
COMBINED FILTERING AND KEYFRAME
REDUCTION FOR MOTION CAPTURE

DATA

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND THE INSTITUTE

OF ENGINEERING AND SCIENCE

OF BİLKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Onur Önder

July, 2007

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Bülent Özgüç (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay (Co-supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy

ii

iii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Enis Çetin

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Tolga K. Çapın

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ABSTRACT

COMBINED FILTERING AND KEYFRAME
REDUCTION FOR MOTION CAPTURE DATA

Onur Önder

M.S. in Computer Engineering

Supervisors: Prof. Dr. Bülent Özgüç and

Assoc. Prof. Dr. Uğur Güdükbay

July, 2007

Two new methods for combined filtering and key-frame reduction of motion

capture data are proposed. Filtering of motion capture data is necessary to

eliminate any jitter introduced by a motion capture system. Although jitter

removal is needed to obtain a more realistic animation, it may result in an over-

smoothed motion data if it is not done properly. Key-frame reduction, on the

other hand, allows animators to easily edit motion data by representing animation

curves with a significantly smaller number of key frames. One of the proposed

techniques achieves key frame reduction and jitter removal simultaneously by

fitting a Hermite curve to motion capture data using dynamic programming.

Another method is to use curve simplification algorithms on the motion capture

data until the desired reduction is reached. In this research, the results of these

algorithms are evaluated and compared. Both subjective and objective results

are presented.

Keywords: Motion Capture, Keyframe Reduction, Curve Fitting, Curve Simpli-

fication, Noise Filtering.

iv

ÖZET

BİRLEŞİK OLARAK HAREKET YAKALAMA
VERİLERİNİN FİLTRELENMESİ VE ANA

ÇERÇEVELERİN AZALTILMASI

Onur Önder

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. Bülent Özgüç ve

Doç. Dr. Uğur Güdükbay

Temmuz, 2007

Birleşik olarak hareket yakalama verilerinin filtrelenmesi ve ana çerçevelerin

azaltılması için iki yeni yöntem sunulmuştur. Hareket yakalama bilgilerinin

süzülmesi, hareket içerisindeki gürültünün yok edilmesi için gereklidir. Hareket

içerisindeki gürültünün yok edilmesi daha gerçekçi bir canlandırma sağlar. Ancak

gerekli ölçüde yapılmadığı takdirde çok fazla düzleştirilmiş, gerçekçi olmayan bir

canlandırma ortaya çıkarır. Diğer yandan, ana çerçevelerin azaltılması, bu ver-

ilerin canlandırma eğrileri ile tanımlandığı için, canlandırıcıların bu verileri çok

daha az ana çerçeve sayısı ile kolaylıkla düzenleyebilmelerini sağlar. Belirtilen

yöntemlerden ilki, dinamik programlama yöntemi ile beraber hareket yakalama

verisine Hermite eğrisi oturtarak aynı anda hem ana çerçeve azaltımını yapmak-

tadır, hem de verilerin gürültüden ayrılmasını sağlamaktadır. Diğer bir yöntem

ise aynı sonucu eğri basitleştirme yöntemlerini istenilen duyarlılık erişilinceye

kadar kullanımıdır. Bu araştırmada bu yöntemlerin sonuçları değerlendirilmiş

ve karşılaştırılmıştır. Ek olarak öznel ve nesnel sonuçlar da sunulmuştur.

Anahtar sözcükler : Hareket Yakalama, Ana Çerçevelerin Azaltılması, Eğri

Oturtma, Eğri Sadeleştirme, Gürültünün Filtrelenmesi.

v

Acknowledgement

I would like to gratefully acknowledge the support and supervision of Prof.

Dr. Bülent Özgüç and Assoc. Prof. Dr. Uğur Güdükbay who allowed me to

have the opportunity of pursuing this research. I would like to thank for the

opportunities that European Commission 6th Framework Network of Excellence

project “Integrated Three-Dimensional Television - Capture, Transmission and

Display” provided to pursue my research. I would like to express my gratitudes

to Prof. Dr. Özgür Ulusoy, Prof. Dr. Enis Çetin and Assist. Prof. Dr. Tolga K.

Çapın for their comments and suggestions. I also would like to thank Dr. Tanju

Erdem for many stimulating discussions and his support on my research topic.

vi

Contents

1 Introduction 1

2 Background 7

2.1 Motion Capture and Keyframe Animation 7

2.2 Keyframe Prediction and Extraction 8

2.3 Curve Fitting and Dynamic Programming Approaches 13

2.4 Curve Simplification Approaches 14

2.5 Summary . 14

3 Keyframe Reduction for Motion Capture 15

3.1 Curve Fitting with Dynamic Programming 15

3.2 Curve Simplification . 21

4 Experimental Results 24

4.1 Results . 24

4.1.1 Curve Fitting with Dynamic Programming 24

vii

CONTENTS viii

4.1.2 Curve Simplification . 29

4.2 Evaluation . 30

4.2.1 Objective Evaluations . 30

4.2.2 Subjective Evaluations . 33

5 Conclusion 34

Bibliography 36

Appendices 39

A Motion Capture Data 39

A.1 Running Animation . 39

A.2 Drinking Animation . 44

B Detailed Pseudo-codes 50

B.1 Curve Fitting with Dynamic Programming 50

B.2 Curve Simplification . 57

List of Figures

1.1 In between frames calculated between the initial and final keyframes. 4

1.2 The description of a sample joint motion by frames in the upper

time axis and keyframes in the lower axis. 5

2.1 Sample motion capture studio: (a) layout [10]; (b) view [17]. . . . 9

2.2 Sample keyframed animation [4]. 10

3.1 A Motion Curve for a Joint. 16

3.2 Hermite curve is defined by its control points and tangent vectors. 17

3.3 A subdivision for a Bézier curve. 17

3.4 Finding/predicting initial keyframe positions. 18

3.5 Search spaces around control points. 19

3.6 Search space states for each keyframe point. When a state is se-

lected as the best, a sub-search space will be constructed around

that point. 19

3.7 Error between the original data and current Hermite curve. 20

ix

LIST OF FIGURES x

3.8 The application of the curve simplification algorithm: (a) the ini-

tial curve; (b) the first step; (c) the second step; (d) the third step;

(e) the final result. 23

4.1 Chest position/rotation graph for running motion: (a) original; (b)

simplified. 25

4.2 Sample frames from original running motion and the resulting run-

ning motion. 26

4.3 Head rotation graph for drinking tea motion: (a) original; (b)

simplified. 27

4.4 Sample frames from original drinking tea motion and the resulting

drinking tea motion. 28

4.5 Threshold value vs. number of keyframes for (a) drinking anima-

tion and (b) running animation. 29

4.6 Movie length vs. execution times for each algorithm. 31

4.7 Error percent vs. frame reduction ratio. 32

List of Tables

2.1 Summary of different algorithms and approaches. 14

4.1 Results of number of average keyframes per channel on several runs. 29

4.2 Summary of the two approaches based on empirical results. 30

4.3 Summary of the execution times of two approaches. 30

xi

Chapter 1

Introduction

Animation techniques are rapidly changing through the evaluation of technology

and computers. One such technique is simulating the real world in a virtual and

confined environment. For such purposes some motion capture equipments are

developed and in conjunction with the computers, the motion of a real world

object (such as a human) can be replicated in this virtual world. Animators

use this technique to create more real-world like animations since they are the

near perfect duplications of the actual motion. In this chapter, some general

information about how motion capture systems work and how the animators

work with the motion capture data will be given, then the problem that this

thesis will cover will be presented.

Motion capture saves a lot of time for the animators. Usually animations

consists of motions from the real world and people want them to obey the laws

of physics. If the desired animation has to obey the laws of physics and has

to be done in a real environment, animators usually choose the motion capture

techniques. The animated virtual object does not have to exist, it can be a

chair walking or a tin talking like a man. Animators either use already captured

motions such as walking or running of a human, then apply it into a virtually

generated and animated character; or they request a motion capture studio to

be constructed and the required actions to be captured. In this process, there

are two key problems, animators should be able to control the action or re-use it

1

CHAPTER 1. INTRODUCTION 2

multiple times easily, and the motion information has to be captured so that it

is not effected by any means of noise and its data stored efficiently.

There are motion capture libraries that contains previously captured motions

for some common actions. This enables an animator to use these pre-recorded

data but presents another problem; what if the animator wants to alter some

of the data? For instance, if the animator has a human motion capture data

and he/she desires to make the captured body’s arm to be a little further away

from the body, he/she has to manually edit the captured data frame by frame.

Since motion capture systems record the position of a predefined joint or a part

throughout the time, the animators usually end up having data for each joint for

each frame (which is the smallest unit of time for a change in an animation). If

the animator wants to change the rotation data for the arm part of the animation,

he/she has to modify each frame manually. There are tools that help this process,

but even with the tools, animators have to make sure that the animation flow

is continuous and does not disturb the viewer. Even if we have a 10 seconds of

animation with 30 frames/second, the animator has to check 300 frames for one

joint for its continuity and completeness. This number increases as the number

of joints and the number of frames increase and make the problem more complex

for an animator.

The second important thing in a motion capture system is to make sure that

the data is not effected by noise and it is stored in an efficient way. The equipment

used for the motion capture systems are usually based on transmitters placed on

the joints of an actor (these can be as simple as light reflectors in certain colors

or they can be as complicated as radio wave transmitters transmitting its iden-

tification number and possibly its orientation or position) and multiple receivers

that are recording the transmitters’ positions. After capture, the gathered in-

formation is processed and the positions or orientations of individual points in

space are recorded. Since it is not a robust operation, the exact motion may not

be recorded, but a motion very similar to its real counterpart is recorded. This

brings in the question of noise. Some motion capture systems try to decrease the

noise in the recorded data as much as possible but nearly always the captured

motion is analyzed by an animator who filters the captured data and makes sure

CHAPTER 1. INTRODUCTION 3

that the captured data represents the action that is needed for the animation.

After the post processing of the motion captured data, it is usually recorded on a

digital media. Since we have the data for the orientation or position of each and

every joint, this may require some notable storage space for each joint for every

frame. If the animation is long and the number of recorded joints are high, the

captured data has to be stored in an efficient way. Of course standard compres-

sion algorithms would work on the situation but this may increase the operation

time for accessing the data when needed.

Apart from these major problems in a motion capture system, a solution may

lie in the techniques that the animators are already using. In the past, the cartoon

animations were done in two phases as Mealing [15] and Izani et al. [10] describe.

In the first phase, key points in the cartoon’s plot are drawn (they are called key

frames), and later in the second phase, people called inbetweeners would draw

the frames that lie in between the two keyframes. Today the computer graphics

animators usually work with the keyframes, and while rendering, the computers

fill the gaps in between.

Keyframes allow animators to define a beginning and an end point for a joint’s

animation, and possibly some other parameters such as the curvature and conti-

nuity around the beginning and the end points; and every frame between these

two frames are handled and calculated automatically. With the calculated in

between frames, rendering can be done. However, while calculating the motion

in the frames between the keyframes, degree of the curve is important, which

also defines certain behaviors of the motion. The states of every joint (position

and orientation) can be easily found when the keyframes are fully known, thus

it allows to render the motion without much operation. On the other hand the

motion capture data always consists of the states of each individual frame, but it

lacks any possible keyframe data that can be used. If by any means, the motion

capture data can be expressed in terms of keyframes, the states of the joints in

the motion of the animation, can easily be altered and modified. The animators

who will modify the motion would need to work on a small set of frames. For

instance, if the animator would want to let the actor’s hand in the motion to

move in another path, the animator would only need to change the beginning

CHAPTER 1. INTRODUCTION 4

Figure 1.1: In between frames calculated between the initial and final keyframes.

and the ending points of the hand’s new motion, which would be defined by the

keyframes at the beginning and the end point of the motion. In Figure 1.1, the

motion between the initial and final keyframes is illustrated.

If one can select some “good” keyframes over the motion path, the motion

can be expressed with a smooth path, which would not only eliminate immediate

noises but also enable the animator to work on the motion easily. The ability to

choose a “good” keyframe would need some specifications if the desired outcome

needs to eliminate the noise but also leave the details of the rapid actions in place

(such as the hand movement of an old person who has trembling hands). Since one

may either desire a motion with high number of rapid movements (which needs to

have a high ratio of the number of keyframes over the number of ordinary frames),

or desire a motion with more smooth and longer motions (which needs to have a

low ratio of the number of keyframes over the number of ordinary frames); some

parameters, with respect to the identification of keyframes, should be declared.

By using these parameters, the detailed motions can be preserved as well as any

possible noise can be eliminated. From another point of view, by using these

keyframes, the overhead of saving the position of each and every joint in every

frame can be reduced. As shown in Figure 1.2, by only saving the keyframe data,

the required storage space is decreased by the amount of the ratio of keyframes

over frames.

CHAPTER 1. INTRODUCTION 5

Figure 1.2: The description of a sample joint motion by frames in the upper time
axis and keyframes in the lower axis.

At this point the problem can be defined as the search for “good” possible

keyframes and their properties such that the overall motion is described as real-

istic as possible. Finding the keyframes requires to possibly predict any number

of keyframes, which can be parameterized since as the number of keyframes gets

closer to the number of frames, the motion gets more detailed. As the number

of keyframes decreases, the motion would get more and more general. Then the

algorithm is required to fit the possible curves between these keyframes such that

the motion would follow these curves with as little as possible error on each frame

with respect to the original motion. The fitting of the curve requires the curve

parameters to be found. When rendering a keyframed animation, the frames

between the keyframes are calculated automatically. On the other hand, if the

keyframes are identified in the original problem, this would be the reverse prob-

lem, if we know the frames between the keyframes, how can the keyframes be

found, if they can ever be. By this approach, when keyframes can be generated

for various motion capture data, animators can alter the motion easily, undesired

noise would be eliminated and the storage space requirements would decrease in

CHAPTER 1. INTRODUCTION 6

a combined way and in one step.

The organization of the rest of the thesis is as follows. Chapter 2 discusses

the state of the art on motion capture and keyframe animation, keyframe pre-

diction and extraction from motion capture data, curve fitting and dynamic

programming-based keyframe reduction techniques on motion capture data, and

curve simplification-based keyframe reduction techniques for motion capture data.

Chapter 3 describes the proposed techniques for filtering and keyframe reduction

on motion capture data. Chapter 4 gives the visual results and evaluates the per-

formance of the proposed techniques. Chapter 5 concludes the thesis and gives

some future research directions. Appendices give the sample motion capture data

used in experiments and detailed pseudo-code for the proposed techniques.

Chapter 2

Background

There are some approaches for the process of predicting keyframes: filtering

keyframes and curve fitting for the determination of keyframes. This chapter

first compares the motion capture animation with the keyframe animation and

discusses some approaches for predicting keyframes for a motion data. Then, the

approaches for filtering and reducing the number of keyframes is explained. The

dynamic programming and curve fitting algorithms are also discussed.

2.1 Motion Capture and Keyframe Animation

Izani et al. compare motion capture animation with keyframe animation [10].

They compared 3 different motions (walking, jumping and running) by using

two different methods. Their results include the differences between these two

different methods. The motion capture data has more frames than the keyframe

method, specifically keyframe method has half the number of frames of the motion

capture data. The motion capture method is more complex and it requires more

resources to be available. A sample motion capture studio is shown in Figure

2.1. Some principles of traditional animation cannot be achieved using motion

capture techniques, such as squash and stretch, overlapping, and exaggeration.

On the other hand, keyframing method requires the animator and the tools to be

7

CHAPTER 2. BACKGROUND 8

able to clearly create a model animation which also follows the rules of physics.

As a result, the method to be used should be chosen according to some criteria

such as purpose, cost, practicality, scale and technicality.

Another work on motion capture and keyframe is done by Geroch et al. [7].

They presented the capabilities that the motion capture systems lack. Usually,

motion capture is used in entertainment area and when entertainment is the goal,

the budget and the time constraints become critical. The usage of motion capture

systems or keyframe animations or even procedural animations where animators

have very little power on the animated objects have to be decided on. It is stated

that the motion capture is at a very early stage of its development compared to

keyframing. Their experience in the field allows them to give some examples of

their work and one such outcome is that motion capture is not cheaper or faster

then keyframing for the same motion. But they agree that animating realistic

human actions using motion capture works very well.

As a result, animators use one of these two approaches according to their

needs. Some recent movies are analyzed and compared according to the tech-

niques they use [9]. In this research, the data gathered from the motion capture

will be used to create keyframes that can be used by the animators and the

entertainment industry, which would enable them to have the benefits of both

techniques.

2.2 Keyframe Prediction and Extraction

When the motion captured data is generated, one cannot find information about

any possible keyframe without understanding the motion that has taken place

in the captured data. There are some research in the field that tries to find

how to place keyframes on a motion data. There are also some commercial tools

which enable the user/animator to create a motion and decrease the number of

keyframes, or create keyframes according to the motion (Figure 2.2).

Terra and Metroyer propose a solution to the problem finding the timings for

CHAPTER 2. BACKGROUND 9

(a)

(b)

Figure 2.1: Sample motion capture studio: (a) layout [10]; (b) view [17].

CHAPTER 2. BACKGROUND 10

Figure 2.2: Sample keyframed animation [4].

keyframes, which is computationally demanding [25]. Using a performance based

approach, they use the “user’s” input for finding timing information of keyframes.

Their keyframes are placed on the path by using the user’s input. They re-state

that the timing has a huge importance on the understandability of the animation.

This approach tries to place the keyframes in their correct positions but the initial

keyframes are input from the user. Their approach has an algorithm with 4 steps:

1. Get the keyframe spatial values from the user. At this point, the timing

information is ignored and the spatial information is used.

2. Let the user to “act-out” the motion to find out the desired timing. For a

selected object on a selected channel, which contains a spatial motion, the

user mimics the motion of the object, the generated algorithm captures the

timing of the motion.

3. Compute the correspondence between the spatial path and acted-out mo-

tion path. At this step, the mapping between the spatial movement and

temporal movement is made. The keyframes presented in the first step will

be distributed over time. Several approaches can be used for this purpose.

(a) Min-max peak features: the spatial and temporal motion paths are

identified and the points where the first derivatives of the curves be-

come zero are located. Then, one-to-one mapping is done between the

two motion paths. This would result in keyframes distributed correctly

among time. However, this approach is identified as a heuristic one.

CHAPTER 2. BACKGROUND 11

(b) Curvature analysis: this finds the curvature parameters and forces

them to correspond one-to-one for a scale dependent but rotation in-

dependent solution.

(c) Contour matching: this tries to align the two paths by rotating and

scaling. Dynamic programming for curve matching is used.

4. Redistribute the keyframe values in time to show the timing of user’s per-

formance by using the acted-out motion path. After the correspondence is

established between the object motion path and timing path, the keyframes

will be adjusted in time while keeping the spatial dimensions constant. Dur-

ing this phase, the curve’s control points’ tangents at the keyframes must

be altered since changing a keyframe in time changes the shape of the curve.

The change in the positions are corrected by the changes in the tangents.

Huang et al. propose a method for extracting keyframes, called key prob-

ing [8]. They convert the keyframe extraction problem to a constrained matrix

factorization problem and they solve it by using least-squares optimization tech-

nique. They state that an animation can be represented as A ≈ WH where A is

the animation sequence, W is the weight matrix and H is the key matrix. The

animation is a function of its keyframes, in other words animation sequence is

the linear combination of its keyframes. Thus ordinary frames (frames that are

not keyframes, or “nonkeyframes”) can be found by the linear combination of

keyframes. This is different from the general usage of keyframes since in a stan-

dard keyframed animation, the inbetweens are usually the interpolation of the

keyframes. Their technique consists of an iterative approach with the following

operation in each iteration:

u ← minv∈Ankey

∥∥∥Ankey − AnkeyH
φH

∥∥∥2
,

H i+1 ← H i ⊕ Au
nkey,

Ankey ← Ankey � Au
nkey,

W i+1 ← AnkeyH
φi+1,

where i is the number of iterations and the number of keyframes selected, W is

the weight matrix, H is the key matrix, Ankey is the animation sequence matrix

CHAPTER 2. BACKGROUND 12

that contains nonkeyframes, Hφ is the pseudoinverse of H such that AnkeyH
φ

denotes weight matrix W , u is the index number of the current keyframe, ⊕ is

the set union operator, � is the set difference operator. If after this iterative

keyframe extraction process the results are not satisfying, the same process can

be applied to the newly found keyframes such that the same algorithm is used on

the result.

Park proposed a method to clone a motion data from one model into an-

other [19]. While doing this operation, a small number of representative postures

called key-postures were extracted. It is required that the key-postures define

nearly all the postures of the animation and are as small as possible in terms of

the number of key-postures. Similarly, as in [8], their definition of key-postures is

that their linear combination enables one to get all the postures of the animation.

Their algorithm for key-posture extraction can be summarized as follows:

1. Find an initial collection of clusters C from given sample postures.

2. For each cluster, the key-posture is selected as the one that is near to the

center of the cluster, for finding initial key-postures.

3. In an iterative manner, augment every cluster by adding a new cluster at

each loop, until every sample posture can be expressed as a linear combi-

nation of the chosen key-postures with a given threshold ε.

4. While doing the loop, find the maximum error value between the postures

and the reconstructed postures. If maximum error is smaller then some

threshold, this set of chosen key-postures can be used to generate all sample

postures within some small error range. Otherwise, the cluster collection is

augmented with the posture that gives the highest error value and the loop

starts again. According to their experimental results, a threshold of 2-5 %

is the optimum value.

CHAPTER 2. BACKGROUND 13

2.3 Curve Fitting and Dynamic Programming

Approaches

There are many dynamic programming cases in the area such as [2, 11, 16].

Dynamic programming is used when searching for a solution with minimal error

according to certain criteria. In [1], dynamic programming is used to solve some

variation problems in computer vision. They state that the dynamic programming

ensures global optimality of the solution. Dynamic programming allows some

hard constraints to be held while maintaining the natural and straightforward

structure of the motion. Dynamic programming approach makes sure that the

results stay in stabilized form. It helps to solve optimization problems with

minimum energy or error according to the problem definition.

There is no generic research up to date that shows how dynamic programming

can help to find keyframe positions that minimizes the error according to the

action motion capture data. In the following chapter, the dynamic programming

approach will be used for fitting curves on the motion capture data. With the

help of keyframe prediction techniques, this method will try to find and fit the

keyframes that has minimum error that is compared to the original data, and

while viewing there would be minimal difference between the motions.

Curve fitting algorithms are available in various areas of computer science.

They are usually used to fit curves over fonts and over image contours for com-

puter vision. One of the many such approaches can be found in Baudel’s re-

search [3]. He proposes to create splines with more friendly gestures such as

strokes and shapes, and provides an interaction technique. Other researches in-

clude [22, 23] whom try to cover some different approaches for animation control

and using fitted curves representing the animation.

There are also more general methods that can be used for fitting curves. This

process may require some constraints such as in [6] or curve fitting might be done

using piecewise parametric cubics [21] or conic splines [20].

CHAPTER 2. BACKGROUND 14

2.4 Curve Simplification Approaches

Curve Simplification algorithms are mainly used to simplify or summarize motion

information. For instance, Kraus describes how to generate new motions by using

existing motion data [12], and while generating new motions, he uses Lowe’s

algorithm [14] for the reduction of motion capture data.

Lim and Thalmann propose that human motion data can be analyzed for

key-postures by using curve simplification methods [13]. Specifically, they again

use Lowe’s algorithm [14] for this process. Their curve simplification method is

based on the fact that points on the motion curve graph can be grouped together

and simplified. They suggested that with 0.5 % error tolerance, the data size has

been dropped to 22.4 % with this method.

2.5 Summary

Table 2.1 shows the comparisons of different approaches according to certain

criteria.

Table 2.1: Summary of different algorithms and approaches.

Extracts Keyframe Time Absolute
Approach Keyframes Adjustment Results Repeatable

Terra [25] No Yes Yes No
Huang [8] Yes Yes No Yes
Park [19] Yes Yes No Yes
Lim [13] Yes Yes No Yes

Dynamic Prog. No Yes Yes No

Chapter 3

Keyframe Reduction for Motion

Capture Data

We propose two different approaches to the keyframe reduction problem for mo-

tion capture data: curve fitting with dynamic programming and curve simplifi-

cation.

3.1 Curve Fitting with Dynamic Programming

In this approach, dynamic programming will be used to fit a curve on the motion

capture data. Motion capture data contains the positions or rotations of each

and every joint that is present on the stage over time (which is also represented

by the frames). So a motion of a joint, its position or rotation can be defined on

a graph (position or rotation versus time or frame) such as in Figure 3.1. The

algorithm will try to fit a curve on each such graphs for every joint. Before going

on the details of the algorithm, the curve definition will be presented.

Hermite curves will be used on this algorithm because of their properties on

the control points. The control point of a Hermite curve contains the positions

and the tangents at the end points. Similarly, animators who work on keyframed

15

CHAPTER 3. KEYFRAME REDUCTION FOR MOTION CAPTURE 16

Figure 3.1: A Motion Curve for a Joint.

animations use keyframe points as the position and continuity indicators, which

means they use the tangent of the motion curve while starting the motion (starting

keyframe) and ending the motion (ending keyframe). Thus, the control of the

continuity is important and the best curve that fits this definition is the Hermite

curve. A Hermite curve v(s) between the control points i and i + 1 can be

described as;

v(s) =
[

(s − i)3 (s − i)2 (s − i) 1
]
·

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎣

pi

pi+1

ri

ri+1

⎤
⎥⎥⎥⎥⎥⎥⎦

where pk represent the positions and rk represent the tangents at keyframe k,

which will be called the control vectors of a Hermite curve. Such an Hermite

curve can be visualized as in Figure 3.2.

At any point, this Hermite curve can be changed into a Bézier curve as de-

scribed in [5]. This operation is needed whenever a point on the curve is requested.

Since the control points of a Hermite curve define the curve’s shape, a specific

point on a curve is needed at certain point in time (or in a certain frame number).

Also since a Bézier curve can be recursively subdivided into two Bézier curves,

the value of a certain point in time can be achieved using this approach [5]. This

operation is illustrated in Figure 3.3. The subdivision algorithm enables one to

CHAPTER 3. KEYFRAME REDUCTION FOR MOTION CAPTURE 17

Figure 3.2: Hermite curve is defined by its control points and tangent vectors.

Figure 3.3: A subdivision for a Bézier curve.

subdivide the curve as much as he/she wants; it will be subdivided until the re-

quested accuracy is achieved. In our case, the algorithm can be summarized as

follows (detailed pseudo-code is given in Appendix B.1):

1. Find initial keyframe estimates, by predicting pi, pi+1, ri and ri+1 for every

i. This step involves predicting possible keyframes, which was discussed

in the previous chapter. It can be a complex operation such as trying to

understand the motion and subdividing it into its components or it can

be as simple as placing the keyframes on the points that the first and

second derivatives of motion graph are both zero. This step involves the

CHAPTER 3. KEYFRAME REDUCTION FOR MOTION CAPTURE 18

Figure 3.4: Finding/predicting initial keyframe positions.

decision of the number of keyframes and their initial positions, hence for

the smoothness or the amount of detailed motions of the animation, is done

at this step. With the example Figure 3.1, assume that the keyframes are

predicted at the positions that are shown in Figure 3.4. For every joint, its

position or rotation data is gathered as a motion capture data. Whether

its position or rotation, it will have three dimensions (x, y and z axes). For

every axis, this keyframing operation is done and for every axis a graph with

two dimensions can be constructed such as time versus the joints position

on that axis.

2. Determine search spaces around the predicted keyframes for all vectors pi,

pi+1, ri and ri+1 for every i. Since each vector has x and y components (y-

value can be described as the joint’s position in pi while x value represents

the time, and tangent value can be represented by the y value in ri and

x value represents the time), the search spaces are formed around these

points. In Figure 3.5, these search spaces are visualized. In the first step,

the control points are predicted roughly, in the later steps they will be

searched for their best positions in the search spaces that are found in

this step. These search spaces reside around the original points, but since

each curve segment (in the overall curve, between two control points) has

infinitely many number of positions, dynamic programming will be used to

find the best possible position. The search spaces will be assumed to contain

CHAPTER 3. KEYFRAME REDUCTION FOR MOTION CAPTURE 19

Figure 3.5: Search spaces around control points.

Figure 3.6: Search space states for each keyframe point. When a state is selected
as the best, a sub-search space will be constructed around that point.

only 9 possible states as shown in Figure 3.6. The best of these 9 states will

be found and recursively the size of the search space will be decreased and

another 9 set of states will be generated. Each time, the state that gives

the best result will be selected and the algorithm will continue recursively

until certain threshold is reached. At a certain point in time, two control

points will have 2 dimensions for position and rotation, and also they will

have 3 different possible states (3-x states, 3-y states). Thus, it will create

3 × 3 × 3 × 3 = 81 different states for one curve segment. For one joint

and for one axis on that joint, a curve segment will contain 2 dimensions

(position and rotation), so 81 × 81 = 6561 different possible combinations

are present that can affect the shape of the curve.

CHAPTER 3. KEYFRAME REDUCTION FOR MOTION CAPTURE 20

Figure 3.7: Error between the original data and current Hermite curve.

3. Compute the mean squared error for each combination of pi, pi+1, ri and

ri+1 in the search space. The mean squared error (MSE) can be found as

the mean of the squares of the difference between the value of the Hermite

curve at a frame and the value of the motion capture data at that frame

(Figure 3.7). The value of the Hermite curve at some point in time can be

found with Bézier curve conversion and Bézier curve subdivision algorithm

as described recently. For each combination of pi+1 and ri+1, the best values

of pi and ri (that gives the minimum error) are saved.

4. When the last segment of the curve is reached, find the total mean squared

error for each combination of pi+1 and ri+1. To calculate total mean squared

error, traverse the curve backwards and use the best (minimum) previous

values obtained in step 3.

5. Pick the overall path of control vectors that results in the minimum mean

square error in step 4.

6. Assume that the values pi, pi+1, ri and ri+1, for all i, obtained in step 5

are the updated initial values and repeat steps 2-6 until a predetermined

accuracy in x and y components is reached.

CHAPTER 3. KEYFRAME REDUCTION FOR MOTION CAPTURE 21

This algorithm employs dynamic programming to fit a Hermite curve to mo-

tion capture data in mean squared error sense.

3.2 Curve Simplification

The algorithm on curve simplification approach uses a step by step approach.

Initially the motion graph will be assumed to have only one curve segment (two

keyframes, at the beginning and at the end). The highest error points in time

between these two keyframes will be used to subdivide the curve into two curves.

The algorithm can be summarized as follows (detailed pseudo-code is given in

Appendix B.2):

1. Create 2 initial keyframes, one at the beginning and at the end of the

animation.

2. Assuming that there is a virtual line that connects these two keyframes for

every other frame that stays between these two frames, calculate a minimum

distance between the position of the joint at that frame and the virtual line.

The maximum value of this distance is the maximum error value of the

curve segment if there were no other keyframes present. In Figure 3.8(a),

a sample motion graph is given and in 3.8(b) the initial step is visualized.

So, a keyframe at the maximum error value would decrease the total error

value which is the goal.

3. If the ratio of the error distance to the distance between the beginning

and ending keyframes is higher then a specified threshold, stop further

subdividing this interval. Otherwise, create a new keyframe at the point

where the highest error occurs.

4. Subdivide the current state into two smaller problems, a segment between

the beginning keyframe and newly created keyframe, and another segment

between the newly created keyframe and the ending keyframe. Assume that

the new segments have only 2 keyframes (beginning and ending) and restart

the algorithm from step 2 for both segments.

CHAPTER 3. KEYFRAME REDUCTION FOR MOTION CAPTURE 22

For the sample data, this algorithm will continue as shown in Figures 3.8(a-

d). In 3.8(d), the values that will be used on the ratio check is also shown as

w for width and h for height. The recursive approach by subdividing the curve

segments will stop at some point where all the ratios satisfy certain conditions.

This threshold can be modified or parameterized according to the time such that

at certain parts of the animation, the detail is conserved where as in the other

places, the motion is smoothed. When all the instances of the algorithm stops,

keyframes will already be placed on the motion path. At this point, another pass

over the keyframes will find the optimum values for the tangent values at the

keyframe points which minimizes the total error and preserves continuity. After

this step, the result is illustrated in Figure 3.8(e).

CHAPTER 3. KEYFRAME REDUCTION FOR MOTION CAPTURE 23

(a) (b)

(c) (d)

(e)

Figure 3.8: The application of the curve simplification algorithm: (a) the initial
curve; (b) the first step; (c) the second step; (d) the third step; (e) the final result.

Chapter 4

Experimental Results

4.1 Results

4.1.1 Curve Fitting with Dynamic Programming

The results presented here are the results of the algorithm that is run on two

different motion capture data. The first one has small number of frames with

relatively simple motion, running. There are 22 frames present on the motion

capture data. Figure 4.1 shows the motion graph of the chest joint for this

animation. In Figure 4.2, some sample frames are shown from the animation.

For this joint there are 6 channels (position x-y-z and rotation x-y-z), in the

overall model there are 84 channels. The number of frames per channel in the

original motion capture data is 22. The average number of keyframes per channel

in the resulting animation data is 8.

The second one has 1409 frames which is the motion for a human that walks,

sits, then takes a cup of tea and drinks it. Figure 4.3 shows the motion graph

of the head joint for this animation. In Figure 4.4, some sample frames are

shown from the animation. For this joint there are 6 channels (position x-y-z and

rotation x-y-z), in the overall model there are 84 channels. The number of frames

per channel in the original motion capture data is 1409. The average number of

keyframes per channel in the resulting animation data is 459.

24

CHAPTER 4. EXPERIMENTAL RESULTS 25

(a)

(b)

Figure 4.1: Chest position/rotation graph for running motion: (a) original; (b)
simplified.

CHAPTER 4. EXPERIMENTAL RESULTS 26

Figure 4.2: Sample frames from original running motion and the resulting running
motion.

CHAPTER 4. EXPERIMENTAL RESULTS 27

(a)

(b)

Figure 4.3: Head rotation graph for drinking tea motion: (a) original; (b) simpli-
fied.

CHAPTER 4. EXPERIMENTAL RESULTS 28

Figure 4.4: Sample frames from original drinking tea motion and the resulting
drinking tea motion.

CHAPTER 4. EXPERIMENTAL RESULTS 29

4.1.2 Curve Simplification

Table 4.1 shows the results of applying the algorithm on sample data. These

results can also be visualized in Figures 4.5 (a) and b).

Table 4.1: Results of number of average keyframes per channel on several runs.

Curve Simplification
Threshold Running Drinking

0.001 608 20
0.005 246 16
0.010 85 13
0.020 11 8
0.030 3 6
0.100 2 2

(a) (b)

Figure 4.5: Threshold value vs. number of keyframes for (a) drinking animation
and (b) running animation.

CHAPTER 4. EXPERIMENTAL RESULTS 30

4.2 Evaluation

4.2.1 Objective Evaluations

Table 4.2 shows the comparisons of the two different approaches according to the

empirical results.

Table 4.2: Summary of the two approaches based on empirical results.

Curve Fitting with Curve
Dynamic Programming Simplification

Properties Running Drinking Running Drinking
of frames 22 1409 22 1409
Channels 84 84 84 84

Avg. # of Keyframes 8 459 6 246
Frame Reduction Ratio 36 % 32 % 27 % 17 %

Average number of keyframes are found by dividing the total number of

keyframes to the number of channels. The algorithms are executed for every

joint and end-effector separately. For different channels the keyframes are not

aligned on time axis, thus one model might have different number of keyframes

for every channel. If such requirements are present, a post processing algorithm

might be needed for aligning the keyframes on different channels and having a

keyframe for every channel. The execution times are tabulated in Table 4.3. The

execution times do not include the loading of the data. A graph showing the

relation between execution time and movie length is given in Figure 4.6. The

error threshold in curve simplification algorithm is adjusted to have the resulting

animation of similar quality with the dynamic programming algorithm.

Table 4.3: Summary of the execution times of two approaches.

Curve Fitting with Curve
Animation Dynamic Programming Simplification

Running 1,959 ms 822 ms
Drinking Tea 6,923 ms 5,445 ms
*Execution times are calculated on a Pentium Centrino 1.7 GHz processor.
**Loading times are excluded.

CHAPTER 4. EXPERIMENTAL RESULTS 31

Figure 4.6: Movie length vs. execution times for each algorithm.

Some results are discussed and compared below:

• While the previous approaches achieve up to 80 % decrease in the size of the

animations and number of frames (or keyframes), these techniques present

new algorithms which brings similar results that have frame reduction per-

cent again around 75-80 %. The curve simplification method provides better

results both in terms of the error ratio and the number of keyframes.

• With the dynamic programming approach, the keyframes cannot be re-

duced in number after the initial estimates are predicted. Whereas in curve

simplification approach, the number of keyframes is directly proportional

with the number of times the algorithm iterates, thus it can be constrained

or limited.

• Error threshold cannot be easily controlled on dynamic programming ap-

proach as the curve simplification method. Dynamic programming will find

the absolute best positions/tangents for the keyframes but if the initial

keyframe estimator brings up keyframes that contain high number of error

ratio, the dynamic programming would not be able to correct them (be-

cause of the limited search spaces). On the other hand, curve simplification

method finds the keyframes on the fly and the total error ratio can be set

while continuing the algorithm, thus it will allow to change the desired error

ratio to get more or less keyframes.

CHAPTER 4. EXPERIMENTAL RESULTS 32

Figure 4.7: Error percent vs. frame reduction ratio.

• Error percentage is inversely proportional to the Frame reduction ratio (Fig-

ure 4.7). As the number of keyframes decreases, error ratio increases; and

vice versa.

• Both methods successfully reduces the number of keyframes thus eliminat-

ing the noise factor.

• Curve simplification method can be used on already “keyframe-reduced”

animations to further decrease the number of keyframes. On the other

hand dynamic programming method can be used to clearly improve the

positions and tangents of the keyframes to better map the given original

motion data.

• Curve simplification method requires special attention on the rotation chan-

nels since they contain a limited interval of values, as the animation size

increases the possibility of having a good keyframe distribution decreases.

CHAPTER 4. EXPERIMENTAL RESULTS 33

4.2.2 Subjective Evaluations

The visual quality of the results produced by both approaches are quite satisfying.

Although some differences between the original animation can be noticed, it can

be said that most of the animation is as realistic as possible. Some comparisons

between the methods can be found below.

• The visual results obtained using the curve simplification method is slightly

better then its counterpart. Dynamic programming’s inability to be applied

multiple times and thus inability to decrease the error value after some point

limits its approach to the goal (reality).

• Curve simplification method can be used to separate the motions into cat-

egories and distinguish between the motions that require more smooth ani-

mations (for eliminating the noise) or that require more detailed animations

to preserve the complexity of the animation. Curve simplification method

allows the user to select different error thresholds for different parts of the

animation. Thus it allows diversity among the motion according to the

needs of the user.

• Both methods successfully eliminate any possible noise that may be result-

ing from the motion capture system.

Chapter 5

Conclusion

This research aimed to cover a solution to merge the advantages of two different

animation techniques while decreasing the space requirements and providing noise

elimination. In the previous chapters, the state of the art is analyzed, the up to

date research of keyframing and motion capture animation are presented. The

algorithms to offer reliable solutions are proposed and implemented. The results

are also given with different sample inputs. Since the outcome of such solutions

would generally be used for computer aided entertainment, the evaluation of the

results are given both objectively and subjectively.

In the field of animation in computer graphics, keyframing techniques have

been developed to its current mature state. However, the motion capture tech-

nology is a newly growing and rapidly developing area. Both techniques have

their own advantages and disadvantages. A keyframed animation can use all the

animation techniques as the animator desires, even if they are impossible in a

real world. However, a keyframed animation becomes a hard and tiring tech-

nique when trying to simulate a real world situation. Motion capture animation

technique has the ability to greatly mimic the real world in a virtual and confined

environment, but it lacks some principals of the animations as well as the eas-

iness of the modification of animations with respect to a keyframed animation.

Keyframed animation requires less storage space but it will always lack some

motion data as compared to the motion capture data.

34

CHAPTER 5. CONCLUSION 35

Recent researches presented some approaches to solve these problems. Some

considered which technique to use on which situations, some others considered

how to use both techniques on many situations. Many approaches focused on

keyframe prediction or key posture extraction techniques to successfully under-

stand a summary of the motion, thus use the advantages of motion capture data

with keyframe animation. Techniques included diverse algorithms including curve

fitting, curve simplification, dynamic programming.

Two of the algorithms, which are mentioned beforehand, are used to obtain

a solution for the problem. Although dynamic programming with curve fitting

implementation was never used before, it presented some challenging results with

respect to other algorithms. Curve simplification results were slightly better than

the dynamic programming algorithm. Both methods tried to create keyframes

out of motion capture data, and they tried to obtain the most accurate curves

that decrease differences from the original motion. Again both methods were

successful on decreasing the number of keyframes for a motion capture animation

and filtering any jitter that may be produced by the motion capture system.

Curve simplification method had some advantages over the dynamic programming

approach such as the ability to control the number of keyframes and the value of

the error percentage with respect to the original motion.

If a motion captured data is available, and the keyframes are desired on the

situation, filtering and keyframe reduction of motion capture data using curve

simplification algorithm is the best alternative. It provides decreasing of the

number of keyframes on a motion capture data to 20% by only having a 0.5%

error ratio. It enables to have a good compression or keyframe reduction, noise-

free and easily modifiable motion while preserving the realistic components of the

animation.

Bibliography

[1] Amini, A. A., Weymouth, T. E., Jain, R. C., “Using Dynamic Programming for

Solving Variational Problems in Vision,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. 12, No. 9, pp. 855-867, Sept 1990.

[2] Baird, L.C., “Function Minimization for Dynamic Programming Using Connec-

tionist Networks,” Proceedings of the IEEE International Conference on Systems,

Man and Cybernetics, Vol. 1, pp. 19-24, Chicago, IL, U.S.A., 1992.

[3] Baudel, T., “A Mark-based Interaction Paradigm for Free-hand Drawing ,” Pro-

ceedings of the 7th Annual ACM Symposium on User Interface Software and Tech-

nology, California, U.S.A., pp. 185-192, 1994.

[4] Carrara Studio 2 Sofware, http://www.completeanimation.com/techstuff/software/

carrara2.html.

[5] Foley, J. D., van Dam, A., Feiner, S. K., Hughes, J. F., Computer Graphics:

Principles and Practice, 2nd Ed. in C, Addison-Wesley, 1995.

[6] Fowler, B., Barrels, R., “Constraint-Based Curve Manipulation,” IEEE Computer

Graphics and Applications, Vol. 12, No. 5, pp. 43-49, September 1993.

[7] Geroch, M. S., Hirsch, E., Staveley, J., Tolles, T., Helfer, B., Varadarajan, S.,

“How Does Motion Capture Affect Animation?,” ACM SIGGRAPH Conference

Abstracts and Applications, Texas, U.S.A, pp. 103-104, July 2002.

[8] Huang, K., Chang, C., Hsu, Y., Yang, S., “Key Probe: A Technique for Animation

Keyframe Extraction,” The Visual Computer, Vol. 21, No. 8-10, pp. 532-541,

September 2005.

36

BIBLIOGRAPHY 37

[9] Izani, M., Aishah, Eshaq, A. R., Norzaiha, “Analysis of the Keyframe Animation

and Motion Capture Case Studies,” Proceedings of the Student Conference on

Research and Development (SCOReD), Putrajaya, Malaysia, pp. 177-182, 2003.

[10] Izani, M., Eshaq, A. R., Zainuddin, N., Razak, A., “A Study on Practical Ap-

proach of Using Motion Capture and Keyframe Animation Techniques,” Proceed-

ings of the Eight International Conference on Information Visualisation (IV’04)

pp. 849-852, 2004.

[11] Jacobson, D. H., Mayne, D. Q., “Differential Dynamic Programming,” Elsevier,

New York, NY, 1970.

[12] Kraus, M., “Human Motion and Emotion Parameterization,” Proceedings of the

Conference of the Central European Seminar on Computer Graphics 2004.

[13] Lim, I. S., Thalmann, D., “Key-posture Extraction out of Human Motion Data

by Curve Simplification,” Proceedings of the 23rd Annual EMBS International

Conference, Istanbul, Turkey, 2001.

[14] Lowe, D. G., “Three-Dimensional Object Recognition from Single Two-

Dimensional Images,” Artificial Intelligence, Vol. 31, No. 3, pp. 355-395,

March 1987.

[15] Mealing, S., “The Art and Science of Computer Animation,” Cromland, 1995.

[16] Morimoto, J., Christopher, G. A., “Minimax Differential Dynamic Programming:

An Application to Robust Biped Walking,” Advances in Neural Information Pro-

cessing Systems, 15, Cambridge, MA, 2002.

[17] Motek - Motion Technology, http://www.e-motek.com.

[18] Mukai, T., Kuriyama, S., Kaneko, T., “Keyframe Animation of Virtual Humans

via Motion Data Learning,” Systems and Computers in Japan, Vol. 37, No. 5,

2006.

[19] Park, M. J., Shin, S. Y., “Example-based Motion Cloning,” Computer Animation

and Virtual Worlds, 15, pp. 245-257, 2004.

[20] Pavlidis, T., “Curve Fitting with Conic Splines,” ACM Transactions on Graphics,

Vol. 2, No. 1, pp. 1-31, January 1983.

BIBLIOGRAPHY 38

[21] Plass, M., “Curve Fitting with Piecewise Parametric Cubics,” Proceedings of the

10th ACM Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH’83) pp. 229-239, 1983.

[22] Schneider, P. J., “An Algorithm for Automatically Fitting Digitized Curves,”

Graphics Gems, Academic Press, San Diego, CA, pp. 612-626, 1990.

[23] Snibbe, S. S., “A Direct Manipulation Interface for 3D Computer Animation,”

Computer Graphics Forum, Vol. 14, No. 3, pp. 271-283, 1995.

[24] Terra, S. C. L., Metoyer, R. A. “A Performance Based Technique for Timing

Keyframe Animations,” Graphical Models, Vol. 69, pp. 89-105, 2007.

[25] Terra, S. C. L., Metoyer, R. A., “Performance Timing for Keyframe Animation,”

Proceedings of Eurographics/ACM SIGGRAPH Symposium on Computer Anima-

tion, pp. 253-258, 2004.

Appendix A

Motion Capture Data

The motion capture data for the running and drinking animations are given in

Biovision Hierarchical (BVH) data file format. Because of space sonstraints, the

data for the two initial frames are given for each animation.

A.1 Running Animation

HIERARCHY

ROOT Hips

{

OFFSET 0.00 0.00 0.00

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation

Yrotation

JOINT Chest

{

OFFSET 0.000000 4.570000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Neck

{

OFFSET 0.000000 17.620001 0.000000

39

APPENDIX A. MOTION CAPTURE DATA 40

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Head

{

OFFSET 0.000000 5.190000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 4.140008 0.000000

}

}

}

JOINT LeftCollar

{

OFFSET 1.060000 15.330000 01.760000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftShoulder

{

OFFSET 5.00000 0.000000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftElbow

{

OFFSET 0.000000 -11.90000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftWrist

{

OFFSET 0.000000 -9.520000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 -7.0 0.000000

}

}

}

APPENDIX A. MOTION CAPTURE DATA 41

}

}

JOINT RightCollar

{

OFFSET -1.060000 15.330000 01.760000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightShoulder

{

OFFSET -5.000000 0.000000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightElbow

{

OFFSET 0.000000 -11.900000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightWrist

{

OFFSET 0.000000 -9.520000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 -7.0 0.000000

}

}

}

}

}

}

JOINT LeftHip

{

OFFSET 3.430000 0.000000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftKnee

{

APPENDIX A. MOTION CAPTURE DATA 42

OFFSET 0.000000 -19.0 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftAnkle

{

OFFSET 0.000000 -15.00000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 -3.0 0.000000

}

}

}

}

JOINT RightHip

{

OFFSET -3.430000 0.000000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightKnee

{

OFFSET 0.000000 -19.0 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightAnkle

{

OFFSET 0.000000 -15.00000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 -3.0 0.000000

}

}

}

}

}

APPENDIX A. MOTION CAPTURE DATA 43

MOTION

Frames: 22

Frame Time: 0.033333333

/////// FIRST FRAME

0.000000 28.389458 0.000000 -1.493607 -5.771171 77.969531

5.046457 3.786636 7.183324 -350.332988 -327.580535

-3.451620 -2.361056 -27.580998 0.479380 -336.322795

-335.814820 -17.095797 18.697579 3.325927 14.837262

120.380278 -136.990054 104.793957 1.610204 -10.989013

57.487057 357.883570 -335.287147 -5.692479 -49.625715

-31.107061 61.377717 -77.667363 -31.425819 -44.774467

-188.048654 -181.790835 98.614494 5.304022 11.097790

17.950025 -32.184926 103.909536 34.037239 0.825958

2.017271 14.096251 15.530982 -11.238403 6.982921

-8.118375 60.475115 7.476830 356.731126 332.946414

-26.180466

/////// SECOND FRAME

-0.423467 27.926288 0.125110 -4.739621 -7.109743 78.399709

7.635020 1.345446 8.020145 -351.367597 -328.066708

-3.014721 357.283743 332.198235 -1.262286 -336.782248

-335.699909 -15.606101 18.444881 7.242405 15.123302

118.591233 -140.357050 99.674976 1.894714 -9.179514

57.405512 355.511637 -335.302938 -5.222891 -49.797112

-37.572497 59.639762 -84.077646 -23.537892 -44.802703

-196.640130 -187.281651 97.243641 9.091184 -2.207557

20.788143 -25.274115 115.581373 26.529762 -0.433875

1.571555 14.676017 17.057401 -10.096450 7.301430

-7.346258 60.394088 6.873692 358.320074 329.633335

-25.335242

...

APPENDIX A. MOTION CAPTURE DATA 44

A.2 Drinking Animation

HIERARCHY

ROOT Pelvis

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation

Yrotation

JOINT LowerBack

{

OFFSET -0.000691 0.176488 0.017766

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Chest

{

OFFSET -0.002754 0.128976 -0.000512

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT back3

{

OFFSET 0.002471 0.201657 -0.000850

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Neck

{

OFFSET 0.001840 0.072570 0.000595

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Head

{

OFFSET 0.003323 0.152818 0.030907

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT joint7

{

OFFSET 0.000612 0.183936 0.002625

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

APPENDIX A. MOTION CAPTURE DATA 45

{

OFFSET 0.000000 0.000000 0.018310

}

}

}

}

JOINT LeftCollar

{

OFFSET 0.053456 0.093486 0.002205

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftShoulder

{

OFFSET 0.112884 -0.020868 0.002319

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftElbow

{

OFFSET 0.297302 0.003523 -0.020737

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftWrist

{

OFFSET 0.290007 0.004431 -0.007313

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT lf_hand

{

OFFSET 0.117001 -0.002589 -0.008771

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 -0.009821 0.000000

}

}

}

}

APPENDIX A. MOTION CAPTURE DATA 46

}

}

JOINT RightCollar

{

OFFSET -0.048666 0.096092 0.000301

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightShoulder

{

OFFSET -0.115072 -0.022479 -0.001894

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightElbow

{

OFFSET -0.297072 0.004954 -0.020752

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightWrist

{

OFFSET -0.292425 -0.005826 -0.023258

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT rt_hand

{

OFFSET -0.118185 -0.001061 -0.015047

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 -0.009987 0.000000

}

}

}

}

}

}

}

JOINT joint13

APPENDIX A. MOTION CAPTURE DATA 47

{

OFFSET 0.125914 0.117470 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 0.000000 -0.017144

} }

JOINT joint14

{

OFFSET -0.120063 0.114907 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 0.000000 -0.016479

}

}

}

}

JOINT RightHip

{

OFFSET -0.109283 -0.057257 0.000987

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightKnee

{

OFFSET 0.002149 -0.429339 0.038617

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightAnkle

{

OFFSET -0.001765 -0.522522 -0.077092

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT r_ball

{

OFFSET -0.000000 -0.037315 0.142913

APPENDIX A. MOTION CAPTURE DATA 48

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 0.000000 0.014648

}

}

}

}

}

JOINT LeftHip

{

OFFSET 0.098180 -0.056757 0.003895

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftKnee

{

OFFSET 0.007057 -0.430531 0.035812

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftAnkle

{

OFFSET -0.005475 -0.521755 -0.078136

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT lf_ball

{

OFFSET 0.000065 -0.036737 0.143337

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 0.000000 0.014648

}

}

}

}

}

APPENDIX A. MOTION CAPTURE DATA 49

}

MOTION

Frames: 1409

Frame Time: 0.033333

/////// FIRST FRAME

0 0 0 -1.833817 -1.835176 -23.948662 -2.461222 -1.578721

3.752221 0.018913 21.754278 0.865438 0 0 0 0 0 0

3.728722 -14.91721 -16.28001 0 0 0 14.80264 -1.51327

-5.718119 -100.91745 -21.587351 20.34293 0.722644

1.692521 -45.803242 6.67026 7.743932 -3.438003 0 0 0

-8.552869 -0.641647 4.260422 96.079376 -3.464883

-4.640043 -0.682071 1.656317 44.761375 -18.083363

20.402439 -11.308698 0 0 0 0 0 0 0 0 0 1.678106

6.444203 -23.379509 0 0.811551 0 1.525094 -11.174504

0.282784 0 0 0 3.804609 -5.665328 -8.418815 0 2.455757

0 -5.268886 -6.663751 -8.501185 0 0 0

/////// SECOND FRAME

0 0 0 -1.44767 -2.126195 -25.414595 -2.95842 -2.308424

3.979491 -0.688546 20.408722 1.574033 0 0 0 0 0 0

3.304029 -13.769586 -16.218054 0 0 0 14.746619

-1.603417 -6.053154 -99.852943 -20.856672 23.007175

0.704385 1.684865 -45.373886 4.816781 12.135592

-0.554579 0 0 0 -8.066298 -0.54358 3.826707 94.945763

0.074585 -6.30547 -0.644933 1.618572 43.4482

-11.704623 23.622774 -16.08967 0 0 0 0 0 0 0 0 0

0.641872 7.57687 -22.781996 0 1.371283 0 2.256754

-11.28161 1.277745 0 0 0 3.429863 -4.011049 -6.788782

0 2.812614 0 -6.406186 -7.890936 -7.836373 0 0 0

...

Appendix B

Detailed Pseudo-codes for

Proposed Techniques

B.1 Curve Fitting with Dynamic Programming

#define THRESHOLD_COST 0.01

extern KeyFrameData **rootKey;

extern int totalChannels;

extern KeyFrame **rootResult;

extern int outputtype;

// The following methods are used in the algorithm.

// Their implementations are excluded for the sake

// space considerations but their actions are explained.

void doRotationFix(KeyFrameData **bvhRoot, int chCount)

// This changes certain values in rotation channels. Some

// motion capture data may have rotation data in range

50

APPENDIX B. DETAILED PSEUDO-CODES 51

// (0,360) (degrees) and some other data may have rotation

// data in range (-180,180). Thus if an object rotates in

// a direction for more than one full rotation, there will

// be jumps on the values. This method makes sure that

// all rotation information is continious.

void countKeyFrames(KeyFrameData **bvhRoot, int chCount);

// This method simply counts the number of keyframes that

// the algorithm has found.

int EstimateInitials(KeyFrameData **bvhRoot, int chCount);

// This method estimates the initial keyframes. When the

// first and second derivatives of a joint is zero, this

// method places a keyframe at that point.

int DetermineSearchSpaces(KeyFrameData **bvhRoot, int chCount);

// This method finds the initial search spaces for every keyframe.

// It checks the spaces between the keyframes and proposes a

// possible size for the search window.

int DetermineSearchSpaceList(KeyFrameData **bvhRoot, int chCount);

// This method finds all possible values for a keyframe in its

// search window. The algorithm goes over this list.

int DecreaseAllSearchSpace(KeyFrameData **bvhRoot, int chCount);

// This method decreases all of the search spaces to make

// the keyframe search windows ready for the next iteration.

int ConvertToBezierCurve(KeyFrameData **bvhRoot, int chCount);

// This method converts a given segment of a Hermite curve

// definition into a Bezier curve.

int FindBezierValues(KeyFrameData **bvhRoot, int chCount);

APPENDIX B. DETAILED PSEUDO-CODES 52

//Given a Bezier curve, this method finds all the

// inner values between the keyframes by using

// Bezier subdivision algorithm.

int CalculateCosts(KeyFrameData **bvhRoot, int chCount);

//This method finds the cost between the simplified curve

// and the original curve. This value is the error value.

int LoadBVHFile(char *filename);

// This method loads a Biovision Hierarchical data file

// which is commonly used for storing motion capture

// data. It saves the information in terms of

// KeyframeData class which the algorithm uses.

// Each KeyframeData object has unlimited number of

// channels and each channel has unlimited number of

// frames. Each frame can store a time and a position/

// rotation value. Each frame can be marked as a keyframe

// and at this point it can store time position/rotation

// value and to find curvature it can store tangent of

// the curve at that keyframe.

int SaveBVHFile(char *baseFilename, char *newFilename,

KeyFrameData **bvhRoot, int chCount);

// If a new simplified curve is found with keyframes,

// this curve can again be saved as a BVH file, to

// be able to use it on commonly used 3D animation

// softwares.

// The main part

int main()

{

char infilename[]="old_m_tea.bvh";

char outfilename[]="old_m_tea_result.bvh";

APPENDIX B. DETAILED PSEUDO-CODES 53

char outfilenamenum[40];

char outfilenamenumtmp[40];

std::cout << "PROGRAM STARTED" << endl;

LoadBVHFile(infilename);

doRotationFix(rootKey,totalChannels);

EstimateInitials(rootKey, totalChannels);

DetermineSearchSpaces(rootKey, totalChannels);

DetermineSearchSpaceList(rootKey, totalChannels);

ConvertToBezierCurve(rootKey, totalChannels);

FindBezierValues(rootKey, totalChannels);

CalculateCosts(rootKey,totalChannels);

int counter=0;

while(KeyFrameData::tmpStorageTotalCost>THRESHOLD_COST

&& counter<10)

{

ApplyDynamicProgramming(rootKey,totalChannels);

PathList::clearAll(rootKey,totalChannels);

DecreaseAllSearchSpace(rootKey,totalChannels);

DetermineSearchSpaceList(rootKey, totalChannels);

ConvertToBezierCurve(rootKey, totalChannels);

FindBezierValues(rootKey, totalChannels);

CalculateCosts(rootKey,totalChannels);

std::cout << "COST " <<

KeyFrameData::tmpStorageTotalCost << std::endl;

counter++;

}

ConvertToBezierCurve(rootKey, totalChannels);

APPENDIX B. DETAILED PSEUDO-CODES 54

FindBezierValues(rootKey, totalChannels);

countKeyFrames(rootKey,totalChannels);

std::cout << "Total KeyFrames: " <<

KeyFrameData::tmpStorageTotalKeyFrames << std::endl;

std::cout << "Total Frames: " <<

KeyFrameData::tmpStorageTotalFrames << std::endl;

std::cout << "Total Channels: " <<

KeyFrameData::tmpStorageTotalChannels << std::endl;

std::cout << "Average KeyFrame per channel: " <<

((float)KeyFrameData::tmpStorageTotalKeyFrames/

KeyFrameData::tmpStorageTotalChannels) << std::endl;

SaveBVHFile(infilename,outfilename,rootKey,totalChannels);

std::cout << "PROGRAM TERMINATED" << std::endl;

return 0;

}

int ApplyDynamicProgramming(KeyFrameData **bvhRoot, int chCount)

{

for (int i=0; i<chCount; i++)

{

_applyDynamicProgrammingInChannel(bvhRoot[i]);

std::cout << "\r dp " << i << "/" <<

chCount << " ";

std::cout.flush();

}

return 0;

}

void _applyDynamicProgrammingInChannel(KeyFrameData *channelRoot)

{

APPENDIX B. DETAILED PSEUDO-CODES 55

KeyFrameData *curData=channelRoot;

KeyFrameData *preData=0;

PathList allPaths;

while (curData!=0)

{

if (curData->tmpStorage2==1)

{

if (preData!=0)

{

preData->loadSearch(preData->searchList.root);

curData->loadSearch(curData->searchList.root);

while (preData->lastSearch!=0)

{

while (curData->lastSearch!=0)

{

// do calculation and save result for this case

//generate the curve and values for each frame

_convertToBezierCurveInChannel(channelRoot);

_findBezierValuesInChannel(channelRoot);

//find the cost for this search

_calculateCostInChannel(channelRoot);

PathManager *curPath= curData->

listPath.findSpecificSearchIndex(curData->searchIndex);

if (curPath == 0)

{

curPath=new PathManager();

curData->listPath.insertItem(curPath);

curPath->insertItemHead(curData);

curPath->insertItemHead(preData);

curPath->belongsToSearchIndex=curData->searchIndex;

APPENDIX B. DETAILED PSEUDO-CODES 56

curPath->minCost=preData->segmentTotalCost;

}

else

{

if (curPath->minCost>preData->findMinPath()->minCost+

preData->segmentTotalCost)

{

curPath->removeItemHead();

curPath->insertItemHead(preData);

curPath->minCost=preData->minPath->minCost +

preData->segmentTotalCost;

}

}

curData->loadSearch(curData->lastSearch->nextItem);

}

preData->loadSearch(preData->lastSearch->nextItem);

}

}

preData=curData;

}

curData=curData->nextKey;

}

// end of while loop

curData=channelRoot;

preData=channelRoot;

while (curData!=0)

{

if (curData->tmpStorage2==1)

{

preData=curData;

}

curData=curData->nextKey;

APPENDIX B. DETAILED PSEUDO-CODES 57

}

// now predata holds the last keyframe,

// which is our result

preData->findMinPath();

preData->loadReal(preData->minPath->root->nextItem);

//this is the updating phase

while (preData!=0)

{

if (preData->listPath.root!=0)

{

preData->findMinPath();

preData->prevKey->loadReal(preData->minPath->root);

}

do{

preData=preData->prevKey;

}while (preData!=0 && preData->tmpStorage2!=1);

}

}

B.2 Curve Simplification

//The main part.

void main()

{

char infilename[]="t1.bvh";

char outfilename[]="t1_result.bvh";

std::cout << "PROGRAM STARTED" << endl;

LoadBVHFile(infilename);

APPENDIX B. DETAILED PSEUDO-CODES 58

KeyFrameData::tmpStorageTotalChannels=totalChannels;

Curve_StartAlgorithm(rootKey,totalChannels);

curve_countKeyFrames(rootKey,totalChannels);

std::cout << "Total KeyFrames: " <<

KeyFrameData::tmpStorageTotalKeyFrames << std::endl;

std::cout << "Total Frames: " <<

KeyFrameData::tmpStorageTotalFrames << std::endl;

std::cout << "Total Channels: " <<

KeyFrameData::tmpStorageTotalChannels << std::endl;

std::cout << "Average KeyFrame per channel: " <<

((float)KeyFrameData::tmpStorageTotalKeyFrames/

KeyFrameData::tmpStorageTotalChannels) << std::endl;

std::cout << "PROGRAM TERMINATED" << std::endl;

}

// This method counts the number of keyframes in a channel

void _curve_countKeyFramesInChannel

(KeyFrameData *channelRoot)

{

KeyFrameData *curData=channelRoot;

KeyFrameData *lastData=0;

while (curData!=0)

{

if (curData->curve_isKey==1)

KeyFrameData::tmpStorageTotalKeyFrames++;

KeyFrameData::tmpStorageTotalFrames++;

curData=curData->nextKey;

}

}

// This method uses _curve_countKeyFramesInChannel

// and counts all the keyframes

APPENDIX B. DETAILED PSEUDO-CODES 59

void curve_countKeyFrames

(KeyFrameData **bvhRoot, int chCount)

{

KeyFrameData::tmpStorageTotalKeyFrames=0;

KeyFrameData::tmpStorageTotalFrames=0;

for (int i=3; i<chCount; i++)

{

_curve_countKeyFramesInChannel(bvhRoot[i]);

}

}

// This method finds the error ratio between

// a beginning point, an ending point and a

// middle point. The more three points are

// closer to a line, the lower the error ratio.

// It calculates the area of a triangle since

// it knows the lengths of the sides, then uses

// the base side length (from beginning to the

// end point) to find the height of the triangle.

// This is the error value, it uses this height

// value with the base value to find a ratio.

float findErrorDistanceRatio(float bx, float by,

float cx, float cy, float ex, float ey)

{

float a=sqrt(pow(cy-by,2)+pow(cx-bx,2));

float b=sqrt(pow(ey-by,2)+pow(ex-bx,2));

float c=sqrt(pow(cy-ey,2)+pow(cx-ex,2));

float s=(a+b+c)/2.0f;

APPENDIX B. DETAILED PSEUDO-CODES 60

float area=sqrt(s*(s-a)*(s-b)*(s-c));

float h=area/b;

return h/b;

}

// This function implements the recursive

// curve simplification algorithm

void Curve_DoRecursive

(KeyFrameData *first, KeyFrameData *last)

{

KeyFrameData *curData=first;

float maxError=0;

KeyFrameData *maxErrorNode=0;

float curError=0;

while (curData!=last)

{

curError=findErrorDistanceRatio(

(float)first->keyTime,first->keyValue,

(float)curData->keyTime,curData->keyValue,

(float)last->keyTime,last->keyValue);

if (curError>maxError)

{

maxError=curError;

maxErrorNode=curData;

}

curData=curData->nextKey;

}

if (maxError>0.005f)

APPENDIX B. DETAILED PSEUDO-CODES 61

{

std::cout << "\r\tNew Keyframe at " <<

maxErrorNode->keyTime << " ";

maxErrorNode->curve_isKey=1;

Curve_DoRecursive(first,maxErrorNode);

Curve_DoRecursive(maxErrorNode,last);

}

}

// This method makes sure that the curve

// simplification algorithm runs on a channel.

void _curve_StartAlgorithm_inchannel(KeyFrameData *r)

{

KeyFrameData *tmp1=r;

KeyFrameData *tmp2=r;

while (tmp2->nextKey!=0)

{

tmp2=tmp2->nextKey;

}

tmp1->curve_isKey=1;

tmp2->curve_isKey=1;

Curve_DoRecursive(tmp1,tmp2);

}

// This function starts the curve simplification

// algorithm on every channel

void Curve_StartAlgorithm

(KeyFrameData **r, int totalChannels)

{

for (int i=3; i<totalChannels; i++)

{

APPENDIX B. DETAILED PSEUDO-CODES 62

std::cout << "Curve simplification algorithm in channel " <<

i << " of " << totalChannels << "\n";

_curve_StartAlgorithm_inchannel(r[i]);

}

}

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

