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Abstract

Spatial information is a crucial aspect of image understanding for modeling context as well as
resolving the uncertainties caused by the ambiguities in low-level features. We describe flexible, in-
tuitive and efficient methods for modeling pairwise directional spatial relationships and the ternary
between relation using fuzzy mathematical morphology. First, a fuzzy landscape is constructed
where each point is assigned a value that quantifies its relative position according to the reference
object(s) and the type of relationship. Then, the degree of satisfaction of this relation by a tar-
get object is computed by integrating the corresponding landscape over the support of the target
region. Our models support sensitivity to visibility to handle areas that are partially enclosed by
objects and are not visible from image points along the direction of interest. They can also cope
with the cases where one object is significantly spatially extended relative to others. Experiments
using synthetic and real images show that our models produce more intuitive results than other
techniques.

1 Introduction

Traditional approaches to scene classification and retrieval have used global features for image rep-
resentation. However, the object variability and background complexity in realistic data sets have
increased the need for region-based analysis. More recently, local feature-based methods have received
significant attention due to their invariance to translation, scale and rotation, and robustness to par-
tial occlusion and clutter. However, the visual polysemy caused by similar local features (also called
patches) occurring at semantically different parts of a scene leads to ambiguities if the classification
methods do not exploit additional contextual information to resolve these uncertainties. Furthermore,
even when regions/patches can be classified correctly, two scenes with similar regions/patches can have
different interpretations if the regions/patches have different arrangements. This especially becomes
important and critical when the scenes contain complex structures like in medical or remote sensing
images.

Contextual information has long been acknowledged for playing a very important role in both
human and computer vision. Consequently, development of context models has become a challenging
problem in both statistical and structural pattern recognition. A structural way of modeling context in
images is through quantification of spatial relationships. Typical relationships studied in the literature
include topological (set relationships, adjacency), distance-based (near, far) and relative position-based
relationships.

The methods used for computing these relationships depend on the way how objects/regions are
modeled [7]. Examples include grid-based representations [5], centroids and minimum bounding rect-
angles [14]. Centroids and minimum bounding rectangles are useful when regions have circular or
rectangular shapes but regions in natural scenes often do not follow these assumptions. When re-
gions are represented as sets of points (pixels), adjacency of two regions can be measured as a fuzzy
function of the distance between their closest points or using morphological dilations modeling con-
nectivities [7]. Distance-based relationships can also be defined using fuzzy membership functions
modeling symbolic classes such as near and far using the distance between boundary pixels. More
complex representations of spatial relationships include spatial association networks [12], knowledge-
based spatial models [10, 15], and attributed relational graphs [13]. However, these approaches require
either manual delineation of regions by experts or partitioning of images into grids. Therefore, they
are not generally applicable due to the infeasibility of manual annotation in large databases or because
of the limited expressiveness of fixed sized grids that cannot capture large number of structures with
different sizes.

In previous work [3, 4], we developed fuzzy models for pairwise spatial relationships based on over-
laps between region boundaries (disjoined, bordering, invaded by, surrounded by), distances between
region boundaries (near, far), and angles between region centroids (right, left, above, below). Then,
we combined these pairwise relationships into higher order relationship models using fuzzy logic, and
illustrated their use in image retrieval [4]. We also developed a Bayesian framework that learns image
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classes based on automatic selection of distinguishing (e.g., frequently occurring, rarely occurring)
relations between regions [2]. Finally, we built attributed relational graph structures to model scenes
by representing regions by the graph nodes and their spatial relationships by the edges between such
nodes [1], and used relational matching techniques to find similarities between graphs representing
different scenes. We demonstrated the effectiveness of these approaches in scenarios that cannot be
expressed by traditional approaches but where the proposed models can capture both feature and
spatial characteristics of scenes and model them according to their high-level semantic content.

1.1 Related work

In this report, we concentrate on relative position-based relationships: binary directional relationships
and the ternary between relationship. Most of the existing methods for defining relative spatial posi-
tions rely on angle measurements between points of objects of interest where the angle corresponding
to a pair of points is computed between the segment joining the points and the horizontal axis in the
coordinate system [9].

A common approximation is to represent objects using their centroids and to use the angle corre-
sponding to the centroids for defining the relative position of those objects. This approach is widely
used because of its simplicity and computational feasibility. However, when objects are not compact,
the results can be quite counterintuitive.

As an alternative, a histogram is constructed using the angles between all pairs of points from
both objects. Then, the mean or the maximum angle computed from this histogram can be used to
represent the relative position of these objects. When objects are large, this is an expensive method
not only because angles between each pair of points of two objects should be computed, but also this
process may be required for each object pair in the image. In addition, similar to the centroid-based
approach, correctness of this method decreases as objects get spatially more extended relative to each
other.

Matsakis and Wendling [11] proposed the histogram of forces as an alternative to the histogram
of angles. This method computes the degree of satisfaction for a given angle using intersection of
longitudinal sections of objects with lines having the desired direction.

The projection approach is different from the previous two in that it does not use any histogram.
It is based on the projection of the reference object on the axis representing the direction of interest
where the satisfaction of the relationship by a target object is proportional to the ratio of the number
of pixels it has on the selected side of this projection.

The morphological approach is based on directional dilations where a fuzzy landscape for a reference
object is created at a given angle and other objects are compared to this landscape to evaluate how well
they match with the areas having high membership values. As the structuring element for dilation, the
histogram of angles described above can be used after normalization by the maximum frequency [8].
Since only one landscape is calculated for each object for a particular direction of interest and all other
objects are compared to this landscape, it is an efficient approach; however, in the original definition
in [6], its computational burden increases exponentially as image gets larger since both structuring
element size and landscape size increases.

Another relationship that is often used in daily life but has not been studied as thoroughly as the
binary relationships is the between relationship (see [8] for an extensive review and a comparative
study). The most common and intuitive approach is based on convex hulls. The landscape between
two reference regions can be defined as the difference between the convex hull of these regions and the
regions themselves. However, if a region is spatially extended relative to the other or if regions have
concavities that are invisible from each other, this method is generally unsuccessful.

Another approach is using morphological dilations and separations, where a seed line is obtained
by dilating two regions until they meet, and the between landscape is generated by dilating the seed
with the same number of dilations. However, this method can only be applied to convex sets. In
addition, as the distance between the regions increases, the landscape may become too extended.
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A better approach is to use the watershed line (or skeleton by influence zones) to obtain the seed
line and apply geodesic dilation until the convergence of the watershed line to generate the landscape.
Although this method is also applicable for non-convex sets, when regions are compact, it produces
the same landscape with the convex hull approach; thus, it has the same drawbacks.

Directional dilations are also useful for the between relationship. After obtaining an approximate
relative angle between the reference regions, directional dilations are applied to both regions to extend
them towards each other to generate the landscape. Angle histogram can be directly used to create
the structuring element for dilation.

Bloch et al. [8] defined another approach called visibility using admissible segments, where the
landscape is defined as the combination of the segments reaching the boundaries of both regions. A
more flexible landscape is obtained by fuzzy visibility, where segments are defined to have intermediate
points and the landscape is obtained using the angle between the line segments intersecting at the
intermediate point. In addition, for the cases where one region is spatially extended, Bloch et al. [8]
suggested to use the closest parts of the regions to compute the landscape and called this the myopic
vision and pointed out that it is possible to combine the visibility and myopic vision approaches.
However, these approaches can often be computationally costly.

1.2 Proposed approach

Intuitively, the influence of the shape of the object (e.g., concavities, extent) and the influence of
the distance between objects are important points to be considered in the design of an algorithm.
Mathematical morphology provides a strong basis for such studies. Furthermore, the ambiguities and
subjectiveness inherent in the definitions of the relationships make fuzzy representation a promising
approach for modeling the imprecision in both images and results.

In this report, we propose flexible, intuitive and efficient methods for modeling directional spatial
relationships for object pairs and the between relation for three objects using fuzzy mathematical
morphology. First, a fuzzy landscape is defined where each point is assigned a value that represents
the degree of satisfaction for the point according to the reference object(s) and the type of relationship.
Directional mathematical dilation with a fuzzy structuring element is used to compute this landscape.
We provide flexible definitions of fuzzy structuring elements that are tunable along both radial and
angular dimensions. Then, the definitions for the fuzzy landscape are extended to support sensitivity
to visibility to handle image areas that are fully or partially enclosed by a reference object but are not
visible from image points along the direction of interest. Given an object and a direction of interest
that specifies a spatial relationship, the degree of satisfaction of this relation by a target object can be
computed by integrating the landscape corresponding to this relation over the support of the target
region.

Next, the definitions of the directional spatial relationships are combined to generate a landscape
in which the degree of each image area being located between the reference objects is quantified. Our
definition also handles the cases where one object is significantly spatially extended relative to the
other by taking spatial proximity into consideration. Similarly, the satisfaction of this ternary relation
relative to two reference objects by a target object is computed by integrating the corresponding
landscape.

Our main contributions in this report are the flexible definitions for the directional structuring
elements and efficient morphological formulation of the directional and between spatial relationships
with support for visibility and extended objects. The rest of the report is organized as follows.
Symbol conventions used in the report are listed in Section 2. Directional spatial relationships and
between relationship are described in Sections 3 and 4, respectively. The computation of the degree
of satisfaction of a relationship by a target object relative to the reference object(s) is discussed in
Section 5. The proposed methods are illustrated and compared to other techniques using synthetic
images and real satellite scenes in Section 6. Conclusions are given in Section 7. Appendices provide
details of mathematical functions used in morphological processing.
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2 Symbol convention

In this document, following symbol conventions are used:

A Capital letters represent set of pixels in an object/region.

Ac Represents complement of the set of pixels in an object/region.

a Small letters represents a point in a region (a ∈ A).

f(x) f is the image function from the Euclidean 2-space into [0, 1]. f(x) is the value of this function
at the point x. For crisp objects, f(x) ∈ {0, 1}; for fuzzy objects, f(x) ∈ [0, 1].

−→xy A vector from point x to point y.

α An angle value. In particular, it represents the direction of relationship between two regions.

β A fuzzy landscape calculated using reference object(s) for a given type of relationship. Each point
is assigned a value which represents the degree of satisfaction for the point according to the
reference object(s) and the type of relationship. It is considered as an image having pixel values
in [0, 1].

µ(A) Satisfaction degree of a relationship for the target object A on a given landscape.

area(A) Number of pixels in a crisp object A.

⊕ Morphological dilation.

	 Morphological erosion.

ν Structuring element. Similar to f , it is a function from the Euclidean 2-space into [0, 1]. If it is a
fuzzy structuring element, fuzzy mathematical morphology is used.

Definitions for crisp and fuzzy objects are available in the literature. However, only crisp objects
are considered in this report.

3 Directional spatial relationships

Directional relationships describe the spatial arrangement of two objects relative to each other. Al-
though, it is a common approach to use right (east), left (west), above (north), and below (south)
as the directions, for modeling purposes it is more convenient and generalizable to use angle-based
definition of these relations where it is possible to calculate the degree of satisfaction of the relation
for a given angle.

Given a reference object B and a direction specified by the angle α, our goal in this work is to
generate a landscape in which the degree of satisfaction of the directional relationship at each image
area relative to the reference object is quantified. Then, given a second object, its relation to the
reference object can be measured using this landscape. The landscape will be denoted by βα(B) in
the rest of the report.

3.1 Morphological approach

The landscape βα(B) around a reference object B along the direction specified by the angle α can be
defined as a fuzzy set such that the membership value of an image point corresponds to the degree of
satisfaction of the spatial relation under examination where points in areas that satisfy the directional
relation with a high degree have high membership values.
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(a) Synthetic image (b) Structuring ele-
ment να for α = π

(c) Landscape of region 4 for α = π

Figure 1: An example synthetic image and the directional landscape βα for one of the regions using
the structuring element να defined in (5).

This relationship can be defined in terms of the angle between the vector from a point in the
reference object to a point in the image and the unit vector along the direction α measured with
respect to the x-axis. The smallest such angle computed for a point in the image considering all
points in the reference object corresponds to the visibility of the image point from the reference object
in the direction α. Then, the value of the fuzzy landscape at an image point can be computed in terms
of the smallest angle using a decreasing function h : [0, π] → [0, 1] as

βα(B)(x) = h

(
min
b∈B

θα(x, b)
)

(1)

where b is a point in B and x is a point in the image. θα(x, b) is the angle between the vector
−→
bx and

the unit vector ~uα = (cos α, sinα)T along α, and can be computed as

θα(x, b) =

arccos
(
−→
bx·~uα

‖
−→
bx‖

)
if x 6= b,

0 if x = b.
(2)

Bloch [6] used a linear function

h(θ) = max
{

0, 1− 2θ

π

}
(3)

for (1). It can be shown that this is equivalent to the morphological dilation of B,

βα(B)(x) = (B ⊕ να)(x) ∩Bc, (4)

using the fuzzy structuring element

να(x) = max
{

0, 1− 2
π

θα(x, o)
}

(5)

where o is the origin (center) of the structuring element (see Appendix A for the definition of fuzzy
morphological dilation) and B is removed from the result of dilation in (4) (c represents complement).
An example synthetic image and fuzzy landscape examples using morphological dilation are given in
Figure 1. In all figures in this report, white represents binary 1, black represents binary 0, and gray
values represent the fuzziness in the range [0, 1].

However, the linear function in (3) and the corresponding structuring element in (5) may not be
feasible for many cases (see Section 6 for examples). Instead of using linearly decreasing membership
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(a) Structuring ele-
ment for λ = 0.3

(b) Landscape for λ = 0.3 (c) Structuring ele-
ment for λ = 0.5

(d) Landscape for λ = 0.5

Figure 2: Structuring element να,λ defined in (6) and directional landscape βα,λ of region 4 for α = π.

(a) Structuring ele-
ment for λ = 0.3

(b) Landscape for λ = 0.3 (c) Structuring ele-
ment for λ = 0.5

(d) Landscape for λ = 0.5

Figure 3: Structuring element να,λ,τ defined in (7) and directional landscape βα,λ,τ of region 4 for
α = π and τ = 100.

values according to the angle, we propose a more intuitive and flexible structuring element using a
nonlinear function with the shape of a Bézier curve:

να,λ(x) = gλ

(
2
π

θα(x, o)
)

(6)

where λ determines the inflection point of the curve (see Appendix B for more details) and the nonlinear
function enables different definitions of fuzziness for different cases. Fuzzy landscape examples using
this structuring element definition are given in Figure 2.

The definition of the structuring element can be further extended to decrease the degree of a
point’s spatial relation to a reference object according to its distance to that object by introducing a
new term

να,λ,τ (x) = gλ

(
2
π

θα(x, o)
)

max
{

0, 1− ‖−→ox‖
τ

}
(7)

where ‖−→ox‖ is the Euclidean distance of point x from the structuring element’s center. In this definition,
a point’s spatial relation to the reference object decreases linearly with its distance to the object with
τ corresponding to the distance where a point is no longer visible from the reference object. This
definition also has a computational advantage because in the previous definitions the structuring
element must be at least twice as large as the landscape of interest in the image space whereas in
definition (7) a structuring element with size of at most 2τ × 2τ is sufficient, leading to dramatical
improvements in the efficiency of the algorithm. Fuzzy landscape examples using this structuring
element definition are given in Figure 3.
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(a) Landscape of region 3 without
visibility

(b) Landscape of region 3 with visi-
bility for λ′ = 0.001

(c) Landscape of region 4 with visi-
bility for λ′ = 0.001

(d) Difference between landscapes of
region 4 with and without visibility

Figure 4: Directional landscape βα,λ,λ′,τ for α = π, λ = 0.3 and τ = 100 with and without the
visibility extension. (a) uses the structuring element definition in (7) without visibility, (b) and (c)
use the definition in (8) with visibility, (d) illustrates the difference between landscapes with and
without visibility.

3.2 Visibility

In directional dilation of (4), the areas that are fully or partially enclosed by the reference object but
are not visible from image points along the direction of interest may have high values as shown in
Figures 3 and 4. To overcome this problem, we propose the following definition

βα,λ,λ′,τ (B)(x) = (B ⊕ να,λ,τ )(x) ∩ (B ⊕ να+π,λ′)(x)c (8)

where the first dilation uses the structuring element defined in (7) and the second dilation uses the
structuring element defined in (6). We compute fuzzy intersection using multiplication as the t-norm
operator and compute fuzzy complement by subtracting the original values from 1. The proposed
definition of visibility is illustrated in Figure 4.

4 Between relationship

Between relationship is a ternary relationship defined by two reference objects and a target object.
Given two reference objects B and C, our goal in this work is to generate a landscape in which the
degree of each image area being located between the reference objects is quantified. Then, given a third
object, its relation to the reference objects can be determined using this landscape. The landscape
will be denoted by βG(B,C) in the rest of the report.

4.1 Morphological approach

Similar to the directional spatial relationships described in Section 3.1, the landscape βG(B,C) between
two reference objects B and C can be defined as a fuzzy set such that image points with a high degree of
the spatial relation have high membership values. This landscape can be computed as the intersection
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(a) Landscape for λ = 0.3 and λ′ =
0.001

(b) Landscape for λ = 0.15 and λ′ =
0.001

Figure 5: Between landscape βG of regions 2 and 4 using the definition in (11). The relative angle for
these regions is θG = −30.04◦.

of the directional dilations of the reference regions along the directions α = θG and α = θG + π where
θG is the relative position of the reference objects. This relative position can be calculated using the
maximum or mean value in the histogram of angles between all pairs of points of the reference objects
[8]. Using the horizontal axis as the axis of reference, the histogram of angles for the objects B and
C can be computed as

hB,C(θ) = |{(b, c)|b ∈ B, c ∈ C,∠(
−→
bc, ~uα=0) = θ}| (9)

and normalized as

HB,C(θ) =
hB,C(θ)

maxθ′ hB,C(θ′)
. (10)

Then, using θG as the relative position obtained from this histogram (as the maximum or mean value),
the landscape between the reference objects B and C is computed as

βG(B,C)(x) = βα=θG,λ,λ′(B)(x) ∩ βα=θG+π,λ,λ′(C)(x) (11)

where the directional landscape βα,λ,λ′ is computed as

βα,λ,λ′(B)(x) = (B ⊕ να,λ)(x) ∩ (B ⊕ να+π,λ′)(x)c (12)

using the structuring element definition in (6). Since the landscape should include only the areas that
are visible from both reference objects, the notion of visibility defined in Section 3.2 is used in the
computation. Fuzzy landscape examples for the between relationship using this definition are given
in Figure 5.

4.2 Myopic vision

Although histogram of angles generally provides a good approximation to the relative position of two
objects, it fails in the cases where one object is significantly spatially extended relative to the other
[8] (see Figure 6 for examples). We propose to solve this problem by taking into account only the part
of the spatially extended region close to the other region. (Bloch et al. [8] called this the “myopic
vision” and suggested to use the distance map to find close parts of regions, approximate these parts
using line segments, and apply conditional dilation to compute the landscape, but did not specify the
details of the method.)

Spatial proximity for handling spatially extended regions is incorporated into our morphological
approach using a weighted histogram of angles where the contribution of the angle between each point
pair in the histogram is weighted by the term max{0, 1− ‖

−→
bc‖/τmyopic} (instead of a constant weight

of 1 in (9)) where
−→
bc is the Euclidean distance between the points b and c, and τmyopic is the threshold

for the maximum distance between two points for allowing them to contribute to the histogram. The
proposed definition of myopic vision is illustrated in Figure 6 using regions 1 and 4 where region 1 is
spatially extended relative to region 4.
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(a) Landscape for λ = 0.15 and λ′ =
0.001 without myopic vision

(b) Landscape for λ = 0.15 and λ′ =
0.001 with myopic vision

(c) Landscape for λ = 0.5 and λ′ =
0.001 without myopic vision

(d) Landscape for λ = 0.5 and λ′ =
0.001 with myopic vision

Figure 6: Between landscape βG of regions 1 and 4 with and without myopic vision. τmyopic is taken
as the half of the width of the image. The relative angles are 42.28◦ and 63.40◦ for figures without
and with myopic vision, respectively. For larger values of λ, error in landscape without myopic vision
becomes more significant.

5 Degree of satisfaction of a relationship

After calculating the landscape β for a spatial relation as in Sections 3 or 4, the degree of satisfaction
of this relation by a target object A can be computed as

µ(A) =
1

area(A)

∑
a∈A

β(a). (13)

However, this definition would not be suitable in cases where the target region has a large spatial
extent relative to the reference region(s) [8]. In such cases, although intuitively the target region
would satisfy the relationship, because of the normalization using its area, resulting µ might be very
small.

An alternative definition is proposed by Bloch et al. [8] for the between relationship where the target
region has a large spatial extent as follows: core(βG) is the area of the landscape where membership
values are 1, and supp(βG) is its whole support. If the reference regions B and C are not connected
to each other, then supp(βG) \ core(βG) has two connected components, which are denoted by R1 and
R2. Then, the satisfaction degree can be defined as the intersection of the target region A with both
R1 and R2, such that

µ′(A) = min
{

sup
x∈R1

(A ∩ βc
G)(x), sup

x∈R2

(A ∩ βc
G)(x)

}
. (14)

However, if A ∩ core(βG)c = ∅, then the relationship degree should be zero. Moreover, the following
special cases should be handled separately:

• If neither R1 nor R2 exist, the previous µ(A) definition in (13) should be used.
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• If only one of R1 or R2 exists, the degree of satisfaction should be set to 0 or to the normalized
intersection value restricted to the points of A having nonzero intersection.

A second alternative suggested by Bloch et al. [8] for the between relationship is to use the maxi-
mum βG membership value at points of A along the direction orthogonal to the relative orientation as
the satisfaction degree.

6 Illustrative examples

In this section, comparisons with other major methods for binary directional and ternary between
relationships are presented with numerical and graphical results using both synthetic and real images.

Figure 7 shows directional and between landscapes of regions using Bloch’s directional landscape
definition in [6] ((5) in this report), Bloch et al.’s between landscape definition (17) in [8], and our
definitions (8) and (11) on a synthetic image that was also used in [6, 9, 7, 8]. Figures 7(b) and
7(c) illustrate the differences between the fuzzy landscapes obtained using Bloch’s and our structuring
element definitions. The latter is sensitive to the distance to the object according to the constant
τ and the landscape’s fuzziness is more centralized along the main direction of interest by the help
of the constant λ. Figures 7(d) and 7(e) present the importance of the support for visibility in our
definition for directional relationships. Although both landscapes for the direction “right” have similar
distributions to the right and above of the reference region, the first one also has nonzero values on
the left of the region, which contradicts the intuition. Figures 7(f) and 7(g) shows the differences
in the definition of between. The first landscape, which is generated according to the definition in
[8], is spatially too extended in the upper and lower parts of the image. It also includes non-smooth
transitions that contradict the intuition. On the other hand, the second landscape is more compact
and fully covers the expected between area.

In Tables 1, 2 and 3, experimental statistics using the synthetic image in Figure 1(a) are given. For
finding objects’ satisfaction of the specified relationships, definition (13), that returns a value in the
interval [0, 1] is used. For landscapes calculated using our definitions, constants are set as: λ = 0.3,
λ′ = 0.001, τ = 150. As the t-norm operator, minimum is used in all definitions, except for visibility
in directional relationships where multiplication is used as suggested in Section 3.2.

• Table 1 presents directional relationship satisfaction degrees of all object pairs in the directions
left, right, above and below, where α value corresponds to π, 0, π/2 and −π/2, respectively.
Results for three different methods are given: centroid-based method using the definitions in
[9] and the cosine fuzzy membership functions defined in [4]; Bloch’s morphological directional
landscape definition in [6] ((5) in this report); and the proposed morphological definition (8). It is
worth noting that, in all rows, as regions in relation get further away from each other, relationship
degree decreases in our definition. This is the result of the proposed metric information in
directional relationships, which depends on the value of τ . However, it should also be noted that
our flexible definition allows to create adequate structuring elements according to the context.
Some rows of the table are also worth mentioning. For reference region 1 and target region
4, our method decides that 4 is mostly above 1. (According to our definition, above relation
is the highest with 0.79, which is followed by the right relation with 0.40.) This decision is
consistent with intuition. However, the centroid-based method says that 4 is more to the right
than above, and Bloch’s definition erroneously gives 0.41 for left because of its large spread
along a wide angular range in the landscape. Bloch’s definition also gives conflicting results
for the reference-target relations 1-2, 1-3 and 3-4 because of the same problem. Specifically,
for reference region 3 and target region 4, centroid-based method and our definition perform
similarly by deciding that region 4 is below region 3. However, according to Bloch’s structuring
element definition, region 4 is also at the left (1.00), right (0.99) and above (0.34) of region 3.
Although above relation can be considered as an error, right and left relations may be acceptable
based on application requirements. In fact, by not using visibility in our definition (i.e., using
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(a) Synthetic image (b) Directional landscape
of A for α = 0 using Bloch’s
definition (5)

(c) Directional landscape
of A for α = 0 using our
definition (8)

(d) Directional landscape
of B for α = 0 using Bloch’s
definition (5)

(e) Directional landscape
of B for α = 0 using our
definition (8)

(f) Between landscape cal-
culated using Bloch et al.’s
definition (17) in [8]

(g) Between landscape us-
ing our definition (11)

Figure 7: Examples of directional and between landscapes using different definitions on a synthetic
image that was also used in [6, 9, 7, 8]. The square object is denoted by A and the other object by B.
The between landscape in (f) is calculated using dilation by a structuring element derived from the
histogram of angles as defined in (17) in [8]. For landscapes calculated using our definitions given in
text, constants are set as follows: λ = 0.3, λ′ = 0.001, τ = 200.
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βα,λ,τ instead of βα,λ,λ′,τ ), it is possible to obtain the same behavior. Rest of the cases give
similar results for all methods.

• Table 2 presents the relative angles (in degrees) for all object pairs using three methods: centroid-
based as described in Section 1; mean angle obtained from the histogram of angles defined in
(10); and mean angle obtained from the histogram of angles computed using myopic vision as
described in Section 4.2. In relative angle values computed using myopic vision, Inf represents
that objects under consideration are too distant to be related. The Inf threshold directly depends
on the constant τmyopic used in histogram calculation. This behavior of myopic vision is an
advantage of the proposed method because it also identifies the reference object pairs where
the between relationship calculation is meaningless (and computationally expensive). For all
cases, our myopic vision definition gives more intuitive results. For example, for relative degrees
between objects (regions) 1-2, 1-3 and 1-4, myopic vision returns a degree closer to the expected
direction north (90◦).

• Table 3 presents the between relationship satisfaction degrees for all reference and target object
triplets using two methods: Bloch et al.’s between landscape definition (17) in [8] and the
proposed definition (11) where the histogram of angles with myopic vision is used to calculate
the relative angles between the reference objects. In some rows of the table, there are significant
differences between the results of the two methods. For reference objects 1 and 2, results are
similar for target object 3; however, for target object 4, our definition can be considered as
performing better intuitively (see Figures 8(a) and 8(b) for the corresponding landscapes). We
can intuitively say that object 4 is between 1 and 3 more than it is between 1 and 2. Our
definition gives 0.95 for the former, whereas Bloch et al.’s method returns 0.77. Visibility in
the between relationship is also important. We can see that object 4 is not between 2 and 3,
and 2 is not between 3 and 4. (For example, a person at 2 cannot see a person at 4 in any
way.) However, Bloch et al.’s definition erroneously gives 0.41 for the former case and 0.27 for
the latter but our definition results in almost 0 for both cases (see Figures 8(c)–8(f) for the
corresponding landscapes). In all of the above cases, our results are much closer to expectations
than the results of the method proposed in [8]. The case for reference objects 2 and 4 illustrates
the effect of τmyopic in myopic vision. Since these objects are reported to be too far from each
other in Table 2, the degree of the between relationship for any target object is 0 without any
further computation. For target object 3, Bloch et al.’s method gives 0.16. Our definition can be
adjusted to give a similar result by increasing τmyopic. Finally, one particular case we would like
to note is the reference objects 2 and 3 where our method gives 0.23 for the satisfaction degree
for target object 1. This is because the myopic vision effect in the histogram of angles reports
object 3 to be more below object 2 than the histogram of angles without myopic vision does,
which causes the creation of the between landscape closer to object 1 (see Figures 8(c) and 8(d)
for the landscapes). Overall, the results obtained by the definitions proposed in this report are
much closer to expectations than the results of the method proposed in [8].

Finally, Figure 9 shows a LANDSAT scene of British Columbia in Canada and its segmentation
using the method in [2]. We present two example scenarios:

• Figure 10 illustrates the scenario for searching for bridges where a bridge is defined as a region
classified as asphalt or concrete and is between two water regions. The between landscape for two
water regions is successfully constructed so that the integration of this landscape over the region
classified as asphalt/concrete results in the detection of the bridge with a high confidence. Note
that, a bridge cannot be detected by conventional methods that look only at pixels or individual
regions.

• Figure 11 illustrates the scenario of finding the fields to the north (above) of a river (water).
The directional landscape without visibility in Figure 11(a) erroneously covers some areas that
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Table 1: Satisfaction degrees of directional relationships for all object pairs in the synthetic image in
Figure 1(a). Ids of reference objects and target objects are given in the first two columns, respectively.

Centroid-based Bloch’s definition (5) Our definition (8)
Ref. Target left right above below left right above below left right above below
1 2 0.24 0.00 0.76 0.00 0.60 0.13 1.00 0.00 0.05 0.01 0.46 0.00
1 3 0.00 0.38 0.62 0.00 0.19 0.70 0.98 0.00 0.03 0.14 0.53 0.00
1 4 0.00 0.72 0.28 0.00 0.41 0.87 1.00 0.00 0.05 0.40 0.79 0.00
2 1 0.00 0.24 0.00 0.76 0.02 0.39 0.00 0.78 0.00 0.04 0.00 0.26
2 3 0.00 0.96 0.00 0.04 0.00 0.92 0.03 0.23 0.00 0.30 0.00 0.03
2 4 0.00 0.75 0.00 0.25 0.00 0.74 0.00 0.43 0.00 0.18 0.00 0.04
3 1 0.38 0.00 0.00 0.62 0.82 0.24 0.00 0.83 0.39 0.08 0.00 0.49
3 2 0.96 0.00 0.04 0.00 1.00 0.00 0.59 0.09 0.50 0.00 0.16 0.00
3 4 0.01 0.00 0.00 0.99 1.00 0.99 0.34 1.00 0.05 0.01 0.00 0.72
4 1 0.72 0.00 0.00 0.28 0.75 0.07 0.00 0.59 0.40 0.02 0.00 0.34
4 2 0.75 0.00 0.25 0.00 0.75 0.00 0.43 0.00 0.19 0.00 0.04 0.00
4 3 0.00 0.01 0.99 0.00 0.25 0.36 0.79 0.04 0.14 0.19 0.52 0.01

Table 2: Relative angles (in degrees) between all object pairs in the synthetic image in Figure 1(a).
Ids of the object pairs for which the angle is computed are given in the first two columns.

Obj.1 Obj.2 Centroid Hist. of angles
Hist. of angles

with myopic vision
1 2 119.25 115.98 93.98
1 3 51.70 56.70 74.93
1 4 31.88 42.29 63.41
2 3 -10.99 -12.03 -21.97
2 4 -29.92 -30.04 Inf
3 4 -96.01 -80.13 -73.13

Table 3: Satisfaction degrees of between relationship for object triplets in the synthetic image in
Figure 1(a). Ids of reference objects are given in the first two columns and the target object is given
in the third column.

Ref.1 Ref.2 Target Bloch et al.’s definition (17) in [8] Our definition (11)
1 2 3 0.12 0.10
1 2 4 0.52 0.22
1 3 2 0.09 0.05
1 3 4 0.77 0.95
1 4 2 0.00 0.00
1 4 3 0.06 0.02
2 3 1 0.01 0.23
2 3 4 0.41 0.02
2 4 1 0.00 0.00
2 4 3 0.16 0.00
3 4 1 0.09 0.01
3 4 2 0.27 0.00

c©2007, RETINA Vision and Learning Group Page: 14/19



Modeling Spatial Relationships in Images Report No: BU-CE-0702

(a) Between landscape for objects 1
and 2 calculated using Bloch et al.’s
definition (17) in [8]

(b) Between landscape for objects 1
and 2 using our definition (11)

(c) Between landscape for objects 2
and 3 calculated using Bloch et al.’s
definition (17) in [8]

(d) Between landscape for objects 2
and 3 using our definition (11)

(e) Between landscape for objects 3
and 4 calculated using Bloch et al.’s
definition (17) in [8]

(f) Between landscape for objects 3
and 4 using our definition (11)

Figure 8: Examples of between landscapes used in Table 3.
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Figure 9: LANDSAT scene of British Columbia in Canada with its segmentation overlaid.

are to the south of the river. Introducing visibility using the structuring element in (7) with
α = π/2, λ = 0.5, τ = 150 for the first dilation in (8) and α = −π/2, λ = 0.001, τ = 100 for the
second dilation in (8) produces the landscape in Figure 11(b) where areas with water regions
closer to them from below than above have high membership values for the “field above water”
relationship. As an alternative, restricting the size of the structuring element to 100 × 100 in
the second dilation in (8) gives the landscape in Figure 11(c) where areas with a water region
closer than 100 pixels from above are ignored in the relationship. Figure 11(d) shows the results
of restricting the size of the structuring element to 200× 200.

7 Conclusions

We presented new, flexible and efficient definitions for modeling binary directional relationships and
the ternary between relationship using fuzzy mathematical morphology techniques. Our definitions
support the notion of visibility for handling areas that are partially enclosed by objects and are not
visible from image points along the direction of interest. They also cover the cases where one object is
significantly spatially extended relative to the other. Numerical and visual examples showed that our
models often produce more intuitive results than the state-of-the-art techniques. Future work includes
using these models for image classification and retrieval.
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(a) Zoomed sub-image (b) Between landscape of two water
regions using structuring element of
size 10× 10

Figure 10: Searching for bridges in the sub-image marked with a red rectangle in Figure 9 (see text
for details).

(a) Without visibility (b) With visibility using structuring element in
(7)

(c) With visibility using structuring element re-
stricted to size 100× 100

(d) With visibility using structuring element re-
stricted to size 200× 200

Figure 11: Searching for fields to the north of a river in the sub-image marked with a yellow rectangle
in Figure 9 (see text for details).
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Figure 12: One-dimensional functions gλ(x) with the shape of a cubic Bézier curve and a single
parameter λ (see text for details).

A Fuzzy mathematical morphology

Dilation of an object A with a fuzzy structuring element ν is defined as [6]

(A⊕ ν)(x) = max
y
{t[f(y), ν(x− y)]} (15)

where f is the function representing region A, ν is the structuring element, t is a t-norm operator for
fuzzy intersection, and y is taken over all points in the image.

This is equal to
(A⊕ ν)(x) = max

y
{t[f(x− y), ν(y)]} (16)

when it is assumed that the pixels outside the boundaries of the structuring element are zero.
It should be noted that fuzzy dilation is similar to dilation using a non-flat structuring element.

B Bézier curves

Bézier curve is a parametric curve defined using a number of reference points. Four points a0, a1, a2, a3

on a plane define a cubic Bézier curve where the curve starts at a0 going toward a1 and arrives at a3

coming from the direction of a2. The parametric form of the curve is

b(t) = (1− t)3a0 + 3t(1− t)2a1 + 3t2(1− t)a2 + t3a3 (17)

where t is the parameter having values in [0, 1].
To construct a one-dimensional function that has the shape of a Bézier curve and maps each

x ∈ [0, 1] to a y ∈ [0, 1], we set the reference points as

a0 = (0, 1), a1 = (λ, 1), a2 = (λ, 0), a3 = (1, 0) (18)

where λ ∈ (0, 1) so that the cubic curve has only one parameter. Then, equation (17) reduces to

bx(t) = 3t(1− t)2λ + 3t2(1− t)λ + t3 (19)

by(t) = (1− t)3 + 3t(1− t)2 + 3t2(1− t) (20)

and for any x ∈ [0, 1], bx(t) can be solved for t, and the corresponding y ∈ [0, 1] can be computed
using by(t).

In this report, this function/mapping is donated as gλ(x). This function has an inflection point at
x = λ. Examples of gλ(x) for different λ values are shown in Figure 12.
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