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ABSTRACT

A HYBRID HAIR MODEL USING THREE
DIMENSIONAL FUZZY TEXTURES

Medeni Erol Aran

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Güdükbay

January, 2007

Human hair modeling and rendering have always been a challenging topic in

computer graphics. The techniques for human hair modeling consist of explicit

geometric models as well as volume density models. Recently, hybrid cluster

models have also been successful in this subject. In this study, we present a

novel three dimensional texture model called 3D Fuzzy Textures and algorithms

to generate them. Then, we use the developed model along with a cluster model

to give human hair complex hairstyles such as curly and wavy styles. Our model

requires little user effort to model curly and wavy hair styles. With this study,

we aim at eliminating the drawbacks of the volume density model and the cluster

hair model with 3D fuzzy textures. A three dimensional cylindrical texture map-

ping function is introduced for mapping purposes. Current generation graphics

hardware is utilized in the design of rendering system enabling high performance

rendering.

Keywords: Hair modeling, hair rendering, curly hair, wavy hair, cluster hair

model, volume density model, 3D texture, 3D texture mapping.
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ÖZET

ÜÇ BOYUTLU BULANIK DOKULAR KULLANAN

KARMA SAÇ MODELİ

Medeni Erol Aran

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Uğur Güdükbay

Ocak, 2007

İnsan saçının modellenmesi ve ışıklandırılması bilgisayar grafiği alanında daima

ilgi çeken konulardan biri olmuştur. Açık geometrik modeller ve kapalı

hacim yoğunluğu modelleri, insan saçının modellenmesi ve ışıklandırılması için

geliştirilen tekniklerdendir. Bu tekniklerle birlikte, karma tutam modelleri de

son zamanlarda bu konuda başarılı olmuştur. Bu çalışmada, 3 Boyutlu Karmaşık

Dokular ismini verdiğimiz yeni bir üç boyutlu doku modeli ve bunun üretilmesi

anlatılmaktadır. Daha sonra, bu doku modeli kullanılarak kıvırcık ve dalgalı

saç modeli gibi karmaşık saç şekilleri karma tutam modeliyle birleştirilerek kul-

lanılmaktadır. Geliştirdiğimiz model, kıvırcık ve dalgalı saç modelleme için

gereken kullanıcı eforunu azaltmaktadır. Bu çalışma ile, hacim yoğunluğu mod-

elinin ve karma tutam modelinin yetersizliklerini gidermeyi hedeflemekteyiz.

Dokuların örtüştürülmesi amacıyla üç boyutlu bir silindirik doku örtüştürme

fonksiyonu sunulmaktadır. Işıklandırma sisteminin tasarımında, yeni nesil ekran

kartlarının sağladığı imkanlardan yararlanılarak yüksek performanslı ışıklandırma

sağlanmıştır.

Anahtar sözcükler : Saç modelleme, saç ışıklandırma, kıvırcık saç, dalgalı saç,

karma tutam saç modeli, hacim yoğunluğu saç modeli, üç boyutlu doku, üç

boyutlu doku örtüştürme.

iv



Acknowledgement

I gratefully thank to my supervisor Assoc. Prof. Dr. Uğur Güdükbay for his
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Chapter 1

Introduction

In the last decade, there have been great achievements in the area of computer

graphics. These achievements appear in our everyday lives. Films full of visual

effects and computer games with natural looking artificial scenes enrich our lives.

Besides, scientific visualization provides very valuable information for physicians

to save people’s lives.

Modeling and visualization of complex data has always been a very challenging

problem in computer graphics. Human hair is one of such examples and there

has been significant progress in modeling realistic human hair in the last decade

[12, 24, 15, 17]. However, there are some unresolved issues in this subject. For

example, modeling curly and wavy hair styles are still very difficult and time

consuming with classical techniques.

The main difficulty of hair modeling is the fact that hair may be in very differ-

ent styles. Besides, there are a lot of hair strands in sub pixel size even within a

small volume of hair group. Optic characteristics of hair are also complex. Since

hair is transparent and there are so many of them in a small volume, interaction

of these transparent strands with light results in an extraordinary bidirectional

reflection distribution function (BRDF). Dynamic simulation is also problematic

because of physical interaction of huge number of hair strands. Realistic hu-

man hair representation contains problems in all aspects of computer graphics

1



CHAPTER 1. INTRODUCTION 2

technologies, i.e. shape modeling, rendering and animation.

During nearly the thirty years of study, several methods have been developed

for generating hair. From early times of fur modeling and rendering until now, re-

searchers generated breathtaking images of human hair using different techniques.

However, most of these methods are applicable only to particular types of hair

under specific conditions. Curly and wavy hairstyles have always been problem-

atic in hair modeling since it requires a lot of user interaction when styling the

hair. Some procedural methods have also been developed. However, it is usually

difficult to estimate the resulting hairstyle by using these procedural techniques.

To get realistic results, one has to consider creating randomness for hair as well

as preserving the main sketches of the hairstyle.

1.1 Motivation

In this study, we develop a new hair model especially for wavy and curly hair

and propose a rendering architecture for the developed model. Our proposal is

a hybrid model based on cluster hair model and volume density model. This

study also shows the limitations of both models and discusses new techniques to

eliminate the observed problems.

Our new model aims at providing the fine details of hair in a generalized 3D

texture (texels) at first level of abstraction. As a second level of abstraction,

these texels are mapped onto generalized cylinders that are used as global shape

definers.

We develop an algorithm for creating texels from cardinal splines. Curliness of

hair can easily be obtained by using these cardinal splines for fine detail. To give

hair a realistic appearance we construct self similar clusters in the generalized

3D texture. Then, the conversion of geometry information to density information

is performed with our curve following algorithm we developed for following a

cardinal spline through a 3D texture.
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Global shape definition for second level of abstraction is performed with gen-

eralized cylinders. We again use cardinal splines for trajectories of generalized

cylinders. Circles and ellipses are used as cross sections. Generation of 3D texture

coordinates and mapping of fine detailed 3D texture for generalized cylinders is

performed with a mapping function that we propose.

This study also proposes a rendering architecture for the developed model.

Although ray casting gives very satisfactory visual results, it is almost impossible

to get a render shot without waiting for hours. Therefore, we approximate the vol-

ume characteristics of hair with polygonal slices through the generalized cylinder

and use the power of conventional scan line hardware. We design and implement

a generic dynamic pixel buffering algorithm [28] for Graphical Processing Units

(GPU).

Shading is performed in the GPU using Kajiya and Kay’s illumination model

[12] for thin cylinders. We implement image composition techniques from film

industry to get final renderings in the GPU.

1.2 Organization of the Thesis

The thesis is organized as follows: Chapter 2 reviews existing hair modeling

techniques in the literature. In Chapter 3, we introduce our 3D fuzzy texture

model as the first level of abstraction. Chapter 4 presents the limitations of

3D textures when they are used directly as rendering primitives and offers some

impermanent solutions for these limitations. Chapter 5 focuses on the second level

of abstraction with generalized cylinders and our 3D texture mapping function for

a permanent mapping solution. In Chapter 6, rendering architecture we propose

is discussed. Chapter 7 gives the experimental results of our study. Chapter

8 presents conclusions and future research areas. Finally, Appendix gives the

implementation details of the study.



Chapter 2

Related Work

The research results in modeling human hair could simply be divided into three

main categories: explicit geometric models, volume density (implicit) models and

cluster models. In this chapter, these approaches will be described with their

advantages and disadvantages.

2.1 Explicit Geometric Models

Explicit hair models are brute force methods that try to model the geometry of

each individual strand of hair using lines, curves, cylinders or surfaces. Csuri

et al. [6] was the first in trying to render tribbles using triangular primitives to

our knowledge. In their system, a group of tribbles were rendered with 500,000

triangles. Gavin Miller [19] stated a model by representing the individual hair

strands as three forward-facing triangles arranged in the form of a cone. Although

his paper was on the dynamics of snakes and worms, rendering part of his work for

an artic caterpillar by such a method was also recognized by the academy. Both

of these models’ problems were that they suffered from high aliasing artifacts

and they were applicable only for short, straight, thick fur. Aliasing artifacts

and modeling difficulty for long hair have always been an open problem for this

method and there has been a great effort to eliminate these problems until today.

4
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Le Blanc et al. [13] tried to model long hair with curved cylinders.

Hadap and Thalmann used a flow-based technique for hair shape modeling

[9, 10]. In their work, the hair shape is modeled as streamlines of a fluid flow.

Then, the streamlines are rendered as hair strands.

In explicit models, each of the hair strands has to be defined and stored in-

dividually. This was a big problem when computers had very limited memory.

However, advances in computer hardware have directed researchers to focus on

other problems related with this model. Aliasing is such a problem. Area antial-

ising was used first to overcome this problem. Supersampling would also be used

to antialias the scenes. However, even with today’s computers, rendering huge

number of primitives by explicit models with oversampling is not bearable. High

computational cost is another drawback of this method for the same reason.

2.2 Volume Density Models

Volume density models appeared from the fact that high complexity scenes behave

more like volumetric textures. Kajiya and Kay [12] were the ones to create

the state-of-the-art image known as the Teddy bear of computer graphics on

fur rendering. They realized that modeling natural phenomena through density

volumes created the painter’s illusion and that would be suitable for sub pixel

size renderings. Meanwhile, Perlin and Hoffert [24] invented the Hypertexture and

obtained very successful renderings with their method.

Kajiya and Kay named their generalized 3D volume densities as texels and

used it for rendering straight fur on the Teddy bear. On the other side, hy-

pertexture had the capability to model wavy fur through turbulence functions.

However, both of the methods suffered from the same restriction that they were

not directly suitable for modeling complex hairstyles, especially the long ones.

Other restriction with those approaches was the high rendering times resulting

from the volume rendering approaches used with these methods. Both the texel

approach and the hypertexture approach created the state-of-the-art images on
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fur rendering. However, as Kajiya and Kay stated, conversion of geometry data

to density data was a big problem which resulted in only straight fur with the

texels approach. Also, using bilinear patches as fur containing volumes resulted

in mapping problems with triangular meshes and required intensive artist effort

for proper mapping.

Fabrice Neyret [21] proposed a general solution for converting geometry data

to density data. In his doctorate research, he extended the texel idea for arbitrary

patterns and successfully prefiltered these patterns for multiresolution texels.

2.3 Cluster Models

Cluster models aim to use the powerful sides of both explicit methods and im-

plicit methods. Explicit methods have the advantage of using hardware support.

However, direct rendering through geometry does not produce qualified images.

On the other hand, volume density methods produce images with high visual

quality, but rendering time is very high because of volume rendering approaches.

Cluster models approximate the volume properties of hair by polygonal slices.

As a result, since the required phenomenon is modeled with polygons, hardware-

supported operations can be utilized. Besides, approximation on volume data

enhances the image quality.

Lengyel [14] rendered a series of transparent layers upon the surface with

equal distance that is called as the shells approach. In fact this approach was

the starting point for cluster based approaches. Since this method used scan line

hardware as the renderer, almost real time fur renderings were obtained with this

approach. Problem with this method was view dependent artifacts. Lengyel et al.

[15] developed the shells and fins approach to avoid this artifact (See Figure 2.1).

Perpendicular slices were added to shells called as fins in this method. However,

other artifacts were introduced for combing angles greater than 45 degrees.

One of the most successful cluster models is the one developed by Yang et
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Figure 2.1: Shells and fins approach (adopted from [15])

al. [29]. In this model, a generalized cylinder is used to represent the global

guides of hair clusters. The fine detail is given by a distribution map on the

cross-section along the axis curve. With this method, modeling long hair with

small storage requirements was achieved in a very compact form. However, since

it used volume rendering for ray tracing the cylinders, rendering time was high

with this method. This problem was partially resolved by Wang and Yang [28]

with a sweeping algorithm. Although long hair was modeled successfully with

this method, randomness and irregularity of hair clusters were uncontrollable

resulting in straight hair. Generation of curly or wavy hair models required a lot

of user interaction and high number of hair clusters resulting in unavoidable high

rendering times.

Another interesting cluster model was developed by Patrick et al. [23] for

modeling and rendering African hairstyles. They used 2D opacity maps to give

curliness to hair clusters by using Lengyel’s shells method. The results they

obtained were quite convincing but controlling the curliness within a cluster still

remained as an open problem.

To sum up the literature, after nearly the 30 years of study, researchers have

come to a point that realistic hair modeling in reasonable rendering times would

be possible by using both explicit methods and implicit methods at the same

time. Modeling and rendering of straight long hair is resolved by such a hybrid

method called as the cluster method. Our study will mainly focus on sub cluster

geometry control in the following chapters.



Chapter 3

3D Fuzzy Textures

3.1 The Texels Approach

The texel idea was introduced by Kajiya and Kay [12]. Further references go to

Blinn [3] for his idea to render volume densities. To obtain images of rings of

Saturn, he developed an algorithm to approximate the appearance of dusty and

cloudy volumes formed by a vast number of microscopic spherical particles. This

was the key idea for Kajiya and Kay to develop the texel model.

Kajiya and Kay realized that volume densities introduced by Kajiya and Von

Herzen [11] were capable of rendering many complex objects, not only dust and

smoke particles. However, some generalizations were needed. At this point, the

term ”texel” was defined as generic as possible. A texel is an approximation

to a volume cell that contains microsurfaces. Therefore, a texel’s values are a

representation for the microsurfaces contained. To define these microsurfaces’

characteristics, there exist three components:

1. A scalar density ρ: An approximation to relative projected area of the

microsurfaces contained within a volume cell.

2. A field of frames B: The local orientation of the microsurface within a

8
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volume cell.

3. A field of lighting models Ψ: The bidirectional light reflection functions that

determine how light scatters from the current microsurface.

Although the suggested texel model encapsulates all of the characteristics of

microsurfaces for every point in space, in practice, it is usually the case that

lighting model for a group of texels is the same. Especially if the texel contains a

single microsurface type. In their original work, Kajiya and Kay embed only the

density and field of frames information into the texels and use the same lighting

model for each microsurface, too. When rendering hair, desired BRDF may be

used through all the texels provided that the hair color and material properties

does not vary greatly.

In our study, we suggest a method to generate texels from cardinal spline

geometry. This will allow us to form sub cluster density information for hair

modeling in a user controlled way.

3.2 Splines as Hair Strands

In our study, we use cardinal splines for giving fine detail to hair as the first

level of abstraction. In this way, it will be very easy to define the desired wavy

perturbations in sub cluster level. In the following lines, we discuss the general

properties of cubic splines and especially the characteristics of cardinal splines as

our choice of curve geometry.

3.2.1 Parametric Curves

A parametric curve is usually defined by a polynomial. We represent a polynomial

of order k as:

Q(u) = p0 + p1u + p2u
2 + · · ·+ pku

k (3.1)
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In computer graphics, we usually use cubic polynomials, i.e., polynomials

having a degree of 3. As a result, wider shape flexibility is provided. However,

it is not easy and intuitive to represent the curve directly using the polynomial

coefficients in graphics applications. Instead, cubic polynomial is rearranged in

such a form that shape manipulation becomes possible through control points

and basis functions.

3.2.1.1 Cubic Splines

Different kinds of basis functions have been valuable tools in several computer

graphics applications. From low-level control of motion in animation [18] to

shape definition, they are used for several different purposes. One of the most

extensively used splines is the cubic splines. When compared to other curve

definitions, cubic splines give more power to user to control the shape of the

curve locally. They also have less storage requirements.

The set of all (k +1)th-order polynomials consisting of polynomials up to and

including those of degree k in equation 3.1 forms a vector space Ωk+1. If we can

represent Q(u) in such a way that each pk stands for a position in that vector

space and each power basis uk stands for a collection of linearly independent

polynomials, then we will be able to rearrange our polynomial with control points

and basis functions. For a cubic polynomial (k = 3), our polynomial reduces to

a cubic spline definition such that:

Q(u) =
3∑

i=0

pib
i(u) (3.2)

Cubic splines are generated by the help of control points, also known as knots

(pi in equation 3.2). The resulting shape is a piecewise polynomial curve that

passes through all the control points. The basis functions (bi in equation 3.2)

stands for interpolating descriptors that determine the interpolation rules between

two control points. There are many basis functions resulting in different curve

characteristics.

The most primitive basis is the natural cubic spline basis. This basis is the
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mathematical representation of draftsman’s spline. It requires two adjacent curve

segments have the same first and second derivatives. In this way, it guarantees

C2 continuity at control points. However, it has the drawback of changing the

shape of the curve globally. A natural cubic spline generated from eight control

points is showed in Figure 3.1.

Figure 3.1: A cubic spline generated from eight control points

Hermite basis is yet another spline basis function. This basis interpolates the

cubic polynomial with a specified tangent at each control point. It provides local

control over the shape since each curve segment is interpolated only between its

adjacent two control points. Hermite basis is widely used in graphics applications.

However, obtaining the required curve forces the user to define the tangents at

the control points, which is not very intuitive.

3.2.1.1.1 Cardinal Splines : A more intuitive way to create a cubic spline

can be achieved through the Cardinal basis. Cardinal splines are much like Her-

mite splines except that there is no need to define tangents at control points.

Cardinal splines have the ability to calculate the tangents at control points from

the coordinates of two adjacent points. As a result, only the manipulation of

control points is necessary to define the spline shape.

A Cardinal spline segment is specified with four consecutive points. Only

the middle points act as endpoints and the other two are used to calculate the
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tangents of the endpoints (See Figure 3.2). At first, it may be thought that one

must still deal with more than just the endpoints for slope calculation. However,

considering that a final spline will have several segments, it can be seen that

endpoints of one segment will be used for tangent calculation of the adjacent

segments reducing the effort to define extra points for tangent calculation.

Figure 3.2: A cardinal spline segment

There is another parameter for cardinal splines called as the tension parameter

that defines how tightly the spline fits the control points.

If we represent the parametric cubic function for the curve segment between

endpoints pk an pk+1 with P (u), and the tension parameter as t, then, the bound-

ary conditions for the cardinal spline segment can be formulated as follows:

P (0) = pk, (3.3)

P (1) = pk+1,

P ′(0) =
1

2
(1− t)(pk+1 − pk−1),

P ′(1) =
1

2
(1− t)(pk+2 − pk),
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Then, we can derive the boundary conditions formulation as:

P (u) =
[

u3 u2 u 1
]

·MC ·











pk−1

pk

pk+1

pk+2











, (3.4)

where the cardinal matrix is:

MC =











−s 2− s s− 2 s

2s s− 3 3− 2s −s

−s 0 s 0

0 1 0 0











, (3.5)

and

s =
1− t

2
(3.6)

When the tension parameter t = 0, cardinal spline is called as the Catmull-

Rom spline. In our experiments, we observed that a tension parameter value

between 0.8 and 1.0 is the best value for curly and wavy hair styles. Tension

parameter value between 0.1 and 0.3 is the best value for straight hair styles. See

Figure 3.3 for the effects of tension parameter.

3.3 Growing Hairs within 3D Textures

After observing that Cardinal splines have the capability to model any kind of

curly/wavy curve, it is necessary to find a way to convert spline geometry to

texels information. Our aim is to construct a reference 3D texture that will

reveal the hair details in final renderings. First, we form a 3D texture full of

texels information. Then, this reference 3D texture will be mapped to global hair

guides.
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Figure 3.3: Effect of tension parameter for a Cardinal spline

3.3.1 Seed Hairs for the Unit Cube

Generating the reference 3D texture starts with the definition of the seed hair

strands for the unit cube. Since we use cardinal splines as hair geometry defini-

tion, any desired curve may be defined in this step. Some example seed strands

are shown in Figure 3.4.

Figure 3.4: Some seed strands for the unit cube
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After the seeds are introduced, all the remaining process is performed auto-

matically. Our modeler program takes the seeds as guides and accepts them as

clusters. In this way, we bind a clustering concept into the 3D texture as well.

There are some user defined parameters for customizing the texel such as each

cluster’s area, number of clusters and cluster density. According to the user de-

fined parameters, our modeler program grows hair strands in the unit cube and

waits for the command to convert the geometry information to texel information.

During hair growing, there are two important steps for avoiding generation of

regular patterns:

1. Placement of hair roots,

2. Clustering in the unit cube by deformations.

3.3.1.1 Placement of Hair Roots

The first step in growing hairs in the reference unit cube is to decide about the

positions of hair roots. We observe that positioning the hair roots is very impor-

tant for breaking the regular unrealistic appearance. It must also be considered

that random or very regular placement of hair roots results in aliasing artifacts

during rendering if some ray casting algorithm is to be used. To overcome this

problem, we place the hair roots in a Poisson disk sampling pattern.

Yellott [30] proposed that a Poisson disk distribution (a Poisson distribution

with a minimum-distance constraint between points) is ideal for fixed-density

(nonadaptive) sampling. According to his studies, Poisson disk distribution is

also observed in retinal cells and using this pattern for high frequency data would

yield more aliasing free images. More information on antialiasing patterns can

be found in Mitchell [20].

In this work, we realized Poisson disk distribution with a ”dart-throwing”

algorithm when placing the hair roots. Positions of the hair roots are generated

randomly with a uniform distribution over the area being filled and each new

point is rejected if it falls within a certain distance of any previously chosen
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points, otherwise it is added to the pattern, and the process continues. Two

example root placements with distance constraints d = 0.02 and d = 0.07 are

shown in Figure 3.5. The dense one contains 707 hair roots and the coarse one

contains 132 hair roots.

(a) (b)

Figure 3.5: Sample hair root placements for different Poisson distance con-
straints: (a) d = 0.02; and (b) d = 0.07.

3.3.1.2 Clustering in the Unit Cube by Deformations

The second step for growing hairs within the unit cube is to fill in the seed clusters

with hair strands. After the user sketches the guiding clusters, each cluster is

copied in the unit cube as many as the user defined parameter numClusters.

Only copying and placing with a Poisson distribution is not enough for getting

convincing results. Curly or wavy hair contains so many clusters even within a

one large cluster. Therefore, when copying the seed clusters, we deform them as

to produce self similar clusters. Deformation of a seed cluster is performed by

rotating its control points around the up vector axis with a random angle. Self

similar clusters for cardinal splines given in Figure 3.4 can be seen in Figure 3.6.
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Figure 3.6: Self similar clusters of seed hairs

3.4 From Cardinal Splines to Texels

The last step in constructing the reference texels is the conversion step. When

generating the texels, it is necessary to determine the volume cells that each

cardinal spline intersects. Whenever an intersection is discovered, it means that

the density of that cell shall be increased by an amount equal to the hair strand’s

opacity. This scalar will correspond to ρ (microsurface projected area) in Kajiya’s

texel definition. By finding the intersection, we also have the chance to calculate

and store the tangent at that point.

In scientific visualization, we usually get only the volume density information

in a 3D array, and then it requires calculation of tangents by taking gradients in

volume density. However, in our approach, we already have the surface geometry.

Therefore finding the tangents simply reduces to calculation of the derivative of

the parametric curve at the desired point. We are required to find the tangents

since they will be used in rendering.

Intersection tests make this algorithm unpractical if we cannot introduce a
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way to eliminate the unnecessary tests. It is extremely inefficient to traverse each

volume cell and check that cell’s intersection with each hair strand.

We introduce a spline following algorithm named ”marching cells” to realize

an optimization. Name is inspired from the well-known algorithm ”marching

cubes”. Before stating the algorithm, we suggest a method for calculating the

intersection of a cardinal spline with a texel.

3.4.1 Intersecting Cardinal Splines with Texels

Assuming that the unit cube is positioned at the origin without any deformations

and the resolution of the unit cube is n3 for n ≥ 0, each side of the volume cell

shall have the plane equation:

x = a or y = b or z = c, where a, b, c are the constants proportional to the

cell indices.

Cardinal spline equation given in 3.4 may also be expressed as:

P (u) =
[

u3 u2 u 1
]

︸ ︷︷ ︸

~U

·











~A

~B

~C

~D











,

︸ ︷︷ ︸

~Γ

(3.7)

As ~Γ being the multiplication of the cardinal matrix MC with the knots vector.

Note that ~A, ~B, ~C and ~D are triples.

Then, we can write each component of the cardinal spline in the direction of

the unit vectors as:

P (u)x~·x = ~U · ~Γx · ~x, (3.8)

P (u)y ~·y = ~U · ~Γy · ~y,
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P (u)z~·z = ~U · ~Γz · ~z,

Since the spline will intersect either the plane x = a or y = b or z = c, finding

the intersection point reduces to solving the cubic equations:

(of the form m x3 + nx2 + p x + r = 0)

~U · ~Γx = a, (3.9)

~U · ~Γy = b,

~U · ~Γz = c,

Then, any numerical method can be applied for finding the intersection plane

and the intersection point [25].

3.4.2 Marching Cells

As stated before, main purpose of the algorithm is to reduce the intersection tests

by following the cardinal splines through the unit cube. This enables only the

calculation of intersections that are certain to occur. The algorithm is shown in

Algorithm 1. The functions in the algorithm are simple 3D functions that test the

existence of a point inside a cube except that FindSplineTexelIntersection().

The implementation details of this is given in Subsection 3.4.1. Figure 3.7 shows

the marching cells algorithm for a cardinal spline during the conversion process.

Red cells are the ones that were subject to march and converted to texel.

3.4.3 Antialiasing during Texel Conversion

Marching cells algorithm generates texels for each volume cell over the cardinal

splines. However, spline curves are much thinner than a size of a volume cell.

Therefore, aliasing problems are caused by the inadequate sampling of continu-

ous information. Increasing the resolution of the unit cube along with a super-

sampling process may be a solution but this solution will require high memory
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Algorithm 1 The Marching Cells Algorithm

1: procedure MarchingCells(hairs)
2: for all hairStrand ∈ hairs do

3: hairRoot← getStrandRoot(hairStrand)
4: currentCell ← getCellFrom3DPoint(hairRoot)
5: strandEnded← false
6: while strandEnded 6= true do

7: UpdateTexelInfo(currentCell, hairStrand)
8: isecPoint← FindSplineTexelIntersection(currentCell, hairStrand)
9: nextCell← getCellFrom3DPoint(isecPoint)

10: currentCell ← nextCell
11: if nextCell = NIL then

12: strandEnded← true
13: end if

14: end while

15: end for

16: end procedure

17: procedure UpdateTexelInfo(cell, strand)
18: cellDensity ← cellDensity + strandOpacity
19: cellTangent← cellTangent + strandTangent ⊲ Tangents are normalized
20: end procedure
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Figure 3.7: Marching cells algorithm. (a)Marching starts at strand root; (b)texel
conversion for two cells; (c) conversion is getting closer to end; and (d) completed
conversion.
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requirements and computational power. Instead, we apply a three dimensional

convolution kernel to each texel during conversion.

We use Gaussian smoothing operator as the convolution operator. In our

experiments, we observed that the size of the convolution kernel depends on the

resolution of the unit cube, but 33 sized kernel is usually sufficient for unit cube

resolutions up to 2563.

An isotropic (i.e., circularly symmetric) Gaussian in 3D has the form:

G(x, y, z) =
1

2πσ2
· e−

x
2
+y

2
+z

2

2σ2 , (3.10)

For a 33 kernel, we obtain 27 filtering values. Therefore, when the conversion

takes place, setting a volume cell’s texel information also affects 27 neighbor-

ing volume cells’ texel information around it. We find this method extremely

successful for eliminating the aliasing artifacts.

After these processes, cardinal spline geometry has been converted to texel

information successfully. Rendered 3D fuzzy texture examples are presented in

Chapter 7.



Chapter 4

Limitations of Single Level

Abstraction

This chapter aims at describing the limitations of the single level abstraction.

As it is seen in the experimental results section, our 3D fuzzy texture model is

successful at giving fine details to hair and fur. However, rendering of texels alone

is not very useful when one is not able to map those texels onto a target object.

In our study, we first tried to construct a hair and fur modeling framework

using only the 3D fuzzy textures. We offer some solutions for mapping problem of

3D fuzzy textures onto triangular meshes. Although these solutions are successful

for some hairstyles, they are far from being a general solution for using our

textures efficiently. However, the work explained here reveals the necessity for

hybrid models for generic hair styles.

4.1 Cloth Simulation for 3D Texture Mapping

When fuzzy textures are considered directly as rendering primitives, the first

problem to be faced is finding an easy mapping method. Conventional techniques

require a lot of user interaction for mapping each corner of 3D texture volume

23
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to a target object. Our solution accepts the target surface (human head for this

case) as a triangular mesh which is the most common modeling primitive today

and avoids 3D texture coordinate generation on target surface with a method

taken from cloth simulation applied to hair modeling. We find this method very

useful for short hair or fur. Since the fuzzy texture contains the necessary fine

details, there is no need to model any perturbations.

In the following lines, we explain using cloth simulation for 3D fuzzy texture

mapping step by step.

Step 1 : An arbitrary triangular mesh acts as the target surface over which

the hair shall be grown. Figure 4.1 shows such a model.

Figure 4.1: A triangular mesh head model

Step 2 : A rectangular grid over the model is created. It is a plane whose

vertices are connected with the well known mass-spring systems. This way it will

behave as a deformable surface while intersecting with the head model. Friction

constant for the head model is maximized and damping ratio for the springs is

minimized since our aim is to find the intersections of the rectangular grid with

the head model. We neither want the plane to skip over the surface nor to damp

on the surface unnecessarily. Another approach would be projecting the head

model to several planes. However, we found this method impractical especially

for the problems we face with edges intersecting the projection planes. Figure 4.2

shows the initial state of deformable plane over the head model.
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Figure 4.2: A rectangular grid over the model

In this method, we can adapt the resolution of the rectangular grid without

being dependent on the target surface complexity or geometry. In Figure 4.2, a

10 by 10 rectangular grid is over the target model. As soon as the system enters

a stable state, we record the intersections of the rectangular grid with the target

surface. In Figure 4.3, system’s states at some arbitrary times are shown.

(a) (b)

Figure 4.3: Simulation of cloth over the head model: (a) A frame from the
simulation study; (b) steady state.

A closer shot at steady state can be seen in Figure 4.4.
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Figure 4.4: A closer look of the steady state at the top of the target surface

Step 3 : The basic appearance and length to hair volumes are given at this

point. An example short punk model is given in Figure 4.5. Polygon extrudes

with rotations and transformations can be applied for getting the desired global

shape. Note that it is not necessary to give the detailed curves at this level

because it shall already be provided by the 3D fuzzy texture.

Figure 4.5: A short punky hair style

After this point, 3D textures shall be mapped to the extruded meta model

which is straightforward. Rendering results with this method is presented in

Chapter 7.



CHAPTER 4. LIMITATIONS OF SINGLE LEVEL ABSTRACTION 27

As stated before, trying to generate long hair with this method does not

produce very good results. For a more flexible system, we need one more level of

abstraction.



Chapter 5

Second Level of Abstraction

In this chapter, we suggest a method to combine the proposed 3D fuzzy texture

with a second level of abstraction for human hair. Although 3D fuzzy textures

are successful at giving fine detail to hair in a user controlled way, we observed

that different hair styles, especially the long ones require a more flexible definition

of hair clusters.

5.1 The Cluster Hair Model

The cluster hair model was introduced by Yang et al. [29]. Their suggestion

is to represent human hair with a volume density model embedded within a

generalized cylinder. The cluster model allows the design and styling of hair

to be performed efficiently via generalized cylinders. Yang et al. modeled the

details of hairs within the generalized cylinder by a randomly generated base

density distribution map. This model especially enabled them interactive design

and styling of long hair styles.

The cluster model was very successful at modeling long hair styles. However

as they stated in their paper, the limitation of the cluster model is that modeling

curly hair is almost impossible with this model since curly hair consists of a very

28
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large number of small clusters. Therefore it is not possible to approximate the

volume properties of curly hair with clusters. Effort to make this would require

hours of artist effort along with very long rendering times. Another drawback of

the model was difficulty with estimating the effects of randomness parameters.

The performance of the model was slow and they tried to improve it in a later

work with a sweeping algorithm [28].

In this thesis, we propose a method to eliminate the problems of the current

cluster models with our 3D fuzzy texture model. Since fuzzy textures are very

successful at giving the required degree of curliness, a combination with a cluster

model would result in successful modeling of complex hair styles.

5.2 Generalized Cylinders

There has been an extensive research on computational geometry to describe

the geometric form of objects when a 2D contour is moved or swept along a 3D

trajectory. The contour stands for the cross section of the object and the trajec-

tory is for the axis. The most common particular cases of sweeping algorithms

are translational sweeping and rotational sweeping. In translational sweeping an

arbitrary 2D contour is translated along a curve. In rotational sweeping, the con-

tour is rotated around an axis or equivalently moved along a circular trajectory.

For further details of sweeping algorithms, readers may refer to Akman and Ar-

slan’s paper [1]. Also, Bronsvoort and Klok [4] discussed the generalized cylinders

along with a ray tracing algorithm. We use their notation for the definition of

generalized cylinders in this study.

Generalized cylinders are defined by an arbitrary 2D contour and an arbitrary

3D trajectory along which to sweep it.

The 3D trajectory t can be defined in terms of a parametric function:

~t(u) = (tx(u), ty(u), tzu), ui ≤ u ≤ uf . (5.1)
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tx, ty and tz trace out the trajectory for different values of u ranging from ui

to uf .

The 2D contour c to define the cross section can also be defined in terms of a

parametric function:

c(v) = (cx(v), cy(v)), vi ≤ v ≤ vf . (5.2)

Likewise, tracing out the contour is performed with different values of v rang-

ing from vi to vf .

The contour itself is not enough for a sweeping to occur appropriately. Besides

the given parametrizations above, its orientation at every point on the trajectory

has to be specified. This requires to choose a local coordinate system for the

contour at each point t(u) of the trajectory. It is necessary to define a coordi-

nate system with the plane of the contour perpendicular to the trajectory, and

the orientation of the contour in the plane following the local behaviour of the

trajectory. A good choice of such a coordinate system is the Frenet frame. It is

a good choice because it is independent of the coordinate system that the trajec-

tory is defined. The Frenet frame is also independent of the parameterization of

the trajectory. Its only dependency is on the local shape of the trajectory. The

Frenet frame can be established by the following argument:

The vector ~t′(u) is in the direction of the tangential of t at t(u), the vector

~t′′(u) is linearly independent of ~t′(u), and not being necessarily orthogonal to it.

~t′(u) and ~t′′(u) span the plane which is closest to points on the trajectory, in the

neighborhood of t(u). We use ~t′(u) and ~t′′(u) to form an orthogonal system of

unit vectors (~e1(u), ~e2(u), ~e3(u)) for the Frenet frame with origin at t(u) in the

order given in 5.4.

Unless otherwise stated, we omit the explicit dependence of t on u for simpli-

fying the notation.
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~e1 =
~t′

∣
∣
∣

∣
∣
∣~t′

∣
∣
∣

∣
∣
∣

, (5.3)

~e3 =
~e1 × ~t′′

∣
∣
∣

∣
∣
∣~e1 × ~t′′

∣
∣
∣

∣
∣
∣

,

~e2 = ~e3 × ~e1,

~e3 is orthogonal to the plane spanned by ~t′ and ~t′′. ~e2 is in the spanning plane

and directed towards the center of curvature at t.

These vectors provide the condition that the Frenet frame is independent of

the coordinate system and parameterization of t [5].

For the generalized cylinder, it is the Frenet frame that determines the position

of the contour at each point of the trajectory. Therefore, boundary condition for

a generalized cylinder is obtained as:

~Γ(u, v) = ~t(u) + cx(v)~e2(u) + cy(v)~e3(u). (5.4)

See Figure 5.1 for a generalized cylinder with its trajectory and contours with

associated Frenet frames.

5.3 Generalized Cylinders as Hair Clusters

Generalized cylinders are very efficient in defining the global shape of hair clus-

ters. However, it is important to select the trajectory and the contour geometries

appropriately. To make cluster definition as flexible as possible, we selected car-

dinal splines as trajectories of generalized cylinders. Definition of cardinal splines

and their advantages in hair modeling is discussed in Chapter 3, so we will not go
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Figure 5.1: A generalized cylinder with some of its contours (reprinted from [4])

into the details in this chapter. We use circles for the 2D contour of generalized

cylinders.

If we define a cardinal spline as described in equation 3.7, its normalized

tangential at u can be obtained by:

~T (u) =
d~P (u)

du
=

[

3u2 2u 1 0
]

· ~Γ (5.5)

Then, we get the Frenet frame basis vectors as:

~e1 =
~T (u)

∣
∣
∣

∣
∣
∣~T (u)

∣
∣
∣

∣
∣
∣

, (5.6)

~e3 =
~e1 × ~t′′

∣
∣
∣

∣
∣
∣~e1 × ~t′′

∣
∣
∣

∣
∣
∣

,

~e2 = ~e3 × ~e1.

For the cross section of the cylinder,
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cx(v) = R cos v, (5.7)

cy(v) = R sin v.

R being the radius of the cross sectional contour.

Now, we have all the parameters to obtain the boundary conditions for the

generalized cylinder defined in equation 5.4. A generalized cylinder with its

boundary vertices painted in blue can be seen in Figure 5.2

Figure 5.2: A generalized cylinder

5.4 Slicing of Generalized Cylinders

There are mainly two methods to approximate the volume characteristics of hair

as explained in Chapter 2. One of them is using directly the volume data and ray

cast it as Kajiya [12] and Perlin [24] did in the early works. The other one is to

slice the volume as polygons and use the hardware support for blending them as

Lengyel [14] introduced as shells method. The method used directly affects the

rendering times. Direct volume rendering [16, 7] is a very costly method and we
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do not find it practical for the stated reason. We use slicing of volume data and

try to approximate the volume with the help of transparent polygonal slices.

There can be many slicing schemes for the hair clusters depending on the type

of the cluster geometry used. Wang et al. [28] sliced the hair clusters represented

by generalized cylinders by the cross sectional contours of the trajectory. We find

this method unpractical some cases especially at some viewing angles. Instead

we slice the generalized cylinders with planes perpendicular to the cross sectional

contour.

In our study, slicing of generalized cylinders is performed every time the view-

ing angle changes. We calculate the nearest point on the circular contour that

is subject to construct the slice edge and we form parallel polygonal slices in the

direction of eye vector. Arc length between adjacent polygonal slices is taken to

be the same for preventing high saturation around the nearest and the furthest

slices.

Slicing distance is an important factor for the visual quality of rendered im-

ages. According to our experiments, we observed that a slicing angle of 4 or 5

degrees is sufficient for getting good visual results. We also observed that after

some point, it makes no difference how small the slicing angle is. We see the

same effect of sampling distance in volume ray casting here. See Figure 5.3 for

the slicing scheme.

5.5 Global Hair Cluster Placement

Generalized cylinders are excellent tools for giving the global shape of hair. Our

system accepts hair clusters as generalized cylinders and converts them to polyg-

onal slices as described in the previous section. To realize that and to be able to

render hair and fur with other objects, we realized a simple scene graph compat-

ible with Pixar’s RenderMan interface scene definition [27, 2].

While placing the global clusters, it should be noted that the number of
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Figure 5.3: Slicing between the contours of a generalized cylinder

clusters required is reduced by a great amount with our approach thanks to 3D

fuzzy textures. The need to generate curly hair styles with hundreds of clusters

is also eliminated. An example global cluster placement can be seen in Figure

5.4.

Figure 5.4: An example global cluster placement
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5.6 Mapping of Fuzzy Textures onto Slices

In Chapter 4, we stated the problems to be faced when 3D fuzzy textures are

directly used as rendering primitives. In this section, we suggest to generate 3D

texture coordinates for the cluster slices and map the fuzzy texture to these slices.

Today, every graphics card provides support for 3D textures. To be able to

use this capability, every vertex of the textured polygon must be given a texture

coordinate. This coordinate specifies the point in the 3D texture from where the

data will be fetched. Texture coordinates of the fragments between the vertices

are interpolated by the hardware.

Although it is common that 2D and 3D textures store color data, it has

recently become popular to use textures for general purpose computational data

storage [8]. At this point, texel information is just a 3D texture for the hardware

and implementation of this data is application dependent. We derive a cylindrical

mapping scheme for a 3D texture as follows.

We aim at deriving a projection function F () such that:

(s, t, r) = F (x, y, z), (5.8)

where (x, y, z) are the coordinates of points on the generalized cylinder. We

map the reference texture such that data through its height is mapped along the

trajectory of the generalized cylinder (i.e. cardinal spline in our case) and data

through the horizontal slices is mapped to the cross sections of the cylinder (i.e

cross sectional circles in our case).

Any point on our generalized cylinder can be expressed as P (θ, u) where θ is

the circular cross section angle and u is the spline interpolator. According to the

constraints above, the mapping function we derive turns out to be:
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Figure 5.5: Mapping of a 3D texture onto a generalized cylinder

(s, t, r) =







(1, θ−7π/4

π/2
, u), 7π/4 ≤ θ ≤ 2π

(1, θ+π/4

π/2
, u), 0 ≤ θ ≤ π/4

(1− θ−π/4

π/2
, 1, u), π/4 < θ ≤ 3π/4

(0, 1− θ−3π/4

π/2
, u), 3π/4 < θ ≤ 5π/4

( θ−5π/4

π/2
, 0, u), 5π/4 < θ < 7π/4

(5.9)

The generalized cylinder mapping for a 3D texture can be seen in Figure 5.5.

As a result, we succeeded in mapping 3D fuzzy textures onto global hair clus-

ters. Therefore, limitation of mapping problems faced in one level of abstraction

and limitation of modeling only straight hair in the cluster hair model is avoided.



Chapter 6

Rendering

This chapter describes the rendering architecture we suggest for the cluster hair

model combined with 3D fuzzy textures. Besides realizing some algorithmic op-

timizations to improve rendering times, we try to utilize the new programmable

shader capabilities of current generation GPUs.

6.1 System Overview

In the previous chapters, we explained our proposal for hair modeling. To be

able to generate images of these models, we need a stable renderer along with

an appropriate scene definition. For storing the scene definition, we developed a

simple scene graph compatible with Pixar’s RenderMan Interface Scene Hierarchy.

Input to the system is a scene definition consisting of hair and non-hair objects

and the 3D fuzzy texture that holds the texels information. The output is a

rendered image. As stated before, scene definition is implemented by a scene

graph.

A scene graph is simply a tree structure that holds the scene objects in a

hierarchical way. Scene graphs are very good abstractions of large scenes with a

lot of objects. Through this abstraction, data model becomes independent of the
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rendering system used. Our scene graph makes use of an abstraction in the level

of global hair clusters and other objects that are non-hair.

When the system starts, it first reads the modeled and saved scene before.

During the parsing process, scene graph is constructed. At this step, hair nodes

and non-hair nodes are realized by the system. Then 3D fuzzy textures associated

with the hair nodes that are loaded. During scene traversal, slicing of global

hair clusters along with 3D texture coordinate generation are performed by hair

slicer and sliced polygonal data along with 3D fuzzy textures are directed to

the hair renderer. Meanwhile, if a nonhair object is encountered during scene

traversal, it is directed to non-hair renderer. After all the scene is traversed and

rendering is completed, both of the renderers’ outputs are delivered to image

compositor. Here, final blending operations are performed and the output image

is constructed. The process diagram of the whole system is shown in Figure 6.1.

In the following lines, hair rendering and image composition processes will be

detailed.

6.1.1 Hair Renderer

After the global hair clusters are sliced by hair slicer, polygonal slices are fed

into the hair renderer. There are two main steps in our hardware hair rendering

algorithm;

1. Rendering of polygonal slices and insertion to a sorted map,

2. Creation and rendering of meta textures from sorted fragments map.

6.1.1.1 Rendering of Slices

Initially all the polygonal slices are set to be totally transparent with no color

information. All the polygon vertices have their 3D texture coordinates assigned

at this stage. First, 3D fuzzy texture is bounded as the active texture. We bound

this texture as alpha texture and consider the density information for each texel as
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Figure 6.1: The framework of the rendering system
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Figure 6.2: The framework for the slice rendering process

opacity of the texel. Then all the polygonal slices are rendered to the frame buffer

with hardware blending disabled and depth testing enabled. However, after each

polygon is rendered, we perform some post operations for correct depth sorting

and blending. As soon as a polygonal slice is rendered to the frame buffer, we

read its alpha channel from the color buffer and its depth information from the

depth buffer into two separate textures. Then, taking each rendered fragment’s

depth value as a key, we insert the rendered alpha map into a sorted map and

clear the color and depth buffers. This way, we guarantee that the map contains

the fragments in a depth sorted order. In fact, we realize a kind of ray casting

algorithm in scan line hardware here. In ray casting, it is not necessary to think

about depth sorting since the casted ray already visits the volume cells from front

to back order. Process model for slice rendering can be seen in Figure 6.2.
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Figure 6.3: Meta textures rendering process model

6.1.1.2 Creation and Rendering of Meta Textures

After all the slices are rendered and inserted into the sorted fragments map, we

create new meta textures for all the sorted slices existing in the sorted fragment

map.

Then, these textures are rendered as view port sized quads with depth test-

ing and blending disabled. At this stage, we bind our hair shading vertex and

fragment shaders and send them the necessary data. After this point we use the

frame buffer as a temporary render target and it always holds the latest state of

the accumulated color and opacity data of hairs. Within a feedback loop, a final

texture unit is updated from the frame buffer and blended with the hair shading

calculations in the fragment shader. When all the textures are rendered, the final

texture holds the rendered hair texture and sends it to image compositor. Process

model of meta textures rendering can be seen in Figure 6.3.
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Figure 6.4: Non-hair rendering process model

6.1.2 Non-Hair Renderer

Non-hair renderer is simply acts as a scan line renderer with depth testing enabled.

After all the non-hair objects are rendered to frame buffer, this renderer copies

the frame buffer content to a texture and sends it to image compositor. Figure

6.4 gives non-hair rendering process model.

6.1.3 Image Compositor

When hair renderer and non-hair renderer feed their output textures to image

compositor, image composition shader programs are bounded. Non-hair texture

is sent to the fragment shader and hair texture is rendered as a view port quad.

For each fragment of the hair texture, fragment processors work with the loaded

composition program and blend the fragments with the non-hair texture. After

this stage, frame buffer contains the final rendered image. See Figure 6.5 for the

process model.
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Figure 6.5: Image composition process model

6.2 Shading

There have been many research in computer graphics to understand the bidirec-

tional reflection distribution function (BRDF) of human hair fibers. There are

some primitive ad hoc methods as well as the experimental studies.

The most common hair illumination model up to date has been the Kajiya

and Kay [12] model because of its simplicity and convincing visual results. They

suggested diffuse and specular components for the hair fibers by accepting the

hair as a cylindrical surface.

To our knowledge, the most recent work on the experimental studies is the

one carried at Stanford University by Marschner et al. [17]. Their work reveals

some unknowns about the human hair fibers’ BRDF. Especially, they emphasize

the importance of the second specular component for approximating the reflection

characteristics of human hair. However, the model they propose is very costly and

impractical for real-time purposes for now. Kajiya and Kay’s model for cylindrical

surfaces and hair is more applicable to current applications. Therefore, we shall

use their lighting model for hair illumination.

We can separate the fundamental components of hair illumination as diffuse

and specular. The diffuse component is derived essentially from the Lambert
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shading model applied to a very small cylinder. The specular component is an

ad hoc model similar to the Phong reflection model that has been modified for

cylindrical surfaces. According to Kajiya and Kay’s model, the diffuse component

used for hair illumination is:

Ψdiffuse = Kd · sin(~t,~l), (6.1)

where Kd is the diffuse reflection coefficient, ~t is the hair tangent and l is the

lighting vector from the illuminated point on the hair to the light source. sin(~t,~l)

is the sine between the light and tangent vectors. The specular component is:

Ψspecular = ka((~t ·~l)(~t · ~e) + sin(~t,~l) sin(~t, ~e))p, (6.2)

where ka is some specular reflection coefficioent, ~e is the vector pointing to the

eye and p is the Phong exponent specifying the sharpness of the highlight.

We realize these calculations for every hair fragment in the fragment processor

of the graphics cards. For the details of the illumination model, readers may refer

to [12].



Chapter 7

Experimental Results

7.1 Visual Results For 3D Fuzzy Textures

Figure 7.1 shows a 3D texture filled with straight texels information, this image

is nothing more than implementation of [12]. Figure 7.2 shows a 3D fuzzy texture

without clustering in unit cube. Figure 7.3 shows the effect of clustering in unit

cube for fuzzy textures. Figure 7.4 render results for multiple fuzzy textures.
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Figure 7.1: 3D texture with straight texels

Figure 7.2: A 3D fuzzy texture without clustering in the unit cube
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Figure 7.3: A 3D fuzzy texture with clustering in the unit cube

Figure 7.4: Multiple 3D fuzzy textures
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7.2 Visual Results for Single Level Abstraction

with Fuzzy Textures

Figure 7.5 illustrate the rendering obtained with single level abstraction and

mapping results when cloth simulation is used as an intermediate tool.

Figure 7.5: Single level abstraction with 3D fuzzy textures
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7.3 Visual Results for Two Level Abstraction

with Fuzzy Textures

Figure 7.6 shows a generalized cylinder mapped with a 3D fuzzy texture. It

consists of one cluster and the mapped 3D fuzzy texture’s resolution is 643. The

image resolution is 256 by 256 and the rendering time is 45 seconds.

Figure 7.7 shows a sphere with global hair clusters grown and fuzzy textures

mapped. It consists of one cluster and the mapped 3D fuzzy texture’s resolution is

643. No low-pass filtering was applied to the fuzzy texture during texel conversion

process. Therefore, some aliasing artifacts are obvious in the rendered image. The

image resolution is 256 by 256 and the rendering time to obtain that image is 47

seconds.

Figure 7.8 shows a head model with hairs grown. There are two clusters on

the head. Finer details are all given by the 3D fuzzy texture. Fuzzy texture

resolution is 643 and rendering time is 2.5 minutes for that 256 by 256 image.

Figure 7.9 shows a front facing head model with long wavy hairs. There are

five clusters on the head. 3D Fuzzy texture resolution is 643 and rendering time

is 35 minutes for that 256 by 256 image.

Figure 7.10 shows a head model with long wavy hairs rendered from back.

There are five clusters on the head. 3D Fuzzy texture resolution is 643 and ren-

dering time is 40 minutes for that 256 by 256 image.
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Figure 7.6: Generalized cylinder mapped with a 3D fuzzy texture

Figure 7.7: A sphere with global hair clusters grown and fuzzy textures mapped
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Figure 7.8: A head model with fine detailed hair grown with fuzzy textures

Figure 7.9: A front facing head model with long wavy hair
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Figure 7.10: A head model with long wavy hair from back

7.4 Performance Considerations

The rendering system described works fine with image sizes up to 64 by 64 pixels.

However, when the image size gets larger, we face with memory shortage because

of the map used for holding the sorted fragments. Shortage of memory results in

page swapping and this swapping process makes the rendering times unnecessarily

very high. To eliminate this problem, we realize an optimization like Pixar’s

REYES architecture [2] performs. This optimization is also suggested by Wang

and Yang [28] as dynamic pixel buffering. To reduce the amount of data to

be sorted, viewport is divided into regions called buckets. There becomes as

many render passes as the number of buckets, but this is much preferable to page

swapping performed by the operating system. With this method, sorted fragment

map size is reduced and page swapping is prevented.

One other optimization we performed is for multiple render passes. For each

bucket, there is no need to render all the polygonal slices. Therefore, we only

render the slices that are in the viewing frustum of the current bucket.
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Besides the algorithmic optimizations stated above, there are also optimiza-

tion opportunities that can be done using the graphics hardware. The main

bottleneck of the rendering system described above is the Copy to Texture pro-

cesses. With the evolution of hardware, this functionality becomes faster and

faster every day. The first implementation for getting the frame buffer content

to a texture was to copy it directly. However, this is the slowest method. Then,

the method called as render to texture appeared. For this purpose, a new buffer

called p-buffer was introduced by NVIDIA [22]. This buffer aimed at speeding

up texture copying by binding itself to the frame buffer but this method did not

meet the expectations either. Recently, the problem seems to be solved by the

concept Frame Buffer Objects (FBOs). These objects are seen as render targets

by the video card and direct offline rendering becomes possible with this new

hardware concept. In our study, we did not use FBOs since some cards still does

not support it. However, implementation with FBOs would make the rendering

process much faster.

We performed our tests on a notebook with a Pentium-IV with 1 GB of RAM.

The graphics card used is ATI-X300 with 256 MB of memory. Even with a note-

book, we obtained the rendering in Figure 7.8 in 2.5 minutes. When compared to

other methods in the literature, to our knowledge, our method is the only one that

enables cluster hair rendering within a single CPU system in minutes. We obtain

this speed up thanks to the proposed rendering architecture and the fuzzy texture

model since it reduces the high number of clusters taking the responsibility for

giving fine details for hair.
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7.5 Implementation Details

In all of our implementations we used C++, OpenGL and OpenGL Shading

Language (GLSL) as programming languages and graphics technologies. Besides,

we implemented several scripts and plug-ins in 3ds Max for geometry processing

for global shape definitions and geometry import/export functions. There are

two main software items in the system. The first one is the fuzzy texels generator

and the other one is the renderer.

Fuzzy texels generator is used for creating 3D fuzzy textures. Seed Cardinal

spline definitions and texel parameters are entered via this program and the

output is used by the renderer.

Renderer architecture is detailed in Chapter 6. In the implementation part,

it heavily uses GLSL [26].



Chapter 8

Conclusion

This thesis introduces a novel 3D texture model called the ”3D Fuzzy Textures”

and a creation method for it. Generated textures are successfully used in cluster

hair modeling for long or short curly and wavy hair styles. Creation of these

textures is realized with a novel spline following algorithm called the ”Marching

Cells”. Methods have been proposed for the generation of aliasing free textures

including hair root placements with Poisson disk distribution and low pass filter-

ing during the marching cells algorithm. It should be noted that fuzzy textures

can be used in other computer graphics problems such as modeling realistic fire

or grass.

The proposed hair model is a hybrid approach that uses the volume density

model and the cluster hair model. The hair model uses two levels of abstraction

for modeling the hair. The first one is the fuzzy texels abstraction for generating

curly hairstyles and the second one is the global hair clustering abstraction for

giving the hair its fundamental shape. Within the study, limitations of single

level abstraction are also presented and some impermanent solutions for mapping

problems are suggested.

A permanent solution for texels mapping onto a generalized cylinder is intro-

duced. Mapping of 3D textures onto generalized cylinders is performed with an

extended cylindrical mapping function.
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A rendering architecture is suggested for rendering complex scenes with clus-

ter hair model in current generation graphics cards in reasonable times. Both

algorithmic and hardware supported optimization techniques are presented.

At this point, we want to emphasize that, we had a large parameter space in

all fields of the study. Our study aimed at reducing this parameter space for the

modeler by introducing the concepts stated above.

As a result, by using the developed techniques we achieved generating fuzzy

hair styles. In the system, there are some areas that need further improvements.

For example, global clusters may be more customizable by specifying tip and root

thicknesses. For the performance considerations, fragment sorting operations may

be done on the GPU by general purpose GPU (GPGPU) algorithms. With this

optimization applied, we consider reaching almost a real time performance for

cluster hair model combined with volume density methods. In the rendering

system, modules for shadow support must be designed without breaking down

the performance. Image composition module should be more intelligent that it

must prevent the artifacts resulting from low transparency regions. This way, the

appearance of hair modeled by this system will be much better.
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