
1

A Link-Based Storage Scheme for
Efficient Aggregate Query Processing on

Clustered Road Networks
Engin Demir, Cevdet Aykanat, B. Barla Cambazoglu

Abstract

The need to have efficient storage schemes for spatial networks is apparent when the volume of query processing
in some road networks (e.g., the navigation systems) is considered. Specifically, under the assumption that the road
network is stored in a central server, the adjacent data elements in the network must be clustered on the disk
in such a way that the number of disk page accesses is kept minimal during the processing of network queries.
In this work, we introduce the link-based storage scheme for clustered road networks and compare it with the
previously proposed junction-based storage scheme. In order to investigate the performance of aggregate network
queries in clustered spatial networks, we extend our recently proposed clustering hypergraph model from junction-
based storage to link-based storage. We propose techniques for additional storage savings in bidirectional networks
that make the link-based storage scheme even more preferable in terms of the storage efficiency. We evaluate the
performance of our link-based storage scheme against the junction-based storage scheme both theoretically and
empirically. The results of the experiments conducted on a wide range of road network datasets show that the
link-based storage scheme is preferable in terms of both storage and query processing efficiency.

Index Terms

Storage management, spatial databases and GIS, clustering, hypergraphs.

I. INTRODUCTION

A. Motivation

An important issue involved in large-scale spatial network database design is storage modeling, which
directly affects the performance of querying processing on spatial network data. Spatial networks, which
include network elements such as data nodes and their pairwise connections, are generally represented
as directed graphs, where vertices correspond to nodes and edges correspond to connections between
the nodes. In this work, without loss of generality, we focus on road networks, a typical type of spatial
networks. A road network is represented as a two-tuple (T ,L), where T and L respectively indicate the
junctions and the road segments (links) between pairs of junctions.

In road networks, search queries form a major portion of the overall cost of daily queries since these
networks have static topologies and hence the maintenance queries are rare. Basic search queries include
aggregate network queries, i.e., route evaluation and path computation queries, which are processed to
derive an aggregate property over the network elements. In processing aggregate network queries, a vast
amount of data should be iteratively accessed and retrieved from the disk to the memory. Concurrently
accessing the data of the connected elements is expected to decrease the disk access cost of the queries.

The disk access cost in large databases is higher than the cost of in-memory computations even in
multi-dimensional data processing. If the access frequencies of the network elements can be modeled
from previous query logs, storing frequently accessed data in the same disk pages can decrease the total
disk access cost in query processing. This can be achieved by data clustering, with an upper bound (equal
to the disk page size) on individual cluster sizes. Hence, clustering can produce an efficient data allocation
for large databases.

Computer Engineering Department, Bilkent University, Ankara 06800, Turkey
e-mail: {endemir,aykanat,berkant}@cs.bilkent.edu.tr

2

In the literature, for efficient query processing in road networks, extensive studies have been carried out
on indexing [12], [14]–[16], [27] and data allocation schemes [10], [18], [25]. Efficient storage schemes
should also be adopted to increase the query performance along with the data allocation schemes and
efficient index structures. However, so far, disk storage schemes are not explored separately from indexing.

B. Related Work

There are a few works that study the disk-based storage schemes of road networks. In the storage
scheme of [11], links of the network are stored in a separate link table. The link table is clustered in disk
pages such that pages store the links of which origin nodes are closely located. This approach is based
on spatial locality, and clustering does not utilize the connectivity information.

In the following studies, the importance of connectivity information in networks is realized, and graph
clustering models [18], [25] are proposed to partition the data into disk pages. In [18], the authors
propose the junction-based storage scheme in which each record corresponds to a junction together with
its connectivity information in the network. They evaluate their graph clustering model for the junction-
based storage scheme by both uniform access frequencies and frequencies extracted from the previous
query logs, yielding better performance results. In [25], in clustering the network, the minimum number of
disk pages is achieved based on the assumption that records have fixed size. The graph clustering models
for the junction based-storage scheme are used in the recent spatial query processing and clustering
papers [1], [13], [26], [27].

Recently, in [10], we showed that graph clustering models do not correctly capture the disk access
cost of aggregate network operations. We proposed a clustering hypergraph model for the junction-based
storage scheme. In this model, records are clustered in disk pages by hypergraph partitioning, where the
partitioning objective corresponds to minimizing the disk access cost of aggregate network operations in
network queries.

C. Contributions

In this work, our contributions are five-fold. First, we propose the link-based storage scheme relying
on the dual network concept, originally proposed in [6] and later used in [23], [24] to express relations
between consecutive links along paths. In this storage scheme, each record stores the data associated with a
link together with the link’s connectivity information. Second, we extend our recently proposed clustering
hypergraph model from the junction-based storage scheme to the link-based storage scheme. Third, we
present a detailed comparative analysis on the properties of the junction- and link-based storage schemes
and show that the link-based storage scheme is more amenable to clustering. Fourth, we introduce storage
enhancements for bidirectional networks. We show that the link-based storage scheme is more amenable
to our enhancements than the junction-based storage scheme and results in better data allocation for
processing aggregate network queries. Finally, extensive experimental comparisons are carried out on the
effects of page size, buffer size, path length, record size, and dataset size for the junction- and link-based
storage schemes. Each parameter is explored for both storage schemes, and relative improvements are
observed on real-life datasets with synthetic queries. According to the experimental results, the link-based
storage scheme can be a good alternative to the widely-used junction-based storage scheme.

The rest of this paper is organized as follows: Section II presents some background material. In
Section III, the link-based storage scheme and its advantages over the junction-based storage scheme
are discussed. Section IV presents our clustering hypergraph model for the link-based storage scheme.
Section V overviews the experimental framework and presents the experimental results. Finally, we
conclude the paper in Section VI.

II. PRELIMINARIES

A. Hypergraph Partitioning

The proposed clustering model heavily relies on hypergraph partitioning. Here, we provide a brief
description of hypergraphs and hypergraph partitioning. A hypergraph H = (V,N) consists of a set of

3

vertices V and a set of nets N [4]. Each net nj ∈ N connects a subset of vertices in V , which are referred
to as the pins of nj and denoted as Pins(nj). The size of a net nj is the number of vertices connected
by nj , i.e., |nj |= |Pins(nj)|. The size of a hypergraph H is defined as the total number of its pins, i.e.,
|H|=

∑
nj∈N (|nj|). Each vertex vi has a weight w(vi), and each net nj has a cost c(nj).

Π = {V1,V2, . . . ,VK} is a K-way vertex partition if each part Vk is non-empty, parts are pairwise
disjoint, and the union of parts gives V . In a given K-way vertex partition Π, a net is said to connect
a part if it has at least one pin in that part. The connectivity set Λ(nj) of a net nj is the set of parts
connected by nj. The connectivity λ(nj)= |Λ(nj)| of a net nj is equal to the number of parts connected
by nj . If λ(nj)=1, then nj is an internal net. If λ(nj)>1, then nj is said to be cut.

In K-way hypergraph partitioning, the partitioning objective is to minimize a cutsize metric defined
over the cut nets. In the literature, a number of cutsize metrics are employed. In connectivity−1 metric,
which is widely used in VLSI layout design [2], [9] and in scientific computing [3], [7], [20], [21], each
net nj contributes c(nj)(λ(nj)−1) to the cutsize of a partition Π. That is,

Cutsize(Π)=
∑

nj∈N
c(nj)(λ(nj)−1). (1)

The partitioning constraint is to maintain an upper bound on the part weights, i.e., Wk≤Wmax, for each
k =1, . . . , K, where Wk =

∑
vi∈Vk

w(vi) denotes the weight of part Vk and Wmax denotes the maximum
allowed part weight.

B. Aggregate Network Queries in Road Networks

Path computation and route evaluation queries are shown to be highly frequent in intelligent transporta-
tion systems [17]. In route evaluation queries, a prespecified path is traversed to compute an objective
function (e.g., the total travel time). In path computation queries, a path which satisfies a given objective
function (e.g., the shortest path in terms of travel time) is determined. These types of queries are named
as aggregate network queries as they depend on the evaluation of a number of nodes at a time.

There are two network operations specific to aggregate queries: Get-a-Successor GaS(ti, tj) operation
retrieves the network element tj among the successors of ti and Get-Successors GSs(ti) operation retrieves
all successor elements of ti. GaS operations are used in route evaluation queries, where a Find operation
is followed by a sequence of GaS operations. GSs operations are used in path computation queries, where
a sequence of Find and GSs operation pairs is performed.

Fig. 1 illustrates a sample network with 8 junctions and 15 links, where squares represent the junctions
and directed edges represent the links. In the figure, the access frequencies of GaS and GSs operations
are respectively given on the directed edges and inside the squares. These numbers indicate the number
of operations performed on these elements. Typically, distribution of queries over the network elements
is not uniform, and individual access frequencies of the network elements are different. Hence, if the
previous query logs are available, they can be utilized to estimate the access frequencies of the network
elements that will be retrieved by the forthcoming queries.

C. Junction-Based Storage Scheme

A frequently used approach for storing a road network in the secondary storage is to use the adjacency
list data structure, where a record is allocated for each junction of the network. Each record ri stores the
data associated with junction ti and its connectivity information including the predecessor and successor
lists. The data associated with junction ti contains the coordinate of junction ti and its attributes. A
predecessor list denotes the list of incoming links of a junction ti, whereas a successor list denotes the
list of outgoing links of ti. Each element in the predecessor list stores the coordinates of the source
junction th of an incoming link �hi. The predecessor lists are used in maintenance operations to update
the successor lists. In the successor list, each element stores the coordinates of the destination junction

4

8

5 18

11

1617

18

13

19

10

7 86

9

6

10

15
13

2

3
4

8

7

t1

t8t7

t3

t2

t6t4t5

Fig. 1. A sample primal road network.

tj of an outgoing link �ij as well as the attributes of �ij. The record sizes are not fixed because of the
variation in the storage size of the connectivity information of each junction. A storage saving can be
achieved if all links of a junction ti are bidirectional, because all junctions in the predecessor list of ti

also appear in the successor list of ti and vice versa. Hence, it suffices to store only the successor list of
ti.

D. Data Allocation Problem in Road Networks

The record-to-page allocation problem that we focus on can be defined as follows: Given a road network
and data access frequencies extracted from the query logs, allocate a set of data records R = {r1, r2, . . .}
to a set of disk pages P = {P1,P2, . . .} such that the expected disk access cost is minimized as much as
possible while the number of allocated disk pages is kept reasonable. Typically, allocation of data to disk
pages can be modeled as a clustering problem, where the clustering objective is to try to store the records
that are likely to be concurrently accessed in the same pages. This way, efficiency in query processing
can be achieved since the records relevant to the query can be fetched with fewer disk accesses.

E. Clustering Hypergraph Model for the Junction-Based Storage Scheme

In our earlier study [10], we propose a clustering hypergraph model for the junction-based storage
scheme. The proposed model is shown to eliminate the flaws of the clustering graph model [18], [25] and
to yield effective results in minimizing the number of disk page accesses. Here, we briefly summarize
this model.

For a given road network (T ,L), a clustering hypergraph HT = (VT,NT) is created, where a vertex
vi ∈ VT exists for each record ri ∈ R storing the data associated with junction ti∈T . Each vertex vi has
a weight w(vi) denoting the size of record ri. In HT, the net set NT is the union of two disjoint sets of
nets, NGaS

T and NGSs
T .

NGaS
T encapsulates the disk access costs of GaS operations. If junctions ti and tj are connected by at

least one link, GaS(ti, tj) operations incur a two-pin net nij ∈ NGaS
T with Pins(nij)={vi, vj}, for i<j.

The cost c(nij) associated with nij is

c(nij) =

⎧⎨
⎩

f(ti, tj), if �ij ∈L, �ji �∈L;
f(tj , ti), if �ji∈L, �ij �∈L;
f(ti, tj)+f(tj, ti), if �ij, �ji∈L

(2)

for capturing the costs of GaS(ti, tj) and GaS(tj , ti) operations. Here, f(ti, tj) denotes the access frequency
of the link from junction ti to junction tj in GaS(ti, tj) operations.

5

NGSs
T encapsulates the disk access costs of GSs operations. For each junction ti with dout(ti)>0

successor(s), GS(ti) operations incur a multi-pin net ni ∈ NGSs
T with dout(ti)+1 pins such that Pins(ni) =

{vi} ∪ {vj : tj ∈ Succ(ti)}, where Succ(ti) is the set of successors of ti. Each net ni is associated with a
cost

c(ni) = f(ti) (3)

for capturing the cost of GSs(ti) operations. Here, f(ti) denotes the access frequency of junction ti in
GSs(ti) operations.

After modeling the network (T ,L) as a clustering hypergraph HT, we partition HT with the disk
page size P being the upper bound on part weights. As shown in [10], this model correctly captures
the aggregate disk access cost of GaS and GSs operations under the single-page buffer assumption. That
is, minimizing the cost Cutsize(Π) according to (1) corresponds to minimizing the total number of disk
accesses.

III. LINK-BASED STORAGE SCHEME

A. Definition

In the proposed link-based storage scheme, a record is allocated for each link of the network. Each
record rij stores the data associated with link �ij and its connectivity information. The data associated with
a link �ij typically contains the coordinates of junctions ti and tj , attributes of the destination junction
tj and attributes of �ij . The connectivity information includes the predecessor and successor lists. The
predecessor list of a link �ij includes the set of incoming links of its source junction ti, whereas the
successor list of �ij includes the set of outgoing links of its destination junction tj . Each element in the
predecessor list of a link �ij stores the coordinates of the source junction th of an incoming link �hi,
whereas each element in the successor list stores the coordinates of the destination junction tk of an
outgoing link �jk.

In this representation, storage savings can be achieved if the network contains bidirectional links where
the link attributes are the same for both directions. For example, if �ij, �ji∈L, the information in records rij

and rji can be stored as a single record, where the predecessor and successor lists are updated accordingly.
Further savings can be achieved if all links of both junctions of a bidirectional link are also bidirectional.
In that case, the predecessor and successor lists of both �ij and �ji can be stored only once since the
predecessor list of link �ij corresponds to the successor list of link �ji and vice versa.

B. Comparison of Storage Schemes

We should note that the link-based storage scheme of a network corresponds to the junction-based
storage scheme of its dual network. In a dual network, a junction thi exists for each link �hi of the
original (primal) network. For each incoming and outgoing link pair �hi and �ij of a junction ti of the
primal network, there exists a link �hij from junction thi to tij in the dual network. The dual representation
of the sample network given in Fig. 1 is shown in Fig. 2 with 15 junctions and 26 links.

In practice, the storage size of the link attributes is greater than that of the junction attributes, and the
number of links is greater than the number of junctions. Depending on these network-specific parameters,
one of the two storage schemes may be favorable in terms of the total storage size and/or the average
record size. The average record size plays an important role in reducing the number of disk page accesses
in query processing as it enables more records to be packed in a page. Below, we provide a detailed
comparative analysis of the storage schemes in terms of both the total storage size and average record
size.

The total storage sizes ST and SL of the junction- and link-based storage schemes can be computed as

ST =
∑
t∈T

(Cid + CT + |Pre(t)|Cid + |Succ(t)|(Cid + CL))

= |T |(Cid + CT) + |L|(2Cid + CL) (4)

6

75 3 11 4

211 7

7

3 1

10 12
5 5

3
3

2
2

2

1

1 1 1
1

7

1

4

4

3 6

6

9

12
1 3

57
1

15

9

t12 t23 t13 t78

t51

t45

t14 t74

t24

t68

t34

t67

t46
t75

t86

Fig. 2. Dual of the primal network given in Fig. 1.

and

SL =
∑
�∈L

(2Cid + CL + CT + |Pre(�)|Cid + |Succ(�)|Cid)

= |L|(2Cid + CL + CT) + 2Cid

∑
t∈T

(|Pre(t)||Succ(t)|), (5)

where Cid denotes the storage size of junction coordinates. CT and CL refer to the fixed storage size of
junction and link attributes, respectively. The difference between the total storage sizes of the two schemes
is

SL − ST = 2Cid

∑
t∈T

(|Pre(t)||Succ(t)|) + |L|CT − |T |(Cid + CT)

= CT(|L| − |T |) + 2Cid

∑
t∈T

(|Pre(t)||Succ(t)|)− Cid|T |. (6)

The first term in (6) is always positive since the number of links is greater than the number of junctions
in a typical road network. In general, both predecessor and successor lists of most junctions contain more
than one link. In (6), the second term is expected to be greater than the last term. Thus, the difference
is positive. As a result, in general, the link-based storage scheme requires more disk space than the
junction-based storage scheme.

The average record sizes sT and sL of the junction- and link-based storage schemes can be computed
as follows under the simplifying assumption that the number of incoming and outgoing links for each
junction are both equal to davg =L/T .

sT =
ST

|T | = Cid + CT +
|L|
|T |(2Cid + CL)

= Cid + CT + davg(2Cid + CL) (7)

and

sL =
SL

|L| = 2Cid + CL + CT + 2Cidd
2
avg

|T |
|L|

= 2Cid + CL + CT + 2Ciddavg. (8)

The difference between the average record sizes of the two schemes is

sT − sL = (davg − 1)CL − Cid. (9)

7

In a typical road network, since this difference is almost always positive, average record size in the link-
based storage scheme is less than that of the junction-based storage scheme. As seen by this comparative
analysis, although the link-based storage scheme requires more disk space, its average record size is
likely to be smaller. Hence, the link-based storage scheme can be expected to perform better than the
junction-based storage scheme in terms of disk access cost.

In bidirectional networks, the storage savings described in Sections II-C and III-A are expected to
increase the efficiency of both storage schemes. However, the link-based storage scheme is expected to
benefit more from the storage savings compared to the junction-based storage scheme, because the link-
based storage scheme becomes more amenable to clustering. We illustrate this with an example. Consider
a junction tj with d links all of which are bidirectional. In the junction-based storage scheme, junction
tj will have d successors. We should cluster record rj storing tj together with all the records storing the
d successor junctions to the same page to avoid the page access cost for the GSs(tj) operation. That is,
these d+1 records need to be clustered in the same page. On the other hand, in the link-based storage
scheme scheme, each link incident to junction tj has d−1 successors excluding itself. Since rij stores
both �ij and �ji, we should cluster record rij together with d−1 records storing the links incident to tj

other than �ji in the same page to avoid the page access cost for the GSs(�ij) operation. This holds for
all records storing the links incident to junction tj . Hence, it is sufficient to cluster these d records in the
same page to avoid the page access cost for the GSs operations invoked from the links incident to junction
tj . By definition, for a given query distribution, the sum of the frequencies of the GSs operations to be
invoked from the links incident to junction tj in the link-based storage scheme is equal to the frequency
of the GSs operations to be invoked from tj in the junction-based storage scheme. This explains why the
link-based storage scheme will be more amenable to clustering than the junction-based storage scheme
even when the average record sizes are equal in the two storage schemes.

IV. CLUSTERING HYPERGRAPH MODEL FOR THE LINK-BASED STORAGE SCHEME

In this section, we present our clustering hypergraph model for the general case of directed networks,
where an individual record is stored for each directed link. This model can easily be extended to the
bidirectional case, where a single record is stored for each bidirectional link.

A. Hypergraph Construction

A clustering hypergraph HL =(VL,NL) is created to model the network (T ,L). In HL, a vertex vij ∈VL

exists for each record rij ∈R storing the data associated with link �ij ∈ L. The size of a record rij is
assigned as the weight w(vij) of vertex vij . The net set NL is the union of two disjoint sets of nets,
NGaS

L and NGSs
L , which respectively encapsulate the disk access costs of GaS and GSs operations, i.e.,

NL =NGaS
L ∪NGSs

L .
In NGaS

L , we employ two-pin nets to represent the cost of GaS operations. For each incoming and
outgoing link pair �hi and �ij of each junction ti, GaS(�hi, �ij) operations incur a two-pin net nhij with
Pins(nhij)={vhi, vij}. If the source junction of the incoming link is the same as the destination junction
of the outgoing link (i.e., h = j), the two two-pin nets incurred by the GaS(�hi, �ij) and GaS(�ij, �hi)
operations can be coalesced into a single two-pin net with appropriate cost adjustment. Thus, the cost
c(nhij) associated with net nhij can be written as

c(nhij)=

{
f(�hi, �ij), if �hi, �ij ∈L∧h �=j;
f(�hi, �ij)+f(�ij, �hi), if �hi, �ij ∈L∧h=j.

(10)

Here, f(�hi, �ij) denotes the total access frequency of path 〈�hi, �ij〉 in GaS(�hi, �ij) operations. Fig. 3(a)
shows the two-pin net construction for a pair of neighbor links �12 and �23, and Fig. 3(b) shows the
two-pin net construction for the cyclic paths 〈�12, �21〉 and 〈�21, �12〉.

In NGSs
L , we employ multi-pin nets to represent the cost of GSs operations. For each link �hi with a

destination junction ti having dout(ti) > 0 successor(s), GSs(ti) operations incur a (dout(ti)+1)-pin net

8

(a) (b)

(c)

t2

f(�12, �23)

t1 t3 v23v12

c(n123)

v21v12
t2t1

f(�12, �21) and f(�21, �12)

c(n121)

t2t1

t5

t4

t3 v23

v24

v25

v12

f(�12) c(n12)

Fig. 3. The clustering hypergraph construction (a) Two-pin net n123 for the GaS(�12, �23) operations and (b) Coalescence of two two-pin
nets incurred by GaS(�12, �21) and GaS(�21, �12) into net n121 (c) Multi-pin net n12 for the GSs(�12) operations.

nhi, which connects vertex vhi and the vertices corresponding to the records of the links that are in the
successor list of �hi. That is,

Pins(nhi) = {vhi} ∪ {vij : tj ∈ Succ(ti)}. (11)

Each net nhi is associated with a cost

c(nhi) = f(�hi) (12)

for capturing the cost of GSs(�hi) operations. Here, f(�hi) denotes the total access frequency of link �hi in
GSs(�hi) operations. Fig. 3(c) displays the multi-pin net construction for link �12, which has the successor
list {�23, �24, �25}.

B. Clustering Hypergraph Model

After HL = (VL,NL) is constructed, it is partitioned into a number of parts Π = {V1,V2, . . .}, where
each part Vk∈Π corresponds to the subset of records to be assigned to disk page Pk∈P . The partitioning
constraint is to enforce the page size as the upper bound on the weight of the vertex parts so that
the disk page size is not exceeded in record allocation. The partitioning objective is to minimize the
cutsize according to the connectivity−1 metric as defined in Section II-A. Under the single-page buffer
assumption, the connectivity−1 cost incurred to the cutsize by the two-pin cut nets in N GaS

L and multi-pin
cut nets in N GSs

L exactly corresponds to the disk access cost incurred by the GaS operations in the route
evaluation queries and GSs operations in the path computation queries, respectively. Thus, in our model,
minimizing Cutsize(Π) given in (13) exactly minimizes the total number of disk accesses. In the following
two paragraphs, we show the correctness of our model for the two-pin and multi-pin net cases.

Cutsize(Π) =
∑

ni∈NGaS
L

c(ni)(λ(ni) − 1)+
∑

ni∈NGSs
L

c(ni)(λ(ni) − 1)

=
∑

ni∈NL

c(ni)(λ(ni) − 1). (13)

Consider a partition Π and a two-pin net nhij ∈NGaS
L with Pins(nhij) = {vhi, vij}. If nhij is internal

to a part Vk, then records rhi and rij both reside in page Pk. Since both rhi and rij can be found in the
memory when Pk is in the page buffer, neither GaS(�hi, �ij) nor GaS(�ij, �hi) operations incur any disk

9

(a) (b)

v12

v68

v67

v46

v75

v45

v14

n134(1)

n451(5)

n786(5)

n675(3)

n678(9)

n746(7)

n467(12)

V3

V1 V2

V4

n246(5)

n234(1)v23

v24

v34

n124(1)

n674(6)

n867(3)

n686(4)

n146(2)

n513(6)

n123(2)

n346(1)

n512(3)

v51

n751(7)

v86

v78

n145(2)

n514(4)

v13

n745(1)

v74

n245(1)

n345(1)

n468(5)

v12

v51

v68

v67

v46

v75

v45

v14

n24(4)

n13(3)
n12(15)

n51(11)

n14(3)

n68(7)

n67(9)

V3

V1
V2

n75(7)

v23

v24

n45(10)

V4

n78(11)

v34

n23(5)

n34(2)

v74

n74(1)

n86(4) v86

v78

v13

n46(12)

Fig. 4. The clustering hypergraph HL for the network given in Fig. 1 and a 4-way vertex partition separately shown on net-induced
subhypergraphs (a) (VL,NGaS

L) and (b) (VL,NGSs
L) respectively modeling the disk access cost of GaS and GSs operations.

access. Note that GaS(�ij, �hi) operations are possible only if h=j. If nhij is a cut net with connectivity
set Λ(nhij)={Vk,Vm}, rhi and rij reside in separate pages Pk and Pm. Without loss of generality, assume
that rhi∈Pk and rij ∈Pm. In this case, GaS(�hi, �ij) operations incur f(�hi, �ij) disk accesses in order to
replace the current page Pk in the buffer with Pm in the disk. In a similar manner, GaS(�ij, �hi) operations
incur f(�ij, �hi) disk accesses in order to replace the current page Pm in the buffer with Pk in the disk.
Hence, cut net nhij incurs a cost of c(nhij) to the cutsize since λ(nhij)−1=1.

Now, consider the same partition Π and a multi-pin net nij ∈NGSs
T . If nij is internal to a part Vk, then

record rij and all records storing the links in the successor list of �ij reside in page Pk. Consequently,
GSs(�ij) operations do not incur any disk access since page Pk is already in the page buffer. If nij is a
cut net with connectivity set Λ(nij), record rij and the records storing the links in the successor list of
�ij are distributed across the pages corresponding to the vertex parts that belong to Λ(nij). Without loss
of generality, assume that rij resides in page Pk, where Vk must be in Λ(nij). In this case, each GSs(�ij)
operation incurs λ(nij)−1 page accesses in order to retrieve the records storing the links in the successor
list of �ij by fetching the pages corresponding to the vertex parts in Λ(nij) − {Vk}. Hence, cut net nij

incurs a cost of c(nij)(λ(nij)−1) to the cutsize.
Fig. 4 shows the clustering hypergraph HL for the network given in Fig. 1 in two parts, which separately

show the net sets N GaS
L and NGSs

L with the associated costs of GaS and GSs operations shown in
parentheses. In Fig. 4(a), consider two-pin cut net n246 with Pins(n246)={v24, v46} and Λ(n246)={V1,V3}.
Since v24 is in vertex part V1, page P1 must be the single page in the buffer when GSs(�24) operations
are invoked. Since v46 is in part V2, λ(n246)−1 = 2−1 = 1 disk access is required to retrieve record
r46 into the buffer. Similarly, in Fig. 4(b), consider multi-pin cut net n24 with Pins(n24)={v24, v45, v46}
and Λ(n24)= {V1,V2,V3}. Since v24 is in vertex part V1, page P1 must be the single page in the buffer
when GSs(�24) operations are invoked. Since v45 and v46 are respectively in parts V2 and V3, each of
the four GSs(�24) operations will incur λ(n24)−1 = 3−1 = 2 disk accesses for pages P2 and P3 to
bring them into the buffer for processing records r45 and r46. Note that internal nets do not incur any
cost for neither GaS nor GSs operations since they have a connectivity of 1. The total cost of GaS
operations, due to the cut nets {n134, n146, n245, n246, n345, n346, n512, n675, n678, n686, n745, n751, n867}, is
(1+2+1+5+1+1+3+3+9+4+1+7+3)×(2−1)=41 and the total cost of GSs operations, due to the
cut nets {n13, n14, n24, n34, n51, n67, n68, n74, n75, n86}, is 3×(2−1)+3×(2−1)+4×(3−1)+2×(3−1)+

10

11×(2−1)+9×(2−1)+7×(2−1)+1×(2−1)+7×(2−1)+4×(2−1)=57.
In this work, similar to our earlier proposal on clustering in the junction-based storage scheme [10],

we use recursive bipartitioning schemes to partition HL into parts. The use of recursive bipartitioning
schemes is due to the fact that the number of parts is not known in advance. The reader is referred to [10]
for the details of the two recursive bipartitioning schemes used for this purpose.

C. Comparison of Clustering Hypergraph Models

We should note that the clustering hypergraph model for the link-based storage of the primal network
is equivalent to the clustering hypergraph model for the junction-based storage of the dual network. This
equivalence stems from the fact that the link-based storage scheme is the dual of the junction-based storage
scheme as mentioned earlier in Section III-B.

The sizes of the constructed hypergraphs in our clustering models depend on the topological properties of
the network. These sizes play an important role in computational and space requirements of the partitioning
process. In the clustering hypergraph HT for the junction-based storage scheme, the number |N GaS

T | of
two-pin nets varies between 	|L|/2
 and |L|. The number |N GSs

T | of multi-pin nets is equal to |T |−α,
where α = |{ti : dout(ti)= 0}| is the number of dead ends. The number of pins introduced by multi-pin
nets is |L|+|T |−α. Hence, we have

|VT| = |T |,
	|L|/2
 + |T | − α ≤ |NT| ≤ |L| + |T | − α, (14)

2	1.5 |L|
 + |T | − α ≤ |HT| ≤ 3|L| + |T | − α.

In the clustering hypergraph HL for the link-based storage scheme, the number |N GaS
L | of two-pin nets

is
∑

ti∈T (din(ti)×dout(ti))−β, where din(ti) denotes the number of predecessors of ti and β = |{�ij :
�ij ∈L ∧ �ji∈L}| is the number of bidirectional links. The number |N GSs

L | of multi-pin nets is equal to
|L|−

∑
ti∈T ,dout(ti)=0 din(ti). The number of pins introduced by multi-pin nets is

∑
ti∈T ,dout(ti)>0 din(ti)×

(dout(ti)+1). Hence, we have

|VL| = |L|,
|NL| =

∑
ti∈T

(din(ti) × dout(ti))−β+|L|−
∑

ti∈T ,dout(ti)=0

din(ti), (15)

|HL| = 3
∑
ti∈T

(din(ti) × dout(ti))+
∑

ti∈T ,dout(ti)>0

din(ti) − 2β.

In this work, we claim that the clustering hypergraph model provides more flexibility in partitioning
for the link-based storage scheme compared to the junction-based storage scheme. We illustrate this by
the following example. Fig. 5(a) shows a sample sub-road network (T ,L) with a junction t3 having two
incoming and three outgoing links. Figs. 5(b) and 5(c) show the net-induced subhypergraphs (VT,NGSs

T)
and (VL,NGSs

L) corresponding to the sub-road network given in Fig. 5(a) for the junction- and link-based
storage schemes, respectively. Ten GSs operations are assumed to be performed on junction t3, five GSs
operations for each incoming link of t3. As seen in the figure, junction t3 induces only one net n3 in HT ,
whereas the two incoming links �13 and �23 of t3 induce nets n13 and n23 in HL.

Figs. 5(b) and 5(c) also show 2-way partitions for HT and HL. In this example, if there were no part
size constraints, moving vertex v3 from V1 to V2 would remove net n3 from the cut, thus reducing the
cutsize by 10. However, this move may not be feasible due to the maximum part size constraint on V2.
Since the record sizes in the link-based storage scheme are less than those in the junction-based storage
scheme as shown in Section III-B, either v13 or v23 can move to V2 without violating the maximum part
size constraint, respectively removing n13 or n23 from the cut with a saving of 5 on the cutsize. In general,

11

(c)(b)(a)

10

t4

t5

t6

v3

v4

v5

v6
n23(5)

v13

v23

t3

t1

t2

V2 V2

v35

v36

v34

n3(10)
n13(5)

V1 V1

Fig. 5. (a) A sub-road network with GSs(t3) (b) HT: a four-pin net n3 for the GSs(t3) operations with f(t3)=10 (c) HL: two four-pin
nets n13 for the GSs(�13) operations with f(�13)=5 and n23 for the GSs(�23) operations with f(�13)=5.

the partitioning of the clustering hypergraph for the link-based storage scheme has a better solution space
as the flexibility of moving vertices between parts increases.

In bidirectional networks, the storage saving in the link-based scheme results in higher improvements
in query processing performance compared to the junction-based scheme. We provide Fig. 6 to validate
this claim. Fig. 6(a) shows a sample sub-road network (T ,L) with a junction t1 having four bidirec-
tional incoming/outgoing links. Figs. 6(b) and 6(c) show the net-induced subhypergraphs (VT,NGSs

T)
and (VL,NGSs

L) corresponding to the sub-road network for the junction- and link-based storage schemes,
respectively. Note that the sum of the number of GSs operations performed on the incoming links of
junction t1 in the link-based storage scheme is equal to the number of GSs operations performed on
junction t1. That is, f(�21)+f(�31)+f(�41)+f(�51)=f(t1).

As seen in Fig. 6(b), in HT, for the GSs(t1) operation, there is a five-pin net with Pins(n1) =
{v1, v2, v3, v4, v5} and c(n1) = f(t1). In the construction of the clustering hypergraph for the link-based
storage scheme, two directional links between the same junctions (i.e., �ij and �ji) are represented with
a bidirectional link �ij, where i < j. Hence, a vertex vij exists for each record rij storing link �ij. As
seen in Fig. 6(c), HL has four four-pin nets n12, n13, n14, and n15 to capture the costs of the GSs(�21),
GSs(�31), GSs(�41), and GSs(�51) operations, respectively. Note that these four four-pin nets connect the
same set of pins, i.e., Pins(n12) = Pins(n13) = Pins(n14) = Pins(n15) = {v1, v2, v3, v4, v5}. Such nets,
which connect exactly the same set of pins, are called identical nets. Identical nets can be coalesced into
a single representative net. The representative net’s cost is set to the total cost of all constituting nets. Here,
n12, n13, n14, and n15 can be coalesced into a representative net n′

1 with Pins(n′
1)={v12, v13, v14, v15} and

c(n′
1)= c(n12)+c(n13)+c(n14)+c(n15) as shown in Fig. 6(d). Comparison of Figs. 6(b) and 6(d) shows

that, for GSs operations, the clustering hypergraphs for the two storage schemes have the same set of nets
with equal costs. However, the size of each net in HL is one less than the size of the respective net in HT.
This finding conforms with the fact that, in query processing, each GSs operation in the link-based storage
scheme accesses one record less compared to the junction-based storage scheme. Thus, the partitioning
of HL is expected to lead to smaller cutsizes compared to that of HT because of smaller net sizes in the
link-based storage scheme.

In bidirectional networks, the sizes of the clustering hypergraphs for the two storage schemes become

|VT| = |T |,
|NT| = |L|/2 + |T |, (16)

|HT| = 2|L| + |T |,

12

(c) (d)(b)(a)

t3

t2 t4

t5

t1

n15

v2 v4

v5v3

n1v1

c(n′
1) = f(�12) + f(�13) + f(�14) + f(�15) = c(n1)c(n1) = f(t1)

v14

v15

v12 v14

v13 v15

n′
1

v12

v13

n12

n13

n14

Fig. 6. (a) A bidirectional sub-road network with GSs(t1) (b) HT: a five-pin net n1 for the GSs(t1) operations with c(n1) = f(t1) (c)
HL: four identical four-pin nets n12, n13, n14, and n15 for GSs(�12), GSs(�13), GSs(�14), and GSs(�15), respectively (d) HL: identical nets
n12, n13, n14, and n15 coalesced into net n′

1 with cost c(n′
1)=c(n1).

TABLE I
PROPERTIES OF ROAD NETWORK DATASETS

Road network
Tag Dataset |T | |L| davg

D1 California HPN 10141 28370 2.80
D2 SanJoaquin 17444 45974 2.64
D3 Minnesota7 34222 92206 2.69
D4 Sanfrancisco 166558 426742 2.56

and

|VL| = |L|/2,

|NL| =
∑
ti∈T

d2(ti) − |L| + |T | − τ, (17)

|HL| = 2
∑
ti∈T

d2(ti) − |L| − τ,

where d(ti)=din(ti)=dout(ti) and τ = |{ti : d(ti) = 1}|.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to show the validity of the proposed link-based storage scheme and the clustering model,
we have conducted a wide range of experiments on four real-life road network datasets collected from
U.S. Tiger/Line [19] (Minnesota7 including 7 counties Anoka, Carver, Dakota, Hennepin, Ramsey, Scott,
Washington; Sanfrancisco), U.S. Department of Transportation [22] (California Highway Planning Net-
work), and Brinkhoff’s network data generator [5] (SanJoaquin). We perform a preprocessing to eliminate
the self-loops and multi-links. The properties of the preprocessed datasets are given in Table I. In the
table, davg refers to the average number of links per junction.

It is important to note that all links in our datasets are bidirectional. This fact enables the use of the
storage savings mentioned in Sections II-C and III-A. In the junction-based storage scheme, we store only
the successor list of each junction. In the link-based storage scheme, we combine the records storing the
two directional links between two junctions into a single record and hence halve the number of records.

In the experiments, 4 bytes are reserved for the coordinates of a junction (i.e., Cid =4) and no space
is reserved for junction attributes (i.e., CT =0). We used three different sizes of 16, 28, and 40 bytes for
the link attributes (i.e., CL =16, CL =28, and CL =40) in both storage schemes. This way, we are able
to evaluate the effect of the average record size and total storage size on the relative performance of the

13

TABLE II
STORAGE REQUIREMENTS OF JUNCTION AND LINK-BASED STORAGE SCHEMES IN BYTES

Junction-based storage scheme Link-based storage scheme
CL = 16 CL = 28 CL = 40 CL = 16 CL = 28 CL = 40
ST sT ST sT ST sT SL sL SL sL SL sL

D1 607964 60.0 948404 93.5 1288844 127.1 813624 57.4 983844 69.4 1154064 81.4
D2 989256 56.7 1540944 88.3 2092632 120.0 1298856 56.5 1574700 68.5 1850544 80.5
D3 1981008 57.9 3087480 90.2 4193952 122.6 2650184 57.5 3203420 69.5 3756656 81.5
D4 9201072 55.2 14321976 86.0 19442880 116.7 11850952 55.5 14411404 67.5 16971856 79.5
Averages normalized w.r.t. storage sizes of the junction-based scheme

1.00 1.00 1.00 1.00 1.00 1.00 1.29 0.99 1.01 0.77 0.87 0.67

two storage schemes. Table II displays the total storage sizes (ST and SL) and the average record sizes
(sT and sL) for the junction- and link-based storage schemes for each dataset and link attribute size pair.

As seen in Table II, for CL =16, the average record sizes are almost equal in the two storage schemes,
whereas the link-based scheme requires 29% more total storage than the junction-based scheme, on the
average. For CL = 28, the total storage sizes are almost equal in the two storage schemes, whereas the
average record size of the link-based scheme is 23% less than that of the junction-based scheme, on the
average. For CL = 40, both the total storage size and the average record size of the link-based scheme
are less than those of the junction-based scheme (on the average 13% and 33%, respectively). Although
the link-based scheme requires more storage than the junction-based scheme in general, the link-based
scheme becomes more favorable than the the junction-based scheme for CL =40. This is mainly due to the
fact that the proposed way of handling bidirectional links enables more storage saving in the link-based
scheme compared to that in the junction-based scheme.

The clustering hypergraphs for the two storage schemes are constructed as described in Sections II-E
and IV-A. The vertex weights are set to be equal to the size of the respective records. We generated
a synthetic query log for each dataset in order to be able to obtain a cost distribution over the nets
of the constructed hypergraphs. For this purpose, a set of source and destination junction pairs, which
have a predetermined shortest path length, is generated by slightly modifying the network-based node
selection option of Brinkhoff’s Network Generator for Moving Objects framework [5]. For the route
evaluation queries, the shortest path between the source and destination junctions is evaluated. For the
path computation queries Dijkstra’s algorithm is executed over the network between these junctions.

In order to have almost all elements in the networks accessed by at least one aggregate network
operation, we adaptively determined a separate query count and a path length for each dataset. Here, we
should note that the total net costs in the clustering hypergraphs generated for the two storage schemes
are exactly equal for a given query log on the same dataset. This enables a fair comparison between the
clustering hypergraph models for the two storage schemes.

According to the path lengths in the queries, we formed three sets of queries: Qshort, Qmedium, and
Qlong. We selected the path lengths and the number of queries in each query set as follows: For Qshort,
Qmedium, and Qlong, the path length is respectively set to the 1/18, 1/6, and 1/2 of the diameter of the
road network. In order to span all the junctions in the network and hence to create a hypergraph large
enough to represent the network, the number of queries in each dataset is picked linearly proportional to
the number of junctions. For Qshort, Qmedium, and Qlong, the number of queries is respectively set to the
5/10, 3/10, and 1/10 of the number of junctions in the network. Table III displays the path length and the
number of queries used for each dataset and query set pair. Table III also displays the number of GaS
and GSs operations respectively invoked by the route evaluation and path computation queries for each
dataset and query set pair.

Table IV displays the properties of the clustering hypergraphs used in the experiments for the junction-
and link-based storage schemes. In this table, |n|avg = |H|/|N | denotes the average net size of a hypergraph.
Since the aggregate network operations incurred by the generated queries may not traverse all network
elements, the number of nets for each hypergraph is less than the number of all possible nets that can
be induced. As mentioned in Section IV-C, bidirectional links lead to identical nets in both storage

14

TABLE III
PROPERTIES OF QUERIES PERFORMED ON THE ROAD NETWORKS

Qshort Qmedium Qlong

path number of path number of path number of
length queries GaS() GSs() length queries GaS() GSs() length queries GaS() GSs()

D1 8 5071 30420 498478 25 3042 69943 3108062 75 1014 74022 3977814
D2 8 8722 52230 823121 25 5233 119572 4830266 76 1744 127948 9033815
D3 26 17111 405910 14583559 78 10267 766892 61064163 233 3422 774053 70111055
D4 27 83279 2080352 129398112 81 49967 3944006 604478026 242 16656 3995328 959588281

TABLE IV
PROPERTIES OF THE CLUSTERING HYPERGRAPHS FOR THE JUNCTION- AND LINK-BASED STORAGE SCHEMES

Qshort Qmedium Qlong

|V| |N | |H| |n|avg |N | |H| |n|avg |N | |H| |n|avg

Junction-based storage scheme
D1 10141 19344 56913 2.9 15691 49607 3.2 14576 47376 3.3
D2 17444 30033 88575 2.9 25926 80359 3.1 23987 76449 3.2
D3 34222 50970 159836 3.1 49439 156747 3.2 45128 148033 3.3
D4 166558 250116 760252 3.0 243853 747713 3.1 225476 710905 3.2

Link-based storage scheme
D1 14185 18400 45302 2.5 14553 37603 2.6 13092 34680 2.6
D2 22987 28768 72090 2.5 22991 60526 2.6 20423 55367 2.7
D3 46103 47080 125054 2.7 44659 120200 2.7 38581 107968 2.8
D4 213371 222231 576712 2.6 211869 555947 2.6 186466 504947 2.7

schemes.These nets are detected and eliminated by a preprocessing step. Table IV displays the values
after this identical net elimination step.

As seen in Table IV, HL contains considerably more (25.1% on the average) vertices than HT. This is
expected since the number of vertices corresponds to the number of records in a storage scheme and the
number of records is equal to the number of junctions in the junction-based storage scheme, whereas it
is equal to half of the number of links in the link-based storage scheme. In terms of the number of nets,
HL contains fewer (10.5% on the average) nets than HT. This is mainly due to the junctions with degree
one, which do not incur multi-pin nets in HL. In Table IV, the average net size in HL is smaller than that
of HT in accordance with the discussion given in Section IV-C on multi-pin nets.

We adopt the recursive bipartitioning scheme RB2 and page-packing approach described in [10]. In
the RB2 scheme, we use the state-of-the-art hypergraph partitioning tool PaToH [8] for bipartitioning the
hypergraphs. Partitioning quality for each dataset is evaluated for four different page sizes of P = 1, 2, 4,
and 8 KB. Due to the randomized nature of the heuristics used in PaToH, the experiments are repeated
100 times, and the average performance results are reported in the following figures and tables.

Query processing simulations are performed using page buffers with a capacity of 1, 2, 4, and 8 pages.
The Least Recently Used (LRU) page replacement algorithm is employed as the caching algorithm. The
synthetic queries used for query log generation are also used in simulations for measuring the total disk
access cost. Simulations are performed on a PC that is equipped with an Intel Pentium IV 2.6 GHz
processor and 2GB of RAM.

We evaluate the performance of the clustering hypergraph models for the junction- and link-based
storage schemes in two aspects. First, we evaluate the partition quality in terms of cutsize, which refers
to the total number of disk accesses incurred by GaS and GSs operations under the single-page buffer
assumption. Second, we assess the total number of disk accesses in aggregate network queries through
simulations.

B. Partitioning Quality

Fig. 7 displays the partitioning quality of the clustering hypergraph models for the junction- and link-
based storage schemes with the link attribute sizes CL =16 and CL =28. The results for the hypergraphs
generated for the query sets Qshort and Qlong are presented. As seen in Fig. 7, in all cases the link-based
storage scheme achieves smaller cutsize values than the junction-based storage scheme. As expected, the

15

1 2 4 8 1 2 4 8
Page size (KB)

0

0.1

0.2

0.3

0.4

0.5

C
ut

si
ze

 (
m

ill
io

ns
)

1 2 4 8 1 2 4 8
Page size (KB)

0

1

2

3

4

C
ut

si
ze

 (
m

ill
io

ns
)

1 2 4 8 1 2 4 8
Page size (KB)

0

0.2

0.4

0.6

0.8

C
ut

si
ze

 (
m

ill
io

ns
)

1 2 4 8 1 2 4 8
Page size (KB)

0

2

4

6

8

C
ut

si
ze

 (
m

ill
io

ns
)

1 2 4 8 1 2 4 8
Page size (KB)

0

3

6

9

12

C
ut

si
ze

 (
m

ill
io

ns
)

1 2 4 8 1 2 4 8
Page size (KB)

0

10

20

30

40

50

C
ut

si
ze

 (
m

ill
io

ns
)

1 2 4 8 1 2 4 8
Page size (KB)

0

20

40

60

80

C
ut

si
ze

 (
m

ill
io

ns
)

1 2 4 8 1 2 4 8
Page size (KB)

0

100

200

300

400

500

600

C
ut

si
ze

 (
m

ill
io

ns
)

Dataset D1

Dataset D2

Dataset D3

Dataset D4

C
L
=16 C

L
=16

C
L
=16C

L
=16

C
L
=16

C
L
=16

C
L
=16

C
L
=16

C
L
=28

C
L
=28

C
L
=28

C
L
=28

C
L
=28

C
L
=28

C
L
=28

C
L
=28

Q
short

Q
short

Q
short

Q
short

Q
long

Q
long

Q
long

Q
long

Junction-based storage scheme Link-based storage scheme

Fig. 7. Partitioning quality of the clustering hypergraph models for the junction- and link-based storage schemes. Cutsize is equal to the
number of total disk accesses for aggregate network operations under the single-page buffer assumption.

16

TABLE V
THE AVERAGE PERFORMANCE IMPROVEMENTS OF THE CLUSTERING HYPERGRAPH MODEL FOR THE LINK-BASED STORAGE SCHEME

OVER THE CLUSTERING HYPERGRAPH MODEL FOR THE JUNCTION-BASED STORAGE SCHEME

Percent improvement
CL = 16 CL = 28 CL = 40

P K Cutsize K Cutsize K Cutsize
Qsmall 1 -30.9 42.2 -1.6 51.6 12.8 56.4

2 -31.0 42.6 -1.9 52.1 12.0 56.8
4 -31.6 42.1 -2.2 52.0 11.6 57.0
8 -31.2 41.5 -2.2 51.3 11.6 56.4

Qmedium 1 -30.8 43.7 -1.5 53.0 13.0 57.4
2 -31.1 44.4 -1.9 53.7 12.1 58.2
4 -31.5 44.0 -1.8 53.5 11.6 58.2
8 -31.3 44.0 -2.0 53.0 11.5 57.8

Qlarge 1 -30.7 44.8 -1.5 53.7 12.9 58.0
2 -31.1 45.8 -1.8 54.8 12.1 59.3
4 -31.1 45.6 -2.1 55.0 11.6 59.7
8 -31.6 45.7 -2.4 54.9 11.2 59.4

cutsize values decrease with increasing page size in both storage schemes, whereas the performance gap
between these two schemes does not vary significantly with varying page size.

Table V shows the average performance improvements of the clustering hypergraph model for the link-
based storage scheme over that for the junction-based storage scheme for all query sets and CL values. In
the table, positive values indicate percent decrease in the K and cutsize values, whereas negative values
indicate percent increase in the K values, achieved by the link-based storage scheme compared to the
junction-based storage scheme. As seen in Table V, the two storage schemes achieve almost equal K
values for the CL =28 case. The junction-based storage scheme achieves 28.4% smaller K values for the
CL =16 case, whereas the link-based storage scheme results in 13.3% smaller K values for the CL =40
case, on the average. These percent differences are approximately equal to the percent differences for the
total storage sizes reported in Table II.

As seen in Table V, for the CL =28 case, which incurs almost equal K values for both storage schemes,
the link-based storage scheme achieves 54.1% less cutsize values than the junction-based storage scheme,
on the average. The relative performance improvement of the link-based storage scheme over the junction-
based storage scheme increases to 58.6% when the size of the link attributes increases to CL =40. These
experimental findings are in accordance with our expectations discussed in Section IV-C. However, it is
interesting to note that, for CL =16, although the link-based storage scheme leads to considerably higher
K values, it achieves considerably lower cutsize values (45.2% on the average). This can be attributed to
the properties of the clustering hypergraphs modeling the networks with bidirectional links.

The effect of query sets on the relative performance between the two storage schemes is also important.
As seen in Table V, for fixed page size and CL values, the performance gap between the two storage
schemes increases as the path length increases in favor of the link-based storage scheme. This finding can
be attributed to the increase in the number of GSs operations with increasing path length. As mentioned
Section IV-C, the relative performance between the two storage schemes is expected to be higher in GSs
operations compared to the GaS operations.

C. Disk Access Simulations

Figs. 8-11 display the relative performance comparisons of the two storage schemes in terms of the
number of disk accesses for both route evaluation and path computation queries. The simulation results
in these figures are presented for the link attribute sizes CL =16 and CL =28 with the varying page and
buffer sizes. The query sets Qshort and Qlong are evaluated in detail to show the effect of path length and
number of queries in simulations. The average improvements over all datasets are given in Table VI for
all query sets and all CL values.

As seen in Figs. 8-11, the link-based storage scheme outperforms the junction-based storage scheme for
almost all simulation cases. In Figs. 8-11, for the CL =16 case with a single-page buffer, the link-based

17

TABLE VI
THE AVERAGE PERFORMANCE IMPROVEMENTS OF THE CLUSTERING HYPERGRAPH MODEL FOR THE LINK-BASED STORAGE SCHEME

OVER THE CLUSTERING HYPERGRAPH MODEL FOR THE JUNCTION-BASED STORAGE SCHEME

Percent improvement
Buffer CL = 16 CL = 28 CL = 40

size P Qshort Qmedium Qlong Qshort Qmedium Qlong Qshort Qmedium Qlong

1 1K 20.7 20.9 21.2 28.5 27.9 27.8 33.4 32.6 32.5
2K 17.0 17.9 18.2 24.3 23.6 23.6 28.6 27.5 27.4
4K 13.6 15.3 16.1 21.0 20.4 20.5 25.3 23.6 23.6
8K 10.2 13.6 14.7 18.3 18.0 18.4 22.6 20.8 20.8

2 1K 19.7 20.6 21.0 29.1 28.2 28.2 34.5 33.1 33.0
2K 15.0 17.1 17.7 24.8 23.9 23.9 30.1 28.1 28.0
4K 9.8 13.7 15.0 21.4 20.5 20.6 27.0 24.3 24.2
8K 4.4 11.1 12.8 17.9 17.8 18.3 24.5 21.6 21.4

4 1K 16.9 19.5 20.3 29.3 28.5 28.4 35.6 33.7 33.4
2K 10.3 15.2 16.3 24.8 24.2 24.1 31.7 29.1 28.8
4K 2.7 10.1 12.4 20.8 20.5 20.7 29.2 25.6 25.3
8K -4.3 5.4 8.3 16.3 17.2 17.9 26.2 23.1 22.6

8 1K 11.0 17.2 18.6 28.7 28.9 28.8 36.7 34.9 34.3
2K 2.4 10.8 12.9 23.3 24.5 24.4 33.1 31.0 30.2
4K -4.7 1.3 5.9 18.3 20.5 20.6 29.9 28.1 27.2
8K -10.7 -10.3 -3.4 13.3 15.9 16.8 24.7 26.2 24.9

storage scheme performs better than the junction-based storage scheme in all simulations except for the
case of D1 with P = 8 and Qshort. For the CL = 16 case with larger page and buffer sizes, especially
with short queries, the junction-based storage scheme performs slightly better than the link-based storage
scheme. This is due to the fact that average record sizes are almost equal but the total storage of the the
link-based storage scheme is 29% larger than that of the junction-based storage scheme.

The comparison of the two storage schemes in Table VI is consistent with the results presented in
Table V. However, the final improvements in the simulations are less than the improvements in actual
total costs of GaS and GSs operations. As seen in Table V, the average improvement in the total disk
access cost of GaS and GSs operations for a single-page buffer is 43.9% and 53.2% for CL =16 and for
CL = 28, respectively. Nevertheless, in Table VI, the average improvement in the total disk access cost
of aggregate network queries for a single-page buffer is 11.7% and 22.6% for CL =16 and for CL =28,
respectively. This is mainly due to the additional overhead of Find operations incurred by the internal
steps of the shortest path algorithm used in path computation queries.

According to Figs. 8–11, as expected, increasing page size and increasing buffer size independently
decrease the number of disk accesses in the two storage schemes. The performance gap between the
storage schemes decreases with increasing P . There are even few cases in which the junction-based
storage scheme performs better than the link-bases storage scheme. These cases occur for the simulations
on the smaller datasets with larger buffer and page sizes because considerable portion of the data can
reside in memory.

VI. CONCLUDING REMARKS

We proposed the link-based storage scheme for efficient aggregate query processing on clustered road
networks. In this storage scheme, each record stores the data associated with a link together with the link’s
connectivity information. We extended our earlier clustering hypergraph model for the junction-based
storage scheme to the link-based storage scheme. Our detailed comparative analysis on the properties
of the junction- and link-based storage schemes showed that the link-based storage scheme is more
amenable to clustering. Moreover, we introduced storage enhancements for bidirectional networks. We
showed that the link-based storage scheme is more amenable to our enhancements than the junction-based
storage scheme and results in better data allocation for processing aggregate network queries. Extensive
experimental comparisons were carried out on the effects of page size, buffer size, path length, record
size, and dataset size for the junction- and link-based storage schemes. Experimental results showed that

18

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Page size (KB)

0

0.2

0.4

0.6

0.8

of
 d

is
k

ac
ce

ss
es

 (
m

ill
io

ns
)

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Page size (KB)

0

2

4

6

of

 d
is

k
ac

ce
ss

es
 (

m
ill

io
ns

)

Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8 Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8

Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8 Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8

Q
long

Q
short

C
L
=16

C
L
=28

C
L
=28

C
L
=16

Junction-based storage scheme Link-based storage scheme

Fig. 8. Disk access comparisons of the clustering hypergraph models for the two storage schemes in aggregate network query simulations
over dataset D1.

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Page size (KB)

0

0.5

1

1.5

of

 d
is

k
ac

ce
ss

es
 (

m
ill

io
ns

)

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Page size (KB)

0

5

10

15

of

 d
is

k
ac

ce
ss

es
 (

m
ill

io
ns

)

Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8 Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8

Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8 Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8

Q
long

Q
short

C
L
=16

C
L
=28

C
L
=28

C
L
=16

Junction-based storage scheme Link-based storage scheme

Fig. 9. Disk access comparisons of the clustering hypergraph models for the two storage schemes in aggregate network query simulations
over dataset D2.

19

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Page size (KB)

0

5

10

15

20

25

of

 d
is

k
ac

ce
ss

es
 (

m
ill

io
ns

)

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Page size (KB)

0

30

60

90

120

of

 d
is

k
ac

ce
ss

es
 (

m
ill

io
ns

)

Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8 Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8

Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8 Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8

Q
long

Q
short

C
L
=16

C
L
=28

C
L
=28

C
L
=16

Junction-based storage scheme Link-based storage scheme

Fig. 10. Disk access comparisons of the clustering hypergraph models for the two storage schemes in aggregate network query simulations
over dataset D3.

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Page size (KB)

0

50

100

150

200

of

 d
is

k
ac

ce
ss

es
 (

m
ill

io
ns

)

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Page size (KB)

0

500

1000

1500

of

 d
is

k
ac

ce
ss

es
 (

m
ill

io
ns

)

Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8 Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8

Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8 Buffer size=1 Buffer size=2 Buffer size=4 Buffer size=8

Q
long

Q
short

C
L
=16

C
L
=28

C
L
=28

C
L
=16

Junction-based storage scheme Link-based storage scheme

Fig. 11. Disk access comparisons of the clustering hypergraph models for the two storage schemes in aggregate network query simulations
over dataset D4.

20

the link-based storage scheme outperforms the widely-used junction-based storage scheme in terms of
both storage and query processing efficiency.

The storage schemes mentioned in this work are generic representations of networks, hence any index
can be built on top of these storage schemes. Application of the link-based storage scheme in graph
topologies may also be beneficial for research on problems in other research fields.

REFERENCES

[1] V. T. Almeida and R. H. Güting, “Using Dijkstra’s algorithm to incrementally find the k-nearest neighbors in spatial network databases,”
in Proc. ACM Int’l Symp. on Applied Computing, 2006, pp. 23–27.

[2] C. J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning: A survey,” VLSI Journal, vol. 19, no. 1-2, pp. 1–81, 1995.
[3] C. Aykanat, A.Pinar, and U. V. Çatalyürek, “Permuting sparse rectangular matrices into block-diagonal form,” SIAM Journal of Scientific

Computing, vol. 25, no. 6, pp. 1860–1879, 2004.
[4] C. Berge, Graphs and Hypergraphs. North-Holland Publishing Company, 1973.
[5] T. Brinkhoff, “A framework for generating network-based moving objects,” GeoInformatica, vol. 6, no. 2, pp. 153–180, 2002.
[6] T. Caldwell, “On finding minimum routes in a network with turn penalties,” in Communications of the ACM, 1961, pp. 107–108.
[7] U. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based decomposition of parallel sparse-matrix vector multiplication,” IEEE

Trans. Parallel Distrib. Syst., vol. 10, no. 7, pp. 673–693, 1999.
[8] ——, “PaToH: Partitioning tool for hypergraphs,” Computer Engineering Department, Bilkent University, Tech. Rep., 1999, http:

//www.cs.bilkent.edu.tr/∼aykanat/pargrp/patoh/.
[9] A. Dasdan and C. Aykanat, “Two novel multiway circuit partitioning algorithms using relaxed locking,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 16, no. 2, pp. 169–178, 1997.
[10] E. Demir, C. Aykanat, and B. Cambazoglu, “Clustering spatial networks for aggregate query processing: A hypergraph approach,”

Information Systems, revised version under review.
[11] Y.-W. Huang, N. Jing, and E. Rundensteiner, “Effective graph clustering for path queries in digital map databases,” in Proc. ACM Int’l

Conf. Information and Knowledge Management, 1996, pp. 215–222.
[12] C. Jensen, J. Kolar, T. Pedersen, and I. Timko, “Nearest neighbor queries in road networks,” in Proc. ACM Int’l Workshop on Geographic

Information Sytems, 2003, pp. 1–8.
[13] S. Jung and S. Pramanik, “An efficient path computation model for hierarchically structured topographical road maps,” IEEE Trans.

Knowl. Data Eng., vol. 14, no. 5, pp. 1029–1046, 2002.
[14] M. Kolahdouzan and C. Shahabi, “Alternative solutions for continuous K nearest neighbor queries in spatial network databases,”

GeoInformatica, vol. 9, no. 4, pp. 321–341, 2005.
[15] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S. Teng, “On trip planning queries in spatial databases,” in Proc. 9th Int’l Symp.

on Spatial and Temporal Databases, 2005, pp. 273–290.
[16] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in spatial network databases,” in Proc. Int’l Conf. Very Large

Data Bases, 2003, pp. 790–801.
[17] S. Shekhar, A. Kohli, and M. Coyle, “Path computation algorithms for advanced traveler information systems,” in Proc. IEEE Int’l

Conf. on Data Engineering, 1993, pp. 31–39.
[18] S. Shekhar and D. R. Liu, “A connectivity-based access method for networks and network computation,” IEEE Trans. Knowl. Data

Eng., vol. 9, no. 1, pp. 102–117, 1997.
[19] (2002) Topologically integrated geographic encoding and referencing system (TIGER). [Online]. Available: http://www.census.gov/

geo/www/tiger/
[20] B. Ucar and C. Aykanat, “Encapsulating multiple communication-cost metrics in partitioning sparse rectangular matrices for parallel

matrix-vector multiplies,” SIAM Journal of Scientific Computing, vol. 25, no. 6, pp. 1837–1859, 2004.
[21] ——, “Revisiting hypergraph models for sparse matrix partitioning,” SIAM Review, December 2007, in press.
[22] (2004) US department of transportation federal highway administration, the national highway planning network. [Online]. Available:

http://www.fhwa.dot.gov/planning/nhpn/index.html
[23] S. Winter, “Weighting the path continuation in route planning,” in Proc. 9th ACM Int’l Symp. on Advances in GIS, 2001, pp. 173–176.
[24] ——, “Route specifications with a linear dual graph,” in Proc. Int’l Symp. Advances in Spatial Data Handling, 2002, pp. 329–338.
[25] S.-H. Woo and S.-B. Yang, “An improved network clustering method for I/O-efficient query processing,” in Proc. ACM Symp. on GIS,

2000, pp. 62–68.
[26] M. L. Yiu and N. Mamoulis, “Clustering objects on a spatial network,” in Proc. ACM SIGMOD Int’l Conf. on Management of Data,

2004, pp. 13–18.
[27] M. L. Yiu, N. Mamoulis, and D. Papadias, “Aggregate nearest neighbor queries in road networks,” IEEE Trans. Knowl. Data Eng.,

vol. 17, no. 6, pp. 820–833, 2005.

