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ABSTRACT

VISUALIZATION OF URBAN ENVIRONMENTS

Türker Yılmaz

Ph.D. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Güdükbay

June, 2007

Modeling and visualization of large geometric environments is a popular research

area in computer graphics. In this dissertation, a framework for modeling and

stereoscopic visualization of large and complex urban environments is presented.

The occlusion culling and view-frustum culling is performed to eliminate most

of the geometry that do not contribute to the user’s final view. For the occlu-

sion culling process, the shrinking method is employed but performed using a

novel Minkowski-difference-based approach. In order to represent partial visibil-

ity, a novel building representation method, called the slice-wise representation

is developed. This method is able to represent the preprocessed partial visibility

with huge reductions in the storage requirement. The resultant visibility list is

rendered using a graphics-processing-unit-based algorithm, which perfectly fits

into the proposed slice-wise representation. The stereoscopic visualization de-

pends on the calculated eye positions during walkthrough and the visibility lists

for both eyes are determined using the preprocessed occlusion information. The

view-frustum culling operation is performed once instead of two for both eyes.

The proposed algorithms were implemented on personal computers. Performance

experiments show that, the proposed occlusion culling method and the usage of

the slice-wise representation increase the frame rate performance by 81 %; the

graphics-processing-unit-based display algorithm increases it by an additional

315 % and decrease the storage requirement by 97 % as compared to occlusion

culling using building-level granularity and not using the graphics hardware. We

show that, a smooth and real-time visualization of large and complex urban en-

vironments can be achieved by using the proposed framework.

Keywords: Stereoscopic visualization, slice-wise representation, space subdivi-

sion, octree, occlusion culling, occluder shrinking, Minkowski difference, from-

region visibility, urban visualization, visibility processing.
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ÖZET

YERLEŞİM ALANLARININ GÖRÜNTÜLENMESİ

Türker Yılmaz

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Doç. Dr. Uğur Güdükbay

Haziran, 2007

Bilgisayar grafiklerinde geniş geometrik ortamların modellenmesi ve görüntülen-

mesi popüler bir araştırma alanıdır. Bu tezde, geniş ve karmaşık şehir ortam-

larının üretilmesi ve stereoskopik olarak görüntülenmesi için bir çerçeve sunul-

maktadır. Kullanıcının göreceǧi görüntüye katkıda bulunmayan geometrinin

çoǧunun elenmesi için, kapatılan alanların atılması ve bakış piramidi dışında kalan

alanların ayıklanması yöntemleri uygulanmaktadır. Kapatılan alanların atılması

işlemi için daraltma yöntemi, yeni bir Minkowski farkına dayanan yaklaşım

ile uygulanmaktadır. Kısmı̂ görüntülemeyi saǧlayabilmek için, dilimsel temsil

adı verilen yeni bir bina temsil yöntemi geliştirilmiştir. Bu yöntem sayesinde,

kısmı̂ görünürlük, depolama ihtiyacında muazzam azaltmalar saǧlanarak tem-

sil edilebilmektedir. Elde edilen görüntü listesi grafik işlemci ünitesi tabanlı

bir algoritma aracılıǧıyla görüntülenmektedir. Stereoskopik görüntüleme, ge-

zinti esnasında hesaplanan göz pozisyonlarına dayanmakta ve görüntü listeleri

tespit edilmiş kapatılan alanların bilgisi kullanılarak elde edilmektedir. Stereos-

kopik görüntüleme için bakış piramidi dışındaki nesnelerin ayıklanması işlemi,

her iki göz için iki yerine bir kez uygulanmaktadır. Önerilen algoritmalar

kişisel bilgisayarlarda kodlanmıştır. Performans deneyleri, kapatılan alanların

atılması yöntemi ile dilimsel veri yapısı kullanımının, standart görüntülemenin

kullanıldıǧı bina seviyesindeki kapatılan alanların ayıklanması yöntemine göre

performansı; görüntü karesi hızı olarak % 81 arttırdıǧını; grafik işlemci ünitesi

tabanlı yöntem kullanımının da buna % 315 ilave artış saǧladıǧını ve depolama

ihtiyacını % 97 azalttıǧını göstermektedir. Önerilen çerçevenin kullanılmasının,

büyük ve karmaşık şehir modellerinin düzgün ve gerçek zamanlı görüntülenmesini

saǧladıǧı gösterilmiştir.

Anahtar sözcükler : Stereoskopik görüntüleme, dilimsel veri yapısı, uzay alt

bölümleme, sekizli ağaçlar, kapatılan alanların ayıklanması, kapatanların daral-

tılması, Minkowski farkı, bölgeden görüş, şehir görüntüleme, görünürlük işleme.
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Chapter 1

Introduction

Modeling and visualization of large and complex environments is a popular re-

search area in computer graphics. Recent developments in processors and graph-

ics cards, the amount of available memory and the development of computer

graphics modeling and rendering techniques facilitate to run high quality sim-

ulations. Applications cover a large spectrum from visual simulations, military

training and city planning to video games.

Modern graphics workstations allow rendering of millions of polygons per second.

No matter how much graphics hardware evolves, human being is going to crave

for what is impractical for those hardware to render at interactive frame rates.

Therefore, it has become a race between hardware developers and researchers, to

render more detailed graphics by using the lower bounded algorithms that can

be achieved at present time.

In general, geometry processing is the main bottleneck of all graphics applications.

Even high-end graphics workstations have the ability to draw only a very small

fraction of triangles needed to draw large complex scenes at interactive frame

rates. Furthermore, virtual reality applications need twice the processing power

as needed for their monoscopic counterparts. Therefore, it is crucial to send only

the visible parts of the geometry to the rendering pipeline. Besides, if processing

power needed exceeds the capacity of the hardware, it is necessary to approximate

these parts up to a certain threshold, in order to achieve interactive frame rates.
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CHAPTER 1. INTRODUCTION 2

The advances in graphics hardware allow detection of occluded regions of urban

geometry, even with complex 3D buildings. Visual simulations, urban combat

simulations and city engineering applications require highly detailed models and

realistic views of an urban scene. Occlusion detection using preprocessing is a

very common approach, because of its high polygon reduction and its ability to

handle general 3D buildings.

Visualizing urban environments is one of the most challenging areas in computer

graphics, mainly because of the unorganized geometry and their complex nature.

Attempts to reduce this complexity include either preprocessing or assuming sim-

pler geometry for the buildings in the urban environment or both. And since

virtual reality applications need twice the processing power of their monoscopic

counterparts, it is crucial to send only the visible parts of the geometry to the

rendering pipeline. For interactive walkthroughs of large building models or city

like scenes, a system must store in memory and render only a small portion of the

model at each frame. The most important challenge is to identify the relevant

portions of the model, swap them into memory by using a robust database access

and render at interactive frame rates, as the user changes position and viewing

direction.

In order to send only the related portions of the scene, thereby allowing the

hardware to render the scene at interactive frame rates (17 and above frame

rates per second), there are mainly three types of culling methods to get rid of

the irrelevant portions of the geometry. One of them is view frustum culling

(VFC) that discards the objects that are out of the field of view. Occlusion

culling eliminates the parts that are occluded by front objects. The last one is

back-face culling, which discards those polygons whose normals are facing away

from the viewer. Back-face culling works for convex objects. View frustum culling

is performed by the evaluation of the plane equations that form the view frustum.

Back-facing polygons are eliminated if the dot product of the viewing direction

and polygon normal is greater than zero. Back-face culling is mostly implemented

in hardware in most of graphics boards. One specific work about back-face culling

is [64], where the authors have some improvements compared to the hardware

implementation.
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In this dissertation, we propose a framework for the stereoscopic visualization of

urban environments using a conservative visibility determination algorithm and

several other optimization schemes, such as using graphics processing unit (GPU)

for rendering and VFC to speed up the rendering process. The proposed VFC

culling scheme is for the stereoscopic rendering. The main attention is given to

the occlusion culling process, where the most performance gain is achieved.

The visible geometry in a typical urban walkthrough mainly consists of partially

visible buildings. Most occlusion-culling algorithms, in which the granularity is

buildings, process these partially visible buildings as if they are completely visible.

To address the problem of partial visibility, we propose a storage scheme, called

slice-wise representation, that represents buildings in terms of slices parallel to

the coordinate axes. We observe that the visible parts of the objects usually have

simple shapes. This observation establishes the base for occlusion culling where

the occlusion granularity is individual slices. The proposed slice-wise represen-

tation has minimal storage requirements. We also propose to shrink general 3D

occluders in a scene to find volumetric occlusion.

Generally the techniques for speeding up the rendering process is applied sepa-

rately for each eye during a stereoscopic visualization. In our approach, VFC for

stereoscopic visualization is performed once, instead of two for both eyes. The us-

age of the slice-wise representation is utilized for the GPU and high performances

are achieved in stereo, by accessing the predetermined visibility information di-

rectly.

The proposed framework is tested on several urban models ranging from 500K to

46M polygons. Empirical results show that, significant increase in frame rates and

decrease in the number of processed polygons can be achieved using the proposed

slice-wise occlusion-culling with GPU-based rendering and the VFC approach for

stereoscopic visualization, as compared to an occlusion-culling method, where the

granularity is individual buildings and regular VFC approach is applied for the

stereoscopic visualization.
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1.1 Contributions

The contributions of this dissertation can be listed as follows:

• an automatic city modeling approach and its algorithms, which is able to

model a city given that the ground plans are available in electronic formats,

(see Appendix A),

• a navigation space extraction algorithm, which determines the view-cells to

be used for the occlusion culling process, (see Chapter 3),

• a novel storage scheme, which takes advantage of the special topology of

buildings and exploits real-world occlusion characteristics in urban scenes

by subdividing the objects into slices parallel to the coordinate axes and

allowing partial visibility to be stored in a very low amount of information,

(see Chapter 4),

• an occluder-shrinking algorithm to achieve conservative visibility, which is

the first demonstrated attempt that can also be applied to general noncon-

vex occluders, (see Chapter 4),

• a simple view-frustum culling approach, in which only one application be-

comes enough from a suitable culling location calculated with respect to

the two eye coordinates, instead of two for the stereoscopic visualization,

(see Chapter 5),

• the utilization of the GPU for the occlusion culled scenes, in the context

of the developed slice-wise representation, and improved rendering perfor-

mance of the urban scenes by using the GPU, (see Chapter 5).

The contributions presented in this dissertation has been published in several

journals and conferences. Below is the list of publications for the contributions

of the dissertation:

• T. Yılmaz, U. Güdükbay, and V. Akman.“Modeling and Visualization of

Complex Geometric Environments.”, Chapter 1 in Geometric Modeling:

Techniques, Applications, Systems and Tools, pages 3–30, Kluwer Academic

Publishers ISBN 1-4020-1817-7, 2004.
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• T. Yılmaz and U. Güdükbay. “Extraction of 3D navigation space in virtual

urban environments.”, In Proc. of the 13th European Signal Processing

Conference (EUSIPCO’05), Antalya, Turkey, 2005.

• O. Oğuz, M. E. Aran, T. Yılmaz, and U. Güdükbay. “Bina tahsis plan-

larından 3-boyutlu Şehir modellerinin üretilmesi ve görüntülenmesi.”, In

IEEE Sinyal İşleme ve Uygulamaları Kurultayı (SIU’06), Antalya, Turkey,

2006.

• O. Oğuz, M. E. Aran, T. Yılmaz, and U. Güdükbay. “Automatic produc-

tion and visualization of urban models from building allocation plans.”, In

Proceedings of the Brazilian Symposium on Computer Graphics and Image

Processing (SIBGRAPI’06–Technical Posters Section), Brazil, 2006.

• T. Yılmaz and U. Güdükbay. “Conservative occlusion culling for urban vi-

sualization using a slice-wise data structure.”, doi:10.1016/j.gmod.2007.01.002,

Graphical Models (to appear), 2007.

• T. Yılmaz and U. Güdükbay. “GPU-based stereoscopic urban visualiza-

tion”, (submitted to the Visual Computer).

1.2 Outline of the Dissertation

In the next Chapter, we give the related work for the stereoscopic visualization of

urban environments. In Chapter 3, we describe the navigation space extraction

algorithm for urban models. In Chapter 4, we describe our slice-wise representa-

tion, and the occluder shrinking process used for determining occlusion in urban

environments. In Chapter 5, the utilization of the GPU for the slice-wise repre-

sentation and the contributions for the stereoscopic visualization are described. In

Chapter 6, we give detailed comparisons and the results of our empirical study.

Finally we conclude the dissertation in the last Chapter. We also present the

City Modelling approach, which we also develop as a possible feature that can

be incorporated to the framework presented in this dissertation. We describe our

approach to City Modeling in Appendix A.



Chapter 2

Related Work

In this chapter, we give the related work on the subject, in terms of building mod-

eling, navigation space extraction, occlusion culling and GPU-based stereoscopic

visualization.

2.1 Building and City Modeling

One promising approach to the reconstruction of city models is the use of com-

puter vision based techniques on aerial imagery to extract the buildings and

streets [40]. Another approach is to use range scanning with the help of laser

airborne scanners. There are also vehicle borne data acquisition systems with

management and interactive rendering software for interactive rendering of large

urban areas [18]. While these methods produce excellent city models with high

accuracy, they require extra information, such as building plans and ground views,

and post-processing to accurately model individual buildings in a detailed way.

There are also techniques for automatic generation of high quality building mod-

els from Lidar data [82]. Hu et al. [55] give a very good survey of different

approaches to large-scale urban modeling.

In order to model streets, context-free grammars, mainly L-systems, are used [34,

79]. Derivation of detailed building models using split grammars is demonstrated

to be highly successful [102]. Split grammars are a composition of set grammars

6
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and shape grammars [90]. Split grammars split or transform 3D shapes to sub-

shapes that are included in the volume of the parent shape. The derivation

process ends when the terminal shapes representing the building are derived.

This derivation is steered by the attributes; thus specific building designs and

architectures could be achieved [71]. A parameter matching system is invoked

during the derivation process that allows the user to specify multiple high-level

design goals and controls randomness to guarantee a consistent output. Control

grammars, which are context free grammars, handle the spatial distribution of

design ideas not randomly, but in an orderly way that corresponds to architectural

principles.

The proposed building construction algorithm makes use of the previously devel-

oped methods, enhances them in different ways and creates an adopted version

for the use in stereoscopic urban visualization framework [75, 76]. We present

our approach in Appendix A.

2.2 Navigable Space Extraction

Cellulization of navigation space, thereby providing way to create visibility lists

for a specific region is very crucial, because the preprocessed occlusion culling

algorithms need these cells in order to calculate visibility. For walkthroughs of

architectural models, cellulization is easy because rooms naturally comprehend

to cells [41]. However, for walkthroughs of outdoor environments like urban

sceneries, cellulization is accomplished mostly in model design time [85], by using

semi-automated ways [35] or by using building footprints where the complexity

of the models is limited [36, 86, 98, 100].

Generally, navigation space extraction for building interiors is not necessary, be-

cause rooms of the architectural model naturally correspond to cells, where it is

not important to cellulize the rooms again as in [7, 41, 84]. In [41], the cell-to-cell

visibility is defined, where a portal sequence is constructed from a cell to the

others if a sight line exists, thereby making a whole cell navigable. In [100], the

user is assumed to be navigating on the ground. Besides, the city model used
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was built using footprints, where the navigability information becomes explicit.

Sometimes, it is quite sufficient to determine the navigable area during model

design time. In [85], the developed walkthrough system accepts streets or paths

as navigable, where a triangle is defined as either a street or a path triangle. This

means that in order to navigate over a triangle, it must be a part of a street or

a path and determined manually. Besides, only triangles are accepted for view-

cells. Both of these properties make extending user navigation into the 3D space

very challenging, although the algorithm for occlusion culling that the authors

develop is suitable for this extension.

In [35], the user is assumed to be at two meters above streets. Besides, the created

model has straight streets, making navigation space determination straightfor-

ward. Likewise, in [36, 98, 100] the authors also implement navigation assuming

the user is on the ground, where the navigable space information is explicit and

in 2D.

As a summary, except [31], where 3D navigation is performed using parallel com-

puting, almost all other algorithms perform 2D navigation where extraction of

navigation space is straightforward and model complexity is limited into some

extend. Hence, a simple and yet powerful navigation space determination in 3D

becomes vital for 3D navigation applications. The method proposed for the navi-

gable space extraction, automatically detects and constructs the navigation space

for complex urban scenes [105]. If 3D navigation is not required, the resultant

navigation space structure can also be used for the navigation that is bounded to

the ground.

We present our approach for the extraction of the navigable space in urban envi-

ronments in Chapter 3.

2.3 Occlusion culling

Occlusion-culling algorithms detect the parts of the scene occluded by other ob-

jects and do not contribute to the overall image; these parts should not be sent to

the graphics pipeline. In the special case of urban environments, most geometry
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is hidden behind other buildings; occlusion culling therefore provides significant

gains in performance. In addition, most of the buildings are partially visible for

different views during a walkthrough. Thus, identifying occluded parts of the

buildings quickly and representing partial visibility is of vital importance.

Scene representation has a crucial impact on the performance of a visibility al-

gorithm in terms of memory requirement and processing time. Many data struc-

tures have been adopted for scene and object representation such as octrees [83],

or scene graph hierarchy [77]. Scene graph usage that provides fast traversal

algorithms is particularly popular [5, 89]. However, these are useful mainly for

the definition of object hierarchies. Their usage in determining visibility may

require them to be augmented with additional information, thereby increasing

their storage requirements. In addition, the natural object structure is modified

in some applications. In [84], the triangles that belong to many nodes of the oc-

tree are subdivided across the nodes for easy traversal. In [11], the objects could

be divided into subobjects to create a balanced scene hierarchy, if necessary.

2.3.1 Object Space versus Image Space Algorithms

The idea of an efficient visibility culling algorithm is to calculate a conservative

and fast elimination of those parts of the scene that are definitely invisible. Object

space algorithms are the ones that geometrically make computations on the scene

and decide whether the objects are visible or not, e.g. [25, 26, 27, 52, 61, 85, 92].

There is considerable work done for the visualization of urban scenes composed

of 2.5D buildings –buildings constructed using their footprints. Most of them are

object space methods; these iterate over the scene objects and decide whether or

not they are visible [52, 61, 85]. The general approach of the previous work is

to select some polygons to act as virtual occluders and check if they occlude any

objects seen from the viewer by applying some sort of planar geometry. To reduce

the cost of checking, occludees are usually approximated by bounding volumes.

Mostly, the target data for occlusion culling algorithms, affects the way the al-

gorithms are designed. For building interiors or ship like scenes, most visibility

algorithms decompose the model into cells [25, 41, 43, 92]. Occlusion region
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can be specified by object space occlusion culling algorithm using supporting

planes [27]. These cells are connected by portals and inter-cell visibility is com-

puted, which is done in a preprocessing step. Since the walls of the buildings

or doors of ships occlude a large amount of the geometry behind them, making

precomputation in order to compute the potentially visible sets (PVS) and later

using this information to cull the invisible objects is a novel approach for this type

of data [38, 41, 43, 91, 92]. This scheme has the main disadvantage of requiring

a huge secondary storage for the PVS information. There are many algorithms

developed to compress the data that is needed for PVS information [9, 80, 81].

Under this classification, object space methods can be regarded as output sensi-

tive algorithms. Output sensitive algorithms are the ones whose runtime depend

only on the size of its outputs, not on the size of the inputs.

In the case of image space algorithms, the fundamental idea is to perform visibility

computation for each frame by scan conversion of some potential occluders by

checking if the projections of the bounding volumes of the occludees fall entirely

within the image area covered by the occluders [10, 19, 30, 36, 46, 47, 48, 95,

98, 99, 101, 108]. Some of them classify the scene into both scene data structure

and image replaceable parts, namely near and far fields. This kind of occlusion

culling methods are very similar with radiosity calculations [21]. In image-based

simplification methods the whole scene parts are replaced with an impostor –a

generated image of the scene [33, 88]. Unfortunately, one impostor is usually

valid for a few frames and has to be updated frequently. Other approaches use

textured depth meshes that incorporate depth information for efficient impostor

update. One of the important advantage of image space algorithms is that the

target data can be very complex in which object space algorithms are not very

successful at and the occluded objects are within a very tight estimation range.

Common deficiencies of image space algorithms are that they are mostly hardware

dependent and the screen resolution is fixed, which may yield rasterization errors

if the resolution is increased.
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2.3.2 Online versus Offline Occlusion Culling

Occlusion culling is performed either during visualization (online) or before visu-

alization (offline). Online algorithms calculate the visibility during run-time [101].

However, the scalability is limited if no simplifying assumptions are made. To

overcome this, geometry-reduction techniques such as view-dependent simplifica-

tion schemes can be incorporated [7, 37].

Off-line algorithms calculate visibility with respect to a given region. This facili-

tates the discretization of the scene and the navigable area is divided into cells,

which we call as view-cells. These algorithms are able to determine occlusion

and store the visibility list, which is valid for a limited region. This way, the

preprocessed information can be calculated and stored for later use. The occlu-

sion power of the off-line algorithms is inversely proportional with the size of the

view-cell.

2.3.3 From-point versus From-region Occlusion Culling

Occlusion culling algorithms can be classified as from-point and from-region.

From-point algorithms calculate visibility with respect to the position and viewing

direction of the user, whereas from-region algorithms calculate visibility, which is

valid for a certain area or volume. One of the most advantageous property of the

from-region algorithms is that the visibility can be precomputed and stored for

later use. However, it has the disadvantage of large storage requirements, which

we intend to overcome by developing the slice-wise representation.

2.3.4 Conservative, Approximate and Exact Occlusion

Culling

The occlusion culling algorithms can be classified as conservative, approximate

and exact [24]. Conservative algorithms may classify some invisible objects as

visible but never call a visible building invisible. Instead of traversing an object’s

internal hierarchy for fine tuned visibility, most conservative algorithms either
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accept the entire object as visible or reject it. These algorithms may even accept

invisible buildings as visible. For urban environments, which have less hidden

geometry behind the objects, occlusion culling with a few large occluders is a

popular approach. The navigable area is again subdivided into cells in many ap-

proaches and for each frame a small set of (about 5-30) occluders that are likely

to occlude a big part of the model is selected. The reason why these algorithms

select only a small set of occluders is that it becomes very time consuming to

calculate the occlusion of every occluder. The selection schemes differ among the

algorithms with respect to errors introduced into the resultant image, accurate-

ness of the selection, tightness of the conservativeness and the data that is needed

to be stored with this PVS [6, 7, 35, 61].

Approximate occlusion-culling algorithms, such as [59, 61, 72], render the visible

primitives up to a specified threshold, i.e., some of them may not be sent to

the graphics pipeline although they are visible. There are also approaches to

occlusion culling that use parallel processing methods, such as [11, 31, 100].

Another class of algorithms is the exact visibility algorithms, which provide ac-

curate visibility lists at the expense of degrading the rendering performance and

increasing storage requirements. An example of this class is [73], where the au-

thors represent triangles and the stabbing lines in a 5D Euclidean space derived

from a Plücker space and perform geometric subtractions of the occluded lines

from the set of potential stabbing lines. In [13], the authors compute visibility

from a region by using a hierarchical line space partitioning algorithm. They map

the oriented 2D lines to points in dual line-space and test the visibility of a line

segment with respect to the occluders yielding to a visibility from a region.

2.3.5 Environment Specific Occlusion Culling

There are occlusion culling algorithms developed for specific environments, such

as indoor scenes [41], outdoor environments like urban walkthroughs [15, 32,

35, 100], and general environments –environments having no semantic object

definition [7, 10, 20, 73]. In all of the algorithms the navigable area is clustered

in a way to provide the fastest occlusion culling possible. For indoor scenes, the
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navigation area is naturally clustered into rooms and specific techniques were

developed such as portal usage [41]. For the case of urban walkthroughs, the

navigable area is clustered or cellulized so that precomputations can be performed

with respect to a limited area. Most of the algorithms developed for general

environments are also applicable to others with little or no modifications such

as [20], but the best performance is achieved by using the algorithms in their

target environments.

Some applications are only suitable for the environments where there are large

occluders and a large portion of the model is behind these occluders. These

algorithms strongly rely on temporal coherence. The traversal cost and other

overheads increase as the occluded regions decrease, thereby limiting the scalabil-

ity [66, 84, 107]. Visibility determination by traversing a scene hierarchy requires

the quick selection of occluders; or the occluders should be selected beforehand

to decrease the time required for this process. Performing occluder selection is

a difficult task [36, 52, 62, 85], because it must be completed in a limited time

and there are many factors affecting the occluder selection process, such as the

projected area of the occluder, triangle counts, transparency factors and holes.

A survey of occlusion-culling can be found in [24].

2.3.6 Occluder Shrinking for From-region Occlusion

Culling

Occluder shrinking is a common approach for the detection of the occluded regions

in urban scenes. Using occluder shrinking, it is possible to determine occlusion

from a specific point and use it for the entire view-cell region, because the oc-

cluders are shrunk by the maximum distance that a user can go in the view cell.

Wonka et al. shrink occluders by using a sphere constructed around 2.5D occlud-

ers, as shown in Figure 2.1. In [32], instead of a sphere, the authors calculate

erosion of the occluder using a convex shape, which is the union of the edge convex

hulls of the object. These two approaches are applicable to 2.5D urban environ-

ments. Exact shrinking can only be carried out by using Minkowski differences

of the view-cell and the object [4], and using the volume constructed inside the
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object. In order to shrink occluders, we developed a Minkowski-difference-based

method, which is able to shrink general 3D objects and use them as occluders,

(see Chapter 4 and [106]).

Figure 2.1: Occluder Shrinking: if the tested object (the purple one) is hidden
from the shrunk version of the occluder (the red one), then it is also occluded
from any point within the view cell (the green cube).

The purpose of creating visibility lists for each view-cell is to improve scalability.

Time consuming operations are done beforehand. This results in a large amount

of data to be stored. There are many different approaches to compressing the re-

sultant data, such as [9, 20, 78, 80, 81]. Our slice-wise representation significantly

decreases the amount of information that needs to be stored.

The proposed slice-wise structure is able to create a tight visibility set of slices

of objects for any kind of occlusion-culling algorithm. The visibility set thus

produced is tighter than those that measure occlusion at the building level, but

more conservative than the exact ones that operate at the polygon level: it groups

polygons by exploiting visibility characteristics in a typical urban walkthrough.

The monoscopic part of the proposed urban visualization framework can be com-

pared with the previous state of the art work as follows:

• It does not make any assumption on the architectures of the buildings.

Unlike [14, 15, 63, 66], our occlusion culling algorithm handles all kind of
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3D occluders as in [10, 57, 72, 73], not just 2.5D buildings generated by

extruding the city plans.

• The occlusion culling algorithm is based on occluder shrinking performed

in the object-space. It is a from-region method, as in [14, 20, 32]; however,

our algorithm is capable of shrinking all kinds of 3D objects by calculating

the Minkowski difference of the occluders and the view-cell. We can shrink

the nonconvex 3D occluders as a whole.

• All of the previous approaches use some kind of data structure to speed up

scene and object traversal. We also use quadtree-based scheme for culling

large portions of the scene. However, we make use of our proposed slice-

wise structure to determine visible parts of each building to gain more

rendering time by eliminating those invisible portions. Instead of traversing

and storing a large amount of data for the representation of visible portions,

we store only three bytes for each building and access them in constant time.

• Unlike [59, 60, 61], which are approximate occlusion culling algorithms

and [13, 73], which are exact occlusion culling algorithms, our algorithm

is conservative, like [10, 14, 15, 52, 57, 63, 66, 72, 107].

• We use hardware occlusion queries to determine occlusions, as in [20, 72,

107]. We calculate the visibility with respect to the centers of the calculated

view-cells [105]. Since we use occluder shrinking, the PVS calculated for

the center of the view-cell is valid throughout the whole view-cell.

2.4 GPU-based Stereoscopic Urban Visualiza-

tion

In order to achieve good stereoscopic visualization, a good monoscopic corre-

spondent must first be achieved. Therefore, we initially deal with the problem

of speeding up monoscopic visualization by using powerful occlusion culling and

VFC algorithms.

One of the biggest disadvantage of off-line occlusion culling algorithms is the
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difficulty of storing the visibility information for run-time use, especially when the

scene is large, containing tens of millions of polygons. Since visibility information

must be stored for each view-cell, the number of view-cells can total hundreds

of thousands. In this dissertation we present a storage scheme for buildings,

called the slice-wise representation; this facilitates the storage of partial visibility

information for urban walkthroughs [106]. It can significantly reduce the size of

PVS storage when compared to other commonly used storage schemes, such as

octrees. The partial visibility information can be represented with 50 % reduced

polygons and 80 % speed up in frame rates when compared to occlusion culling

using building level granularity. The high reduction in storage requirements for

partial visibility allows the visualization of large and complex urban models.

2.4.1 GPU Usage

GPU usage is very common in today’s researches. Hardware vendors provide

great elasticity in order to help programmers create new algorithms. GPU usage

is becoming commonplace, not only in rendering but also in performing tasks

such as collision detection [45], data base sorting [44], and others [65].

A vertex buffer object (VBO) is a powerful feature that allows the user to store

data in high-performance memory on the server side of OpenGL Application Pro-

gramming Interface [74]. Using regular OpenGL functionality to draw primitives

necessitates transferring data back and forth from the client side (CPU) to the

server side (GPU). The VBO feature provides a mechanism for encapsulating the

data within “buffer objects” rather than having to transfer them from the server

side; this increases the rate of data transfers.

The slice-wise representation perfectly fits into the GPU architecture. This is

possible by the use of VBOs and accessing the triangles to be drawn with the

help of the vertex arrays constructed for the buildings.
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2.4.2 Stereoscopic Visualization

2.4.2.1 About Stereoscopy

Stereoscopic visualization is used in many applications such as simulators and

scientific visualizations. It uses specifically designed hardware –four frame buffers

for the stereoscopic display. One of the most commonly used pieces of hardware

is the time-multiplexed display system that is supported by liquid crystal shutter

(LCS) glasses and virtual reality (VR) gears. Detailed information about these

systems can be found in [53] and [54].

Stereoscopic viewing requires a display technique that allows each eye see the

image generated for it. Most of the applications support stereoscopic display by

generating the two images for the left and right eyes completely separately. The

application must be able to generate 40-50 or more images per second to achieve a

frame rate that approximates the same real time visualization as the monoscopic

correspondent [49]. Obviously, when a monoscopic application is converted to

stereo without any improvement, the frame rate decreases by half.

Most of the applications support stereoscopic display by completely generating

the two images for the left and right eye views separately. Parallel processing

is very suitable for this type of stereoscopic visualization. Except large-scale

simulator applications such as flight simulators, there are not many applications

for low-end systems, especially personal computers, that allow the user to navigate

freely over the data.

2.4.2.2 Stereoscopic Image Perception

Up to 19th century, mankind was not aware that there was a separable binocular

depth sense. Through the ages, people like Euclid and Leonardo understood that,

we see different images of the world with each eye. It was Wheatstone [97] who

explained to the world that there is a depth sense named as stereopsis, which is

produced by retinal disparity. Wheatstone explained that the mind fuses the two

planar retinal images into one with stereopsis (solid seeing).
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A stereoscopic display is an optical system, whose final component is the human

brain. It functions by presenting the mind with the same kind of left and right

views that the person sees in the real world [104].

2.4.2.3 Retinal Disparity

In order to explain the presence of the retinal disparity one can try this experi-

ment: hold your finger in front of your face. When you look at your finger and

try to see the finger in detail, your eyes start to converge on your finger. That

is, the optical axes of both eyes cross on the finger. There are sets of muscles,

which move the eyes to accomplish this by placing the images of the finger on

each fovea, or central portion of each retina. If you continue to converge your

eyes on your finger, paying attention to the background, you will notice that the

background appears to be doubled. Now try to focus on the background and you

will see that when your see the background in detail, your finger, because of the

retinal disparity, will now appear to be doubled. If we could take the images that

are on your left and right retina and somehow superimpose them as if they were

aside, you would see two almost overlapping images –left and right perspective

viewpoints–, which is what physiologists call disparity. Disparity is the distance,

in horizontal direction, between the corresponding left and right image points of

the superimposed retinal images. The corresponding points of the retinal images

of an object on which the eyes are converged, will have zero disparity.

Retinal disparity is caused by the fact that each of our eyes sees the world from

a different point of view. On the average the eyes are two and a half inches or 64

millimeters apart for adults [22]. The disparity is fused by the brain into a single

image of the visual world. The minds ability to combine two different, although

similar, images into one image is called fusion, and the resultant sense of depth

is called stereopsis.

2.4.2.4 Parallax

A stereoscopic display is able to display parallax values, which is the distance be-

tween left and right corresponding image points and may be measured in inches
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or millimeters. This makes stereoscopic display different from a monoscopic dis-

play. Disparity in the eyes produces parallax, and this provides the stereoscopic

cue.

Electro-stereoscopic displays provide parallax information to the eye by using a

method related to that employed in the stereoscope. In a stereoscopic display,

the left and right images are alternated rapidly on the monitor screen. When the

viewer looks at the screen through shuttering eye-wear, each shutter is synchro-

nized to occlude the unwanted image and transmit the wanted image. Thus each

eye sees only its appropriate perspective view. If the images (the term fields is

often used for video and computer graphics) are refreshed fast enough (often at

twice the rate of the monoscopic display), the result is a flickerless stereoscopic

image. This kind of a display is called a field-sequential stereoscopic display.

When you observe an electro-stereoscopic image without eye-wear, it looks like

there are two images overlayed and superimposed. The refresh rate is so high

that you cannot see any flicker, and it looks like the images are double-exposed.

Parallax and disparity are similar entities. Parallax is measured at the display

screen and disparity is measured at the retinal. When wearing eye-wear, parallax

becomes retinal disparity. Retinal disparity produces parallax, and parallax in

turn produces stereopsis. Parallax may also be given in terms of angular measure,

which relates it to disparity by taking into account the viewers distance from the

display screen. Since parallax is the entity that produces the stereoscopic depth

sensation, we give a classification of the kinds of parallax one may encounter in

stereoscopic viewing.

2.4.2.5 Types of Parallax

Four basic types of parallax are defined [22]: zero parallax, positive parallax,

divergent parallax and negative parallax. In zero parallax, the homologous image

points of the two images exactly correspond or lie on top of each other. The eyes

of the observer is separated with the interpupillary or interocular distance (IOD)

that is on the average two and a half inches. When the observer is looking at the

display screen and observing images with zero parallax, this means that the eyes
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are converged at the surface of the screen. In other words, the optical axes of the

eyes cross at the plane of the screen. In positive parallax, the axes of the left and

right eyes are parallel. This happens in the visual world when looking at objects

that are at a great distance from the observer. For a stereoscopic display, when

the distance between the eyes (IOD) equals the parallax, the axes of the eyes

will be parallel, just as they are when looking at a distant object in the visual

world. Experiences show that having parallax values equal to IOD, or nearly IOD,

for a small screen display will produce discomfort [22]. The visualization with

an uncrossed or positive value of parallax between IOD and zero, will produce

images appearing to be within the space of the cathode ray tube (CRT), or behind

the screen.

Another kind of parallax is divergent parallax, in which images are separated by

some distance greater than IOD. In this case, the axes of the eyes are diverging.

This divergence does not occur when looking at objects in the visual world, and

the unusual muscular effort needed to fuse such images may cause discomfort.

There is no valid reason for divergence in computer-generated stereoscopic images.

Objects with negative parallax, appear to be closer than the plane of the screen,

or between the observer and the screen. The objects with negative parallax are

said to be within viewer space [104].

2.4.2.6 Focusing and Convergence Relationship

The left and right image fields must be identical in every way except for the

values of horizontal parallax. The color, geometry, and brightness of the left and

right image fields need to be the same or to within a very tight tolerance, or the

result will be eye fatigue for the viewer. If a system is producing image fields that

are not suitable in these respects, it will never be able to produce good-quality

stereoscopic images. Left and right image fields congruent in all aspects except

horizontal parallax are required to avoid discomfort [68].

The eyes converge dynamically on the objects in the real world, depending on

the distance of the objects. However in stereoscopic visualization, it is assumed
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that the eyes converge on the screen, not on any specific object and this con-

vergence does not show up any change. This differentiation of real world and

stereoscopic visualization causes some people depart from their natural feeling

and they may experience an unpleasant sensation when looking at stereoscopic

images, especially images with large values of parallax. Experiences show that

it is better to use the lowest values of parallax possible for a good depth effect

in order to help to reduce viewer discomfort. On the other hand, the parallax

value specification and visual discomfort should be adjusted so that the visual

discomfort is minimized, while providing a good depth effect.

The goal when creating stereoscopic images is to provide the deepest effect with

the lowest values of parallax. This is accomplished in part by reducing the IOD.

As a rule, parallax values should not exceed 1.6◦ [93]. Also the distance of the

viewer from the screen should be taken into account when composing a stereo-

scopic image.

2.4.2.7 Crosstalk (Ghosting)

Main problems incurred with stereoscopic visualization include the ghosting effect

and the resultant eye disturbance problems. The ghosting effect or crosstalk in a

stereoscopic display results in each eye see an image of the unwanted perspective

view. It is the faded image seen by the untargeted eye. This effect is undesirable

because it may cause eye fatigue and other visualization problems. Much research

is devoted on reducing this disturbing effect. In a perfect stereoscopic system,

each eye sees only its assigned image. In particular, there are two reasons for

crosstalk in an electronic stereoscopic display: late decaying of the phosphor

(afterglow), and shutter leakage [17, 50, 67, 69, 70]. The phosphor persistence

causes a faded image to be seen when the image for the other eye is being displayed

on the screen [103]. A third reason of ghosting is non-matching perspective

projection for both eyes [104]. This may occur when a point is projected for

an eye but not projected for the other.

In an ideal field-sequential stereoscopic display, the image of each field, made up

of glowing phosphor, would vanish before the next field was written, but that is
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not what happens. After the right image is written, it will persist while the left

image is being written. This phosphor persistence results in one image to last in

time. Late decaying of it while switching the eyes causes a faded image be seen,

when the image for the other eye is being displayed on the screen [103]. Thus, an

unwanted fading right image will persist in the left image (and vice versa). The

term ghosting is used to describe perceived crosstalk. Stereoscopists have also

used the term leakage to describe this phenomenon. The perception of ghosting

varies with the brightness of the image, color, and parallax and image contrast.

This effect is especially experienced when the background color is dark and the

image just drawn has high intensity colors. Images with large values of parallax

will have more ghosting than images with low parallax. High-contrast images,

like black lines on a white background, will show the most ghosting. Given the

present state of the art of monitors and their display tubes, the green colored

phosphor has the longest afterglow and produces the most ghosting effect [103].

2.4.2.8 Speeding-up Stereoscopic Visualization

Earlier work on speeding up stereoscopic rendering generally made use both of

the mathematical characteristics of an image that change when the eye-point

shifts horizontally, and a recognition of the characteristics that are invariant with

respect to eye-point, such as the scan-lines toward which an object projects [53].

In [39], the authors present a sterescopic raytracing algorithm that infers a right-

eye view from a fully ray-traced left-eye view; this algorithm is further improved

in [3]. In [1], a non-ray-tracing algorithm is described that speeds up second-

eye image generation in the processes of polygon filling, hidden surface elimina-

tion and clipping. Methods that take advantage of the coherence between the

two halves of a stereo pair for ray traced volume rendering are discussed in [2].

In [51], the authors present an algorithm using segment composition and linearly-

interpolated re-projection for fast direct volume rendering. Hubbold et al. [56]

propose extending a direct volume renderer for use with an autostereoscopic dis-

play in radiotherapy planning. In [49], the authors present a framework to speed

up stereoscopic visualization of terrains represented as height fields by generat-

ing the view for one eye from the other with some modifications; this speeds
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the process up by approximately 45 %, as compared to generating two eye views

separately from scratch.

2.4.2.9 Other Problems with Stereo

Resolving occlusion in stereoscopic imagery is known as stereo matching prob-

lem and an important issue. Occlusion regions in stereoscopic views are spatially

coherent groups of pixels that appear in one image and not in the other. These

occlusion regions are caused by occluders, in which there is a very little informa-

tion for the occluded part, when seen from the occluded eye direction. In [16],

stereo matching problem is tried to be solved for still images. There are also

many other research done for stereo matching that uses image processing meth-

ods, like [12, 28, 42, 58] all of which work on image processing methods, which

are out of our consideration.



Chapter 3

Navigable Space Extraction

In order to develop navigation systems for urban sceneries, extraction and cel-

lulization of navigable space is one of the most commonly used technique provid-

ing a suitable structure for visibility computations. Cells for the navigable area

are needed, because the precomputations for the visibility are valid only for a

specific area and these areas, called view-cells should be determined beforehand.

Urban models, except for the ones where the building footprints are used to gen-

erate the model, generally lack navigable space information. Because of this, it

is hard to extract and discretize the navigable area for complex urban scenery.

Urban visualization strongly requires culling of unnecessary data in order to nav-

igate through the scene at interactive frame rates. There are efficient algorithms

for view-frustum culling and back-face culling. However, occlusion culling algo-

rithms are still very costly. Especially, object-space occlusion culling algorithms

strongly need precomputation of the visibility for each view-point and for each

viewing direction.

Almost all occlusion culling algorithms calculate occlusion with respect to ground

walks, thereby eliminating the need for a 3D navigable space. However, for a

general fly-through application, a cellulized navigable space can provide a suitable

environment for a precomputable visibility information.

The algorithm presented in this chapter, calculates and extracts the navigable

space for urban scenery, where the models of buildings are highly complex. The

24
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buildings may have balconies, pillars, fences or holes where it is possible to see

through them. No assumptions or restrictions are made on the model. The

extracted navigable space looks like a jaggy sculpture mold and it is used in the

cellulization process required by the occlusion culling algorithms. Besides, for

the urban data acquired from different sources, which may contain errors, our

approach provides a simple and efficient way of discretizing both navigable space

and the model itself. The extracted space can instantly be used for visibility

calculations such as occlusion culling in 3D space. Furthermore, terrain height

field information can be extracted from the resultant structure, hence providing

a way to implement urban navigation systems including terrains.

Current occlusion culling algorithms, which use preprocessing for occlusion deter-

mination, need large amount of data to store the visibility lists for each viewpoint.

One of the most promising result of our navigable space extraction method is that,

it becomes suitable to develop other general structures, which yields natural oc-

clusion determination for urban scenes and decrease drastically the amount of

the data that is needed to be stored.

3.1 Navigable Space Extraction Algorithm

Figure 3.1 shows the data structures used in the navigable space extraction pro-

cess; these include the structures to represent the objects in a scene and the

structure to store the navigable space. geomobject structure stores the name of

the object and the number of triangles making up of this object. It holds pointers

to the bounding box of the object, the very first triangle of the triangle list, the

parent of the octree defining the navigable space found within the box of the

object and next object in the order. The scene file is read from the storage and a

list of triangles are tied to each object with necessary vertex information defined

in tri and vertex structures. The octree and seed structures are used later,

while extracting the navigable area and discretized objects.
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struct vertex {

float x;

float y;

float z;

};

struct tri

{

struct colors color;

struct vertex v1;

struct vertex v2;

struct vertex v3;

struct vertex normal;

struct tri *next;

};

struct octnode

{

int level;

char no;

float minx, miny, minz, maxx, maxy, maxz;

char type; //1:parent, 2:inner, 3:leaf

struct octnode * parent;

struct octnode * n[8];

char empty;

};

struct geomobject

{

char name[12];

int number_of_triangles;

struct boundingbox * b_box;

struct tri * first;

struct octnode *octtree;

struct geom_obj* next;

};

struct seed

{

int xoff,yoff,zoff;

int tag_fill;

};

Figure 3.1: The data structures used in the navigable space extraction.
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3.1.1 Extraction Process

We need to mention that the input data formats do not have significant impor-

tance on the efficiency of the algorithm, because our approach is nearly indepen-

dent of the input data format. The only assumption is that the scene must be

composed of triangles. One of the most common data format is the dxf data for-

mat created by Autodesk, Inc. The data structure used to store this file is a forest

type data structure, equipped with suitable fields designating the parameters of

the other algorithms.

The navigable space extraction algorithm mainly consists of two phases: the seed

test, and the contraction and the octree construction phase. In the first phase,

the bounding boxes of objects are calculated and a seed box is travelled around

each object to find the blocks that touch its surface. Filled seeds are later passed

to a contraction algorithm, in which the octree structure for the navigable area

is constructed and the mold of the object becomes extracted. It should be noted

that, it is possible to find all holes and passages inside the objects within a user

specified threshold using this approach. The flow diagram of our algorithm is

shown in Figure 3.2.

After reading the scene database from the input file, the algorithm first calculates

the bounding boxes of each object in the scene. Object discrimination is done

while constructing the scene file and each object (i.e., building) is defined with

a header and triangles are inserted into the list according to the object names,

which is a property of the dxf file format. The bounding boxes are calculated

in a straightforward manner and stored in the relevant structures. Seed testing

and contraction parts of the algorithm take place in these bounding boxes and

all space out of these boxes are accepted to be navigable.

3.1.2 Seed Testing

The seed testing phase is based on a box with a size of a user-defined threshold.

We call this size as threshold because it defines the roughness of the extracted

mold of the object. The time needed to extract the navigable area strictly depends
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on the size of the seed box.

We start by reading the scene data. The next thing to do is to calculate the

bounding boxes of each object in the scene. The object discretization algorithm

is based on grid cells with a user-defined size threshold. This threshold defines

the roughness of the extracted mold of the object. The algorithm travels inside

the bounding box of the object to find the occupied grid cells. A grid cell and a

triangle may intersect in three ways, which are shown in Figure 3.3.

The first case is where any vertex (or vertices) of the triangle is inside the cell.

This case is the easiest to determine, in which a range test gives the intended

result (Figure 3.3 (a)). The second case, none of the vertices of the triangle is

inside the cell but the triangle plane intersects the edges of the cell, is handled

by performing ray plane intersection test (Figure 3.3 (b)). In the algorithm to

detect this case, the main idea is to shoot rays from each corner of the cell to

each coordinate axis direction. The last case (Figure 3.3 (c)), where the triangle

penetrates the cell without touching any of its edges is handled in a similar way,

but this time the rays are shot from the vertices of the triangle and checks are

made against the surfaces of the cell. This process is repeated until all locations

in the bounding box of the object is tested. A sample discretization for an object

in 2D is shown in Figure 3.4 (a). With this approach, it is possible to use all holes

and passages through the objects as part of the navigable area (see Figure 3.4 (b)).

The discretization of the object structure by testing each unit cube with the

triangle structure (See Figure 3.3) is essential with respect to two aspects: one is

the definition of the object hierarchy, and the other is creating an object structure,

which is an alternative to current octree-like structure.

3.1.3 Extraction of the Navigable Space

Although the uniform subdivision provides the occupied cell information, which

is enough to determine the navigable space, its memory requirement is high. In

order to overcome this problem, an adaptive subdivision is applied to the bound-

ing box of the object to extract the navigable area as an octree structure. This

is done using the occupied cell information provided by the uniform subdivision.
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Figure 3.2: Flow diagram of the navigable space extraction algorithm.
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(b)(a) (c)

Figure 3.3: Test cases: (a) any vertex is inside the cell; (b) the vertices of the
triangle is not inside the cell, but the cell edges intersect with the triangle surface
(See Algorithm 3.1); (c) the triangle edges intersect with the surfaces of the
cell. The idea behind this testing is to determine each unit cube, which has an
interaction with at least one triangle. This will help us to create the slice-wise
representation, which is specifically designed for urban scene occlusion culling.

An example of the created structure is shown in Figures 3.5 and 3.6.

The navigation octrees for each object are tied up to the spatial forest of octrees

that corresponds to the whole scene. The empty area outside the objects in the

scene is also a part of the navigable space.

We did not make any assumptions on the type of scene objects, or on their respec-

tive locations, while determining the navigable space information. The objects

may have any type of architectural property, such as pillars, holes, balconies etc.

Our algorithm indiscriminately finds the locations not occupied by any object

part (i.e., triangle). This property makes our approach very suitable for the

models that are created from different sources such as LIDAR, because the only

information needed is triangle information, which most model formats have, or

otherwise the primitives that are convertible to them.
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(a) (b)

Figure 3.4: (a) Discretization of an object in 2D for easy interpretation. It
is normally performed in 3D. The object is represented with uniform grid cells
(filled boxes show the complement of the object space, which corresponds to
the navigable area represented as an octree using adaptive subdivision to reduce
memory requirements.) (b) Any holes and passages can safely be represented as
part of the navigable area.

3.1.4 Contraction and Navigable Space Octree Construc-

tion

After the seed test phase is finished, we have a discretized version of the scene

objects, where we exactly know the spatial locations occupied by the triangles of

the object within a certain threshold. Although the occupied seed cell information

is enough for us to determine the navigable space (i.e. its dual space), its memory

requirement is very high. Therefore, we need to contract this empty area and

determine the navigable space using another structure requiring less memory

space. An octree structure is used for this purpose.

The octree structure constructed is shown in Figure 3.2. The algorithm for the

octree construction simultaneously contracts the space not occupied by the seed

cells into larger blocks of space as much as possible, thereby eliminating the need

to keep filled cell information for every small seed. This is done as follows: The

algorithm first sets the bounding box of the object as the parent of the navigable
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(a) (b) (c)

Figure 3.5: Navigation octree construction: (a) the original object; (b) cells of
the object, where its triangles pass through; (c) the created navigation octree,
in which navigable space information is embedded. In the figure, the black lines
show the occupied cells and the green lines show the boundaries of the navigation
octree for the object.

space octree and checks if there is any filled cell within the range of the node.

If there is any filled cell, then it recursively subdivides itself into eight octants

and repeats the same procedure for the newly created nodes until the size of

the node decreases below the size of the seed box or there is nothing left but

empty cells. This structure is tied to the spatial forest of octrees after all the

scene objects are processed. It should be noted that the numbering scheme as

seen in the Figure 3.2, provides neighboring information of the octree nodes. The

constructed octree allows the navigable space to be traversed hierarchically.

3.1.5 Resultant Structure

The algorithm is concluded after all the scene objects are processed. The resultant

octree structure represents the navigable area, where bounding boxes are tied

up to spatial forest of octrees. An example of the created structure is shown
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for each triangle of the object do
define plane of triangle;
for each corner of the cell do

shoot rays towards the other neighboring corner;
if the ray hits the plane of triangle then

calculate the intersection point;
translate the point to the origin;
for each edge of the cell do

if the horizontal line to the right of the intersection point
intersects the triangle odd number of times then

report as INSIDE;
else

report as OUTSIDE;

for each neighboring corners of the cell do
if any two neighboring corners have intersection on the triangle then

return INTERSECT ;

return NOTINTERSECT ;

Algorithm 3.1: The pseudo code for the detection of the second case, where a
triangle passes through a cell but none of the vertices of the triangle is inside the
cell and the triangle plane intersects with the cell edges.

in Figure 3.5. After this, the user exactly knows the locations in 3D, where

navigation is possible. The user will also know where the objects are and a

hierarchical subdivision of them will also be provided, as described below.

3.2 Creating Object Structure

In addition to creating the navigable space information of the scene database, it

is very easy to create the octree for the scene itself, where further calculations

on them can be performed. One important process that can be applied to the

hierarchy is occlusion determination, where hierarchical calculations are strongly

needed.

After the contraction process is performed and the octree for navigable space

constructed, the octree construction algorithm is repeated once more seeking full

seed cells to discretize the object. This time the contraction part of the algorithm
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Figure 3.6: The octree forest of a scene created by the navigable space extraction
algorithm having 24 buildings.

finds the cells which contain geometry in it, whereas we did it for empty cells while

constructing the octree for the navigable space. The same procedure is applied to

each object and scene objects are tied to the spatial forest of object octrees. We

are left with the two forests of octrees, one with the navigable space information

and one with the object hierarchy, which are useful for 3D navigation and scene

object processing, respectively.



Chapter 4

Occlusion Culling using

Slice-wise Representation

Figure 4.1: Slice-wise occlusion culling sends approximately 51 % fewer triangles
to the graphics pipeline and increases frame rate by 81 %, as compared to occlu-
sion culling using building-level granularity for this model. The yellow colored
sections show occluded regions, which are discarded from the graphics pipeline.
In addition, the slice-wise representation decreases Potentially Visible Set (PVS)
storage requirement drastically.

The efficiency of a visibility algorithm is vitally important for making an urban

visualization system usable on ordinary hardware. View-frustum culling and

back-face culling are ways to speed-up the visualization and there exist efficient

methods for them. However, occlusion-culling algorithms are still very costly.

In occlusion-culling algorithms, where the granularity is individual buildings, an

object could be sent to the graphics pipeline even if a small portion of it becomes

visible. In most cases, this would result in unnecessary overloading of the hard-

ware, especially if the objects are very complex. An efficient approach is needed

to create a tight visibility set without causing further overheads. Although it is

35
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feasible to traverse the nodes in the hierarchy of an object to see which parts are

visible, it is usually impractical to store the visibility lists.

In this chapter, we present the slice-wise representation. This is a simple storage

scheme, which takes advantage of the special topology of buildings within an ur-

ban scene. It automatically exploits real-world occlusion characteristics in urban

scenes by subdividing the objects into slices parallel to the coordinate axes (Fig-

ure 4.1). Other object hierarchies such as octrees and regular grids can well be

used to partition the objects; even individual triangles can be checked. However,

the storage requirement of Potentially Visible Sets (PVSs) limits the scalability

of their usage. The PVS storage requirement of the proposed slice-wise structure

is very low (three bytes for each viewpoint and partially visible building). An

index is stored for a partially visible building, indicating the visible slices along

each coordinate axis.

In this chapter, we also present an occluder-shrinking algorithm to achieve conser-

vative from-region visibility. Conservative occlusion-culling can be performed by

shrinking the occluders and performing the visibility tests using the shrunk ver-

sions of the occluders. To our knowledge, this is the first demonstrated attempt

that can also be applied to general nonconvex occluders as a whole.

4.1 Slice-wise Object Representation

4.1.1 Object Visibility Forms

Our slice-wise approach is based on the observation that while a person is nav-

igating through a city, the visible parts of the objects usually have one of the

following three forms (see Figure 4.2):

• The visible part looks like an L-shaped block in different orientations if a

building is occluded in part by a smaller occluder, as in Figure 4.2 (a).

• The visible part looks like a vertical rectangular block, from the left or

right of the building if the occluder seems taller than the occludee (see

Figure 4.2 (b)).
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(a) (b) (c)

Figure 4.2: Visibility forms during urban navigation: (a) L-shaped form; (b)
vertical rectangular form; (c) horizontal rectangular form. In each part of the
figure, the visible part of the occludee is the green transparent area.

• If the occluder is a large one and appears to be shorter than the occludee, it

usually hides the lower half of the building. In this case the visible portion

looks like a horizontal rectangular block, as in Figure 4.2 (c).

Most of the occlusion can be represented by the proposed slice-wise structure us-

ing these forms. However, there are of course some other cases that the occlusion

cannot be perfectly represented. These may include a configuration such as both

sides of the building are occluded resulting in a middle part visibility and the

top of the building is visible in addition to the middle part visibility. In any of

these cases the occlusion culling algorithm tries to capture the occlusion as much

as possible in one of the three visibility forms. For example, the middle part

visibility is regarded as vertical rectangular, the top and middle part visibility is

regarded as L-shaped visibility.

Obviously, a visibility-culling algorithm could be developed without characteriz-

ing visible parts of the buildings. However, this might send unnecessarily large
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number of polygons to the graphics pipeline. If we could find a way to exploit

these visibility characteristics, we could reduce both the number of polygons sent

to the graphics pipeline and the storage requirements for the PVSs. This is what

we achieve with the proposed slice-wise structure.

4.1.2 Slicing Objects

The aim of the proposed slice-wise structure is to create tight PVSs for urban

scenes. Slice-wise representation is obtained by subdividing an object into axis-

aligned slices and determining the triangles that belong to each slice. The slicing

process is composed of two steps: subdivision and slice creation. In the subdivision

step, each object is uniformly subdivided and the grid cells occupied by each

triangle are determined using the approach presented in Chapter 3. Next, the

occupied cells in the uniform subdivision are combined into axis-aligned slices for

each coordinate axis. The process of slicing an object is shown in Figure 4.3. The

resultant data structure is shown in Figure 4.4.

4.1.3 Visibility Representation Using Slices

Defining the visible portions requires determining the visible slices. As shown

in Figure 4.5, we only need to store one visible-slice index for each axis. The

combination of these indices facilitates the representation of the visibility char-

acteristics. The index number depends on the occluded sections of the occludee.

For vertical slices, if the right part of the object is occluded, then the index is

stored with a “+” sign indicating that the slices, numbered from left to right,

will be accepted as visible including the slice with the index number. For the

other case, the index is stored with a “−” sign, telling that the slices are invisible

including the slice with the index number. In the case of horizontal slices, the

numbers are assigned from bottom to top and the first visible slice number is

stored as the index. Visible-slice indices are assigned to each axis after they are

checked for occlusion.

In addition to facilitating the exploitation of different visibility characteristics for
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(a)

(b) (c) (d)

Figure 4.3: The process of slicing an object determines the triangles that belong
to each slice. (a) a complete view of the object where the positions of slices are
shown; (b) an x–axis slice;(c) a y–axis slice; (d) a z–axis slice.
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Main Geometry Object

Slices w.r.t. X-axis
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Next Slice

Y-axis
Z-axis

........

...

Figure 4.4: The scene data structure produced by slicing operations.
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(a)                                    (b)                                    (c)

Visible Slices             Invisible Slices

1  2  3  4  51  2  3  4  5 6  5  4  3  2  1

Visibility Index=+4       Visibility Index=−3       Visibility Index=+5

Figure 4.5: Defining visibility indices for objects: the visible slice indices are
determined for each axis during occlusion determination. (a) If an object is
partially occluded from the right, the index of the last visible slice is stored with
a “+” sign. (b) If the object is partially occluded from the left, the index of the
last invisible slice is stored with a “−” sign. (c) If the object is partially occluded
from the bottom, we store the index of the first visible slice.
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tight visibility processing, the benefits of slicing objects are:

• Each triangle is encoded in at least 3 slices in different axes. Therefore, we

can use slices on any axis during visualization. We choose the axis with

maximum occlusion. Choosing the maximally occluded axis allows us to

tighten the visible set as much as possible.

• The memory required for the slice-wise approach is minimal. In order to

define the visibility, three bytes, one for each axis, are used for each object

and for each view-cell. This representation greatly decreases the storage

requirements for PVSs.

• Slicing the objects provides a fast way to access visible portions of an object.

Unnecessarily traversing a tree-like data structure is prevented by directly

accessing the visible slices and hence triangles of an object.

4.1.4 Comparison with Other Storage Schemes

For precomputed visibility, the size of the data stored for the view-cells may

become so large that the total size of the PVSs is much larger than the size of

the scene. Aside from a few studies [20, 43, 78], the problem of big PVS storage

problem has not been given enough importance [24].

We compare the proposed structure with octrees and regular grids in terms of the

memory requirements. In Figure 4.6 and the corresponding Table 4.1, we depict

subdivision depth and the number of nodes needed for each subdivision. The

number of nodes for octrees refers to regularly subdivided octree including the bits

needed for the previous levels. In an adaptively subdivided octree, the number

of nodes is below these levels. However, giving exact costs and approximations

on adaptive version is very difficult. Instead, we give an informal comparison of

the results of the empirical study with octrees and triangle level PVS sizes in

Chapter 6. A comprehensive study of the costs for various construction schemes

of octrees is presented in [8].

PVS storage costs are depicted for various storage schemes in Figure 4.7 and the

corresponding Table 4.2. In this comparison, we assume that all objects are visible
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Figure 4.6: The comparison of the number of nodes needed for each subdivision
scheme. The values are in logarithmic scale.

Table 4.1: The comparison of the number of nodes needed in slice-wise, octree
and regular grids.

Depth Slice-wise Octree Regular Grids

1 3x2=6 8 8
2 3x4=12 64+8=72 64
3 3x8=24 512+72=584 512
4 3x16=48 4,096+584=4,680 4,096
5 3x32=96 32,768+4,680=37,448 32,768
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Table 4.2: PVS storage comparison (Bytes/View-Cell)
Triangles Objects Depth Slice- Octree Regular Triangle

wise Grids Level

100K 10

1
2
3
4
5

30

80
720

5,840
46,800

374,480

80
640

5,120
40,960

327,680

12.5K

1M 100

1
2
3
4
5

300

800
7,200

58,400
468,000

3,744,800

800
6,400

51,200
409,600

3,276,800

125K

10M 1000

1
2
3
4
5

3K

8K
72K

584K
4,680K

37,448K

8K
64K

512K
4,096K

32,768K

1,250K

or partially visible. We also assume that each node of octree and regular grids

can be identified with 1 bit and we discard additional information to be stored

along them, such as corner coordinates. The pointers to polygons are not taken

into account because they are needed in all types of structures. Additionally we

provide the data needed to do occlusion culling at the polygon level, assuming

that the visibility of each triangle is encoded in bits and each object is composed of

10K polygons. However, since the scene size is indicated by the number of visible

triangles and objects, the data needed to be stored for polygon-level occlusion

culling may be much larger than those given in the figure and using an additional

data structure becomes necessary. The figure shows that the slice-wise structure

requires much less space to store the PVSs; this is an indispensable part of most

preprocessed occlusion-culling algorithms. Other compression schemes may be

used to further decrease the amount of data to be stored.

Using individual triangles and testing for occlusion is a good way to create the

tightest possible visibility set for any point in the scene and at first it may sound

better than the approach presented here. However, the PVS storage issue becomes

a big problem and limits the scalability. The slice-wise structure creates a good
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Figure 4.7: The comparison of the PVS storage requirements for each subdivision
scheme. We assume that each object is composed of 10K polygons. The slice-wise
representation provides a huge decrease in the use of memory. The values are in
logarithmic scale.

balance between PVS storage and running time.

It is also possible to define some semantic properties and store occlusion infor-

mation with respect to this information. For example, in [66], the authors define

floors for the buildings, called as 2.5D+ε; these buildings have more vertical com-

plexity than 2.5D buildings. Their occlusion culling algorithm tests triangles and

determine the visibility on a floor basis. However, this prevents its application

to real city models obtained from sources, such as airborne laser scanners. Our

algorithm is capable of handling all types of buildings, do not need floor informa-

tion and determines occlusion with respect to three axes. In this way, it captures
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a tighter PVS than the floor-based visibility calculation. Since it requires more

processing time, it is applied as a preprocessing step.

The slice-wise representation is very suitable for determining occlusion of cube-

like objects. A building in an urban environment is one example to these classes.

Due to the intention of creating a balance between PVS storage and running time,

online visibility determination is very is not scalable. However, it automatically

displays objects as a whole without any cost. Therefore, the worst case behavior

of the slice-wise representation is as if not using it at all. Due to the setup costs,

most approaches can only be used in environments with much occlusion. This

property makes the slice-wise representation suitable even for the environments

with less occlusion.

4.2 Slice-based From-Region Visibility

We want to show the applicability of the proposed slice-wise representation and

efficient ways for the usage of it in a typical occlusion culling framework. The

occlusion culling framework is from-region and conservative.

Figure 4.8 shows the framework for urban visualization using the slice-wise repre-

sentation. It mainly consists of a preprocessing phase and a navigation phase. To

test the effectiveness of the slice-wise representation, we developed a conservative

from-region visibility algorithm. To achieve conservative occlusion culling, we

made use of the shrinking idea first proposed by Wonka et al. [100]. Our shrink-

ing algorithm can be applied to any kind of scene object, including nonconvex

ones.
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Figure 4.8: The urban visualization framework: in the first phase, we read the
scene and calculate the bounding boxes of objects. Next, we discretize each
object by checking if each triangle intersects with a predefined threshold-sized
cube. After discretizing the object, we check the cubes for fullness to create
slices and create the tree of octrees of the bounding-boxed object. These are
used during preprocess as view-cells. After creating the shrunk versions of the
objects, these slices are checked for occlusion and a tight visibility determination
is performed for each grid location. The phases in dashed blocks are performed in
the preprocessing phase. The View Frustum Culling (VFC) is also done during
navigation.
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4.2.1 Occluder Shrinking

The purpose of shrinking is to achieve conservative occlusion culling by sampling

from discrete locations. It is possible to determine occlusion from a point and

retain conservativeness for a limited area because the occluders are shrunk by

the maximum distance that can be traveled in the view-cell. In order to achieve

conservativeness, it is necessary to shrink occluders, so that behind the occluder

is visible even if the user moves to the farthest possible location in the view-cell.

Wonka et al. [100] shrink occluders by using a sphere constructed around 2.5D

occluders. Decoret et al. [32] generalize the shrinking by a sphere to erosion by a

convex shape, which is the union of the “edge convex hulls” of the object. This is

performed to create tighter visibility sets and to increase the occlusion region of

the objects. They compute the shrunk versions of objects using an image-based

algorithm at each view cell using a voxelized representation. This makes it very

difficult to apply the presented image-based approach to general 3D objects.

4.2.1.1 Shrinking General 3D Objects

The exact shrinking can only be performed by calculating the Minkowski differ-

ences of the object and the view-cell [4, 87] and using the volume constructed

inside the object as the shrunk version (see Figure 4.9).

Consider a general 3D object O and a set of vectors X of a view-cell. The

dilation of O by X, also known as the Minkowski sum of both sets is defined by

the equation:

O ⊕X = {M + x |M ∈ O, x ∈ X} (4.1)

Here, X is commonly called the structuring element [32]. Thus, the inner volume,

which composes the shrunk shape S of the object, can be defined as:

O �X = {S | ∀x ∈ X, S + x ∈ O}
= {S | {S} ⊕X ⊂ O}
= {S} ⊆ {O �X}

(4.2)
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Figure 4.9: Shrunk volume extraction using Minkowski difference calculation. O
denotes the object and S denotes the shrunk volume of the object.

Although there exist methods for exact Minkowski sums [94], it is practically

very hard to find the exact Minkowski differences of general 3D objects. Our aim

is to find a shrunk version of an object and retain the conservativeness of the

view-cell visibility. Therefore, we need not be exact for the Minkowski difference

calculations, i.e. we do not want to obtain a correctly calculated model as is

shown for the summation case in [94]. Thus, we try to find an approximation to

the difference, which will also satisfy the conservativeness of the occlusion-culling

process. In this way, we can shrink any complex 3D object.

4.2.1.2 Shrinking Using the Minkowski Difference

We shrink an object by moving the vertices in the reverse direction of their nor-

mals. Although architecturally we do not make any assumption on the buildings,

in order to achieve a good shrunk version of a model, closed mesh and con-

nectivity in the geometry provide a suitable environment. Our aim is to use an

approximate Minkowski difference of the object and the view-cell and still achieve

conservative occlusion culling. It should be noted that the vertices are not moved

with a constant distance (see Figure 4.11).

The traveled distance of a vertex during shrinking affects the final position of a
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ε

Figure 4.10: A sample view-cell, in which the user can move at most with ε
distance.

face. For the exact Minkowski difference calculation, the movement distances of

the faces towards inside vary with respect to the orientation of the view-cell, as

shown in Figure 4.11 (a).

b

a

face

fac
e

(a)

..
ε

ε
α

α
2

δ

face

fac
e

(b)

Figure 4.11: Shrinking using the Minkowski difference: (a) In an exact Minkowski
difference calculation, the movements of the faces towards inside are different with
respect to the view-cell position. The two faces move with distances a and b. (b)
The face movements are assumed to be at least the distance ε of Figure 4.10 to
guarantee conservativeness. In this case, the vertex movement distance becomes
δ. For easy interpretation, only an instance of the process where two faces sharing
a vertex is shown.

The hard part in calculating exact shrinking using the Minkowski difference con-

cept is calculating the distances a and b for any orientation and posture of the

view-cell and the faces of the object, shown in Figure 4.11 (a). Instead we pro-

vide an approximation for it (see Figure 4.11 (b)). In order to guarantee the
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conservativeness and derive a formulation, the faces should be moved at least the

distance ε, which is the longest movement distance within a view-cell. We call

this movement distance as δ. In this case it becomes a function of ε.

Theorem 1 Let O be the occluder, S be its shrunk shape, and ε be the maximum

travel distance from the center of the view-cell. If the minimum shrinking distance

of O is greater than or equal to ε, the determined visibility from the center of the

view-cell by using the shrunk shape of the occluder provides a conservative estimate

for the whole view-cell (see Figure 4.12).

Proof: According to Equation 4.2, the shrunk shape S is {S} ⊆ {O � X}. Let

Xd be the vectors of length d, which is smaller than ε and is the correct distance

calculated using the Minkowski difference, that is d = a or d = b (see Figure 4.11

(a)). Hence, {Sd} ⊆ {O � Xd}. Since ε is the maximum distance to be moved,

then {a, b} ≤ ε. Then, the volume of {Sd} is greater than or equal to the volume of

{Sε}. Consequently, if {Sd} is conservative, then {Sε}, having a smaller volume,

is definitely conservative.

1P

S
d

fac
e face

ε
X

O

Figure 4.12: If a point P1 is visible from the center of the view-cell, then it should
also be visible with respect to its shrunk version S, even if the user moves to the
farthest distance available in the view-cell, ε. If the inner movement distance d
of the faces for the shrunk shape calculation is greater than or equal to ε, the
conservativeness is guaranteed and the point P1 becomes visible with respect to
the shrunk version S. The reader is referred to [100] for the proof of the other
case: if a point is occluded with respect to the shrunk version S, then it is also
occluded with respect to its original version O, within an ε neighborhood.
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4.2.1.3 Calculating Shrinking Distance for the Vertices

Using the notations of Figures 4.11 (b) and 4.13,

α

2
= min

{
90− arccos

(
Nv · Ni

|Nv| |Ni|
)}

, i = 1, 2, . . . , n (4.3)

where n is the number of faces sharing that vertex, Nv is the vertex normal,

and Ni is the face normal. Then the shrinking distance of the vertex becomes

δ = ε/sin(α
2
). In order to calculate δ, we calculate the minimum angle between

the vertex normal and all the neighboring face normals, since it yields to the

longest distance and guarantees conservativeness. The calculated shrinking dis-

tance becomes a conservative bound on the real Minkowski differences of the

model and the view-cell.

iN

v
Nv

α
2

δ

Figure 4.13: The object is shrunk by moving the vertex in the opposite direction
of the vertex normal. The shrinking distance δ is calculated based on the view
cell parameter ε and the angle α

2
.
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4.2.1.4 Shrinking Occluders

The calculation of a correct shrinking distance is not enough to create conserva-

tive shrunk versions of the occluders; some faces may go inside one another and

invalidate conservativeness (see Figure 4.14). To prevent such cases, we check the

intersection of the volumes formed by the movement of the faces in the occluder

and the corresponding faces in the shrunk version and remove the intersected

ones. In order to accomplish this;

• we first check the intersection of their axis-aligned bounding boxes,

• if the axis-aligned bounding boxes intersect, we try to find a supporting

plane between the volumes,

• if there is a supporting plane between them, the volumes do not intersect,

• otherwise, we remove the faces that cause intersection from the shrunk

object (see Figure 4.15).

We also remove other bad cases such as triangles with no area and overlapping

triangles. Shrinking examples are given in Figures 4.15 and 4.16.

(a) (b)

Figure 4.14: (a) Shrinking without any intersection: the neighboring triangles do
not intersect because of common vertices. (b) The movement volumes of the two
triangles intersect and this case results in removal of the triangles.
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Figure 4.15: Shrinking applied to a heptoroid: The rims around holes shrink to
null when the triangles from opposite sides start to intersect with each other (δ
values are increasing in rowwise order).
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Figure 4.16: Shrinking applied to a general 3D object: the vertices touching the
ground are not moved vertically (δ values are increasing in rowwise order).

Our shrinking algorithm has some similarities with simplification envelopes [23].

Simplification envelopes are used to create simplified versions of 3D models. The

simplified models are obtained by moving the vertices at most δ distance from

their original position. When many triangles come close to each other, they are

removed and smaller number of triangles are inserted. In simplification envelopes,

it is guaranteed that the movement distance of the vertices are at most δ, whereas

in our shrinking algorithm it is guaranteed to be at least δ. In simplification

envelopes, the vertices are moved with small steps and the triangles are checked

for intersection at each step. In our case, since the movement distance has to be

at least δ, we calculate the necessary distance once and check for intersections

later. Since our aim is to shrink the objects, we do not create new triangle
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patches as opposed to simplification envelopes since the triangle patch creation

may invalidate conservativeness.

The shrinking approach used in [20] is also applicable to general 3D scenes. They

accept triangles or groups of connected triangles as occluders. They use the sup-

porting planes of the triangles or a combination of supporting planes to construct

an occluder umbra with respect to a selected projection point. The shrinking is

performed in this umbra by just calculating the inner offset of the supporting

planes towards the center of the occluder umbra which intersect at the projection

point. Since they use planes of the triangles, the view-cell sizes are not the same

and change with respect to the amount of the geometry. This is an intelligent

approach which facilitates the load balancing of the geometry for each view-cell.

However, in large environments, the view-cell partitioning may go deeper and

a large number of view-cells can be faced with as reported by the authors, i.e.

they have 500K view-cells ranging from several inches to a few feet wide. This

is natural because it is very hard to use anything other than individual triangles

or a few triangles for the case of occlusion culling in general environments. All

of these issues result in smaller view-cell sizes and the need for a determination

of the shrunk versions of the occluders for each view-cell. Instead we use the

objects as a whole and calculate their shrunk versions once using the algorithms

described above, which are valid for all the view-cells using the Minkowski differ-

ence concept. In our approach, we use the objects as a whole and calculate their

shrunk versions once.

As a result of the occluder shrinking algorithm, some triangles may be removed

from the model should there be any intersection during shrinking. Conservative

property of the calculated visibility may be invalidated if we let these intersected

triangles in the occluder model. This triangle removal may be overly conser-

vative especially for the models with triangle sizes less than the shrinking dis-

tance. Exact shrinking is not computed where as we can find exact dilation using

Minkowski sums. Creating a dilated model does not require intersection calcu-

lation –triangles may intersect without invalidating the dilation. However, exact

calculation of the Minkowski difference requires creating new geometry instead

of the intersected or eliminated ones, while checking the conservativity. For now
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our intention is only to find a version of the model so as to provide a conservative

visibility of the scene. Currently, conservativeness degree is achieved by adjust-

ing the view-cell size with respect to the average size of the buildings. A visual

comparison of a view-cell and the model is shown in Figure 4.17.

(a) (b) (c)

Figure 4.17: View-cells (outlined boxes) for different city models: (a) The view-
cell in the procedurally-generated 40M triangle test model. (b) The view-cell in
the Vienna2000 model. (c) The view-cell in the Glasgow Model.

4.2.2 Occlusion Culling

The occlusion-culling algorithm works in the preprocessing phase. It regards

each scene object as a candidate occludee and performs an occlusion test with

respect to all other objects in the scene. At each step, slices of the horizontal

axis are checked for complete occlusion. The other two axis slices are checked

for partial occlusion. An object is tested against a combination of the shrunk

versions of all other objects; this creates occluder fusion and determines the

occlusion amounts. This process is repeated for each navigable view-cell. The

culling scheme is applied from a coarse-grained to fine-grained occlusion culling

tests (see Algorithm 4.1).
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foreach grid location in 3D do
Draw the shrunk versions of the visible objects in the frustum as occluder;
Cull portions of the scene using a quadtree;
foreach candidate occludee belonging to visible quadtree blocks do

Construct frustum towards the center of the occludee;
Test the bounding box of the occludee using NV OCCLUSION QUERY;
if the bounding box of the occludee is visible then

Mark the object as VISIBLE
else

Mark it as INVISIBLE

foreach VISIBLE object do
Test slices using Algorithm 4.2;

foreach PARTIALLY VISIBLE object in the scene do
Optimize visible slice counts using Algorithm 4.3;

Algorithm 4.1: The occlusion-culling algorithm: this algorithm differentiates
between visible and invisible occludees. Then the visible objects are sent to
the slice-wise occlusion culling algorithm. Next the number of visible slices are
optimized and the PVS for the view-cell is determined.

4.2.2.1 Coarse-Grained Culling

The visible buildings are classified as either partially visible or completely visible.

Determining these two forms require more occlusion queries to be performed. Al-

gorithm 4.1 performs a coarse-grained occlusion culling to eliminate large invisible

portions of the scene. It performs the following operations:

• Draw shrunk versions of all objects as occluders and disable color and depth

buffer updates.

• We perform projection towards all 90-degree sections of the viewpoint and

send quadtree blocks constructed from the ground locations of the buildings

for being culled. We use hardware occlusion queries for this purpose. This

step eliminates most of the invisible buildings quickly without testing them

one by one.

• We calculate the projection of the ocludees belonging to visible quadtree

blocks. In practice, although the calculated shrink versions are conserva-

tive, due to the use of graphics hardware to detect occlusion and hence the
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rasterization errors can be encountered, the conservativeness can be vio-

lated. For example, a far away object may project to less than a pixel but

an occluder right in front of the object may still cover the entire pixel due to

the rasterization errors. These errors may be caused by projection, image

sampling, and depth-buffer precision errors [45]. We overcome these prob-

lems by adjusting the viewing parameters for the projection so that the

occludee is zoomed to the maximum extent on the occlusion test screen,

which is 1024x768-pixels. This results in a very large view of the redrawn

object. In other words, the outer contour of an occluder in the current view

becomes tested with a very high precision. Besides, the bounding box of

the candidate occludee is tested while generating two fragments for each

pixel as in [45] and using antialiasing. In this way, rasterization errors that

can be faced due to hardware occlusion queries are prevented.

• We test the bounding box of the candidate occludee. If the bounding box

test returns visible pixels, we mark the object as visible, otherwise as invis-

ible.

Most occlusion-culling algorithms stop after this step and accept an object as

visible if the occludee becomes partially visible. We go through further steps

and determine a tighter visibility set for the object. If the bounding box of the

occludee is visible, we submit occlusion queries for the slices; we then determine

the maximum occlusion height for each slice of the occludee using Algorithm 4.2.

Thus, we classify the buildings as completely visible, partially visible and invisible.

The visibility information for the slices is sent to Algorithm 4.3 to decrease the

number of slices and determine the visibility indices to be used during navigation.

4.2.2.2 Fine-Grained Culling

Algorithm 4.2 performs fine-grained occlusion-culling. It checks the slices of a

candidate occludee. To find the exact occlusion, we first submit occlusion queries

and test the vertical slices with blocks of size Δ (see Figure 4.18). Next, we

collect the query results. Finding the last invisible Δ allows us to determine the

occluded height of the slice. Horizontal slices are checked for complete occlusion.
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Generate and submit NV occlusion queries:
begin

forall vertical slices do
slice increment←− 1;
while slice increment*Δ ≤slice height do

Query the slice box with height (slice increment*Δ);
slice increment++;

forall horizontal slices do
Query the horizontal slice box;

end
Collect the results of the occlusion queries:
begin

forall vertical slices do
slice increment←− 1;
while slice increment*Δ ≤slice height do

if The query returns any visible pixels then
slice occlusion height ←− (slice increment-1)*Δ);
break;

else
slice occlusion height ←− slice increment*Δ;

slice increment++;

if slice occlusion height≡slice height then
Mark the slice as INVISIBLE;

else
if slice occlusion height≡0 then

Mark the slice as COMPLETELY VISIBLE;
else

Mark the slice as PARTIALLY VISIBLE;

forall horizontal slices do
if The query returns any visible pixels then

Mark the slice as COMPLETELY VISIBLE;
else

Mark the slice as INVISIBLE;

end
if all slices are COMPLETELY VISIBLE then

Mark the object as COMPLETELY VISIBLE;
else

Mark the object as PARTIALLY VISIBLE;

Algorithm 4.2: Testing the slices for occlusion: each slice is tested against the
shrunk occluder. The vertical slice bounding boxes are drawn from the bottom
to the top incrementing them gradually as in Figure 4.18 (b).
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4.2.2.3 Optimizing the Visible Slice Counts

An object occluded by several occluders may have an irregular appearance that

cannot be easily represented (see Figure 4.19). However, our aim is to decrease

the amount of information needed to represent visibility, and therefore reduce the

time to access the visible parts of the objects. In particular, the purpose of this

optimization is to represent the visible area by using a small number of slices and

determine a single index for each axis. We have to sacrifice tightness of visibility

somewhat to reduce the access time and memory requirement (see Figure 4.19).
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Figure 4.18: In order to determine the correct occlusion height in (a), the slices
are tested beginning from the lowest unoccluded height and the point of occlusion
is found as in (b) by iteratively eliminating blocks of size Δ from the vertical slice;
this creates occluder fusion (the viewpoint is in front of the occluder). The test
order for slices along the x, y, and z-axes are depicted in (c-e), respectively. While
the slices in the x and z-axes are tested for exact heights, the y-axis slices are
tested for complete occlusion (d). Testing y-axis slices for complete occlusion
may result in unnecessarily accepting the slice as visible. However, this case is
handled by optimizing the slice counts.
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The algorithm for optimizing the slice counts is given in Algorithm 4.3. This

algorithm is used to decrease the number of slices representing the visible portion

of an occludee. In this algorithm:

• Any triangle of the object is represented by slices from three axes. We first

find the maximally-occluded axis by calculating the occluded regions and

the percentages of occlusion with respect to each axis.

• The rectangle that represents the occluded area is constructed.

• For all the slices of the maximally occluded axis, we discard the vertical

ones up to the vertical edge of the rectangle and the horizontal ones up to

the upper horizontal edge.

• The region above the upper edge of the rectangle is represented using hor-

izontal slices and the region on the right- or left-hand side of the rectangle

is represented using vertical slices.

• We discard the slices of the minimally occluded axis.

• Finally, the indices are calculated for each axis (see Figure 4.5).

X occlusion ←− Percentage of occlusion for X-axis slices;
Z occlusion ←− Percentage of occlusion for Z-axis slices;
work axis ←− max (X occlusion, Z occlusion);
Construct maximum sized rectangle of occlusion in the work axis;
forall Slices of the work axis do

Discard the vertical slices within the horizontal range of the rectangle;
Discard the horizontal slices within the vertical range of the rectangle;

Discard the slices of the vertical axis other than work axis;
Assign the visibility indices to each axis for being stored;

Algorithm 4.3: The algorithm for optimizing the slice numbers for a partially
occluded object: The algorithm reduces the number of slices used to represent
the visible portion for an occludee (see Figure 4.19).

It should be noted that the visibility information for each partially visible object

is represented using only three bytes, one byte for the visibility along each axis.

The created PVS size is a function of the number of view-cells and the number

of the objects. The size of the PVS does not change with respect to the model

complexity(see Figure 4.7).
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Figure 4.19: The resultant shape of the occlusion may have a jaggy appearance
and we need to smooth it to represent with the slice-wise structure (a and b). This
is handled as described in Algorithm 4.3. After selecting the maximally occluded
axis, the starting corner of the occlusion is determined (c). The rectangle to
represent the occlusion is determined (d). The vertical slices up to vertical edge
of the rectangle and horizontal ones up to the horizontal edge are discarded (e).
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Figure 4.20: The rendering process: The user is in the blue view-cell. The display
list for the view-cell is compiled before entering to the navigation stage, along with
the neighboring view-cells. During navigation, the compilations of the display lists
for the neighboring view-cells in the movement direction are given high priority.
The display list compiler is attached to the idle function of the OpenGL so that
the neighboring view-cell compilation does not cause bottlenecks. In this way,
frame dips caused by the compilation of the display lists are prevented. After
view frustum culling is performed on the quadtree blocks of the ground locations
of the buildings, the constructed display lists for each building in the view frustum
are rendered.
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4.2.3 Rendering

Vertex arrays [20] and vertex buffer objects [107] are two popular techniques

used for rendering the complex environments. We perform rendering by creating

OpenGL display lists for the view-cells on-the-fly. OpenGL display lists are more

flexible for run time purposes than using vertex buffer objects. We also create

display lists for the neighboring view-cells of the user location to prevent per-

formance degradation. This degradation might occur because of the display list

compilation of the new PVS for the view-cell the user moves into. The neighbor-

ing view-cells are updated on-the-fly gradually without decreasing the frame rate

below 25 fps. It should be noted that this operation is also highly parallelizable.

The rendering process is shown in Figure 4.20. We avoid multiple renderings of

the triangles at the intersections of the horizontal and vertical axes of the partially

visible objects (see Figure 4.19 (e)).



Chapter 5

Stereoscopic Urban Visualization

Using GPU

Urban environments provide the opportunity to detect a lot of occlusion during

a walkthrough, which can be eliminated from the graphics pipeline as it does not

contribute to the final view. Therefore, previous work has mostly concentrated on

determining these occluded parts. The quality of a visibility algorithm depends on

how fast it determines the visible parts of the model for different views, which are

called potentially visible sets (PVSs), and the degree of tightness of the potentially

visible sets.

The advances in graphics hardware allow detection of occluded regions of urban

geometry, even with complex 3D buildings. Visual simulations, urban combat

simulations and city engineering applications require highly detailed models and

realistic views of an urban scene. Occlusion detection using preprocessing is a

very common approach, because of its high polygon reduction and its ability to

handle general 3D buildings.

Virtual reality applications require special treatment because the geometry is ren-

dered twice, once for each eye. Generally, performance-enhancing techniques such

as view-frustum culling (VFC) are applied twice for both eyes; this increases the

overhead. The first contribution presented in this chapter is a simple VFC ap-

proach, which requires only one application from a culling location well placed for

64
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both eye coordinates rather than two locations for stereoscopic visualization. The

view calculated from this location has the same coverage as both eyes together.

The second contribution presented in this chapter is the use of the graphics pro-

cessing unit (GPU) for occlusion culling. The PVSs are determined in prepro-

cessing time and the resultant visibility list is stored using a slice-wise building

representation. We use the GPU to create buffer objects and store the model

information in the high-speed memory thereby improve the rendering speed. In

particular, we demonstrate how the GPU can achieve high frame rates during

stereoscopic visualization.

We first explain how the GPU is utilized using the slice-wise representation for

the monoscopic case. The GPU utilization is based on the memory configuration

for the vertices of the buildings. During run-time, we use only the indices of the

vertices in the GPU, which are bound by a single index denoting the locations

of the vertices of the slices for partial visibility and for the completely visible

buildings. Next, we explain our contribution for the stereoscopic visualization,

namely the single application of the VFC.

5.1 Using Slice-wise Representation on GPU

A significant feature of this representation is that it facilitates the storage of

partial visibility in case a building is partially visible for a view point. The slice-

wise representation is constructed by applying a regular subdivision to a building,

and then combining these subdivided blocks into slices for each axis. In this way,

a triangle can be accessed by at least three slices. During the occlusion culling

process, the slices –not individual triangles– are tested for occlusion. A building

is tested for occlusion using the shrunk versions of other objects as occluders,

and the slices of buildings parallel to each axis as occludees. The vertical slices

are tested by gradually increasing their height and the first visible heights are

recorded for each. The horizontal slices are checked for complete occlusion. After

determining which slices and portions of each are visible, the resultant list is

optimized and partial visibility is represented with only three bytes, one for each
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axis. As a result, visibility is encoded by the first visible slice numbers of vertical

and horizontal axes (see Figure 5.1). For the sake of simplicity, three bytes are

stored for each building including the unused axis.

1 2 3 4
Visibility Index= -3

1 2 3 4
Visibility Index= +1

1

2

3

4

Visibility Index= +3

5

Figure 5.1: Visibility index determination using the slice-wise building represen-
tation: The index number to be stored depends upon the occluded section of the
object. “+” or “−” signs are used to define the occlusion side.

However, the rendering method employed uses dynamic display-list compilation

in OpenGL, which can cause bottlenecks if there is a large amount of visible

geometry. To reduce display-list compilation bottleneck, we created display lists

online for nine view-cells including the neighbors of the user’s view-cell. This

approach provides a suitable environment for visualization and eliminates frame

dips that may arise because of the compilation. In the worst cases, it has the

disadvantage of replicating display lists for all neighboring view-cells; this may

lead to memory overflows.

5.1.1 OpenGL:Vertex Buffer Objects (VBO)

A VBO provides a mechanism for handling the data that might be

pointed to by a function. Typically these functions are glVertexPointer(),

glColorPointer(), glNormalPointer() and drawing commands such as gl-

Draw[Range]Elements() [74]. This mechanism provides some chunks of memory

(buffers) that are available through identifiers. These identifiers are used to refer

to the memory chunks. As with the display list mechanism of OpenGL, the user

is able to bind such a buffer on the client side. This binding operation turns every
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pointer in a client function into offsets to be used on the server side. In other

words, it turns a client function into a server function.

With VBOs, it is possible to keep vertices in high speed memory and access them

quickly. Actually, the vertices are stored in a memory-efficient fashion and the

memory usage becomes less than keeping them in separate linked list of pointers

(see Figure 4.4). VBOs provide accessibility by using a binding pointer; they do

not require that triangles be kept in the main memory.

5.1.2 VBO Creation for the Buildings

Our VBO configuration is shown in Figure 5.2. The vertex buffer is filled with the

x, y, and z vertex coordinates for each building. A second buffer for each building

is created, which stores the indices of the vertices for each triangle in unsigned

short int data type. This limits the number of the vertices to be used to 65,535

per object, which is suitable for a single building representation. There is no limit

on the number of triangles that can be formed with these vertices. This index

buffer is used to represent completely visible buildings during navigation. Next,

for each slice, other index buffers are created so as to represent partial visibility.

It should be noted that the index buffers required for each slice can be created

during walkthrough by storing the indices in main memory. The triangles are

not needed after the VBOs for a building are created because by then, they are

in the GPU.

Algorithm 5.1 gives the VBO creation algorithm. In the first part of the algo-

rithm, vertex coordinates, normals and color data are sent to the GPU. These

data will be used once with the rendering commands for the buildings, regard-

less of their visibility class. In the second part, the vertex index data for the

triangles of a completely visible object are sent. Next, the same kind of data is

sent for the slices. In the last part, the vertices, triangles and other related data

are deleted from the main memory through linked lists. To implement this algo-

rithm, the data structure shown in Figure 4.4 must be modified slightly to include

binding values for complete visibility, and for the slices for partial visibility (see

Figure 5.3).
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OBJECT VERTEX BUFFER SLICES

Figure 5.2: The VBO data structure used in GPU-based visualization. The object
triangles are constructed using pointers to the vertex list and stored separately
for each building.

Main Geometry Object

Slices w.r.t. X-axis

n   Slice_Element_Buffer_Bindingth

Y-axis
Z-axis

........

...

# of X-Slices

Vertex_List_Binding

Normal_List_Binding

Color_List_Binding

CV_Element_Buffer_Binding

Figure 5.3: The modified data structure for slice-wise representation to facilitate
GPU implementation: the vertex, normal and color list bindings point to their
memory locations in the GPU. These data are referenced by the element buffer
bindings (CV Element Buffer Binding and nthSlice Element Buffer Binding) de-
pending on visibility status during run-time.
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foreach Object in the model do
/* 1stpart */

Generate a VBO Array Buffer for the vertices
Vertex List Binding←−VBO vertex buffer
Send vertices in the main memory to GPU through Vertex List Binding

Generate a VBO Array Buffer for the normals of the triangles
Normal List Binding←− VBO normal buffer
Send normals in the main memory to GPU through Normal List Binding

Generate a VBO Array Buffer for the colors of the triangles
Color List Binding←− VBO color buffer
Send colors in the main memory to GPU through Color List Binding
/* 2ndpart */

Generate a VBO Element Array Buffer for indice list of triangles
CV Element Buffer Binding←− VBO index buffer
Send array of indices to GPU as Element Array for the whole building

forall Slices of the building in X, Y and Z axes do
Generate a VBO Element Array Buffer for indice list of triangles
nthSlice Element Buffer Binding←− VBO index buffer
Send array of indices to GPU as Element Array for the nthSlice

/* 3rdpart */

Delete vertices, triangles, normals and color data from the main memory

Algorithm 5.1: The VBO creation algorithm: this algorithm is used to send
the vertex coordinates, normals and color data along with the vertex indices of
the triangles to GPU. In the first part, the necessary information for the vertices
is sent. In the second part, we send the indices of the vertices for the triangles of
a completely visible object and its slices. In the last part, these data are deleted
from the main memory after they are transferred to the GPU.
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5.1.3 Implications of Using VBOs for the Slices

The slice-wise representation coupled with VBO provides a suitable environment

for visualization, because the only memory overhead of this representation is the

index buffers that are needed. It has several benefits: it supports partial visibility;

it provides the lowest potentially visible set storage cost; and it facilitates a fast

visualization environment.

As a result, the storage and accessibility representation of each slice is fully uti-

lized although the GPU memory amount may cause slight limitation on this issue.

However, VBOs have the advantage of being able to swap with the main memory,

if the GPU memory becomes full. We have performed tests even with 32 MB of

GPU memory; there were no overflows.

The representation of each slice does not need to be changed. However, instead of

keeping display lists and triangles in the main memory, they are kept in the high

speed memory of the graphics hardware. This produces a huge decrease in the

amount of main memory used because of the driver optimization of the OpenGL.

Figures 5.2 and 5.3 show the resultant configuration and the memory resident

structures for GPU-based visualization using the slice-wise representation.

5.1.4 VBO Referencing During Run-time

Run-time VBO access is depicted in Algorithm 5.2. In this algorithm, the slice-

wise representation of buildings is exploited. This algorithm uses the visibility

information, which is produced using the occlusion culling algorithm and the slice-

wise representation. In this algorithm, the following operations are performed:

• First, the active view-cell (or view-cells since two eyes may be in two dif-

ferent cells) are determined by looking at the user location in the navigable

space (see Chapter 3). Visible objects are determined and stored as a linked

list for each view-cell.

• Next, this list is traversed and any completely visible objects are rendered

using the CV Element Buffer Binding index of the object. If the object is
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partially visible, then we traverse the slices of the object. The occlusion

can be either on the left or right of the vertical axes or in the lower part of

the object (see Figure 4.5).

• Depending on the occlusion status, a variable is kept and if the object is

occluded from the left and the right part is visible, which is denoted by

a negative visibility index, we increment the variable and do not render

the slice. Until the incremented variable becomes greater than the abso-

lute value of the visibility index, we just pass the slice and then send the

nthSlice Element Buffer Binding number and others for rendering.

• If the object is occluded from the right and the left part is visible, which is

denoted by a positive visibility index, we render the slices until the incre-

mented variable becomes greater than the visibility index.

5.2 Stereoscopic Rendering

The following conditions are required to achieve the best performance in stereo-

scopic visualization:

• The rendering rate should be sufficient to achieve interactive visualization;

i.e., it should be at least 17 frames per second.

• The ghosting effect (crosstalk), which is caused by drawing a geometry

for one eye and not drawing it for the other eye, should be reduced or

eliminated.

• The strongest stereo effect with the lowest values of parallax should be

provided. Parallax values should not exceed 1.6◦ [93].

5.2.1 Stereoscopic Projection Method

We applied off-axis projection with parallel frustums (Figure 5.4) for stereoscopic

visualization, i.e., two projections are performed for each viewing direction and for

each eye and converge at infinity. Since an urban scene contains many buildings at



CHAPTER 5. STEREOSCOPIC URBAN VISUALIZATION USING GPU 72

Determine the active view-cells where the user eyes are located;
Apply Single Location VFC;
forall the objects attached to the active view-cells that are in the frustum do

Get X, Y and Z indices;
BindObject();
if Y≡1 then

/* object is completely visible */

draw CV object(object);
else

foreach axes X, Y and Z do
if slice index≡0 then

loop;

pass the slice←−0;
if slice index<0 then

/* Right part is visible */

while slices are not finished do
pass the slice←−pass the slice+1;
if pass the slice>abs(slice index) then

draw slice();

else
/* Left part is visible */

while slices are not finished do
pass the slice←−pass the slice+1;
if pass the slice≤slice index then

draw slice();

Algorithm 5.2: The algorithm for selecting the slices to be rendered. The selec-
tion is performed based on the visibility index assigned to the slice as described
in [106], (see Chapter 4). The BindObject() function is used to inform the GPU
that the object is to be accessed for rendering.
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Figure 5.4: Off-axis projection using convergence is shown on the left. If the user
converges to the assumed location in the scene, then perfect stereo is achieved.
However, for urban scenes where there are lots of buildings, assuming a single
convergence point is not realistic. On the right, off-axis projection with parallel
view frustums is shown. Converging viewing directions at infinity decreases the
ghosting effect if the viewing parameters are kept within reasonable limits.

a distance, we found that using off-axis projection with a single convergence point

(toe in projection) causes lots of ghosting effects on the screen (see Figure 5.4).

Because of the convergence angle and varying scene depth, locations other than

the convergence point can have noticeable ghosting effect, even when the viewing

parameters are kept within reasonable limits. In real life, the human eyes can

converge easily to any point the viewer wants. In computer-generated stereo, it

is not easy to determine the point where the user’s eyes are converging; there has

been some work in this area but these are not easily applicable [96, 109]. Using a

convergence point works better for observing a single object. Therefore, we choose

to use off-axis projection with parallel view frustums converging at infinity. If

the stereo parameters, such as interocular distance and user-screen distance are

kept within reasonable limits, the ghosting effect on the inner parts of the screen

becomes unnoticeable. We do not use on-axis projection because it causes image

distortions at the peripheries of the screen due to projection transformations.
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5.2.2 View-Frustum Culling in Stereoscopic Visualization

View-frustum culling is one of the most important methods of eliminating prim-

itives that do not contribute to the final image during navigation. It is generally

performed twice for stereoscopic visualization. We made a simple change to de-

crease the number of VFC operations for stereoscopic visualization from two to

one. Instead of performing VFC according to the locations of the eyes, we move

backwards a calculated distance and put the culling location at the spot indi-

cated in Figure 5.5. This location is determined by using the midpoint of both

eyes, frustum angle, and the interocular distance. The viewing frustum becomes

enlarged by moving the user position virtually backwards, until the new frustum

edges coincide with the right edge of the frustum with respect to the right eye

and the left edge of the frustum with respect to the left eye. Thus, we are able to

cover the whole region that can be observed during stereoscopic visualization. Al-

though this single-location VFC increases the number of polygons to be processed

for rendering, it is much less costly than performing VFC twice.
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Figure 5.5: Changing the VFC location: since we know the projection an-
gle, the exact distance to move backward becomes a simple function of
half of the eye separation distance and half of the projection angle (back-
ward distance=half interocular distance/tan(δ)). By moving the VFC location,
a single test can cover all the volume that can be viewed in stereo.
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VFC can be performed on the unoccluded objects by making an inorder traversal

of the scene quadtree. Another solution is to test the bounding boxes of each un-

occluded object one by one. Our experiences show that when the scene quadtree

subdivision depth is too high, it may take longer to cull the objects from the

frustum than testing unoccluded objects one by one. Since the scene is large

and the number of visible objects is much smaller than the number of quadtree

nodes, for ground-based navigation it is faster to test only the bounding boxes of

individual buildings in urban scenes.

VFC can be done using stencil tests on the quadtree blocks of the unoccluded

geometry. It can also be carried out by applying hardware occlusion queries for

the quadtree blocks. If the scene hierarchy is to be used for the VFC operation,

then the in-frustum information for each node of the hierarchy is needed, in order

to determine the tests for deeper level nodes. However, this requires a hardware

occlusion query setup and retrieval operation for each quadtree block and the

setup time for hardware occlusion culling is longer than it is for the stencil buffer

mechanism. This is not the case for testing the bounding boxes of each object

individually; all of the bounding boxes can be sent to the GPU in a single batch

using hardware occlusion query, and the ones returning visible pixels can be

quickly rendered. These options are scene dependent and we have chosen to test

the bounding boxes of the objects using hardware occlusion queries; we use an

empty screen as an occluder buffer and test the bounding boxes of each object

individually.



Chapter 6

Results

6.1 Navigable Space Extraction

During the development of navigation systems for urban sceneries, the navigation

determination becomes one of the most vital parts of the work. The navigation

space determination is simple for the scene databases where the building foot-

prints are used and the navigation is bounded to the ground. However, for the

systems that need 3D navigation and the scene database is composed of complex

objects where footprints do not define the navigable area, the navigation space

determination becomes one of the most daunting tasks.

At this point, our approach becomes a solution to the definition of navigable space

determination. It also constructs the hierarchical scene database as an additional

feature. One important feature of our approach is that it is independent from

the architecture of the scene objects. The building models may have pillars or

holes where seeing through them is also possible. The method can be applied to

any type of unstructured scene files composed of objects such as buildings. The

application of the method produces two octrees; one containing the definition of

the navigation area and another one containing the scene hierarchy, both in the

form of forest of octrees. A sample from the created octree is shown in Figure 6.1.

The created cells are then used as view-cells, from where the occlusion culling

is performed using shrinking with the Minkowski difference. Besides, using the
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created navigable space octree, it is possible to perform urban navigation in a

fly-through type application.

Figure 6.1: Created octree structure for a small urban model.

6.2 Occlusion Culling using Slice-wise Repre-

sentation

In this section, we will present the results of the tests performed using the display

list method for rendering. In the next section, we will present the results of using

the GPU-based rendering of the stereoscopic visualization with comparisons and

improvements.

6.2.1 Test Environment

The proposed algorithms were implemented using C language with OpenGL li-

braries; they were tested on an Intel Pentium IV- 3.4 GHz. computer with 4 GB
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(a) (b) (c)

Figure 6.2: The models used in the empirical study: (a) the procedurally-
generated 40M-polygon test model is composed of 6144 buildings ranging from
5K to 8K polygons each; (b) the Vienna model is a 7.8M-polygon model that has
2078 blocks of buildings ranging from 60 to 30768 faces. In this model, contrary
to previous approaches by other authors, each surrounding block of buildings is
accepted as a single object during the tests. (c) Glasgow model has originally
290K polygons. However, the mesh structure is not well-defined and has inter-
secting, long and thin triangles. Therefore, the mesh structure has been refined
and a total of 500K polygons are used during the tests.

of RAM and NVidia Quadro Pro FX 4400 graphics card with 512 MB of memory.

We use three different urban models for the tests (Figure 6.2). The first one is

a procedurally-generated model using a few detailed building models, which is

composed of 40M triangles. The second one is the model of the city of Vienna

composed of 7.8M triangles (Vienna2000 Model with detailed buildings). The last

one is the Glasgow model, which is a relatively small (500K) model. Table 6.1

shows various statistics about these models. The resource consumption and pa-

rameters for the models are summarized in Table 6.2. We discuss the results for

the largest one, 40M-polygon procedurally-generated model. The interpretation

of the test results for two real city models are similar. The tests were performed

in 1024x768 screen resolution. The navigation algorithm is supported by a view-

frustum-culling algorithm, which eliminates the objects that are completely out

of the view frustum.
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Figure 6.3: Still frames from the navigations through the scenes used in the
experiments. On the left column, still frames from the current viewpoint are
shown. In the middle, the views above the view-points are shown. The view-cell
is the green box. On the right, larger areas showing the results of the slice-wise
occlusion culling are shown. Partially visible buildings are in blue, completely
visible buildings are in red, and invisible buildings are in yellow color. The rows
belong to procedurally-generated, Vienna, and Glasgow models, respectively.
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Table 6.1: Statistics of the models used in the tests.
Model Procedurally Vienna Glasgow

generated 2000
No. polygons 40M 7.8M 500K
No. buildings 6,144 2,086 1,461
Model size 100K x 63K 2,385 x 2,900 4,246 x 3,520
View-cell size 200 x 200 10 x 10 15 x 15
No. navigable cells 45.5K 72K 66K

Table 6.2: Summary of the test results using the slice-wise structure. ∗Since the
procedurally-generated model contains 6 different types of buildings repetitively,
total shrinking time is low.

Model Procedurally Vienna Glasgow
generated 2000

Total PVS size on disk (MB) 52 18 65
No. slices 377,920 30,392 11,948
No. triangle pointers 136.2M 27.3M 1.6M
Slice-wise memory usage (MB) 1,094 218.7 12.4
PVS calculation time / cell (msec) 323 292 436
Shrinking time / building (sec) 30.0 13.8 3.7
Total PVS calculation (hrs) 4.08 5.6 8.0
Total shrinking time (hrs) 0.05∗ 8 1.5

For the procedurally-generated model, the navigation area is divided into 200-

pixel grids using the navigable space extraction algorithm described in Chapter 3.

The area of the city is 100Kx63K pixels. There are about 45.5 K navigable

grid points in the scene, from where the visibility culling is performed. The

test city model used in the experiments consists of 6,144 complex buildings with

six different architectures, each having from 5K to 8K polygons with a total of

40M polygons. The slices are 200 pixels wide, the same width as the grid cells,

although they can be different to adapt to the dimensions of the buildings. On the

average, there are 15 slices on the x and z axes. The number of slices of the y axis

depends on the heights of the buildings, which in our case is around 25 slices. As

a result each object has about 55 slices. Preprocessing takes approximately 323

milliseconds for each view-cell. We perform a navigation containing 12,835 frames

(Figure 6.3). The navigation is performed on the ground to make the occlusion

results comparable with other works. It should be noted that flythrough-type
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navigation is also possible without any modification.

The first aim of the empirical study is to test whether our slice-wise structure

and the shrinking algorithm provide an advantage in occlusion culling over one,

where an object is sent to the graphics pipeline completely even if it is only

partially visible. This is performed to test, if there are any overheads that will

prevent its usage for fine grained visibility testing. Slice-wise occlusion culling

refers to occlusion culling where the granularity is individual slices whereas the

building-level occlusion culling refers to the occlusion culling where the granularity

is buildings. The second aim is to compare the PVS storage requirements of an

occlusion culling approach using a slice-wise representation and other subdivision

schemes, such as octree and triangle level occlusion culling.

6.2.2 Rendering Performance

Figures 6.4, 6.5 and 6.6 shows the frame rates obtained using the slice-wise and

building-level occlusion culling. The graphs are smoothed for easy interpretation

using a regression function. The average frame rate of the building-level occlu-

sion culling is 61.36 frames per second (fps). We achieve average frame rates of

111.06 fps by using the slice-wise granularity, 81 % faster than using building-

level granularity. In our tests, 99.26 % of the geometry is culled on the average.

The culling percentages strongly depends on the size of the view-cell used. As

the size of the view-cell increases, the number of preprocessed occlusion culling

operations decreases, whereas the number of the triangles unnecessarily accepted

as visible increases. As examples of geometry culling performance: in [52] from

72 % to 99.4 %; in [66] from 99.86 % to 99.95 %; in [100] 99.34 % culling ratios

are reported.

In [107], it is reported that 25-55 % speed up is achieved, when from-point oc-

clusion culling is used. We obtain double speed up from occlusion culling with

respect to their approach and achieve this just by using slice-wise occlusion culling

instead of building-level occlusion culling.

Figures 6.4, 6.5 and 6.6 also gives the number of polygons rendered for the slice-

wise and building-level occlusion culling. Using the building-level granularity, 93
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buildings and 592K polygons are drawn on the average for each frame. Using the

slice-wise occlusion culling, 89 of these buildings are accepted as partially visible.

This decreases the number of rendered polygons to 290K on the average, which

is approximately 49 % of the number of polygons rendered with building-level

occlusion culling. Table 6.3 gives the average frame rate and rendered polygon

count comparisons for slice-wise and building-level occlusion culling methods for

the three test models.

Table 6.3: Comparison of the average frame rates and rendered polygon counts
for slice-wise occlusion culling and building-level occlusion culling. Frame rate is
in frames per second (fps); polygon counts are the average number of polygons
rendered per frame.

Model Procedurally Vienna Glasgow
generated 2000

Frame rate Slice-wise 111.06 135.1 152.2
Building-level 61.36 77.8 120.1

Polygon count Slice-wise 290K 122.1K 26.2K
Building-level 592K 227.6K 40.1K
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Figure 6.4: Frame rate speedups and average number of polygons rendered
of the proposed approach as compared to the building-level approach for the
procedurally-generated model. The frame rate speedup is 81 %; the polygon
reduction is 51 %; and average culling rate is 99.26 %.
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Figure 6.5: Frame rate speedups and average number of polygons rendered of the
proposed approach as compared to the building-level approach for the Vienna2000
model. The frame rate speedup is 73.7 %; the polygon reduction is 46.3 %; and
average culling rate is 98.42 %.
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Figure 6.6: Frame rate speedups and average number of polygons rendered of the
proposed approach as compared to the building-level approach for the Glasgow
model. The frame rate speedup is 26.7 %; the polygon reduction is 34.6 %; and
average culling rate is 94.8 %. One reason for the lower performance increase in
the Glasgow model is that the average number of the polygons rendered are very
small for both granularities and the GPU is not fully utilized. The other reason
is that the mesh structure has long and thin triangles belonging to several slices,
thereby decreasing the exploitation of the representation.
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6.2.3 PVS Storage

The proposed slice-wise occlusion culling algorithms are optimized to exploit their

benefits. Applying each subdivision scheme and performing tests on their perfor-

mances would require different optimizations. This would make the comparisons

unbalanced. Therefore, we only give informal results of using octrees and polygon

level occlusion culling processes for their effects in terms of the resultant PVSs.

We compare PVS storage requirements of the slice-wise structure and other subdi-

vision schemes, namely the octree-based and triangle-based PVS storage (see Fig-

ure 4.7). In 45.50K navigable view-cells, there are 4 completely visible, 89 par-

tially visible buildings and about 290K visible polygons on the average. The PVS

created using the slice-wise structure is 52 Mbytes, where each partially visible

buildings is represented with 55 slices on the average.

For the octree structure, a building should be represented with 4680 nodes to

obtain the same granularity with the slice-wise structure used here, which requires

a subdivision depth of 4. We assume 75 % of this amount for the adaptive octree

case, which is 3510 bytes. We further assume that each node of octree for the

buildings is in the memory and the visible nodes are represented in bits, hence

decreasing down to around 438 bytes/building. Totally, the octree-based PVS

storage requirement is about 1.95 Gbytes.

For the triangle level PVS storage, there are about 13.20 billion triangles (290 K

visible polygons for 45.5K view-cells), which should be encoded into bits resulting

in about 1.65 Gbytes. Thus, the storage requirement of the slice-wise structure

is about 3.15 % of the triangle-level PVS storage and 2.67 % of the octree-based

PVS storage. Since, the PVS storage requirement for the slice-wise representation

is the same for all subdivision levels, as the subdivision goes deeper, it becomes

more advantageous to use it.

A rough comparison of the PVS storage requirement of the proposed approach

with some well-known approaches is as follows. In [100], the model used consists

of 82K view-cells with 7.8M triangles and a PVS with a size of 55MB (building-

level occlusion culling is used). In [20], the model used consists of 90K view-cells
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with 34M triangles. The authors employ a very powerful compression and decom-

pression scheme for the PVS and they have 1.1GB-size PVS for their environment

(polygon-level occlusion culling is used). In our test environment, we have 45.5K

view-cells and 40M triangles. The PVS created by our scheme is 52MB without

any compression.

In [107], there is no preprocessed occlusion information –the occlusion culling is

done on the fly–, however, their approach requires 88MB per million vertices for

the Clustered Hierarchy of Progressive Mesh representation. This accounts to

3.5GB storage requirement for our model.

For the scenes that have a lot of connectivity, it may be necessary to subdivide

the scene into clusters as in [11, 20, 107]. The clustering approach is suitable

for the cases where there is no natural object definition. However, the buildings

are mostly disconnected for urban models. Thus, the cluster formation process

is not very useful since the quadtree or k-d tree-based hierarchy for the ground

locations of the buildings serves the same purpose, as shown in [66].

Our approach can also capture occlusion in birds-eye view. However, since the

occlusion becomes less and the amount of the visible geometry increases, it may

be more suitable to combine the approach with LOD (Level-of-Detail) rendering

approach, especially for the completely visible buildings.

6.3 Stereoscopic Urban Visualization Using

GPU

In this section, we will present the advantages of using GPU-based rendering in

the context of stereoscopic visualization and its superiority to display list usage

of OpenGL, as presented in the previous section.

The same test environment is used as in the previous section: Intel Pentium IV-

3.4 GHz. computer with 4 GB of RAM and a NVidia Quadro Pro FX 4400

graphics card with 512 MB of memory supporting the quad buffering needed for

stereoscopic visualization. The Crystal Eyes LCS glasses for viewing in stereo
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were used. The purpose of the empirical study is to test:

• if single-location VFC brings an advantage over multiple VFC, given that

since the enlarged frustum may decrease performance because of containing

more polygons,

• GPU performance with the slice-wise building representation.

We performed tests using Vienna2000 Model, which is 7.8M polygons in 2,086

buildings, and a procedurally-generated city model composed of 23M polygons

in 1,536 buildings with six different architectures. Still frames from navigations

through these models are shown in Figure 6.7 and 6.8.

Figure 6.7: Still frames from navigations through the Vienna2000 model in mono-
scopic view using the GPU-based algorithm. On the left, still frames from a given
viewpoint are shown. To the right of each frame, the view from above the user
position represented by the green sphere, shows the rendered buildings using
occlusion culling based on the slice-wise representation. Invisible buildings are
shown in yellow.

In Figure 6.9, we compare the frame rates obtained by using different VFC

schemes. Our aim is not to test the advantage of VFC but to test the gain



CHAPTER 6. RESULTS 89

Figure 6.8: Still frames from navigations through the procedurally-generated
model in monoscopic view using the GPU-based algorithm. On the left, still
frames from a given viewpoint are shown. To the right of each frame, the view
from above the user position represented by the green sphere, shows the rendered
buildings using occlusion culling based on the slice-wise representation. Invisible
buildings are shown in yellow.

in performance from using single-location VFC instead of multiple-location VFC.

However for the sake of completeness we also give performances when VFC is not

applied.

The average frame rates for the Vienna2000 Model are 281.8, 231.0 and 215.8

frames per second (fps) for the single-location, multiple-location and no frus-

tum culling schemes, respectively. The average frame rates for the procedurally-

generated model are 34.24, 30.5 and 10.2 frames per second (fps) for the single-

location, multiple-location and no frustum culling schemes, respectively. The

procedurally-generated model has long streets, which means a lot of geometry is

instantly visible in each frame. The culling ratios are 98.53 %, 98.53 %, 96.43 %

for the Vienna2000 Model and 97.00 %, 97.00 %, 91.82 % for the procedurally-

generated model for the single-location, multiple-location, and no frustum culling
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schemes, respectively including the occlusion culling ratios. Using single-location

VFC with the Vienna2000 model produces a 22.0 % gain in frame rates when

compared to using multiple location VFC; for the procedurally-generated model,

the gain is 12.3 %.

The advantage of using a GPU based rendering approach with the slice-wise

building representation can be examined in two aspects: rendering speed-up and

memory usage. The average frame rate for the monoscopic rendering of the

Vienna2000 Model using OpenGL display lists is 135.1 fps (see Table 6.3). The

frame rate for GPU-based stereoscopic rendering is 281 fps on the average. Since

we render two images for each frame, this corresponds to a 315 % speed-up when

compared to using OpenGL display lists. For the main memory, the usage for the

slice-wise representation is 218.7MB. For the GPU-based approach, the memory

usage is only 1.3MB (14 bytes per each of 94,480 slices). Thus, GPU-based

rendering confers significant advantages both in terms of rendering speed and

memory usage. Test results are summarized in Table 6.4.

Table 6.4: Summary of test results using the stereoscopic framework.
Model Vienna 2000 Procedurally-Generated
No. polygons 7.8M 23M
No. buildings 2,086 1,536
No. slices 94,480 30,392
Main memory 1.3MB 425.5K
usage
Single Location 281.8 34.24
VFC fps fps
Multiple Location 231.0 30.5
VFC fps fps
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Figure 6.9: Frame rate comparison of the VFC schemes in stereoscopic visualiza-
tion: (a) frame rates for the Vienna2000 model with 7.8M polygons. (b) frame
rates for the procedurally-generated model with 23M polygons. These graphs
show the advantage of using single-location VFC with respect to multiple loca-
tion VFC and not performing VFC. Note that we render two images for each
frame.
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Conclusion and Future Work

7.1 Conclusion

In this dissertation, we presented a framework for stereoscopic visualization of

large and complex urban environments. The framework consists of a navigable

space extraction algorithm, which determines and cellulizes the navigable space

in complex urban models; a powerful occlusion culling and an intelligent VFC

algorithm, which eliminate most geometry that do not contribute to the user’s

view during navigation; and a GPU-based stereoscopic visualization approach,

which provides smooth and real-time visualization of large urban models capable

of rendering up to 46M polygons.

The occlusion culling algorithm makes use of the graphics hardware and incorpo-

rates a novel storage scheme, which exploits the visibility characteristics of build-

ings that can typically be experienced in a navigation through urban scenery. The

proposed approach avoids sending a building entirely to the graphics pipeline if

only a small portion of it becomes visible, thereby solving the partial occlusion

problem. The objects are divided into axis-aligned slices and the slices rather

than the whole objects are checked for occlusion.

We also showed how to shrink objects in a scene, including nonconvex ones, in

order to use them as occluders for from-region conservative occlusion culling. Our

shrinking algorithm can be used for any kind of objects, not just 2.5D buildings in

92
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an urban scene. Our experiments showed that the proposed slice-wise occlusion

culling provides significant increase in frame rates and decrease in the number of

processed polygons as compared to a visualization using building-level occlusion

culling. In addition, the slice-wise structure drastically reduces the PVS storage

requirement.

The slice-wise structuring of objects can also be used to visualize scenes other

than urban scenery, although we did not test this. Another application of our

method would be scenes, where buildings are touching (as in some European

cities). In this case, a subdivision at the object level could be done to create

smaller objects as in [11, 107, 20]. Using visibility forms and the slice-wise rep-

resentation is more useful for the static objects and decreasing the PVS storage

costs. Occlusion culling done at the preprocessing stage cannot be easily applied

to scenes containing dynamic objects.

The proposed approach works for flythrough-type navigations, where the user

can be above buildings. Since, the occluded parts in the urban model become

less as the flying altitude increases, it would be helpful for real time rendering to

integrate our method with other approaches, such as view-dependent refinement.

The stereoscopic visualization consists of a rendering, which is based on the GPU

architecture and makes use of the slice-wise representation. The framework also

consists of a modified VFC approach, in which only one culling, instead of two,

covers the necessary region for the two eye locations in the stereoscopic visual-

ization. The resultant visibility list is rendered using a GPU-based algorithm,

which perfectly fits into the proposed slice-wise representation.

The proposed algorithms were implemented on personal computers. The visu-

alization was done using off-axis stereoscopic projection. Liquid crystal shutter

(LCS) glasses for stereoscopic visualization were used. The framework was tested

on several urban models ranging from 500K to 46M polygons. This study showed

that;

• the visibility characteristics experienced in a typical navigation through ur-

ban models can be exploited for creating the tightest visibility list possible,

• the proposed hardware-based occlusion culling method and the usage of the
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slice-wise representation increase the performance by 81 % as compared to

occlusion culling using building-level granularity,

• the GPU-based method increase it by an additional 315 % in frame rates

over the one using OpenGL display lists,

• the single-location VFC brings 22 % performance gain over multiple-

location VFC,

• large urban models can be rendered and visualized at real-time by elimi-

nating the invisible parts of the model at great ratios,

• scalability of using a preprocessed algorithm for large urban models can be

achieved due to storage requirements,

• fast production of city models obeying the real locations of the buildings

can be done automatically.

This study showed that a real time stereoscopic visualization of urban scenes can

be achieved using the proposed framework.

7.2 Future Work

The navigable space algorithm is robust enough that can handle any type of

buildings in a city model. However, the creation algorithm is slow in terms that

it checks each triangle and the seed one by one, in a brute force manner. The

creation speed can be increased by using a knowledge about the structure, such

as neighboring information of the triangles.

The slice-wise representation perfectly fits into the GPU-architecture. During the

occlusion culling process, the slices are checked for occlusion. The resultant list

can further be tightened, if real triangles belonging to the slices are checked in a

way, so that the slice portions without triangles are not accepted as visible during

the occlusion culling process. The common triangles belonging to many slices,

which are accepted as visible, are drawn multiple times. If we try to eliminate

those parts, which we did so in Chapter 4, then we need to use OpenGL display

list mechanism. However, using GPU-based rendering is much faster as shown
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in Chapter 5, even if some triangles are rendered multiple times. If there were a

way to determine if a primitive has been rendered just one and fast check, i.e. a

tag bit in the vertex shader of the GPU, then the rendering speed may increase

further.

The calculated PVS and the urban model itself currently must be loaded into the

memory completely. A spatial database access would be very suitable, provided

that no assumptions are made on the visibility, but only necessary models are

loaded.

For the stereoscopic rendering, we only made improvements on the VFC op-

erations. Another problem is the ghosting effect, which was described in Sec-

tion 2.4.2.7. We have made experiments especially for the peripheral ghosting

effect removal and succeeded up to a degree. We removed respective positions

and masked them by writing a few fragment shaders in the GPU and also tried

the same process by using additional clipping planes. The use of the fragments

shaders did not give satisfactory results because of the perspective projection.

The use of the clipping planes removed the peripheral ghosting effect. However,

since the objects behind the removed parts became visible due to conservative oc-

clusion culling, this process introduced additional ghost parts. These parts can be

removed by developing additional techniques, which hide them from the viewer.

For the usage of the GPU in rendering, more detailed and complex shaders can

be integrated to achieve more realistic rendering. Their usage is vitally impor-

tant for large scale rendering, especially if the buildings have transparency and

reflection properties and the scene consists of many light sources.

For the automatic city modeling approach, we plan to generate class libraries that

are capable of modeling different styles of architectural constructions. Then, it

will be possible to model cities in a more realistic way. We should emphasize

that our aim is not to model the cities by the way that remote sensing techniques

do. Our approach enables the production of buildings that are more realistic

as compared to the ones in city models obtained by remote sensing techniques.

It is also possible to incorporate different data by using an adaptor for GML-

the Geography Markup Language [29], which is capable of representing more

information than a single DXF file can hold.



Appendix A

City Modeling

In this appendix, we present a method for the automatic generation of build-

ing models to be used in virtual city models. The models produced by this

approach can easily be used in our implementation of stereoscopic urban visual-

ization framework. Since the City Modeling is not a part but a feature of the

stereoscopic urban visualization framework and not fully completed, we preferred

to present it in this appendix.

The building generation process incorporates randomness and it can be steered

by the help of derivation rules and assigned attributes. The derivation method

is inspired by the shape grammars. During the derivation process, floor plans

of the actual cities are used to generate 3D city models. Given the city plans,

derivation rules and definitions of some basic objects, the system generates 3D

building models, which are used to populate city models.

A.1 Introduction

In order to create virtual cities each building should be modeled separately. Mod-

eling each and every building in detail manually is a tedious process. Even the

use of aerial images or airborne laser scan data requires a great deal of manual

post-processing.
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Most countries have ground plans of the actual cities in digital format. There

has been significant amount of research in the last years about generating 3D

models using 2D ground plans and visualizing these models. For instance, Google

released a geographical visualization system named Google Earth that combines

the satellite photos with the 3D models obtained using city plans to generate 3D

city models. Currently generated city models consist of only a few cities, mostly

in the USA.

The original motivation for this work is to generate 3D city models using 2D

city plans consistent with the real shapes of the buildings as much as possible

and to visualize the city models in real time, [76, 75]. City ground plans are

used to produce city models. This is accomplished by generating every building

using its 2D ground plan. Buildings can be produced either deterministically or

stochastically by using building footprints and shape grammars. The objects are

first separated into subparts according to the pre-defined rules and the building

model is produced from the final objects, such as walls, windows, balconies, etc.

The shapes of the buildings are defined by specifying the rule set and the initial

building models on which the rule set is to be applied. Deterministic building

production applies fixed rules that split an object recursively to a fixed number

of rows and columns whose sizes are defined in the rule. Stochastic building

production uses random rules to split an object into a 2D grid that is composed

of randomly placed rows and columns.

The produced building models are then represented using a slice-wise represen-

tation to facilitate the visualization process. The cells that belong to a build-

ing in a uniform subdivision of space are determined and these cells are then

clustered into axis aligned slices to provide better granularity for the visibility

calculations as compared to the visibility calculations where the granularity is

individual buildings. The city models are visualized in real time by using the

visualization system.

In the next section, we describe the proposed shape grammar-based approach to

building model production.
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A.2 Building Model Production

Our work is inspired by the split grammars and assumes that the buildings are

consists of a number of facades that are vertical to the ground plane. Same with

the split grammars, model generation process incorporates randomness to achieve

higher variety of building models. Whereas split grammars splits and transforms

3D shapes to generate building models, the proposed system works with 2D planar

shapes. This comes with a limitation such that buildings other that the ones with

only vertical facades can not be generated. The fact that temporary shapes are

simply planar surfaces in 3D and major details of the generated building model

such as windows, balconies and doors are completely defined by the terminal

shapes, limits the variety of the building models that can be generated.

On the other hand, with the proposed approach it is easier to implement the

generation system and work with the rules. Since there are only two types of

split rules in our work, namely random split and fixed split, which are both very

simple, and one type of transformation rule, which simply replaces a temporary

shape with a terminal shape, it easier to understand the generation process and

so design the rule sets.

The system uses “data exchange format” (DXF) of AutoCAD as the input and

output file format. DXF format is a very popular 3D model format since it is

very simple, standardized and accepted by the community. DXF format does not

include texture information. However, it is possible to add layers to store texture

information. Building plans specify the number of floors and the placement of

cells and portals for each floor. The city plans that are composed of building plans

are given as input to the system and the system extracts individual building floor

plans to generate buildings (Figure A.1).

Produced building models are composed of several facades, one for each edge of

the floor plan. Each edge of the floor plan is handled at a time. A facade that

corresponds to an edge of the floor plan is composed of a number of floors. A

facade could be composed of multiple copies of the same type of floor or different

type of floors.

In the facade derivation process, a facade is split into floors that are actually two
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Figure A.1: A simple portion of a city plan. Since the system generates each
facade of a building at a time by handling each edge of the building floor plan at
a time, floor plans could be any kind of polygon.

dimensional floor face objects. Then, predefined split rules are applied to these

floor objects to generate new two dimensional temporary objects (Figure A.2).

This process continues until all paths end to a terminal object. All terminal ob-

jects, such as windows, walls or balconies, are predefined in DXF format. During

the facade generation process, theseterminal objects are scaled, oriented, trans-

lated and output to the model file in DXF format. A building is generated when

all the edges of the floor plan are transformed to a corresponding facade.

A.3 Shapes

Currently, there are two types of objects defined in the system, which can be

increased with the help of the derivation rule designs:
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• Terminal shapes: these are the basic shapes designed by a 3D design pro-

gram and stored in DXF format. Terminal shapes are composed of any

number of planar surfaces and have unit dimensions to be easily scaled

(Figure A.3). Texture information for the terminal shapes are stored as the

layers in DXF format.

• Temporary shapes: these are the shapes that are split into other temporary

shapes or terminal shapes by the rules defined in the configuration file in

XML format. The derivation process is initiated by a floor object. Tempo-

rary shapes contain various attributes that are used to control the splitting

process. These attributes eliminate the rules that do not apply to the tem-

porary object. Temporary shapes are simply represented as rectangles in

3D.

A.4 Rules

Temporary objects are split by the rules until all the objects become terminal

objects. The derivation process for a building model is steered by the set of

rules that applies only to it. The system deduces its behavior based on the rule

properties. An arbitrary number of attributes are attached to each rule. These

attributes play an important role in the split rule selection for a temporary object.

Within the set of the rules that applies to a temporary object, only the rules that

have attributes of appropriate values could be applied to the object and one rule is

selected randomly among them. Furthermore, we could give higher probabilities

to some rules if they are to be selected more frequently. Alternatively, we can

use weights based on previous rule usage statistics to favor the rules that are

frequently used. There are two types of split rules: random split and fixed split.

A.4.1 Random Split

Given a temporary shape, a random rule splits the object into a 2D grid that is

composed of randomly placed rows and columns. Minimum width of a column

and minimum height of a row are given by the rule. All rows are of [minHeight, 2∗
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minHeight], whereas all columns are of [minWidht, 2 ∗minWidth] at the end.

In a random split, all of the created objects can be of the same shape. Each new

object can be a terminal shape or a temporary shape. An instance of random

split is shown in Figure A.4.

A.4.2 Fixed Split

Fixed rules split the given object to a fixed number of rows and columns whose

sizes are defined in the rule. When a terminal object is split by a fixed split, the

sizes of the rows and columns are defined as directly proportional to the width

and height of the terminal shape. When a fixed rule is applied to a temporary

shape, the number of newly created shapes is fixed. The type and attributes of

every newly created shape are defined in the rule. An instance of fixed split is

shown in Figure A.5.

With the help of the proposed building production, it becomes very easy to

generate a whole city provided that the ground plans are given. Since, we are not

able to get a complete city plan, we made use of several other models which range

from 500K to 46M polygons. These models are Vienna2000, Glasgow and two of

our procedurally generated model. Especially Vienna2000 and Glasgow models

are publicly available and we are able to compare our work with the previous

state of the art by the help of these models.

A.5 Results and Discussion

Building models produced by using only height information and floor plans nei-

ther have enough details nor reflect the architectural style of the actual building.

The method presented in this appendix allows fast generation of building models

that reflect the intended architectural style. Figure A.6 shows a portion of Is-

tanbul Historical Peninsula rendered by using only height information and floor

plans. Although the shading and coloring is used, the view is not realistic enough

since the basic building blocks (windows, balconies, etc.) could not be modeled.
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Building models generated by using our approach are shown in Fig-

ures A.7 and A.8. In our approach, the floors of a building are not necessarily of

the same type. A building model covered with textures is shown in Figure A.9.

Generated models could then be used to populate virtual cities that can be nav-

igated in real time by the visualization system.

We present a system that is capable of producing building models to be used

for populating virtual cities. Buildings are produced both deterministically and

stochastically by means of footprints and shape grammars. In the production

process, the objects are first separated into subparts according to the pre-defined

rules and the building model is created from the final objects, which are in DXF

format. The architecture of a virtual building depends on the architecture of the

predefined (initial) objects and the rule set that will be applied during production.

All the rules are stored in a configuration file in XML format. The generation of

a building model with ten floors and 200 windows takes less than ten seconds on

an Intel Centrino with 1.6 GHz. In the case of larger rule sets, storing the rules

in a database would improve the generation time.
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Figure A.2: A building facade that composed of same type of floors. It should
be noted that this is not necessarily always the case.
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Figure A.3: A very basic terminal shape that could stand for a window.

<Floor>

<Split Balcony="+" Window="+">

<Random minWidth="2" minHeight="3">

<Face Balcony="+" Window="+"></Face>

</Random>

</Split>

...

</Floor>

Figure A.4: A random split rule named as “Split”. It is defined to split the
temporary object named “Floor”. “Face” is the object that is formed when this
rule is applied; it could be a terminal shape or another temporary shape. It should
be noted that there could be other rules defined between the tags <Floor> and
</Floor>, which are the rules applied to the object named “Floor”.
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<Face>

<Window Balcony="+" Window="+">

<Fixed>

<xProportions x1="2" x2="4" x3="2"></xProportions>

<yProportions y1="3" y2="4" y3="3"></yProportions>

<Elements>

<Wall></Wall>

<Wall></Wall>

<Wall></Wall>

<Wall></Wall>

<Window></Window>

<Wall></Wall>

<Wall></Wall>

<Wall></Wall>

<Wall></Wall>

</Elements>

</Fixed>

</Window>

<Balcony>

<Fixed>

<xProportions x1="1" x2="4" x3="1"></xProportions>

<yProportions y1="4" y2="1"></yProportions>

<Elements>

<Wall></Wall>

<Wall></Wall>

<Balcony></Balcony>

<Wall></Wall>

<Wall></Wall>

<Wall></Wall>

</Elements>

</Fixed>

</Balcony>

...

</Face>

Figure A.5: Two simple fixed split rules defined for the shape “Face”, named
“Window” and “Balcony”. The proportions of the size of the rows and columns
that are to be formed are defined as attributes. The children of the <Element>
tag are the shapes created when these split rules are applied, which could be
terminal shapes or temporary shapes again.
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Figure A.6: A portion of İstanbul Historical Peninsula produced by using height
information and floor plans.

Figure A.7: A building model generated using the proposed automatic building
modeling method.
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Figure A.8: A block of four buildings.

Figure A.9: Two views of a building model covered with textures.
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