
Obtaining triangular diagonal blocks

in sparse matrices using cutsets

Tuǧrul Dayar

Department of Computer Engineering, Bilkent University, TR-06800 Bilkent, Ankara, Turkey

tugrul@cs.bilkent.edu.tr

The paper proposes an algorithm which computes a (2 × 2) block partition of an

irreducible, sparse matrix with a zero-free diagonal so that one of the diagonal blocks

is triangular. The algorithm works by computing a cutset of the directed graph

associated with the off-diagonal part of the matrix and is linear in the number of

nonzeros therein. The proposed algorithm is then extended to reducible, sparse

matrices with a zero-free diagonal. Experiments on benchmark unsymmetric matrices

show that, in many cases the order of the triangular block can be increased by using

another algorithm for computing cutsets from the literature, which is based on a

greedy randomized adaptive search procedure; however, this is not efficient timewise

unless the matrix is relatively small. A block iterative solver based on the partition

returned by the proposed algorithm is compared with an industrial strength direct

solver for time, space, and accuracy. Results indicate that there are cases in which it

is advantageous to compute and use block partitions based on cutsets.

Keywords: sparse matrices; triangular blocks; cutsets.

1 Introduction

Sparse matrices are characterized by a large percentage of zero elements. Such matrices arise in

many application areas and their processing is an important subject of study in numerical linear

algebra. The books by Duff, Erisman & Reid (1986) and Saad (2003) discuss, respectively, direct

and iterative methods for solving linear systems of equations that have sparse coefficient matrices.

Since we consider sparse matrices throughout this work, we drop the word sparse before matrix and

refer to a sparse matrix as a matrix. Now, let us recall that a matrix which can be permuted to block

triangular form with two or more blocks along the diagonal is called reducible; if this is not possible,

2

then the matrix is said to be irreducible (Duff et al., 1986, p. 105). A matrix that is structurally

nonsingular can be permuted to have a zero-free diagonal, meaning the matrix cannot be singular

for all numerical values of its nonzero elements (Duff et al., 1986, p. 107). We remark that not all

matrices are irreducible and not all matrices have (or can be permuted to have) a zero-free diagonal.

Now, let A be a given (nA × nA) irreducible matrix with nzA nonzero elements and a zero-free

diagonal. Without loss of generality, the problem is to compute a permutation matrix Q such that

nT nC

QAQT =
nT

nC

(
T X
Y C

)
, (1.1)

where nA = nT +nC and T is an (nT ×nT) triangular submatrix. Hence, Q together with nT defines

a symmetric permutation on A yielding a (2× 2) block partition in which the first diagonal block of

order nT is triangular and invertible. The solution of a linear system having the triangular block as

coefficient matrix follows from back or forward substitution (Duff et al., 1986, p. 42) depending on

the shape of triangularity.

In graph theoretic terms (Duff et al., 1986, p. 2), let V = {1, 2, . . . , nA} be the node (or vertex)

set and E = {(i, j) | ai,j 6= 0, i 6= j, and i, j ∈ V} be the edge (or arc) set of the directed graph

(digraph) G(V, E) associated with the off-diagonal part of A. The irreducibility of A translates to

the strong connectedness of G(V, E) (Duff et al., 1986, p. 114), that is, the reachability of each node

by following a sequence of edges from every other node in V. The problem then becomes one of

computing a cutset (or feedback vertex set, Festa, Pardalos & Resende (1999, p. 209)) C ⊂ V whose

elements cut all the cycles in G(V, E). If C and the edges incident on C are removed from G(V, E) to

give the node set T = V − C, then the resulting subgraph should become acyclic (Duff et al., 1986,

p. 115). In (1.1), the submatrix corresponding to this acyclic subgraph is denoted by the triangular

matrix T . The smaller nC = |C| is, the larger nT = |T |, and in general, the number of nonzeros,

nzT , in T become. The objective is then to compute as large and as fast a T as possible. Observe

that if the diagonal elements of A are not omitted when forming G(V, E), we would obtain C = V

since each diagonal element in A represents a different cycle which needs to be cut.

When the coefficient matrix at hand is reducible, but can be permuted to block triangular form

with irreducible diagonal blocks having zero-free diagonals, it is possible to compute (2 × 2) block

partitions of the diagonal blocks (of order larger than 1) as in (1.1). Diagonal blocks of order 1 can

be considered to be already triangular. Then the triangular diagonal blocks can be grouped into one

larger triangular diagonal block and the remaining non-triangular diagonal blocks can be grouped

3

into a second larger diagonal block, implying once again a (2 × 2) block partition as in (1.1) with

a zero-free diagonal in which one of the diagonal blocks is triangular. In this paper, we propose an

algorithm which computes such a (2 × 2) block partition. We compare the order of the triangular

block computed by the proposed algorithm with that computed by a greedy randomized adaptive

search procedure on a number of benchmark matrices. Noticing that one use of such a (2× 2) block

partition is in block iterative methods (Saad, 2003, pp. 106–110), we compare a block iterative solver

based on the partition returned by the proposed algorithm with an industrial strength direct solver

for time, space, and accuracy. To the best of our knowledge, our work is the first which undertakes

a study of cutsets on graphs associated with matrices.

In the next section, through a small example we provide background on the solution to the prob-

lem of computing cutsets for graphs that have appeared in other areas and highlight two algorithms

that can be used to obtain triangular diagonal blocks in irreducible matrices with a zero-free diag-

onal. In section 3, we propose an algorithm for reducible matrices with a zero-free diagonal after

extending one of these algorithms and discuss implementation issues. In section 4, we compare the

two algorithms introduced in section 2 on benchmark matrices and provide the results of experiments

with a direct solver versus a block iterative solver using the proposed algorithm. The paper ends

with concluding remarks in the last section.

2 Background

We start by recalling the concept of a cycle in G(V, E) as a sequence of edges (v1, v2), (v2, v3),

. . . , (vk−1, vk) with v1 = vk, where vi ∈ V for i ∈ {1, 2, . . . , k}, vi are distinct except v1 and vk, and

(vj , vj+1) ∈ E for j ∈ {1, 2, . . . , k−1}. In the following, we represent such a cycle, which is sometimes

called a simple cycle, as (v1 → v2 → v3 → · · · → vk−1 → vk) and remark that the length of the cycle

is (k − 1) and needs to be less than or equal to nA.

Example. Consider the matrix

1 2 3 4 5 6 7 8

A =

1
2
3
4
5
6
7
8

X X
X X

X X
X X X

X X X
X X X

X X
X X

4

of order 8. Observe that A is irreducible, has a zero-free diagonal, and the graph associated with its

off-diagonal part has the five cycles

(1 → 5 → 6 → 2 → 8 → 3 → 1), (1 → 5 → 7 → 4 → 6 → 2 → 8 → 3 → 1),

(4 → 5 → 6 → 4), (4 → 6 → 4), and (5 → 7 → 4 → 5)

of lengths six, eight, three, two, three, respectively. As can be observed, a cutset must include at

least two nodes one of which is either 4 or 6 due to the need to cut the cycle of length two. If we

choose to put 4 in the cutset, all cycles but the one of length six are cut and we can choose any of

{1, 2, 3, 5, 6, 8} to be the second node in the cutset. On the other hand, if we choose to put 6 in the

cutset, all cycles but the last one of length three are cut, implying our second node of choice can be

any of {4, 5, 7}. Hence, there are 8 different minimum cutsets of cardinality two in this problem.

Now, assume that the cutset is C = {4, 6} and let the permuted matrix A in (1.1) be

2 8 3 1 5 7 4 6

QAQT =

2
8
3
1
5
7
4
6

X X
X X

X X
X X

X X X
X X

X X X
X X X

for which T = {1, 2, 3, 5, 7, 8}, nT = 6, and nC = 2. Using column partitioning, the permuta-

tion matrix is written as Q = (e2 e8 e3 e1 e5 e7 e4 e6)T , where ej denotes the jth principal axis

vector (i.e., jth column of the identity matrix). In practice, permutation matrices are not stored

explicitly, but represented using permutation vectors. Hence, Q may be equivalently represented as

q = (2 8 3 1 5 7 4 6)T . We remark that although the shape of triangularity defines a permutation

on the nodes in T , the nodes in C can be permuted arbitrarily.

Festa, Pardalos & Resende (1999) provide a comprehensive survey on feedback set problems.

There are various versions of these problems that arise in areas such as combinatorial circuit design,

constraint satisfaction, and operating systems. As shown by Karp (1972), the problem of computing

the minimum cutset of a general graph is non-deterministic polynomial time complete (NP-complete).

Nevertheless, there are certain classes of graphs for which the problem is solvable in polynomial time.

One such class is reducible (flow) graphs, which is characterized by Hecht & Ullman (1974). These

graphs arise, for instance, in the analysis of program flows with the purpose of code optimization

5

and detecting/breaking deadlocks. They are defined by the existence of a node, called the root (or

initial node), from which every other node in V is reachable by following a sequence of edges, and

the uniqueness of the directed acyclic graph (dag) generated by different depth first search (DFS)

orders of G(V, E) starting from the root. DFS and related graph algorithms are discussed in detail

by Tarjan (1972).

Through a sequence of refinements, Shamir (1979) gives an algorithm that computes a minimum

cutset for a reducible graph in time and space linear in the sum of its number of nodes and number

of edges. Recall that DFS partitions the edges of a graph into dag edges and backward edges (Shamir,

1979, p. 647). Assuming that destination and source nodes of a backward edge in a reducible graph

are named respectively as head and tail (Shamir, 1979, p. 650), backward edges are defined to be

those for which the head is already in the stack when the tail is pushed into the stack during DFS.

Shamir’s algorithm uses DFS starting from the root to number the nodes of a reducible graph in

preorder (when they are pushed into the stack), to label them in postorder (when they are popped

from the stack), to consider successive heads in postorder, and to add new nodes to the cutset

(changing their labels to zero) when their postorder label and preorder number become the same

(Shamir, 1979, p. 653). Although this algorithm has a linear time complexity, it may abort on a

non-reducible graph. Nevertheless, when it does not abort on a non-reducible graph, the cutset

produced by the algorithm is also minimum.

At this point we should stress that the reducibility of a graph should not be confused with the

reducibility of a matrix. In order to clarify the difference between these two concepts, we refer to

a reducible matrix as one whose corresponding graph is not strongly connected, and indicate that

there are reducible graphs which are strongly connected (e.g., Figure 3 of (Shamir, 1979, p. 648)) and

non-reducible graphs which are not strongly connected (e.g., Figure 2(a) of (Shamir, 1979, p. 648)).

Since we consider strongly connected graphs, which may be non-reducible, the situation regarding

the possibility of aborting in Shamir’s algorithm needs to be rectified. It turns out that an algorithm

due to Rosen (1982) takes care of this problem.

Non-reducible graphs for which Shamir’s algorithm does not abort are named quasi-reducible in

(Rosen, 1982, p. 206). Through a modification to Shamir’s algorithm, Rosen gives an algorithm

called Cutfind (Rosen, 1982, p. 209), which runs in linear time and space, also computing cutsets

of graphs that are not (quasi-)reducible. However, the cutsets computed by the proposed algorithm

may not be minimum for graphs that are not (quasi-)reducible. The modification introduced by

Rosen is simple: the cutset is augmented with those nodes for which Shamir’s algorithm would

6

abort (i.e., nodes having postorder labels larger than their preorder numbers). Furthermore, on an

example (e.g., Figure 3.2 of (Rosen, 1982, p. 211)), which is not strongly connected, Rosen shows

that the quasi-reducibility of a graph depends on the DFS order of visiting nodes starting from the

root. Since Rosen’s algorithm works on general graphs for which there is a root and each node in

a strongly connected graph can be a root, it can be used to compute a cutset of the graph G(V, E)

corresponding to the off-diagonal part of the irreducible matrix A with a zero-free diagonal.

As pointed out recently by Fages & Lal (2006, p. 2853), who use constraint programming to

solve cutset problems in linear time, the greedy randomized adaptive search procedure (GRASP)

due to Pardalos, Qian & Resende (1999) is currently considered to be the most effective algorithm for

computing cutsets in graphs with a large number of nodes. The gfvs routine in GRASP provides an

iterative algorithm, which returns the cutset with the smallest cardinality among all iterations as the

solution. Each iteration consists of two phases. In the first phase, gfvs constructs a feasible solution,

randomly selecting a node from a restricted candidate list in which nodes are ranked according to

some adaptive greedy criterion. The available greedy criteria are based on degrees (i.e., numbers

of outgoing or incoming edges) of nodes. In the second phase, the neighborhood of the solution

constructed in the first phase is searched for a locally optimal solution. Various solution preserving

graph reduction techniques discussed by Levy & Low (1988) are used to expedite the construction

and local search phases. Similar to Rosen’s algorithm, the gfvs routine of GRASP does not provide

any guarantee on the quality of the computed cutset for general graphs. The implementation of

GRASP for cutset problems is discussed by Festa, Pardalos & Resende (2001). For comparison

purposes we also experiment with its gfvs routine, and remark that greedy algorithms for computing

cutsets of graphs are also reported by Fourneau et al. (1994).

Continuing the example introduced in this section, the cutset returned by Rosen’s algorithm

is C = {4, 5}, and q = (7 6 2 8 3 1 4 5)T is the corresponding permutation vector on which the

permutation matrix Q is based. We remark that a minimum cutset is obtained although G(V, E)

associated with the off-diagonal part of A is not (quasi)-reducible for the particular DFS order with

root node 4. On the other hand, the cutset returned by the gfvs routine of GRASP in one iteration

(which is also a minimum) and the corresponding permutation vector are as in the example.

In the next section, we introduce the (2× 2) block partitioning algorithm which uses cutsets and

discuss implementation issues.

7

3 Proposed algorithm

When A is reducible with a zero-free diagonal, it may be symmetrically permuted to block triangular

form with irreducible diagonal blocks having zero-free diagonals. Without loss of generality and to

simplify the discussion, let the given (nA × nA) reducible matrix with a zero-free diagonal be in the

form

n1 n2 · · · nK

A =

n1

n2
...

nK

A11 A12 · · · A1K

A22 · · · A2K

. . .
...

AKK

 , (3.1)

where Akk is an (nk × nk) irreducible submatrix with a zero-free diagonal for k = 1, 2, . . . ,K and

nA =
∑K

k=1 nk. An irreducible A is a special case with K = 1. Similar to (1.1), permutation matrices

Qkk can be computed such that

nTkk
nCkk

QkkAkkQ
T
kk =

nTkk

nCkk

(
Tkk Xkk

Ykk Ckk

)
, (3.2)

where nk = nTkk
+ nCkk

and Tkk is an (nTkk
× nTkk

) triangular submatrix for k = 1, 2, . . . ,K. In

order to be consistent with the block upper-triangular form in (3.1), let us assume that Tkk is upper-

triangular. Observe that for the global index set {1, 2, . . . , nA}, Qkk is a permutation matrix defined

over the indices in {1 +
∑k−1

j=1 nj , 2 +
∑k−1

j=1 nj , . . . ,
∑k

j=1 nj}. Furthermore, let the permutation

vector qk corresponding to the permutation matrix Qkk be partitioned into two subvectors as qT
k =

(qT
Tkk

qT
Ckk

). Then a permutation matrix Q can be obtained such that

nT11 nT22 · · · nTKK
nC11 nC22 · · · nCKK

QAQT =

nT11

nT22

...
nTKK

nC11

nC22

...
nCKK

T11 T12 · · · T1K X11 X12 · · · X1K

T22 · · · T2K X22 · · · X2K

. . .
...

. . .
...

TKK XKK

Y11 Y12 · · · Y1K C11 C12 · · · C1K

Y22 · · · Y2K C22 · · · C2K

. . .
...

. . .
...

YKK CKK

. (3.3)

Letting nT =
∑K

k=1 nTkk
and nC =

∑K
k=1 nCkk

yields a (2× 2) block partition as in (1.1). The first

diagonal block in (3.3) is upper-triangular and the permutation vector on which Q is based is

qT = (qT
T11

qT
T22

· · · qT
TKK

qT
C11

qT
C22

· · · qT
CKK

).

8

Algorithm 1 shows how one can compute a permutation for a (2×2) block partition of a matrix A

with a zero-free diagonal and an order larger than one so that the first diagonal block is triangular as

in (3.3). At the outset, A is assumed to be in block upper-triangular form with irreducible diagonal

blocks having zero-free diagonals as indicated in the pre-condition (see Require). If it is not, but is

structurally nonsingular, it can be row permuted to have a zero-free diagonal using the algorithm

due to Duff (1981a,b). To that effect, the routine mc21a from the Harwell Subroutine Library (HSL,

2007) can be used. Once A has a zero-free diagonal, it can be symmetrically permuted to block

upper-triangular form as indicated by Tarjan (1972) with the help of the routine mc13d from the

HSL. We remark that mc13d as given by Duff & Reid (1978) is normally used to compute a permu-

tation which block lower-triangularizes a matrix with a zero-free diagonal so that it has irreducible

diagonal blocks. Hence, for a block upper-triangular matrix satisfying the same requirements, the

returned permutation from mc13d should be reversed.

Algorithm 1 Computes a permutation for a (2× 2) block partition of A as in (3.3).

Require: A is in form (3.1) with a zero-free diagonal and order nA > 1.

Ensure: q is permutation vector corresponding to permutation matrix Q in (3.3), nT > 0, nC > 0,

and nA = nT + nC .

1: Compute cutset Ck of the graph G(Vk, Ek) associated with the off-diagonal part of Akk for
k = 1, 2, . . . ,K.

2: Compute permutation vector qT
k = (qT

Tkk
qT
Ckk

) that triangularizes submatrix of Akk associated
with nodes in Tk = Vk − Ck for k = 1, 2, . . . ,K.

3: Form permutation vector qT = (qT
T11

qT
T22

· · · qT
TKK

qT
C11

qT
C22

· · · qT
CKK

), which has the
nT =

∑K
k=1 nTkk

nodes in T = ∪K
k=1Tk at its beginning and the nC =

∑K
k=1 nCkk

nodes in
C = ∪K

k=1Ck at its end.

For step 1, we consider an implementation of the Cutfind algorithm due to Rosen discussed in

section 2, which takes the nonzero pattern of matrix Akk as input using two integer arrays, one

storing its column indices and is of length nzk, where nzk is the number of nonzeros in Akk, while

the other storing the beginning of row indices in the first array and is of length (nk + 1). In our

implementation, the diagonal elements appear as the first elements in their corresponding rows,

thereby enabling them to be skipped and the graph G(Vk, Ek) associated with the off-diagonal part

of Akk to be considered. Other than these two arrays, the algorithm requires five integer work arrays

of length nk and a character work array of length nk. Of the integer work arrays, two are used for

implementing a stack of edges, one is used for labeling nodes, one is used for keeping track of the

9

next unprocessed edge to consider for each node, and one is used for recording preorders of nodes.

The character work array is used for marking the nodes as they are processed.

The Cutfind algorithm requires the determination of a node called the root at the outset. Since

G(Vk, Ek) is strongly connected by assumption, any node in Vk qualifies as root. We choose the node

with the largest outdegree (i.e., number of outgoing edges). When there are ties, the node with the

smallest local index in Vk is chosen. We have also considered the maximum product of outdegrees

and indegrees among nodes when choosing the root (as suggested by Pardalos, Qian & Resende

(1999)). This has only made an insignificant difference, if at all, since it only affects the choice of

the root and not the order of DFS. The operations carried out by Cutfind to obtain Tk are integer

comparisons and amount to a time complexity of O(nzk).

Once Tk is determined, the triangularization in step 2 can be achieved again by using the algorithm

due to Duff & Reid (1978). To that effect, again the routine mc13d from HSL can be employed.

We remark that this routine, in this case returns the permutation for a lower-triangular matrix (in

which there are nTkk
diagonal blocks and each block is of order one). Hence, if an upper-triangular

matrix is desired, the returned permutation should be reversed. In order to call mc13d with the

submatrix of Akk associated with Tk, the matrix Akk is transformed to a block form in which the

diagonal blocks of the partition are stored separately as rowwise sparse matrices and its off-diagonal

part is also stored as a rowwise sparse matrix. A side benefit of this approach is that the nonzero

patterns of the diagonal blocks become readily available and the second diagonal block Ckk in (3.2)

can be analyzed for fill-in before its LU factorization (Duff et al., 1986, p. 46). The time complexity

of step 2 is not larger than that of step 1 since mc13d runs in O(nTkk
) + O(nzTkk

− nTkk
) (Duff &

Reid, 1978, p. 138), where nzTkk
is the number of nonzeros in Tkk. The permutation defined by Q in

(3.3) is returned after step 3 using an integer work array and an integer indicating the value of nC

(see the post-condition in Ensure).

In the next section, we provide the results of experiments on 19 test matrices arising in 9 groups

from the literature.

4 Experimental results

We implemented the Cutfind algorithm due to Rosen, called rosen, in C as part of Algorithm 1

as discussed in section 3 and performed experiments on a 3.4 GHz Pentium IV processor and a 2

Gigabytes main memory under Cygwin using the O3 level optimization in compiling the code. The

10

code used in these experiments may be obtained from Dayar (2007). We considered unsymmetric

matrices from the University of Florida Sparse Matrix Collection (2007). All matrices are prepro-

cessed by removing elements corresponding to zero values, transposing the resulting matrices so that

they are stored in rowwise sparse format, permuting to a zero-free diagonal using mc21a and then

running mc13d to obtain a block triangular partition as in (3.1). We also performed experiments

with the irreducible matrices using the gfvs routine of GRASP on the same platform. Noticing that

the gfvs routine cannot be applied to larger matrices for computing cutsets efficiently, we refrained

from experimenting with it further.

We also considered solving the linear system of equations Ax = b, where the chosen matrices

are used as the coefficient matrix A. As the right-hand side vector, we took b = Ae, where e is the

vector of ones, so that the solution vector is given by x = e and the relative error in the computed

solution can be determined explicitly. As solvers, we used the sequence of routines ma48a (for

analyze), ma48b (for factorize), and ma48c (for solve) as discussed by Duff & Reid (1996) from the

HSL as a direct solver with default settings of their parameters and a (forward) block Gauss-Seidel

(BGS) solver we programmed on the partitioning in (3.3) for which the second diagonal block is

analyzed and factorized at the outset using the routines ma48a and ma48b with default settings of

their parameters, and the linear system of equations arising from it solved during the second block

iteration using ma48cd again with default settings of its parameters. Clearly, the BGS solver is not

expected to converge for arbitrary coefficient matrices, and therefore cannot be a replacement for

the direct solver. Therefore, in presenting the results we selected a representative set of matrices for

which both solvers can be run on the same platform and produce acceptable results.

4.1 Irreducible matrices

As benchmarks we considered 14 irreducible, unsymmetric test matrices from the UF Sparse Ma-

trix Collection (2007). The orders of the matrices are between 1,000 and 85,000, and they arise

in semiconductor simulation (ADD20, ADD32), 2D incompressible flow and 3D semiconductor de-

vice (SWANG1, WANG4), convective thermal flow (FLOWMETER5, CHIPCOOL0), finite ele-

ment (POISSON3DA), DNA electrophoresis (CAGE8, CAGE9, CAGE10), and chemical processing

(EPB0, EPB1, EPB2, EPB3). These 14 matrices come respectively from the 6 groups Hamm,

Wang, Oberwolfach, FEMLAB, VanHeukelum, and Averous. The matrices from the vanHeukelum

and Averous groups are chosen to demonstrate the scalability of Rosen’s algorithm on different sized

versions of a problem. All matrices except those in the Averous group have symmetric nonzero

11

Table 1: Characteristics of A for the irreducible test matrices and solution of Ax = b with direct
solver.

outdegree indegree
Matrix nA nzA min max avg min max avg SpaceA RelErr Times

ADD20 2,395 13,151 1 83 4.5 1 83 4.5 34,122 1e−13 0.0
SWANG1 3,169 20,841 2 9 5.6 2 9 5.6 166,257 2e−15 0.1
ADD32 4,960 19,848 1 14 3.0 1 14 3.0 48,712 3e−15 0.0
FLOWMETER5 9,669 67,391 3 10 6.0 3 10 6.0 794,049 5e−13 0.9
POISSON3DA 13,514 352,762 5 109 25.1 5 109 25.1 12,215,412 3e−13 59.8
CHIPCOOL0 20,082 281,150 4 23 13.0 4 23 13.0 15,829,289 1e−12 97.6
WANG4 26,068 177,196 3 6 5.8 3 6 5.8 18,423,325 2e−9 108.7

CAGE8 1,015 11,003 4 17 9.8 4 17 9.8 207,923 5e−15 0.1
CAGE9 3,534 41,594 2 22 10.8 2 22 10.8 1,476,575 9e−15 2.5
CAGE10 11,397 150,645 4 24 12.2 4 24 12.2 21,304,670 2e−14 120.1

EPB0 1,794 7,764 1 10 3.3 1 5 3.3 37,128 3e−13 0.0
EPB1 14,734 95,053 2 6 5.5 2 8 5.5 2,200,972 2e−12 4.6
EPB2 25,228 175,027 2 86 5.9 2 86 5.9 5,567,867 6e−12 23.2
EPB3 84,617 463,625 2 5 4.5 2 6 4.5 15,236,063 1e−11 76.6

patterns.

The characteristics of A corresponding to the 14 test matrices appear in Table 1. Column Matrix

has the name of the test matrix. Columns nA and nzA have the order and number of nonzeros in A.

Columns four through six and columns seven through nine have respectively the minimum, maximum,

average outdegrees and indegrees of the graph G(V, E) associated with the off-diagonal part of A.

Columns SpaceA, RelErr, and Times are related to the direct solver and provide the space required by

the LU factorization of A, the relative error in the computed solution, and the time taken in seconds

by the solver. Recall that A has a zero-free diagonal, and therefore, nzA = |E| + nA. Average

number of nonzeros per row/column of A range from 4.0 for ADD32 to 26.1 for POISSON3DA,

although the maximum number of nonzeros per row/column can be as high as 110, which is also for

POISSON3DA. It is interesting to note that the space required by the factorization is relatively large

in the vanHeukelum matrices, yielding also a relatively large amount of time to obtain the solution.

This implies that use of the direct solver is difficult to justify for these three matrices, even if the

space required by the factorization is not considered.

Table 2 presents the results of using rosen (r) and one iteration of gfvs (g) in Algorithm 1 to

obtain a (2 × 2) block partition on the 14 irreducible test matrices and of solving Ax = b with the

block iterative solver. Column M indicates the algorithm used for computing the cutset. Columns

nT and nzT have the order and number of nonzeros in T . Column Timep indicates the time spent in

seconds to obtain a (2×2) block partition as in (1.1) using cutset computation. Columns nC and nzC

have the order and number of nonzeros in C. Note that the former is the cardinality of the cutset.

Columns SpaceC , Iter, RelErr, and Times are related to the block iterative solver and provide the

12

Table 2: Characteristics of the blocks in the partition of A obtained using Algorithm 1 for irreducible
matrices and solution of Ax = b with block iterative solver.

Matrix M nT nzT Timep nC nzC SpaceC Iter RelErr Times

ADD20 r 1,182 1,182 0.0 1,213 6,319 17,835 26,665 1e−8 4.3
g 1,190 1,190 1.7 1,205 6,161 17,415 26,666 1e−8 4.3

SWANG1 r 845 845 0.0 2,324 11,016 59,848 26 1e−14 0.0
g 942 942 5.3 2,227 9,907 55,275 27 2e−14 0.0

ADD32 r 2,305 2,305 0.0 2,655 8,335 18,585 628 7e−11 0.2
g 2,305 2,305 4.1 2,655 7,575 19,022 629 7e−11 0.3

FLOWMETER5 r 2,518 2,518 0.0 7,151 35,097 259,699 25,860 1e−8 58.4
g 2,574 2,574 95.1 7,095 34,493 267,253 25,613 1e−8 58.9

POISSON3DA r 1,659 1,659 0.0 11,855 289,303 9,654,207 1,201 3e−10 89.2
g 1,982 1,982 3,086.0 11,532 281,954 8,590,916 1,296 3e−10 88.8

CHIPCOOL0 r 3,560 3,560 0.0 16,522 193,270 9,380,599 9,525 5e−9 501.2
g 3,601 3,601 2,339.0 16,481 195,199 10,724,369 9,214 5e−9 578.1

WANG4 r 12,878 12,878 0.0 13,190 14,990 29,980 6,181 2e−9 10.7
g 9,390 9,390 845.6 16,678 59,448 525,336 5,134 2e−9 23.7

CAGE8 r 235 235 0.0 780 6,344 92,491 26 6e−15 0.0
g 236 236 0.8 779 6,439 101,912 31 1e−14 0.1

CAGE9 r 820 820 0.0 2,714 24,634 836,452 29 1e−14 1.1
g 824 824 16.6 2,710 24,912 854,484 28 2e−14 1.2

CAGE10 r 2,382 2,382 0.0 9,015 93,035 12,915,048 22 1e−14 53.6
g 2,404 2,404 475.1 8,993 93,449 12,177,427 21 2e−14 54.0

EPB0 r 1,495 2,985 0.0 299 299 598 22,639 1e−8 1.9
g 1,495 2,985 0.8 299 299 598 22,639 1e−8 1.9

EPB1 r 5,723 9,705 0.0 9,011 38,150 263,140 12,997 6e−9 30.0
g 7,314 14,558 114.5 7,420 36,748 344,605 13,941 7e−9 40.3

EPB2 r 10,460 26,880 0.0 14,768 64,648 634,386 1,436 4e−10 8.4
g 12,098 23,466 364.9 13,130 63,458 673,439 1,186 3e−10 7.4

EPB3 r 33,368 57,395 0.1 51,249 171,549 357,636 46,955 2e−8 506.9
g 35,190 63,666 5,065.0 49,427 169,049 540,423 32,227 2e−8 319.0

space required by the factorization of C using ma48ad and ma48bd, the number of iterations taken

to convergence, the relative error in the computed solution, and the time taken in seconds by the

solver. We remark that Times includes time spent for factorizing C. For gfvs, we use the parameter

settings alpha = −1, look4 = 0, maxitr = 1, prttyp = 1, and seed = 270001 (Festa, Pardalos &

Resende, 2001, p. 460), so that one iteration is performed. Clearly, the cutsets computed by gfvs

are likely to improve with a larger number of iterations; but, this can happen only at the expense of

larger processing time.

The cutsets computed by rosen indicate that the graphs G(V, E) corresponding to A for the 14

test matrices are not (quasi-)reducible. This implies that Shamir’s algorithm could not be used in

any of the test matrices for the choice of the root and the particular DFS order used. The ratio

nC/nA ranges from 0.17 for EPB0 to 0.88 for POISSON3DA with rosen, and is smaller for gfvs

except WANG4 for which rosen gives a smaller cutset, and ADD32 and EPB0 for which the cutsets

computed by rosen and gfvs are of the same cardinality. The average value of the ratio nC/nA over

the 14 matrices for rosen is 0.65. The time to obtain the cutsets with rosen does not exceed tenth

13

of a second for any of the matrices and is always smaller than that with gfvs even though only one

iteration in gfvs is used. For matrices that are of order 9,000 or larger, gfvs takes in the order of

minutes to obtain a cutset. The increase in time of gfvs can be clearly observed for the matrices in

the vanHeukelum and Averous groups. In between rosen and gfvs, the block iterative solver with

rosen is better than that with gfvs on all matrices when we include the time to obtain the (2 × 2)

block partition based on cutsets.

It is interesting to note that cutsets obtained with rosen and gfvs yield diagonal T blocks in all

the matrices except those in the Averous group and diagonal C blocks in EPB0. If we exclude the

diagonal T matrices, the ratio nzT /nzA ranges from 0.10 for EPB1 to 0.38 for EPB0 with rosen and

from 0.13 for EPB2 to 0.38 for EPB0 with gfvs. However, we must remark that the matrices in the

Averous group are of different degrees of difficulty from the point of view of the block iterative solver

as can be seen in the values of column Iter. The ratio of the space requirement for the first diagonal

block, the two off-diagonal blocks, and the factorization of the second diagonal block in (1.1) with

respect to the space requirement for the factorization of A is given by (nzA−nzC +SpaceC)/SpaceA.

This ratio ranges from 0.01 for WANG4 to 0.80 for POISSON3DA with rosen and from 0.03 for

WANG4 to 0.72 for ADD20 with gfvs.

The block iterative solver with rosen is able to compute the solution in at least 8 decimal digits

of accuracy for all irreducible matrices and produces a solution that is about as accurate as that

of the direct solver for WANG4 and the vanHeukelum matrices. It is the winner spacewise for all

matrices and timewise for SWANG1, the vanHeukelum matrices, and EPB2. Interestingly, these five

matrices are not the most favorable ones in terms of the ratios nC/nA, nzT /nzA, and (nzA − nzC +

SpaceC)/SpaceA; however, the first four of these are matrices for which the block iterative solver

takes no more than 31 iterations to converge

4.2 Reducible matrices

As benchmarks we considered 5 reducible, unsymmetric test matrices from the UF Sparse Matrix

Collection (2007). The orders of the matrices are between 11,000 and 117,000, and they arise in active

control of a supersonic engine inlet (INLET), unstructured 2D mesh (AIRFOIL 2D), circuit simula-

tion (ASIC 100K), and circuit transient simulation and DC operating point (TRANS4, DC2). These

5 matrices come respectively from the 4 groups Oberwolfach, Engwirda, Sandia, and IBM EDA.

None of these matrices have a symmetric nonzero pattern.

The characteristics of A corresponding to the 5 test matrices appear in Table 3. The columns

14

Table 3: Characteristics of A for the reducible test matrices and solution of Ax = b with direct
solver.

outdegree indegree
Matrix nA nzA K min max avg min max avg SpaceA RelErr Times

INLET 11,730 328,323 331 0 40 27.0 8 38 27.0 5,323,627 2e−10 21.6
AIRFOIL 2D 14,214 259,688 638 0 22 17.3 3 22 17.3 2,975,975 1e−13 6.1
ASIC 100K 99,340 940,621 399 0 92,257 8.5 0 92,257 8.5 6,034,613 7e−11 12.6
TRANS4 116,385 749,800 19 0 114,189 5.4 0 114,173 5.4 1,964,601 4e−10 32.1
DC2 116,385 766,396 19 0 114,189 5.6 0 114,173 5.6 2,027,123 2e−8 34.8

Table 4: Characteristics of the blocks in the partition of A obtained using Algorithm 1 with rosen
for reducible matrices and solution of Ax = b with block iterative solver.

Matrix nT nzT Timep nC nzC SpaceC Iter RelErr Times

INLET 1,894 4,159 0.0 9,836 249,119 2,444,964 623 1e−10 14.8
AIRFOIL 2D 2,308 3,069 0.0 11,906 194,932 2,127,527 5,471 3e−9 79.2
ASIC 100K 36,802 158,921 0.1 62,538 275,180 1,048,632 265 9e−11 4.8
TRANS4 86,194 111,135 0.1 30,641 203,815 501,602 1,043 3e−10 12.1
DC2 86,194 127,731 0.1 30,641 203,815 532,939 9,994 4e−9 109.5

have the same meaning as in Table 1. The extra column K provides the number of diagonal blocks

in (3.1). Average number of nonzeros per row/column of A range from 6.4 for TRANS4 to 28.0 for

INLET, although the maximum number of nonzeros per row and column can be as high as 114,190

and 114,174, respectively, which are for TRANS4 and DC2. The space required by factorization is

relatively large for INLET, yielding also a relatively large amount of time to obtain the solution.

Hence, the use of the direct solver is difficult to justify for this matrix, even if the space required by

the factorization is not considered.

Table 4 presents the results of using Algorithm 1 with rosen (r) to obtain a (2×2) block partition

on the 5 reducible test matrices and of solving Ax = b with the block iterative solver. The columns

have the same meaning as in Table 2. The cutsets computed indicate that the graphs G(Vk, Ek)

corresponding to Akk in 3.1 for k = 1, 2, . . . ,K in the 5 test matrices are not (quasi-)reducible. This

implies that Shamir’s algorithm could not be used in any of the test matrices for the choices of

roots in each G(Vk, Ek) and the particular DFS order used. The ratio nC/nA ranges from 0.26 for

TRANS4 and DC2 to 0.84 for INLET and AIRFOIL 2D. The average value of the ratio nC/nA over

the 5 matrices is 0.57. The time to obtain the cutsets does not exceed tenth of a second for any of

the matrices.

For the 5 reducible test matrices, none of the cutsets yield diagonal T or C blocks. The ratio

nzT /nzA ranges from 0.01 for INLET and AIRFOIL 2D to 0.17 for ASIC 100K and DC2. We must

remark that the AIRFOIL 2D and DC2 matrices are particularly difficulty to solve by the block

iterative solver as can be seen in the values of column Iter. The ratio (nzA −nzC + SpaceC)/SpaceA

15

ranges from 0.28 for ASIC 100K to 0.74 for AIRFOIL 2D.

The block iterative solver is able to compute the solution in at least 9 decimal digits of accuracy

for all reducible matrices and produces a solution that is about as accurate as that of the direct solver

for INLET, ASIC 100K, and TRANS4 matrices, and a solution that is more accurate for DC2. It is

the winner spacewise for all matrices and timewise for INLET, ASIC 100K, and TRANS4.

5 Conclusion

In this paper, we have given an algorithm which computes a (2×2) block partition of an irreducible,

sparse matrix with a zero-free diagonal so that one of the diagonal blocks is triangular. In doing this,

we have computed a cutset of the graph associated with the off-diagonal part of the matrix using an

algorithm due to Rosen. This algorithm does not seem to be as well known and used as Shamir’s

algorithm, which is for (quasi-)reducible graphs. The proposed algorithm runs in time linear in the

number of nonzeros in the off-diagonal part of the matrix using information only about its nonzero

pattern, and is shown to return a permutation for a block partition which can be expected to yield

two diagonal blocks roughly of the same order. The orders and numbers of nonzeros of these blocks

are observed to change depending on the nonzero pattern of the matrix. The triangular diagonal

block in the (2 × 2) block partition obtained using a cutset is expected to become smaller as the

matrix becomes denser since there will be normally a larger number of cycles to cut. The proposed

algorithm is also extended to reducible, sparse matrices with a zero-free diagonal. Another algorithm,

which is based on a greedy randomized adaptive search procedure, is also considered for computing

cutsets. Although this alternative algorithm is iterative and has the possibility of reducing the cardi-

nality of the cutset over a number of iterations (if not in one iteration), it is shown not to be efficient

timewise, and therefore cannot be recommended for our purposes unless the matrix is relatively

small. As we have shown, there are cases in which computing cutsets for sparse matrices and using

a block iterative solver on the (2× 2) block partitioning based on cutsets pays off in comparison to

an industrial strength direct solver, especially in terms of the reduction in space. The results are

representative of the relative cardinalities of cutsets that can be computed for sparse matrices, and

therefore pave the way for further means of exploiting cutsets.

Acknowledgments. This work has been carried out through grant TÜBA-GEBİP from the Turk-

ish Academy of Sciences. We thank Jean-Michel Fourneau for his comments on greedy heuristic

16

algorithms for computing cutsets.

References

Davis, T. (2007) University of Florida Sparse Matrix Collection. NA Digest, 92, no. 42, Octo-

ber 16, 1994, NA Digest, 96, no. 28, July 23, 1996, and NA Digest, 97, no. 23, June 7, 1997.

http://www.cise.ufl.edu/research/sparse/matrices/.

Dayar, T. (2007) Software for obtaining triangular diagonal blocks in sparse matrices using cutsets.

http://www.cs.bilkent.edu.tr/˜tugrul/software.html.

Duff, I. S. (1981) On algorithms for obtaining a maximum transversal. ACM Trans. Math. Software,

7, 315–330.

Duff, I. S. (1981) Algorithm 575: Permutations for a zero-free diagonal. ACM Trans. Math. Soft-

ware, 7, 387–390.

Duff, I. S., Erisman, A. M. & Reid, J. K. (1986) Direct Methods for Sparse Linear Systems.

New York, NY: Oxford University Press.

Duff, I. S. & Reid, J. K. (1978) An implementation of Tarjan’s algorithm for the block triangu-

larization of a matrix. ACM Trans. Math. Software, 4, 137–147.

Duff, I. S. & Reid, J. K. (1996) The design of MA48: A Code for the direct solution of sparse

unsymmetric linear systems of equations. ACM Trans. Math. Software, 22, 187–226.

Fages, F. & Lal, A. (2006) A constraint programming approach to cutset problems. Comput.

Oper. Res., 33, 2852–2865.

Festa, P., Pardalos, P. M., & Resende, M. G. C. (1999) Feedback set problems. Handbook

of Combinatorial Optimization, vol. A (D. Z. Du & P. M. Pardalos eds.). Boston, MA: Kluwer

Academic Publishers, pp. 209–258.

Festa, P., Pardalos, P. M., & Resende, M. G. C. (2001) Algorithm 815: FORTRAN subrou-

tines for computing approximate solutions of feedback set problems using GRASP. ACM Trans.

Math. Sotware, 27, 456–464.

Fourneau, J.-M., Kloul, L., Mokdad, L. & Quessette, F. (1994) A new tool to model

parallel systems and protocols. Proceedings of the European Simulation Symposium (A. R. Kaylan,

17

A. Lehmann & T. I. Oren eds.). Istanbul, Turkey: Society for Computer Simulation International,

pp. 220–224.

Harwell Subroutine Library. (2007) http://www.cse.clrc.ac.uk/nag/hsl/.

Hecht M. S. & Ullman, J. D. (1974) Characterizations of Reducible Flow Graphs. J. ACM, 21,

367–375.

Karp, R. (1972) Reducibility among combinatorial problems. Complexity of Computer Communi-

cations (R. E. Miller & J. W. Thatcher eds.). New York, NY: Plenum Press, pp. 85–103.

Levy, H. & Low, D. W. (1988) A contraction algorithm for finding small cycle cutsets. J. Algo-

rithms, 9, 470–493.

Pardalos, P. M., Qian, T. B. & Resende, M. G. C. (1999) A greedy randomized adaptive

search procedure for the feedback vertex set problem. J. Comb. Optim., 2, 399–412.

Rosen, B. K. (1982) Robust linear algorithms for cutsets. J. Algorithms, 3, 205–217.

Saad, Y. (2003) Iterative Methods for Sparse Linear Systems, 2nd ed. Philadelphia, PA: SIAM

Press.

Shamir, A. (1979) A linear time algorithm for finding minimum cutsets in reducible graphs. SIAM

J. Comput., 8, 645–655.

Tarjan, R. E. (1972) Depth-first search and linear graph algorithms. SIAM J. Comput., 1, 146–160.

