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ABSTRACT

KRONECKER REPRESENTATION AND
DECOMPOSITIONAL ANALYSIS OF CLOSED
QUEUEING NETWORKS WITH PHASE–TYPE
SERVICE DISTRIBUTIONS AND ARBITRARY

BUFFER SIZES

Akın Meriç

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Tuğrul Dayar

June, 2007

This thesis extends two approximative fixed–point iterative methods based

on decomposition for closed queueing networks (QNs) with Coxian service dis-

tributions and arbitrary buffer sizes from the literature to include phase–type

service distributions. It shows how the irreducible Markov chain associated with

each subnetwork in the decomposition can be represented hierarchically using

Kronecker products. The proposed methods are implemented in a software tool,

which is capable of computing the steady–state probability vector of each subnet-

work by a multilevel method at each fixed–point iteration. The two methods are

compared with others, one being the multilevel method for the closed QN itself,

for accuracy and efficiency on a number of examples using the tool, and their

convergence properties are discussed. Numerical results indicate that there is a

niche among the problems considered which is filled by the two approximative

fixed–point iterative methods.

Keywords: Closed queueing networks · Phase–type service distributions · Kro-

necker representations · Network decomposition · Fixed–point iteration · Multi-

level methods.
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ÖZET

FAZ–TİPLİ HİZMET DAĞILIMLARI VE DEĞİŞİK
BÜYÜKLÜKTE BEKLEME YERLERİ OLAN KAPALI

KUYRUK AĞLARININ KRONECKER GÖSTERİMLERI
VE BÖLMEYE DAYALI ÇÖZÜMLENMESİ

Akın Meriç

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Tuğrul Dayar

Haziran, 2007

Bu tez, literatürde bulunan Cox hizmet dağılımlı ve değişik büyüklükte

bekleme yerleri olan kapalı kuyruk ağları için ayrıştırmaya dayalı iki yaklaşık

sabit nokta öteleme yöntemini, faz–tipli servis dağılımlarını kapsayacak şekilde

genişletmektedir. Ayrıştırmadan ortaya çıkan altağların her birine karşı gelen

indirgenemeyen Markov zincirinin, Kronecker çarpımlar kullanılarak hiyerarşik

olarak nasıl ifade edilebileceğini göstermektedir. Önerilen yöntemler her bir

altağın uzun vadeli olasılık vektörünü her sabit nokta ötelemesinde çok seviyeli

bir yöntemle hesap edebilen bir yazılım paketinde kodlanmıştır. Yöntemler,

çeşitli örnekler üzerinde, biri ayrıştırılmamış kapalı kuyruk ağı için çok seviyeli

yöntem olmak üzere, yazılım paketi kullanılarak başkalarıyla doğruluk ve etkin-

lik bakımından karşılaştırılmış ve yakınsama özellikleri tartışılmıştır. Sayısal

sonuçlar, iki yaklaşık sabit öteleme yönteminin dikkate alınan problemler arasında

doldurduğu bir boşluk olduğunu göstermiştir.

Anahtar sözcükler : Kapalı kuyruk ağları · Faz–tipli hizmet dağılımları ·Kronecker

gösterimleri · Ağ ayrıştırması · Sabit nokta ötelemesi · Çok seviyeli yöntemler.
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Chapter 1

Introduction

Today, obtaining various performance measures for queueing networks (QNs) ex-

actly (up to computer precision) still remains a challenging problem. Indeed,

only a small class of QNs can be solved analytically (and exactly) for their per-

formance measures (see, for instance, [5, 22]). This class of networks is called

product form and requires specific conditions on the arrival processes, service

processes, service disciplines, and buffer sizes of queues. On the other hand, ob-

taining exact performance measures for networks of queues with general arrival

and service time distributions and arbitrary buffer sizes is not straightforward.

The class of closed QNs with phase–type service distributions, first–come first–

served (FCFS) service disciplines, and finite buffer sizes considered in this thesis

are among this latter kind of networks, since they are not product form and their

state spaces grow exponentially with numbers of customers, queues, and phases

in each queue. Furthermore, customers in these QNs may be subject to blocking

because of the finite buffers of some queues. In this thesis, we assume that the

customer subject to blocking at the head of a queue is not lost, but forced to wait

until its destination queue’s buffer is available to accept the customer. Hence,

the number of customers in the class of closed QNs considered remains constant.

1
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For steady–state analysis, one needs to solve the system of linear equations

πQ = 0,
∑
i∈S

πi = 1, (1.1)

where Q denotes the infinitesimal generator matrix of the irreducible Markov

chain (MC) describing exponential transition rates among states of the particu-

lar closed QN, S is the set of states of Q, and π is its steady–state probability

distribution (row) vector [23, Ch. 3]. When the infinitesimal generator matrix

Q is irreducible, then π in (1.1) exists, is unique, and is positive [37, Ch. 1].

By using Kronecker (or tensor) products [16, 40] of smaller matrices to represent

Q (see, for instance, [8, 10]) and by performing vector–Kronecker product mul-

tiplications [18] within a multilevel (ML) iterative method [11], it is possible to

obtain π without generating Q. This state–of–the–art approach results in impor-

tant storage savings compared to sparse MC solvers and is generally considered

to be the fastest solver for Kronecker structured MCs. For a recent review on

analyzing MCs based on Kronecker products, see [17].

Several approximative methods for analyzing the steady–state behavior of

closed QNs with arbitrary buffer sizes have been proposed. These methods are

based on decomposing the network into a set of subnetworks which satisfy certain

properties. These subnetworks are analyzed in isolation to obtain marginal (or

conditional) performance measures. This approach can be very efficient when the

isolated subnetworks are simple to analyze and weakly coupled. Some methods

are in the form of iterative aggregation–disaggregation [9, 11, 12], while there

are others which force almost exact aggregation for product form QNs with ar-

bitrary buffer sizes [3, 19, 26, 31, 45]. Some methods can be applied to networks

with exponentially distributed service rates [1, 19, 31, 38] and some others can

be applied to networks with phase–type service distributions [3, 26, 45]. The

decomposition procedure introduces the first level of error while computing var-

ious performance measures for closed QNs with phase–type service distributions

and arbitrary buffer sizes. QNs with phase–type service distributions can also be

analyzed by methods that assume exponential service distributions. Yet, this in-

troduces another level of error, because mean service rates of phase–type service
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distributions are used as if they were exponential service rates. In this respect,

approximative methods for QNs with phase–type service distributions and arbi-

trary buffer sizes introduce less error and are more suitable for obtaining various

performance measures.

Before discussing the previous work on decompositional analysis of closed

QNs, we mention two methods geared toward open QNs. In 1979, Kühn [24] de-

veloped an approximation method for large open FCFS QNs with general service

distributions and infinite buffer sizes. In 1983, the method is extended by Whitt

[42] and implemented in a software package called Queueing Network Analyzer

(QNA). The method decomposes QN into one queue subnetworks and analyzes

these subnetworks individually. Subnetworks are related to their environment by

arrival and service processes which are assumed to be renewal processes charac-

terized by their first two moments. Numerical experiments show that the method

accuracy highly depends on the coefficient of variation of the arrival and service

processes.

In 1987, particularly for manufacturing flow line systems, Gershwin [21] pre-

sented an algorithm to approximate throughputs of open tandem QNs with finite

buffers and blocking in which the service time of queues are determined by fail-

ure or repair durations. The algorithm decomposes the QN into subnetworks of

individual queues and determines the parameters of subnetworks using relations

among the flows through the buffers of the original QN. Numerical experiments

indicate that the algorithm approximates throughput values with a maximum

relative error of 1% for QNs with three queues and with a maximum relative

error of 3% for a larger number of queues. A review of manufacturing flow line

system models can be found in [15]. Clearly, these two methods are not the only

ones for open QNs in the literature, but now we turn to the subject of interest in

this thesis.

It was shown in 1967 by Gordon and Newell [22] that closed QNs with expo-

nential service distributions and infinite buffer sizes have product form solution.

Thus, the steady–state distribution of such networks can be computed analyti-

cally using normalization constants exactly. In 1973, Buzen [13] devised a method
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known as the convolution algorithm to efficiently compute the normalization con-

stants. Although the convolution algorithm can be used as an approximative

method for computing performance measures of closed QNs with blocking, there

are various methods proposed in the literature specifically for closed QNs with

blocking and the ones related to the subject of this thesis are briefly reviewed

next.

In 1979, Marie [26] proposed an approximation algorithm based on network

decomposition to obtain the marginal steady–state distributions of a closed QN

with Coxian service distributions and arbitrary buffer sizes. Marie’s method de-

composes the closed QN into a collection of subnetworks where the transition

probabilities between subnetworks are independent of the states of the subnet-

works. Thus, each subnetwork is considered as an exponential service station with

load–dependent service rate for which the parameters of the equivalent server are

obtained by analyzing the subnetwork in isolation under state–dependent Poisson

arrivals. Then the approximate results are obtained via a fixed–point iteration

scheme. Numerical results for examples in [26] show that the method presents

a maximum relative error of 1% for throughput values and presents a maximum

relative error of 7% for mean queue length values. Although Marie’s method

yields highly accurate results, a drawback of the method is that it analyzes the

subnetworks numerically which can be a time consuming task for large networks.

In 1986, Suri and Diehl [38] introduced a variable buffer size decomposition

method. The method can be applied to closed QNs with blocking before ser-

vice and which have one queue with infinite capacity. In order to approximate

throughput values of the QN, the method uses a network decomposition princi-

ple applied to nested subnetworks. The approximate throughput of a queue is

computed by aggregating all the downstream queues in the network to a single

composite queue and analyzing the queue–composite queue pair. Although nu-

merical experiments present a relative error less that 7%, it is pointed out in [4]

that the algorithm cannot produce accurate results for QNs with more than 4

queues.
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In 1986, Yao and Buzacott [45] proposed an approximation algorithm for

closed QNs with Coxian service distributions and arbitrary buffer sizes. Their

method decomposes the network into individual queues and approximates the

service distributions of each queue by an exponential distribution with the same

mean as the original Coxian server. Experimental results provide a maximum

relative error of 2% for throughput values. It is indicated that the method should

be mostly adequate when applied to closed QNs with a moderate number of

queues and customers.

In 1988, Akyildiz [1] developed an approximation algorithm for the through-

put of closed QNs with exponential service distributions. The idea behind his

approximation algorithm is that the throughput of a blocking closed QN is ap-

proximately the same as an equivalent nonblocking closed QN which has product

form queue length distribution. In that respect, the number of customers of the

equivalent closed QN without blocking is chosen such that the number of states

of the closed QN with blocking is close to the number of states of the closed QN

without blocking. The QN under consideration is assumed to be deadlock free,

and if blocking occurs, then customers will face blocking after service. Akyildiz’s

method can produce throughput values with relative error smaller than 2% for

closed QNs with blocking and exponential service distributions. Yet, it is unable

to produce accurate results for other performance measures or for networks with

phase–type service distributions. Akyildiz [2] also proposed mean value analysis

for analyzing closed QNs with blocking after service. The proposed method is

based on the arrival theorem and extends the classical mean value analysis of

Reiser and Lavenberg [33] to include finite queues.

In 1988, Perros et al. [31] proposed a numerical procedure for analyzing

closed QNs with exponential service distributions and arbitrary buffer sizes, where

the blocking mechanism is defined as blocking after service. The approximation

procedure is based on Norton’s theorem (see [32]). The closed QN is decomposed

into two subnetworks where the queues with infinite buffer sizes are grouped in one

subnetwork and the queues that are liable to blocking are grouped in the other.

Then the subnetworks with blocking queues is analyzed using throughput values

obtained from the nonblocking subnetwork. Numerical experiments show that
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the approximation procedure yields relative errors less than 1% for throughput

and mean queue length values.

In 1989, Onvural and Perros [29] proposed a method to approximate through-

put values of closed exponential QNs with blocking. Their method approximates

throughput values of the QN using the fact that throughput is a symmetrical

function which depends on the finite population in the QN [4, 28]. It can be used

with blocking before service and blocking after service blocking mechanisms, and

it assumes that deadlocks are resolved by instantaneously exchanging the blocked

customers. A drawback of this method is that it is only capable of approximating

throughput values for closed exponential QNs with blocking.

Also in 1989, Frein and Dallery [19] presented an approximation method for

cyclic closed QNs with arbitrary buffer sizes and exponential service distributions.

In their method, the closed QN considered is decomposed into individual queues

and the solution process is defined by a fixed–point iteration scheme in which each

individual queue is analyzed as an M/M/1/c/K queue, where c is the buffer size

of the queue and K is the finite population size. The method yields a maximum

relative error of 7% for throughput values and a maximum relative error of 20%

for mean queue length values.

In 1989, Altiok [3] proposed an approximation method for closed tandem QNs

with phase–type service distributions and arbitrary buffer sizes. Altiok’s method

decomposes the network into individual queues. Each queue is approximated by

an M/PH/1/c/K queue with appropriately chosen phase–type service distribu-

tion and arrival rate. Then, the steady–state distribution of queues are computed

using an iterative algorithm. Results show that the method yields a maximum

relative error of 7% for throughput values and a maximum relative error of 10%

for mean queue length values.

In 2000, Vroblefski, Ramesh and Zionts [41] reported an approximation

method for closed tandem QNs with arbitrary buffer sizes and state–dependent

exponential servers. In their approach, the network is decomposed into subnet-

works where each subnetwork consists of a virtual synchronization station pre-

ceding a queue. Then, the throughput values are approximated using an iterative
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scheme in which the subsystems are analyzed independently as an open QN. Nu-

merical experiments conducted under a variety of blocking mechanisms report

approximate throughput values to be within at most 6 percent of simulation

results.

In this thesis, we extend two approximative fixed–point iterative methods

based on decomposition for closed QNs with Coxian service distributions and

arbitrary buffer sizes from the literature to include phase–type service distribu-

tions. These are Marie’s (M) method [26] and Yao and Buzacott’s (YB) method

[45]. We show how the irreducible MC associated with each subnetwork in the

decomposition can be represented hierarchically using Kronecker products. The

decompositional nature of the methods imply an additive dimension of scalabil-

ity. The Kronecker representation of each subnetwork model in the decomposition

facilitates yet another form of compactness and a multiplicative dimension of scal-

ability. Since, the methods are already approximative by construction, the closed

QN model becomes essentially more compact with the Kronecker representation.

The proposed methods are implemented in a software tool [27], which is capa-

ble of computing the steady–state vector of each subnetwork by the ML method

at each fixed–point iteration. The methods of M and YB are compared with the

ML and successive over–relaxation (SOR) [39] methods for the closed QN itself

and with the convolution algorithm (CA) [13] and Akyildiz’s mean value anal-

ysis (MVABLO) [2], for accuracy and efficiency on a number of examples using

the tool. The reason behind using CA and MVABLO is that these methods are

approximative analytical methods unlike the methods of M and YB and need

almost no computational effort. Hence, this comparison may reveal when it is

worthwhile to use approximative iterative methods of M and YB. SOR is included

in order to make a comparison with the ML method.

In section 2, we provide the Kronecker representation of the class of closed

QNs considered and briefly explain the ML method. In section 3, we discuss the

methods of CA, MVABLO, M, and YB. Therein, it is shown how the subnetworks

obtained by the decomposition of the closed QN model in the methods of M and

YB are represented using Kronecker products. In section 4, we give an upper
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bound on the number of floating point operations performed in the methods and

analyze the methods of M and YB for existence of a fixed–point. In section 5, we

briefly discuss on some issues concerning implementation of the software tool. In

section 6, we present the results of numerical experiments, and in section 7, we

conclude.



Chapter 2

Kronecker Representation and

ML Method

In this chapter, we provide a brief overview of Kronecker algebra and give a

formal definition of the closed QN model used. An small example is also included

in order to clarify the discussion. Then we discuss the ML method used in solving

MCs expressed in terms of Kronecker products.

Throughout the text, we denote matrices by upper–case letters, a block of a

matrix by specifying the indices of the block in parentheses beside the matrix

name, and an element of a matrix by specifying the indices of the element as

subscripts of the lower–case matrix name. Rows and columns of matrices repre-

senting the evolution of queues are numbered starting from one.

9
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We first define the Kronecker product and Kronecker sum operations [16, 40].

Definition 2.1. Given two (rectangular) matrices A ∈ IRrA×cA and B ∈ IRrB×cB

as in

A =


a1,1 a1,2 . . . a1,cA

a2,1 a2,2 . . . a2,cA
...

...
. . .

...

arA,1 arA,2 . . . arA,cA

 and B =


b1,1 b1,2 . . . b1,cB

b2,1 b2,2 . . . b2,cB
...

...
. . .

...

brB ,1 brB ,2 . . . brB ,cB

 ,

their tensor product, written as C = A⊗B with C ∈ IRrArB×cAcB , is defined as

C =


a1,1B a1,2B . . . a1,cAB

a2,1B a2,2B . . . a2,cAB
...

...
. . .

...

arA,1B arA,2B . . . arA,cAB

 .

Definition 2.2. Given two square matrices A ∈ IRrA×rA and B ∈ IRrB×rB , their

tensor sum, written as C = A⊕B with C ∈ IRrArB×rArB , is defined in terms of

two Kronecker products as

C = A⊗ IrB + IrA ⊗B,

where IrA and IrB denote identity matrices of order rA and rB, respectively.

Some important properties of Kronecker algebra for matrices with appropriate

dimensions, which we will be using, are given as follows:

1. Associativity:

A⊗ (B ⊗ C) = (A⊗B)⊗ C and A⊕ (B ⊕ C) = (A⊕B)⊕ C.

2. Distributivity over matrix addition:

(A+B)⊗ (C +D) = A⊗ C +B ⊗ C + A⊗D +B ⊗D.

3. Compatibility with matrix multiplication:

(A×B)⊗ (C ×D) = (A⊗ C)× (B ⊗D).
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It is important to note that these properties can be extended to cover Kro-

necker products and sums including multiple operands [16, 40]. In that sense,

Kronecker algebra becomes an important tool to represent the behavior of inter-

acting systems mathematically as we discuss in the next section.

2.1 Kronecker Representation

We consider a class of closed FCFS QNs with arbitrary buffer sizes and phase–

type service distributions defined by J queues, K customers, routing probability

matrix P , phase–type distribution (α(j), T (j)), where T (j) is the phase–type distri-

bution matrix of order t(j) and α(j) is the initial probability distribution row vector

of length t(j) associated with T (j), and buffer size bj for queue j ∈ {1, 2, . . . , J}.
We let cj = min{K, bj} and the state of queue j be represented by the ordered

pair ij = (nj, φj), where nj ∈ {0, 1, . . . , cj} denotes the occupancy of queue j

and φj ∈ {0, 1, . . . , t(j) − 1} denotes the phase of its service process, with the

constraint that φj = 0 when nj = 0 (that is, phase is irrelevant when the queue

is empty). Then ij ∈ {(0, 0)} ∪ {1, 2, . . . , cj} × {0, 1, . . . , t(j) − 1}. We remark

that in our model, an arrival to a destination queue can only take place when the

destination queue has space for the arriving customer; otherwise the transition is

inhibited. The implication of this assumption is that a customer will remain in

the server until space becomes available in the destination queue. Observe that

this assumption may be replaced with a more accurate approximation for acyclic

phase–type distributions [23, p. 57] by adding one more phase with a relatively

large transition rate to the service process.

The irreducible MC representing the evolution of queue j ∈ {1, 2, . . . , J} is a

(cj +1)× (cj +1) block tridiagonal matrix and is given by Q(j) = G(j) +D(j) (see,

for instance, [8]), where
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G(j) =



O(j)(0, 0) λj(0)A(j)(0, 1)

S(j)(1, 0) O(j)(1, 1) λj(1)A(j)(1, 2)
. . . . . . . . .

S(j)(cj − 1, cj − 2) O(j)(cj − 1, cj − 1) λj(cj − 1)A(j)(cj − 1, cj)

S(j)(cj , cj − 1) O(j)(cj , cj)


,

T
(j)

= −T (j)e, e is the column vector of ones of appropriate length, O(j)(nj, nj) =

T (j) for nj ∈ {1, . . . , cj}, O(j)(0, 0) = 0, S(j)(nj, nj − 1) = T
(j)
α(j) for nj ∈

{2, . . . , cj}, S(j)(1, 0) = T
(j)

, A(j)(nj, nj + 1) = It(j) for nj ∈ {1, . . . , cj−1},
A(j)(0, 1) = α(j), λj(nj) is the rate of arrivals to queue j under buffer occu-

pancy nj, and D(j) is the diagonal correction matrix summing the rows of Q(j)

to zero. The upper–diagonal blocks G(j)(nj, nj + 1) and lower–diagonal blocks

G(j)(nj, nj−1) of G(j) represent the service completions and arrivals of customers,

respectively. Its diagonal blocks G(j)(nj, nj) represent phase changes. The bound-

ary level has a single state, while the other levels each have t(j) states. Hence,

G(j) is a (t(j)cj + 1)× (t(j)cj + 1) matrix.

Assuming that the states of the irreducible MC underlying the closed QN are

represented as i = (i1, i2, . . . , iJ), let us us define the mapping f : S → N as

f(i) = f((i1, i2, . . . , iJ)) = f(((n1, φ1), (n2, φ2), . . . , (nJ , φJ)))

= (n1, n2, . . . , nJ) = n (2.1)

for i ∈ S (see (1.1)) and n = (n1, n2, . . . , nJ) ∈ N . This mapping is onto and

partitions S into equivalence classes. The set of equivalence classes defined by f

is denoted as N and has cardinality |N |. We remark that n ∈ N is represented

using the row vector (n1, n2, . . . , nJ), which satisfies
∑J

j=1 nj = K.

When queues are interconnected to form a closed QN, the arrival rate of

customers to queue j ∈ {1, 2, . . . , J}, that is, λj(nj), depends on column j of the

routing probability matrix P , the states of the queues corresponding to nonzero

elements in that column, and the rates by which they complete the last phases of
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their service processes. Assuming that we associate the lexicographical order with

the states in N , then the generator matrix Q of a closed QN can be expressed as

an |N | × |N | block matrix with block (n,m) for n,m ∈ N given by [8, p. 66]

Q(n,m) =

8><>:
Q{j,k}(n,m), n 6= m and m = n− eTj + eTk
D(n, n) +Q(n, n)D +

PJ
j=1Q

{j,j}(n, n), n = m

0 otherwise

, (2.2)

where j, k ∈ {1, 2, . . . , J}, ej is column j of the identity matrix, m = n− eTj + eTk

refers to service completion at queue j and arrival to queue k when in state n

so as to make a transition to state m, D(n, n) is the diagonal matrix summing

block n of rows in Q to zero,

Q{j,k}(n,m) =

8>>>><>>>>:
pj,k(Ic{j,k}j

⊗ S(j)(nj ,mj)⊗ I
r
{j,k}
j

)(I
c
{j,k}
k

⊗A(k)(nk,mk)⊗ Ir{j,k}
k

), j < k

pj,k(Ic{j,k}
k

⊗A(k)(nk,mk)⊗ Ir{j,k}
k

)(I
c
{j,k}
j

⊗ S(j)(nj ,mj)⊗ I
r
{j,k}
j

), j > k

pj,j(I
c
{j,j}
j

⊗ S(j)(nj , nj − 1))(A(j)(nj , nj + 1)⊗ I
r
{j,j}
j

), j = k

,

Q(n, n)D =
JM
j=1

O(j)(nj , nj) =
JX
j=1

I
c
{j,j}
j

⊗O(j)(nj , nj)⊗ I
r
{j,j}
j

,

where c
{j,k}
x =

∏x−1
z=1 size

{j,k}(z) and r
{j,k}
x =

∏J
z=x+1 size

{j,k}(z) represent product

of column and row sizes of matrices respectively, and

size{j,k}(z) =

8>>>>>><>>>>>>:

# of rows(O(z)(nz , nz)), z 6= j and z 6= k

# of rows(A(k)(nk,mk)), z = k and k > j

# of cols(A(k)(nk,mk)), z = k and k < j

# of rows(S(j)(nj ,mj)), z = j and j > k

# of cols(S(j)(nj ,mj)), z = j and j < k

. (2.3)
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Example 1.

- m1 - m2 - m3
a

6

1− a

Figure 2.1: A closed QN.

Consider the closed QN in Figure 2.1, which consists of three queues, two

customers, and the routing probability matrix

P =


1 2 3

1 0 1 0

2 0 0 1

3 a 1− a 0


with 0 < a < 1. Hence, N = 3 and K = 2, the service distributions and buffer

sizes of queues are given by

T (1) =
(
−µ(1)

1

)
, α(1) = (1) , b1 = 2,

T (2) =

(
−µ(2)

1 µ
(2)
1

0 −µ(2)
2

)
, α(2) = (1, 0) , b2 = 2,

T (3) =

(
−µ(3)

1 µ
(3)
1

0 −µ(3)
2

)
, α(3) = (1, 0) , b3 = 1.

Queue 1 has an exponential service distribution, queues 2 and 3 have hypoexpo-

nential service distributions with capacities c1 = c2 = 2 and c3 = 1.

Table 2.1: State space S versus set of equivalence classes N for Example 1.

S N
((0,0),(1,1),(1,1)), ((0,0),(1,1),(1,2)), ((0,0),(1,2),(1,1)), ((0,0),(1,2),(1,2)) (0,1,1)

((0,0),(2,1),(0,0)), ((0,0),(2,2),(0,0)) (0,2,0)
((1,1),(0,0),(1,1)), ((1,1),(0,0),(1,2)) (1,0,1)
((1,1),(1,1),(0,0)), ((1,1),(1,2),(0,0)) (1,1,0)

((2,1),(0,0),(0,0)) (2,0,0)



CHAPTER 2. KRONECKER REPRESENTATION AND ML METHOD 15

For this example, N is obtained from S using (2.1) as in Table 2.1. The state

space S consists of 11 states, which are divided into 5 equivalence classes with

cardinalities 4, 2, 2, 2, 1. Observe that p1,1 = p2,2 = p3,3 = 0. This implies

that the third (summation) term in (2.2) for n = m evaluates to zero, since

Q{j,j}(n, n) = 0 for j ∈ {1, 2, 3} and n ∈ N . Blocks of Q are computed from (2.2)

as follows and diagonal elements of Q are represented using ∗’s.

Q((0, 1, 1), (0, 1, 1)) = D((0, 1, 1), (0, 1, 1)) +Q((0, 1, 1), (0, 1, 1))D

+
3∑
j=1

Q{j,j}((0, 1, 1), (0, 1, 1))

= D((0, 1, 1), (0, 1, 1)) + I
c
{1,1}
1
⊗O(1)(0, 0)⊗ I

r
{1,1}
1

+ I
c
{2,2}
2
⊗O(2)(1, 1)⊗ I

r
{2,2}
2

+ I
c
{3,3}
3
⊗O(3)(1, 1)⊗ I

r
{3,3}
3

= D((0, 1, 1), (0, 1, 1)) + (0)⊗ I4

+ I1 ⊗

(
−µ(2)

1 µ
(2)
1

0 −µ(2)
2

)
⊗ I2 + I2 ⊗

(
−µ(3)

1 µ
(3)
1

0 −µ(3)
2

)

= D((0, 1, 1), (0, 1, 1)) +


−µ(2)

1 0 µ
(2)
1 0

0 −µ(2)
1 0 µ

(2)
1

0 0 −µ(2)
2 0

0 0 0 −µ(2)
2



+


−µ(3)

1 µ
(3)
1 0 0

0 −µ(3)
2 0 0

0 0 −µ(3)
1 µ

(3)
1

0 0 0 −µ(3)
2



=


∗ µ

(3)
1 µ

(2)
1 0

0 ∗ 0 µ
(2)
1

0 0 ∗ µ
(3)
1

0 0 0 ∗

 .
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Q((0, 1, 1), (0, 2, 0)) = Q{3,2}((0, 1, 1), (0, 2, 0))

= p3,2(Ic{3,2}2
⊗A(2)(1, 2)⊗ I

r
{3,2}
2

)(I
c
{3,2}
3
⊗ S(3)(1, 0)⊗ I

r
{3,2}
3

)

= p3,2

(
I1 ⊗

(
1 0

0 1

)
⊗ I2

)(
I2 ⊗

(
0

µ
(3)
2

))

= (1− a)(I4)


0 0

µ
(3)
2 0

0 0

0 µ
(3)
2



=


0 0

(1− a)µ(3)
2 0

0 0

0 (1− a)µ(3)
2

 .

Q((0, 1, 1), (1, 1, 0)) = Q{3,1}((0, 1, 1), (1, 1, 0))

= p3,1(Ic{3,1}1
⊗A(1)(0, 1)⊗ I

r
{3,1}
1

)(I
c
{3,1}
3
⊗ S(3)(1, 0)⊗ I

r
{3,1}
3

)

= p3,1(A(1)(0, 1)⊗ I
r
{3,1}
1

)(I
c
{3,1}
3
⊗ S(3)(1, 0))

= a((1)⊗ I4)

(
I2 ⊗

(
0

µ
(3)
2

))

=


0 0

aµ
(3)
2 0

0 0

0 aµ
(3)
2

 .

Q((0, 2, 0), (0, 1, 1)) = Q{2,3}((0, 2, 0), (0, 1, 1))

= p2,3(Ic{2,3}2
⊗ S(2)(2, 1)⊗ I

r
{2,3}
2

)(I
c
{2,3}
3
⊗A(3)(0, 1)⊗ I

r
{2,3}
3

)

= p2,3

(
I1 ⊗

(
0 0

µ
(2)
2 0

)
⊗ I1

)
(I2 ⊗ (1 0))

=

(
0 0

µ
(2)
2 0

)(
1 0 0 0

0 0 1 0

)

=

(
0 0 0 0

µ
(2)
2 0 0 0

)
.
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Q((0, 2, 0), (0, 2, 0)) = D((0, 2, 0), (0, 2, 0)) +Q((0, 2, 0), (0, 2, 0))D

+
3∑
j=1

Q{j,j}((0, 2, 0), (0, 2, 0))

= D((0, 2, 0), (0, 2, 0)) + I
c
{1,1}
1
⊗O(1)(0, 0)⊗ I

r
{1,1}
1

+ I
c
{2,2}
2
⊗O(2)(2, 2)⊗ I

r
{2,2}
2

+ I
c
{3,3}
3
⊗O(3)(0, 0)⊗ I

r
{3,3}
3

= D((0, 2, 0), (0, 2, 0)) + (0)⊗ I2

+ I1 ⊗

(
−µ(2)

1 µ
(2)
1

0 −µ(2)
2

)
⊗ I1 + I2 ⊗ (0)

=

(
∗ µ

(2)
1

0 ∗

)
.

Q((1, 0, 1), (0, 1, 1)) = Q{1,2}((1, 0, 1)(0, 1, 1))

= p1,2(Ic{1,2}1
⊗ S(1)(1, 0)⊗ I

r
{1,2}
1

)(I
c
{1,2}
2
⊗A(2)(0, 1)⊗ I

r
{1,2}
2

)

= p1,2

(
(µ(1)

1 )⊗ (1 0)⊗ I2
)

=

(
µ

(1)
1 0 0 0

0 µ
(1)
1 0 0

)
.

Q((1, 0, 1), (1, 0, 1)) = D((1, 0, 1), (1, 0, 1)) +Q((1, 0, 1), (1, 0, 1))D

+
3∑
j=1

Q{j,j}((1, 0, 1), (1, 0, 1))

= D((1, 0, 1), (1, 0, 1)) + I
c
{1,1}
1
⊗O(1)(1, 1)⊗ I

r
{1,1}
1

+ I
c
{2,2}
2
⊗O(2)(0, 0)⊗ I

r
{2,2}
2

+ I
c
{3,3}
3
⊗O(3)(1, 1)⊗ I

r
{3,3}
3

= D((1, 0, 1), (1, 0, 1)) + (0)⊗ I2

+ I1 ⊗ (0)⊗ I2 + I1 ⊗

(
−µ(3)

1 µ
(3)
1

0 −µ(3)
2

)

=

(
∗ µ

(3)
1

0 ∗

)
.
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Q((1, 0, 1), (1, 1, 0)) = Q{3,2}((1, 0, 1), (1, 1, 0))

= p3,2(Ic{3,2}2
⊗A(2)(0, 1)⊗ I

r
{3,2}
2

)(I
c
{3,2}
3
⊗ S(3)(1, 0)⊗ I

r
{3,2}
3

)

= (1− a)(I1 ⊗ (1 0)⊗ I2)

(
I2 ⊗

(
0

µ
(3)
2

))

= (1− a)

(
1 0 0 0

0 1 0 0

)
0 0

µ
(3)
2 0

0 0

0 µ
(3)
2


=

(
0 0

(1− a)µ(3)
2 0

)
.

Q((1, 0, 1), (2, 0, 0)) = Q{3,1}((1, 0, 1), (2, 0, 0))

= p3,1(Ic{3,1}1
⊗A(1)(1, 2)⊗ I

r
{3,1}
1

)(I
c
{3,1}
3
⊗ S(3)(1, 0)⊗ I

r
{3,1}
3

)

= a ((1)⊗ I2)

(
I1 ⊗

(
0

µ
(3)
2

))

=

(
0

aµ
(3)
2

)
.

Q((1, 1, 0), (0, 2, 0)) = Q{1,2}((1, 1, 0)(0, 2, 0))

= p1,2(Ic{1,2}1
⊗ S(1)(1, 0)⊗ I

r
{1,2}
1

)(I
c
{1,2}
2
⊗A(2)(1, 2)⊗ I

r
{1,2}
2

)

= ((µ(1)
1 )⊗ I2)

(
I1 ⊗

(
1 0

0 1

))

=

(
µ

(1)
1 0

0 µ
(1)
1

)
.
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Q((1, 1, 0), (1, 0, 1)) = Q{2,3}((1, 1, 0)(1, 0, 1))

= p2,3(Ic{2,3}2
⊗ S(2)(1, 0)⊗ I

r
{2,3}
2

)(I
c
{2,3}
3
⊗A(3)(0, 1)⊗ I

r
{2,3}
3

)

=

((
0

µ
(2)
2

)
⊗ I1

)
(I1 ⊗ (1 0))

=

(
0 0

µ
(2)
2 0

)
.

Q((1, 1, 0), (1, 1, 0)) = D((1, 1, 0), (1, 1, 0)) +Q((1, 1, 0), (1, 1, 0))D

+
3∑
j=1

Q{j,j}((1, 1, 0), (1, 1, 0))

= D((1, 1, 0), (1, 1, 0)) + I
c
{1,1}
1
⊗O(1)(1, 1)⊗ I

r
{1,1}
1

+I
c
{2,2}
2
⊗O(2)(1, 1)⊗ I

r
{2,2}
2

+ I
c
{3,3}
3
⊗O(3)(0, 0)⊗ I

r
{3,3}
3

= D((1, 1, 0), (1, 1, 0)) + (0)⊗ I2 + I1 ⊗

(
−µ(2)

1 µ
(2)
1

0 −µ(2)
1

)
⊗ I1

+I2 ⊗ (0)

=

(
∗ µ

(2)
1

0 ∗

)
.

Q((2, 0, 0), (1, 1, 0)) = Q{1,2}((2, 0, 0), (1, 1, 0))

= p1,2(Ic{1,2}1
⊗ S(1)(2, 1)⊗ I

r
{1,2}
1

)(I
c
{1,2}
2
⊗A(2)(0, 1)⊗ I

r
{1,2}
2

)

= (µ(1)
1 ⊗ I1)(I1 ⊗ (1 0))

= (µ(1)
1 0).
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Q((2, 0, 0), (2, 0, 0)) = D((2, 0, 0), (2, 0, 0)) +Q((2, 0, 0), (2, 0, 0))D

+
3∑
j=1

Q{j,j}((1, 1, 0), (1, 1, 0))

= D((2, 0, 0), (2, 0, 0)) + I
c
{1,1}
1
⊗O(1)(2, 2)⊗ I

r
{1,1}
1

+I
c
{2,2}
2
⊗O(2)(0, 0)⊗ I

r
{2,2}
2

+ I
c
{3,3}
3
⊗O(3)(0, 0)⊗ I

r
{3,3}
3

= (0)⊗ I1 + I1 ⊗ (0)⊗ I1 + I1 ⊗ (0) = 0.

Thus, we have the generator matrix

Q =

0BBBBBBBBBBBBBBBBBBBBB@

∗ µ
(3)
1 µ

(2)
1

∗ µ
(2)
1 (1− a)µ(3)

2 aµ
(3)
2

∗ µ
(3)
1

∗ (1− a)µ(3)
2 aµ

(3)
2

∗ µ
(2)
1

µ
(2)
2 ∗
µ

(1)
1 ∗ µ

(3)
1

µ
(1)
1 ∗ (1− a)µ(3)

2 aµ
(3)
2

µ
(1)
1 ∗ µ

(2)
1

µ
(1)
1 µ

(2)
2 ∗

µ
(1)
1 ∗

1CCCCCCCCCCCCCCCCCCCCCA

.

Hierarchical representation of QNs consists of a two level structure and as-

sumes information abstraction between levels [8]. The first level structure, called

high level model (HLM), determines the routing among second level structures,

called low level models (LLMs). LLMs, either consist of queues or are themselves

structures. The HLM defines the routing between sublevel structures. In that

sense, the hierarchy can be extended to an arbitrary number of levels. Any piece

of information belonging to a particular level is hidden from subsequent levels.

In our representation, we restrict closed QN models to include only two levels

of hierarchy. Thus, we have queues as LLMs and define the interaction among

LLMs by an HLM (see Figure 2.2 which is taken from [9]).
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Figure 2.2: HLM–LLM relationship.

In order to define the HLM, we need to specify the transitions among LLMs.

There are two ingredients that help us to reveal these transitions: one is the set N
and the other is the routing probability matrix P . Since each component of n ∈ N
corresponds to the number of customers in an LLM, possible transitions from n

to m, where n,m ∈ N , can be determined by considering P and m = n− eTj + eTk

as discussed after (2.2). These transitions are represented by an (N ×N ) matrix

called the HLM matrix. In that respect, elements of N are named as states of

the HLM.

Example 1 consists of 3 LLMs and 5 HLM states, resulting with a generator

matrix Q of order 11. There are 9 transitions among HLM states, correspond-

ing to blocks ((0,1,1),(0,2,0)), ((0,1,1),(1,1,0)), ((0,2,0),(0,1,1)), ((1,0,1),(0,1,1)),

((1,0,1),(1,1,0)), ((1,0,1),(2,0,0)), ((1,1,0),(0,2,0)), ((1,1,0),(1,0,1)), and ((2,0,0),

(1,1,0)) of Q obtained by using Kronecker products and 5 local transitions corre-

sponding to diagonal blocks of Q obtained by using Kronecker sums. Thus, the

HLM matrix of order 5 has 14 nonzeros with local transitions along the diagonal

and transitions that result from movement of customers between queues in the

off–diagonal. Each nonzero element in the HLM matrix corresponds to a Kro-

necker product of 3 LLM matrices, which are defined by the arrival and service

processes of queues.

In practice, Q is never stored nor generated explicitly; instead an efficient

vector–Kronecker product algorithm is used to carry out the steady–state analysis

of Q underlying the closed QN. A state–of–the–art method that can be used

toward this end is introduced in the next section.
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2.2 ML Method

An ML method [11, 12] originating from aggregation–disaggregation and using

multigrid iteration can be employed to obtain the steady–state vector of the

generator matrix of a closed QN which is hierarchically modeled as described.

The ML method, which is capable of aggregating according to a fixed or circular

order using V, F, or W cycles, is given in Algorithms 1 and 2, where the vector ψ

defines aggregation order and S refers to the smoother type. Let l ∈ {0, 1, . . . , J}
define the current level in the hierarchy. Then one V cycle of the ML method

proceeds as follows. At the finest level, l = 0, a number of iterations (using

one of the iterative methods Power, Jacobi over–relaxation – JOR or SOR) are

applied to the vector x(0) with uniformly distributed elements using a splitting

[39] of the generator matrix Q0 = Q and a smoothed vector x̃(0) is obtained (line

8 in Algorithm 1). Then, for the next level, l = 1, Q0 is aggregated with respect

to an LLM by using the smoothed vector x̃(0) (line 10 in Algorithm 1). Thus

the elements of x̃(0) and the blocks of Q0, which correspond to elements of the

HLM matrix, are aggregated to obtain x(1) and Q1, respectively. In the (l+ 1)th

aggregation step, l < J the smoothed vector x̃(l) and the matrix Ql are used in

the aggregation procedure to obtain x(l+1) and Ql+1 (lines 8 and 9 in Algorithm

2). At the coarsest level, where all LLMs become aggregated, Q collapses to the

aggregated matrix QJ of order |N |, and the linear system

x(J)QJ = 0,
∑|N |

i=1 x
(J)
i = 1 (2.4)

is solved exactly (line 2 in Algorithm 2). At this point, the ML method starts

to move in the reverse direction, from the coarsest level to the finest performing

a number of iterations at each level after disaggregation (lines 16 and 17 in Al-

gorithm 2, and lines 17 and 18 in Algorithm 1). In this way, the solution vector

x(J) at the coarsest level is mapped back to the finest level. At the finest level,

when a cycle finishes, the method computes the residual vector and either stops

if a predefined tolerance is met or proceeds for another cycle.
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Algorithm 1 Driver for ML method where input parameters pre and post define number of
pre and post smoothings, O and C define order of aggregation and cycle type, and MAX IT

and STOP TOL define maximum number of iterations and stopping tolerance, respectively.

mlDriver(pre, post,O,C,MAX IT, STOP TOL)
1: ψ ← (1, 2, . . . , J); l← 0; Ql ← Q; x(l) ← initial approximation; it← 0; stop← FALSE;
2: if C = W or C = F then
3: γ ← 2;
4: else
5: γ ← 1;
6: end if
7: repeat
8: x̃(l) ← S(Ql, x(l), w, pre);
9: obtain x(l+1) by aggregating x̃(l) with respect to LLM ψl+1;

10: obtain Ql+1 using Ql and x̃(l);
11: if γ = 1 then
12: y(l+1) ← ML(Ql+1, x

(l+1), ψ, γ, l + 1, pre, post);
13: else
14: y(l+1) ← ML(Ql+1, x

(l+1), ψ, γ, l + 1, pre, post);
15: y(l+1) ← ML(Ql+1, y

(l+1), ψ, γ, l + 1, pre, post);
16: end if
17: obtain y(l) by disaggregating y(l+1) with respect to LLM ψl+1;
18: ỹ(l) ← S(Ql, y(l), w, post);
19: if C = F then
20: γ ← 2;
21: end if
22: x(l) ← ỹ(l); it = it+ 1;
23: x(l) ← x(l)/(x(l)e); r ← −x(l)Ql;
24: if it ≥MAX IT or ‖r‖ ≤ STOP TOL then
25: stop← TRUE;
26: else if O = CIRCULAR then
27: ψk ← ψ(k mod J)+1 for k ∈ {1, 2, . . . , J};
28: end if
29: until (stop)
30: return x(l);
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Algorithm 2 Recursive ML function.

ML(Ql, x(l), ψ, γ, l, pre, post)
1: if l = # of components in ψ then
2: ỹ(l) ← solve(Ql, x(l)) subject to ỹ(l)e = 1;
3: if C = F then
4: γ ← 1;
5: end if
6: else
7: x̃(l) ← S(Ql, x(l), w, pre);
8: obtain x(l+1) by aggregating x̃(l) with respect to LLM ψl+1;
9: obtain Ql+1 using Ql and x̃(l);

10: if γ = 1 then
11: y(l+1) ← ML(Ql+1, x

(l+1), ψ, γ, l + 1, pre, post);
12: else
13: y(l+1) ← ML(Ql+1, x

(l+1), ψ, γ, l + 1, pre, post);
14: y(l+1) ← ML(Ql+1, y

(l+1), ψ, γ, l + 1, pre, post);
15: end if
16: obtain y(l) by disaggregating y(l+1);
17: ỹ(l) ← S(Ql, y(l), w, post);
18: return ỹ(l);
19: end if

Now, we discuss aggregation and disaggregation operations in more detail

for the class of closed QNs with phase–type service distributions and arbitrary

buffer sizes. Let us represent by S(l) the state space of Ql. Furthermore, let S(l)
n

denote the states of S(l) corresponding to n ∈ N and s
(l)
n denote an element of

S(l)
n ⊆ S(l), where S(l) = ∪n∈NS(l)

n and ∩n∈NS(l)
n = ∅. Then for l < J , states of the

aggregated generator matrix Ql are mapped to states of the coarser aggregated

generator matrix Ql+1 by the next definition.

Definition 2.3. Let us define s
(l)
n = (s

(l)
n (1), . . . , s

(l)
n (ψj), . . . , s

(l)
n (J)) ∈ S(l)

n ,

where

s(l)
n (ψj) =

{
nψj if ψj ≤ l

(nψj , φψj) if ψj > l

where ψj ≤ l means queue ψj is aggregated and ψj > l means queue ψj is not ag-

gregated for ψj ∈ {1, 2, . . . , J}, and n = (n1, n2, . . . , nJ) ∈ N . Then the mapping

g
(l+1)
n,ψl

: S(l)
n → S(l+1)

n , which aggregates the ψl+1th component of s
(l)
n at level l, is
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defined by

g
(l+1)
n,ψl+1

(s(l)
n ) = g

(l+1)
n,ψl+1

((s(l)
n (1), . . . , s(l)

n (ψl+1), . . . , s
(l)
n (J)))

= (s(l)
n (1), . . . , nψl+1

, . . . , s(l)
n (J)) = s(l+1)

n .

With this definition, we see that the blocks of the generator matrix Q are

aggregated with respect to phase states of queues. In Figure 2.3, we show the

aggregation and disaggregation of the states defined by N through levels of an

ML cycle for Example 1 for fixed ordering of LLMs.

l = 0 l = 1 l = 2 l = 3

((0, 0), (1, 1), (1, 1)) oo
g
(1)
(0,1,1),1// (0, (1, 1), (1, 1))

ff
g
(2)
(0,1,1),2

&&MMMMMMMMMMMMMMM

((0, 0), (1, 1), (1, 2)) oo // (0, (1, 1), (1, 2))
ff

&&MMMMMMMMMMMMMMM

((0, 0), (1, 2), (1, 1)) oo // (0, (1, 2), (1, 1)) oo // (0, 1, (1, 1))
ii g

(3)
(0,1,1),3

))TTTTTTT

((0, 0), (1, 2), (1, 2)) oo // (0, (1, 2), (1, 2)) oo // (0, 1, (1, 2)) oo // (0, 1, 1)

((0, 0), (2, 1), (0, 0)) oo
g
(1)
(0,2,0),1// (0, (2, 1), (0, 0))

kk g
(2)
(0,2,0),2

++VVVVVVV

((0, 0), (2, 2), (0, 0)) oo // (0, (2, 2), (0, 0)) oo // (0, 2, (0, 0)) oo
g
(3)
(0,2,0),3// (0, 2, 0)

((1, 1), (0, 0), (1, 1)) oo
g
(1)
(1,0,1),1// (1, (0, 0), (1, 1)) oo

g
(2)
(1,0,1),2// (1, 0, (1, 1))

ii g
(3)
(1,0,1),3

))TTTTTTT

((1, 1), (0, 0), (1, 2)) oo // (1, (0, 0), (1, 2)) oo // (1, 0, (1, 2)) oo // (1, 0, 1)

((1, 1), (1, 1), (0, 0)) oo
g
(1)
(1,1,0),1// (1, (1, 1), (0, 0))

kk g
(2)
(1,1,0),2

++VVVVVVV

((1, 1), (1, 2), (0, 0)) oo // (1, (1, 2), (0, 0)) oo // (1, 1, (0, 0)) oo
g
(3)
(1,1,0),3// (1, 1, 0)

((2, 1), (0, 0), (0, 0)) oo
g
(1)
(2,0,0),1// (2, (0, 0), (0, 0)) oo

g
(2)
(2,0,0),2// (2, 0, (0, 0)) oo

g
(3)
(2,0,0),3// (2, 0, 0)

Figure 2.3: Evolution of states through levels of an ML cycle for which the queues
are aggregated in the order ψ = (1, 2, 3) for Example 1.

Consequently, nonzero blocks of the aggregated generator matrix Ql at level

l of an ML cycle can be represented in terms of Kronecker products using the set

of vectors with elements defined by
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d
(l)
(n,m),ψ

(s
(l)
n ) =

P
s
(l−1)
n ∈S(l−1)

n ,g
(l)
n,ψl

(s
(l−1)
n )=s

(l)
n
x̃(l−1)(s

(l−1)
n ) d

(l−1)
(n,m)

(s
(l−1)
n ) (eT

s
(l−1)
n

G̃
(ψl)

(n,m)
e)

x(l)(s
(l)
n )

, (2.5)

where n,m ∈ N , ψ is the vector of indices of queues whose elements

define the aggregation order, ψl is the aggregated component of s
(l−1)
n

at level l, x(l−1) is the smoothed vector at level (l − 1), x(l)(s
(l)
n ) =∑

s
(l−1)
n ∈S(l−1)

n ,g
(l)
n,ψl

(s
(l−1)
n )=s

(l)
n
x̃(l−1)(s

(l−1)
n ) is s

(l)
n th element of the new vector to be

smoothed at level l, e
s
(l−1)
n

is the s
(l−1)
n th column of the identity matrix of order

# of rows(G̃
(ψl)

(n,n)), and

G̃
(ψl)

(n,m)
=

8><>:
G(ψl)(nψl ,mψl ), nψl 6= mψl
I
t(ψl)

, nψl = mψl and nψl 6= 0

1, nψl = mψl and nψl = 0

.

Hence, using (2.2), blocks of Ql are defined by

Ql(n,m) =

8>><>>:
Q
{ψj ,ψk}
l (n,m), n 6= m and m = n− eTψj + eTψk

Dl(n, n) +Ql(n, n)D +
P
l<ψj ,ψj∈{1,2,...,J}Q

{ψj ,ψj}
l (n, n), n = m

0 otherwise

,

(2.6)

where eψj is column ψj of the identity matrix, m = n− eTψj + eTψk refers to service

completion at queue ψj and arrival to queue ψk when in state n so as to make a

transition to state m, Dl(n, n) is the diagonal matrix summing block n of rows

in Ql to zero,
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Q
{ψj ,ψk}
l (n,m) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

pψj ,ψk (I
c
{ψj,ψk}
ψj

⊗ S(ψj)(nψj ,mψj )⊗ Ir{ψj,ψk}
ψj

)

(I
c
{ψj,ψk}
ψk

⊗A(ψk)(nψk ,mψk )⊗ I
r
{ψj,ψk}
ψk

), l < ψj < ψk

pψj ,ψkdiag(d
(l)
(n,m),ψ

)(I
c
{ψj,ψk}
ψk

⊗A(ψk)(nψk ,mψk )⊗ I
r
{ψj,ψk}
ψk

), ψj ≤ l < ψk

pψj ,ψk (I
c
{ψj,ψk}
ψk

⊗A(ψk)(nψk ,mψk )⊗ I
r
{ψj,ψk}
ψk

)

(I
c
{ψj,ψk}
ψj

⊗ S(ψj)(nψj ,mψj )⊗ Ir{ψj,ψk}
ψj

), l < ψk < ψj

pψj ,ψkdiag(d
(l)
(n,m),ψ

)(I
c
{ψj,ψk}
ψj

⊗ S(ψj)(nψj ,mψj )⊗ Ir{ψj,ψk}
ψj

), ψk ≤ l < ψj

pψj ,ψj (Ic
{ψj,ψj}
ψj

⊗ S(ψj)(nψj , nψj − 1))

(A(ψj)(nψj , nψj + 1)⊗ I
r
{ψj,ψj}
ψj

), l < ψj = ψk

pψj ,ψkdiag(d
(l)
(n,m),ψ

), ψj , ψk ≤ l

,

Ql(n, n)D =
M
l<ψj

ψj∈{1,2,...,J}

O(ψj)(nψj , nψj ) =
X
l<ψj

ψj∈{1,2,...,J}

I
c
{ψj,ψj}
ψj

⊗O(ψj)(nψj , nψj )⊗ Ir{ψj,ψj}
ψj

,

where for j ∈ {1, 2, . . . , J}, ψj ≤ l means queue ψj is aggre-

gated and l < ψj means queue ψj is not aggregated at lth level

when the letter l is used, c
{ψj ,ψk}
x =

∏
z<x, z∈{ψl+1,ψl+2,...,ψJ} size

{ψj ,ψk}(z),

r
{ψj ,ψk}
x =

∏
z>x, z∈{ψl+1,ψl+2,...,ψJ} size

{ψj ,ψk}(z), size is defined as in (2.3) and

diag(d
(l)
(n,m),ψ) represents a square matrix with diagonal elements from d

(l)
(n,m),ψ.

Example 1 (continued).

The aggregated generator matrix Q1 is the same as Q (see (2.2) and Fig-

ure 2.3), and we have

d
(1)
((1,0,1),(0,1,1)),ψ(1, (0, 0), (1, 1)) = d

(1)
((1,0,1),(0,1,1)),ψ(1, (0, 0), (1, 2))

= d
(1)
((1,1,0),(0,2,0)),ψ(1, (1, 1), (0, 0))

= d
(1)
((1,1,0),(0,2,0)),ψ(1, (1, 2), (0, 0))

= d
(1)
((2,0,0),(1,1,0)),ψ(2, (0, 0), (0, 0)) = µ

(1)
1
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with other d
(1)
(n,m),ψ = 1, and x̃(1) ∈ IR1×11 as the smoothed vector for the first

level. Observe that p1,1 = p2,2 = p3,3 = 0, implying the third (summation) term

in (2.2) for n = m evaluates to zero, since Q{j,j}(n, n) = 0 for j = 3 and n ∈ N .

Having defined the aggregation operation, we now compute the blocks of Q2 of

order 7, which is obtained by aggregating LLM 2 in level 2 using (2.5) and (2.6)

for Example 1, where ψ = (1, 2, 3). Hence, we define the blocks of Q2 as follows.

Block ((0, 1, 1), (0, 1, 1)):

Q2((0, 1, 1), (0, 1, 1)) = D2((0, 1, 1), (0, 1, 1)) +Q2((0, 1, 1), (0, 1, 1))D

+
3∑
j=3

Q
{j,j}
2 ((0, 1, 1), (0, 1, 1))

= D2((0, 1, 1), (0, 1, 1)) + I
c
{3,3}
3
⊗O(3)(1, 1)⊗ I

r
{3,3}
3

= D2((0, 1, 1), (0, 1, 1)) +

(
−µ(3)

1 µ
(3)
1

0 −µ(3)
2

)

=

(
∗ µ

(3)
1

0 ∗

)
.

Block ((0, 1, 1), (0, 2, 0)):

d
(2)
((0,1,1),(0,2,0)),ψ((0, 1, (1, 1)))

=

x̃(1)((0, (1, 1), (1, 1))) d(1)
((0,1,1),(0,2,0)),ψ((0, (1, 1), (1, 1)))

((
1 0

)( 1 0

0 1

)(
1

1

))
x̃(1)((0, (1, 1), (1, 1))) + x̃(1)((0, (1, 2), (1, 1)))

+

x̃(1)((0, (1, 2), (1, 1))) d(1)
((0,1,1),(0,2,0)),ψ((0, (1, 2), (1, 1)))

((
0 1

)( 1 0

0 1

)(
1

1

))
x̃(1)((0, (1, 1), (1, 1))) + x̃(1)((0, (1, 2), (1, 1)))

=
x̃(1)((0, (1, 1), (1, 1))) + x̃(1)((0, (1, 2), (1, 1)))
x̃(1)((0, (1, 1), (1, 1))) + x̃(1)((0, (1, 2), (1, 1)))

= 1

d
(2)
((0,1,1),(0,2,0)),ψ((0, 1, (1, 2)))
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=

x̃(1)((0, (1, 1), (1, 2))) d(1)
((0,1,1),(0,2,0)),ψ((0, (1, 1), (1, 2)))

((
1 0

)( 1 0

0 1

)(
1

1

))
x̃(1)((0, (1, 1), (1, 2))) + x̃(1)((0, (1, 2), (1, 2)))

+

x̃(1)((0, (1, 2), (1, 2))) d(1)
((0,1,1),(0,2,0)),ψ((0, (1, 2), (1, 2)))

((
0 1

)( 1 0

0 1

)(
1

1

))
x̃(1)((0, (1, 1), (1, 2))) + x̃(1)((0, (1, 2), (1, 2)))

=
x̃(1)((0, (1, 1), (1, 2))) + x̃(1)((0, (1, 2), (1, 2)))
x̃(1)((0, (1, 1), (1, 2))) + x̃(1)((0, (1, 2), (1, 2)))

= 1

Q2((0, 1, 1), (0, 2, 0)) = Q
{3,2}
2 ((0, 1, 1), (0, 2, 0))

= p3,2 diag(d(2)
((0,1,1),(0,2,0)),ψ) (I

c
{3,2}
3
⊗ S(3)(1, 0)⊗ I

r
{3,2}
3

)

= (1− a)I2

(
0

µ
(3)
2

)

=

(
0

(1− a)µ(3)
2

)
.

Block ((0, 1, 1), (1, 1, 0)):

d
(2)
((0,1,1),(1,1,0)),ψ((0, 1, (1, 1)))

=

x̃(1)((0, (1, 1), (1, 1))) d(1)
((0,1,1),(1,1,0)),ψ((0, (1, 1), (1, 1)))

((
1 0

)( 1 0

0 1

)(
1

1

))
x̃(1)((0, (1, 1), (1, 1))) + x̃(1)((0, (1, 2), (1, 1)))

+

x̃(1)((0, (1, 2), (1, 1))) d(1)
((0,1,1),(1,1,0)),ψ((0, (1, 2), (1, 1)))

((
0 1

)( 1 0

0 1

)(
1

1

))
x̃(1)((0, (1, 1), (1, 1))) + x̃(1)((0, (1, 2), (1, 1)))

=
x̃(1)((0, (1, 1), (1, 1))) + x̃(1)((0, (1, 2), (1, 1)))
x̃(1)((0, (1, 1), (1, 1))) + x̃(1)((0, (1, 2), (1, 1)))

= 1

d
(2)
((0,1,1),(1,1,0)),ψ((0, 1, (1, 2)))
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=

x̃(1)((0, (1, 1), (1, 2))) d(1)
((0,1,1),(1,1,0)),ψ((0, (1, 1), (1, 2)))

((
1 0

)( 1 0

0 1

)(
1

1

))
x̃(1)((0, (1, 1), (1, 2))) + x̃(1)((0, (1, 2), (1, 2)))

+

x̃(1)((0, (1, 2), (1, 2))) d(1)
((0,1,1),(1,1,0)),ψ((0, (1, 2), (1, 2)))

((
0 1

)( 1 0

0 1

)(
1

1

))
x̃(1)((0, (1, 1), (1, 2))) + x̃(1)((0, (1, 2), (1, 2)))

=
x̃(1)((0, (1, 1), (1, 2))) + x̃(1)((0, (1, 2), (1, 2)))
x̃(1)((0, (1, 1), (1, 2))) + x̃(1)((0, (1, 2), (1, 2)))

= 1

Q2((0, 1, 1), (1, 1, 0)) = Q
{3,1}
2 ((0, 1, 1), (1, 1, 0))

= p3,1 diag(d(2)
((0,1,1),(1,1,0)),ψ) (I

c
{3,1}
3
⊗ S(3)(1, 0)⊗ I

r
{3,1}
3

)

= aI2

(
0

µ
(3)
2

)

=

(
0

aµ
(3)
2

)
.

Block ((0, 2, 0), (0, 1, 1)):

d
(2)
((0,2,0),(0,1,1)),ψ((0, 2, (0, 0)))

=

x̃(1)((0, (2, 1), (0, 0))) d(1)
((0,2,0),(0,1,1)),ψ((0, (2, 1), (0, 0)))

((
1 0

)( 0 0

µ
(2)
2 0

)(
1

1

))
x̃(1)((0, (2, 1), (0, 0))) + x̃(1)((0, (2, 2), (0, 0)))

+

x̃(1)((0, (2, 2), (0, 0))) d(1)
((0,2,0),(0,1,1)),ψ((0, (2, 2), (0, 0)))

((
0 1

)( 0 0

µ
(2)
2 0

)(
1

1

))
x̃(1)((0, (2, 1), (0, 0))) + x̃(1)((0, (2, 2), (0, 0)))

=
x̃(1)((0, (2, 2), (0, 0)))

x̃(1)((0, (2, 1), (0, 0))) + x̃(1)((0, (2, 2), (0, 0)))
µ

(2)
2



CHAPTER 2. KRONECKER REPRESENTATION AND ML METHOD 31

Q2((0, 2, 0), (0, 1, 1)) = Q
{2,3}
2 ((0, 2, 0), (0, 1, 1))

= p2,3 diag(d(2)
((0,2,1),(0,1,1)),ψ) (I

c
{2,3}
3
⊗A(3)(0, 1)⊗ I

r
{2,3}
3

)

=
x̃(1)((0, (2, 2), (0, 0)))

x̃(1)((0, (2, 1), (0, 0))) + x̃(1)((0, (2, 2), (0, 0)))
µ

(2)
2

(
1 0

)
=

(
x̃(1)((0,(2,2),(0,0)))

x̃(1)((0,(2,1),(0,0)))+x̃(1)((0,(2,2),(0,0)))
µ

(2)
2 0

)
.

Block ((0, 2, 0), (0, 2, 0)):

Q2((0, 2, 0), (0, 2, 0)) = D2((0, 2, 0), (0, 2, 0)) +Q2((0, 2, 0), (0, 2, 0))D

+
3∑
j=3

Q
{j,j}
2 ((0, 2, 0), (0, 2, 0))

= D2((0, 2, 0), (0, 2, 0)) + I
c
{3,3}
3
⊗O(3)(0, 0)⊗ I

r
{3,3}
3

= ∗.

Block ((1, 0, 1), (0, 1, 1)):

d
(2)
((1,0,1),(0,1,1)),ψ((1, 0, (1, 1)))

=

x̃(1)((1, (0, 0), (1, 1))) d(1)
((1,0,1),(0,1,1)),ψ((1, (0, 0), (1, 1)))

((
1
)(

1 0
)( 1

1

))
x̃(1)((1, (0, 0), (1, 1)))

=

x̃(1)((1, (0, 0), (1, 1))) µ(1)
1

((
1
)(

1 0
)( 1

1

))
x̃(1)((1, (0, 0), (1, 1)))

= µ
(1)
1

d
(2)
((1,0,1),(0,1,1)),ψ((1, 0, (1, 2)))

=

x̃(1)((1, (0, 0), (1, 2))) d(1)
((1,0,1),(0,1,1)),ψ((1, (0, 0), (1, 2)))

((
1
)(

1 0
)( 1

1

))
x̃(1)((1, (0, 0), (1, 2)))

=

x̃(1)((1, (0, 0), (1, 2))) µ(1)
1

((
1
)(

1 0
)( 1

1

))
x̃(1)((1, (0, 0), (1, 2)))

= µ
(1)
1
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Q2((1, 0, 1), (0, 1, 1)) = Q
{1,2}
2 ((1, 0, 1), (0, 1, 1))

= p1,2 diag(d(2)
((1,0,1),(0,1,1)),ψ)

=

(
µ

(1)
1 0

0 µ
(1)
1

)
.

Block ((1, 0, 1), (1, 0, 1)):

Q2((1, 0, 1), (1, 0, 1)) = D2((1, 0, 1), (1, 0, 1)) +Q2((1, 0, 1), (1, 0, 1))D

+
3∑
j=3

Q
{j,j}
2 ((1, 0, 1), (1, 0, 1))

= D2((1, 0, 1), (1, 0, 1)) + I
c
{3,3}
3
⊗O(3)(1, 1)⊗ I

r
{3,3}
3

= D2((1, 0, 1), (1, 0, 1)) +

(
−µ(3)

1 µ
(3)
1

0 −µ(3)
2

)

=

(
∗ µ

(3)
1

0 ∗

)
.

Block ((1, 0, 1), (1, 1, 0)):

d
(2)
((1,0,1),(1,1,0)),ψ((1, 0, (1, 1)))

=
x̃(1)((1, (0, 0), (1, 1))) d(1)

((1,0,1),(1,1,0)),ψ((1, (0, 0), (1, 1)))
((

1
)(

1
)(

1
))

x̃(1)((1, (0, 0), (1, 1)))

=
x̃(1)((1, (0, 0), (1, 1)))
x̃(1)((1, (0, 0), (1, 1)))

= 1

d
(2)
((1,0,1),(1,1,0)),ψ((1, 0, (1, 2)))

=
x̃(1)((1, (0, 0), (1, 2))) d(1)

((1,0,1),(1,1,0)),ψ((1, (0, 0), (1, 2)))
((

1
)(

1
)(

1
))

x̃(1)((1, (0, 0), (1, 2)))

=
x̃(1)((1, (0, 0), (1, 2)))
x̃(1)((1, (0, 0), (1, 2)))

= 1
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Q2((1, 0, 1), (1, 1, 0)) = Q
{3,2}
2 ((1, 0, 1), (1, 1, 0))

= p3,2 diag(d(2)
((1,0,1),(1,1,0)),ψ)(I

c
{3,2}
3
⊗ S(3)(1, 0)⊗ I

r
{3,2}
3

)

= (1− a)I2

(
0

µ
(3)
2

)

=

(
0

(1− a)µ(3)
2

)
.

Block ((1, 0, 1), (2, 0, 0)):

d
(2)
((1,0,1),(2,0,0)),ψ((1, 0, (1, 1)))

=
x̃(1)(1, (0, 0), (1, 1))) d(1)

((1,0,1),(2,0,0)),ψ((1, (0, 0), (1, 1)))
((

1
)(

1
)(

1
))

x̃(1)((1, (0, 0), (1, 1)))

=
x̃(1)((1, (0, 0), (1, 1)))
x̃(1)((1, (0, 0), (1, 1)))

= 1

d
(2)
((1,0,1),(2,0,0)),ψ((1, 0, (1, 2)))

=
x̃(1)((1, (0, 0), (1, 2))) d(1)

((1,0,1),(2,0,0)),ψ((1, (0, 0), (1, 2)))
((

1
)(

1
)(

1
))

x̃(1)((1, (0, 0), (1, 2)))

=
x̃(1)((1, (0, 0), (1, 2)))
x̃(1)((1, (0, 0), (1, 2)))

= 1

Q2((1, 0, 1), (2, 0, 0)) = Q
{3,1}
2 ((1, 0, 1), (2, 0, 0))

= p3,1 diag(d(2)
((1,0,1),(2,0,0)),ψ)(I

c
{3,1}
3
⊗ S(3)(1, 0)⊗ I

r
{3,1}
3

)

= aI2

(
0

µ
(3)
2

)

=

(
0

aµ
(3)
2

)
.
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Block ((1, 1, 0), (0, 2, 0)):

d
(2)
((1,1,0),(0,2,0)),ψ((1, 1, (0, 0)))

=

x̃(1)((1, (1, 1), (0, 0))) d(1)
((1,1,0),(0,2,0)),ψ((1, (1, 1), (0, 0)))

((
1 0

)( 1 0

0 1

)(
1

1

))
x̃(1)((1, (1, 1), (0, 0))) + x̃(1)((1, (1, 2), (0, 0)))

+

x̃(1)((1, (1, 2), (0, 0))) d(1)
((1,1,0),(0,2,0)),ψ((1, (1, 2), (0, 0)))

((
0 1

)( 1 0

0 1

)(
1

1

))
x̃(1)((1, (1, 1), (0, 0))) + x̃(1)((1, (1, 2), (0, 0)))

=

x̃(1)((1, (1, 1), (0, 0))) µ(1)
1

((
1 0

)( 1 0

0 1

)(
1

1

))
x̃(1)((1, (1, 1), (0, 0))) + x̃(1)((1, (1, 2), (0, 0)))

+

x̃(1)((1, (1, 2), (0, 0))) µ(1)
1

((
0 1

)( 1 0

0 1

)(
1

1

))
x̃(1)((1, (1, 1), (0, 0))) + x̃(1)((1, (1, 2), (0, 0)))

=
x̃(1)((1, (1, 1), (0, 0))) + x̃(1)((1, (1, 2), (0, 0)))
x̃(1)((1, (1, 1), (0, 0))) + x̃(1)((1, (1, 2), (0, 0)))

µ
(1)
1 = µ

(1)
1

Q2((1, 1, 0), (0, 2, 0)) = Q
{1,2}
2 ((1, 1, 0), (0, 2, 0)) = p1,2 diag(d(2)

((1,1,0),(0,2,0)),ψ) = µ
(1)
1 .

Block ((1, 1, 0), (1, 0, 1)):

d
(2)
((1,1,0),(1,0,1)),ψ((1, 1, (0, 0)))

=

x̃(1)((1, (1, 1), (0, 0))) d(1)
((1,1,0),(1,0,1)),ψ((1, (1, 1), (0, 0)))

((
1 0

)( 0

µ
(2)
2

)(
1
))

x̃(1)((1, (1, 1), (0, 0))) + x̃(1)((1, (1, 2), (0, 0)))

+

x̃(1)((1, (1, 2), (0, 0))) d(1)
((1,1,0),(1,0,1)),ψ((1, (1, 2), (0, 0)))

((
0 1

)( 0

µ
(2)
2

)(
1

1

))
x̃(1)((1, (1, 1), (0, 0))) + x̃(1)((1, (1, 2), (0, 0)))

=
x̃(1)((1, (1, 2), (0, 0)))

x̃(1)((1, (1, 1), (0, 0))) + x̃(1)((1, (1, 2), (0, 0)))
µ

(2)
2
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Q2((1, 1, 0), (1, 0, 1)) = Q
{2,3}
2 ((1, 1, 0), (1, 0, 1))

= p2,3 diag(d(2)
((1,1,0),(0,2,0)),ψ)(I

c
{2,3}
3
⊗A(3)(0, 1)⊗ I

r
{2,3}
3

)

=
x̃(1)((1, (1, 2), (0, 0)))

x̃(1)((1, (1, 1), (0, 0))) + x̃(1)((1, (1, 2), (0, 0)))
µ

(2)
2

(
1 0

)
=
(

x̃(1)((1,(1,2),(0,0)))
x̃(1)((1,(1,1),(0,0)))+x̃(1)((1,(1,2),(0,0)))

µ
(2)
2 0

)
.

Block ((1, 1, 0), (1, 1, 0)):

Q2((1, 1, 0), (1, 1, 0)) = D2((1, 1, 0), (1, 1, 0)) +Q2((1, 1, 0), (1, 1, 0))D

+
3∑
j=3

Q
{j,j}
2 ((1, 1, 0), (1, 1, 0))

= D2((1, 1, 0), (1, 1, 0)) + Ic{3,3}3 ⊗O
(3)(0, 0)⊗ Ir{3,3}3 = ∗.

Block ((2, 0, 0), (1, 1, 0)):

d
(2)
((2,0,0),(1,1,0)),ψ((2, 0, (0, 0)))

=
x̃(1)((2, (0, 0), (0, 0))) d(1)

((2,0,0),(1,1,0)),ψ((2, (0, 0), (0, 0)))
((

1
)(

1
)(

1
))

x̃(1)((2, (0, 0), (0, 0)))
= µ

(1)
1

Q2((2, 0, 0), (1, 1, 0)) = Q
{1,2}
2 ((2, 0, 0), (1, 1, 0)) = p1,2 diag(d(2)

((2,0,0),(1,1,0)),ψ) = µ
(1)
1

Block ((2, 0, 0), (2, 0, 0)):

Q2((2, 0, 0), (2, 0, 0)) = D2((2, 0, 0), (2, 0, 0)) +Q2((2, 0, 0), (2, 0, 0))D

+
3∑
j=3

Q
{j,j}
2 ((2, 0, 0), (2, 0, 0))

= D2((2, 0, 0), (2, 0, 0)) + I
c
{3,3}
3
⊗O(3)(0, 0)⊗ I

r
{3,3}
3

= ∗.
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Thus, we have the generator matrix

Q2 =



∗ µ
(3)
1

∗ (1− a)µ(3)
2 aµ

(3)
2

x̃(1)(6)
x̃(1)(5)+x̃(1)(6)

µ
(2)
2 ∗

µ
(1)
1 ∗ µ

(3)
1

µ
(1)
1 ∗ (1− a)µ(3)

2 aµ
(3)
2

µ
(1)
1

x̃(1)(10)
x̃(1)(9)+x̃(1)(10)

µ
(2)
2 ∗

µ
(1)
1 ∗


,

where the elements of x̃(1) are enumerated in lexicographical order of the states

of Q1.

In the ML method, aggregated generator matrices are never generated ex-

plicitly. The smoothed vectors are obtained via the efficient vector–Kronecker

product multiplication algorithm used by iterative methods based on splittings.

In order to handle rectangular blocks of matrices, the vector–Kronecker product

multiplication algorithm is slightly modified and given by Algorithm 3. The di-

agonal elements of a generator matrix are computed by using a slightly modified

version of Algorithm 3 which can perform Kronecker product–vector multiplica-

tion.

In the next chapter, we extend two approximative iterative methods based on

decomposition from the literature so that they can utilize the Kronecker repre-

sentation and employ the ML method.
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Algorithm 3 Modified vector–Kronecker product multiplication algorithm com-
puting y = x(InLeft ⊗ A⊗ InRight).

leftMult(x, nLeft, nRight, A)

1: base1← 0;
2: base2← 0;
3: jump1← # of rows(A)× nRight;
4: jump2← # of cols(A)× nRight;
5: for i← 1 to nLeft do
6: for j ← 1 to nRight do
7: index← base1 + j;
8: for k ← 1 to # of rows(A) do
9: z(k)← x(index);

10: index← index+ nRight;
11: end for
12: z ← z × A;
13: index← base2 + j;
14: for k ← 1 to # of cols(A) do
15: y(index)← z(k);
16: index← index+ nRight;
17: end for
18: end for
19: base1← base1 + jump1;
20: base2← base2 + jump2;
21: end for
22: return y;



Chapter 3

Approximative Decompositional

Methods

In this chapter, we describe four approximative methods based on decomposition

for closed QNs. These are the convolution algorithm, Akyildiz’s mean value

analysis (MVABLO), Marie’s method, and Yao and Buzacott’s method. The

convolution algorithm is used in the analysis of closed QNs with infinite buffer

sizes and exponential service distributions. MVABLO is used in the analysis

of closed QNs with exponential service distributions and arbitrary buffer sizes.

Marie’s and Yao and Buzacott’s methods are used in the analysis of closed QNs

with Coxian service distributions and arbitrary buffer sizes. Marie’s and Yao and

Buzacott’s methods are extended to include phase–type service distributions.

38
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3.1 Convolution Algorithm

In 1967, Gordon and Newell showed that closed QNs with queues having expo-

nential service distributions and infinite buffer sizes have product form solution

[22]. Such networks are named Gordon–Newell QNs (GNQNs). Steady–state

probabilities of GNQNs are computed using the service demands of customers

per passage from queues. In that sense, the analysis of Gordon and Newell in-

volves queue–wise decomposition of the QN. For a GNQN with J queues, service

demands per passage of queue i, Si, in the GNQN is defined by the product viµi

for i ∈ {1, 2, . . . , J}. The value µi denotes the mean service rate of queue i and

if we take a queue, say queue k, in the GNQN as the reference queue, then vi

denotes the visit ratio of queue i relative to queue k. In other words, vi expresses

the number of visits to queue i between two consecutive visits to queue j. Visit

ratios of queues in the closed QN are computed by solving the linear system

vP = v, where P is the routing probability matrix of the closed QN, under the

condition that vk = 1. Consequently, if the closed QN has K customers and state

space N , then the steady–state solution is given by the product form equation

π(n) =
1

NC(J)(K)

J∏
i=1

Snii , (3.1)

where Si = viµi, n ∈ N , and the normalization constant NC(J)(K) is defined as

NC(J)(K) =
∑
n∈N

J∏
i=1

Snii .

Computation of the normalization constant may require large number of op-

erations if |N | is large. Therefore, a recursive scheme for the computation of

normalization constants of GNQNs was first introduced in [13] and called convo-

lution algorithm. The algorithm is defined by the equation

NC(j)(k + 1) = NC(j−1)(k + 1) + SjNC
(j)(k), (3.2)
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where j ∈ {2, 3, . . . , J}, k ∈ {0, 1, . . . , K − 1}, and boundary values are defined

by NC(1)(k) = Sk1 . Computation of the normalization constants are handled by

Algorithm 4 using (3.2), where the vectors NC(j) are replaced with the vector

NC of length (K+1). After the computation of the normalization constants, the

steady–state distribution vector can be calculated using (3.1).

Algorithm 4 Convolution algorithm.

CA(µ, P, J,K)

1: NC(0)← 1;
2: solve vP = v subject to v1 = 1;
3: for i← 1 to J do
4: Si ← viµi;
5: end for
6: for k ← 1 to K do
7: NC(k)← Sk1 ;
8: end for
9: for j ← 2 to J do

10: for k ← 1 to K do
11: NC(k)← NC(k) + SjNC(k − 1);
12: end for
13: end for
14: return NC;

3.2 Akyildiz’s Mean Value Analysis

Akyildiz’s mean value analysis (MVABLO) [2] is based on the classical mean value

analysis (MVA) [33], but it handles blocking QNs. MVA works on GNQNs and

average performance measures are obtained by a scheme which does not require

the computation of the underlying CTMC of the closed QN or the normalization

constants. MVABLO also uses such a scheme to derive average performance

measures in closed QNs with exponential service rates, but in order to introduce

blocking it assumes that two properties hold: a queue whose successor queue has

a full buffer becomes blocked after service completion and a queue whose buffer

is full cannot accept any customer.
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The first property implies that in order to compute the mean residence time

of a blocked queue, the mean remaining service time of a customer in the down-

stream queue which causes blocking should be added to the mean residence time

of a customer in the blocked queue. Therefore, for a closed QN having exponen-

tial service distributions with K customers and J queues, if the total capacity

of queues
∑J

j=1 cj > K, then the mean residence time of the customers in the

blocked queue when there are k ∈ {1, 2, . . . , K} customers is defined as

E[Rj(k)] = µj(1 + E[Nj(k − 1)]) +BTi

(vjpj,i
vi

)
, (3.3)

where E[Nj(k − 1)] denotes the average number of customers in queue j when

there are k customers in the closed QN, BTi denotes the mean service time of the

successor queue i which causes blocking, vi denotes the visit ratio for queue i, and

pj,i is the routing probability from queue j to queue i. The first term of the sum

in (3.3) is used in MVA when computing the mean residence time of a customer

in queue j. The second term of the sum in (3.3) adds the mean remaining service

time of a customer when there are multiple downstream queues.

The second property tells that a full station cannot accept a new customer.

Hence, the mean residence time of a customer is computed by

E[Rj(k)] = µjE[Nj(k − 1)]. (3.4)

Thus, using (3.3) and (3.4), MVABLO is given in Algorithm 5. Algorithm 5

computes average residence times of customers and average numbers of customers

in queues, as well as the throughput of the network, ν, when there are k ∈
{1, 2, . . . , K} customers.
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Algorithm 5 Mean value analysis for blocking queueing networks (MVABLO).

MVABLO(µ, c, P, J,K)

1: solve vP = v subject to v1 = 1;
2: for i← 1 to J do
3: E[Ni(0)]← 0;
4: BTi(0)← 0;
5: zi(0)← 1;
6: end for
7: for k ← 1 to K do
8: repeat
9: for i← 1 to J do

10: E[Ri(k)]← µi(zi(k − 1) + E[Ni(k − 1)]) +BTi(k − 1);
11: end for
12: ν(k)← k/(

∑J
i←1 viE[Ri(k)]);

13: for i← 1 to J do
14: E[Ni(k)]← ν(k)viE[Ri(k)];
15: if E[Ni(k)] > ci then
16: zi(k − 1)← 0;
17: for j ← 1 to J do
18: BTj(k − 1)← BTj(k − 1) + µi(vjpj,i/vi);
19: end for
20: else
21: zi(k)← zi(k − 1);
22: BTi(k)← BTi(k − 1);
23: end if
24: end for
25: until E[Ni(k)] < ci
26: end for
27: return ν, E[Ni(k)], E[Ri(k)] for i ∈ {1, 2, . . . , J} and k ∈ {0, 1, . . . , K};
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3.3 Marie’s Method

Marie’s method consists of two stages. In the first stage, it decomposes the closed

QN into subnetworks, and in the second stage, it analyzes the throughputs of

subnetworks using a fixed–point iteration scheme. The decomposition satisfies

some specific conditions, which imply that the steady–state probabilities of a

subnetwork are independent of the states of other subnetworks. Thus, in the

fixed–point iteration scheme, these independent subnetworks can be analyzed in

isolation as open QNs assuming they have state dependent Poisson arrival rates.

In the first stage, the decomposition of queues into subnetworks depend on

buffer sizes of queues and number of customers in the closed QN, and is de-

scribed as follows. Given a closed QN, customers arriving to finite buffer queues

of a subnetwork must come from queues that belong to the same subnetwork.

In other words, any upstream queue, whose leaving customers are directed to a

finite buffer queue, must be in the same subnetwork with the finite buffer queue.

We accomplish the decomposition by using the recursive algorithm given in Al-

gorithms 6 and 7. Algorithm 6 is the driver for the decomposition. It takes the

set of queue indices, the number of queues, the number of customers, the buffer

sizes of queues, and the routing probability matrix of a closed QN as parameters.

Algorithm 6, together with Algorithm 7, proceeds as follows. If the set of queue

indices is not empty, then an empty partition set and the minimum element from

the set of queue indices is passed to Algorithm 7 (line 4 in Algorithm 6). Al-

gorithm 7 checks whether this index belongs to the partition set or not. If the

index belongs to the partition set, then Algorithm 7 returns the partition set. If

the index does not belong to the partition set, then it is added to the partition

set and Algorithm 7 checks if the added index represents a queue with infinite

or finite buffer (line 6 in Algorithm 7). If the index represents an infinite buffer

queue, then Algorithm 7 searches for queues, which have finite buffer sizes and

customer arrivals from the infinite buffer queue, and adds these queues to the

partition set if possible (lines 7 to 11 in Algorithm 7). On the other hand, if the

index corresponds to a finite buffer queue, then Algorithm 7 have two cases to

consider sequentially. First, it searches for indices of queues which have arrivals
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to the finite buffer queue and adds these queues to the partition set if possible

(lines 14 to 16 in Algorithm 7). Second, it searches for indices of queues which

have arrivals from the finite buffer queue and have finite buffers, and adds these

queues to the partition set if possible (lines 17 to 19 in Algorithm 7). In this

way, Algorithm 7 finds all the queue indices that belong to the same partition

and returns the partition set to Algorithm 6. Indices belonging to the returned

partition are removed from the set of indices of queues (line 5 in Algorithm 6),

and if the set of indices is not empty, then Algorithm 6 proceeds with the min-

imum element from the remaining set of indices to construct another partition

set. Using this algorithm, the set of queue indices I = {1, 2, . . . , J} of the closed

QN is partitioned into subsets J (k) of I, where k ∈ {1, 2, . . . , S} and S is the

number of subnetworks. The partition of the closed QN in Example 1 introduced

in Chapter 2 can be seen in Figure 3.1. The closed QN is partitioned into two

subnetworks, where J (1) = {1} and J (2) = {2, 3}.

J (1)

- l1 J (2)

- l2 - l3
a

6

1− a

Figure 3.1: Decomposition of Example 1.

Algorithm 6 Driver for decomposition algorithm.

netDecomposeDriver(I, J,K, c, P )

1: i← 1;
2: while I 6= ∅ do
3: J (i) ← ∅;
4: I1 ← min(I);
5: J (i) ← netDecompose(I1, J,K, P, c,J (i));
6: I ← I − J (i);
7: i← i+ 1;
8: end while
9: S ← i− 1;

10: return {J (1),J (2), . . . ,J (i−1)} and S;
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Algorithm 7 Decomposition algorithm.

netDecompose(I1, J,K, P, c,J )

1: if I1 /∈ J then
2: J ← J ∪ {I1};
3: else
4: return J ;
5: end if
6: if cI1 ≥ K then
7: for j ← 1 to J do
8: if P (I1, j) > 0 and cj < K then
9: J ← netDecompose(j, J,K, P, c,J );

10: end if
11: end for
12: else
13: for j ← 1 to J do
14: if P (j, I1) > 0 then
15: J ← netDecompose(j, J,K, P, c,J );
16: end if
17: if P (I1, j) > 0 and cj < K then
18: J ← netDecompose(j, J,K, P, c,J );
19: end if
20: end for
21: end if
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In the second stage, a fixed–point iteration scheme is proposed to obtain

approximations to throughputs of subnetworks. The fixed–point iteration scheme

is defined in [26] by the following system of equations:

ν
(r)
j (i) =

αjNC
(r−1)
j (K − i)

NC
(r−1)
j (K − i+ 1)

π
(r−1)
j (i− 1)

π
(r−1)
j (i)

, i ∈ {1, 2, . . . , K}, j ∈ {1, 2, . . . , S}.

(3.5)

A(r−1)
m (Km) =

{
1 if Km = 0∏Km

i=1 ν
(r−1)
j (i) if Km > 0

,

α = (α1, α2, . . . , αS),

NC(r−1)
v (u) =

∑
K1,K2,...,KS

(
S∏

m=1

αKmm

A
(r−1)
m (Km)

)
and

S∑
m=1

Km = u,Kv = 0,

λ
(r−1)
j (i) =

αjNC
(r−1)
j (K − i− 1)

NC
(r−1)
j (K − i)

,

where ν
(r)
j (i) and π

(r)
j (i) denote approximated throughput and steady–state solu-

tion of the open QN defined by J (j) when there are i customers in step r of the

fixed–point iteration, respectively. The throughput and steady–state distribution

vectors for subnetwork j are then given by ν
(r)
j = (ν

(r)
j (1), ν

(r)
j (2), . . . , ν

(r)
j (K))

and π
(r)
j = (π

(r)
j (1), π

(r)
j (2), . . . , π

(r)
j (K)), respectively. Kj denotes the number of

customers in subnetwork j defined by J (j) and

αk =
∑
i∈J (k)

xi

 ∑
j∈I/J (k)

pi,j

 for k ∈ {1, 2, . . . , S}

defines visit ratio of subnetwork for which x is a solution of xP = x subject to

x1 = 1.
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To execute step r of the fixed–point iteration, we compute the steady–state

probability distribution π
(r−1)
j of subnetwork j defined by J (j) in step (r− 1). In

step (r − 1), subnetwork J (j) is perceived as an open QN with state dependent

Poisson arrival rates λ
(r−1)
j (i) for i ∈ {1, 2, . . . , K} and analyzed for its steady–

state solution. In order to carry out the steady–state analysis of the open QN,

we model the open QN as a closed QN, which consists of the subnetwork’s queues

and a slack queue. The slack queue is an infinite buffer queue, simulates the state

dependent Poisson arrivals of customers to the subnetwork, and has exponentially

distributed service times with load dependent service rates (see Figure 3.2). In

this manner, subnetworks of the example, defined by partitions J (1) and J (2),

are modeled as in Figure 3.3.

- m0
Slack queue

-

'

&

$

%
Subnetwork

Open QN

Figure 3.2: Open QN modeled as closed QN with a slack queue.

- m0 - m1J
(1)

- m0 J (2)

- m2 - m3
a

6

1− a

Figure 3.3: Decomposition of Example 1 for Marie’s method.

Hence, the closed QN is modeled hierarchically by defining subnetworks of

queues and the slack queue as LLMs, and constructing the HLM matrices, which
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exploit the interactions between queues in subnetworks. Consequently, in step r

of Marie’s method, the ML method is utilized to find the steady–state probability

distribution π
(r)
j of the closed subnetwork corresponding to J (j) (see Step 4 of

Marie’s method in Table 3.1).

Table 3.1: Marie’s method vs. Yao and Buzacott’s method

Marie’s method Yao & Buzacott’s method

Step 1. Decompose the closed QN into
subnetworks.

Step 1. Set state dependent exponential
service rates of queues µ to some initial
value.

Step 2. Set throughput values of subnet-
works ν to some initial value.

Step 2. Analyze the exponential network,
which consists of queues with state depen-
dent exponential servers and obtain steady
state probabilities πexp.

Step 3. Compute state dependent arrival
rates λ for each subnetwork.

Step 3. Compute state dependent arrival
rates λ for each queue using πexp.

Step 4. Analyze subnetworks as open QNs
under state dependent Poisson arrivals λ to
derive steady–state probabilities π.

Step 4. Analyze each queue in isolation
with its original service distribution and
state dependent Poisson arrivals and de-
rive steady–state probabilities π.

Step 5. Compute new ν values using λ
and π, and goto Step 2 until convergence.

Step 5. Compute new throughput values
ν using λ and π, initialize µ with ν and
goto Step 1 until convergence.

3.4 Yao and Buzacott’s Method

The idea behind Yao and Buzacott’s method is to transform the closed QN into

an exponential network, where each queue has an exponentially distributed ser-

vice time with state dependent rate. After this transformation, Yao and Buza-

cott’s method uses a fixed–point iteration scheme on the decomposed network to

compute throughput rates of queues. The decomposition in this approach is max-

imal in the sense that individual queues become subnetworks. Each subnetwork

is represented by using two queues: a slack queue, which has state dependent
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exponential service rate to simulate state dependent Poisson arrivals to the indi-

vidual queue, and the individual queue with Coxian service distribution of closed

QN, which is extended by a λ(i)/PH/1/cj queue, for i ∈ {0, 1, . . . , K − 1} and

j ∈ {1, 2, . . . , J} (see Figure 3.4). Yao and Buzacott’s method also uses an it-

erative scheme to find the solution of a fixed–point equation, which computes

throughputs of queues in the closed QN. The iterative scheme of Yao and Buza-

cott’s method, whose steps are defined in Table 3.1, is based on the following

system of equations:

- l0 - l1J
(1)

- l0 - l2J
(2)

- l0 - l3J
(3)

Figure 3.4: Decomposition of Example 1 for Yao and Buzacott’s method.

ν
(r)
j (i) = λ

(r−1)
j (i− 1)

π
(r−1)
j (i− 1)

π
(r−1)
j (i)

, i ∈ {1, 2, . . . , cj}, j ∈ {1, 2, . . . , J}, (3.6)

πexp
(r−1)

Qexp(r−1)

= 0;

|N |∑
i=1

πexp
(r−1)

i = 1,

λ
(r−1)
j (i− 1) = ν

(r−1)
j (i)

πexp
(r−1)

j (i)

πexp
(r−1)

j (i− 1)
,

where πexp
(r)

is the steady–state vector of the state dependent exponential closed

QN’s generator matrix, Qexp(r) , constructed by replacing the original service dis-

tributions of queues with state dependent exponential distributions that possess
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rates of µ
(r)
j (i) = ν

(r)
j (i), πexp

(r−1)

j (i) is the marginal probability of having i cus-

tomers in queue j in step r of the iteration, and π
(r)
j is the steady–state probability

vector of subnetwork j defined by J (j), which includes queue j and a slack queue

with state dependent exponential service rate µ
(r)
j (cj − i) = λ

(r)
j (i).

Subnetworks that consist of individual queues of the closed QN are hierarchi-

cally modeled as closed QNs (Figure 3.4). As in Marie’s case, the slack queue

simulates state dependent Poisson arrivals from the outer environment to the sub-

networks. In iteration step r of (3.6), the steady–state probability distribution

π
(r)
j of the subnetwork defined by J (j) is computed by the ML method (see Step 4

of Yao and Buzacott’s method in Table 3.1). The decomposition procedure of Yao

and Buzacott’s method represents subnetworks of the closed QN with one queue

from the closed QN and a slack queue. Therefore each subnetwork consists of two

LLMs and the ML method proceeds only for two levels. On the other hand, the

generated exponential closed QN is solved for its steady–state distribution πexp
(r)

by BiCGStab with ILU preconditioning [36].

Although, Marie’s and Yao and Buzacott’s methods are both approximation

schemes based on decomposing the closed QN into subnetworks and analyzing

these subnetworks as open QNs under state dependent Poisson arrivals, their

methodologies differ in two ways: the decomposition procedure and the compu-

tation procedure of the state dependent Poisson arrival rates. In the former case,

the decomposition satisfies predefined conditions which imply that the steady–

state probabilities of a subnetwork is independent of the states of other subnet-

works. In the latter case, a maximal decomposition of the closed QN is assumed,

where each queue is treated as a subnetwork. Yet, in both methods, the sets J (k)

partition the closed QN into mutually exclusive sets of queues. Marie’s method

derives the state dependent arrival rates using normalizing constants. On the

other hand, Yao and Buzacott’s method computes the rates using marginal prob-

abilities of subnetworks.

In the next chapter, we analyze Marie’s and Yao and Buzacott’s methods for

their time and space complexities, and existence of a fixed–point.



Chapter 4

Analysis

This chapter is divided into two sections. In the first section, we provide analysis

for the time and space complexity of the methods discussed in chapter 3. In the

last section, the methods which use fixed–point iteration, namely Marie’s method

and Yao and Buzacott’s method, are analyzed for the existence of a fixed–point.

4.1 Complexity Analysis

In this section, we start by giving upper bounds on the number of floating–point

operations and space requirements in the convolution algorithm and Akyildiz’s

mean value analysis. Then we continue by giving an upper bound on the number

of floating–point operations for one V, F, or W cycle of the ML method and

proceed by giving upper bounds on the number of floating–point operations for

one iteration of Marie’s method and Yao and Buzacott’s method together with

upper bounds on their space requirements.

51
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4.1.1 Convolution Algorithm

We give an upper bound on the number of floating–point operations performed

by the convolution algorithm of Algorithm 4. Obtaining the solution of the linear

system at line 2 of Algorithm 4 requires at most O(J3) floating–point operations.

The for loop between lines 3 and 5 performs O(J) floating–point operations. The

for loop between lines 6 and 8 performs O(J) floating–point operations. The part

of the algorithm that computes the normalization constants between lines 9 and

13 performs O(JK) floating–point operations. Altogether, an upper bound on

the number of floating–point operations performed by the convolution algorithm

is

O(J3) +O(JK).

Again by considering Algorithm 4, we need one vector of length K to hold

the normalization constants and need one vector of length J to hold the service

demands of customers. Thus the space requirement of the convolution algorithm

is

O(J +K).

4.1.2 Akyildiz’s Mean Value Analysis

In order to give an upper bound on the number of floating–point operations

performed in MVABLO, let us inspect Algorithm 5. The solution process at the

first line requires O(J3) floating–point operations. The for loop between lines

17 and 19 performs O(J) floating–point operations. The for loop between lines

13 and 24 turns J times and performs O(J2) floating–point operations. The for

loop between lines 9 and 11 performs O(J) floating point operations. By adding

the number of floating–point operations performed by the for loop between lines

9 and 11, one step of the repeat loop between lines 8 and 25 performs at most

O(J2) floating–point operations. The for loop between lines 7 and 26 turns K

times, and if we define the number of times the repeat loop at step k is executed

by ηk for k ∈ {1, 2, . . . , K}, then an upper bound on the number of floating–point
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operations performed by MVABLO is

O(J3) +
K∑
k=1

ηkO(J2).

To find an upper bound on the space requirement of MVABLO, let us first look

at line 10 in Algorithm 5. The variable E[Ri(k)] is defined for i ∈ {1, 2, . . . , J}
and k ∈ {1, 2, . . . , K}, and needs O(JK) storage. The variables zi(k), E[Ni(k)],

and BTi(k) is defined for i ∈ {1, 2, . . . , J} and k ∈ {0, 1, . . . , K}, and they need

O(J(K + 1)) storage. Also, the variable ν(k) is defined for k ∈ {1, 2, . . . , K} and

needs O(K) storage. Therefore, the space requirement of MVABLO is given by

O(JK).

4.1.3 Iterative Methods Based on Splittings

In order to give an upper bound on the number of floating–point operations

performed in one cycle of the ML method, we need to devise an upper bound on

the number of floating–point operations performed in levels of an ML cycle when

we use the Power, JOR, and SOR methods as smoothers. Detailed information

on these iterative methods based on splittings for Kronecker representations can

be found in [39].

To start with, the vector–Kronecker product multiplication algorithm per-

forms at most
∏J

i=1 ni
∑J

i=1 ni number of floating–point operations for a Kro-

necker product of J matrices of orders ni for i = {1, 2, . . . , J} (see [18]). Let Q be

the generator matrix of a closed QN with J queues and let us denote Q’s HLM

state space by N . At any level l of an ML cycle, the iterative methods Power,

JOR, and SOR perform the same number of vector Kronecker product multipli-

cations for nondiagonal blocks of Ql. Using this fact and (2.6) for n,m ∈ N , we

have the following equation which gives the number of floating–point operations

performed for the (n,m)th nondiagonal block of Ql when we use Power, JOR, or

SOR methods as smoothers at level l of an ML cycle.
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NDF
{ψj ,ψk}
l (n,m) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

((c
{ψj ,ψk}
ψj

×# of rows(S(ψj)(nψj ,mψj ))× r
{ψj ,ψk}
ψj

)

×(c
{ψj ,ψk}
ψj

+ # of rows(S(ψj)(nψj ,mψj )) + r
{ψj ,ψk}
ψj

))

+((c
{ψj ,ψk}
ψk

×# of cols(A(ψk)(nψk ,mψk ))× r{ψj ,ψk}ψk
)

×(c
{ψj ,ψk}
ψk

+ # of cols(A(ψk)(nψk ,mψk )) + r
{ψj ,ψk}
ψk

))

+2length(xl(n)), l < ψj , ψk

((c
{ψj ,ψk}
ψk

×# of cols(A(ψk)(nψk ,mψk ))× r{ψj ,ψk}ψk
)

×(c
{ψj ,ψk}
ψk

+ # of cols(A(ψk)(nψk ,mψk )) + r
{ψj ,ψk}
ψk

))

+3length(xl(n)), ψj ≤ l < ψk

((c
{ψj ,ψk}
ψj

×# of rows(S(ψj)(nψj ,mψj ))× r
{ψj ,ψk}
ψj

)

×(c
{ψj ,ψk}
ψj

+ # of rows(S(ψj)(nψj ,mψj )) + r
{ψj ,ψk}
ψj

))

+3length(xl(n)), ψk ≤ l < ψj

3length(xl(n)), ψj , ψk ≤ l

, (4.1)

where l ∈ {0, 1, . . . , J − 1}, xl is the iteration vector at level l of an ML cycle,

xl(n) represents the multiplied part of the iteration vector corresponding to HLM

state n and j, k ∈ {1, 2, . . . , J}.

Now let us give an upper bound on the number of floating–point operations

performed by the vector–Kronecker product multiplication algorithm in Power,

JOR, and SOR methods for diagonal blocks of Ql. Again using (2.6), we obtain

the following result which represents the number of floating–point operations

performed by Power method for diagonal block (n, n) of Ql.

POWERFl(n, n)D =
∑
l<ψj

ψj∈{1,2,...,J}

(
((c{ψj ,ψj}ψj

×# of rows(O(ψj)(nψj , nψj ))× r
{ψj ,ψj}
j )

×(c{ψj ,ψj}ψj
+ # of rows(O(ψj)(nψj , nψj )) + r

{ψj ,ψj}
ψj

))

+(c{ψj ,ψj}ψj
×# of rows(S(ψj)(nψj , nψj )A

(ψj)(nψj , nψj ))× r
{ψj ,ψj}
ψj

)

+(c{ψj ,ψj}ψj
+ # of rows(S(ψj)(nψj , nψj )A

(ψj)(nψj , nψj )) + r
{ψj ,ψj}
ψj

)

+length(xl(n))
)

(4.2)
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Hence, using (4.1) and (4.2), we have at most the following number of floating–

point operations for one iteration of Power method for all blocks of Ql.

F (l)
POWER = 3length(xl) +

( ∑
ψj ,ψk∈{1,2,...,J}

n,m∈N

NDF
{ψj ,ψk}
l (n,m) + POWERFl(n, n)D

)
. (4.3)

When we consider the JOR method, we see that it also executes the same

number of vector–Kronecker product multiplications performed by Power method.

In JOR, dividing the iteration vector xl’s elements by diagonal entries of Ql

introduces length(xl) divisions instead of length(xl) multiplications. Also in JOR,

we may need to do extra 2length(xl) floating–point operations if the relaxation

parameter is other than 1. Hence, we give an upper bound on the number of

floating–point operations needed to perform one iteration of JOR at step l of an

ML cycle also by (4.3).

Computation of new values of the iteration vector xl in the SOR method

becomes more complicated than in Power and JOR methods because of the

block multiplication of the iteration vector xl with Kronecker products. This

complexity arises from the fact that SOR method uses old estimates of the

iteration vector xl to find new estimates as soon as they have been com-

puted (see [23]). Therefore, in order to find the new estimates of the itera-

tion vector xl corresponding to n, we have to solve an upper–triangular system

x
(new)
l (n)(Ul(n, n) − Dl(n, n)) = x

(old)
l (n)Ll(n, n) for each diagonal block of Ql,

where Ul(n, n) corresponds to strictly upper– and Ll(n, n) corresponds to strictly

lower–triangular parts of Ql(n, n) [39]. Thus,

Ql(n, n) = Ul(n, n) + Ll(n, n)−Dl(n, n),

where Ul(n, n) and Ll(n, n) can be computed using Kronecker products by

introducing strictly upper and lower triangular parts of O(ψj)(nψj , nψj) and

S(ψj)(nψj , nψj − 1)A(ψj)(nψj , nψj + 1) by O
(ψj)
U (nψj , nψj), O

(ψj)
L (nψj , nψj) and

(S(ψj)(nψj , nψj − 1)A(ψj)(nψj , nψj + 1))U , (S(ψj)(nψj , nψj − 1)A(ψj)(nψj , nψj + 1))L,
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respectively. Then from the definition of Q{ψj ,ψk}(n,m) following (2.2), we have

Ul(n, n) =
∑
l<ψj

ψj∈{1,2,...,J}

I
c
{ψj,ψj}
ψj

⊗O(ψj)
U (nψj , nψj )⊗ Ir{ψj,ψj}ψj

+ pψj ,ψj (Ic{ψj,ψj}ψj

⊗ (S(ψj)(nψj , nψj − 1)A(ψj)(nψj , nψj + 1))U ⊗ I
r
{ψj,ψj}
ψj

)

and

Ll(n, n) =
∑
l<ψj

ψj∈{1,2,...,J}

I
c
{ψj,ψj}
ψj

⊗O(ψj)
L (nψj , nψj )⊗ Ir{ψj,ψj}ψj

+ pψj ,ψj (Ic{ψj,ψj}ψj

⊗ (S(ψj)(nψj , nψj − 1)A(ψj)(nψj , nψj + 1))L ⊗ I
r
{ψj,ψj}
ψj

).

Here, we see that the product x
(old)
l (n)Ll(n, n) takes at most

∑
l<ψj

ψj∈{1,2,...,J}

(((c{ψj ,ψj}ψj
×# of rows(O(ψj)

L (nψj , nψj ))× r
{ψj ,ψj}
ψj

)

×(c{ψj ,ψj}ψj
+ # of rows(O(ψj)

L (nψj , nψj )) + r
{ψj ,ψj}
ψj

))

+((c{ψj ,ψj}ψj
×# of rows((S(ψj)(nψj , nψj − 1)A(ψj)(nψj , nψj + 1))L)× r{ψj ,ψj}ψj

)

×(c{ψj ,ψj}ψj
+ # of rows((S(ψj)(nψj , nψj − 1)A(ψj)(nψj , nψj + 1))L) + r

{ψj ,ψj}
ψj

))

+length(xl(n))) (4.4)

floating–point operations, where length(xl(n)) is added to account for the ad-

dition of the resulting vector with part of the iteration vector corresponding to

HLM state n. The upper–triangular system is solved by Algorithm 8 with the

order of aggregation defined by ψ for which

U (ψj)(n) = O
(ψj)
U (nψj , nψj )⊗ Ir{ψj,ψj}ψj

+ pψj ,ψj ((S
(ψj)(nψj , nψj − 1)A(ψj)(nψj , nψj + 1))U ⊗ I

r
{ψj,ψj}
ψj

),

where j ∈ {1, 2, . . . , J}, ψj ∈ {1, 2, . . . , J} and l < ψj. Hence, using the informa-

tion above, obtaining a solution through Algorithm 8 needs at most
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Algorithm 8 Finds solution of yU = x for y and aggregation order
ψ = (1, 2, . . . , J), where U is an upper–triangular matrix described by (4.1).

newIterVec(y,D(intrvl, intrvl), [U (k)(n), . . . , U (J)(n)], k, n, t, oMatSz)

1: if nk > 0 and t(k) > 1 then
2: nMatSz ← t(k);
3: z ← zero row vector of length oMatSz;
4: else
5: nMatSz ← 1;
6: end if
7: yV ecL← oMatSz/nMatSz;
8: for i← 1 to nMatSz do
9: intrvl← ((i− 1)(yV ecL+ 1), . . . , (i)(yV ecL));

10: if k = J − 1 then
11: if nJ = 0 or t(J) = 1 or U (J)(n) = 0 then
12: y(intrvl)← solve(y(intrvl), D(intrvl, intrvl));
13: else
14: y(intrvl)← solve(y(intrvl), (D(intrvl, intrvl)− U (J)(n)));
15: end if
16: else if k = J then
17: if nJ = 0 or t(J) = 1 or U (J)(n) = 0 then
18: y ← solve(y,D(intrvl, intrvl));
19: else
20: y ← solve(y, (D(intrvl, intrvl)− U (J)(n)));
21: end if
22: return y
23: else
24: y(intrvl)← newIterVec(y(intrvl), D(intrvl, intrvl),
25: [U (k+1)(n), . . . , U (J)(n)], k + 1, n, t, yV ecL);
26: end if
27: if nk > 0 and i < nMatSz then
28: z(intrvl)← y(intrvl);
29: y ← y − zU (k)(n);
30: z(intrvl)← 0;
31: end if
32: return y;
33: end for
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∑
l<ψk
ψk 6=ψJ

ψk∈{1,2,...,J}

(t(ψk) − 1)× (((# of rows(O(ψk)
U (nψk , nψk))× r

{ψk,ψk}
ψk

)

×(# of rows(O(ψk)
U (nψk , nψk)) + r

{ψk,ψk}
ψk

))

+((# of rows((S(ψk)(nψk , nψk − 1)A(k)(nψk , nψk + 1))U )× r{ψk,ψk}ψk
)

×(# of rows((S(ψk)(nψk , nψk − 1)A(ψk)(nψk , nψk + 1))U ) + r
{ψk,ψk}
ψk

))

+length(xl(n))) (4.5)

floating–point operations for line 29 of Algorithm 8 and at most

( ∑
l<ψk
ψk 6=ψJ

ψk∈{1,2,...,J}

# of rows(O(ψk)
U (nψk , nψk))

)
×
(# of rows(U (ψJ )(n))3

3
+

# of rows(U (ψJ )(n))2

2

+
# of rows(U (ψJ )(n))(# of rows(U (ψJ )(n)) + 1)

2

)
(4.6)

floating–point operations for the solution procedures in lines 12, 14, 18, and 20

of Algorithm 8. Hence, using (4.4), (4.5), and (4.6), the number of floating–point

operations performed for diagonal block (n, n) in SOR is at most
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SORFl(n, n)D =
“ X

l<ψj
ψj∈{1,2,...,J}

(((c
{ψj ,ψj}
ψj

×# of rows(O
(ψj)

L (nψj , nψj ))× r
{ψj ,ψj}
ψj

)

×(c
{ψj ,ψj}
ψj

+ # of rows(O
(ψj)

L (nψj , nψj )) + r
{ψj ,ψj}
ψj

))

+((c
{ψj ,ψj}
ψj

×# of rows((S(ψj)(nψj , nψj − 1)A(ψj)(nψj , nψj + 1))L)× r{ψj ,ψj}ψj
)

×(c
{ψj ,ψj}
ψj

+ # of rows((S(ψj)(nψj , nψj − 1)A(ψj)(nψj , nψj + 1))L) + r
{ψj ,ψj}
ψj

))

+length(xl(n)))
”

+
“ X

l<ψk
ψk 6=ψJ

ψk∈{1,2,...,J}

(t(ψk) − 1)× (((# of rows(O
(ψk)
U (nψk , nψk ))× r{ψk,ψk}ψk

)

×(# of rows(O
(ψk)
U (nψk , nψk )) + r

{ψk,ψk}
ψk

))

+((# of rows((S(ψk)(nψk , nψk − 1)A(k)(nψk , nψk + 1))U )× r{ψk,ψk}ψk
)

×(# of rows((S(ψk)(nψk , nψk − 1)A(ψk)(nψk , nψk + 1))U ) + r
{ψk,ψk}
ψk

))

+length(xl(n)))
”

+
““ X

l<ψk
ψk 6=ψJ

ψk∈{1,2,...,J}

# of rows(O
(ψk)
U (nψk , nψk ))

”

×
“# of rows(U(ψJ )(n))3

3
+

# of rows(U(ψJ )(n))2

2
(4.7)

+
# of rows(U(ψJ )(n))(# of rows(U(ψJ )(n)) + 1)

2

””
. (4.8)

Finally, using (4.1) and (4.7) we have at most

F (l)
SOR = 2length(xl) +

∑
ψj ,ψk∈{1,2,...,J}

n,m∈N

NDF
{ψj ,ψk}
l (n,m) + SORFl(n, n)D (4.9)

floating–point operations performed in one iteration of SOR method, where if the

relaxation parameter is other than 1, SOR method may need to execute extra

2length(xl) floating–point operations at level l of an ML cycle. Hence, we have

given the total number of floating–point operations needed for one iteration of

Power, JOR, and SOR methods at step l of an ML cycle. Clearly, Power, JOR,

and SOR methods require O(length(xl)) storage at step l of an ML cycle.
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4.1.4 ML Method

To find an upper bound on the number of floating–point operations performed

by one V cycle of the ML method, we consider the steps of the ML method. Al-

gorithms 1 and 2 imply that at any level l ∈ {0, 1, . . . , J − 1} of an ML cycle, the

ML method performs (pre+post) number of smoothing operations, one operation

to compute diagonal elements of Ql, one aggregation operation, one disaggrega-

tion operation, and one operation to find the vectors d
(l)
(n,m), which are given in

(2.5). Among these operations, computing the diagonal elements of Ql costs at

most F (l)
POWER floating–point operations. The aggregation operation performs at

most length(xl) floating–point operations in level l. The disaggregation operation

works on the iteration vector xl at level l of an ML cycle and performs at most

2length(xl) floating–point operations. When we consider (2.5) that defines the

vectors d
(l)
(n,m),ψ, we see that at most

F (l)
(n,m)(s

(l)
n ) =

∑
s(l−1)
n ∈S(l−1)

n ,

g
(l)
n,ψl

(s(l−1)
n )=s(l)n

(
2 + # of cols(G̃ (ψl)

(n,m))
)

floating–point operations are performed for each s
(l)
n ∈ S(l)

n . Thus, we have a total

of at most

F (l)
d =

∑
n,m∈N
n6=m

F (l)
(n,m)(s

(l)
n ) (4.10)

floating–point operations performed when computing the vectors d
(l)
(n,m) at level l

of a V cycle in the ML method. Consequently, for level l of a V cycle in ML for

l ∈ {0, 1, . . . , J − 1}, the upper bound on the number floating–point operations

is given by

V F
(l)
ML(S, pre, post, w) =

(
(pre+ post)F(l)

SOR + F(l)
d + F(l)

POWER, S = SOR

(pre+ post+ 1)F(l)
POWER + F(l)

d , S ∈ {POWER, JOR}
. (4.11)
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Using (4.10), one V cycle of ML method performs at most

V FML =

J−1X
l=0

V F
(l)
ML(S, pre, post, w) + F(0)

POWER + length(x0)

+F(J)
POWER +O(|N |3) (4.12)

floating–point operations, where F (0)
POWER is the number of floating–point opera-

tions performed when computing the residual vector r, length(x0) is the number

of floating–point operations needed to normalize the iteration vector, O(|N |3)
is the number of floating–point operations performed when solving the coarsest

matrix QJ directly, respectively, and F (J)
POWER is the number of floating–point

operations needed to compute the diagonal elements of the coarsest matrix QJ .

Having given an upper bound on the number of floating–point operations for

one V cycle of ML, using (4.10) we provide an upper bound on the number of

floating–point operations that can be performed in level l of F and W cycles for

l ∈ {0, 1, . . . , J − 1}, respectively, as

FF
(l)
ML(S, pre, post, w) =

8<: (2l + 1)
“
(pre+ post)F(l)

SOR + F(l)
d + F(l)

POWER

”
, S = SOR

(2l + 1)
“
(pre+ post+ 1)F(l)

POWER + F(l)
d

”
, S ∈ {POWER, JOR}

(4.13)

WF
(l)
ML(S, pre, post, w) =

8<: κ(l)
“
(pre+ post)F(l)

SOR + F(l)
d + F(l)

POWER

”
, S = SOR

κ(l)
“
(pre+ post+ 1)F(l)

POWER + F(l)
d

”
, S ∈ {POWER, JOR}

(4.14)

In (4.13), κ is a recursive function defined by

κ(l) = 2κ(l − 1) for l ∈ {2, 3, . . . , J − 1} and κ(1) = 3,

and thus, using (4.12) and (4.13), the upper bounds on the number of floating–

point operations for one F cycle and one W cycle of ML method are given,

respectively as
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FFML =
J−1∑
l=1

FF (l)
ML(S, pre, post, w) + F (0)

POWER + length(x0)

+ VF (0)
ML(S, pre, post, w)

+ J(F (J)
POWER +O(|N |3), (4.15)

WFML =
J−1∑
l=1

WF (l)
ML(S, pre, post, w) + F (0)

POWER + length(x0)

+ VF (0)
ML(S, pre, post, w)

+ 2(J−1)(F (J)
POWER +O(|N |3). (4.16)

Assuming that we store the diagonals of Ql seperately, diagonals of Ql need

O(
∑J−1

l=0 length(xl)) storage for l ∈ {0, 1, . . . , J − 1} of an ML cycle. Solution

vectors xl need O(
∑J

l=0 length(xl)) storage for levels l ∈ {0, 1, . . . , J} of an ML

cycle. The vectors d
(l)
(n,m),ψ need O(

∑J
l=1

∑
n,m∈N
n6=m

d
(l)
(n,m),ψ) storage in ML method.

Generating QJ in sparse format needs at most O(|N |2) storage at the last level of

ML method. Smoothers at any level of an ML cycle need O(length(x0)) storage.

Hence the storage space needed by the ML method is given by

O(
J∑
l=0

length(xl) +
J∑
l=1

∑
n,m∈N
n6=m

d
(l)
(n,m),ψ + |N |2).

4.1.5 Marie’s Method

Having provided an upper bound on the number of floating–point operations

performed in one cycle of the ML method, we now give an upper bound on the

number of floating–point operations performed in one iteration of Marie’s method

summarized in Table 3.1.
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In the first step, the decomposition process is carried out by Algorithms 6 and

7, and in the second step, throughput values are set to some initial value. In these

steps, Algorithms 6 and 7 do not incur any floating–point operations. Yet, in the

third step, in order to compute arrival rates λj(i) of subnetworks at any iteration

step of Marie’s method from (3.5), one has to compute the values represented by

Am(Km) and then the values represented by NCv(u). For any m ∈ {1, 2, . . . , S},
Am(Km) requires at most Km floating–point operations. Thus, computing an

NCv(u) value requires at most

max
u,v

( ∑
K1,...,KS

S(2
S∏

m=1

Km + 1)
)

(4.17)

floating–point operations. Then, using (4.16), at most

2 + 2 max
u,v

( ∑
K1,...,KS

S(2
S∏

m=1

Km + 1)
)

floating–point operations are performed to compute λj(i). Since i ∈ {1, 2, . . . , K}
and j ∈ {1, 2, . . . , S}, at most

KS
(
2 + 2 max

u,v

( ∑
K1,...,KS

S(2
S∏

m=1

Km + 1)
))

(4.18)

floating–point operations are performed to compute all the λj(i)s in the third

step of Table 3.1.

In the fourth step, each subnetwork is analyzed for its steady–state proba-

bilities using the ML method. Let us denote one V, F, or W cycle of ML in

subnetwork k by {V,F,W}F (k)
ML, and number of cycles performed to compute the

steady–state vector of subnetwork k by σk. Then using (4.11), (4.14), and (4.15)

an upper bound on the number of floating–point operations performed while ob-

taining the steady–state vectors of subnetworks can be written as

S∑
k=1

σk({V,F,W}F (k)
ML). (4.19)
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The last step computes the new throughput values νj(i) and performs at most

4 floating–point operations for i ∈ {1, 2, . . . , K} and j ∈ {1, 2, . . . , S} Hence, us-

ing (4.17) and (4.18) an upper bound on the number of floating–point operations

performed in one iteration of Marie’s method turns out to be

4KS +KS
(
2 + 2 max

u,v

( ∑
K1,...,KS

S(2
S∏

m=1

Km + 1)
))

+
S∑
k=1

σk({V,F,W}F (k)
ML).

In order to give an upper bound on the storage requirements of Marie’s

method, let us investigate (3.5). The variables πj(i) and NCj(i) are defined

for i ∈ {0, 1, . . . , K} and j ∈ {1, 2, . . . , S}, and occupies O(S(K + 1)) storage.

The variable νj(i) is defined for i ∈ {1, 2, . . . , K} and j ∈ {1, 2, . . . , S}, and oc-

cupies O(SK) storage. The variable λj(i) is defined for i ∈ {0, 1, . . . , K − 1} and

j ∈ {1, 2, . . . , S}, and occupies O(SK) storage. If the upper bound on the storage

requirement of the ML method for subnetwork k, which is obtained from the de-

composition procedure of Marie’s method, is defined by Bk for k ∈ {1, 2, . . . , S},
then the storage requirements of Marie’s method is given by

O
(
S(K + 1) +

S∑
k=1

Bk
)
.

4.1.6 Yao and Buzacott’s Method

To find an upper bound on the number of floating–point operations performed in

one iteration of Yao and Buzacott’s method, we follow the steps listed in Table 3.1

as in the previous section.

In the first step, Yao and Buzacott’s method sets the state dependent expo-

nential rates of queues to some initial values. Thus, in that step, the method

performs no floating–point operations.

In the second step, the state dependent exponential network is analyzed for

its steady–state vector using Gaussian elimination and this step needs at most
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O(|N |3) floating–point operations.

In the third step, from (3.2) we compute the state dependent arrival rates

λj(i) for j ∈ {1, 2, . . . , J} and i ∈ {1, 2, . . . , cj}. This computation performs 2

floating–point operations for j ∈ {1, 2, . . . , J} and i ∈ {1, 2, . . . , cj}.

In the fourth step, each queue is analyzed in isolation for its steady–state

vector. If there are J queues in the closed QN and we represent one cycle of

the ML method for queue k by {V,F,W}F (k)
ML and number of cycles performed to

compute the steady–state vector of queue k by γk, then the maximum number of

floating–point operations performed while obtaining the steady–state vectors of

queues is given by
N∑
k=1

γk({V,F,W}F (k)
ML).

In the last step, Yao and Buzacott’s algorithm computes new through-

put values using (3.2), and thus, performs 2 floating–point operations for j ∈
{1, 2, . . . , N} and i ∈ {1, 2, . . . , cj}. Hence, for one iteration of Yao and Buza-

cott’s method the upper bound on the number of floating–point operations is

given by

O(|N |3) +
J∑
k=1

γk({V,F,W}F (k)
ML) + 4

J∑
j=1

cj. (4.20)

To find an upper bound on the storage requirements of Yao and Buzacott’s

method, we inspect (3.6). The variable λj(i) is defined for j ∈ {1, 2, . . . , J} and

i ∈ {0, 1, . . . , cj− 1}, and needs O(
∑J

j=1 cj) storage. The variable πj(i) is defined

for j ∈ {1, 2, . . . , J} and i ∈ {0, 1, . . . , cj}, and needs O(
∑J

j=1(cj + 1)) storage.

The variable νj(i) is defined for j ∈ {1, 2, . . . , J} and i ∈ {1, 2, . . . , cj − 1}, and

needs O(
∑J

j=1 cj) storage. Hence, if the storage requirement of the ML method

for subnetwork k of Yao and Buzacott’s method is denoted by Ck, then the storage

requirement of Yao and Buzacott’s method is given by

O(
J∑
j=1

cj +
J∑
k=1

Ck).
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4.2 Existence of a Fixed–Point

In this section, we prove that the fixed–point equations defined for Marie’s method

and Yao and Buzacott’s method have unique fixed–points. In order to arrive at

this result, we show that the methods’ fixed–point equations satisfy the conditions

of Brouwer’s fixed–point theorem [30], which is stated next.

Theorem 4.1. (Brouwer’s fixed–point theorem) Let F : A ⊂ IRN → IRN

be continuous on the compact, convex set A, and suppose that F (A) ⊆ A, where

F (A) stands for ∪a∈A{F (a)}. Then, F has a fixed–point in A.

We recall the definition of communicating class [25, p. 644].

Definition 4.1. A subset of states in a CTMC is called a communicating class

if all the states in this subset are reachable from each other. A communicating

class C is closed if the states outside class C are not reachable from states in

class C.

The next results [25, p. 645] follows from the definition of closed communi-

cating class and is used in the next subsections.

Lemma 4.1. The steady state vector of a CTMC as a function of some nonzero

entries λ1, λ2, . . . , λk of the generator matrix Q is continuous at all values of

λi ≥ 0 for i = {1, 2, . . . , k} if for all values of λi ≥ 0, the CTMC has exactly one

closed communicating class.

4.2.1 Marie’s Method

For Marie’s method, let ν = (ν1(1), ν1(2), . . . , ν1(K), ν2(1), ν2(2), . . . , ν2(K),

. . . , νS(1), νS(2), . . . , νS(K)) ∈ IRKS
+ . Then we can write the fixed–point equa-

tion of Marie’s method in (3.5) as

ν = M(ν),
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where M : IRKS
+ → IRKS

+ is given by

M(ν) = (ξ(1)1 (ν), . . . , ξ(1)K (ν), ξ(2)1 (ν), . . . , ξ(2)K (ν), . . . , ξ(S)
1 (ν), . . . , ξ(S)

K (ν)),

M equals the elementwise product of two vector valued functions M1 : IRKS
+ →

IRKS
+ and M2 : IRKS

+ → IRKS
+ such that

M(ν) = M1(ν)�M2(ν),

� denotes the elementwise product operator for two vectors of the same length,

M1(ν) = (ξ(1,1)1 (ν), . . . , ξ(1,1)K (ν), ξ(1,2)1 (ν), . . . , ξ(1,2)K (ν), . . . , ξ(1,S)
1 (ν), . . . , ξ(1,S)

K (ν))

=
(α1NC1(K − 1)

NC1(K)
, . . . ,

α1NC1(0)
NC1(1)

,
α2NC2(K − 1)

NC2(K)
, . . . ,

α2NC2(0)
NC2(1)

, . . . ,

αSNCS(K − 1)
NCS(K)

, . . . ,
αSNCS(0)
NCS(1)

)
,

and

M2(ν) = (ξ(2,1)1 (ν), . . . , ξ(2,1)K (ν), ξ(2,2)1 (ν), . . . , ξ(2,2)K (ν), . . . , ξ(2,S)
1 (ν), . . . , ξ(2,S)

K (ν))

= (
π1(0)
π1(1)

, . . . ,
π1(K − 1)
π1(K)

,
π2(0)
π2(1)

, . . . ,
π2(K − 1)
π2(K)

, . . . ,
πS(0)
πS(1)

, . . . ,
πS(K − 1)
πS(K)

).

Lemma 4.2. For ν ∈ IRKS
+ , the function NCv(u), which is defined in (3.5), is

continuous on IR+ and NCv(u) 6= 0 for u, v ∈ IN and 0 ≤ u ≤ K, 1 ≤ u ≤ S.

Proof. In order to show that NCv(u) is continuous on IR+, we need to show that

the function Aj(Kj) defined in (3.5) is continuous on IR+ since

NCv(u) =
∑

K1,...,KS

S∏
j=1

α
Kj
j

Aj(Kj)
.

Fix u, v ∈ IN for some 0 ≤ u ≤ K, 1 ≤ v ≤ S, then Aj(Kj) : IR+ → IR+ is

defined by

Aj(Kj) =

{
1, Kj = 0∏Kj
i=1 νj(i), Kj > 0

.

Since ν ∈ IRKS
+ , being product of components of ν, Aj(Kj) is continuous on IR+

and Aj(Kj) 6= 0.
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Also, αk for k ∈ {1, 2, . . . S} is defined by

αk =
∑
i∈J (k)

xi

 ∑
j∈I/J (k)

pi,j

 ,

where x is the unique positive left eigenvector of P , the routing probability matrix

of the closed QN consisting of one communicating class. xj > 0 for j ∈ J (k), and

thus, αk > 0 for k ∈ {1, 2, . . . , S}. Hence, NCv(u) is continuous and NCv(u) 6= 0

on IR+.

Proposition 4.1. The fixed–point equation defined by ν = M(ν) for Marie’s

method has a fixed–point.

Proof. We show that M satisfies the conditions required in Brouwer’s fixed–point

theorem. Let us first show that M is continuous on IRKS
+ . This can be done by

showing for any ν ∈ IRKS
+ that M is continuous in each component. Thus, for

any ξ
(j)
i , i ∈ {1, 2, . . . , K} and j ∈ {1, 2, . . . , S}, ξ(j)

i = ξ
(1,j)
i ξ

(2,j)
i . Here, ξ

(1,j)
i is

continuous by Lemma 4.2 and ξ
(2,j)
i is continuous by Lemma 4.1. Hence, being

the product of two continuous functions, ξ
(j)
i is continuous on IR+. This implies

M is continuous on IRKS
+ .

Now, let us define the set E for which M(E) ⊆ E. To define the set E,

we use structural induction on the definition of ξ
(j)
i . Let us choose ν(0) ∈ IRKS

+

as the initial approximation, where ν
(0)
j (i) ∈ [a

(j)
i , b

(j)
i ] for some a

(j)
i , b

(j)
i ∈ IR+

and ν(0) ∈ E = [a
(1)
1 , b

(1)
1 ] × . . . × [a

(1)
K , b

(1)
K ] × [a

(2)
1 , b

(2)
1 ] × . . . × [a

(2)
K , b

(2)
K ] × . . . ×

[a
(S)
1 , b

(S)
1 ] × . . . × [a

(S)
K , b

(S)
K ], where × denotes the Cartesian product operator.

Then for the base case we have ξ
(j)
i (ν(0)) = ξ

(1,j)
i (ν(0))ξ

(2,j)
i (ν(0)). Since M is

continuous on IRKS
+ , there are intervals such that ξ

(1,j)
i (ν(0)) ∈ [a

(1,j)
i , b

(1,j)
i ] and

ξ
(2,j)
i (ν(0)) ∈ [a

(2,j)
i , b

(2,j)
i ], where [a

(j)
i , b

(j)
i ] = [a

(1,j)
i a

(2,j)
i , b

(1,j)
i b

(2,j)
i ]. Therefore by

definition of M , M(ν(0)) ∈ E = [a
(1)
1 , b

(1)
1 ] × . . . × [a

(1)
K , b

(1)
K ] × [a

(2)
1 , b

(2)
1 ] × . . . ×

[a
(2)
K , b

(2)
K ]× . . .× [a

(S)
1 , b

(S)
1 ]× . . .× [a

(S)
K , b

(S)
K ] and M(ν(0)) ⊆ E. Suppose for ν(r)

that there are intervals ξ
(1,j)
i (ν(r)) ∈ [a

(1,j)
i , b

(1,j)
i ] and ξ

(2,j)
i (ν(r)) ∈ [a

(2,j)
i , b

(2,j)
i ].

Then by definition of ξ
(j)
i , ξ

(j)
i (ν(r)) = ξ

(1,j)
i (ν(r))ξ

(2,j)
i (ν(r)) and this implies

ξ
(j)
i (ν(r)) ∈ [a

(1,j)
i a

(2,j)
i , b

(1,j)
i b

(2,j)
i ]. By continuity of M , this implies ξ

(j)
i (ν(r)) ∈
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[a
(j)
i , b

(j)
i ], where [a

(j)
i , b

(j)
i ] is defined by [a

(1,j)
i a

(2,j)
i , b

(1,j)
i b

(2,j)
i ]. Since M(ν(r)) =

(ξ
(1)
1 (ν(r)), . . . , ξ

(1)
K (ν(r)), ξ

(2)
1 (ν(r)), . . . , ξ

(2)
K (ν(r)), . . . , ξ

(S)
1 (ν(r)), . . . , ξ

(S)
K (ν(r))) and

M(ν(r)) ⊆ E for some E = [a
(1)
1 , b

(1)
1 ]×. . .×[a

(1)
K , b

(1)
K ]×[a

(2)
1 , b

(2)
1 ]×. . .×[a

(2)
K , b

(2)
K ]×

. . .× [a
(S)
1 , b

(S)
1 ]× . . .× [a

(S)
K , b

(S)
K ].

The interval [a
(j)
i , b

(j)
i ] is closed and bounded in IR+. Therefore, by the propo-

sition in [34, p. 54], [a
(j)
i , b

(j)
i ] is compact. This implies by the theorem in [34, p.

58], E is also compact. Being a closed interval, [a
(j)
i , b

(j)
i ] is convex, and by the

discussion in [35, p. 28], E is also convex. Hence, M satisfies all conditions of

Brouwer’s fixed–point theorem on E, and therefore, a fixed–point ν ∈ E of M

exists.

4.2.2 Yao and Buzacott’s Method

Let us define the fixed–point equation used by Yao and Buzacott’s method. Let

ν = (ν1(1), . . . , ν1(c1), ν2(1), . . . , ν2(c2), . . . , νJ(1), . . . , νJ(cJ)) ∈ IR
PJ
i=1 ci

+ , then we

can write the fixed–point equation of Yao and Buzacott’s method in (3.6) as

ν = Y B(ν),

where Y B : IR
PJ
i=1 ci

+ → IR
PJ
i=1 ci

+ is given by

Y B(ν) = (ζ(1)
1 (ν), . . . , ζ(1)

c1 (ν), ζ(2)
1 (ν), . . . , ζ(2)

c2 (ν), . . . , ζ(J)
1 (ν), . . . , ζ(J)

cJ (ν)),

Y B equals the elementwise product of two vector valued functions Y B1 :

IR
PJ
i=1 ci

+ → IR
PJ
i=1 ci

+ and Y B2 : IR
PJ
i=1 ci

+ → IR
PJ
i=1 ci

+ such that

Y B(ν) = Y B1(ν)� Y B2(ν),

Y B1(ν) = (ζ(1,1)
1 (ν), . . . , ζ(1,1)

c1 (ν), ζ(1,2)
1 (ν), . . . , ζ(1,2)

c2 (ν), . . . , ζ(1,J)
1 (ν), . . . , ζ(1,J)

cJ (ν))

=
(
ν1(1)

πexp1 (1)
πexp1 (0)

, . . . , ν1(c1)
πexp1 (c1)

πexp1 (c1 − 1)
, ν2(1)

πexp2 (1)
πexp2 (0)

, . . . , ν2(c2)
πexp2 (c2)

πexp2 (c2 − 1)
, . . . ,

νJ(1)
πexpJ (1)
πexpJ (0)

, . . . , νJ(cJ)
πexpJ (cJ)

πexpJ (cJ − 1)

)
,
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and

Y B2(ν) = (ζ(2,1)
1 (ν), . . . , ζ(2,1)

c1 (ν), ζ(2,2)
1 (ν), . . . , ζ(2,2)

c2 (ν), . . . , ζ(2,J)
1 (ν), . . . , ζ(2,J)

cJ (ν))

= (
π1(0)
π1(1)

, . . . ,
π1(c1 − 1)
π1(c1)

,
π2(0)
π2(1)

, . . . ,
π2(c2 − 1)
π2(c2)

, . . . ,
πJ(0)
πJ(1)

, . . . ,
πJ(cJ − 1)
πJ(cJ)

).

Proposition 4.2. The fixed–point equation defined by ν = Y B(ν) for Yao and

Buzacott’s method has a fixed–point.

Proof. The proof follows in the same way as Proposition 4.1.

The next chapter discusses implementation issues associated with the met-

hods.



Chapter 5

Implementation

The software tool [27] is coded in MATLAB [14] and can be used with MAT-

LAB versions 5.3 (R11) and later. The tool is capable of analyzing closed QNs

with phase–type service distributions and arbitrary buffer sizes. In that respect,

the tool possesses six different steady–state analysis methods from the literature.

These are the ML method [11], Marie’s method [26], Yao and Buzacott’s method

[45], Akyıldız’s mean value analysis (MVABLO) [2], the convolution algorithm

[13], and Power, JOR and SOR methods, which are classical iterative meth-

ods based on splittings [39]. Although vectorization of computations increases

speed of program execution considerably, we refrain from using dense vectoriza-

tion since we work in sparse storage and we do not want to increase memory

usage. Algorithms coded in this way become much more self–descriptive within

the simple coding environment of MATLAB. In the following paragraphs, we talk

briefly about implementation details of some important m–files and variables in

the software tool.

We first start by introducing the most important variables that are designed

to be used with the ML method and smoothers. These are the structure subNet,

the cell array LLM, the global cell arrays X and dQ, the global arrray Y, the global

sparse array CM, the global array dV, and arrays phv and bv. Before the call to

mlDriver.m, these variables are constructed and the memory needed to represent

them is allocated through the initialization process of methods. The structure
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subNet consists of six arrays: partX, iVec, jVec, convVec, table, and strtInd.

The two dimensional array partX of size (J × (|N | + 1)) holds the partitions

of iteration vectors with respect to HLM states for each level of an ML cycle.

The arrays iVec and jVec are used to exploit the nonzero structure of the HLM

matrix. Thus, if we represent the number of nondiagonal transitions in the HLM

matrix by #ndt, then array iVec of length #ndt holds row indices of nondiagonal

nonzero blocks of the generator matrix Q in columnwise order, where indices are

enumerated by the integers in {1, 2, . . . , |N |}. The indices that correspond to

diagonal blocks of Q are not stored in iVec. The array jVec of length |N | points

to the end of each column in the array iVec. The array convVec of size |N | holds

the lexicographical orders of HLM states. The array convVec together with iVec

are used in the m–file index2vec.m when constructing vectors that represent the

HLM states in N . The two–dimensional sparse array table of size (#ndt ×J)

holds pointers to elements of dV which are used to define the blocks of aggregated

matrices of Q through levels of an ML cycle as in (2.6). The array strtInd

of length (J − 1) points to the first pointers of each level, except the coarsest

one, in the array table. The global array dV holds the values defined by (2.5).

The two–dimensional cell array LLM of size (J × 5) contains vectors and matrices

that represent the phase–type service distributions of queues. That is, if tril and

triu represent strictly lower– and upper–triangular parts of a matrix, then for

i ∈ {1, 2, . . . , J}

LLM{i, j} =



α if j = 1

T0 if j = 2

tril(T ) if j = 3 and pi,i = 0

tril(T + pi,i(T0 × α)) if j = 3 and pi,i > 0

T if j = 4 and pi,i = 0

T + pi,i(T0 × α) if j = 4 and pi,i > 0

triu(T ) if j = 5 and pi,i = 0

triu(T + pi,i(T0 × α)) if j = 5 and pi,i > 0

.

All matrices in LLM are held in sparse format. Matrices with all zero entries and

identity matrices are not stored in LLM. The cell arrays X and dQ hold maximum
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length iteration vectors and row sum vectors for each level of an ML cycle, re-

spectively. X and dQ have the same length and the lengths of the vectors they

hold in each cell are also equal. It is important to note that the lengths of the

vectors in cells reduce from |S| to |N | due to the aggregation procedure in the

ML method. The array Y of length equal to X{1} is used as an auxiliary array

in iterative methods. The two–dimensional sparse array CM of size (|N | × |N |) is

used to hold the coarsest matrix QJ at the coarsest level of an ML cycle. The

arrays phv and bv hold phase sizes and buffer sizes of queues, respectively.

The m–file calculateDiag.m computes the row sums, represented by D(n, n)

for all n ∈ N in chapter 2, of a matrix represented by Kronecker products.

The processing scheme in calculateDiag.m is important in that the iterative

methods Power, JOR, and SOR use almost the same processing scheme with little

differences. The three main steps of calculateDiag.m on nonzero blocks of the

generator matrix Q can be described as follows. First, the m–file index2vec.m

is used to obtain vectors describing the HLM states corresponding to a given

nonzero block of Q. Second, the interaction between these states is revealed

using the obtained vectors and the routing probability matrix P , and then the

resulting data is provided to the m–file inputData.m. The m–file inputData.m

returns pointers to the matrices to be used in the Kronecker product–vector

multiplication and order of left and right identity matrices which are needed by

the multiplication algorithm implemented in the m–file kPvM.m. Third, the m–

file kPvM.m obtained by modifying the vector–Kronecker product multiplication

algorithm (see Algorithm 3) computes the row sum in the block defined by the

data obtained from inputData.m and returns the resulting vector. Although, one

can compute the row sum of a matrix defined by Kronecker products by passing a

vector of all ones with appropriate size and data from inputData.m into kPvM.m,

it is not efficient memorywise since the vector of all ones occupies memory. In

practice, kPvM.m does not take a vector as an input argument when computing

the row sum of a Kronecker product, so the vector is not stored in memory. In

calculateDiag.m, the elements of the resulting vector are added to the part of

array dQ corresponding to the HLM state obtained from index2vec.m.
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The iterative methods Power, JOR and SOR are coded in the m–files kPM.m,

kJOR.m, and kSOR.m. The difference is in the step where the iterative methods use

vector–Kronecker product multiplication algorithm in order to compute the next

iteration vector. Although the Power and JOR methods can be implemented

easily just by looking at their definition, implementation of the SOR method

turns out to be more complicated. The difficulty arises from the fact that SOR

method uses the new estimates as soon as they are computed (see [23, p. 339]).

To this end, the m–file kSOR.m uses Algorithm 8 which is implemented in the

m–file newIterVec.m. The solution through iterative methods is implemented in

the m–file methodITER.m. The m–file methodITER.m use exactly the same m–files

kPM.m, kJOR.m, and kSOR.m which provide the implementations for smoothers of

the ML method. Thus, methodITER.m iterates only at the first level of an ML

cycle until a predefined error tolerance for the residual vector is met.

The ML method implemented in the software tool is capable of aggregating

LLMs in fixed or circular orders using V, F, or W cycles. It is similar to [11]

and is composed of two m–files: the driver m–file mlDriver.m and the recursive

m–file ml.m. As mentioned in chapter 3, the m–file mlDriver.m is implemented

into the solution phases of Marie’s method and Yao and Buzacott’s method,

which are coded in m–files methodMARIE.m and methodYB.m, respectively. Having

introduced the ML method in chapter 2, we now briefly talk about the conse-

quences of a call to the m–file mlDriver.m when the cycle type is V. When we

call mlDriver.m, diagonal elements of the generator matrix are computed and

assigned to dQ{1} by calculateDiag.m, X{1} is pre–smoothed using the chosen

iterative method, and ml.m is called. The m–file ml.m proceeds as follows through

an ML cycle. In the first step, the m–file genXf2c.m constructs the coarser it-

eration vector and assigns it to X{2}. In the second step, using the vectors in

X{1} and X{2}, the m–file calDiagVecs.m computes the new elements of dV and

assigns them to their corresponding locations in dV using table. In the third

step, the m–file calculateDiag.m computes the diagonal elements of the coarser

generator matrix Q1 and assigns them to dQ{2}. In the fourth step, the vector

in X{2} is smoothed using the specified iterative method. In the last step, ml.m
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is called for the next coarser level. At the coarsest level, after computing the di-

agonal elements of the coarsest generator matrix QJ , the m–file genCoarsest.m

constructs the coarsest generator matrix QJ , replaces its last column with ones,

and assigns it to the sparse array CM. Then the linear system (2.4) with this coef-

ficient matrix and sparse left–hand side vector (0, 0, . . . , 0, 1) is solved using the

backslash operator “\” of MATLAB if |N | is less than 500, or is solved using

the built–in function bicgstab of MATLAB otherwise. Unfortunately, bicgstab

method may not converge to a solution for a specified tolerance. In order to

achieve convergence, one may need to employ a preconditioner with bicgstab.

To this end, the preconditioner is provided from the incomplete LU factorization

of the coefficient matrix and can be obtained by using the MATLAB built–in

function luinc with a suitable tolerance. At this point, recursion starts to back-

track to finer levels. The m–file ml.m uses the m–file genXc2f.m to construct

iteration vectors for finer levels and these vectors are post–smoothed using the

specified iterative method. At the finest level, ml.m returns the new iteration

vector X{1} to mlDriver.m. After another smoothing operation in mlDriver.m,

the residual of X{1} is computed by the m–file calResidual.m. Then the 1–norm

of the residual vector is computed and the m–file mlDriver.m either stops and

returns the result if the predefined error tolerance is met, or makes another call

to the recursive m–file ml.m.

The approximative decompositional methods described in chapter 3 are

implemented in m–files convolutionAlgo.m, methodMVA.m, methodMARIE.m,

and methodYB.m. Being direct methods to compute performance measures of

closed QNs, the convolution algorithm, which is implemented in the m–file

convolutionAlgo.m, and Akyildiz’s mean value analysis tool MVABLO, which

is implemented in the m–file methodMVABLO.m, are coded into the software tool

using Algorithms 4 and 5, respectively. Being inspired by Marie’s method, the

implementation of Yao and Buzacott’s method is almost the same as Marie’s

method. For that reason, first we explain the steps of the m–file methodMARIE.m

and then explain the m–file methodYB.m using the steps in methodMARIE.m. The

m–file methodMARIE.m starts by reading the data defined for the network from a

given directory using readP.m, which reads the routing probability matrix, and
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then generates the cell array LLM using genLLMs.m. After that, using Algorithm 7,

which is implemented in the m–file netDecompose.m, the m–file genJ.m decom-

poses the network into subnetworks. After the decomposition procedure, the data

structure subNet is generated by the m–file genSubNetStructs.m. Maximum

space needed for the variables X, dQ, and CM are computed for each subnetwork

and allocated once. Finally, Marie’s method is implemented as in [26, p. 534]

together with the m–file mlDriver.m, which is used in Step 4 of Marie’s method

in Table 3.1. Implementation of Yao and Buzacott’s method follows similar steps;

however, there is one main difference. Yao and Buzacott’s method decomposes

the network into subnetworks of single queues and for that reason genJ.m does

not need to be called in methodYB.m. Yao and Buzacott’s method is implemented

as in [45, p. 412] together with the m–file mlDriver.m, which is used in Step 4

of Yao and Buzacott’s method in Table 3.1. The state dependent exponential

network mentioned in Step 2 of Yao and Buzacott’s method in Table 3.1 is con-

structed by the m–file genEN.m and assigned to the sparse array CM with ones

in the last column. Then CM is analyzed for its steady–state vector using the

backslash operator “\” with the left–hand side vector (0, 0, . . . , 0, 1) if |N | is less

than 500, or the built–in function bicgstab otherwise.

In the next chapter, we present the results of numerical experiments on five

problems.



Chapter 6

Numerical Results

Numerical experiments are performed on five problems using the implemented

methods in the software tool. The methods are compared for their accuracy and

efficiency. When used in a method, the ML method assumed a stopping tol-

erance of 10−15 on the residual 1–norm. Experiments are conducted using two

configurations of the ML method. These are V cycle with fixed aggregation or-

der and F cycle with circular aggregation order. The results of the configuration

which performs a smaller number floating–point operations are reported. ML

method uses SOR with relaxation parameter 1.0 as smoother and it performs 1

pre– and 1 post–smoothing in all of the experiments. We used approximation

tolerance of 10−4 for both Marie’s method and Yao and Buzacott’s method in

the experiments. We set the maximum number of iterations for Marie’s and Yao

and Buzacott’s method to 50. Thus, the methods stop when either the tolerance

is met or the number of iterations reach 50. When computing the steady–state

vector of the state dependent exponential network in Yao and Buzacott’s method

and the steady–state vector of the coarsest matrix in ML method, we use Gaus-

sian elimination if the matrices’ order is less than 500, or BiCGstab with ILU

preconditioning and a drop tolerance of 10−5 if the matrices’ order is greater than

500. Exact solutions of the problems are obtained via the ML method and SOR

method with relaxation parameter 1.0 for all problems. Both of the methods

assume a tolerance of 10−15 on the residual norm, and the iteration is stopped if
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the desired tolerance is not obtained within 1,000 iterations or 100,000 seconds.

The convolution algorithm and Akyildiz’s mean value analysis have no stopping

criterion since they are direct methods and they stop when the approximation

finishes for all the queues in a problem. We have the results of utilizations and

mean lengths of queues in each problem using the methods in the software tool.

Results obtained by approximative methods are compared with results of the

ML method and relative errors are provided using 1–norm. We ran all the ex-

periments on a Pentium 3.0 GHz with 1 GB of memory. All the methods and

algorithms in the software tool are implemented in m–files using MATLAB [14].

The problems that are used in the experiments are closed QNs with 3, 6, and

8 queues. Problems 2 to 4 are analyzed with 5, 6, 7, 8 customers and problem 5 is

analyzed with 6, 7, 8, 9 customers. Since buffer sizes of queues in the closed QNs

may be finite, we have different subnetwork topologies in Marie’s method. With

regards to this, we considered locally/globally balanced service demands in the

subnetworks. Each problem is defined by its routing probabilities among queues

and its queues’ phase–type service distributions. Routing probabilities among

queues in the problems are given on figures depicting the closed QNs topology.

The problems considered assume three types of phase–type service distributions.

These are hypoexponential and hyperexponential distributions with 2 phases and

Erlang distribution with 5 phases. However, this should not be understood to

mean that the software tool is able to work with only these numbers of phases.

Let the transition rate matrices of hyperexponential distribution with 2

phases, hypoexponential distribution with 2 phases, and Erlang distribution with

5 phases be represented respectively as

T
(j)
Hyper =

(
−µ(j)

1 0

0 −µ(j)
2

)
, T

(j)
Hypo =

(
−µ(j)

1 µ
(j)
1

0 −µ(j)
2

)
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and

T
(j)
Erlang =



−µ(j) µ(j) 0 0 0

0 −µ(j) µ(j) 0 0

0 0 −µ(j) µ(j) 0

0 0 0 −µ(j) µ(j)

0 0 0 0 −µ(j)



for some j ∈ {1, 2, . . . , J}. Then Hyper(j)(µ
(j)
1 , µ

(j)
2 , α(j)), Hypo(j)(µ

(j)
1 , µ

(j)
2 ), and

Erlang(j)(µ(j), t) represent hyperexponential and hypoexponential distributions

with 2 phases and Erlang distribution with t phases, respectively. The initial

distribution vector α(j) is not given for hypoexponential and Erlang distributions

since they have initial distribution vectors of the form α(j) = (1, 0, . . . , 0) with

appropriate length. The two other parameters that can change for the closed

QN are the number of customers in the network and buffer sizes of queues. The

number of customers in the closed QN is defined by K and the buffer sizes of

queues are defined by the vector b such that bj denotes the buffer size of queue j

for j = {1, 2, . . . , N}. These parameters appear in the caption of the table, which

presents the results of the corresponding problem.

Tables presenting the results of the problems consist of six rows and eight

columns. Rows of the table correspond to convolution algorithm (CA), Akyildiz’s

mean value analysis (MVABLO), Marie’s method (M), Yao and Buzacott’s (YB),

ML method (ML), and SOR method (SOR), respectively. The parantheses by

the method names include information about parameters defined for the methods.

The parameters for the ML, Marie’s, and Yao and Buzacott’s methods indicate

cycle type and aggregation order, respectively. Columns correspond to number of

iterations performed by methods (oIter), average number of iterations performed

by ML method for M and YB methods and average number of smoothings at the

finest level for the ML method (iIter), time taken by methods in seconds (T),

number of floating point operations in megaflops (MF) performed by methods,

memory requirement of the methods in megabytes (MB), relative error of uti-

lization of queues (RE(ρ)), relative error of mean queue lengths (RE(E[X])), and

1-norm of the residual vector for the ML and SOR methods, respectively. An
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asterisk by oIter or T values indicate that predefined upper bounds for these val-

ues are reached. Timing results of methods are given for demonstration purposes

only. Indeed, experiments in MATLAB should not be expected to run in times

that are consistent with flop count analyses. One can find a detailed explanation

of this situation in [20].

6.1 Problem 1 (Marie’s Example)

Our first problem is the first example in Marie’s paper [26, p. 536]. This small

problem consist of 3 queues having two Erlang service distributions with two

phases and a hyperexponential service distribution with two phases. This problem

is included to demonstrate that our extension of M and YB to include phase–type

service distributions works correctly. The number of customers in the network

is K = 6 and queues have infinite buffer sizes with b = (6, 6, 6). Because of

the fact that queues have infinite buffer sizes, decomposition in the closed QN

is maximal and every queue is treated as a subnetwork in M and YB methods.

The topology of the closed QN can be seen in Figure 6.1, and under this setting,

the network has 28 HLM states with a state space size of 146. The number of

nonzero elements needed for the sparse representation of Q is 820. Results of the

methods for this problem are given in Tables 6.1, 6.2, and 6.3. In Table 6.1, we

present the results for the problem without introducing any modifications on the

example’s real parameters. In Tables 6.2 and 6.3, we provide the results obtained

for the balanced and unbalanced cases, respectively.

When we use the M and YB methods, we obtain 3 digits of accuracy results

for the utilization values and 2 digits of accuracy for the mean queue length

values in the closed QN. We see that CA and MVA cannot beat the results of M

and YB, since they hardly attain 1 digit of accuracy for both of the performance

measures. Thus, the M and YB methods compute the two performance measures

more accurately than CA and MVA. On the other hand, when we compare the

efficiency of the methods, we see that none of the methods M, YB, and SOR

present better flop counts than that of the ML method. In that respect, the ML
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Figure 6.1: Problem 1 (Marie’s example).

method is the most efficient method among the four iterative methods since it

attains a residual norm close to machine precision in a smaller number of flops.

Table 6.1: K = 6, b = (6,6,6), Hyper(1)(1.990049503712809, 9.950496287190580e−3,
(9.950247518564047e− 1, 4.975248143595290e− 3)), Erlang(2)(1.0, 2),
Erlang(3)(2.0, 2)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−1 8e−2 n/a
MVABLO n/a n/a 0 0 0.0 2e−1 8e−2 n/a
M(F,CIRCULAR) 9 9 8 2 0.0 2e−3 1e−2 n/a
YB(F,CIRCULAR) 9 9 8 2 0.0 2e−3 1e−2 n/a
ML(F,CIRCULAR) 11 2 7 1 0.0 n/a n/a 1e−16
SOR 252 n/a 21 5 0.0 n/a n/a 1e−15

When we look at the results of the balanced case in Table 6.2, we see that

the M and YB methods produce 2 digits of accuracy, whereas CA and MVABLO

hardly attain 1 digit of accuracy for both of the performance measures. Although

these results show that the accuracy of the M and Y methods is still better, the

ML method is to be preferred over the other three iterative methods.

The results of the unbalanced case are presented in Table 6.3. For this case,

the M and YB methods approximate the performance measures more accurately

than CA and MVABLO. Yet, SOR performs much better than the ML method,

which is better than the M and YB methods. Thus, this makes SOR the most

accurate and efficient iterative method for the unbalanced case.
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Table 6.2: K = 6, b = (6,6,6), Hyper(1)(1.990049503712809, 9.950496287190580e−3,
(9.950247518564047e− 1, 4.975248143595290e− 3)), Erlang(2)(1.0, 2),
Erlang(3)(1.0, 2)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−1 8e−2 n/a
MVABLO n/a n/a 0 0 0.0 3e−1 8e−2 n/a
M(F,CIRCULAR) 7 10 8 1 0.0 1e−2 3e−2 n/a
YB(F,CIRCULAR) 7 10 7 1 0.0 1e−2 3e−2 n/a
ML(F,CIRCULAR) 12 2 6 1 0.0 n/a n/a 3e−16
SOR 107 n/a 9 2 0.0 n/a n/a 8e−16

Table 6.3: K = 6, b = (6,6,6), Hyper(1)(1.990049503712809, 9.950496287190580e−3,
(9.950247518564047e− 1, 4.975248143595290e− 3)), Erlang(2)(10.0, 2),
Erlang(3)(0.1, 2)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−2 5e−2 n/a
MVABLO n/a n/a 0 0 0.0 2e−2 5e−2 n/a
M(F,CIRCULAR) 18 34 71 13 0.0 7e−3 3e−3 n/a
YB(F,CIRCULAR) 18 34 71 13 0.0 7e−3 3e−3 n/a
ML(F,CIRCULAR) 42 2 21 5 0.0 n/a n/a 3e−16
SOR 81 n/a 7 2 0.0 n/a n/a 8e−16

Because of the small size of the problem, neither M nor YB methods can be

viewed as efficient or useful in any version of the problem. Yet, we will see that

the M and YB methods turn out to be more valuable as the size of the problem

increases.

6.2 Problem 2

The second problem consists of 6 tandem queues and has the topology in Fig-

ure 6.2. The closed QN in this problem possesses two hypoexponential service

distributions each with two phases, two hyperexponential service distributions

each with two phases, and two Erlang service distribution each with five phases.

Experiments are performed with 5, 6, 7, 8 customers, and we obtained different

number of subnetworks possessing different number of queues in the M method.
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Buffer sizes of queues are given by b = (8, 5, 8, 6, 8, 7). Thus for 5, 6, 7, 8 cus-

tomers, the M method decomposes the QN into subnetworks given by the sets

{{1},{2},{3},{4},{5},{6}}, {{1,2},{3},{4},{5},{6}}, {{1,2},{3,4},{5},{6}} and

{{1,2},{3,4},{5,6}}, respectively. With this setting for 5, 6, 7, 8 customers, the

closed QN has state space sizes of 8,070, 19,938, 43,320, 85,102 and HLM number

of states of 252, 461, 785, 1,259, respectively. The number of nonzero elements

needed for the sparse representation of networks for 5, 6, 7, 8 customers are

41,604, 111,809, 258,996, and 535,035, respectively. Results of the methods for

this closed QN are presented in Tables 6.4, 6.5, 6.6, 6.7 for the balanced case and

in Tables 6.8, 6.9, 6.10, 6.11 for the unbalanced case.

- -m1 -m2 -m3 -m4 -m5 m6

Figure 6.2: Problem 2.

In Tables 6.4, 6.5, 6.6, 6.7 we see that M and YB methods provide roughly

1.5 digits of accuracy for both performance measures. On the other hand, for

the same measures, CA and MVABLO achieve less accuracy. Having performed

less than one third of the number of flops compared to YB, M becomes the most

accurate and efficient method between the M and YB methods for the balanced

case. When we compare the results of ML and SOR methods, we see that ML

performs better than SOR in terms of accuracy and efficiency by meeting the

tolerance of 10−15 in at most 20 outer iterations. In all cases, SOR is not able to

convergence within 1,000 iterations. In this set of problems, it is worthwhile to

use the M and YB methods since they yield a solution (albeit in less accuracy) in

shorter time and less space than the ML method. It is important to note that the

outer iteration counts of the ML method increases linearly by increasing number

of customers. Although outer iteration counts of M and YB methods do not

change for K ∈ {5, 6, 7, 8}, a similar behavior to that of ML can be seen in the

inner iteration counts of M and YB methods. Hence for this case of the problem,

subnetworks generate more difficult problems to solve for increasing number of
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customers.

Table 6.4: K = 5, b = (8, 5, 8, 6, 8, 7), Hypo(1)(3.0, 1.5), Erlang(2)(5.0, 5), Hypo(3)(1.2, 4.0),
Hyper(4)(1.0, 1.0, (0.25, 0.75)), Erlang(5)(5.0, 5), Hyper(6)(0.8, 0.8, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 9e−2 7e−2 n/a
MVABLO n/a n/a 0 0 0.0 9e−2 7e−2 n/a
M(F,CIRCULAR) 5 4 6 1 0.0 4e−2 3e−2 n/a
YB(F,CIRCULAR) 5 4 8 5 0.1 4e−2 3e−2 n/a
ML(V,FIXED) 15 2 190 68 0.5 n/a n/a 1e−16
SOR 1,000∗ n/a 2,929 1,076 0.2 3e−4 4e−4 1e−3

Table 6.5: K = 6, b = (8, 5, 8, 6, 8, 7), Hypo(1)(3.0, 1.5), Erlang(2)(5.0, 5), Hypo(3)(1.2, 4.0),
Hyper(4)(1.0, 1.0, (0.25, 0.75)), Erlang(5)(5.0, 5), Hyper(6)(0.8, 0.8, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 1e−1 6e−2 n/a
MVABLO n/a n/a 0 0 0.0 9e−2 8e−2 n/a
M(F,CIRCULAR) 5 5 24 6 0.0 3e−2 2e−2 n/a
YB(F,CIRCULAR) 5 5 12 21 0.1 4e−2 3e−2 n/a
ML(V,FIXED) 16 2 456 118 1.2 n/a n/a 8e−16
SOR 1,000∗ n/a 6,980 2,761 0.5 1e−4 2e−4 3e−4

Table 6.6: K = 7, b = (8, 5, 8, 6, 8, 7), Hypo(1)(3.0, 1.5), Erlang(2)(5.0, 5), Hypo(3)(1.2, 4.0),
Hyper(4)(1.0, 1.0, (0.25, 0.75)), Erlang(5)(5.0, 5), Hyper(6)(0.8, 0.8, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 1e−1 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 9e−2 9e−2 n/a
M(F,CIRCULAR) 5 6 45 11 0.1 3e−2 3e−2 n/a
YB(V,FIXED) 5 8 20 33 0.1 4e−2 3e−2 n/a
ML(V,FIXED) 18 2 1,160 425 2.4 n/a n/a 8e−16
SOR 1,000∗ n/a 14,740 6,159 1.1 3e−5 4e−5 9e−5
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Table 6.7: K = 8, b = (8, 5, 8, 6, 8, 7), Hypo(1)(3.0, 1.5), Erlang(2)(5.0, 5), Hypo(3)(1.2, 4.0),
Hyper(4)(1.0, 1.0, (0.25, 0.75)), Erlang(5)(5.0, 5), Hyper(6)(0.8, 0.8, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 1e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 9e−2 9e−2 n/a
M(F,CIRCULAR) 5 9 84 21 0.1 2e−2 4e−2 n/a
YB(V,FIXED) 5 8 32 199 0.2 4e−2 4e−2 n/a
ML(V,FIXED) 20 2 2,142 919 4.6 n/a n/a 7e−16
SOR 1,000∗ n/a 28,339 12,328 2.1 2e−5 3e−5 4e−5

For the unbalanced case, M and YB methods achieve better results than CA

and MVABLO by converging within 3 iterations and yielding at least 2.5 digits

of accuracy for utilization and mean queue length values. This is at least 1 digit

better than the results obtained with CA and MVABLO. Between M and YB,

M is faster, but YB is more accurate except for K = 8. If we consider the

results of SOR and ML methods, we see that SOR does not converge within

1,000 iterations, while ML method convergences within 6 outer iterations for all

numbers of customers. The increase in the number of customers almost has no

effect on the outer iterations done by the ML method. This behavior also can be

seen in the inner iteration counts of M and YB methods. Again, it is worthwhile

to use the M and YB methods.

Table 6.8: K = 5, b = (8,5,8,6,8,7), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 4e−7 4e−4 n/a
MVABLO n/a n/a 0 0 0.0 4e−7 4e−4 n/a
M(F,CIRCULAR) 3 1 2 0 0.0 5e−10 1e−6 n/a
YB(F,CIRCULAR) 3 1 3 4 0.1 5e−10 1e−6 n/a
ML(V,FIXED) 5 2 64 23 0.5 n/a n/a 2e−16
SOR 1,000∗ n/a 2,929 1,076 0.2 4e−3 2e−3 7e−5
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Table 6.9: K = 6, b = (8,5,8,6,8,7), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−8 4e−4 n/a
MVABLO n/a n/a 0 0 0.0 2e−8 4e−4 n/a
M(F,CIRCULAR) 2 2 3 1 0.0 7e−11 7e−5 n/a
YB(F,CIRCULAR) 3 1 5 10 0.1 1e−11 1e−6 n/a
ML(V,FIXED) 5 2 145 57 1.2 n/a n/a 2e−16
SOR 1,000∗ n/a 6,977 2,761 0.5 2e−3 7e−4 4e−5

Table 6.10: K = 7, b = (8,5,8,6,8,7), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 1e−9 3e−4 n/a
MVABLO n/a n/a 0 0 0.0 9e−10 3e−4 n/a
M(V,FIXED) 2 3 5 1 0.0 2e−12 4e−5 n/a
YB(F,CIRCULAR) 3 1 8 71 0.2 4e−13 9e−7 n/a
ML(V,FIXED) 5 2 297 349 2.4 n/a n/a 2e−16
SOR 1,000∗ n/a 14,743 6,159 1.1 8e−4 3e−4 2e−5

Table 6.11: K = 8, b = (8,5,8,6,8,7), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−1 1e−1 n/a
M(F,CIRCULAR) 2 3 11 3 0.1 2e−4 5e−6 n/a
YB(F,CIRCULAR) 3 2 16 151 0.2 2e−3 6e−3 n/a
ML(V,FIXED) 6 2 658 770 4.6 n/a n/a 1e−16
SOR 1,000∗ n/a 28,334 12,328 2.1 5e−5 1e−5 4e−6
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Tables 6.12 through 6.19 present the results of experiments which are con-

ducted with 5, 6, 7, 8 customers and therefore fixed number of subnetworks in

the M method. Buffer sizes of queues are given by b = (8, 4, 8, 4, 8, 4). Thus

the subnetworks resulting from the decomposition of the QN in method M is

{{1,2},{3,4},{5,6}} for all numbers of customers. In this way, we investigate

the behavior of M under the same decomposition into subnetworks for increasing

number of customers. With this setting, for 5, 6, 7, 8 customers the closed QN

has state space sizes of 8,061, 19,805, 42,417, 81,201 and HLM number of states

of 249, 444, 729, 1,119, respectively. The number of nonzero elements needed

for the sparse representation of Q for 5, 6, 7, 8 customers, are 41,573, 111,223,

254,311, and 512,347, respectively.

The results of the balanced case can be seen in Tables 6.12, 6.13, 6.14, and

6.15. In this case, M and YB methods present at most 2 digits of accuracy

for both performance measures. Although CA and MVABLO sustain 1 digit of

accuracy for utilization values, MVABLO has almost 1.5 digit accurate results

for mean queue length values. As the number of customers increases, the M

method performs less flops than the YB method, which implies that M becomes

more efficient than YB. Indeed, for this case of the problem, M can be chosen for

approximating utilizations and MVABLO can be chosen for approximating mean

queue lengths. It is also important to notice that the ML method converges

within 16 iterations and thus performs much better than SOR while calculating

steady–state results of queues. Indeed, SOR does not converge within 1,000

iterations for this case of the problem. ML does not take more outer iterations

when compared to the previous balanced case where the subnetworks changed

for increasing number of customers. Yet, M yields higher inner iteration counts

in this case. This implies that the problem is not difficult to solve than the

previous case, but the subnetworks resulting from the decomposition procedure

of M generates more difficult problems for the ML method for increasing number

of customers.
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Table 6.12: K = 5, b = (8, 4, 8, 4, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(5.0, 5), Hypo(3)(1.2, 4.0),
Hyper(4)(1.0, 1.0, (0.25, 0.75)), Erlang(5)(5.0, 5), Hyper(6)(0.8, 0.8, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 1e−1 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 9e−2 6e−2 n/a
M(F,CIRCULAR) 5 6 27 6 0.0 2e−2 3e−2 n/a
YB(F,CIRCULAR) 5 4 7 4 0.1 4e−2 3e−2 n/a
ML(V,FIXED) 15 2 189 65 0.5 n/a n/a 1e−16
SOR 1,000∗ n/a 2,921 1,074 0.2 5e−4 7e−4 1e−3

Table 6.13: K = 6, b = (8, 4, 8, 4, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(5.0, 5), Hypo(3)(1.2, 4.0),
Hyper(4)(1.0, 1.0, (0.25, 0.75)), Erlang(5)(5.0, 5), Hyper(6)(0.8, 0.8, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 1e−1 6e−2 n/a
M(F,CIRCULAR) 5 7 41 9 0.0 2e−2 3e−2 n/a
YB(F,CIRCULAR) 5 5 11 18 0.1 3e−2 3e−2 n/a
ML(V,FIXED) 16 2 450 193 1.2 n/a n/a 1e−15
SOR 1,000∗ n/a 6,902 2,741 0.5 2e−4 1e−4 3e−4

Table 6.14: K = 7, b = (8, 4, 8, 4, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(5.0, 5), Hypo(3)(1.2, 4.0),
Hyper(4)(1.0, 1.0, (0.25, 0.75)), Erlang(5)(5.0, 5), Hyper(6)(0.8, 0.8, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 1e−1 5e−2 n/a
M(F,CIRCULAR) 5 9 58 14 0.0 2e−2 3e−2 n/a
YB(F,CIRCULAR) 6 5 20 108 0.2 3e−2 4e−2 n/a
ML(F,CIRCULAR) 11 2 1,233 528 2.6 n/a n/a 4e−16
SOR 1,000∗ n/a 14,325 6,028 1.1 6e−5 7e−5 2e−4

Table 6.15: K = 8, b = (8, 4, 8, 4, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(5.0, 5), Hypo(3)(1.2, 4.0),
Hyper(4)(1.0, 1.0, (0.25, 0.75)), Erlang(5)(5.0, 5), Hyper(6)(0.8, 0.8, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−1 3e−1 n/a
MVABLO n/a n/a 0 0 0.0 1e−1 5e−2 n/a
M(F,CIRCULAR) 5 10 77 18 0.1 2e−2 4e−2 n/a
YB(F,CIRCULAR) 6 5 31 485 0.3 3e−2 6e−2 n/a
ML(F,CIRCULAR) 12 2 2,133 1,014 4.8 n/a n/a 4e−16
SOR 1,000∗ n/a 26,775 11,747 2.0 3e−5 3e−5 1e−4
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The results of the unbalanced case can be seen in Tables 6.16, 6.17, 6.18,

and 6.19. In the unbalanced case, the performance measures approximated by

M appear to be at least 1 more digit accurate than those with YB. Also, the

results obtained with M and YB appear to be 1.5 digits more accurate than

those obtained with CA and MVABLO. For this reason, M, having performed less

flops than YB, becomes the more accurate and efficient approximative method

between the two. ML performs at most 6 outer iterations until convergence and

significantly beats SOR. These experiments also show that there are cases in

which one can use the M and YB methods.

Table 6.16: K = 5, b = (8,4,8,4,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−1 2e−1 n/a
M(F,CIRCULAR) 2 3 5 1 0.0 2e−4 8e−6 n/a
YB(F,CIRCULAR) 3 2 3 2 0.1 2e−3 1e−2 n/a
ML(V,FIXED) 6 2 77 26 0.5 n/a n/a 0e+0
SOR 1,000∗ n/a 2,922 1,074 0.2 5e−4 2e−4 4e−5

Table 6.17: K = 6, b = (8,4,8,4,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 3e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−1 3e−1 n/a
M(F,CIRCULAR) 2 3 6 1 0.0 8e−7 1e−7 n/a
YB(F,CIRCULAR) 3 2 4 11 0.1 3e−6 8e−3 n/a
ML(V,FIXED) 6 2 171 72 1.2 n/a n/a 0e+0
SOR 1,000∗ n/a 6,901 2,742 0.5 3e−5 7e−5 2e−5

Table 6.18: K = 7, b = (8,4,8,4,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 4e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−1 4e−1 n/a
M(F,CIRCULAR) 2 3 7 2 0.0 1e−9 7e−8 n/a
YB(F,CIRCULAR) 3 2 7 54 0.2 2e−7 7e−3 n/a
ML(F,CIRCULAR) 5 2 535 801 2.6 n/a n/a 1e−15
SOR 1,000∗ n/a 14,342 6,028 1.1 5e−5 3e−5 9e−6
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Table 6.19: K = 8, b = (8,4,8,4,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 5e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−1 5e−1 n/a
M(F,CIRCULAR) 2 3 9 2 0.1 2e−10 5e−8 n/a
YB(F,CIRCULAR) 3 2 12 246 0.3 2e−7 6e−3 n/a
ML(V,FIXED) 6 2 609 661 4.3 n/a n/a 0e+0
SOR 1,000∗ n/a 26,763 11,747 2.0 3e−5 1e−5 7e−6

6.3 Problem 3

The third problem is a central server type closed QN which consists of 6 queues.

The topology of the network is depicted in Figure 6.3. Service distributions

of queues are represented by two hyperexponential distributions each with 2

phases, two hypoexponential distributions each with 2 phases and two Erlang

distributions each with 5 phases. The buffer sizes of queues are given by

b = (8, 5, 7, 8, 8, 6). Therefore, for 5, 6, 7, 8 customers, we obtain cases of the

problem with state space sizes of 8,070, 19,938, 43,320, 85,102, and HLM num-

ber of states of 252, 461, 785, 1,259 for which the numbers of nonzero elements

needed for the sparse representation of Q are 50,682, 136,838, 317,787, 657,482,

respectively. For 5, 6, 7, 8 customers the M method decomposes the QN into sub-

networks given by the sets {{1},{2},{3},{4},{5},{6}}, {{1,2},{3},{4},{5},{6}},
{{1,2,6},{3},{4},{5}} and {{1,2,3,6},{4},{5}}, respectively. Tables 6.20 through

6.27 present the results for this network.

The results of the balanced case for 5, 6, 7, 8 customers are presented in

Tables 6.20, 6.21, 6.22, and 6.23, respectively. Therein, we see that CA and

MVABLO produce at most 1.5 digit accurate results for utilization values and

mean queue length values. On the other hand, M and YB methods yield 2 to 3.5

digits accurate results for utilization values and almost 2 digits accurate results for

mean queue length values for all numbers of customer. For 7 and 8 customers,

YB performs less flops than that of M, but YB is unable to approximate the

performance measures more accurately than M. Also, the inner iteration counts

of M increases faster than the inner iteration counts of YB for increasing number
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Figure 6.3: Problem 3.

of customers. This is mainly because of the fact that decomposition procedure of

M generates inconvenient partitions of queues for increasing number of customers.

Indeed, this case shows how the decomposition procedure can adversely affect the

flop counts of M for increasing number of customers. When we compare SOR

and ML, we see that the flop counts of ML are less than the flop counts of SOR

for all numbers of customers.

Table 6.20: K = 5, b = (8, 5, 7, 8, 8, 6), Hypo(1)(3.0, 1.5), Erlang(2)(1.0, 5), Hypo(3)(0.2, 2.0),
Hyper(4)(0.2, 0.2, (0.25, 0.75)), Erlang(5)(1.0, 5), Hyper(6)(0.2, 0.2, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−2 6e−2 n/a
MVABLO n/a n/a 0 0 0.0 5e−2 6e−2 n/a
M(F,CIRCULAR) 5 4 6 1 0.0 2e−3 1e−2 n/a
YB(F,CIRCULAR) 5 4 8 14 0.1 2e−3 1e−2 n/a
ML(V,FIXED) 13 2 216 95 0.6 n/a n/a 2e−16
SOR 169 n/a 743 265 0.2 n/a n/a 9e−16
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Table 6.21: K = 6, b = (8, 5, 7, 8, 8, 6), Hypo(1)(3.0, 1.5), Erlang(2)(1.0, 5), Hypo(3)(0.2, 2.0),
Hyper(4)(0.2, 0.2, (0.25, 0.75)), Erlang(5)(1.0, 5), Hyper(6)(0.2, 0.2, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−2 7e−2 n/a
MVABLO n/a n/a 0 0 0.0 5e−2 7e−2 n/a
M(F,CIRCULAR) 5 5 27 6 0.1 1e−3 8e−3 n/a
YB(F,CIRCULAR) 5 5 12 66 0.1 2e−3 1e−2 n/a
ML(V,FIXED) 14 2 489 359 1.3 n/a n/a 5e−16
SOR 237 n/a 2,244 945 0.5 n/a n/a 9e−16

Table 6.22: K = 7, b = (8, 5, 7, 8, 8, 6), Hypo(1)(3.0, 1.5), Erlang(2)(1.0, 5), Hypo(3)(0.2, 2.0),
Hyper(4)(0.2, 0.2, (0.25, 0.75)), Erlang(5)(1.0, 5), Hyper(6)(0.2, 0.2, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 8e−2 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−2 7e−2 n/a
M(V,FIXED) 5 9 177 55 0.1 9e−4 9e−3 n/a
YB(F,CIRCULAR) 5 5 20 27 0.2 1e−3 2e−2 n/a
ML(V,FIXED) 15 2 1,062 431 2.7 n/a n/a 3e−16
SOR 315 n/a 6,289 2,783 1.1 n/a n/a 1e−15

Table 6.23: K = 8, b = (8, 5, 7, 8, 8, 6), Hypo(1)(3.0, 1.5), Erlang(2)(1.0, 5), Hypo(3)(0.2, 2.0),
Hyper(4)(0.2, 0.2, (0.25, 0.75)), Erlang(5)(1.0, 5), Hyper(6)(0.2, 0.2, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 1e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 6e−2 8e−2 n/a
M(V,FIXED) 5 10 1,229 925 0.7 6e−4 9e−3 n/a
YB(V,FIXED) 5 8 32 52 0.3 7e−4 2e−2 n/a
ML(V,FIXED) 15 2 1,973 829 5.0 n/a n/a 3e−16
SOR 401 n/a 15,351 7,052 2.1 n/a n/a 1e−15
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The results of the unbalanced case for 5, 6, 7, 8 customers are presented in

Tables 6.24, 6.25, 6.26, and 6.27, respectively. For 5 and 6 customers, neither M

nor YB are able to produce more accurate results than CA and MVABLO. For

7 and 8 customers, M and YB yield at least 2 digits more accurate results than

CA and MVABLO. Having performed less flops than YB, M is the more efficient

method between the two methods. For increasing number of customers, SOR and

ML exhibit the same behavior as in the balanced case.

Table 6.24: K = 5, b = (8,5,7,8,8,6), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−7 4e−4 n/a
MVABLO n/a n/a 0 0 0.0 6e−7 4e−4 n/a
M(F,CIRCULAR) 3 2 2 0 0.0 3e−7 2e−4 n/a
YB(F,CIRCULAR) 3 2 3 7 0.1 3e−7 2e−4 n/a
ML(V,FIXED) 10 2 156 65 0.6 n/a n/a 4e−16
SOR 198 n/a 849 309 0.2 n/a n/a 9e−16

Table 6.25: K = 6, b = (8,5,7,8,8,6), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 4e−8 3e−4 n/a
MVABLO n/a n/a 0 0 0.0 4e−8 3e−4 n/a
M(F,CIRCULAR) 2 2 4 1 0.1 2e−8 2e−4 n/a
YB(F,CIRCULAR) 3 2 5 35 0.1 2e−8 1e−4 n/a
ML(V,FIXED) 10 2 351 221 1.3 n/a n/a 6e−16
SOR 213 n/a 2,018 849 0.5 n/a n/a 9e−16

Table 6.26: K = 7 b = (8,5,7,8,8,6), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 7e−1 5e−1 n/a
M(V,FIXED) 3 4 54 17 0.1 1e−3 2e−3 n/a
YB(V,FIXED) 3 2 10 106 0.2 2e−3 2e−3 n/a
ML(V,FIXED) 84 2 5,926 4,542 2.7 n/a n/a 9e−16
SOR 991 n/a 19,780 8,749 1.1 n/a n/a 1e−15
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Table 6.27: K = 8, b = (8,5,7,8,8,6), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−1 3e−1 n/a
MVABLO n/a n/a 0 0 0.0 6e−1 6e−1 n/a
M(V,FIXED) 4 5 503 345 0.7 4e−4 1e−3 n/a
YB(F,CIRCULAR) 5 2 34 742 0.3 2e−3 2e−3 n/a
ML(V,FIXED) 116 2 15,203 11,040 5.0 n/a n/a 9e−16
SOR 1,000∗ n/a 38,272 17,580 2.1 3e−15 6e−15 6e−13

Another set of experiments for problem 3 is conducted by taking b =

(8, 4, 4, 8, 8, 4). In this way, we obtain fixed subnetwork topologies with Marie’s

method for K ∈ {5, 6, 7, 8}. The subnetworks resulting from the decomposition

of the QN for method M is given by {{1,2,3,6},{4},{5}} for all numbers of cus-

tomers. For 5, 6, 7, 8 customers the closed QN has state space sizes of 8,061,

19,805, 42,417, 81,201 and has HLM number of states of 249, 444, 729, 1,119, re-

spectively. The number of nonzero elements needed for the sparse representation

ofQ for increasing number of customers are 50,653, 136,242, 312,747, and 632,206,

respectively. Tables 6.28 through 6.35 show the results of this new configuration.

The results of the balanced case of this configuration for 5, 6, 7, 8 customers

can be seen in Tables 6.28, 6.29, 6.30, and 6.31, respectively. Utilization results

of queues in this case are at least 1.5 digits more accurate for M and YB than

those for CA and MVABLO. Mean queue length results obtained with M and

YB are at least 0.5 digit more accurate than the results obtained with CA and

MVABLO. Again, we see the effect of an inconvenient partitioning introduced by

the decomposition procedure of M. Because of the fact that inner iteration counts

of M are almost twice those of YB for all number of customers, YB requires less

flops than M and is more efficient while approximating utilizations values for K ∈
{5, 6}. On the other hand, the number of flops performed to obtain the solution

of the state dependent exponential network at each iteration of YB increases

significantly for K = 8. In that case, YB requires more flops than M. SOR and

ML continue to exhibit the same behavior as in the previous configuration of the

problem.
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Table 6.28: K = 5, b = (8, 4, 4, 8, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(1.0, 5), Hypo(3)(0.2, 2.0),
Hyper(4)(0.2, 0.2, (0.25, 0.75)), Erlang(5)(1.0, 5), Hyper(6)(0.2, 0.2, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 1e−1 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 6e−2 5e−2 n/a
M(V,FIXED) 4 8 153 51 0.1 6e−4 6e−3 n/a
YB(F,CIRCULAR) 5 4 7 13 0.1 8e−4 1e−2 n/a
ML(V,FIXED) 12 2 187 87 0.6 n/a n/a 7e−16
SOR 164 n/a 652 257 0.2 n/a n/a 9e−16

Table 6.29: K = 6, b = (8, 4, 4, 8, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(1.0, 5), Hypo(3)(0.2, 2.0),
Hyper(4)(0.2, 0.2, (0.25, 0.75)), Erlang(5)(1.0, 5), Hyper(6)(0.2, 0.2, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 7e−2 5e−2 n/a
M(V,FIXED) 4 9 307 118 0.2 5e−4 7e−3 n/a
YB(F,CIRCULAR) 5 5 11 56 0.1 1e−3 1e−2 n/a
ML(V,FIXED) 13 2 450 288 1.3 n/a n/a 7e−16
SOR 206 n/a 1,932 817 0.5 n/a n/a 1e−15

Table 6.30: K = 7, b = (8, 4, 4, 8, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(1.0, 5), Hypo(3)(0.2, 2.0),
Hyper(4)(0.2, 0.2, (0.25, 0.75)), Erlang(5)(1.0, 5), Hyper(6)(0.2, 0.2, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 8e−2 5e−2 n/a
M(V,FIXED) 5 9 619 271 0.4 4e−4 8e−3 n/a
YB(F,CIRCULAR) 5 5 18 284 0.2 2e−3 2e−2 n/a
ML(F,CIRCULAR) 8 2 1,087 458 2.8 n/a n/a 5e−16
SOR 236 n/a 5,111 2,277 1.1 n/a n/a 9e−16

Table 6.31: K = 8, b = (8, 4, 4, 8, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(1.0, 5), Hypo(3)(0.2, 2.0),
Hyper(4)(0.2, 0.2, (0.25, 0.75)), Erlang(5)(1.0, 5), Hyper(6)(0.2, 0.2, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−1 3e−1 n/a
MVABLO n/a n/a 0 0 0.0 8e−2 7e−2 n/a
M(V,FIXED) 5 10 946 528 0.6 5e−4 1e−2 n/a
YB(F,CIRCULAR) 6 5 35 1,270 0.3 3e−3 2e−2 n/a
ML(F,CIRCULAR) 9 2 2,117 902 5.2 n/a n/a 1e−16
SOR 339 n/a 12,262 5,689 2.0 n/a n/a 1e−15
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The results of the unbalanced case can be seen in Tables 6.32, 6.33, 6.34, and

6.35. In this case, M and YB yield at least 2 digits more accurate results than CA

and MVABLO for both performance measures. CA and MVABLO provide very

inaccurate results and they are hardly able to obtain 1 digit of accuracy for both

performance measures. Although YB performs less flops than M for K ∈ {5, 6},
as the number of customers increases M approximates utilization values 1 digit

more accurately than YB and performs less flops than YB; in this case, M and YB

presents the same behavior as in the balanced case. Thus, this problem reveals

cases in which YB performs better than M. Regarding SOR, it fails to converge

to the predefined tolerance within 1,000 iterations for K ∈ {6, 7, 8}. Hence, M is

to be recommended especially for increasing values of K in this problem.

Table 6.32: K = 5, b = (8,4,4,8,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 7e−1 6e−1 n/a
M(V,FIXED) 2 5 57 18 0.1 1e−3 2e−3 n/a
YB(F,CIRCULAR) 3 2 3 7 0.1 2e−3 3e−3 n/a
ML(V,FIXED) 84 2 1,292 605 0.6 n/a n/a 8e−16
SOR 976 n/a 3,878 1,524 0.2 n/a n/a 1e−15

Table 6.33: K = 6, b = (8,4,4,8,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−1 3e−1 n/a
MVABLO n/a n/a 0 0 0.0 6e−1 7e−1 n/a
M(V,FIXED) 4 5 174 67 0.2 4e−4 2e−3 n/a
YB(F,CIRCULAR) 5 2 8 66 0.1 2e−3 3e−3 n/a
ML(V,FIXED) 116 2 3,977 2,856 1.3 n/a n/a 9e−16
SOR 1,000∗ n/a 9,371 3,959 0.5 2e−15 4e−15 5e−13
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Table 6.34: K = 7, b = (8,4,4,8,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−1 4e−1 n/a
MVABLO n/a n/a 0 0 0.0 6e−1 7e−1 n/a
M(V,FIXED) 5 6 374 176 0.4 9e−5 2e−3 n/a
YB(F,CIRCULAR) 5 2 15 244 0.2 2e−3 4e−3 n/a
ML(F,CIRCULAR) 96 2 13,108 9,514 2.8 n/a n/a 8e−16
SOR 1,000∗ n/a 19,420 8,652 1.1 1e−15 1e−15 3e−13

Table 6.35: K = 8, b = (8,4,4,8,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−1 5e−1 n/a
MVABLO n/a n/a 0 0 0.0 6e−1 7e−1 n/a
M(V,FIXED) 5 7 584 358 0.6 3e−4 1e−3 n/a
YB(F,CIRCULAR) 6 3 31 1,079 0.3 2e−3 5e−3 n/a
ML(F,CIRCULAR) 101 2 24,095 17,622 4.7 n/a n/a 8e−16
SOR 1,000∗ n/a 36,169 16,773 2.0 1e−15 1e−15 5e−12

6.4 Problem 4

The fourth problem consists of a closed QN with 6 queues which have arbitrary

routing probabilities among them and have servers with two hyperexponential

service distributions each with 2 phases, two hypoexponential service distribu-

tions each with 2 phases and two Erlang service distributions each with 5 phases.

This problem is considered in order to investigate the behavior of methods under

arbitrary routing. Buffer sizes of queues are defined by b = (8, 5, 7, 8, 8, 6). In

this case, the network has state space sizes of 8,070, 19,938, 43,320, 85,102, and

HLM number of states of 252, 461, 785, 1,259 for K ∈ {5, 6, 7, 8}, respectively.

The number of nonzero elements needed for the sparse representation of Q for

K ∈ {5, 6, 7, 8} is 57,489, 155,121, 360,054, and 744,515, respectively. The topol-

ogy of the network is depicted in Figure 6.4 and Tables 6.36 through 6.43 give

the results obtained with different methods while analyzing balanced and unbal-

anced cases of problem 4. Decomposition of the QN into subnetworks in the M

method is given by the sets {{1},{2},{3},{4},{5},{6}}, {{1,2},{3},{4},{5},{6}},
{{1,2},{3},{4,5,6}}, {{1,2,3},{4,5,6}} for 5, 6, 7, 8 customers, respectively.
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Figure 6.4: Problem 4.

Tables 6.36, 6.37, 6.38, and 6.39 present the results of the balanced network for

5, 6, 7, 8 customers, respectively. The results with YB are 2.5 digits accurate for

utilization values. The utilization results with YB are 0.5 digits more accurate

than the results with M for K ∈ {5, 6, 7} and at least 1 digit more accurate

than the results of MVABLO and CA. YB performs less flops than M for K ∈
{7, 8}. Also YB does almost two times less inner iterations than M for K = 8.

Therefore YB is the more accurate method when approximating utilization values

and the more efficient one for K ∈ {7, 8} when compared with M. Mean queue

length values obtained by MVABLO have at least 1.5 digits of accuracy for all

numbers of customers. Indeed, M and YB are unable to approximate mean

queue length values more than 0.5 digits better than MVABLO. This implies

that by performing a negligible number of flops when compared with M and YB,

MVABLO emerges as a reasonable method to approximate mean queue length

values. When compared with SOR, ML performs less flops than SOR for all

numbers of customers. It is important to note that ML has almost the same

outer iteration counts for 5, 6, 7, and 8 customers. Thus the outer iteration

counts of ML do not depend on the number of customers, whereas the iteration

counts of SOR increases with increasing number of customers in this case.
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Table 6.36: K = 5, b = (8, 5, 7, 8, 8, 6), Hypo(1)(3.0, 1.5), Erlang(2)(2.5, 5), Hypo(3)(0.8, 2),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(9.0, 5), Hyper(6)(1.4, 1.4, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−2 3e−2 n/a
MVABLO n/a n/a 0 0 0.0 5e−2 3e−2 n/a
M(F,CIRCULAR) 5 4 7 1 0.0 1e−2 9e−3 n/a
YB(F,CIRCULAR) 5 4 8 9 0.1 3e−3 3e−2 n/a
ML(V,FIXED) 16 2 357 104 0.5 n/a n/a 5e−16
SOR 296 n/a 1,544 441 0.2 n/a n/a 9e−16

Table 6.37: K = 6, b = (8, 5, 7, 8, 8, 6), Hypo(1)(3.0, 1.5), Erlang(2)(2.5, 5), Hypo(3)(0.8, 2),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(9.0, 5), Hyper(6)(1.4, 1.4, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−2 4e−2 n/a
MVABLO n/a n/a 0 0 0.0 6e−2 4e−2 n/a
M(F,CIRCULAR) 5 5 24 5 0.1 1e−2 1e−2 n/a
YB(F,CIRCULAR) 5 5 13 46 0.1 3e−3 4e−2 n/a
ML(V,FIXED) 15 2 547 330 1.2 n/a n/a 9e−16
SOR 397 n/a 3,569 1,517 0.5 n/a n/a 1e−15

Table 6.38: K = 7, b = (8, 5, 7, 8, 8, 6), Hypo(1)(3.0, 1.5), Erlang(2)(2.5, 5), Hypo(3)(0.8, 2),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(9.0, 5), Hyper(6)(1.4, 1.4, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−2 9e−2 n/a
MVABLO n/a n/a 0 0 0.0 6e−2 4e−2 n/a
M(F,CIRCULAR) 5 8 167 56 0.2 1e−2 2e−2 n/a
YB(V,FIXED) 6 8 25 35 0.2 3e−3 4e−2 n/a
ML(V,FIXED) 16 2 1,178 491 2.5 n/a n/a 4e−16
SOR 506 n/a 9,620 4,307 1.1 n/a n/a 1e−15

Table 6.39: K = 8, b = (8, 5, 7, 8, 8, 6), Hypo(1)(3.0, 1.5), Erlang(2)(2.5, 5), Hypo(3)(0.8, 2),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(9.0, 5), Hyper(6)(1.4, 1.4, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−2 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 6e−2 5e−2 n/a
M(V,FIXED) 4 19 489 158 0.2 6e−3 1e−2 n/a
YB(V,FIXED) 6 9 38 65 0.3 3e−3 5e−2 n/a
ML(V,FIXED) 17 2 2,321 1,006 4.8 n/a n/a 3e−16
SOR 615 n/a 22,468 10,464 2.1 n/a n/a 1e−15
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Tables 6.40, 6.41, 6.42, and 6.43 present the results of the unbalanced network

for 5, 6, 7, 8 customers, respectively. The M method approximates utilization

values by at least 1.5 digits and mean queue length values by at least 0.5 digits

more accurate than CA and MVABLO. CA and MVABLO yield high accuracy

for the performance measures of 5 and 6 customers. Yet, they fail to preserve this

high accuracy in their approximations for 7 and 8 customers, where the number

of queues subject to blocking is higher. YB performs less inner iterations than

M for K ∈ {7, 8}, but the outer iteration counts of YB is more than M and this

adversely affects the flop counts of YB significantly. Having performed less than

one ninth of the flops of the YB method, M is the more accurate and efficient

method for this case of the problem between the two methods. For none of the

numbers of customers, SOR is able to perform less flops than ML.

Table 6.40: K = 5, b = (8,5,7,8,8,6), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−7 3e−4 n/a
MVABLO n/a n/a 0 0 0.0 6e−7 3e−4 n/a
M(F,CIRCULAR) 2 2 2 0 0.0 2e−8 7e−5 n/a
YB(F,CIRCULAR) 3 1 3 6 0.0 5e−7 4e−4 n/a
ML(V,FIXED) 6 2 99 43 0.5 n/a n/a 1e−16
SOR 103 n/a 389 154 0.2 n/a n/a 9e−16

Table 6.41: K = 6, b = (8,5,7,8,8,6), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 4e−8 2e−4 n/a
MVABLO n/a n/a 0 0 0.0 4e−8 2e−4 n/a
M(F,CIRCULAR) 2 2 4 1 0.1 9e−10 4e−5 n/a
YB(F,CIRCULAR) 3 2 5 25 0.1 3e−8 4e−4 n/a
ML(V,FIXED) 6 2 222 127 1.2 n/a n/a 1e−16
SOR 110 n/a 990 421 0.5 n/a n/a 9e−16
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Table 6.42: K = 7, b = (8,5,7,8,8,6), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−1 2e−1 n/a
M(V,FIXED) 2 4 36 11 0.1 8e−3 3e−3 n/a
YB(F,CIRCULAR) 3 2 9 120 0.2 2e−2 5e−3 n/a
ML(V,FIXED) 6 2 453 575 2.5 n/a n/a 5e−16
SOR 473 n/a 8,987 4,026 1.1 n/a n/a 1e−15

Table 6.43: K = 8, b = (8,5,7,8,8,6), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 3e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−1 1e−1 n/a
M(F,CIRCULAR) 2 6 177 76 0.3 3e−4 2e−4 n/a
YB(F,CIRCULAR) 4 2 22 686 0.3 1e−3 2e−2 n/a
ML(V,FIXED) 44 2 8,404 6,659 4.8 n/a n/a 5e−16
SOR 875 n/a 31,980 14,886 2.1 n/a n/a 1e−15

The experiments for problem 4 are repeated by setting b = (8, 4, 4, 8, 8, 4). In

this way, Marie’s method is forced to possess fixed subnetwork topologies and

queues 2, 3, 6 are blocking for K ∈ {5, 6, 7, 8}. Thus, subnetworks resulting from

the decomposition procedure of M are given by the set {{1,2,3},{4,5,6}} for all

numbers of customers. With this setting for 5, 6, 7, 8 customers, the closed QN

has state space sizes of 8,070, 19,938, 43,320, 85,102 and has HLM number of

states of 252, 461, 785, 1,259, respectively. The nonzero elements needed for the

sparse representation of Q for increasing number of customers are 57,489, 155,121,

360,054, and 744,515, respectively. Tables 6.44 through 6.51 show the results of

these experiments.

Tables 6.44, 6.45, 6.46, and 6.47 present the results of the balanced network

for 5, 6, 7, 8 customers, respectively. Results obtained with CA are at most

1 digit accurate for both performance measures. MVABLO approximates the

performance measures at most 0.5 digits more accurate than CA. On the other

hand, M and YB methods are able to achieve at least 1.5 digits of accuracy for

both performance measures. Although M performs more inner iterations than
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YB, YB performs more outer iterations than M. Flop counts of M do not increase

as much as flop counts of YB for increasing number of customers. Hence, this

makes M more efficient than YB. When we look at SOR and ML, we see that

ML performs less flops than SOR method and is more efficient for all numbers of

customers.

Table 6.44: K = 5, b = (8, 4, 4, 8, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(2.5, 5), Hypo(3)(0.8, 2),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(9.0, 5), Hyper(6)(1.4, 1.4, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 1e−1 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 6e−2 4e−2 n/a
M(F,CIRCULAR) 4 7 96 26 0.1 6e−3 1e−2 n/a
YB(F,CIRCULAR) 5 4 7 8 0.1 3e−3 3e−2 n/a
ML(V,FIXED) 16 2 273 109 0.5 n/a n/a 5e−16
SOR 293 n/a 1,214 434 0.2 n/a n/a 1e−15

Table 6.45: K = 6, b = (8, 4, 4, 8, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(2.5, 5), Hypo(3)(0.8, 2),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(9.0, 5), Hyper(6)(1.4, 1.4, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 7e−2 5e−2 n/a
M(F,CIRCULAR) 4 7 159 47 0.1 7e−3 1e−2 n/a
YB(F,CIRCULAR) 5 5 11 48 0.1 4e−3 4e−2 n/a
ML(V,FIXED) 15 2 612 341 1.2 n/a n/a 9e−16
SOR 382 n/a 3,377 1,443 0.5 n/a n/a 1e−15

Table 6.46: K = 7, b = (8, 4, 4, 8, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(2.5, 5), Hypo(3)(0.8, 2),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(9.0, 5), Hyper(6)(1.4, 1.4, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 8e−2 7e−2 n/a
M(F,CIRCULAR) 4 8 243 76 0.2 8e−3 1e−2 n/a
YB(F,CIRCULAR) 6 5 21 257 0.2 6e−3 4e−2 n/a
ML(F,CIRCULAR) 9 2 1,178 514 2.8 n/a n/a 2e−16
SOR 475 n/a 8,731 3,937 1.1 n/a n/a 1e−15
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Table 6.47: K = 8, b = (8, 4, 4, 8, 8, 4), Hypo(1)(3.0, 1.5), Erlang(2)(2.5, 5), Hypo(3)(0.8, 2),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(9.0, 5), Hyper(6)(1.4, 1.4, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 2e−1 3e−1 n/a
MVABLO n/a n/a 0 0 0.0 8e−2 1e−1 n/a
M(F,CIRCULAR) 4 8 380 121 0.3 8e−3 2e−2 n/a
YB(F,CIRCULAR) 6 6 33 691 0.3 7e−3 4e−2 n/a
ML(F,CIRCULAR) 9 2 2,051 939 5.1 n/a n/a 6e−16
SOR 586 n/a 20,099 9,438 2.0 n/a n/a 1e−15

Tables 6.48, 6.49, 6.50, and 6.51 present the results of the unbalanced network

for 5, 6, 7, 8 customers, respectively. For these cases, CA and MVABLO are not

able to achieve more than 1 digit of accuracy in neither performance measure. M

approximates both performance measures with higher accuracy than CA, MV-

ABLO, and YB by acquiring almost 3.5 to 4 digits of accuracy. The number of

inner iterations of M is more than the number of inner iterations of YB, and the

number of outer iterations of YB is more than the number of the outer iterations

of M for all numbers of customers. Having performed less flops than YB for

K > 5, M method turns out to be the more accurate and efficient method for

the unbalanced case between the two. Indeed, the subnetworks’ sizes of M are

bigger compared to the subnetworks’ sizes of YB, and YB performs less flops to

obtain solutions for the subnetworks than M. Thus obtaining a solution for the

state dependent exponential network in YB requires more flops than obtaining

solutions for the subnetworks in M using ML. SOR is unable to converge within

1,000 iterations for K ∈ {7, 8} and performs more flops than ML. In that respect,

ML is more accurate and efficient than SOR for all numbers of customers.

Table 6.48: K = 5, b = (8,4,4,8,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−1 3e−1 n/a
M(F,CIRCULAR) 2 3 25 7 0.1 6e−4 3e−4 n/a
YB(F,CIRCULAR) 3 2 3 4 0.1 2e−2 7e−3 n/a
ML(V,FIXED) 6 2 98 39 0.5 n/a n/a 3e−16
SOR 465 n/a 1,928 689 0.2 n/a n/a 9e−16
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Table 6.49: K = 6, b = (8,4,4,8,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 3e−1 n/a
MVABLO n/a n/a 0 0 0.0 6e−1 3e−1 n/a
M(F,CIRCULAR) 2 6 80 24 0.1 3e−4 2e−4 n/a
YB(F,CIRCULAR) 4 2 6 39 0.1 7e−3 5e−3 n/a
ML(V,FIXED) 43 2 1,538 965 1.2 n/a n/a 7e−16
SOR 895 n/a 7,918 3,380 0.5 n/a n/a 1e−15

Table 6.50: K = 7, b = (8,4,4,8,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 4e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−1 5e−1 n/a
M(F,CIRCULAR) 2 7 129 44 0.2 3e−4 2e−4 n/a
YB(F,CIRCULAR) 4 2 11 176 0.2 7e−3 4e−3 n/a
ML(F,CIRCULAR) 15 2 1,996 3,425 2.8 n/a n/a 8e−16
SOR 1,000∗ n/a 18,379 8,286 1.1 3e−11 2e−11 2e−14

Table 6.51: K = 8, b = (8,4,4,8,8,4), Hypo(1)(3.0, 0.1), Erlang(2)(25.0, 5), Hypo(3)(70.0, 60.0),
Hyper(4)(0.7, 0.7, (0.25, 0.75)), Erlang(5)(0.1, 5), Hyper(6)(0.001, 0.001, (0.9, 0.1))

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−1 5e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−1 5e−1 n/a
M(F,CIRCULAR) 2 7 169 59 0.3 3e−4 2e−4 n/a
YB(F,CIRCULAR) 4 2 18 629 0.3 7e−3 4e−3 n/a
ML(F,CIRCULAR) 17 2 5,553 10,555 5.2 n/a n/a 2e−16
SOR 1,000∗ n/a 34,301 16,103 2.0 6e−10 4e−10 4e−13
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6.5 Problem 5

The fifth problem consists of a closed QN with 8 queues and it has arbitrary

routing probabilities among queues. The problem is considered in order to inves-

tigate the behavior of methods on larger problems. Indeed, the problem includes

cases with state space sizes over one million. The queues have servers with three

hyperexponential service distributions each with 2 phases, three hypoexponential

service distributions each with 2 phases, and two Erlang service distributions each

with 5 phases. Buffer sizes of queues are defined by b = (8, 9, 9, 6, 6, 9, 9, 7). Sub-

networks resulting from the decomposition procedure of the M method is given

by the sets {{1},{2},{3},{4},{5},{6},{7},{8}}, {{1},{2},{3,4,5},{6},{7},{8}},
{{1},{2},{3,4,5},{6,7,8}}, and {{1,2},{3,4,5},{6,7,8}} for 6, 7, 8, 9 customers,

respectively. In this case, the QN has state space sizes of 85,991, 236,172, 578,592,

1,291,130, and HLM number of states of 1,716, 3,430, 6,418, 11,359 for 6, 7, 8, 9

customers, respectively. The number of nonzero elements needed for the sparse

representation of Q for 6, 7, 8, 9 customers are 701,763, 2,087,734, 5,450,599, and

12,807,256, respectively. The topology of the network is depicted in Figure 6.5

and Tables 6.52 through 6.59 give the results obtained with different methods

while analyzing balanced and unbalanced cases of problem 5.
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Figure 6.5: Problem 5.

Tables 6.52, 6.53, 6.54, and 6.55 present the results of the balanced network for

6, 7, 8, 9 customers, respectively. For all numbers of customers, MVABLO yields

1.5 digits accurate results for both performance measures. Although CA provides

at most 1.5 digits of accuracy for both performance measures, its results are not
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better than those of MVABLO. YB method’s approximations for utilization values

are 0.5 digits more accurate than the results of M. Yet, YB performs more flops

than M. Moreover, YB performs more flops than ML for K = {7, 9} and YB is

not useful for these cases of the problem. By providing 2 to 2.5 digits of accuracy

in the approximations, M becomes, if not the more accurate, the more efficient

method when compared with YB. For none of the numbers of customers, SOR

performs less flops than ML.

Table 6.52: K = 6, b = (8, 9, 9, 6, 6, 9, 9, 7), Hypo(1)(1.5, 2.0), Hyper(2)(1.1, 1.1, (0.1, 0.9)),
Erlang(3)(18.0, 5), Hyper(4)(0.9, 0.9, (0.85, 0.15)), Hypo(5)(1.5, 10.0),
Hypo(6)(0.5, 4.0), Hyper(7)(3.5, 3.5, (0.25, 0.75)), Erlang(8)(30, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 4e−2 4e−2 n/a
MVABLO n/a n/a 0 0 0.0 4e−2 4e−2 n/a
M(F,CIRCULAR) 5 4 39 9 0.1 8e−3 1e−2 n/a
YB(V,FIXED) 5 6 45 106 0.3 1e−3 2e−2 n/a
ML(F,CIRCULAR) 9 2 4,844 1,983 7.2 n/a n/a 1e−16
SOR 612 n/a 22,526 10,616 2.2 n/a n/a 1e−15

Table 6.53: K = 7, b = (8, 9, 9, 6, 6, 9, 9, 7), Hypo(1)(1.5, 2.0), Hyper(2)(1.1, 1.1, (0.1, 0.9)),
Erlang(3)(18.0, 5), Hyper(4)(0.9, 0.9, (0.85, 0.15)), Hypo(5)(1.5, 10.0),
Hypo(6)(0.5, 4.0), Hyper(7)(3.5, 3.5, (0.25, 0.75)), Erlang(8)(30, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−2 8e−2 n/a
MVABLO n/a n/a 0 0 0.0 4e−2 4e−2 n/a
M(V,FIXED) 5 7 139 38 0.2 6e−3 9e−3 n/a
YB(V,FIXED) 5 6 131 5,931 0.7 1e−3 2e−2 n/a
ML(F,CIRCULAR) 10 2 15,645 5,413 18.5 n/a n/a 0e+0
SOR 787 n/a 76,160 38,672 5.9 n/a n/a 1e−15
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Table 6.54: K = 8, b = (8, 9, 9, 6, 6, 9, 9, 7), Hypo(1)(1.5, 2.0), Hyper(2)(1.1, 1.1, (0.1, 0.9)),
Erlang(3)(18.0, 5), Hyper(4)(0.9, 0.9, (0.85, 0.15)), Hypo(5)(1.5, 10.0),
Hypo(6)(0.5, 4.0), Hyper(7)(3.5, 3.5, (0.25, 0.75)), Erlang(8)(30, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 8e−2 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 4e−2 4e−2 n/a
M(V,FIXED) 4 11 487 138 0.2 6e−3 7e−3 n/a
YB(V,FIXED) 5 7 232 566 1.3 1e−3 2e−2 n/a
ML(F,CIRCULAR) 10 2 25,258 12,430 43.1 n/a n/a 1e−16
SOR 309 n/a 100,000∗ 38,052 14.4 1e−5 2e−5 6e−9

Table 6.55: K = 9, b = (8, 9, 9, 6, 6, 9, 9, 7), Hypo(1)(1.5, 2.0), Hyper(2)(1.1, 1.1, (0.1, 0.9)),
Erlang(3)(18.0, 5), Hyper(4)(0.9, 0.9, (0.85, 0.15)), Hypo(5)(1.5, 10.0),
Hypo(6)(0.5, 4.0), Hyper(7)(3.5, 3.5, (0.25, 0.75)), Erlang(8)(30, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 1e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−2 5e−2 n/a
M(F,CIRCULAR) 4 6 2,447 1,128 1.3 5e−3 8e−3 n/a
YB(F,CIRCULAR) 5 5 815 38,583 2.4 1e−3 2e−2 n/a
ML(F,CIRCULAR) 10 2 54,231 26,324 92.6 n/a n/a 5e−16
SOR 200 n/a 100,000∗ 56,018 31.9 3e−4 7e−4 1e−7

The results obtained for the unbalanced case can be seen in Tables 6.56,

6.57, 6.58, and 6.59. For K = 6, CA and MVABLO’s approximations yield 2

digits accurate results for utilization values and 2.5 digits accurate results for

mean queue length values. By performing negligible number of floating–point

operations, CA and MVABLO turn out to be the most accurate and efficient

methods in this case. Yet, as the number of customers increases, M yields at

least 3.5 digits accurate results for both performance measures, while CA and

MVABLO are able to provide at most 1.5 digits of accuracy. YB preserves at

least 2 digits of accuracy for utilization values and 2.5 digits of accuracy for

mean queue length values for K > 6. Yet, the flop counts of M are less than

the flop counts of YB, and thus, M emerges as the more accurate and efficient

method between the two approximative methods. SOR does not converge to the

predefined tolerance within the predefined iteration count or time bound.
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Table 6.56: K = 6, b = (8, 9, 9, 6, 6, 9, 9, 7), Hypo(1)(200.0, 90.0),
Hyper(2)(1, 000.0, 1, 000.0, (0.1, 0.9)), Erlang(3)(0.15, 5),
Hyper(4)(0.008, 0.008, (0.85, 0.15)), Hypo(5)(8, 000.0, 5, 000.0),
Hypo(6)(0.1, 0.05), Hyper(7)(10.0, 10.0, (0.25, 0.75)), Erlang(8)(30.0, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 1e−2 5e−3 n/a
MVABLO n/a n/a 0 0 0.0 1e−2 5e−3 n/a
M(F,CIRCULAR) 4 3 34 8 0.1 2e−2 8e−3 n/a
YB(V,FIXED) 4 4 55 1,846 0.3 4e−2 3e−2 n/a
ML(V,FIXED) 31 2 6,806 28,752 6.4 n/a n/a 6e−16
SOR 1,000∗ n/a 36,842 17,361 2.2 8e−9 3e−8 5e−12

Table 6.57: K = 7, b = (8, 9, 9, 6, 6, 9, 9, 7), Hypo(1)(200.0, 90.0),
Hyper(2)(1, 000.0, 1, 000.0, (0.1, 0.9)), Erlang(3)(0.15, 5),
Hyper(4)(0.008, 0.008, (0.85, 0.15)), Hypo(5)(8, 000.0, 5, 000.0),
Hypo(6)(0.1, 0.05), Hyper(7)(10.0, 10.0, (0.25, 0.75)), Erlang(8)(30.0, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−2 6e−2 n/a
MVABLO n/a n/a 0 0 0.0 5e−2 1e−1 n/a
M(V,FIXED) 4 4 116 32 0.2 7e−3 2e−3 n/a
YB(F,CIRCULAR) 4 3 117 5,663 0.7 2e−2 3e−3 n/a
ML(V,FIXED) 45 2 20,817 42,597 16.5 n/a n/a 5e−16
SOR 1,000∗ n/a 96,856 49,184 5.9 4e−7 2e−6 3e−10

Table 6.58: K = 8, b = (8, 9, 9, 6, 6, 9, 9, 7), Hypo(1)(200.0, 90.0),
Hyper(2)(1, 000.0, 1, 000.0, (0.1, 0.9)), Erlang(3)(0.15, 5),
Hyper(4)(0.008, 0.008, (0.85, 0.15)), Hypo(5)(8, 000.0, 5, 000.0),
Hypo(6)(0.1, 0.05), Hyper(7)(10.0, 10.0, (0.25, 0.75)), Erlang(8)(30.0, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−2 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−2 2e−1 n/a
M(F,CIRCULAR) 4 4 357 155 0.3 2e−4 6e−4 n/a
YB(F,CIRCULAR) 4 3 403 31,708 1.3 2e−2 3e−3 n/a
ML(V,FIXED) 46 2 48,429 123,691 38.5 n/a n/a 3e−16
SOR 435 n/a 100,000∗ 53,554 14.4 5e−4 2e−3 4e−7
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Table 6.59: K = 9, b = (8, 9, 9, 6, 6, 9, 9, 7), Hypo(1)(200.0, 90.0),
Hyper(2)(1, 000.0, 1, 000.0, (0.1, 0.9)), Erlang(3)(0.15, 5),
Hyper(4)(0.008, 0.008, (0.85, 0.15)), Hypo(5)(8, 000.0, 5, 000.0),
Hypo(6)(0.1, 0.05), Hyper(7)(10.0, 10.0, (0.25, 0.75)), Erlang(8)(30.0, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−2 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−2 3e−1 n/a
M(F,CIRCULAR) 4 5 1,859 1,884 1.9 2e−4 6e−4 n/a
YB(F,CIRCULAR) 4 3 674 34,848 2.4 2e−2 2e−3 n/a
ML(F,CIRCULAR) 12 2 67,760 241,214 92.6 n/a n/a 1e−16
SOR 141 n/a 100,000∗ 39,515 31.9 2e−2 8e−2 2e−5

Another set of experiments for problem 5 is conducted by setting b =

(5, 9, 9, 5, 5, 9, 9, 5). With this setting for 6, 7, 8, 9 customers, the closed QN

has state space sizes of 85,980, 235,960, 576,670, 1,279,970, and HLM numbers of

states of 1,712, 3,400, 6,291, 10,960, respectively. The nonzero elements needed

for the sparse representation of Q for 6, 7, 8, 9 customers are 701,703, 2,086,332,

5,435,949, and 12,712,452, respectively. Tables 6.60 through 6.67 show the results

of these experiments.

The results obtained for the balanced network can be seen in Tables 6.60,

6.61, 6.62, and 6.63 for 6, 7, 8, 9 customers, respectively. In the balanced case,

MVABLO yields 1.5 digits of accuracy for both performance measures in all cases.

CA yields 1 digit of accuracy for average number of customer values in all cases

and 1 digit of accuracy for utilization values in all cases exceptK = 7. We see that

utilization values obtained using M yield 2.5 digits of accuracy. Those obtained

with YB are equally good or slightly better. On the other hand, mean queue

length values obtained using YB yield 2 digits of accuracy; those obtained with

M are equally good or slightly better. Since ML converges within 10 iterations

in all cases, YB ends up performing more flops than ML for K > 6, while M

performs 5 to 20 times less flops than ML. Additionally, when we consider the

accuracy of M and compare its flop counts with ML and YB, we conclude that

M is the most efficient method.
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Table 6.60: K = 6, b = (5, 9, 9, 5, 5, 9, 9, 5), Hypo(1)(1.5, 2.0),
Hyper(2)(1.1, 1.1, (0.1, 0.9)), Erlang(3)(18.0, 5),
Hyper(4)(0.9, 0.9, (0.85, 0.15)), Hypo(5)(1.5, 10.0),
Hypo(6)(0.5, 4.0), Hyper(7)(3.5, 3.5, (0.25, 0.75)), Erlang(8)(30, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 9e−2 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 4e−2 4e−2 n/a
M(V,FIXED) 4 12 806 258 0.3 4e−3 6e−3 n/a
YB(F,CIRCULAR) 5 4 45 767 0.3 1e−3 2e−2 n/a
ML(F,CIRCULAR) 9 2 4,793 1,980 7.2 n/a n/a 1e−16
SOR 612 n/a 25,954 10,594 2.2 n/a n/a 1e−15

Table 6.61: K = 7, b = (5, 9, 9, 5, 5, 9, 9, 5), Hypo(1)(1.5, 2.0),
Hyper(2)(1.1, 1.1, (0.1, 0.9)), Erlang(3)(18.0, 5),
Hyper(4)(0.9, 0.9, (0.85, 0.15)), Hypo(5)(1.5, 10.0),
Hypo(6)(0.5, 4.0), Hyper(7)(3.5, 3.5, (0.25, 0.75)), Erlang(8)(30, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−2 8e−2 n/a
MVABLO n/a n/a 0 0 0.0 4e−2 4e−2 n/a
M(V,FIXED) 4 13 1,393 697 0.5 5e−3 7e−3 n/a
YB(F,CIRCULAR) 5 4 122 5,445 0.7 1e−3 2e−2 n/a
ML(F,CIRCULAR) 10 2 11,157 5,306 18.5 n/a n/a 0e+0
SOR 790 n/a 87,604 38,713 5.9 n/a n/a 1e−15

Table 6.62: K = 8, b = (5, 9, 9, 5, 5, 9, 9, 5), Hypo(1)(1.5, 2.0),
Hyper(2)(1.1, 1.1, (0.1, 0.9)), Erlang(3)(18.0, 5),
Hyper(4)(0.9, 0.9, (0.85, 0.15)), Hypo(5)(1.5, 10.0),
Hypo(6)(0.5, 4.0), Hyper(7)(3.5, 3.5, (0.25, 0.75)), Erlang(8)(30, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 9e−2 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−2 5e−2 n/a
M(V,FIXED) 4 14 2,373 1,318 0.7 5e−3 8e−3 n/a
YB(V,FIXED) 5 7 365 30,002 1.3 2e−3 2e−2 n/a
ML(F,CIRCULAR) 10 2 24,946 12,196 42.9 n/a n/a 2e−16
SOR 438 n/a 100,000∗ 53,736 14.3 7e−7 1e−6 4e−10
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Table 6.63: K = 9, b = (5, 9, 9, 5, 5, 9, 9, 5), Hypo(1)(1.5, 2.0),
Hyper(2)(1.1, 1.1, (0.1, 0.9)), Erlang(3)(18.0, 5),
Hyper(4)(0.9, 0.9, (0.85, 0.15)), Hypo(5)(1.5, 10.0),
Hypo(6)(0.5, 4.0), Hyper(7)(3.5, 3.5, (0.25, 0.75)), Erlang(8)(30, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 1e−1 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 5e−2 6e−2 n/a
M(F,CIRCULAR) 4 6 2,301 1,060 1.7 6e−3 9e−3 n/a
YB(F,CIRCULAR) 5 5 1,155 131,150 2.3 3e−3 2e−2 n/a
ML(F,CIRCULAR) 10 2 52,789 25,683 91.5 n/a n/a 6e−16
SOR 203 n/a 100,000∗ 56,345 31.6 4e−4 9e−4 1e−7

The results obtained for the unbalanced network can be seen in Tables 6.64,

6.65, 6.66, and 6.67 for 6, 7, 8, 9 customers, respectively. In all cases CA and

MVABLO yield 1.5 digits accuracy for utilization values and 0.5 to 1.5 digits

accuracy for mean queue length values. Results with YB are 2 digits accurate in

all cases. On the other hand, results with M provide 2.5 to 4 digits of accuracy

for both performance measures and performs at least 5 times less flops than YB.

Hence, M emerges again as the more accurate and efficient method between the

two.

Table 6.64: K = 6, b = (5, 9, 9, 5, 5, 9, 9, 5), Hypo(1)(200.0, 90.0),
Hyper(2)(1, 000.0, 1, 000.0, (0.1, 0.9)), Erlang(3)(0.15, 5),
Hyper(4)(0.008, 0.008, (0.85, 0.15)), Hypo(5)(8, 000.0, 5, 000.0),
Hypo(6)(0.1, 0.05), Hyper(7)(10.0, 10.0, (0.25, 0.75)), Erlang(8)(30.0, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 7e−2 7e−2 n/a
MVABLO n/a n/a 0 0 0.0 6e−2 1e−1 n/a
M(F,CIRCULAR) 4 4 359 169 0.4 4e−3 2e−3 n/a
YB(V,FIXED) 4 4 86 4,253 0.3 2e−2 1e−2 n/a
ML(V,FIXED) 45 2 8,633 36,852 6.4 n/a n/a 6e−16
SOR 1,000∗ n/a 42,446 17,307 2.2 4e−9 1e−8 4e−12
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Table 6.65: K = 7, b = (5, 9, 9, 5, 5, 9, 9, 5), Hypo(1)(200.0, 90.0),
Hyper(2)(1, 000.0, 1, 000.0, (0.1, 0.9)), Erlang(3)(0.15, 5),
Hyper(4)(0.008, 0.008, (0.85, 0.15)), Hypo(5)(8, 000.0, 5, 000.0),
Hypo(6)(0.1, 0.05), Hyper(7)(10.0, 10.0, (0.25, 0.75)), Erlang(8)(30.0, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−2 1e−1 n/a
MVABLO n/a n/a 0 0 0.0 7e−2 2e−1 n/a
M(V,FIXED) 4 11 934 451 0.5 2e−4 7e−4 n/a
YB(F,CIRCULAR) 4 3 96 2,883 0.7 2e−2 1e−2 n/a
ML(V,FIXED) 45 2 20,742 41,487 16.5 n/a n/a 7e−16
SOR 1,000∗ n/a 96,834 49,000 5.9 4e−9 1e−8 4e−12

Table 6.66: K = 8, b = (5, 9, 9, 5, 5, 9, 9, 5), Hypo(1)(200.0, 90.0),
Hyper(2)(1, 000.0, 1, 000.0, (0.1, 0.9)), Erlang(3)(0.15, 5),
Hyper(4)(0.008, 0.008, (0.85, 0.15)), Hypo(5)(8, 000.0, 5, 000.0),
Hypo(6)(0.1, 0.05), Hyper(7)(10.0, 10.0, (0.25, 0.75)), Erlang(8)(30.0, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 6e−2 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 7e−2 3e−1 n/a
M(V,FIXED) 4 11 1,453 817 0.7 2e−4 6e−4 n/a
YB(V,FIXED) 4 4 259 11,322 1.3 2e−2 1e−2 n/a
ML(V,FIXED) 45 2 47,105 128,651 38.2 n/a n/a 7e−16
SOR 438 n/a 100,000∗ 53,736 14.3 7e−5 2e−4 7e−8

Table 6.67: K = 9, b = (5, 9, 9, 5, 5, 9, 9, 5), Hypo(1)(200.0, 90.0),
Hyper(2)(1, 000.0, 1, 000.0, (0.1, 0.9)), Erlang(3)(0.15, 5),
Hyper(4)(0.008, 0.008, (0.85, 0.15)), Hypo(5)(8, 000.0, 5, 000.0),
Hypo(6)(0.1, 0.05), Hyper(7)(10.0, 10.0, (0.25, 0.75)), Erlang(8)(30.0, 5)

oIter iIter T MF MB RE(ρ) RE(E[X]) Res
CA n/a n/a 0 0 0.0 5e−2 2e−1 n/a
MVABLO n/a n/a 0 0 0.0 7e−2 4e−1 n/a
M(V,FIXED) 4 12 2,130 1,636 1.1 2e−4 5e−4 n/a
YB(F,CIRCULAR) 4 3 648 35,245 2.3 2e−2 9e−3 n/a
ML(F,CIRCULAR) 13 2 70,752 158,032 91.5 n/a n/a 2e−16
SOR 203 n/a 100,000∗ 56,345 31.6 4e−3 1e−2 4e−6
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In conclusion, CA and MVABLO produce acceptable results for problems

which have queues with balanced service distributions and have small number

of queues subject to blocking. On the other hand, although M and YB present

relatively more accurate results for all problems, they present results with at least

2 digits accuracy for unbalanced cases. Also, unlike the results obtained with CA

and MVABLO, an increase in the number of queues subject to blocking causes

little or no effect in the results obtained with M and YB. Therefore, M and YB

arise as better methods than CA and MVABLO for analyzing problems with

unbalanced service demands and many queues subject to blocking. When we

compare the accuracies of M and YB, especially in the problems with unbalanced

service demands and many queues subject to blocking, we see that M can produce

at least 0.5 digits more accurate results for utilization values than YB. When we

compare the efficiencies of M and YB, we see that the number of flops performed

by YB to compute arrival rates of queues mostly depends on the number of

flops performed for obtaining the solution of the exponential network generated

in each iteration step. Therefore, for problems which require small number of

flops for the solution of the exponential network, YB executes less flops than

M. Also, for problems which result in subnetworks with large number of queues

for M, YB may end up performing less flops than M through its approximation

process. Consequently, efficiencies of M and YB depend heavily on the particular

problem. When we compare ML and SOR methods, we see that ML achieves

convergence within 100 iterations in all problems. Yet, SOR does not converge

in 1,000 iterations or 100,000 seconds for some of the problems. Clearly, number

of iterations determines the number of flops performed by the methods, and ML

performs less flops than SOR in most problems. Even though SOR method takes

less space in memory than ML, in most of the problems ML requires less memory

than the corresponding sparse representation, thereby, being capable of solving

variants of the problems with larger number of customers. Since M and YB are

based on decomposition, the space requirements of M and YB are smaller than

that of ML and SOR for big problems. Actually, the usage of ML in M and YB

introduces another dimension of scalability to the space requirements of the two

methods. A summary of the iteration counts and relative accuracies obtained for

all problems using the methods CA, MVABLO, M, and YB are given in Table
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6.68.

Table 6.68: Average number of outer iterations performed by M and YB, and
average accuracy for utilization and mean queue length values in all problems.

oIter RE(ρ) RE(E[X])
CA n/a 2e−1 2e−1
MVABLO n/a 2e−1 2e−1
M 4 6e−3 8e−3
YB 5 9e−3 2e−2



Chapter 7

Conclusion

In this thesis, we consider two approximative iterative methods based on de-

composition from the literature, namely Marie’s method and Yao and Buzacott’s

method. It is shown that these methods can be used for analyzing closed QNs

with phase type service distributions and arbitrary buffer sizes. While analyzing

such closed QNs, subnetworks resulting from decomposition can be represented

using Kronecker products. This is shown to add another level of scalability to

the methods by requiring less space than the ordinary sparse representation of

subnetworks. Furthermore, the Kronecker representation of subnetworks enables

the use of a multilevel method in the solution procedures of Marie’s method and

Yao and Buzacott’s method.

The effect of using the multilevel method is analyzed through a set of numer-

ical experiments, which show that the number of iterations and floating point

operations taken by the multilevel method are generally much smaller than those

of the SOR method. Thus, the employment of the multilevel method within

Marie’s method and Yao and Buzacott’s method makes the methods more ef-

ficient. The methods are also compared with two analytical methods from the

literature, namely the convolution algorithm and Akyildiz’s mean value analysis,

on a number of examples and the cases in which Marie’s method and Yao and

Buzacott’s method yield better approximations are identified. Indeed, Marie’s

method and Yao and Buzacott’s method yield results with relative errors smaller
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than 10−5 for unbalanced cases of problems 2, 3, and 4. We see that Marie’s

method and Yao and Buzacott’s method yield more accurate results for rela-

tively crowded closed QNs with unbalanced service demands. In general, Marie’s

method approximates the performance measures of utilization and average num-

ber of customers in queues at least half a digit better than Yao and Buzacott’s

method. The efficiency of the algorithms may present different behaviour for

different types of networks. For instance, an unbalanced decomposition of the

network in Marie’s method may cause Marie’s method to be less efficient than

Yao and Buzacott’s method, whereas Yao and Buzacott’s method may be less

efficient than Marie’s method for problems which have a large high level model

tieing together the low level models in the Kronecker representation of the closed

QN and performs an extensive number of floating point operations to obtain the

steady–state solution of the state–dependent exponential network.

Being fixed point iterations, Marie’s method and Yao and Buzacott’s method

are analyzed for the existence of a fixed–point and it is proved that a fixed–point

exists for each method. Complexity analysis of the methods for one iteration is

also given together with the complexity analysis of the other methods used.

As an extension, numerical experiments can be conducted for multiple server

queues by modifying the software to include multiple servers. Other than using

aggregation on phases, a new partitioning of the state space for phase–type service

distributions can be investigated for the ML method. This may introduce a

reduction in computational complexity and therefore time for the ML method.

As future work, the uniqueness of the fixed–point in Marie’s method and Yao

and Buzacott’s method can be investigated. Necessary and sufficient conditions

for the convergence of iterative methods based on decomposition can be given.

Consequently, problem types that possess these features can be considered as case

studies.
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Appendix A

Readme of software

1. A Closed QN is defined through text files located under a directory.

The text files describing the queues are named as Txx.txt and

ALFAxx.txt, where "xx" is the queue number. Routing probabilities

among queues are defined by the text file P.txt.

- Txx.txt represents phase transitions in the matrix T for service

distribution of queue "xx".

- ALFAxx.txt represents the initial distribution vector ALFA

corresponding to T for queue "xx".

Sample text files for a problem are given below:

P.txt:

0 0.5 0.5

1 0 0

1 0 0

ALFA1.txt:

9.950247518564047e-001 4.975248143595290e-003
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T1.txt:

-1.990049503712809e+000 0

0 -9.950496287190580e-003

ALFA2.txt:

1 0

T2.txt:

-1 1

0 -1

ALFA3.txt:

1 0

T3.txt:

-2 2

0 -2

**The text files included here, i.e., within directory ’EXM’,

define a representation for the first example in Marie’s paper.

2. Program starts with Main.m.

3. A sample program run:

>> K = 6;

>> bv = [6 6 6];

>> dir = ’EXM’

>> Main(K,bv,dir)

>>

>> 1. CONVOLUTION ALGORITHM.
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>> 2. AKYILDIZ’S MEAN VALUE ANALYSIS (MVABLO).

>> 3. MARIE’S METHOD USING ML METHOD.

>> 4. YAO & BUZACOTT’S METHOD USING ML METHOD.

>> 5. SOLUTION THROUGH ML METHOD.

>> 6. SOLUTION THROUGH POWER, JOR, OR SOR METHODS.

>> Enter method number >

defines a closed QN which has 3 queueing stations with buffer

sizes of 6, and 6 customers. ’EXM’ is the directory name and

the text files are T1.txt, T2.txt, T3.txt, ALFA1.txt, ALFA2.txt,

and ALFA3.txt.

>> ...

>> Enter method number (0 (zero) to exit) > 3

>>

>> Cycle type for ML method:

>> 1. V-cycle

>> 2. F-cycle

>> 3. W-cycle

>> Enter your choice of cycle type > 2

defines the cycle type for ML method.

>> ...

>> Enter your choice of cycle type > 2

>>

>> Smoother type for ML method:

>> 1. Power Method

>> 2. JOR Method

>> 3. SOR method

>> Enter your choice of smoother type > 3

defines the iterative method to be used as smoother in the ML method.
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>> ...

>> Enter your choice of smoother type> 3

>>

>> Enter relaxation parameter w (0<=w<=2) for smoother > 0.5

defines the relaxation parameter for JOR and SOR methods.

>> ...

>> Enter relaxation parameter w (0<=w<=2) for smoother > 0.5

>>

>> Enter number of pre and post smoothings for this smoother type:

>> pre > 1

>> post > 1

defines the number of pre and post smoothings in the ML method.

>> ...

>> pre > 1

>> post > 1

>>

>> Enter approximation accuracy > 10e-8

defines the solver’s stopping tolerance on the approximate error.

>> ...

>> Enter approximation accuracy > 10e-8

>>

>> Enter the maximum number of cycles > 100

defines the maximum number of cycles that need to be executed.

>> ...
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>> Enter the maximum number of cycles > 100

>>

>> File type(s) to save results:

>> 1. txt

>> 2. xls

>> 3. both

>> Enter your choice of file type(s) for saving results > 3

defines the file type(s) the program will save the results in.

4. Output:

Output files can be txt or xls files. They include steady-state

probability vectors, marginal queue length distributions

of queueing stations or subnetworks, thruputs of queueing stations,

and mean queue lengths of queueing stations.


