are u−e accumulator updates

and e insertions, TimeU = O(u lgQ + eQ). Extraction is simple since the

accumulator with the smallest document id is always the last element of

the array. TimeE =O(e).

• Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e−s) lg s), TimeR =

O(s lg s).

TimeT =O((e + Q) + (u lg Q + eQ) + e + (s + (e−s) lg s) + s lg s)=O(u lgQ +

eQ + e lg s). The storage overheads are O(Q) for the sorted array, O(Q) for the

array of posting pointers, and O(s) for the min-priority queue. S =O(Q + s).

DO-m2: AVL tree of accumulators, array of posting pointers, min-

priority queue for top s accumulators

Instead of a sorted array, an AVL tree T can be used as a dynamic structure to

store the accumulators.

• Creation: Array h is allocated and initialized similar to DO-m1. Nodes

of AVL tree T are dynamically allocated. For each accumulator with a

distinct document id, a tree node must be allocated although T contains

no more than Q nodes at any time. Hence, TimeC =O(e + Q).

• Update, Extraction: Update and extraction phases are similar to DO-m1.

However, in processing a posting, both update of an existing accumulator
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and insertion of a new one require O(lg Q) operations in the worst case.

Hence, TimeU = O(u lgQ). The accumulator with the smallest document

id is contained within the left-most leaf node in T . This leaf node can be

reached by following the left links iteratively starting from the root of T
until a node with no children is reached. With this approach, extraction is

an O(lg Q)-time operation. However, it is possible to improve this by an

implementation trick. If each node keeps a link to its parent node, and the

node with the smallest document id in T is remembered by a pointer, it

turns out that extraction is an O(1)-time operation. Hence, TimeE =O(e).

• Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e−s) lg s), TimeR =

O(s lg s).

TimeT =O((e + Q) + u lg Q + e + (s + (e−s) lg s) + s lg s)=O(u lgQ + e lg s).

The storage overheads are O(Q) for the AVL tree, O(Q) for the array of posting

pointers, and O(s) for the min-priority queue. S =O(Q + s).

4.3.2.2 Implementations with Single Accumulator Allocation (DO-s)

Implementations in the DO-s category require the use of only a single accumulator

admin at any time. All updates are performed on this single accumulator. Here,

we describe two different implementations that belong to this category. The

algorithm for DO-s implementations is given in Figure 4.5.

DO-s1: single accumulator, array of posting pointers, min-priority

queue for top s accumulators

In this very simple approach, two passes are made over the list heads. In the

first pass, the smallest document id among the currently unprocessed postings is

determined. In the second pass, the postings with this smallest document id are

picked and used to update admin.

• Creation: The single accumulator admin, which stores the information about

the currently minimum document id, is allocated. The h array is allocated
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DO-s(Q, admin)
Stop =∅
for each query term tqi

∈Q do
h[i]=1, i.e., the current head of Iqi

is its first posting I1
qi

while |LQ|>0 do
LOCATE pdmin, the posting with the minimum document id

among all Ih[i]
qi

∈Iqi
, where Iqi

∈LQ
INITIALIZE admin as admin.d=pdmin.d and admin.s=0
for each posting p=Ih[i]

qi
where Iqi

∈LQ do
if p.d=pdmin.d then

UPDATE admin.s as admin.s+p.w
h[i]=h[i]+1
if h[i]> |Iqi

| then
LQ=LQ−{Iqi

}
SELECT(Stop, admin)

SORT the accumulators in Stop in decreasing order of their scores
RETURN Stop

Figure 4.5: The algorithm for DO-s implementations.

and initialized as in DO-m1. The cost of reinitializing admin is O(e). Hence,

TimeC =O(e + Q).

• Update, Extraction: A pass is made over the postings pointed by the h

array. Within these postings, a posting pdmin with the minimum document

id pdmin.d is found. Accumulator admin is initialized as admin.d = pdmin.d

and admin.s = 0. With a second pass over these postings, the postings

that have this minimum document id are found. The score field admin.s of

accumulator admin is updated using the weights in each such posting. h[i]

for each inverted list Iqi
that contains such a posting is incremented to point

at the next posting in the list. Once all updates over admin is completed,

admin is passed to the selection phase. This procedure is repeated until all

postings are consumed. Since two passes are made over h for each distinct

document id, TimeU =O(eQ). Extracting admin is an O(1)-time operation.

Hence, TimeE =O(e).

• Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e−s) lg s), TimeR =

O(s lg s).



CHAPTER 4. QUERY PROCESSING ALGORITHMS 62

TimeT = O((e + Q) + eQ + e + (s + (e−s) lg s) + s lg s) = O(eQ + e lg s).

The storage costs are O(1) for the accumulator, O(Q) for the array of posting

pointers, and O(s) for the min-priority queue. S =O(Q + s).

DO-s2: single accumulator, min-priority queue for posting pointers,

min-priority queue for top s accumulators

In this implementation, instead of the h array in the DO-s1 implementation,

a min-priority queue is used so that there is no need for the first pass, which

searches for the minimum document id. Here, we describe an improved version

of the implementation described by Kaszkiel et al. [78].

• Creation: Similar to DO-s1. However, h is a min-priority queue imple-

mented as a min-heap of postings pointers, keyed by the document ids in

the postings they point at. TimeC =O(e + Q).

• Update, Extraction: The min-priority queue h is built using the postings at

the list heads. The following procedure is repeated until all postings are

processed. The root of h stores posting pdmin, i.e., the posting with the

minimum document id among the current list heads. admin is initialized as

admin.d = pdmin.d and admin.s = 0. h is traversed in reverse order (starting

from the Q-th element down to the first element), and the postings with

p.d = pdmin.d are located. Each such posting p is used to update admin as

admin.d = p.d and admin.s = admin.s + p.s. Then, posting p is replaced by

the next posting in the inverted list that p belongs to, and h is heapified

at the node containing p. This approach avoids building the heap [78] at

each pass. After the posting pdmin at the root performs its update, admin

is extracted and passed to the selection phase. In this approach, the heap

is heapified exactly once for each posting, and hence TimeU = O(u lgQ).

Extraction has a cost of TimeE =O(e).

• Selection, Sorting: Similar to TO-s3. TimeS = O(s + (e−s) lg s), TimeR =

O(s lg s).

TimeT =O((e+Q)+u lgQ+e+(s+(e−s) lg s)+s lg s)=O(u lgQ+e lg s). The
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storage overheads are O(1) for the accumulator, O(Q) for the min-priority queue

of posting pointers, and O(s) for the min-priority queue of top s accumulators.

S =O(Q + s).

4.4 Experimental Results

4.4.1 Experimental Platform

In the experiments, a Pentium IV 2.54 GHz PC, which has 2 GB of main memory,

512 KB of L2 cache, and 8 KB of L1 cache, is used. As the operating system,

Mandrake Linux, version 13 is installed. All algorithms are implemented in C

and are compiled in gcc with -O2 optimization option. Due to the randomized

nature of some of the implementations, experiments are repeated 10 times, and

the average values are reported. All experiments are conducted after booting the

system into the single user mode.

As the document collection, results of a large crawl performed over the ‘.edu’

domain, i.e., the educational US Web sites, is used. The entire collection is around

30 GB and contains 1,883,037 Web pages (documents). After cleansing and stop-

word elimination, there remains 3,325,075 distinct index terms. The size of the

inverted index constructed using this collection is around 2.7 GB.

In query processing, four different query sets (Qshort, Qmedium, Qlong, and

Qhuge) are tried. Each query set contains 100 queries, expect for Qhuge, which

contains a single query. The query terms are selected from the sentences within

the documents of the collection. Queries in Qshort, which simulate Web queries,

are made up of between 1 and 5 query terms. Queries in Qmedium contain between

6 and 25 query terms. This type of queries is observed in relevance feedback.

Queries in Qlarge contain between 26 and 250 query terms and simulate queries

observed in text classification. Qhuge is included for experimental purposes and

the results, although mentioned in the text, are partially reported. Properties

of the query sets are given in Table 4.2. This table also presents the minimum,
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Table 4.2: The minimum, maximum, and average values of the number of query
terms (Q), number of extracted accumulators (e), and number of updated accu-
mulators (u) for different query sets

Qshort Qmedium Qlong Qhuge

|Q| 100 100 100 1
Qmin 1 6 26 2,500
Qmax 5 25 250 2,500
Qavr 3.0 14.6 142.1 2,500
emin 4 331,524 1,218,640 1,866,703
emax 1,363,584 1,637,894 1,839,661 1,866,703
eavr 375,166 1,109,691 1,723,229 1,866,703
umin 4 367,068 2,625,452 111,028,126
umax 1,964,216 6,861,180 38,760,201 111,028,126
uavr 451,931 2,310,010 16,468,300 111,028,126

Table 4.3: The minimum, maximum, and average values of the number of top
documents (s) for answer sets produced after processing query set Qshort

Ssmall Slarge Sfull

|S| 10 1000 e

smin 4 4 4
smax 10 1000 1,363,584
savr 9.94 994 375,166

maximum, and average e and u values observed during the experiments.

For each query set, three answer sets (Ssmall, Slarge, and Sfull), each with a

different top document count s, are tried. Ssmall and Slarge expect the query

processing system to return the first 10 and 1000 best-matching documents, re-

spectively. Sfull expects all documents with a nonzero score to be returned to the

user. Properties of these answer sets, and the minimum, maximum, and average

number of top documents actually returned as answer to queries in Qshort are

displayed in Table 4.3.
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4.4.2 Experiments on Execution Time

Figure 4.6 presents the running times of implementations for different types of

query and answer sets. Among the static-accumulator implementations in the

TO-s category, for Ssmall and Slarge, the min-priority queue implementation TO-

s3 performs the best if queries contain a few terms, i.e., when Qshort is used. For

the same answer sets, the linear-time selection scheme TO-s4 performs slightly

better than TO-s3 if Qmedium or Qlong is used. For the answer set Sfull, the

best results are achieved by the max-priority queue implementation TO-s2. The

TO-s1 implementation, which requires sorting the nonzero accumulators, is out-

performed in all experiments, but the gap between TO-s1 and the others closes

as the queries get longer. For Qhuge and Sfull combination, TO-s1 is almost as

good as TO-s2 and TO-s3.

Among the dynamic-accumulator implementations in the TO-d category, for

Qshort and Qmedium, the hashing implementation TO-d2 performs the best. For

this implementation, we used an adaptive bucket size B =u/Q due to the time-

space trade-off mentioned in Section 4.3. For query sets Qlong, the best results

are achieved by TO-d2 and the AVL tree implementation TO-d1, which perform

almost equally well. Increasing the number of terms in queries seems to favor

TO-d1, which is the fastest implementation for Qhuge.

In the DO-m category, although the run-time complexity for the AVL tree

implementation DO-m2 is better than that of the sorted array implementation

DO-m1, in practice, DO-m1 is faster than DO-m2 for Qshort and Qmedium. This

shows that the cost of rotations in the AVL tree implementation is higher than

the cost of accumulator shifts in the sorted array implementation. However, if

queries get longer, DO-m2 starts to perform better than DO-m1. Interestingly,

for Qhuge, DO-m2 runs 11 times faster than DO-m1 on the average.

In the DO-s category, for short queries, the two-pass DO-s1 implementation

is faster than the one-pass DO-s2 implementation. As the number of query terms

increase, DO-s2 starts to perform better. This can be explained by the fact that

visiting the list heads in the first pass of DO-s1 brings an additional overhead,
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Figure 4.6: Query processing times of the implementations for different query
and answer set sizes.
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which dominates when queries are long. It is observed that, for Qhuge, DO-s2

runs 35 times faster than DO-s1.

Among all implementations, if all documents with a nonzero score are re-

turned, TO-s2 performs the best with TO-s3 displaying close performance. Oth-

erwise, if answers are partially returned, performance depends on the number of

query terms. For example, if queries are short DO-s1 is the best choice, whereas

TO-s4 is the fastest implementation for medium and long query sizes.

It should also be noted that, for aggregate querying scenarios, the winners may

change. For example, in the case the user is interested in the top 10 documents

and 40% or more of the queries come from Qshort while the remaining 60% or

less are of type Qmedium requiring all top documents, then TO-s3 is preferable

to both DO-s1 and TO-s2 in that it provides the best average query processing

time. Taking this fact into consideration, we also present normalized running

times in Figure 4.7. In order to generate this figure, the execution times are first

normalized with the smallest execution time. Then, the normalized time values

are averaged and displayed across each query and answer set category.

According to Figure 4.7, DO-s1 and DO-m1 perform better than the rest for

query set Qshort. For Qmedium and Qlong, TO-s3 is better than the others. For Ssmall

and Slarge, TO-s3 is again the best. For Sfull, TO-s2 very slightly outperforms TO-

s3. On the overall, the local winners of the four categories are TO-s3, TO-d2,

DO-m1, and DO-s2, where TO-s3 is also the global winner.

Figure 4.8 displays the percent dissection of execution times for different query

processing phases, i.e., creation, update, extraction, selection, and sorting. Ac-

cording to this figure, for TO-s1, the bottleneck is at the sorting phase. However,

for most implementations, the sorting overhead is relatively less important, except

for the case of short queries with all results retrieved. Overhead of the selection

phase is more apparent for short queries. Especially, in the small answer set

case, a considerable percentage of execution times for TO-s2, TO-s3, TO-s4, DO-

s1, and DO-s2 implementations is occupied by the overhead of this phase. The

extraction phase seems to be relatively important for DO-m1 and DO-s1 imple-

mentations. The respective reasons of this high overhead for DO-m1 and DO-s1
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Figure 4.7: Normalized query processing times of the implementations for differ-
ent query and answer set sizes.

are the high amount of accumulator shift operations and inverted list head traver-

sals. In general, except for the case of short queries with all answers returned,

the update phase incurs the highest overhead. This overhead is especially high

for TO-d implementations. The creation overhead is usually negligible.
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Figure 4.8: Percent dissection of execution times of query processing implemen-
tations according to the five different phases.

4.4.3 Experiments on Scalability

In this section, we provide some experimental results that evaluate scalability of

the implementations with increasing number of query terms, increasing number

of extracted postings, increasing answer set sizes, and increasing number of doc-

uments. In the plots, instead of displaying the actual data curves which contain

many data points, we give curves fitted by regression and limit the number of

data points to 11 in order to simplify drawings and ease understanding. For the

same purpose, we provide a single representative curve in cases where more than

one curves have a very similar behavior and hence overlap.

4.4.3.1 Effect of Number of Query Terms (Q)

Figure 4.9 shows the query processing performance for varying number of query

terms. This plot is obtained by submitting 100 queries, where ith query contains

i query terms, and retrieving highly ranked 10 documents at each query. As

expected, DO-s1 is the implementation most affected from increasing query sizes.

Other DO implementations as well as TO-d implementations are also affected

since increasing number of query terms results in more posting updates, i.e.,
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Figure 4.9: Query processing times for varying number of query terms (Q).

increases the overhead of update phase. The impact on TO-s implementations

is relatively limited since update operations are not costly and extraction and

selection overheads have a considerable overhead for this type of implementations.

4.4.3.2 Effect of Number of Extracted Accumulators (e)

In order to investigate the effect of the number of extracted postings on the query

processing performance, we used a query set consisting of 100 queries, where

each query has a single term. The queries are such that the ith query incurs

1000×i extraction operations. As a result, the top 10 documents are retrieved.

Figure 4.10 shows the performance variation for increasing number of extracted

accumulators. Except for TO-s1, the TO-s implementations are not affected much

by the increasing number of extractions since they anyway traverse the whole

accumulator array and check every score field. The different behavior of TO-s1

is basically due to the overhead of sorting. Among the TO-d implementations,

TO-d2 seems to scale best with increasing e. DO implementations perform quite

well since there is only a single term in the queries.
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Figure 4.10: Query processing times for varying number of extracted accumula-
tors (e).

4.4.3.3 Effect of Number of Retrieved Documents (s)

Figure 4.11 shows how the performance is affected by increasing size of answer

sets. To obtain this plot, we used a single query containing a very frequent

term (‘university’) so that the number of documents returned is high in case all

documents with a nonzero score are requested. We had 100 experiments, where,

for the ith experiment, the size of the answer set equals i% of the documents with

a nonzero score, i.e., si = i×e/100. According to Figure 4.11, as expected, the

number of returned documents has no effect on TO-s1 since all nonzero documents

are anyway sorted. For TO-s2, the curve is almost linear since the complexity of

the selection phase is s lg e and e is fixed. The linear behavior of TO-s4 is also

due to the linear-time selection heuristic employed. All other implementations

have a similar behavior which complies with their O(e lg s) complexity. The

performance gap between the curves is due to the overheads of other phases. An

interesting observation obtained from Figure 4.11 is that a trade-off can be made

between TO-s2, TO-s3, and TO-s4 implementations depending on the percentage

of retrieved documents.
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Figure 4.11: Query processing times for varying number of retrieved documents
(s).

Table 4.4: The number of documents (D) and distinct terms (T ) in collections of
varying size

Dsmall Dmedium Dlarge

D 472,533 943,672 1,883,037
T 1,467,932 2,201,992 3,325,075

4.4.3.4 Effect of Dataset Size (D)

In this section, we investigate the scalability of the implementations with respect

to the document collection size. In the experiments, we use document collections

of three different sizes (Dsmall, Dmedium, and Dlarge). Dsmall and Dmedium are subsets

of the original collection Dlarge, which was used in the rest of the experiments.

Table 4.4 gives the number of documents and number of distinct terms in these

collections. In all experiments, we use the medium-length query set Qmedium with

Ssmall and Sfull as the answer sets.

Figure 4.12 shows the average query processing times for collections of different

sizes. To better illustrate the scalability of the implementations with increasing

dataset size, we also provide Table 4.5. This table provides the speedups, which

is calculated as QPT(D)/QPT(D′), where QPT is the average query processing
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Table 4.5: Scalability of implementations with different collection sizes

Qmedium and Ssmall Qmedium and Sfull

Imp. QPT(Dmedium)
QPT(Dsmall)

QPT(Dlarge)
QPT(Dmedium)

QPT(Dmedium)
QPT(Dsmall)

QPT(Dlarge)
QPT(Dmedium)

TO-s1 2.2 2.2 2.2 2.2
TO-s2 2.0 2.1 2.5 2.4
TO-s3 2.0 2.1 2.5 2.4
TO-s4 2.0 2.1 2.2 2.2
TO-d1 2.2 2.2 2.3 2.3
TO-d2 2.0 2.1 2.2 2.3
TO-d3 2.2 2.6 2.3 2.6
DO-m1 2.0 2.1 2.4 2.4
DO-m2 2.0 2.2 2.3 2.4
DO-s1 2.0 2.0 2.3 2.4
DO-s2 2.0 2.1 2.4 2.4

time, for two document collections D and D′ such that |D| > |D′|. According

to Table 4.5, for Qmedium and Ssmall combination, there is almost no scalability

problem for most of the implementations as we increase the size of the document

collection from small to medium, i.e., the query processing times double as the

collection size doubles. However, scalability begins to become an issue when

we further increase the size of the document collection. The best scalability is

observed for DO-s1, whereas the least scalable implementation is TO-d3. In

general, the implementations are less scalable in case all answers are returned.

This is basically due to the increasing overhead of the sorting phase, which does

not scale well.

4.4.4 Experiments on Space Consumption

Figure 4.13 displays the peak space consumption of each implementation. This

value is equal to the maximum amount of space allocation for inverted lists,

accumulators, and some auxiliary data structures, observed at any time while

running the query processor for a query and answer set pair. It excludes the

space for the general data structures which are utilized for each query. In all

implementations, a data structure is immediately deallocated at the moment it
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Figure 4.12: Average query processing times for collections with varying number
of documents (D).

is no longer needed.

In TO implementations, the peak space consumption is reached when space

for accumulators plus an inverted list is allocated. In TO-s implementations, the

peak consumption is reached when the space for the inverted list with the highest

number of postings is allocated. In DO implementations, it is reached when the

space for all inverted lists is allocated and the number of accumulators is at the

maximum.

According to Figure 4.13, for short queries, DO implementations are the most
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Figure 4.13: Peak space consumption (in MB) observed for different implemen-
tations.

space-efficient. However, there is a rapid increase in the space needs of this type

of implementations as the queries get longer. This is basically because the storage

amount of postings dominates that of accumulators since more inverted lists must

be in the memory at the same time. For Qmedium, Qlong, and Qhuge, TO-s im-

plementations require the least amount of space. Among TO-d implementations,

TO-d2 is the most space-efficient implementation.
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Table 4.6: The run-time analyses of different phases in each implementation
technique

Impl. TimeC TimeU TimeE TimeS TimeR

TO-s1 O(e) O(u) O(D) O(1) O(e lg e)
TO-s2 O(e) O(u) O(D) O(e+s lg e) O(1)
TO-s3 O(e) O(u) O(D) O(s+(e−s) lg s) O(s lg s)
TO-s4 O(e) O(u) O(1) O(D) O(s lg s)
TO-d1 O(e) O(u lg e) O(e) O(s+(e−s) lg s) O(s lg s)
TO-d2 O(B+e) O(ue/B)∗ O(e) O(s+(e−s) lg s) O(s lg s)
TO-d3 O(e) O(u lg e)∗ O(e) O(s+(e−s) lg s) O(s lg s)
DO-m1 O(e + Q) O(u lg Q+eQ) O(e) O(s+(e−s) lg s) O(s lg s)
DO-m2 O(e + Q) O(u lg Q) O(e) O(s+(e−s) lg s) O(s lg s)
DO-s1 O(e + Q) O(eQ) O(e) O(s+(e−s) lg s) O(s lg s)
DO-s2 O(e + Q) O(u lg Q) O(e) O(s+(e−s) lg s) O(s lg s)

∗ Expected time complexities are given.

4.5 Concluding Discussion

Time complexities for different phases of the algorithms are summarized in Ta-

ble 4.6. According to this table, in general, TO-s implementations differ in their

selection phase whereas the update phase is discriminating for TO-d and DO

implementations. Table 4.7 gives the total time and space complexities. The

provided space complexities in Table 4.6 do not encapsulate the space cost of

inverted lists, which is O(e) for the TO implementations and O(u) for the DO

implementations.

It should be noted that different variants, which perform well under certain

circumstances, can be created by slight modifications over the algorithms pre-

sented in this work. For example, TO-s4 can be modified so that in the extraction

phase nonzero accumulators are placed in the first e elements, and the median-

of-medians selection algorithm can be run only on these accumulators. In our

experiments on this variant (although not reported here), we observed that this

implementation is the fastest in processing short queries.

Similarly, DO-s2 can be modified using a pruning strategy such that only the

postings having the minimum document id and their left and right children in
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Table 4.7: The total time and space complexities for different implementations

Impl. Time Space
TO-s1 O(D+e lg e) O(D)
TO-s2 O(D+s lg e) O(D)
TO-s3 O(D+e lg s) O(D)
TO-s4 O(D+s lg s) O(D)
TO-d1 O(u lg e) O(e)
TO-d2 O(ue/B+e lg s)∗ O(B+e)
TO-d3 O(u lg e)∗ O(e)
DO-m1 O(u lg Q+eQ+e lg s) O(Q+s)
DO-m2 O(u lg Q+e lg s) O(Q+s)
DO-s1 O(eQ+e lg s) O(Q+s)
DO-s2 O(u lg Q+e lg s) O(Q+s)

∗ Expected time complexities are given.

the heap are checked. This approach performs well on long queries but the book-

keeping overhead dominates at short queries. Similar optimizations are possible

for space consumption. For example, TO-s2 and TO-s3 can be modified such

that the accumulator array keeps only the scores. This decreases the space con-

sumption to half of its original as long as s≤D/2. Although our results indicate

that TO-d implementations perform poorly, for querying scenarios where D and

Q are high but e is low, implementations in TO-d category can be both time-

and space-efficient.

To summarize, the results show that there is no single, superior implementa-

tion. Depending on the properties of the computing system, document collection,

user queries, and answer sets, each implementation has its own advantages. Cur-

rently, we are working on a hybrid system which will, depending on the parame-

ters, intelligently select and execute the most appropriate implementation taking

both time and space efficiency into consideration. Clearly, for a better analysis,

the experiments need to be repeated on a larger document collection where D

and T are much higher. For this purpose, we have started a large crawl of the

Web and plan to repeat the experiments on this larger collection.



Chapter 5

Skynet Parallel Text Retrieval

System

As a test-bed infrastructure for evaluating the models and algorithms developed

throughout the study, we have built a parallel text retrieval system, named

Skynet. This system is currently running on a 48-node PC cluster located at

the Computer Engineering Department of Bilkent University. Moreover, as a

part of Skynet, we developed a sequential simulation software [27], which allows

the performance of theoretical models in parallel text retrieval to be evaluated

with different parameters and conditions. In this chapter, we present the details

of these systems.

In Section 5.1, we describe the architecture of the Skynet parallel text re-

trieval system. In Section 5.2, we present the parallel text retrieval simulator.

Section 5.3 provides the performance results of Skynet in parallel query process-

ing with different inverted index organizations as well as some simulation results

obtained with our simulator. Finally, in Section 5.4, we stress the limitations of

Skynet and point at some further work.

78
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Figure 5.1: The sequential text retrieval system.

5.1 Architecture of Skynet

5.1.1 Sequential Text Retrieval System

Before the parallel text retrieval system is implemented, a sequential text re-

trieval system is developed as a basis for the parallel system. The architecture

of this sequential system is shown in Figure 5.1. Although not mentioned here,

the system contains several modules for automated query generation and collect-

ing statistical information in a given document collection. The functions of the

modules in this software system are described below.

Corpus creator: The aim of the corpus creator is to transform a given docu-

ment collection into a common and standard format. This module performs all

text filtering tasks on the given collection, i.e., it eliminates white spaces and re-

moves punctuation from the text. The extracted alphanumeric character groups

are converted into upper case and written into a single, formatted corpus file.

Since the collection of input documents can be unformatted and vary in size and

structure, it may be necessary to modify the I/O routines of this module depend-

ing on the input’s properties. Hence, a separate corpus creator module must be

used for each document collection at hand.
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Corpus parser: Once the collection is converted into a standard corpus format,

the corpus parser module is used to generate the files that keep detailed informa-

tion about the corpus. The corpus parser module reads a single corpus file and

produces four output files. These newly generated files are all in ASCII format

and keep information about the document collection. The .terms file keeps the

names of the terms their ids and document frequencies; the .docs file stores the

names of the documents and their term count; the .DV file keeps the document

vectors, each vector containing the term ids of the terms appearing in the doc-

ument with their frequencies; and .info file stores general information about the

collection such as the total number of terms and documents. The corpus parser

module is able to apply some cleansing procedures on the input document cor-

pus. The stop-words are eliminated from the corpus by supplying a stop-word

file, which contains the list of words to be removed. In this module, it is also

possible to remove very short or long terms, discard completely numeric terms,

and apply stemming on the terms.

In addition to the preprocessing modules above, two modules exist for syn-

thetic document and query generation. These modules, described below, are

developed for experimental purposes.

Synthetic dataset generator: This module randomly generates document col-

lections. The skewness of term distribution (S), average document size (W ), and

other parameters such as the total number of documents (D) to be generated and

the total distinct term count in the collection (T ) can be passed as user argu-

ments. The probability distribution followed is similar to Zipf’s distribution and

is adapted from [73].

Synthetic query generator: This module functions similar to the synthetic

dataset generator. It generates random user queries. Number of queries to be

generated (N), term skewness of the queries (Q), and a cutoff value for the term

frequencies (u) can be passed as argument to the module.

Inverted index creator: For efficient query processing, the document vectors in

the .DV file are converted into inverted lists. The inverted index creator module

performs this task. The outputs of the inverted index creator are two binary files.
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Figure 5.2: The inverted index partitioning system in Skynet.

The first file, .IDVi, is the index file, which keeps pointers to the start addresses

of inverted lists. The second file, .IDV, keeps the inverted lists as a contiguous

array. In determining the weights in the postings, several schemes, including the

tf-idf weighting, can be used.

Inverted index compressor: This recently added module supports several

implementations for data compression. As the name suggests, the module is used

to compress the inverted index. The compressed inverted index is stored with

the extensions .c.IDVi and .c.IDV.

Query processor: The final and the most important module of the developed

sequential query processing system is the query processor. This module reads the

user queries from a file and returns the set of most similar documents as answer.

Our query processing module employs the ranking-based retrieval strategy and

supports 11 different query processing implementations.

5.1.2 Inverted Index Partitioning System

Inverted index partitioning system includes the modules for partitioning the in-

verted index among a number of index servers. Figure 5.2 displays this system.

The details of the modules are presented below.

HP-based mapper: By this module, a inverted index is transformed into a
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hypergraph (see Chapter 3 for details). The constructed hypergraph is then K-

way partitioned by the K-PaToH hypergraph partitioning toolkit (see Chapter 8

for the details of this toolkit) according to the partitioning type, which may be

term- or document-based and the number K of index servers. The resulting

partition induces a mapping from the term ids (the .cmap file in case of term-

based partitioning) or documents ids (the .rmap file in case of document-based

partitioning) to the set of index servers.

Round-robin mapper: In this module, the mapping between the terms (or

document) and the index servers is created via round-robin assignment. This

module also supports load-balanced and bin-packing-based assignment.

Term-based index creator: This module reads the term-based mapping gen-

erated by one of the mappers, described above, and distributes the inverted index

among a number of index servers according to the mapping between the terms

and index servers.

Document-based index creator: This module basically performs the same

task for document-based inverted index partitioning.

5.1.3 Parallel Text Retrieval System

The Skynet parallel text retrieval system is implemented in C using the

LAM/MPI [17] library. It currently runs on a 48-node PC cluster, located in

the Computer Engineering Department of Bilkent University. The Skynet has a

master-client type of architecture. In this architecture, there is a single central

broker, which collects the incoming user queries and redirects them to the index

servers in the nodes of the PC cluster. The index servers are responsible from

generating partial answer sets (PASs) to the received queries, using the local in-

verted indices stored in their disk. The generated PASs are later merged into

a global answer set at the central broker, forming an answer to the query. Fig-

ure 5.3 displays the Skynet architecture. The functions of the central broker and

the index servers are described below:
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Figure 5.3: The architecture of the Skynet parallel text retrieval system.

Central broker: The central broker is responsible from a number of tasks. First,

the submitted queries are converted into subqueries, one per index server, taking

the partitioning of the inverted index into consideration. These subqueries are

transmitted to the index servers through the local area network. Second, the

central broker listens to the network for packets sent by the index servers. The

incoming packets, which contain PASs, are merged into a final answer set at the

central broker. Finally, the central broker is responsible from returning the final

answer set to the user. For this purpose, a search interface, implemented as a CGI

script, is provided. The interface to the central broker of Skynet is available via

http://skynet.cs.bilkent.edu.tr. Appendix A contains some screenshots of

this interface.

Index servers: Index servers are responsible from evaluating the incoming sub-

queries over their local inverted indices. Each inverted index independently runs

a sequential query processor, and the PASs for a query are concurrently con-

structed. PASs are transmitted to the central broker over the local area network,

where they will be merged.
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Table 5.1: Values used for the cost components in the simulator

Cost type Hardware Symbol Cost
Packing a byte of a packet CPU tpa 5 ns
Unpacking a byte of a packet CPU tun 5 ns
Mapping a query term to a server CPU tma 25 ns
Updating an accumulator CPU tup 5 ns
Propagation delay Network tpd 40 ns
Transmitting a byte Network ttb 76 ns
Seek time Disk tds 8.5 ms
Rotational latency Disk trl 4.2 ms
Reading a 512-byte disk block Disk tio 13 µs

5.2 Parallel Text Retrieval System Simulator

Response time to a query is affected by many factors, including query-dependent

factors (e.g., query size and frequencies of query terms), collection-dependent

factors (e.g., the number of documents in the collection and the vocabulary size),

and several system-dependent factors (e.g., disk, memory, and CPU performance).

Additional factors are involved in parallel query processing. These include the

number of processors, network parameters, and the inverted index organization

employed.

To encapsulate and observe the effect of all these factors, we simulated the

working of a parallel text retrieval system by a discrete, event-based simulator

implemented in C. The simulator models the three typical hardware components:

disk, network, and CPU. Also, the concurrent execution of a parallel system and

network queues are simulated. The abbreviations used in the equations and the

cost parameters for a typical PC are provided in Table 5.1. These are the default

values, and unless stated otherwise, they are used in the simulations.

There are four types of objects in the simulator: user, central broker, network

packet, and index server. There are one user, one central broker, and K index

server objects. The number of packet objects varies depending on the current

state of the simulation. Each object has a single, time-stamped event associated
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Table 5.2: Objects and events in the parallel text retrieval system simulator

ID Event Object ID Event Object
0 Idle All 5 Process subquery Index server
1 Insert query User 6 Read inverted list Index server
2 Process query Central broker 7 Update PAS Index server
3 Prepare subquery Central broker 8 Prepare PAS packet Index server

packet
4 Merge PAS Central broker 9 Transmit packet Packet

with it. The simulator always picks the object having the event with the smallest

time-stamp and simulates its event. The simulator clock is incremented by an

amount equal to the estimated duration of the event. After its current event is

simulated, an object is associated with a new event of which time-stamp is set

to the current simulator clock. Events with which objects can be associated are

given in Table 5.2. Figure 5.4 shows the event transition diagram. Arcs represent

the rules for changing events. A rule of the form x :y → {z} means, if the source

object has event x and the destination object has event y, then the new event

of the destination object will be z. For example, the rule 6 : 6 → {7} changes

the event of an index server from reading an inverted list to updating a partial

answer set (PAS).

5.2.1 Disk Simulation

Our main assumption in disk simulation is that each access to an inverted list

requires a disk access. That is, disk and memory caches are not simulated. Each

index server is assumed to have a single disk. We consider three main components

in retrieval of an inverted list from the disk: disk seek, rotational latency, and

block transfer. The formula for computing the time TR to read the inverted list

Ii of a term ti is estimated as

TR = tds + trl +

⌈
|Ii|
B

⌉

× tio, (5.1)
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Figure 5.4: The event transition diagram for the parallel text retrieval simulator.

where B stands for the blocking factor of the disk and |Ii| is the size of the

inverted index in bytes. In our simulations, we assumed 512-byte disk blocks.

5.2.2 Network Simulation

For network simulation, i.e., simulating transfer of subqueries and PASs between

the central broker and index servers, we assumed a Fast Ethernet connection

with the theoretical 100 Mbps transfer rate and negligible propagation delay. We

did not model congestion at any network layer. Each network packet is assumed

to have an 18-byte-long header h. The time TT of transmitting a PAS over the

network is estimated as

TT = tpd + (h + |Pi|) × ttb, (5.2)

where |Pi| is the size (in bytes) of a PAS produced by index server Si.

5.2.3 CPU Simulation

For CPU simulation, typical values in today’s PCs are used. We simulated both

subquery creation and packing/unpacking of network packets as well as updating

and merging PASs. The time TM for merging a PAS is estimated as
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TM = |Pi| × tup. (5.3)

Although, we modeled and simulated, the overheads for subquery creation and

packing/unpacking of network packets may be neglected.

5.2.4 Queue Simulation

It is assumed that the network queues in both the central broker and index

servers have infinite storage capability. Hence, no subquery or PAS is dropped.

The network queues in index servers keep only incoming subqueries. The queue

of the central broker contains both user queries and PASs sent by index servers.

5.3 Performance Results

In this section, we report the performance results obtained at the Skynet parallel

text retrieval system in parallel query processing on term-based and document-

based inverted index organizations. Moreover, we provide simulation results ob-

tained on our parallel text retrieval systems simulator.

5.3.1 Experiments on Skynet

The hardware platform used in the experiments is a 32-node PC cluster inter-

connected by a Gigabit Ethernet switch. Each node contains an Intel Pentium

IV 3.0 GHz processor, 1 GB of RAM, and runs Mandrake Linux, version 10.1.

The sequential query processing algorithm is a term-ordered algorithm with static

accumulator allocation [23].

As the document collection, results of a large crawl performed over the ‘.edu’

domain (i.e., the educational US Web sites) is used. The entire collection is 30 GB

and contains 1,883,037 Web pages. After cleansing and stop-word elimination,
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Figure 5.5: Response times for varying number of query terms.

3,325,075 distinct index terms remain. The size of the inverted index constructed

using this collection is around 2.7 GB. The best-fit-decreasing heuristic used in

solving the K-feasible bin-packing problem [70] is adapted to obtain the inverted

index partitions over the index servers. In term-based (document-based) parti-

tioning, terms (documents) are assigned to K index servers in decreasing number

of postings, where best-fit criterion corresponds to assigning a term (document)

to an index server which currently has the minimum total amount of postings.

Figure 5.5 shows the query processing performance with increasing number of

query terms for different partitioning techniques and number K of index servers.

In this experiment, the central broker submits a single query to the index server

and waits for completion of the answer set before submitting the next query. Ac-

cording to the figure, document-based partitioning leads to better response times

compared to term-ordered partitioning. This is due to the more balanced distri-

bution of the query processing load on index servers in the case of document-based

partitioning. The results show that term-based partitioning is not appropriate for

text retrieval systems, where queries arrive to the system infrequently. The poor

performance of term-based partitioning is due to the imbalance in the number of

disk accesses as well as communication volumes of index servers.

Figure 5.6 presents the performance of the system with batch query processing.
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Figure 5.6: Throughput with varying number of index servers.

In these experiments, a batch of 100 queries, each containing between 1 and

5 query terms, was submitted to the system at the same time. The results

indicate that term-based partitioning results in better throughput, especially as

the number of index servers increases. This is mainly due to the better utilization

of index servers and the capability to concurrently process query terms belonging

to different queries. For document-based partitioning case, the number of disk

accesses becomes a dominating overhead. In our case, after 8 index servers, the

throughput starts to degrade.

These results indicate that, for batch query processing, term-ordered parti-

tioning produces superior throughput. However, for the case where queries are

infrequently submitted, document-based partitioning should be preferred.

5.3.2 Simulation Results

Simulations are conducted on the Google Web repository (see Section 2.6.1), using

two query sets, one with shorter and one with longer queries. Each query set has

50 queries, whose terms are selected from the documents in the repository.
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Table 5.3: Response times (in seconds) for varying number of index servers

Query size Type K = 4 K = 8 K = 12 K = 16 K = 20 K = 24
1 ≤ |Q| ≤ 10 term-id 5.296 2.933 2.650 2.293 2.255 2.243

doc-id 4.999 4.288 4.050 3.932 3.860 3.812
11 ≤ |Q| ≤ 50 term-id 15.248 8.964 7.007 6.921 6.552 6.380

doc-id 25.614 22.558 21.491 21.002 20.637 20.435

Table 5.3 shows the response times for the two index organizations with vary-

ing number of index servers. Except for the case with short queries and K = 4,

term-id partitioning always outperforms document-id partitioning. The perfor-

mance begins to saturate in both models as the number of index servers increases.

For term-id partitioning, this is basically due to the imbalance in distribution of

inverted lists and the network overhead due to the duplicate score entries in PASs.

For document-id partitioning, this is because of the number of disk seeks growing

linearly with K.

5.4 Limitations and Future Work

The Skynet parallel text retrieval system is by no means a complete, fully-

functional search engine although it offers most functionality a search engine

could offer. It is rather developed as a prototype test-bed, where the proposed

models and algorithms will be evaluated. Hence, it is developed in an extensible

fashion, in which new modules could be easily integrated into the system.

The limitations of the Skynet system are as follows. The system currently

supports search over static document collections. That is, incremental updates

are not supported on neither the document collection nor the inverted index.

Although the modules are fully pipelined, the process is not automated, i.e., user

intervention is necessary to convert a document collection into a queryable form.

Finally, a B+ tree implementation is required for the inverted index.

Integrating a crawling component into the system is among our future plans.
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We think, when coupled with incremental updates of the inverted index, this could

turn the system into a complete search engine with little effort. We have an on-

going work on document-id reassignment for efficient inverted index compression.

Hence, we recently started to integrate compression/decompression modules into

the system.



Chapter 6

Search Engine for South-East

Europe

Based on our experience in parallel and distributed text retrieval, we developed

the Search Engine for South-East Europe (SE4SEE) [19, 24]. SE4SEE is a socio-

cultural search engine running on the grid infrastructure. It offers a personalized,

on-demand, country-specific, category-based Web search facility. The main goal

of SE4SEE is to attack the page freshness problem by performing the search

on the original pages residing in the Web, rather than on the previously fetched

copies as done in the traditional search engines. SE4SEE also aims to obtain high

crawling rates in Web crawling by making use of the geographically distributed

nature of the grid. In this work, we present the architectural design issues and

implementation details of this search engine. We conduct various experiments to

illustrate performance results obtained on a grid infrastructure and justify the

use of the search strategy specific to SE4SEE.

The organization of this chapter is as follows. In Section 6.1, we make an

introduction to issues in Web search. In Section 6.2, we provide some background

information on Web crawling and text classification, which are the basic building

blocks of SE4SEE, while justifying the use of the grid. In Section 6.3, we give a

brief survey of the previous work on distributed/gridified Web search. Section 6.4

92
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presents the architecture of SE4SEE and its implementation details. We report

the results of the conducted experiments in Section 6.5. Finally, in Section 6.6,

we conclude and discuss some future work.

6.1 Introduction

The effectiveness problem in Web search appears in both Web crawling and query

processing. In Web crawling, effectiveness is related with the freshness of the

indexed pages [40], which is highly correlated with the crawling efficiency, i.e., if

pages are more frequently downloaded, it is more probable that the pages’ cached

copies are fresh. In query processing, effectiveness refers to the classical precision

and recall measures, which respectively evaluate the accuracy and coverage of the

results [30, 42, 123].

In addition to the effectiveness problem, both Web crawling and query pro-

cessing have an efficiency problem. The efficiency problem in Web crawling [21] is

due to the large scale of the Web as well as the Web’s constantly evolving nature,

which require pages to be downloaded and indexed frequently. According to the

results reported by Google, on the average, it takes around a month to recrawl

the same page again. The efficiency problem in query processing is due to the

need to quickly evaluate a query over a rather large index [18, 30, 91], in the

presence of many user queries being submitted concurrently. The state-of-the-art

search engines attack this second problem using some algorithmic optimizations

that may trade effectiveness for improved efficiency [96, 118, 126] (e.g., short-

circuit evaluation) or programming improvements (e.g., trying to keep the whole

Web index in the main memory). But, in general, the primary method to cope

with both problems is to employ parallel/distributed computing systems, which

execute multiple crawler agents to crawl the Web [39] and multiple query engines

to evaluate queries over replicated/partitioned copies of the Web index [9, 103],

thus increasing both page download rates and query processing throughput.
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In this chapter, we present the design and implementation details of a grid-

enabled search engine, Search Engine for South-East Europe1 (SE4SEE), which

somewhat differs from the above-mentioned, traditional search engines in both

its design philosophy and functionality. In short, SE4SEE is a personalized,

on-demand, country-specific, category-based search engine running on the grid

infrastructure. It provides a Web search facility which combines crawling and

classification. SE4SEE primarily addresses the page freshness and efficiency prob-

lems in Web crawling by utilizing the computational power inherently available

in the grid and the grid’s geographically distributed nature. In this work, we also

conduct experiments to illustrate the performance of grid-enabled Web search

and justify the features specific to SE4SEE.

6.2 Preliminaries

6.2.1 Web Crawling

Although it seems to be a simple task, there exist many challenges in Web crawl-

ing. The two important issues are coverage and freshness. The coverage refers to

the size of the set of pages retrieved within a certain period of time. A successful

crawler tries to maximize its coverage in order to provide a larger, searchable

collection to the users. Similarly, the freshness of the collection is important to

minimize the difference between the cached copies of pages and the originals on

the Web, thus keeping the served information up-to-date.

Another important issue in Web crawling is the need for a large amount of

computational resources. First, a high amount of processing power is necessary

to parse the crawled pages, extract the hyperlinks, and index the pages’ content.

Second, large amounts of main memory is required to store and manage the data

structures, which quickly and continuously grow during the crawl. The final and

most important resource requirement is a high network bandwidth. The network

bandwidth determines the page download rate and hence indirectly affects the

1SE4SEE homepage, http://www.grid.org.tr/~SE4SEE
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crawler’s coverage as well as the page freshness.

We believe that all these computational requirements make Web crawling a

suitable target for grid computing [56]. In general terms, the grid can be defined

as “a type of a parallel and distributed system that enables sharing, selection, and

aggregation of geographically distributed autonomous resources dynamically at

runtime depending on their availability, capability, performance, cost, and users’

quality-of-service requirements”2. The grids contain computationally powerful

nodes, which have the resources necessary for running a Web crawling application.

Furthermore, in cases where the spatial locality of the pages is important, the

geographically distributed nature of the grid can be utilized to increase page

download rates, as is the case in the SE4SEE architecture.

6.2.2 Text Classification

Informally, text classification is the problem of assigning a category to a document

from a predefined set of categories. In the literature, various machine learning

techniques are employed to solve this problem. Most of these techniques are

based on the supervised learning approach, where the classifier is trained by a

set of previously labeled set of documents and then is used to predict categories

for unseen test documents. The accuracy of the classification depends on the

choice of the underlying machine learning algorithm as well as the quality of the

documents used for training the classifier.

Most search engines rely on keyword-based search, where a query, consist-

ing of a number of keywords, is evaluated over an inverted index, and the top

k documents are returned to the user in decreasing order of their similarity to

the query [86]. However, there are also approaches employing text classification

in querying of document collections and/or presentation of the results. The use

of text classification in search engines is mainly in the form of pre-classification

(e.g., engines providing topic directories manually created by human experts) or

post-classification (e.g., engines providing automated classification of the query

2Grid Computing Info Centre, http://www.gridcomputing.com/gridfaq.html
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results). While the former of these increases precision, the latter enhances the pre-

sentation of the results. SE4SEE adopts the post-classification approach, where

the crawled pages are classified under several topic categories before being pre-

sented to the user.

6.3 Related Work

Although many different Web search engines exist3, the market is dominated by

three major engines4. These engines have huge multi-processor computing infras-

tructures consisting of thousands of PCs. However, they are mostly centralized

systems, not suitable for crawling geographically distributed Web sites. There

exist quite a few information retrieval works on peer to peer environments [10],

distributed systems [94], and the grid [105].

MINERVA [10] is a peer to peer Web search engine, in which each peer in-

dependently executes a Web crawler. This peer to peer system lacks a central

coordinator, and hence there is no control over the coverage of each peer. Conse-

quently, the same pages may be crawled multiple times by different peers, result-

ing in an overlap of pages. This overlap is a crucial problem in peer to peer Web

search. MINERVA offers techniques that aim to solve this overlap problem and

tries to aggregate the results of independent crawls to generate a global result.

Melnik et al. [94] proposes a distributed architecture for a Web search engine.

The described search engine employs a 3-tier architecture, where each computing

node is either a crawler, an indexer or a query server. Computing nodes do

not use shared repositories and connected by a local area network. The crawler

nodes collect the pages to be indexed from the Web and store them in local

repositories. The accumulated pages are then divided into disjoint subsets and

sent to the indexers. Each indexer node parses the textual information within

the pages and generate local indexes. These local indexes are then merged into

a global index structure and sent to the query servers. Upon receiving a search

3http://www.searchenginewatch.com
4http://www.google.com, http://www.yahoo.com, http://search.msn.com
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query, one or more query servers, depending on the portion of the index residing

in their local storage, answer the query according to the global index. Since

crawlers, indexers and query servers share no information, crawling, indexing,

and querying operations can be done concurrently in this architecture.

The use of the grid for information retrieval is relatively new. To the best

of our knowledge, GRACE5 is the only attempt to develop a grid-enabled search

engine [105]. The aim of GRACE is to build a search and categorization tool over

the grid. As a knowledge repository, GRACE can use both local directories or

rely on the query results of other search engines. The main objective of GRACE

is to analyze the search results and categorize them via linguistic analysis. In

this perspective, GRACE is an unsupervised categorization tool rather than a

search engine. In GRACE, the utilization of the grid resources is achieved via

parallelism based on the distributed nature of the grid. A user can concurrently

run multiple queries over the grid. GRACE, in turn, analyzes the query results,

categorizes them, and aggregates the results of multiple queries.

Although GRACE and SE4SEE architectures both aim to utilize the grid

resources, their motivations are quite different. While GRACE categorizes the

results retrieved using the results obtained from other search engines, SE4SEE

does not depend on the results of other search engines. Instead, the query results

are retrieved directly from the Web utilizing geographical closeness in country-

specific search. Furthermore, GRACE does not provide a facility for category-

specific search, whereas SE4SEE allows users to select and search in a specific

category as well as perform a keyword-based search.

5Grace Project Homepage, http://www.grace-ist.org
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6.4 The SE4SEE Architecture

6.4.1 Features

Search Engine for South-East Europe (SE4SEE) is an attempt towards developing

a grid-enabled search engine that specifically targets the countries in the South-

East Europe. It is one of the two selected regional applications implemented in

the EU-funded SEE-GRID FP6 project6. As stated in Section 6.1, SE4SEE is

a personalized, on-demand, country-specific, category-based, grid-enabled search

engine. Below, we briefly describe these distinguishing features of SE4SEE.

• Personalized crawling: In traditional search engines, the entire Web is

crawled, and the pages are indexed for public search. In SE4SEE, a differ-

ent crawling approach is taken. For each user query, an individual crawl is

started over the Web, and hence the relevant pages are picked from the orig-

inal pages. This way, since up-to-date versions of the pages are evaluated,

accuracy of the resulting answer set of pages is enforced.

• On-demand crawling: Unlike traditional search engines, which crawl the

Web continuously, in SE4SEE, the crawling task is initiated upon arrival

of a user query. The users have the options to determine the stopping

conditions of the crawl. This use is more appropriate for long-term query

evaluation, where the user has relaxed time constraints and the Web is

searched for a period of minutes or hours.

• Category-based search: As well as keyword-based search, SE4SEE has sup-

port for category-based search. In this approach, pages downloaded by

the crawler are categorized using a previously trained text classifier. At

the completion of the crawl, only the set of pages relevant to the category

selected by the user is presented to her.

6SEE-GRID project homepage, http://www.see-grid.org
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• Country-specific search: Since one of the initial motivations behind SE4SEE

is to develop a socio-cultural search engine, SE4SEE provides country-

specific search. In general, country-specific search can be performed based

on the language of the page, the country domain of the page URL, or the

geographical locality of the hosting site. Currently, in SE4SEE, the pages

are resolved according to the URL extensions, e.g., the user may request

only the links in the “.tr” domain to be downloaded during the crawl.

• Gridification: SE4SEE is fully enabled to the grid. The computational bur-

den of Web crawling to an individual user is tried to be alleviated by the

utilization of resources (computational power, storage capacity, and the net-

work bandwidth) available in the grid. In particular, SE4SEE runs on the

grid infrastructure established as a part of the SEE-GRID project. By sub-

mitting country-specific queries to the servers residing in the corresponding

country, SE4SEE aims to exploit the geographical locality of Web pages

and grid sites, thus increasing the page crawling throughput.

6.4.2 Overview of Query Processing

Basically, there are two alternatives for parallelism in grid-enabled Web crawl-

ing: intra-query or inter-query parallelism. In intra-query parallelism, a query

is submitted to multiple grid nodes, and a crawling task is started at the nodes,

each crawling a portion of the Web. The crawled pages are than merged into a

global answer set. Although this approach offers good performance in reducing

the crawling time, issues such as avoiding overlap in local answer sets or commu-

nicating inter-node links between crawlers must be addressed [39]. Inter-query

parallelism, on the other hand, is a coarse-grain parallel approach, targeting high

throughput in query processing. In this approach, each computing node com-

pletes the whole crawling task on its own. Although we have an on-going work

on intra-query parallelism, the inter-query parallelism approach is currently em-

ployed in SE4SEE.

The deployment diagram of the SE4SEE application is given in Figure 6.1. A
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Figure 6.1: Deployment diagram of SE4SEE describing the relationship between
the software and hardware components.

user requires a computer with a browser to connect to the Web portal running on

the SE4SEE server. In order to prevent the overuse of grid resources, the user is

expected to have a valid SE4SEE account, which is verified by the authentication

module in the server. The Web portal acts as a mediator between the user and

the grid. That is, it converts the user query into a grid job and submits it through

the user interface (UI) to a grid node. The crawler and the classification tasks are

executed on the node and the generated crawling/classification output is stored

at the resource broker (RB). After a time period, the user may retrieve the output

from the resource broker to the result repository in the SE4SEE server so that

the results can be visualized.

In Figure 6.2, we exemplify the job execution in SE4SEE. In the figure, di-

rected edges show the data flow over the network between different computing

systems. In our sample scenario (indicated by bold edges), a user living in Ro-

mania performs a search over the Hotels located in Croatia. The user connects to

the SE4SEE portal located in Ankara through her Web browser and submits the

query. The portal transforms the query into an executable grid job and submits

the job to an available computing node located in Zagreb, which is highly likely to

be geographically close to the target Web pages. A number of hotel pages in the

Croatian Web space are located, fetched, and stored in the grid node. When the

crawling and classification jobs terminate, the resulting set of pages are retrieved
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Figure 6.2: A sample search scenario over the SE4SEE architecture.

back to the portal. At any time, the user can connect to the Web portal and

access the results.

6.4.3 Components

SE4SEE is composed of three main components: a crawling component, a text

classification component, and a Web portal. We provide the details of these

components in the following sections.
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6.4.3.1 Web Crawler

Since SE4SEE is a “personal” search engine, which serves to a large number of

users each with specific, personal crawling needs, an easily customizable crawler is

required. Furthermore, in order to be able to adapt to the heterogeneous nature

of the grid infrastructure, a platform independent crawler should be preferred.

Such a crawler is capable of executing on different architectures, thus preventing

the recompilation overhead and compatibility issues.

The Web crawling component of SE4SEE is implemented in Java utilizing the

SPHINX7 [95] interactive development environment for Web crawlers. SPHINX

is designed to enable and ease the development of personally customized, Web-

site-specific, relocatable crawlers and also provides libraries for HTML parsing,

pattern matching, and common Web transformations.

The crawler in SE4SEE retrieves the pages in a breadth-first manner. This

approach is more suitable for processing category-based queries, compared to

depth-first traversal of pages. Unless a seed URL is provided by the user, the

crawls are started from seed pages which contain links to relevant pages for each

topic category. Seed pages are selected by human experts from the sites that

provide up-to-date links to pages specific to each topic category. The stopping

conditions for the crawls are determined by the user, who may specify either the

duration of the download or the maximum number of pages crawled.

6.4.3.2 Text Classifier

The Harbinger machine learning toolkit8 [20] is used as the text classifier in

SE4SEE (see Chapter 7). This toolkit provides implementations for a number of

machine learning algorithms, readily available for use in text classification. There

is also built-in support for instance selection, feature selection and class balancing,

which all help in improving the accuracy of classification. In particular, SE4SEE

7Websphinx homepage, http://www.cs.cmu.edu/~rcm/websphinx
8Harbinger homepage, http://www.cs.bilkent.edu.tr/~berkant/coding/HMLT
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uses the naive Bayesian classifier in this toolkit for Web page classification.

The searchable categories in SE4SEE are mostly socio-cultural in nature.

The currently provided categories are Banks, Dining, Festivals, Hotels, Politics,

Sports, Transportation, and Universities. An important issue in successful clas-

sification is the selection of high quality Web pages. These pages should be good

representatives of their categories for better classification accuracy. In SE4SEE,

the training pages are manually collected from the Web by human experts. Cur-

rently, the training pages are only available for Turkey, but the training sets for

several other countries are expected to be added to the system.

The execution of the classifier is pipelined with the crawler. The crawled

pages are passed to the classifier for classification. The classifier is concurrently

executed as a separate process, which wakes up regularly and checks if there are

pages to be classified. The classifier terminates if there are no new pages for a

period of time. The concurrent execution allows the network-bound operation of

the crawler to be overlapped by the CPU-bound execution of the classifier, thus

reducing the total query execution times.

6.4.3.3 Web Portal

As the only interaction point between the user and the SE4SEE back-end, the

Web portal is a major component of the search engine. It has to be user-friendly,

even though it requires a more complex interface than classic search engines due to

the application’s increased capabilities. There are several, SE4SEE-specific issues

that are addressed in the design of the Web portal. The concept of multiple users

and jobs led to implementation of an authentication system. The inherent batch-

like behavior of the crawling task resulted in addition of a result maintenance

mechanism. Finally, the nature of the grid environment led to the introduction

of error checking and logging mechanisms.

The long execution times of a typical crawling session, especially combined

with the high task initiation costs of the grid environment, prevent creation of a
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real-time search engine. A significant amount of time passes between the submis-

sion of a query and the availability of the result, making it impractical for a user

to wait for that amount of time. Furthermore, since crawling is a time-consuming

task which requires a significant amount of network resources, the retrieved re-

sults should be stored for later access. To address this issues, SE4SEE implements

a job management system.

After a user query is submitted to the portal, the job management system

creates an appropriate JDL (Job Description Language) file and a shell script

containing the statements to be executed. A copy of the query parameters are

saved for future reference. Then, the system locates a computing node where

the query can be processed. In country-specific queries, the closest grid nodes

are tried to be selected by the system. Once a grid node is determined, the

executables of the crawler and text classifier are transferred to the target node.

The crawler and text classifier binaries are executed at the target grid node until

the user-specified stopping criterion is met. When the job execution completes,

the crawled pages are automatically retrieved from the resource broker to the Web

portal. The user can then view the results of the search. As the results of a crawl

can only be deleted explicitly, the user can save a result set and recall it multiple

times later on, thereby preventing the waste of grid resources by re-querying.

To prevent the extensive use of grid resources, a user-based system is imple-

mented. Users need to log on to the system before any grid interaction takes place.

A user, once authorized, has the ability to submit queries, manage the crawling

tasks and view the results of completed crawls. Queries can be submitted in two

forms: a category-based search – which crawls pages, classifies them, and returns

only relevant results – and a keyword search that crawls pages starting form a

given seed page and returns only those that contain certain, user-given, keywords.

Both types of queries result in the submission of grid jobs that can be examined

and, if desired, aborted. The results for completed crawls are presented in a

manner similar to common search engines, along with an option to view the page

in the form it was retrieved by the crawler, effectively forming a time-stamped

local cache of the results. A keyword search can also be performed in the crawled

results, allowing the refinement of presented results without having to resort to
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additional searches.

Finally, to ensure the durability and security of the system, additional consid-

erations are made. A robust authentication mechanism is implemented, prevent-

ing the unprotected storage of passwords. All queries and database accesses are

logged. Errors due to the underlying grid architecture are caught and interpreted.

Constraints are placed on certain parameters of the application to prevent misuse

of resources and to make the application behave like a “good citizen” of the grid

community.

The pages of the web portal are prepared using PHP, actions from these pages

invoke external applications that perform the desired tasks. All grid-interaction

is over command-line utilities, relying on the robustness of these utilities in un-

foreseen circumstances. This method also provides a layer of abstraction between

the grid and the application code, preventing any changes on grid side having an

immediate effect on the application. Any data used in the invocation of these

utilities is stored in a regularly backed-up MySQL database, again providing a

robust solution for critical information.

6.5 Experiments

6.5.1 Platform

As the hardware platform, SE4SEE utilizes the resources available in the grid in-

frastructure established throughout the SEE-GRID project. These resources, in

conformance with the grid philosophy, is composed of a variety of heterogeneous,

geographically distributed computational resources. The SEE-GRID infrastruc-

ture is essentially a large network of computers that, although located in different

regions of South-East Europe, work together to perform a common task. All of

our experiments presented in this section are conducted utilizing this infrastruc-

ture.
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Table 6.1: Characteristics of the grid sites used in the experiments.

Tag Grid site CPU (GHz) RAM (GB) Disk (TB) Middleware OS
BA grid01.pmf.unsa.ba Intel P4 2.4 0.5 0.036 SL 3.0.5 LCG-2.6.0
HR grid1.irb.hr Intel Xeon 2x2.8 2 0.03 SL 3.0.3 LCG-2.4.0
MK grid-ce.ii.edu.mk Intel P4 3.0 0.5 0.12 SL 3.0.3 LCG-2.4.0
BG ce001.grid.bas.bg Intel P4 2.4 0.5 0.1 SL 3.0.3 LCG-2.6.0
TR grid2.cs.bilkent.edu.tr Intel P4 3.0 1 0.08 SL 3.0.3 LCG-2.3.0
UI ce.ulakbim.gov.tr Intel P4 3.0 1 0.2 SL 3.0.3 LCG-2.6.0

Table 6.1 summarizes hardware/software characteristics of the grid sites avail-

able in the SEE-GRID infrastructure, which are used in our experiments. In

general, it is hard to mention a typical configuration as the individual sites that

form the grid have a variety of hardware resources, sometimes even having dif-

ferent configurations within a site. However, broadly speaking, we can say that

experiments are conducted computers with an x86 processor clocked at 2.4 GHz

or higher, and having at least 512 MB RAM. Although reported in the table,

disk capacity is not much of a concern in the experiments since all nodes met the

minimum requirements. Network connectivity of the grid sites was uncertain and

had to be measured through experiments. The grid site at the last row of the

table is tagged as UI since this site provides the primary interface to the SEE-

GRID infrastructure. All other sites are tagged according to their geographical

locality.

6.5.2 Setup

The experiments were performed using the application’s command-line back-end.

The typical approach of letting the grid infrastructure decide at which site the

application runs is bypassed. Instead, specific sites were chosen manually and

jobs are directly submitted to them. Running times for the crawler and classifier

were measured by utilizing the executing system’s measurement mechanisms and

are typically accurate to the millisecond. Scheduling times for the task were

derived from the timestamps found on the execution logs provided by the grid

middleware. As the nodes on the grid are synchronized using the Network Time

Protocol, the derived times are accurate to the order of seconds.
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6.5.3 Results

Five sets of experiments are conducted, where each experiment tries to justify

or investigate one of the search features provided by SE4SEE (Section 6.4.1).

First, efficiency of personalized crawling is investigated via experiments to have a

knowledge of the overhead that crawling introduces. Second, experiments are car-

ried out on page freshness to justify the on-demand crawling strategy employed

in SE4SEE. Third, we conducted experiments to reveal the benefits of geograph-

ically distributed Web crawling. Fourth, we experimented on the overheads in-

troduced by grid-enabled Web search. Finally, we investigated the effectiveness

of the category-based search provided by SE4SEE. The following sections present

these experiments.

6.5.3.1 Efficiency

Personalized Web search requires a different crawling/classification task to be

initiated over the Web. This is a computationally costly and time-consuming task.

In this set of experiments, we try to investigate the efficiency of personalized Web

crawling. For this purpose, we crawled and classified varying numbers of pages

from the “.edu” domain (U.S. educational sites) and Stanford University Web

server. In the experiments, the classifier is executed separately after the crawler

finished downloading pages, thus enabling us to measure the relative overheads

of the two components more accurately.

Figure 6.3 displays the times obtained in crawling and classifying varying

number of pages using the grid site denoted with tag UI. The times for archiv-

ing/compressing the resulting set of pages are relatively negligible and hence not

displayed. According to the figure, although the crawling and classification com-

ponents have similar overheads at low number of pages, the crawling overhead

dominates as the number of pages increases. The results show that personalized

search is practical for crawling a fair number of pages. Moreover, in SE4SEE,

since the crawler and classifier are concurrently executed in a pipelined fashion,
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Figure 6.3: Performance of Web crawling/classification with increasing number
of pages.

the classification is overlapped with network transfer and the actual total exe-

cution time is less than the sum of the reported execution times of these two

components.

6.5.3.2 Page Freshness

Since obtaining high page freshness is the one of the motivations behind SE4SEE,

we tried to figure out the importance of page freshness via experiments and

observed the rate of change in the textual material found in the Web pages

(ignoring the HTML content and other information). For this purpose, we first

made an initial large crawl over a set of Web sites to obtain an initial collection.

Throughout a week, the pages in the initial collection were daily recrawled. The

freshness F (t) of a crawl at time t is measured by the F (t)= 100×(I−M(t))/I

formula, where I is the number of pages in the initial collection and M(t) is the

number of pages whose content is modified (i.e., updated or deleted) and hence

differs from the initial download.

Figure 6.4 displays the change of page freshness after t=1 and t=7 days. At
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Figure 6.4: The variation of page freshness in time for different sites or topic
categories.

the top of the figure, the sites or topic categories are given. The topic categories

include sites picked from the training set of pages we manually created. According

to Figure 6.4, a considerable portion of the pages seems to be modified frequently.

Especially, in the CNN Web site, only 12.50% of the pages remain the same after

a day. Similarly, after a week, almost half of the educational pages are modified.

A similar behavior is not observed in the crawl made over the Bilkent University

since this crawl includes pages deep in the directory hierarchy, which have a

tendency to be modified less frequently.

Page freshness also shows variation among the topic categories, i.e., while

pages belonging to a category remain untouched, pages in some other category

may be modified frequently. For example, according to our experiments, the festi-

val pages remain rather static, whereas sports pages are updated more frequently.

Overall, we believe that these experiments justify the need for the on-demand

crawling strategy employed in SE4SEE, but not available in the traditional search

engines.
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Figure 6.5: Effect of geographical locality on crawling throughput.

6.5.3.3 Geographical Locality

A primary benefit of the use of the grid infrastructure in SE4SEE is the ge-

ographically distributed nature of the grid sites. Hence, experiments are con-

ducted to investigate the effect of utilizing the grid for geographically distributed

Web crawling, where pages are tried to be downloaded by geographically closer

servers. Specific sites were chosen as test sites based on their location, and jobs

were directly submitted to them. In the experiments, crawling tasks were ini-

tiated at five different grid sites, located in Bosnia-Herzegovina (BA), Bulgaria

(BG), Croatia (HR), FYROM (MK), and Turkey (TR).

Figure 6.5 displays the page crawling throughput (number of pages crawled per

minute) achieved by the grid sites for different sets of pages. In this experiment,

we first aimed to figure out the typical bandwidth of the individual sites. Note

that a closer site with a low network bandwidth might perform worse than a

site that is geographically far to the pages, even though the latter has a higher

latency with respect to the crawled pages. To avoid misinterpretation of the

other results due to the differences in the bandwidth, an approximation of the

bandwidth is required. To obtain such a value, a crawl was performed on a website

geographically distant to all sites, far enough to make any advantages due to the

proximity negligible. For this purpose, the CNN site, located in U.S., is chosen
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and crawled by all grid sites. This experiment shows that the network capacity

of the grid site BA is problematic, whereas the TR site performs relatively better

than the rest.

According to Figure 6.5, as expected, each grid site performs quite good in

downloading the pages geographically nearby. Even the BA site, which has a

limited bandwidth, achieves a fair throughput in crawling pages from the Web

server of the University of Sarajevo. Similarly, the BG and TR sites achieve the

highest throughput in crawling pages located Bulgaria and Turkey, respectively.

Note that, if the throughputs were normalized with respect to the estimated site

bandwidths, in the third experiment (the University of Sofia), the throughput

gap between the BG site and the others would be more significant in favor of the

BG site. These experimental results indicate that the spatial proximity between

the crawling sites and the target pages plays an important role in the crawling

throughput, thus justifying the geographically distributed crawling approach of

SE4SEE.

6.5.3.4 Gridification

The overhead of the grid architecture had to be determined to be able to make

time-comparisons to classic search engines. To this effect, several crawls of dif-

ferent sizes were made from the same grid site. Four times were extracted from

the grid logs: the ready, scheduled running, and fetching times. The ready time

is the time it takes for a job to be assigned to a site once it has been submitted

to the system. The scheduled time is the duration of how long the job waits at

the grid node. The running time is the execution time of the application, and the

fetching time is the time it takes for the output to be retrieved form the resource

broker. Note that the time it takes for the output to be transmitted from the

grid node to the resource broker could not be timed.

The results in Figure 6.6 demonstrate the high start-up costs of the grid

infrastructure. The startup overhead of the jobs take a dominating amount of

time for smaller crawls and are still a significant source of delay even for the
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Figure 6.6: The percent dissection of duration for different phases of query exe-
cution on the grid.

larger crawls sizes. Most of this overhead comes from the delays introduced at

the crawling nodes. The time to fetch the results form the resource broker is

negligible, but increases linearly with the number of fetched pages, as expected.

6.5.3.5 Effectiveness

One of the benefits provided by the SE4SEE application is that it assigns cate-

gories to the retrieved pages. Selection of good seed pages for topic categories is

important, as the crawling task is started from these pages and continued in a

breadth-first manner. In this set of experiments, we try to investigate the quality

of seed page selection and the behavior of classification. For this purpose, 100-

page and 1000-page crawls are initiated for two different topic categories (banks

and sports) and the distribution of pages into categories are investigated.

Figure 6.7 shows the results obtained in these experiments. As expected, as

the pages are more distant in the link structure from the starting set of seed

pages, the probability of classifying pages into categories other than the target

category increases. This is because either the classification accuracy degrades
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Figure 6.7: Effect of seed page selection in classification of crawled pages.

or pages belonging to irrelevant categories are crawled. For example, in the 100-

page crawl performed over the sports pages, 72.0% of the to pages are classified as

sports pages, whereas the rate is 67.7% in the 1000-page crawl case. The behavior

of the classification also depends on the characteristics of the topic category.

For example, the bank pages are more easily distinguished (a similar behavior

is also observed for the politics and universities categories) even though some

portion of them are classified as politics pages. Accurately classifying sports pages

seem to be harder (similar to the transportation category), probably because

textual features identifying sports pages overlap with the features identifying

other categories.

6.6 Conclusion and Future Work

In the current version of SE4SEE, the usage of grid resources is via an inter-query-

parallel approach. One other perspective could be to use an intra-query-parallel

approach where each query is decomposed into subqueries running on multiple

machines. As an improvement over the current SE4SEE architecture, the future
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direction of the SE4SEE infrastructure is to support intra-query-parallelism to

make a better use of the grid resources.

One of the assets of the SE4SEE is its socio-cultural value. Grid, by its very

nature is a domain of cultural integration. As a part of the grid infrastructure,

SE4SEE aims to promote the establishment of the cultural foundations of the grid

infrastructure and serve as a basis for socio-cultural interaction and integration.

In order to achieve it’s goal, SE4SEE provides the grid community with tools

for country- and category-specific search options. Hence, the categories selected

so far are picked according to their emphasis on the cultural variations within

the grid community. We hope this to be a good opportunity to enhance the

inter-cultural relations in South-East European region.



Chapter 7

Harbinger Text Classification

System

The use of text classification in the SE4SEE search engine [19, 24], presented

in Section 6, required a text classification system to be designed and developed.

For this purpose, we implemented the Harbinger text classification system [20],

features of which are presented in this chapter. In general, the system is imple-

mented in an extendible and modular fashion. Hence, we believe that further

research in text classification can easily be built upon this prototype. We plan

to take this system as a basis and use it in our future studies, as we have already

started to use it in some applications [28, 29, 116] other than the SE4SEE search

engine.

The outline of the chapter is as follows. In Section 7.1, we give some back-

ground information on text classification. In Section 7.2, we provide pointers to

the related work in text classification and machine learning. In Section 7.3, we

describe the architecture of the Harbinger text classification system. Section 7.4

gives a description of the Harbinger machine learning toolkit, utilized by the text

classification system. In Section 7.5, we underline the limitations of the current

system and point at some future work.
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7.1 Introduction

Text classification [84, 60, 128] is the task of assigning a category to a given text

document by analyzing the attributes of the textual material contained in the

document. In other words, it can be defined as the process of choosing a type or

topic for a piece of text among a predefined set of types or topics. Currently, text

classification is considered as a hot research topic. The exponential increase in

the number of documents on the Web, and the need to classify the huge amounts

of textual material stored in digital libraries are the basic reasons for this research

interest on text classification.

Text classification, like other text processing problems such as topic identifica-

tion, text summarization, and text clustering, is a difficult problem to be solved.

At the extreme case, a mixture of natural language processing and artificial intel-

ligence techniques, which perform semantic and contextual analysis, is necessary

for accurate classification of text documents. However, in our work, the focus is

on statistical techniques [127], which rely solely on syntactical analysis and were

abundantly used for classification in the past.

The main reasons which prevent further improvement on both efficiency and

accuracy of the text classification algorithms stem from the nature of the textual

data. As pointed out in many works, the main reasons are the high dimensionality

of the attribute space of documents and the high amount of sparsity in documents’

attribute spaces. In other words, the number of distinct terms that may occur in

a document dataset is in the order of ten thousands, but only a small fraction of

these terms occur in a single document. In most works, this high-dimensionality

problem is attacked and eliminated within a special preprocessing step. This

preprocessing step mainly contains either all or some of the following techniques:

stop-word elimination, stemming, word grouping, and feature selection [90]. We

integrated some of these preprocessing steps into the Harbinger text classification

system.
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7.2 Related Work

Applications of text classification lie on a wide range including automated doc-

ument indexing [54, 62], organization of document collections [85], author detec-

tion [28, 55], text filtering [4, 49], natural language processing [58, 67], and Web

page classification [3, 36, 74, 111, 116]. In the literature, different techniques are

proposed as solution to the text classification problem. These solutions are mainly

based on application of different machine learning algorithms on text classifica-

tion [84]. Abundance of machine learning algorithms [107, 127] such as k-nearest

neighbor [61], naive Bayesian [93], neural networks [98], decision trees [89], and

support vector machines [111] are used in the literature. A number of machine

learning tools such as Weka [124], Grid Weka [82], and Harbinger [20] are readily

available for use in text classification. For an excellent survey about machine

learning techniques in text classification, the reader may refer to [107].

7.3 Harbinger Text Classification System

Figure 7.1 depicts a general picture of the input-output relations among the

modules of the Harbinger text classification system, using its involvement in the

SE4SEE search engine for illustration purposes. In the figure, an ellipse corre-

sponds to a module or more specifically a piece of code, which can be compiled

and executed independently. Solid oblong boxes represent the files stored on the

disk. The arrows on the arcs between the files and the modules indicate whether

the file is supplied as input to a module or generated by it. Dashed boxes are the

inputs passed as parameters to a module during the initial module startup. Bold

lines indicate user interaction.

As we stated, Figure 7.1 illustrates the use of our text classification system in

SE4SEE. The corpus creator and corpus parser modules are the two preprocessing

modules used in generating the necessary input (in the sample case, information

extracted from the training Web pages) for training the text classifier. These

modules are shortly described below. In the figure, the crawled Web repository
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Figure 7.1: The use of the Harbinger text classification system in SE4SEE.

corresponds to the collection of test documents, whose categories are to be pre-

dicted. The test documents (i.e., Web pages) are passed from a language-specific

parser, and converted into a format acceptable by the text classifier. The text

classifier, using a classifier picked from the Harbinger machine learning toolkit,

predicts a category for the test document. If the predicted category matches

the user-requested category, the document is returned to the user, or discarded

otherwise. The details of the modules in the Harbinger text classification system

are summarized below.

Corpus creator: The text filtering tasks mentioned in Section 5.1.1 are per-

formed by this module. For each document collection, a separate corpus creator

must be implemented to convert the collection into a standard corpus format.

Corpus parser: This module basically has the same duty with the corpus
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parser employed in Skynet (see Section 5.1.1), i.e., it generates the files that

contain information about the corpus. For details of these files, please refer to

Appendix B.1).

Text classifier: The core of the classification system is the text classifier mod-

ule. This module calls the appropriate machine learning classifiers for the text

classification task. It is also possible to run each classifier as a stand-alone ap-

plication. This module offers several validation techniques and hides the details

of partitioning the training document set. The classifier to be used and its op-

tions are passed as input to the module. The module first reads the document

collection for training purposes and generates a classification model. It then con-

secutively reads the documents whose categories are to be predicted from the disk

and tries to guess a category for each document using the classifier chosen from

the classifier library.

Classifier library: As the classifier library, Harbinger machine learning

toolkit [20] is used. The following section, Section 7.4 is dedicated to this toolkit.

A more thorough discussion of the classifier options, file formats, and several ex-

amples can be found in the Harbinger machine learning toolkit manual provided

in the Appendix B.

7.4 Harbinger Machine Learning Toolkit

7.4.1 Features

The Harbinger machine learning toolkit (HMLT) is a general-purpose toolkit, pro-

viding implementations for some well-known and frequently used machine learn-

ing classifiers. The primary concerns in development of HMLT are correctness, ef-

fectiveness, transparency, modularity, and re-usability. At the moment, efficiency

is not claimed to be a primary concern in any part of the toolkit. This is basically

due to the fact that all supported classifier implementations use common repre-

sentations and data structures, preventing further utilization and employment
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of some classifier-specific optimizations. However, we believe that the toolkit is

quite robust and supposed to successfully execute under most circumstances.

HMLT currently supports ten different machine learning classifiers including

the naive Bayesian and k-nearest neighbor classifiers. The toolkit uses a com-

mon format for storing and reading the datasets. In this format, aliases can be

defined for attribute values preventing repetition of long strings. Moreover, this

format allows using both dense matrix and sparse matrix representations for the

datasets. Hence, for problems with high attribute dimensions (like text classifi-

cation), sparse matrix format can be used to save storage space and reduce the

I/O time. As well as classifiers, the toolkit offers a wrapper program to ease the

validation process. By means of this wrapper, the user can easily perform cross-

validation, leave-1-out validation, and some other validation techniques over the

dataset. This eliminates the need for writing an extra piece of code to partition

the instance set into train and test sets for each dataset at hand.

Furthermore, HMLT contains software modules for instance filtering, class

balancing, and feature selection. The instance filtering module allows instances

to be filtered out from the training depending on the their features. The class

balancing module establishes a balance on the number of instances in each class

by undersampling some classes (i.e., omitting a portion of the instances in the

class). By this module, the classes as a whole can be eliminated from the dataset.

Finally, the feature selection module provides support for selecting the highly

representative features of a dataset. The currently available feature selection

methods are document frequency thresholding and Chi-square [129]. The feature

selection module is also integrated into the HMLT library.

7.4.2 Supported Classifiers

The classifiers supported by HMLT can be collected under four main headings:

instance-based classifiers, probabilistic classifiers, symbolic learning classifiers,

and neural network classifiers. At this point, the reader is assumed to be aware

of the theoretical and practical details of these classifiers. Hence, here we present
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only a very brief and rough description of the classifiers in HMLT.

• Instance-based classifiers: K-nearest neighbor (k-NN) [61], k-nearest neigh-

bor with feature projections (k-NN-FP) [130] and k-means classifiers are

the supported implementations of this type. K-NN and its derivations (like

weight adjusted k-NN) are among the most frequently used classifiers. This

type of classifiers are able to capture the local properties in the data, but

fail to capture the global features of a dataset. These classifiers perform

all the work in the test phase. In the test phase, all test instances are

compared with the training instances and for each test instance, the most

similar N training instance is determined. Depending on the classes of

these N training instances, a prediction about the class of the test instance

is made.

For k-NN classifier, our classifier library supports three different distance

measures for finding the similarity of two instances: cosine similarity mea-

sure, Euclidean distance measure, and Manhattan distance measure. After

the most similar K instances are found the most best-matching class can be

determined using majority voting or similarity score summing. Similarly,

for k-NN-FP, majority voting or similarity score summing can be used to

make the final decision on class selection.

• Probabilistic classifiers: Currently, the only classifier under this category

is the naive Bayesian classifier [93]. In contrast to instance-based classi-

fiers, naive Bayesian classifier tries to capture the global properties of a

dataset. Naive Bayesian classifier works only on categorical attributes. In

the training phase, the probability that a class value will be observed when

an input attribute value is observed is calculated. In the test phase, for

each instance, these probabilities are multiplied depending on the attribute

values of the test instance. For each class value, a probability is calculated,

and the class with the highest probability is selected as the predicted class.

Despite its assumption that attributes appear independent of each other,

naive Bayesian performs quite well in most datasets.

• Symbolic learning classifiers: Classifiers of this type are one-rule, decision
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trees, covering rules, and classification rules. Currently, the two supported

implementations are covering rules classifier (PRIM) and one-rule classifier.

The covering rules classifier aims to produce human-understandable rules

for classifying the test instances. During the training phase, each class

value is visited. For each class value, using the training instances, a set of

rules that will cover all training instances with that class value is generated.

Later, these rules are used for classification of test instances. This classifier

works on categorical attributes. An instance can be classified by more than

one rule as belonging to many classes. In that case, a majority voting

scheme can be used, or the most frequently appearing class can be assigned

as the predicted class.

One-rule classifier is a similar but simpler version of covering rules classi-

fier. It produces its rules depending on the values of just a single attribute.

Although being a rather naive classifier, for small datasets with a few im-

portant attributes, it was shown that this classifier produces surprisingly

good results [69].

• Neural network classifiers: Supported neural network classifiers [66] include

perceptron, back-propagation, Kohonen and Hopfield networks. All classi-

fiers in this category convert their input attribute values to -1 and 1, by

taking the sign of actual input attribute values. Compared to others, train-

ing phase is quite slow in neural network classifiers. It may take large

number of iterations to find a local optimum. Hence, it is wise to limit the

epoch counts in most cases.

Perceptron is the simplest of neural networks. It acts as a black box, which

maps a given input instance to an output class value. Back-propagation

neural network is a more enhanced classifier. It is known to be outper-

forming perceptron neural network in many applications. However, due to

massive amount of computations performed, it is relatively slower. Our im-

plementation of back-propagation neural network constructs a three layer

(input, hidden and output layers) network. This classifier can be used both

for classification and regression problems.
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Kohonen and Hopfield networks are examples of unsupervised classifiers.

In fact, these two are clustering algorithms rather than classification algo-

rithms. However, created clusters can be used for classification purposes.

In Hopfield neural networks, the class values of the training instances is not

utilized at all. In Kohonen network, they are used just calibration.

7.5 Limitations of HMLT and Future Work

Current limitations of HMLT are the following. First, there is no handling of

missing data values. Second, although there is a partial support for class balanc-

ing via undersampling of instances, there is no support for instance oversampling.

Finally, the parser code for the input files should be enhanced and made more

flexible.

The following are among our future development plans. New classifiers are

planned to be added (including C4.5 decision tree algorithm). The code will be

optimized in terms of both memory and execution time. Moreover, implementa-

tion of a graphical front-end to HMLT seems to be beneficial.



Chapter 8

K-PaToH Hypergraph

Partitioning Toolkit

Since the models we proposed in Chapters 2 and 3 heavily rely on hypergraph

partitioning, we developed an efficient and effective hypergraph partitioning tool,

called K-PaToH [6]. In the future, we plan to use this partitioner in partitioning

the hypergraphs created in our parallel Web crawling model and our inverted

index partitioning models, instead of the currently used PaToH toolkit [33].

In the literature, K-way hypergraph partitioning is implemented usually em-

ploying the recursive bisection paradigm. In this part of our work, we show that

hypergraph partitioning with multiple constraints and fixed vertices should be

implemented using direct K-way refinement since the recursive-bisection-based

partitioning algorithms perform considerably worse in these domains. We report

the reasons for this performance degradation. We describe a careful implemen-

tation of a multi-level direct K-way hypergraph partitioning algorithm. We also

experimentally show that the proposed algorithm is rather effective in partition-

ing hypergraphs with medium net sizes and vertex degrees.

The chapter is organized as follows. In Section 8.2, we give an overview of

the previously developed hypergraph partitioning tools and a number of prob-

lems that are modeled as a hypergraph partitioning problem in the literature.
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The proposed hypergraph partitioning algorithm is presented in Section 8.3. In

Section 8.4, we present an extension to this algorithm in order to encapsulate the

hypergraphs with fixed vertices. In Section 8.5, we verify the validity of the pro-

posed work by experimenting on well-known benchmark datasets. The chapter

is concluded in Section 8.6.

8.1 Introduction

8.1.1 Background

In the literature, hypergraphs and hypergraph partitioning find application in a

wide range of parallel computing problems such as parallel sparse-matrix vector

multiplication [34], sparse matrix permutation for parallel LU and QR factor-

ization [7], performance analysis [51], and parallel volume rendering [22] as well

as in many research fields including VLSI design [75], software design [13], and

spatial databases [48]. Recently, various combinatorial models, which are based

on hypergraph partitioning, are proposed as solutions to some complex and irreg-

ular computing problems arising in the above-mentioned fields. In these models,

which formulate the original problem as a hypergraph partitioning problem, the

purpose is to optimize a certain objective function (e.g., minimizing the total

volume of communication in parallel volume rendering, optimizing the placement

of circuitry on a dice area, minimizing the access to disk pages in processing

GIS queries) while maintaining a constraint (e.g., balancing the computational

load in a parallel system, using disk page capacities as an upper bound in data

allocation) imposed by the problem.

Due to the direct relation between the solution qualities of the hypergraph

partitioning problem and the original problem, finding a good solution to the

first problem yields a good solution for the attacked problem. Consequently, the

studies on developing efficient and effective hypergraph partitioning algorithms

have importance in that many prior works that utilize hypergraph partitioning

can benefit from the improvements introduced.
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8.1.2 Definitions

Basically, a hypergraph is a generalization of the more special graph data struc-

ture. A hypergraph H= (V,N ) consists of a set of vertices V and a set of nets

N [12]. Each net nj in N connects a subset of vertices in V, which are said to

be the pins of nj and denoted as Pins(nj). Each vertex vi has a weight wi, and

each net nj has a cost cj .

Π={V1,V2, . . . ,VK} is a K-way vertex partition if each part Vk is non-empty,

parts are pairwise disjoint, and the union of parts gives V. In Π, a net is said

to connect a part if it has at least one pin in that part. The connectivity set Λj

of a net nj is the set of parts connected by nj . The connectivity λj = |Λj| of a

net nj is equal to the number of parts connected by nj . If λj =1, then nj is an

internal net. If λj >1, then nj is an external net and is said to be at cut. In Π,

the weight Wk of a part Vk is equal to the sum of the weights of vertices in Vk,

i.e., Wk =
∑

vi∈Vk
wi.

The K-way hypergraph partitioning problem [2] is defined as finding a vertex

partition Π for a given hypergraph H=(V,N ) such that a partitioning constraint

is maintained while a partitioning objective is optimized. Although other options

are possible, typically, the partitioning constraint is to maintain the balance on

the part weights, and the partitioning objective is to minimize an objective func-

tion defined over the cut nets. The frequently used objective functions include

the cut-net metric

χ(Π) =
∑

nj∈Ncut

cj , (8.1)

where Ncut is the set of cut nets and the connectivity−1 metric [88]

χ(Π) =
∑

nj∈Ncut

cj(λj−1), (8.2)

in which each cut net nj contributes cj(λj−1) to the cost χ(Π) of partition Π. In
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this work, the connectivity-1 metric is used.

8.1.3 Issues in Hypergraph Partitioning

The hypergraph partitioning problem is a rather difficult problem to be solved.

In fact, the problem is known to be NP-hard, and the algorithms employed in

partitioning a hypergraph are merely heuristics. Consequently, the partitioning

algorithms must be carefully designed and implemented for increasing the quality

of the optimization. At the same time, the computational overhead due to the

partitioning process should be minimized in case this overhead (e.g., the duration

of preprocessing within the total run-time of a parallel application) is a part of

the entire cost to be minimized.

The very first works (mostly in the VLSI domain) on hypergraph partition-

ing utilized the recursive bisection (RB) paradigm, in which a hypergraph is

recursively bisected (i.e., two-way partitioned) until the desired number of parts

is obtained. Since RB is applied on the top-level, flat hypergraphs, especially

in cases of hypergraphs with high net sizes, the obtained solution qualities are

usually far from being optimal.

The multi-level hypergraph partitioning approach emerges as a remedy to the

above-mentioned problem. In multilevel bisection, a hypergraph is coarsened into

a smaller hypergraph after a series of coarsening levels, in which highly coherent

vertices are grouped into supervertices. After the bisection of the coarsest hyper-

graph, the generated coarse hypergraphs are uncoarsened back to the original,

flat hypergraph. At each uncoarsening level, a refinement heuristic (e.g., FM [53]

or KL [80]) is applied to minimize the partitioning objective defined over the nets

while maintaining a partitioning constraint on the part weights. The multi-level

approach proved to be very successful in optimizing various objective functions.

With the wide-spread use of hypergraph partitioning in modeling computa-

tional problems outside the VLSI domain, the above-mentioned approach based

on the multi-level RB scheme turned out to be inadequate due to the following
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reasons. First, in partitioning hypergraphs with large net sizes, if the partitioning

objective depends on the connectivity of the nets (e.g., the connectivity-1 met-

ric), good partitions cannot be obtained since the decisions made at each bisection

step do not take the pin distribution of cut nets across the parts into consider-

ation. Consequently, cut nets with high number of pins may be generated in

succeeding bisections of both parts, degrading the solution qualities. Second, in

problems where the number of parts is high, satisfactory load balance values may

not always be guaranteed since it is not possible to enforce a tight load balance

constraint. Third, several formulations that are variations of the traditional hy-

pergraph partitioning problem (e.g., multiple balance constraints, multi-objective

functions, fixed vertices), which have recently started to find application in the

literature, are not appropriate for the multi-level RB paradigm.

As stated above, the RB scheme performs rather poorly in problems where a

hypergraph representing the computational structure of a problem is augmented

by imposing more than one constraints on vertex weights or introducing a set of

fixed vertices into the hypergraph. In the multi-constraint partitioning case, the

solution space is usually restricted since multiple constraints may further restrict

the movement of vertices between the parts. In case of fixed vertices, each fixed

vertex must be finally assigned to a part. However, during the bisections it is not

possible to obtain a good assignment of fixed vertices to parts since it is not yet

known in what way the two parts emerging as a result of the bisection will be

partitioned and the fixed vertices will be further assigned to the vertex parts.

8.1.4 Contributions

In this work, we propose a new multi-level hypergraph partitioning algorithm

with direct K-way refinement. Based on this algorithm, we develop a hypergraph

partitioning tool capable of partitioning hypergraphs with multiple constraints on

vertex weights. We extend the proposed algorithm and the tool in order to par-

tition the hypergraphs with fixed vertices. This extension of the algorithm finds

an optimal assignment of fixed vertices to parts prior to direct K-way refinement

by using the maximal weighted bipartite graph matching algorithm.



CHAPTER 8. K-PATOH HYPERGRAPH PARTITIONING TOOLKIT 129

We conduct experiments on a wide range of benchmark hypergraphs with

different topological properties (i.e., numbers of vertices, average net sizes). The

experimental results indicate that the proposed algorithm performs better than

a state-of-the-art partitioning algorithm [33] utilizing the RB paradigm in terms

of both execution time and solution quality. In the case of multiple constraints

and fixed vertices, the obtained results are even more promising.

8.2 Previous Work on Hypergraph Partitioning

8.2.1 Hypergraph Partitioning Tools

Although hypergraph partitioning is widely used in both academia and industry,

the number of publicly available tools is quite limited. In fact, there are only three

hypergraph partitioning tools that we are aware of: hMETIS [76], PaToH [33],

and Parkway [115], listed in chronological order.

hMETIS [76] is the earliest hypergraph partitioning tool, published in 1998

by Karypis and Kumar. It contains algorithms for both RB-based and direct

K-way partitioning. The objective functions that can be optimized using this

tool are the cut-net and sum of external degrees metrics. The tool has support

for partitioning hypergraphs with fixed vertices.

PaToH [33] is published in 1999 by Catalyurek and Aykanat. It is a multi-

level, RB-based partitioning tool with support for multiple constraints and fixed

vertices. The built-in objective functions are the cut-net and connectivity-1 cost

metrics. A high number of heuristics for coarsening, initial partitioning and

refinement phases are readily available in the tool for use by the end users.

Parkway [115] is the first parallel hypergraph partitioning tool, published

by Trifunovic and Knottenbelt in 2004. It is suitable for partitioning large hy-

pergraphs in multi-processor systems. The tool supports both the cut-net and

connectivity-1 cost metrics.
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8.2.2 Applications of Hypergraph Partitioning

Hypergraph partitioning has been used in VLSI design since 1970s [106]. The ap-

plication of hypergraph partitioning in parallel computing is started by the work

of Catalyurek and Aykanat [34]. This work addresses 1D partitioning of sparse

matrices for efficient parallelization of matrix vector multiplies. Later, Catalyurek

and Aykanat [31, 32] and Vastenhouw and Bisseling [122] proposed hypergraph

partitioning models for 2D partitioning of sparse matrices. In these models, the

partitioning objective is to minimize the total volume of communication incurred

due to the parallelization while avoiding computational imbalance in the proces-

sors. These matrix partitioning models are utilized in different applications that

involve repeated matrix-vector multiplies, such as computation of response time

densities in large Markov models [51] and restoration of blurred images [121].

In the parallel computing domain, there exist hypergraph-partitioning-based

models employing objective functions other than minimizing the total volume of

communication. For example, Aykanat et al. [7] develop models for permuting

sparse rectangular matrices into singly-bordered block diagonal form for efficient

coarse-grain parallelization of linear programming, LU factorization, and QR fac-

torization problems. Their models try to minimize the size of the border, which

corresponds to minimizing the overhead of the coordination task, while provid-

ing load balance over the diagonal block sizes and thus on the computational

loads of processors. Another example is the communication hypergraph model

proposed by Ucar and Aykanat [119] for considering message latency overhead

in parallel sparse matrix vector multiples based on 1D matrix partitioning. In

this model, partitioning objective corresponds to minimizing the total number of

messages, and partitioning constraint corresponds to maintaining the balance on

communication volume loads of processors.

Besides matrix partitioning, hypergraph partitioning models are also proposed

for use in other parallel and distributed computing applications. These include

workload partitioning in data aggregation [37], image-space-parallel direct volume

rendering [23], and scheduling file-sharing tasks in heterogeneous master-slave

computing environments [79, 81].
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Formulations that extend the traditional hypergraph partitioning problem

such as fixed vertices and multiple vertex weights also find application. For

instance, multi-constraint hypergraph partitioning is used for 2D checkerboard

partitioning of sparse matrices [32], and parallelizing preconditioned iterative

methods [120]. Hypergraph partitioning with fixed vertices is used in image-

space-parallel direct volume rendering [23]. In that work, a remapping model

is proposed in order to minimize the total volume of communication in data

migration while balancing the rendering loads of processors. Fixed vertices are

used to incorporate the initial distribution of data over the processors into the

model in order to capture the total volume of communication requirement during

the remapping.

Finally, we should note that hypergraph partitioning also finds application in

problems outside the parallel computing domain such as road network cluster-

ing for efficient query processing [48], pattern-based data clustering [99], reduc-

ing software development and maintenance costs [13], topic identification in text

databases [43], and processing spatial join operations [108].

8.3 K-Way Hypergraph Partitioning Algorithm

The proposed algorithm follows the traditional multi-level partitioning paradigm.

It includes three consecutive phases: multi-level coarsening, initial partitioning,

and multi-level K-way refinement. Figure 8.1 illustrates the algorithm.

8.3.1 Multi-level Coarsening

In the coarsening phase, a given flat hypergraph H0 is converted into a sufficiently

dense hypergraph Hm after m successive coarsening levels. At each level �, an

intermediate coarse hypergraph H�+1 = (V�+1,N �+1) is generated by coarsening

the parent hypergraph H� =(V�,N �). The coarsening phase results in a sequence

{H1,H2, . . . ,Hm} of m coarse hypergraphs.
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Figure 8.1: The proposed multi-level K-way hypergraph partitioning algorithm.

The coarsening at each level � is performed by coalescing vertices in H� into

supervertices in H�+1. For vertex grouping, agglomerative or matching-based

heuristics may be used. In the coarsening phase of our algorithm, we use the

randomized heavy-connectivity matching heuristic. In this heuristic, vertices in

vertex set V� are visited in a random order. Each vertex v�
i ∈V� is matched with

a vertex v�
j ∈V� if

∑
n�

h
∈C c(n�

h), where C={n�
h : v�

i ∈Pins(n�
h) ∧ v�

j ∈Pins(n�
h)}, is

the maximum over all vertices in V�. Each matched vertex pair (v�
i , v

�
j) forms a

single supervertex v�+1
k in V�+1.
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8.3.2 RB-Based Initial Partitioning

The objective in the initial partitioning phase is to obtain a K-way initial parti-

tion Πm ={Vm
1 ,Vm

2 , . . . ,Vm
K } of the coarsest hypergraph Hm before direct K-way

refinement. For this purpose, we use the multi-level RB scheme of PaToH to

partition Hm. Experimental results show that, since Hm is already a coarse hy-

pergraph, it is better to avoid further coarsening during the coarsening phases

within PaToH. At each bisection, we use the greedy hypergraph growing heuristic

to partition the intermediate hypergraphs into two parts. For two-way refinement

passes over the bisected hypergraphs, we employ the tight boundary FM heuristic

to obtain a viable load balance on the set {Vm
1 ,Vm

2 , . . . ,Vm
K} of vertex parts.

At the end of the initial partitioning phase, if the current imbalance is over

the allowed imbalance rate set by the user, a load balancer, which performs

vertex moves (starting with the negative, lowest FM gains) among the K parts,

is executed in order to drop the imbalance below the allowed rate. Note that,

once the load imbalance is below the allowed rate, it can never rise above this

rate during the direct K-way refinement.

Although possibilities other than RB exist for generating the initial set of

vertex parts, RB emerges as a viable and practical method. A partition of the

coarsest hypergraph Hm generated by RB is very amenable to FM-based refine-

ment since Hm contains nets of small size and vertices of large degree.

8.3.3 Multi-level Uncoarsening with Direct K-Way Re-

finement

Every uncoarsening level � includes a refinement step, followed by a projection

step. In the refinement step, which involves a number of passes, partition Π� is

refined by moving vertices among the vertex parts, trying to maintain the load

balance constraint while trying to minimize the partitioning objective. In the

projection step, the current coarse hypergraph H� and partition Π� are reflected

back to H�−1 and Π�−1. The refinement and projection steps are iteratively
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repeated until the top-level, flat hypergraph H0 with a partition Π0 is obtained.

At the very beginning of the uncoarsening phase, a connectivity data structure

Λ and a lookup data structure δ are created. These structures keep the connec-

tivity of cut nets to the vertex parts in different forms. By means of Λ, which is

implemented as a staggered array, the connectivity set of cut nets are obtained.

That is, Λ(ni) returns the connectivity set Λi of a cut net ni. No information is

stored in Λ for internal nets. δ is an |Ncut| by K, 2D array, used to lookup the

connectivity of a cut net to a part. That is, δ(ni,Vk) returns the number of pins

that cut net ni has on part Vk at constant time. Both Λ and δ structures are

allocated once at the start of the uncoarsening phase and maintained during the

projection steps. For this purpose, at each coarsening level, an inverse map of net

ids is computed so that Λ and δ are modified appropriately in the corresponding

projection steps. Part assignments of vertices are kept in a part array, where

part[vi] shows the current part of vertex vi.

During the refinement passes, only boundary vertices are considered for move-

ment. For this purpose, a list B of boundary vertices is maintained. A ver-

tex vi is boundary if it is among the pins of at least one cut net nj , i.e.,

vi ∈ B ⇔ vi ∈ Pins(nj) ∧ λj > 1. B is updated at each vertex move if the

move causes some vertices to become boundary or internal to a part. Each ver-

tex vi has a lock count bi, indicating the number of times vi is inserted into B.

The lock counts are initially set to 0 at the beginning of each refinement pass.

Every time a vertex enters B, its lock count is incremented by 1. No vertex vi is

allowed to enter B if bi is greater than a prespecified threshold value. This way,

vertices are prevented from repeatedly moving back and forth between the same

pair of parts. The boundary list B is randomly shuffled at the beginning of each

refinement pass.

For vertex movement, each boundary vertex vi∈B is considered in turn. The

gain gain(vi,Vk) of vi is computed for each destination part Vk only if vi �∈Vk∧vi∈
Pins(nj) ∧ Vk∈Λ(nj) for some cut net nj . After gains are computed, the vertex

is moved to the part with the highest positive FM gain. Moves to parts with

negative FM gains are ignored. Zero-gain moves are performed only if they lead
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compute-fm-gains(vi, part, Λ, δ)
gain ← 0
for each net nj ∈ Nets(vi) do

if δ(nj , part[vi]) = 1 then
gain ← gain + cj

if gain = 0 then
return NO-PART-TO-MOVE

targetParts ← {}
for each net nj ∈ Nets(vi) do

gain ← gain − ci

if part[vi] �∈ Λ(nj) then
for each part Vk ∈ Λ(nj) − part[vi] do

if Vk �∈ targetParts then
targetParts ← targetParts ∪ {Vk}

gain(vi,Vk) ← gain(vi,Vk) + cj

maxGain ← −1
for each part Vk ∈ targetParts do

gain(vi,Vk) ← gain(vi,Vk) + gain
if gain(vi,Vk) > maxGain then

maxGain = gain(vi,Vk)
maxPart ← Vk

return maxPart

Figure 8.2: The algorithm for computing the K-way FM gains of a vertex vi.

to a reduction in the load imbalance. For FM-based gain computation, we use

the highly efficient algorithm given in Figure 8.2. A refinement pass terminates

when all boundary vertices are considered for movement. No more refinement

passes are made if a predetermined pass count is reached or improvement in the

cutsize drops below a prespecified threshold.

8.3.4 Extension to Multiple Constraints

Extension to multi-constraint partitioning involves the use of multiple weights for

vertices (i.e., w1(vi), w2(vi), . . .). During vertex moves, each weight constraint is

separately verified for load balancing. In zero-gain moves, the move is realized
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only if the load balance is improved for all constraints. During the coarsening

phase, in vertex matching, the maximum allowed vertex weight is set according

to the constraint which has the maximum total vertex weight over all vertices. In

the initial partitioning phase, the multi-constraint partitioning feature of PaToH

is used with default parameters.

8.4 Extensions to Hypergraphs with Fixed Ver-

tices

In hypergraph partitioning with fixed vertices, a number of fixed vertices are as-

signed to parts prior to partitioning with the condition that, at the end of the

partitioning, each fixed vertex will remain in the part to which it is fixed. Our

extension to partitioning hypergraphs with fixed vertices follows the multi-level

paradigm, which is, in our case, composed of three phases: coarsening with mod-

ified heavy-connectivity matching, initial partitioning with maximal-weighted bi-

partite graph matching, and direct K-way refinement with locked fixed vertices.

Throughout the presentation, we assume that, at each coarsening/uncoarsening

level �, f �
i is a fixed vertex in the set F � of fixed vertices, and o�

j is an ordinary

vertex in the set O� of ordinary vertices, where O� = V� − F �. For each part

V0
k , there is a set F0

k of fixed vertices that must end up in V0
k at the end of the

partitioning such that F0 =F0
1 ∪ F0

2 . . . ∪ F0
K .

In the coarsening phase of our algorithm, we modify the heavy-connectivity

matching heuristic such that no two fixed vertices f �
i ∈F � and f �

j ∈F � are matched

at any coarsening level �. However, any fixed vertex f �
i in a fixed vertex set F �

k can

be matched with an ordinary vertex o�
j ∈O�, forming a fixed supervertex f �+1

i ∈
F �+1

k . Ordinary vertices are matched as before. Consequently, fixed vertices are

propagated throughout the coarsening such that |F �+1
k |= |F �

k|, for k=1, 2, . . . , K

and �=0, 1, . . . , m. Hence, in the coarsest hypergraph Hm, there are |F�|= |F0|
fixed supervertices.

In the initial partitioning phase, a new hypergraph H̃m = (Om, Ñm), where
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Ñm is a subset of nets in Nm whose pins contain at least two ordinary vertices,

i.e., Ñm = {nm
i : nm

i ∈Nm ∧ |Om ∩ Pins(nm
i )|> 1}, is formed. Hypergraph H̃m,

which is free from fixed vertices, is partitioned to obtain a K-way vertex partition

Π̃m = {Om
1 ,Om

2 , . . . ,Om
K} over the set Om of ordinary vertices. Partition Π̃m

induces an initial part assignment for each ordinary vertex in Vm, i.e., vm
i ∈

Om
k ⇒ part(vm

i )=Vm
k .

However, this initial assignment may not be appropriate in terms of the cutsize

since the connectivity of fixed vertices are not considered at all in computation

of the cutsize. At this point, a relabeling of ordinary vertex parts must be found

so that the cut metric is tried to be minimized as the fixed vertices are assigned

to appropriate parts. We formulate this reassignment problem as the maximum-

weighted bipartite graph matching problem [38].

In this formulation, the sets of fixed supervertices and the ordinary vertex

parts respectively form the two partite node sets of a bipartite graph B=(X ,Y).

That is, in B, for each fixed vertex set Fm
k , there is a corresponding node xk∈X ,

and for each ordinary vertex part Om
� there is a corresponding node y� ∈Y . An

edge exists between nodes xk and y� if there is a net nm
h ∈Nm with fm

i ∈Pins(nm
h )

and om
j ∈Pins(nm

h ) such that fm
i ∈Fm

k and om
j ∈Om

� . The weight of the (xk, y�)

edge is assigned as the cost of c(nm
h ) of net nm

h . Multiple edges between the same

pair of nodes are contracted into a single edge, whose weight is equal to the sum

of the weights of the contracted edges.

In this setting, finding the maximum-weighted matching in bipartite graph B
corresponds to finding a matching between fixed vertex sets and ordinary vertex

parts, which has the minimum increase in the cutsize. Each edge (xk, y�) in

the resulting maximum-weighted matching M matches a fixed vertex set to an

ordinary vertex part. By using matching M, the ordinary vertices are reassigned

to parts. An ordinary vertex om
i ∈Om

k is reassigned to a vertex part Vm
� if and

only if edge (xk, y�) is in the matching found, i.e., part(om
i ) = Vm

� ⇔ (xk, y�) ∈
M. Each fixed vertex fm

j ∈ F� is also assigned to the corresponding vertex

part, i.e., part(fm
j ) = Vm

� . This reassignment induces an initial partition Πm =

{Vm
1 ,Vm

2 , . . . ,Vm
K}, which is an optimum solution in terms of the cutsize for this
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Figure 8.3: (a) A sample coarse hypergraph. (b) Bipartite graph representing the
sample hypergraph in Figure 8.3(a) and assignment of parts to fixed vertex sets
via maximal-weighted matching.

particular reassignment problem.

Figure 8.3(a) represents a sample, coarse hypergraph Hm, where fixed and

ordinary vertices are respectively represented as triangles and circles. For ease of

presentation unit net costs are assumed. Only the nets between the fixed vertices

and ordinary vertices are displayed since all cost contribution on the edges of the

constructed bipartite graph are due to these nets. Note that in this hypergraph

an arbitrary assignment of ordinary vertex parts to fixed vertex sets (e.g., Om
k

matched with Fm
k , for k = 1, 2, . . . , K) has a cost saving of 1+1+1+1 = 4 from

the cutsize. Figure 8.3(b) displays the bipartite graph constructed for the sample

hypergraph in Figure 8.3(a). In the figure, triangles and circles denote the sets of

fixed vertices and ordinary vertex parts, respectively. The bold edges show the

maximum-weighted matching, which obtains the highest cost saving 2+1+1+3=7

on the cutsize.

During the K-way refinement phase, Πm is refined using a modified version of
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the algorithm described in Section 8.3.3. Throughout the uncoarsening, the fixed

vertices are locked to their parts and are not allowed to move between the parts.

Hence, each fixed vertex f 0
i of which ancestor supervertex in the m-th level is fm

i

ends up in part V0
k =Vkm if and only if fm

i ∈Fk.

8.5 Experiments

8.5.1 Experimental Platform

In the experiments, a Pentium IV 3.00 GHz PC, which has 1 GB of main memory,

512 KB of L2 cache, and 8 KB of L1 cache, is used. As the operating system,

Mandrake Linux, version 13 is installed. All algorithms are implemented in C

and are compiled in gcc with -O3 optimization option. Due to the randomized

nature of some of the heuristics, the results are reported by averaging the values

obtained in 20 different runs, each randomly seeded.

The hypergraphs used in the experiments are obtained from the University

of Florida Sparse Matrix Collection [47]. These hypergraphs are originally in the

form of sparse matrices that are used in various problems, emerging in different

domains of scientific computing. The properties of the hypergraphs, obtained

by converting these matrices, are given in Table 8.1, where the hypergraphs are

sorted in increasing order of the number of pins. In all hypergraphs, the number

of nets equals the number of cells and the average cell degree equals the average

net size since all matrices are square matrices. Among these datasets, Hamrle3,

cage13, and pre2 datasets are partitioned on a 2 GB PC, all other parameters

remaining the same, since the internal data structures maintained during the

partitioning do not fit into the main memory. In the following sections and

tables, we refer to PaToH and the proposed algorithm K-PaToH as R-P and K-P,

respectively.

In all tables, the minimum cutsizes (Costmin) and average cutsizes (Costavr)

achieved by both partitioners are reported over all datasets together with their



CHAPTER 8. K-PATOH HYPERGRAPH PARTITIONING TOOLKIT 140

Table 8.1: Properties of the datasets used in the experiments

Number Number Average
Dataset of vertices of pins net size
dawson5 51,537 1,010,777 19.61
language 399,130 1,216,334 3.05
Lin 256,000 1,766,400 6.90
poisson3Db 85,623 2,374,949 27.74
helm2d03 392,257 2,741,935 6.99
stomach 213,360 3,021,648 14.16
barrier2-1 113,076 3,805,068 33.65
Hamrle3 1,447,360 5,514,242 3.81
pre2 659,033 5,959,282 9.04
cage13 445,135 7,479,343 16.80
hood 220,542 10,768,436 48.83
bmw3 2 227,362 11,288,630 49.65

average partitioning times (T imeavr), for changing number K of parts, where

K∈{32, 64, 128, 256}. The rightmost two columns in all tables show the percent

average cutsize improvement (%Icost) and the speedup improvement (Itime) of

K-P over R-P. The averages over all datasets are displayed as a separate entry

at the bottom of the tables. Unless otherwise stated, the number of K-way

refinement passes in K-P is set to 3 in the experiments. In single-constraint

partitioning, weight w1(vi) of a vertex vi is set equal to its vertex degree d(vi),

i.e., w1(vi) = d(vi). In all experiments, the allowed load imbalance threshold is

set to 0.10.

8.5.2 Experiments on Partitioning Quality and Perfor-
mance

Table 8.2 displays the performance comparison of R-P and K-P on a variety of

hypergraphs with a single partitioning constraint and no fixed vertices. According

to the averages over all datasets, as K increases, K-P begins to perform better in

reducing the average cutsize. The percent average cutsize improvement of 4.60%

at K = 32 rises to 6.23% at K = 256. Although not displayed in the table, on

the average, a similar behavior is observed in the improvement of K-P over R-P
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in the minimum cutsizes achieved. A slight decrease is observed in the speedups

K-P obtains as K increases. However, even at K = 256 vertex parts, K-P runs

almost twice faster than R-P.

According to Table 8.2, except for a single case (the language dataset with

K =32), K-P achieves cutsize values lower than those of R-P at all datasets and

K values. In general, K-P performs relatively better in reducing the cutsize on

hypergraphs having net sizes between 6 and 20. This is expected since R-P is

known to be already very effective in partitioning hypergraphs with low net sizes

(e.g., language and Hamrle3). On the other hand, in partitioning hypergraphs

with large net sizes (e.g., barrier2-1, bmw3 2), the partitioners begin to display

a close performance in minimizing the cutsize since the solution space of the

partitioning problem is restricted as the nets are highly connected to the parts

and the FM-based heuristics perform poorly.

Table 8.3 shows the behavior of K-P with increasing number of K-way refine-

ment passes. The values reported are averages over all datasets. According to

the results in this table, with number of refinement passes greater than 3, the

improvement of K-P over the cutsize and hence on R-P becomes marginal com-

pared to the performance of 3-pass refinement. A similar saturation is observed

at the decrease in the speedups as the number of refinement passes go beyond 3

passes. This is basically due to fact that our FM-based refinement heuristic is

trapped in a local minima after a few refinement passes and perform relatively

few vertex moves as the number of passes increases.

8.5.3 Experiments on Multi-constraint Partitioning

Tables 8.4 and 8.5 show the performance of R-P and K-P in partitioning hy-

pergraphs with multiple constraints (2 and 4 constraints, respectively). In the

2-constraint case, a unit weight of 1 is used as the second vertex weight for all

vertices, i.e., w2(vi) = 1. In addition to this, in the 4-constraint case, a ran-

dom weight w3(vi) = αi, where 1 ≤ αi ≤ w1(vi)−1, and w4(vi) = w1(vi)−αi are

respectively used as the third and fourth vertex weights.
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Table 8.2: Performance of PaToH and K-PaToH in partitioning hypergraphs with
a single partitioning constraint and no fixed vertices

Costmin Costavr T imeavr Improvements
Dataset K R-P K-P R-P K-P R-P K-P %Icost Itime

dawson5 32 6,959 6,432 7,468 6,761 1.524 0.611 9.46 2.50
64 11,293 10,117 11,907 10,734 1.809 0.784 9.85 2.31
128 19,058 17,328 19,393 17,948 2.099 1.045 7.45 2.01
256 29,655 28,160 30,351 28,634 2.380 1.411 5.66 1.69

language 32 94,210 94,393 95,399 96,047 12.266 8.833 -0.68 1.39
64 107,299 106,670 108,432 107,467 13.064 9.033 0.89 1.45
128 119,636 118,406 120,234 119,398 13.835 9.098 0.70 1.52
256 131,251 130,358 131,690 130,939 14.489 9.484 0.57 1.53

Lin 32 49,458 43,848 50,800 44,629 5.763 4.190 12.15 1.38
64 68,994 60,022 70,645 60,827 6.632 4.927 13.90 1.35
128 91,701 80,076 93,622 80,638 7.471 5.868 13.87 1.27
256 119,529 105,324 121,346 106,016 8.327 7.195 12.63 1.16

poisson3Db 32 40,599 38,767 41,759 39,891 9.358 5.904 4.47 1.59
64 59,198 56,362 60,013 58,422 10.407 6.783 2.65 1.53
128 84,630 82,377 86,118 83,930 11.366 7.635 2.54 1.49
256 121,733 115,931 123,051 117,988 12.240 8.509 4.11 1.44

helm2d03 32 13,016 12,350 13,591 12,904 7.689 2.713 5.06 2.83
64 19,677 18,689 20,251 19,237 8.757 3.073 5.01 2.85
128 29,169 27,665 29,696 28,104 9.801 3.577 5.36 2.74
256 42,763 40,682 43,079 41,033 10.850 4.405 4.75 2.46

stomach 32 26,231 25,559 27,054 26,048 6.635 2.899 3.72 2.29
64 37,885 36,784 38,918 37,207 7.795 3.567 4.40 2.19
128 54,651 52,313 55,370 52,877 8.968 4.467 4.50 2.01
256 78,289 74,556 79,143 75,540 10.156 5.832 4.55 1.74

barrier2-1 32 52,877 52,326 53,560 53,349 9.797 5.244 0.39 1.87
64 73,864 72,411 75,037 74,212 11.135 6.016 1.10 1.85
128 102,750 100,657 104,035 101,856 12.406 6.821 2.09 1.82
256 142,833 137,521 143,995 138,345 13.526 7.832 3.92 1.73

Hamrle3 32 35,728 35,282 36,814 36,397 21.190 8.483 1.13 2.50
64 52,475 51,202 53,770 52,886 24.201 9.502 1.64 2.55
128 75,818 74,038 76,851 74,919 26.802 10.934 2.51 2.45
256 106,555 105,708 107,983 106,746 29.187 13.150 1.15 2.22

pre2 32 82,591 76,032 85,456 81,395 24.406 12.373 4.75 1.97
64 108,714 101,718 112,486 105,741 28.484 14.123 6.00 2.02
128 139,605 121,934 143,879 125,652 32.250 15.309 12.67 2.11
256 177,310 139,790 183,037 143,673 35.702 16.843 21.51 2.12

cage13 32 369,330 341,229 373,617 346,002 45.887 36.711 7.39 1.25
64 490,789 454,279 497,744 457,420 51.035 40.941 8.10 1.25
128 643,278 585,036 647,609 590,801 55.754 44.854 8.77 1.24
256 824,294 749,580 829,962 754,873 59.928 48.690 9.05 1.23

hood 32 22,799 22,260 24,392 23,541 15.693 4.704 3.49 3.34
64 37,877 37,072 39,855 38,583 18.383 5.375 3.19 3.42
128 60,039 57,183 61,087 58,525 20.983 6.137 4.19 3.42
256 91,007 86,758 92,367 87,794 23.515 7.384 4.95 3.18

bmw3 2 32 29,861 28,113 31,129 29,922 15.383 4.773 3.88 3.22
64 44,208 43,433 45,376 44,897 18.150 5.409 1.06 3.36
128 65,752 64,325 67,551 66,304 20.853 6.270 1.85 3.33
256 100,504 98,773 102,548 100,562 23.454 7.706 1.94 3.04

average 32 68,638 64,716 70,087 66,407 14.632 8.120 4.60 2.18
64 92,689 87,397 94,536 88,969 16.654 9.128 4.82 2.18
128 123,841 115,112 125,454 116,746 18.549 10.168 5.54 2.12
256 163,810 151,095 165,713 152,678 20.313 11.537 6.23 1.96
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Table 8.3: Performance of PaToH and K-PaToH with increasing number of K-way
refinement passes

Costmin Costavr T imeavr Improvements
Pass K R-P K-P R-P K-P R-P K-P %Icost Itime

1 32 68,638 66,451 70,087 68,168 14.632 5.714 2.06 2.77
64 92,689 89,587 94,536 91,239 16.654 6.202 2.37 2.89
128 123,841 118,088 125,454 119,685 18.549 6.783 2.94 2.91
256 163,810 154,874 165,713 156,610 20.313 7.663 3.66 2.75

2 32 68,638 65,180 70,087 66,894 14.632 6.982 4.11 2.40
64 92,689 87,509 94,536 89,489 16.654 7.717 4.43 2.45
128 123,841 115,750 125,454 117,305 18.549 8.553 5.07 2.41
256 163,810 151,833 165,713 153,719 20.313 9.716 5.63 2.25

3 32 68,638 64,716 70,087 66,407 14.632 8.120 4.60 2.18
64 92,689 87,397 94,536 88,969 16.654 9.128 4.82 2.18
128 123,841 115,112 125,454 116,746 18.549 10.168 5.54 2.12
256 163,810 151,095 165,713 152,678 20.313 11.537 6.23 1.96

4 32 68,638 64,750 70,087 66,383 14.632 9.038 4.70 2.05
64 92,689 86,834 94,536 88,674 16.654 10.251 5.12 2.03
128 123,841 115,012 125,454 116,508 18.549 11.515 5.68 1.95
256 163,810 150,619 165,713 152,245 20.313 13.126 6.49 1.79

5 32 68,638 64,587 70,087 66,333 14.632 9.429 4.86 2.01
64 92,689 87,293 94,536 88,731 16.654 10.776 5.21 1.98
128 123,841 115,075 125,454 116,402 18.549 12.279 5.77 1.88
256 163,810 150,748 165,713 152,148 20.313 14.091 6.56 1.72

The performance results of K-P, provided in Tables 8.4 and 8.5, are quite

impressive. The cutsize improvement of K-P over R-P goes up to 48.84% at the

2-constraint case and up to 65.91% at the 4-constraint case. Comparison of the

two tables show that increasing number of partitioning constraints favor the K-P

partitioner. In general, the performance gap between K-P and R-P in reducing

the cutsize decreases with increasing K. The speedups, although being slightly

smaller, are close to the speedups at the single-constraint case.

8.5.4 Experiments on Partitioning with Fixed Vertices

In experiments on partitioning hypergraphs with fixed vertices, instead of us-

ing hypergraphs with synthetically generated fixed vertices, we use hypergraphs

emerging in a real-life problem [23]. The properties of the hypergraphs are given

in Table 8.6. In naming the datasets, the numbers after the dash indicate the

number of fixed vertices in the hypergraph, e.g., there are 32 fixed vertices in the

BF-32 dataset. In CC datasets, the net sizes are rather uniform, whereas, in BF

and OP datasets, net sizes show high variation.
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Table 8.4: Performance of PaToH and K-PaToH in partitioning hypergraphs with
two partitioning constraints

Costmin Costavr T imeavr Improvements
Dataset K R-P K-P R-P K-P R-P K-P %Icost Itime

dawson5 32 11,294 7,634 12,598 6,761 1.418 0.623 46.33 2.28
64 18,342 12,497 19,446 10,734 1.673 0.805 44.80 2.08
128 28,382 20,902 30,553 17,948 1.919 1.066 41.26 1.80
256 45,929 34,308 48,331 28,634 2.142 1.412 40.76 1.52

language 32 110,620 100,395 114,748 96,047 10.342 8.791 16.30 1.18
64 124,426 112,789 127,849 107,467 11.024 8.827 15.94 1.25
128 135,843 123,819 140,173 119,398 11.742 8.806 14.82 1.33
256 149,615 138,716 154,821 130,939 12.159 9.138 15.43 1.33

Lin 32 60,912 44,495 62,727 44,629 5.060 4.114 28.85 1.23
64 84,861 61,314 86,483 60,827 5.805 4.818 29.67 1.20
128 114,890 82,478 117,727 80,638 6.509 5.705 31.50 1.14
256 151,652 108,555 153,346 106,016 7.177 6.905 30.86 1.04

poisson3Db 32 47,813 40,780 50,122 39,891 8.138 5.803 20.41 1.40
64 71,849 58,438 74,269 58,422 9.099 6.556 21.34 1.39
128 104,590 85,151 108,143 83,930 9.964 7.374 22.39 1.35
256 152,908 122,024 154,651 117,988 10.703 8.174 23.71 1.31

helm2d03 32 21,292 13,162 22,531 12,904 6.491 2.734 42.73 2.37
64 30,305 20,022 32,557 19,237 7.384 3.075 40.91 2.40
128 44,819 29,556 46,078 28,104 8.240 3.574 39.01 2.31
256 62,859 42,878 64,195 41,033 9.046 4.378 36.08 2.07

stomach 32 34,168 26,837 35,787 26,048 6.051 2.933 27.21 2.06
64 48,082 38,765 49,632 37,207 7.088 3.591 25.03 1.97
128 66,512 54,766 68,199 52,877 8.115 4.443 22.47 1.83
256 92,662 78,182 95,056 75,540 9.128 5.751 20.53 1.59

barrier2-1 32 63,376 56,223 65,498 53,349 8.711 5.324 18.55 1.64
64 89,650 80,323 92,626 74,212 9.876 6.131 19.88 1.61
128 125,234 111,692 127,423 101,856 10.949 6.961 20.06 1.57
256 171,482 154,422 177,107 138,345 11.922 7.860 21.89 1.52

Hamrle3 32 49,678 37,634 54,846 36,397 19.498 8.711 33.64 2.24
64 66,303 53,531 74,097 52,886 22.257 9.710 28.63 2.29
128 94,701 77,481 99,669 74,919 24.763 11.178 24.83 2.22
256 132,449 109,189 135,964 106,746 27.072 13.269 21.49 2.04

pre2 32 106,199 85,119 114,920 81,395 22.688 12.797 29.17 1.77
64 139,973 116,133 155,620 105,741 26.474 14.592 32.05 1.81
128 200,692 165,845 207,614 125,652 29.936 16.547 39.48 1.81
256 270,510 214,387 280,857 143,673 33.100 18.784 48.84 1.76

cage13 32 432,428 365,497 443,298 346,002 37.214 36.594 21.95 1.02
64 568,292 485,559 582,279 457,420 41.490 40.624 21.44 1.02
128 736,109 631,638 746,979 590,801 45.307 44.403 20.91 1.02
256 942,314 825,861 957,385 754,873 48.754 48.137 21.15 1.01

hood 32 30,184 24,535 32,279 23,541 14.767 4.779 27.07 3.09
64 48,580 40,957 50,910 38,583 17.206 5.371 24.21 3.20
128 73,857 62,461 76,913 58,525 19.544 6.197 23.91 3.15
256 112,224 94,017 114,197 87,794 21.818 7.458 23.12 2.93

bmw3 2 32 42,905 31,633 45,457 29,922 14.068 4.865 34.18 2.89
64 60,947 49,431 65,546 44,897 16.512 5.556 31.50 2.97
128 94,851 74,680 101,070 66,304 18.881 6.470 34.40 2.92
256 148,610 115,287 157,599 100,562 21.160 7.975 36.19 2.65

average 32 84,239 69,495 87,901 66,407 12.870 8.172 21.60 1.93
64 112,634 94,147 117,610 88,969 14.657 9.138 20.87 1.93
128 151,707 126,706 155,878 116,746 16.322 10.227 19.48 1.87
256 202,768 169,819 207,792 152,678 17.849 11.603 19.24 1.73
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Table 8.5: Performance of PaToH and K-PaToH in partitioning hypergraphs with
four partitioning constraints

Costmin Costavr T imeavr Improvements
Dataset K R-P K-P R-P K-P R-P K-P %Icost Itime

dawson5 32 13,737 7,479 14,781 8,595 1.439 0.634 41.85 2.27
64 19,318 12,836 22,841 14,009 1.692 0.833 38.67 2.03
128 33,860 22,562 36,084 24,111 1.941 1.113 33.18 1.74
256 51,794 37,858 56,280 40,004 2.161 1.482 28.92 1.46

language 32 139,353 100,125 141,895 106,155 9.580 8.628 25.19 1.11
64 148,714 113,142 151,633 114,905 10.229 9.077 24.22 1.13
128 156,375 126,121 163,899 128,114 10.842 9.254 21.83 1.17
256 165,782 141,905 175,689 145,975 11.365 10.214 16.91 1.11

Lin 32 91,234 44,258 98,966 46,483 5.019 4.190 53.03 1.20
64 120,349 62,016 125,700 63,252 5.730 4.866 49.68 1.18
128 152,362 83,103 157,968 84,056 6.399 5.769 46.79 1.11
256 187,114 109,672 192,952 110,519 7.031 6.964 42.72 1.01

poisson3Db 32 64,204 40,377 72,387 43,176 8.029 5.904 40.35 1.36
64 92,385 59,990 95,745 62,535 8.965 6.698 34.69 1.34
128 124,979 87,268 129,528 89,103 9.775 7.473 31.21 1.31
256 170,152 124,145 175,514 126,705 10.496 8.232 27.81 1.27

helm2d03 32 24,307 13,598 27,429 14,471 6.701 2.775 47.24 2.41
64 37,354 20,367 38,828 21,416 7.642 3.126 44.84 2.44
128 51,410 30,162 53,462 31,025 8.541 3.632 41.97 2.35
256 69,835 44,232 73,373 44,884 9.420 4.456 38.83 2.11

stomach 32 47,275 26,226 51,908 27,929 6.038 2.939 46.20 2.05
64 65,598 38,703 69,666 40,270 7.063 3.598 42.20 1.96
128 85,852 55,648 89,528 57,133 8.092 4.488 36.18 1.80
256 115,517 80,572 118,783 81,994 9.097 5.859 30.97 1.55

barrier2-1 32 87,700 57,049 93,946 60,022 8.633 5.379 36.11 1.60
64 113,469 80,514 121,148 84,081 9.817 6.202 30.60 1.58
128 150,990 113,807 159,412 117,184 10.841 7.037 26.49 1.54
256 203,583 162,242 208,792 166,821 11.864 8.004 20.10 1.48

Hamrle3 32 105,671 37,739 115,453 39,363 20.145 8.757 65.91 2.30
64 139,438 55,051 146,122 56,319 22.900 9.774 61.46 2.34
128 175,186 76,982 181,742 79,888 25.409 11.309 56.04 2.25
256 216,312 110,452 222,124 111,526 27.646 13.396 49.79 2.06

pre2 32 222,989 88,477 240,992 94,414 21.903 13.034 60.82 1.68
64 280,190 117,452 288,496 129,519 25.308 15.029 55.11 1.68
128 333,089 176,258 349,267 197,127 28.463 17.111 43.56 1.66
256 407,435 253,799 418,959 261,323 31.515 19.693 37.63 1.60

cage13 32 734,084 372,888 780,736 385,673 34.957 36.751 50.60 0.95
64 881,612 496,551 928,273 508,647 38.757 40.919 45.21 0.95
128 1,040,360 638,553 1,073,786 654,367 42.286 44.491 39.06 0.95
256 1,222,315 832,409 1,257,893 847,588 45.385 48.550 32.62 0.93

hood 32 46,844 25,949 50,503 27,636 14.786 4.837 45.28 3.06
64 68,600 42,308 74,043 44,073 17.212 5.394 40.48 3.19
128 97,104 63,014 102,604 66,595 19.536 6.226 35.09 3.14
256 140,910 97,867 145,102 100,287 21.798 7.553 30.88 2.89

bmw3 2 32 56,881 33,912 64,026 35,698 14.105 4.884 44.24 2.89
64 83,150 51,557 89,492 54,284 16.518 5.641 39.34 2.93
128 116,628 75,985 127,693 82,191 18.853 6.618 35.63 2.85
256 177,088 121,710 185,200 127,319 21.093 8.167 31.25 2.58

average 32 136,190 70,673 146,085 74,135 12.611 8.226 46.40 1.91
64 170,848 95,874 179,332 99,443 14.319 9.263 42.21 1.90
128 209,850 129,122 218,748 134,241 15.915 10.377 37.25 1.82
256 260,653 176,405 269,222 180,412 17.406 11.881 32.37 1.67
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Table 8.6: Properties of the hypergraphs used in the experiments on partitioning
hypergraphs with fixed vertices

Number Number Number
Dataset of vertices of nets of pins
BF-32 28,930 4,800 688,018
BF-64 28,962 9,600 930,412
BF-128 29,026 19,200 1,335,049
CC-32 56,374 4,800 1,133,858
CC-64 56,406 9,600 1,472,295
CC-128 56,470 19,200 2,094,107
OP-32 68,190 4,800 1,276,595
OP-64 68,222 9,600 1,629,169
OP-128 68,286 19,200 1,924,807

Table 8.7 illustrates the performance results obtained in partitioning hyper-

graphs with fixed vertices. In general, K-P shows better performance compared

to R-P as the number of parts increases and the number of fixed vertices de-

creases. This is due the fact that the disability of R-P to recursively bisect fixed

vertices between two parts becomes more apparent if the number of fixed vertices

per part is high. In general, compared to R-P, the relative performance of K-P

in minimizing the cutsize is better in BF and OP datasets, which are irregular in

terms of the net sizes.

8.6 Conclusions

We proposed a new multi-level hypergraph partitioning algorithm based on direct

K-way refinement. We also provided extensions of this algorithm for partitioning

hypergraphs with multiple constraints and fixed vertices. The experiments con-

ducted on benchmark datasets indicate that the proposed technique is rather fast

and effective in optimizing the partitioning objective compared to the existing

hypergraph partitioning algorithms. Especially, in the multi-constraint and fixed

vertices domain, the obtained results are quite promising in terms of both exe-

cution time and solution quality. We believe the proposed work is beneficial in

that it will enable better solution qualities to be found in many research problems
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Table 8.7: Performance of PaToH and K-PaToH in partitioning hypergraphs with
fixed vertices

Costmin Costavr T imeavr Improvements
Dataset K R-P K-P R-P K-P R-P K-P %Icost Itime

BF-32 32 9,474 7,504 9,639 7,596 5.394 1.971 21.20 2.74
64 11,343 9,487 11,799 9,611 5.906 2.110 18.54 2.80
128 14,962 12,706 15,212 12,922 6.309 2.343 15.05 2.69

BF-64 32 17,790 13,561 18,625 13,726 5.152 2.022 26.30 2.55
64 21,473 16,462 22,010 16,895 5.726 2.245 23.24 2.55
128 25,548 21,261 26,406 21,642 6.284 2.483 18.04 2.53

BF-128 32 34,522 24,283 35,751 24,558 5.770 2.591 31.31 2.23
64 39,837 28,791 41,521 29,333 6.569 2.833 29.36 2.32
128 47,448 36,129 48,652 36,539 7.006 3.141 24.90 2.23

CC-32 32 9,534 8,530 9,668 8,595 4.865 2.173 11.10 2.24
64 12,608 10,990 12,927 11,080 5.547 2.352 14.29 2.36
128 17,635 14,788 17,873 14,925 6.172 2.604 16.49 2.37

CC-64 32 17,466 15,384 17,952 15,503 4.623 2.516 13.64 1.84
64 21,397 19,107 21,740 19,255 5.344 2.893 11.43 1.85
128 28,088 24,839 28,729 25,032 6.012 3.117 12.87 1.93

CC-128 32 33,201 28,705 34,298 29,001 5.407 3.495 15.44 1.55
64 40,036 34,959 40,677 35,282 6.233 3.960 13.26 1.57
128 49,454 43,973 50,315 44,232 6.965 4.275 12.09 1.63

OP-32 32 8,717 6,899 8,935 7,009 18.714 6.188 21.56 3.02
64 10,367 8,568 10,804 8,650 19.485 6.408 19.93 3.04
128 13,155 11,197 13,463 11,292 21.275 6.672 16.13 3.19

OP-64 32 15,693 12,529 16,402 12,659 17.462 5.881 22.82 2.97
64 18,823 14,972 19,399 15,185 19.317 6.173 21.72 3.13
128 22,972 18,760 23,404 19,004 20.020 6.541 18.80 3.06

OP-128 32 30,418 22,551 31,076 22,688 13.119 4.991 26.99 2.63
64 34,735 26,117 35,157 26,519 14.981 5.296 24.57 2.83
128 39,643 31,695 40,642 32,066 16.047 5.770 21.10 2.78

formulated as a hypergraph partitioning problem.



Chapter 9

Conclusions and Future Work

Despite the vast amount of both theoretical and practical research on information

retrieval, the search problem is still far from being solved. In this thesis, we

aimed to put just another small brick into the wall of research on information

retrieval. In particular, we proposed models and algorithms for efficient parallel

text retrieval. First, we presented a model based on hypergraph partitioning for

data-parallel Web crawling. The proposed model proved to be quite successful in

minimizing the inter-processor communication overheads during the link exchange

in data-parallel Web crawling systems. Second, we developed two different models

for inverted index partitioning on shared-nothing parallel text retrieval systems.

The theoretical results indicate that the proposed inverted index partitioning

models are quite successful in obtaining an effective utilization of system resources

during the query processing. Third, we proposed, implemented, and evaluated

a high number of query processing algorithms for ranking-based text retrieval

systems. Finally, we developed four software systems as a practical outcome: the

Skynet parallel text retrieval system, the SE4SEE search engine, the Harbinger

text classification system, and the K-PaToH hypergraph partitioning toolkit.

We currently conduct studies to evaluate the performance of the proposed

Web crawling model in practice. For this purpose, we have started a large crawl

of the Turkish Web space, which will form a valuable dataset to be used in our

experiments. Developing models for distributed crawling architectures is among

our future plans. We have also been working on different formulations for the

148
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inverted index partitioning problem, in which the previous query logs will be

utilized in order to incorporate this information into the partitioning.



Bibliography

[1] Alpert, C. J., Caldwell, A. E., Kahng, A. B., & Markov, I. L.

(2000). Hypergraph partitioning with fixed vertices. IEEE Transactions

on Computer-Aided Design, 19(1-2), 267–272.

[2] Alpert, C. J., & Kahng, A. B. (1995). Recent directions in netlist parti-

tioning: a survey. VLSI Journal, 19(1-2), 1–81.

[3] Altingovde, I. S., & Ulusoy, O. (2004). Exploiting interclass rules for fo-

cused crawling. IEEE Intelligent Systems, 19, 66–73.

[4] Androutsopulos, I., Koutsias, J., Chandrinos, K. V., & Spyropulos, C.

D. (2000). An experimental comparison of naive Bayesian and keyword-

based anti-spam filtering with personal e-mail messages. In Proceedings of

the 23rd Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (pp. 160–167). Athens, Greece.

[5] Arasu, A., Cho, J., Garcia-Molina, H., & Raghavan, S. (2001). Searching

the web. ACM Transactions on Internet Technologies, 1(1), 2–43.

[6] Aykanat, C., Cambazoglu, B. B., & Ucar B. Multi-level hypergraph par-

titioning with multiple constraints and fixed vertices. To be submitted to

Journal of Parallel and Distributed Computing.

[7] Aykanat, C., Pinar, A., & Catalyurek, U. V. (2004). Permuting sparse

rectangular matrices into block-diagonal form. SIAM Journal of Scientific

Computing, 25(6), 1860–1879.

[8] Baeza-Yates, R., Castillo, C., Marin, M., & Rodriguez, A. (2005). Crawling

a country: better strategies than breadth-first for web page ordering. In

150



BIBLIOGRAPHY 151

Special Interest Tracks and Posters of the 14th International World Wide

Web Conference. Chiba, Japan.

[9] Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval.

New York: Addison-Wesley.

[10] Bender, M., Michel, S., Triantafillou, P., Weikum, G., & Zimmer, C.

(2005). Improving collection selection with overlap awareness in P2P

search engines. In Proceedings of the 28th Annual International ACM SI-

GIR Conference on Research and Development in Information Retrieval

(pp. 67–74). Salvador, Brazil.

[11] Bell, T. C., Moffat, A., Nevill-Manning, C. G., Witten, I. H., & Zobel,

J. (1993). Data compression in full-text retrieval systems. Journal of the

American Society for Information Science, 44(9), 508–531.

[12] Berge, C. (1973). Graphs and hypergraphs. North-Holland Publishing

Company.

[13] Bisseling, R. H., Byrka, J., Cerav-Erbas, S., Gvozdenovic, N., Lorenz,

M., Pendavingh, R., Reeves, C., Roger, M., & Verhoeven, A. (2005). Par-

titioning a call graph. Second International Workshop on Combinatorial

Scientific Computing. Toulouse, France.

[14] Bohannon, P., Mcllroy, P., & Rastogi, R. (2001). Main-memory index

structures with fixed-size partial keys. ACM SIGMOD Record, 30(2), 163–

174.

[15] Boldi, P., Codenotti, B., Santini, M., & Vigna, S. (2004). Ubicrawler: a

scalable fully distributed Web crawler. Software Practice & Experience,

34(8), 711–726.

[16] Buckley, C., & Lewit, A. (1985). Optimizations of inverted vector searches.

In Proceedings of the 8th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (pp. 97–110). Mon-

treal, Canada.



BIBLIOGRAPHY 152

[17] Burns, G., Daoud, R., & Vaigl, J. (1994). LAM: an open cluster environ-

ment for MPI. In Proceedings of the Supercomputing Symposium (pp. 379–

386). Toronto, Canada.

[18] Cambazoglu, B. B., & Aykanat, C. (2006). Performance of query process-

ing implementations in ranking-based text retrieval systems using inverted

indices. Information Processing & Management, 42(4), 875–898.

[19] Cambazoglu, B. B., Turk, A., Karaca, E., Aykanat, C., Ucar, B., & Ku-

cukyilmaz, T. (2005). SE4SEE: a grid-enabled search engine for South-

East Europe. In Proceedings of the Hypermedia and Grid Systems Confer-

ence (pp. 223–227). Opatija, Croatia.

[20] Cambazoglu, B. B., & Aykanat, C. (2005). Harbinger machine learning

toolkit manual. Technical Report, BU-CE-0502, Bilkent University, De-

partment of Computer Engineering. Ankara, Turkey.

[21] Cambazoglu, B. B., Turk, A, & Aykanat, C. (2004). Data-parallel Web

crawling models. Lecture Notes in Computer Science, 3280, 801–809.

[22] Cambazoglu, B. B., & Aykanat, C. (2003). Image-space-parallel direct

volume rendering on a cluster of PCs. Lecture Notes in Computer Science,

2869, 457–464.

[23] Cambazoglu, B. B., & Aykanat, C. Hypergraph-partitioning-based remap-

ping models for image-space-parallel direct volume rendering of unstruc-

tured grids. Accepted for publication in the IEEE Transactions on Parallel

and Distributed Systems.

[24] Cambazoglu, B. B., Karaca, E., Kucukyilmaz, T., Turk, A., & Aykanat,

C. Architecture of a grid-enabled search engine. Submitted to Informa-

tion Processing & Management, the Special Issue on Heterogeneous and

Distributed Information Retrieval.

[25] Cambazoglu, B. B., & Aykanat, C. Inverted index partitioning models

based on hypergraph partitioning. Unpublished manuscript.



BIBLIOGRAPHY 153

[26] Cambazoglu, B. B., Catal, A., & Aykanat, C. Effect of inverted index

partitioning schemes on performance of query processing in parallel text

retrieval systems. Unpublished manuscript.

[27] Cambazoglu, B. B., & Aykanat, C. Simulating parallel text retrieval sys-

tems. Unpublished manuscript.

[28] Cambazoglu, B. B., Kucukyilmaz, T., & Aykanat, C. Dialog mining: ex-

traction of speaker and dialog attributes from text-based human conver-

sations. Unpublished manuscript.

[29] Cambazoglu, B. B., & Aykanat, C. Automatic text categorization on Turk-

ish text documents. Unpublished manuscript.

[30] Can, F., Altingovde, I. S., & Demir, E. (2004). Efficiency and effectiveness

of query processing in cluster-based retrieval. Information Systems, 29(8),

697–717.

[31] Catalyurek, U. V., & Aykanat, C. (2001). A fine-grain hypergraph model

for 2D decomposition of sparse matrices. In Proceedings of the 15th Inter-

national Parallel & Distributed Processing Symposium (p. 118).

[32] Catalyurek, U. V., & Aykanat, C. (2001). A hypergraph-partitioning

approach for coarse-grain decomposition. In Proceedings of the 2001

ACM/IEEE Conference on Supercomputing (p. 28).

[33] Catalyurek, U. V., & Aykanat, C. (1999). PaToH: partitioning tool for

hypergraphs. Technical Report, Department of Computer Engineering,

Bilkent University.

[34] Catalyurek, U. V., & Aykanat, C. (1999). Hypergraph-partitioning-

based decomposition for parallel sparse-matrix vector multiplication. IEEE

Transactions on Parallel and Distributed Systems, 10(7), 673–693.

[35] Chakrabarti, S., van den Berg, M., & Dom, B. (1999). Focused crawl-

ing: A new approach to topic-specific Web resource discovery. Computer

Networks, 31(11-16), 1623–1640.



BIBLIOGRAPHY 154

[36] Chakrabarti, S., Dom, B. E., Agrawal, R., & Raghavan, P. (1998). Scal-

able feature selection, classification and signature generation for organiz-

ing large text databases into hierarchical topic taxonomies. The VLDB

Journal, 7(3), 163–178.

[37] Chang, C., Kurc, T. M., Sussman, A., Catalyurek, U. V., & Saltz, J.

H. (2001). A hypergraph-based workload partitioning strategy for parallel

data aggregation. SIAM Conference on Parallel Processing for Scientific

Computing. Portsmouth, Virginia.

[38] Chartrand, G., & Oellermann, O. R. (1993). Applied and algorithmic

graph theory. McGraw-Hill.

[39] Cho, J., & Garcia-Molina, H. (2002). Parallel Crawlers. In Proceedings of

the Eleventh International World Wide Web Conference (pp. 124–135).

Honolulu, Hawaii.

[40] Cho, J., & Garcia-Molina, H. (2000). The evolution of the web and impli-

cations for an incremental crawler. In Proceedings of the 26th International

Conference on Very Large Data Bases (pp. 200–209). Cairo, Egypt.

[41] Cho, J., Garcia-Molina, H., & Page, L. (1998). Efficient crawling through

URL ordering. In Proceedings of the 7th International World Wide Web

Conference (pp. 161–172). Brisbane, Australia.

[42] Clarke, C. L. A., Cormack, G. V., & Tudhope, E. A. (2000). Relevance

ranking for one to three term queries. Information Processing and Man-

agement, 36(2), 291–311.

[43] Clifton, C., Cooley, R., & Rennie, J. (2004). TopCat: data mining for topic

identification in a text corpus. IEEE Transactions on Knowledge and Data

Engineering, 16(8), 949–964.

[44] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Intro-

duction to algorithms (2nd ed.). Cambridge, MA: MIT Press.



BIBLIOGRAPHY 155

[45] Croft, W. B., & Savino, P. (1988). Implementing ranking strategies using

text signatures. ACM Transactions on Office Information Systems, 6(1),

42–62.

[46] Dasdan, A., & Aykanat, C. (1997). Two novel multiway circuit partition-

ing algorithms using relaxed locking. IEEE Transactions Computer-Aided

Design of Integrated Circuits and Systems, 16(2), 169–178.

[47] Davis, T. (1997). University of Florida sparse matrix collection (http:

//www.cise.ufl.edu/research/sparse/matrices. NA Digest, 97(23).

[48] Demir, E., Aykanat, C., & Cambazoglu, B. B. Clustering spatial networks

for aggregate query processing: a hypergraph approach. Submitted to In-

formation Systems.

[49] Diao, Y., Lu, H., & Wu, D. (2000). A comparative study of classification-

based personal e-mail filtering. In Proceedings of the 4th Pacific-Asia Con-

ference on Knowledge Discovery and Data Mining (pp. 408–419). Kyoto,

Japan.

[50] Diligenti, M., Coetzee, F., Lawrence, S., Giles, C. L., & Gori, M. (2000).

Focused crawling using context graphs. In Proceedings of the 26th Interna-

tional Conference on Very Large Data Bases (pp. 527–534). Cairo, Egypt.

[51] Dingle, N. J., Harrison, P. G., & Knottenbelt, W. J. (2004). Uniformiza-

tion and hypergraph partitioning for the distributed computation of re-

sponse time densities in very large Markov models. Journal of Parallel and

Distributed Computing, 64(8), 908–920.

[52] Elmasri, R., & Navathe, S. (2003). Fundamentals of database systems (4th

ed.). Reading, MA: Addison-Wesley.

[53] Fiduccia, C. M., & Mattheyses, R. M. (1982). A linear-time heuristic for

improving network partitions. Proceedings of the 19th ACM/IEEE Design

Automation Conference (pp. 175–181). Piscataway, NJ.



BIBLIOGRAPHY 156

[54] Field, B. (1975). Towards automatic indexing: automatic assignment of

controlled-language indexing and classification from free indexing. Journal

of Documentation, 31(4), 246–265.

[55] Forsyth, R. S. (1999). New directions in text categorization. In Causal

Models and Intelligent Data Management (pp. 151–185). Heidelberg, Ger-

many.

[56] Foster, I., & Kesselman, C. (2003). The grid 2: Blueprint for a new com-

puting infrastructure. San Francisco: Morgan Kaufmann.

[57] Frakes, W. B., & Baeza-Yates, R. (1992). Information retrieval: Data

structures and algorithms. Englewood Cliffs, NJ: Prentice Hall.

[58] Gale, W. A., Church, K. W., & Yarowsky, D. (1993). A method for dis-

ambiguating word senses in a large corpus. Computers and Humanities,

26(5), 415–439.

[59] Goldman, R., Shivakumar, N., Venkatasubramanian, S., & Garcia-Molina,

H. (1998). Proximity search in databases. In Proceedings of the 24rd In-

ternational Conference on Very Large Data Bases (pp. 26–37). New York,

USA.

[60] Grobelnik, M., & Mladenic, D. (1998). Efficient text categorization. In

Text Mining Workshop on ECML-98.

[61] Han, E., Karypis, G., & Kumar, V. (2002). Text categorization using

weight adjusted k-nearest neighbor classification. In Proceedings of the

5th Pacific-Asia Conference on Knowledge Discovery and Data Mining

(pp. 53–65). Hong Kong, China.

[62] Hamill, K. A., & Zamora, A. (1980). The use of titles for automatic docu-

ment classification. Journal of the American Society for Information Sci-

ence, 33(6), 396–402.

[63] Harman, D. W. (1986). An experimental study of factors important in

document ranking. In Proceedings of the 9th Annual International ACM



BIBLIOGRAPHY 157

SIGIR Conference on Research and Development in Information Retrieval

(pp. 186–193). Pisa, Italy.

[64] Harman, D., & Candela, G. (1990). Retrieving records from a gigabyte of

text on a multicomputer using statistical ranking. Journal of the American

Society for Information Science, 41(8), 581–589.

[65] Harper, D. J. (1980). Relevance feedback in document retrieval systems:

An evaluation of probabilistic strategies. Ph.D. Thesis. The University of

Cambridge.

[66] Haykin, S. (1994). Neural networks: a comprehensive foundation. Macmil-

lan College Publishing Company Inc.

[67] Hearst, M. A. (1991). Noun homograph disambiguation using local context

in large corpora. In Proceedings of the 7th Annual Conference of the Uni-

versity of Waterloo Centre for the New Oxford English Dictionary (pp. 1–

22).

[68] Heydon, A., & Najork, M. (1999). Mercator: A scalable, extensible Web

crawler. World Wide Web, 2(4), 219–229.

[69] Holte, R. C. (1993). Very simple classification rules perform well on most

commonly used datasets. Machine Learning, 11, 63–91.

[70] Horowitz, E., & Sahni, S. (1978). Fundamentals of computer algorithms.

Potomac, MD: Computer Science Press.

[71] Hristidis, V., Gravano, L., & Papakonstantinou, Y. (2003). Efficient IR-

style keyword search over relational databases. In Proceedings of the 29th

International Conference on Very Large Data Bases (pp. 850–861). Berlin,

Germany.

[72] Ilyas, F., Aref, G., & Elmagarmid, K. (2004). Supporting top-k join queries

in relational databases. The VLDB Journal – The International Journal

on Very Large Data Bases, 13(3), 207–221.



BIBLIOGRAPHY 158

[73] Jeong, B. S., & Omiecinski, E. (1995). Inverted file partitioning schemes

in multiple disk systems. IEEE Transactions on Parallel and Distributed

Systems, 6(2), 142–153.

[74] Kan, M.-Y. (2004). Web page categorization without the Web page. In

Proceedings of the Thirteenth International World Wide Web Conference

(pp. 262–263). New York, NY.

[75] Karypis, G., Aggarwal, R., Kumar, V., & Shekhar, S. (1999). Multilevel

hypergraph partitioning: applications in VLSI domain. IEEE Transactions

on Very Large Scale Integration Systems, 7, 69–79.

[76] Karypis, G., & Kumar, V. (1998). hMETIS: a hypergraph partitioning

package. Technical Report, Department of Computer Science, University

of Minnesota.

[77] Karypis, G., & Kumar, V. (1999). Multilevel k-way hypergraph parti-

tioning. In Proceedings of the ACM/IEEE Design Automation Conference

(pp. 343-348).

[78] Kaszkiel, M., Zobel, J., & Sacks-Davis, R. (1999). Efficient passage rank-

ing for document databases. ACM Transactions on Information Systems,

17(4), 406–439.

[79] Kaya, K., & Aykanat, C. Iterative-improvement-based heuristics for adap-

tive scheduling of tasks sharing files on heterogeneous master-slave envi-

ronments. Accepted for publication in IEEE Transactions on Parallel and

Distributed Systems.

[80] Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for

partitioning graphs. Bell System Technical Journal, 49, 291–307.

[81] Khanna, G., Vydyanathan, N., Kurc, T. M., Catalyurek, U. V., Wyckoff,

P., Saltz, J., & Sadayappan, P. (2005). A hypergraph partitioning based

approach for scheduling of tasks with batch-shared I/O. In Proceedings of

Cluster Computing and Grid. Brisbane, Australia.



BIBLIOGRAPHY 159

[82] Khoussainov, R., Zuo, X., & Kushmerick, N. (2004). Grid-enabled Weka:

A toolkit for machine learning on the grid. ERCIM News 59.

[83] Knuth, D. (1998). The art of computer programming: Sorting and search-

ing (2nd ed., vol. 3). Reading, MA: Addison-Wesley.

[84] Lam, W., Ruiz, M. E., & Srinivasan, P. (1999). Automatic text cate-

gorization and its applications to text retrieval. IEEE Transactions on

Knowledge and Data Engineering, 11(6), 865–879.

[85] Larkey, L. S. (1999). A patent search and classification system. In Pro-

ceedings of the 4th ACM Conference on Digital Libraries (pp. 179–187).

[86] Lee, D. L., Chuang, H., & Seamons, K. (1997). Document ranking and the

vector-space model. IEEE Software, 14(2), 67–75.

[87] Lehman, T. J., & Carey, M. J. (1986). A study of index structures for

main memory database management systems. In Proceedings of the 12nd

International Conference on Very Large Data Bases (pp. 294–303). Kyoto,

Japan.

[88] Lengauer, T. (1990). Combinatorial algorithms for integrated circuit lay-

out. Chicester: Wiley-Teubner.

[89] Lewis, D. D., & Ringuette, M. (1994). A comparison of two learning algo-

rithms for text categorization. In Proceedings of the Third Annual Sympo-

sium on Document Analysis and Information Retrieval (pp. 81–93). Las

Vegas, US.

[90] Lewis, D. D. (1992). Feature selection and feature extraction for text

categorization. In Proceedings of Speech and Natural Language Workshop

(pp. 212–217). San Mateo, California.

[91] Long, X., & Suel, T. (2003). Optimized query execution in large search

engines with global page ordering. In Proceedings of the 29th International

Conference on Very Large Databases. Berlin, Germany.

[92] Lucarella, D. (1988). A document retrieval system based upon nearest

neighbor searching. Journal of Information Science, 14(1), 25–33.



BIBLIOGRAPHY 160

[93] McCallum A., & Nigam, K. (1998). A comparison of event models for

naive bayes text classification. In Proceedings of AAAI-98 Workshop on

Learning for Text Categorization (pp. 137–142). Madison, Wisconsin.

[94] Melnik, S., Raghavan, S., Yang, B., & Garcia-Molina, H. (2001) Building a

distributed full-text index for the web. ACM Transactions on Information

Systems, 19(3), 217–241.

[95] Miller, R. C., & Bharat, K. (1998). SPHINX: a framework for creating

personal, site-specific Web crawlers. In Proceedings of the 7th International

World Wide Web Conference (pp. 119–130). Brisbane, Australia.

[96] Moffat, A., Zobel, J., & Sacks-Davis, R. (1994). Memory efficient ranking.

Information Processing and Management, 30(6), 733–744.

[97] Najork, M., & Wiener, J. L. (2001). Breadth-first crawling yields high-

quality pages. In Proceedings of the 10th international conference on World

Wide Web (pp. 114–118). Hong Kong, Hong Kong.

[98] Ng, H. T., Goh, W. B., & Low, K. L. (1997). Feature selection, perceptron

learning, and a usability case study for text categorization. In Proceedings

of the 20th International Conference on Research and Development in In-

formation Retrieval (pp. 67–73). Philadelphia, Pennsylvania.

[99] Ozdal, M. M., & Aykanat, C. (2004). Hypergraph models and algorithms

for data-pattern-based clustering. Data Mining and Knowledge Discovery,

9(1), 29–57.

[100] Page, L., & Brin, S. (1998). The anatomy of a large-scale hypertextual

Web search engine. In Proceedings of the 7th International World Wide

Web Conference (pp. 107–117). Brisbane, Australia.

[101] Persin, M. (1994). Document filtering for fast ranking. In Proceedings of

the 17th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (pp. 339–348). Dublin, Ireland.

[102] Pugh, W. (1990). Skip lists: A probabilistic alternative to balanced trees.

Communications of the ACM, 33(6), 668–676.



BIBLIOGRAPHY 161

[103] Ribeiro-Neto, B. A., & Barbosa, R. A. (1998) Query performance for

tightly coupled distributed digital libraries. In Proceedings of the Third

ACM Conference on Digital Libraries (pp. 182–190).

[104] Salton, G., & McGill, M. J. (1983). Introduction to modern information

retrieval. New York: McGraw-Hill.

[105] Scholze, F., Haya, G. Vigen, J., & Prazak, P. (2004). Project GRACE: A

grid based search tool for the global digital library. In The 7th International

Conference on Electronic Theses and Dissertations. Lexington, KY.

[106] Schweikert, D. G., & Kernighan, B. W. (1972). A proper model for the

partitioning of electrical circuits. In Proceedings of the 9th Workshop on

Design Automation (pp. 57–62).

[107] Sebastiani, F. (2002). Machine learning in automated text categorization.

ACM Computing Surveys, 34(1), 1–47.

[108] Shekhar, S., Lu, C-T., Chawla, S., & Ravada, S. (2002). Efficient Join-

index-based spatial-join processing: a clustering approach. IEEE Trans-

actions on Knowledge and Data Engineering, 14(6), 1400–1421.

[109] Shkapenyuk, V., & Suel, T. (2002). Design and implementation of a high-

performance distributed Web crawler. In Proceedings of the 18th Interna-

tional Conference on Data Engineering (pp. 357–368). San Jose, CA.

[110] Smeaton, A. F., & van Rijsbergen, C. J. (1981). The nearest neighbor

problem in information retrieval: An algorithm using upperbounds. In

Proceedings of the 4th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (pp. 83–87). Oakland,

California.

[111] Sun, A., Lim, E. P., & Ng, W. K. (2002). Web classification using support

vector machine. In Proceedings of the 4th International Workshop on Web

Information and Data Management (pp. 96–99).



BIBLIOGRAPHY 162

[112] Teng, S., Lu, Q., Eichstaedt, M., Ford, D., & Lehman, T. (1999). Collab-

orative Web crawling: Information gathering/processing over Internet. In

32nd Hawaii International Conference on System Sciences. Maui, Hawaii.

[113] Tomasic, A., Garcia-Molina, H., & Shoens, K. (1994). Incremental up-

dates of inverted lists for text document retrieval. In Proceedings of the

1994 ACM SIGMOD International Conference on Management of Data

(pp. 289–300). Minneapolis, Minnesota.

[114] Tomasic, A., & Garcia Molina, H. (1993). Performance of inverted indices

in shared-nothing distributed text document information retrieval systems.

In Proceedings of the International Conference on Parallel and Distributed

Information Systems (pp. 8–17). San Diego, CA.

[115] Trifunovic, A., & Knottenbelt, W. J. (2004). Parkway 2.0: a parallel mul-

tilevel hypergraph partitioning tool. In Proceedings of the 18th Interna-

tional Symposium on Computer and Information Sciences (pp. 789–800).

Antalya, Turkey.

[116] Turk, A., Cambazoglu, B. B., Aykanat, C., & Guvenir, H. A. Ma-

chine learning techniques for personal homepage detection. Unpublished

manuscript.

[117] Turk, A., Cambazoglu, B. B., & Aykanat, C. Combinatorial models for

efficient parallel Web crawling. To be submitted to the IEEE Transactions

on Parallel and Distributed Systems.

[118] Turtle, H., & Flood, J. (1995). Query evaluation: Strategies and optimiza-

tions. Information Processing and Management, 31(6), 831–850.

[119] Ucar, B., & Aykanat, C. (2004). Encapsulating multiple communication-

cost metrics in partitioning sparse rectangular matrices for parallel matrix-

vector multiplies. SIAM Journal on Scientific Computing, 25(6), 1837–

1859.

[120] Ucar, B., & Aykanat, C. Partitioning sparse matrices for parallel pre-

conditioned iterative methods. Submitted to SIAM Journal on Scientific

Computing.



BIBLIOGRAPHY 163

[121] Ucar, B., Aykanat, C., Pinar, M. C., & Malas, T. Parallel image restora-

tion using surrogate constraints methods. Submitted to Journal of Parallel

and Distributed Computing.

[122] Vastenhouw, B., & Bisseling, R. H. (2005). A two-dimensional data dis-

tribution method for parallel sparse matrix-vector multiplication. SIAM

Review, 47(1), 67–95.

[123] Wilkinson, R., Zobel, J., & Sacks-Davis, R. (1995). Similarity measures for

short queries. In Fourth Text Retrieval Conference (pp. 277–285). Gaithers-

burg, Maryland.

[124] Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learn-

ing tools and techniques (2nd ed.). San Francisco: Morgan Kaufmann.

[125] Witten, I. H., Moffat, A., & Bell, T. C. (1999). Managing gigabytes: Com-

pressing and indexing documents and images (2nd ed.). San Francisco, CA:

Morgan Kaufmann.

[126] Wong, W. Y. P., & Lee, D. K. (1993). Implementations of partial doc-

ument ranking using inverted files. Information Processing and Manage-

ment, 29(5), 647–669.

[127] Yang, Y. (1999). An evaluation of statistical approaches to text catego-

rization. Information Retrieval, 1(1/2), 67–88.

[128] Yang, Y., & Liu, X. (1999). A re-examination of text categorization meth-

ods. In Proceedings of the 22th Annual International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval (pp. 42–49).

Berkeley, CA.

[129] Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selec-

tion in text categorization. In Proceedings of the Fourteenth International

Conference on Machine Learning (pp. 412–420). Nashville, Tennessee.

[130] Yavuz, T., & Guvenir, H. A. (1998). Application of k-nearest neighbor

on feature projections classifier to text categorization. In Proceedings of



BIBLIOGRAPHY 164

the 13th International Symposium on Computer and Information Science

(pp. 135–142). Antalya, Turkey.

[131] Zeinalipour-Yazti, D., & Dikaiakos, M. D. (2002). Design and implemen-

tation of a distributed crawler and filtering processor. In Proceedings of

the Next Generation Information Technologies and Systems (pp. 58–74).

Caesarea, Israel.

[132] Zobel, J., & Moffat, A. (1995). Adding compression to a full-text retrieval

system. Software Practice and Experience, 25(8), 891–903.

[133] Zobel, J., Moffat, A., & Sacks-Davis, R. (1992). An efficient indexing

technique for full-text database systems. In Proceedings of the 18th Inter-

national Conference on Very Large Databases (pp. 352–362). Vancouver,

Canada.



Appendix A

Screenshots of Skynet and
SE4SEE

Figure A.1: Search screen of the Skynet parallel text retrieval system.
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Figure A.2: Presentation of the search results in Skynet.

Figure A.3: Login screen of SE4SEE.
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Figure A.4: Category-based search form in SE4SEE.

Figure A.5: Keyword-based search form in SE4SEE.
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Figure A.6: Job status screen in SE4SEE.

Figure A.7: Presentation of the search results in SE4SEE.



Appendix B

Harbinger Toolkit Manual

In this appendix, we provide a manual for the Harbinger machine learning toolkit

(HMLT). In Section B.1, with several examples, we present the file formats uti-

lized by HMLT. In Section B.2, we describe the installation procedure for the

toolkit. A through list of the supported classifier options can be found in Sec-

tion B.3. In Section B.4, the use of the wrapper module is exemplified.

B.1 Dataset Format

Throughout this discussion on the dataset format, we assume that we work on

a dataset containing a total of m instances (examples), n input attributes (fea-

tures), and a single output attribute (class). All classifiers expect the information

about the dataset and its content to be initially distributed and stored under four

separate files in the disk. These four files are pure text files, each starting with a

common name, <dataset>, where <dataset> is a name representing the dataset.

The file extensions for the files are fixed and are .info, .insts, .attrs, and .DMR.

For example, a dataset about cancer can be stored under the files cancer.info,

cancer.insts, cancer.attrs, and cancer.DMR. In all files, the lines starting

with a # character are treated as comment lines and are ignored together with

white spaces. All files are case-sensitive.

We describe the details of these files on an example. Assume that we have a

dataset about humans. Each instance in our dataset represents a human being.
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Let each human being has the input attributes skin color, age, weight, and the

output attribute gender. In other words, by using the skin color, age, and weight

of a human, we are trying to predict its gender. Since we have four attributes, in

this particular example, n=4.

.insts file: <dataset>.insts file contains information about the labels of the

instances. Each line in this file corresponds to a label identifying an instance. In

our case, it contains human names:

# human.insts
# containing human names
# m=5

Berkant
Barla
John
Marry
Sandra

The use of this file is not obligatory. In the absence of the <dataset>.insts

file, each instance is given a unique name starting from Inst1 through Instm.

.attrs file: This file keeps the labels used for the attributes and optionally the

labels for the attribute values. The <dataset>.attrs file is also optional. If the

file is not present, default attribute names Attr1 through Attrn are assigned as

the labels for the attributes. In our human dataset, human.attrs file contains

something like the following:

# human.attrs
# containing human attributes
# n=4

eyeColor
age
weight
gender

In the HMLT dataset format, attributes may have three types of values: cate-

gorical, ordinal, or numeric. In our example, eye color and gender are categorical

attributes, age is an ordinal attribute, and weight is a numeric attribute. We can

further include this information in the human.attrs file as follows:
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# human.attrs
# containing human attributes
# n=4

eyeColor C
age O
weight N
gender C

The letters C, O, and N indicate the attribute being categorical, ordinal, and

numeric, respectively. In the absence of this information, the convention is to

assume all attributes as categorical. However, even if a single numeric value is

detected for an attribute, while reading the dataset content, that attribute is

assumed to be of type numeric. For example, by reading the weight 54.5 for the

instance Marry, the code can decide that the weight attribute is numeric.

It is possible to define aliases for categorical attribute values. This can be

done by inserting <value>:<alias> pairs in the <dataset>.attrs file. This

way, we can avoid repeating the same string in the <dataset>.DMR file and save

some storage space. For example, we can use the value 0 to represent male, and 1

to represent female genders, and then define them as aliases in the human.attrs

file. Hence, we do not repeat the strings male and female in the original data file

<dataset>.DMR. The sample human.attrs file can be created like this:

# human.attrs
# containing human attributes
# n=4

eyeColor C 0:black 1:brown 2:green 3:blue
age O
weight N
gender C 0:male 1:female

.DMR and .SMR files: The attribute values are stored in the <dataset>.DMR

file. This file contains an m×n matrix, where the rows represent the instances

and the columns are the attributes. Our example human.DMR file is as follows:

# human.DMR
# containing attribute values
# mXn=5X4
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1 34 67.3 0
3 48 53.2 1
0 34 78.0 0
0 78 51.2 1
2 49 55.2 1

For some applications, the DMR (dense matrix representation) format is not

appropriate. In case the number of attributes is large and attribute values are

mostly zero, using the SMR (sparse matrix representation) format and storing

only the non-zero attributes may be better. Hence, as an option, it is possible to

store attribute values in the SMR format in the <dataset>.SMR file. The above

example can be stored in the human.SMR file as follows:

# human.SMR
# containing non-zero attribute values

3 1 1 2 34 3 67.3
4 1 3 2 48 3 53.2 4 1
2 2 34 3 78.0
3 2 78 3 51.2 4 1
4 1 2 2 49 3 55.2 4 1

In this representation, the first value at each line indicates the total number

of non-zero attributes that the corresponding instance has. Note that, for the

first instance, the value of the output attribute is not stored. While the data is

read, it is implicitly assumed to be zero. For small datasets, the DMR format is

usually the better choice and vice versa.

.info file: In the <dataset>.info file, some general information about the

dataset is supplied. This information includes the type of the storage format

used (DMR or SMR) and the total number of instances and attributes in the

dataset. The <dataset>.info file also contains information about the partition-

ing of training and test instances, and selection of the attributes that will be used

as input and output attributes. The sample human.info file is as follows:

# human.info

representationType DMR

totalInstanceCount 5
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trainInstances 1-3 5
testInstances 4

totalAttributeCount 4
inputAttributes 1-3
outputAttribute 4

The tags used in this file and their meanings are as follows:

• representationType: The storage format used for keeping the attribute val-

ues. It can be DMR or SMR. Depending on this information, the appropri-

ate <dataset>.DMR or <dataset>.SMR file is fetched from the disk.

• totalInstanceCount: Shows how many instances are expected. Instance la-

bels beyond this count are ignored.

• trainInstances: Shows which instances will be used for training. “-” sign

can be used to denote intervals, as in 1-3.

• testInstances: Shows the instances to be predicted.

• totalAttributeCount: Shows how many attributes are expected. Attribute

labels beyond this count are ignored.

• inputAttributes: Shows the input attributes that will be used for prediction.

• outputAttribute: Shows the output attribute we are trying to predict.

Any tag other than these is accepted to be an erroneous tag. All indices in

the <dataset>.info file start from 1. For instances and attributes, the indices

beyond totalInstanceCount and totalAttributeCount are treated as errors, respec-

tively. The output attribute need not be the last one. We can simply modify

the <dataset>.info file to predict the eye color of a human by using its age and

gender attributes as follows:

# human.info

representationType DMR
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totalInstanceCount 5
trainInstances 1-5
testInstances 1-5

totalAttributeCount 3
inputAttributes 2 3
outputAttribute 1

In this example, totalAttributeCount is 3 since we no longer use the weight

attribute. We use all instances both for training and testing purposes. No other

modification is necessary in any of the remaining three files.

B.2 Installation

HMLT has been successfully installed, compiled, and executed on Linux, Unix,

and Windows platforms. For Windows installation, Cygwin was used. Installa-

tion of HMLT is rather straightforward:

• Download and move harbinger.tar.gz file into the directory where you

want to install HMLT.

• Type the following to unzip the file:

gunzip harbinger.tar.gz

• Now, extract the files by:

tar xvf harbinger.tar.gz

• This will create a directory named Harbinger in the current directory and

extract the source files under it.

• Now, move into the Harbinger directory and run the installation script:

cd Harbinger
./install
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• This will compile the source codes. For each classifier, there is an associated

directory. Both the source codes and executables of a classifier are kept in

corresponding directories. Also, a library, which is common to all classifiers

is compiled under the lib directory. Symbolic links are created under the

bin directory. The wrapper program is installed in the tester directory.

• You may need to modify some parts of the installation script depending on

your system configuration (the lines at the top of the script).

B.3 Toolkit Options

In this section, we provide a list of the command line parameters that classifiers

accept. Some options are common to all classifiers, whereas some are classifier-

specific.

B.3.1 Options Common to All Classifiers

-h : Prints the command line options for a classifier.

-iv <verbosity level>: Sets instance verbosity (1:Low, 2:Medium, 3:High). If

verbosity is low only the name of the instance is displayed. When medium, the

class value is also displayed. If verbosity is high, the input attribute values are

also displayed. But, this may be annoying if there are too many attributes in the

dataset.

-cv <verbosity level>: Sets classifier verbosity (0:None, 1:Low, 2:Medium,

3:High). The meaning of classifier verbosity depends on the classifier used. But,

in general, if verbosity is none, only the accuracy and timing information is

displayed. If it is low, test instances together with predictions made for them is

printed.

-M <classification model>: Sets classification model (1, 2, 3, 4). In the first

model, all attribute values are used both for training and testing. In the second

model, only the non-zero values of the test instances are used. In the third model,
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only the non-zero values of the training instances are used. In the fourth model,

only the non-zero values of the instances are used.

-f <path>: Sets the location of the dataset to be read. For example, to read the

human dataset from the current directory, this option should take the parameter

./human.

-fs <feature selection technique>: Sets the feature selection method (0, 1, 2)

to be employed, where 0 means no feature selection, 1 means document frequency

thresholding, and 2 means Chi-square method.

-fst <feature selection threshold>: Sets the threshold used for feature se-

lection. The threshold can be given as a percentage of the number of features in

the dataset.

B.3.2 Classifier-Specific Options

Options for the k-NN classifier:

-N <number of neighbors>: Sets the number of neighbors to be found.

-dm <distance metric>: Sets the distance metric used (c:cosine similarity,

e:Euclidean distance, m:Manhattan distance).

-vm <voting metric>: Sets the voting metric used (m:majority voting,

s:similarity voting).

Options for the k-NN-FP classifier:

-N <number of neighbors>: Sets the number of neighbors to be found.

-vm <voting metric>: Sets the voting metric used (m:majority voting,

s:similarity voting).

Options for the k-means classifier:

No options.
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Options for the naive Bayesian classifier:

No options.

Options for the covering rules classifier:

No options.

Options for the 1-rule classifier:

No options.

Options for the perceptron neural network classifier:

-tr: Trains the network.

-ts: Tests the network. If the -tr option is not used, the testing is performed

using the initial, randomly generated weight matrix.

-lc <learning constant>: Sets the learning constant.

-er <minimum error>: Sets the minimum error before convergence. If this error

is obtained over the training set, the training algorithm stops.

-ep <maximum epoch count>: Sets the maximum epoch count before conver-

gence. If this epoch count is reached, the training algorithm stops.

Options for the back-propagation neural network classifier:

-tr: Trains the network. Saves the weight matrix to the disk.

-ts: Tests the network. If the -tr option is not used, the testing is performed

using the weight matrix read from the disk.

-lc <learning constant>: Sets the learning constant.

-mc <momentum constant>: Sets the momentum constant.

-N <hidden layer neuron count>: Sets the number of hidden layer neurons.
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-er <minimum error>: Sets the minimum error before convergence. If this error

is obtained over the training set, the training algorithm stops.

-ep <maximum epoch count>: Sets the maximum epoch count before conver-

gence. If this epoch count is reached, the training algorithm stops.

-tt <test type>: Sets the test type (r:regression, c:classification). If the test

type is classification, output attribute must have categorical values. Otherwise,

it must have ordinal or numeric values.

Options for the Kohonen neural network classifier:

-tr: Trains the network.

-ts: Tests the network. If the -tr option is not used, the testing is performed

using the initial, randomly generated weight matrix.

-lc <learning constant>: Sets the learning constant.

-ep <maximum epoch count>: Sets the maximum epoch count before conver-

gence. If this epoch count is reached, the training algorithm stops.

Options for the Hopfield neural network classifier:

-tr: Trains the network.

-ts: Tests the network. If the -tr option is not used, the testing is performed

using the initial, randomly generated weight matrix.

B.4 The Wrapper

It is possible to run each classifier as a stand-alone application. However, HMLT

also supplies a wrapper program to release the burden of modifying the .info

file for each experiment. if the wrapper is not used, in order to perform cross-

validation over a dataset, the .info file must be edited before each run. The

wrapper offers several validation techniques and hides the details of partitioning
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the instance set. The options of the wrapper are as follows:

-h : Prints the command line options for the wrapper.

-v <verbosity level>: Currently this option is not used.

-vt <validation type>: Sets the validation type (can be one of exact, cv, scv,

l1o, all). If it is set to exact, the current .info file is used without any modifica-

tion. If it is set to cv or scv, the dataset is N -fold cross validated, by partitioning

the dataset into N pieces and running the classifier N times. In each run a differ-

ent piece of dataset is used for testing, and the average of the results is calculated

as the final result. scv is different than cv in that the instance set is shuffled

before partitioning. l1o stands for leave-1-out validation. This is equivalent to

m-fold cross validation. If validation type is set to all, the entire instance set is

used for both training and testing.

-N <fold count>: Sets the fold count in cross validation.

-e <command>: Sets the command (i.e., the classifier) to be executed. This option

must always be given as the last option to the wrapper.

The example below executes the k-NN classifier over the human dataset

and performs shuffled, 10-fold cross-validation with Chi-square feature selection

method, where 10% of the features are selected.

tester -v 3 -vt scv -N 10 -fs 2 -fst 10% -e ../knn/knn -iv 2 \
-cv 2 -M 2 -N 5 -dm e -vm m -f ../data/human
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