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ABSTRACT

UNDERSTANDING HUMAN MOTION:
RECOGNITION AND RETRIEVAL OF HUMAN

ACTIVITIES

Nazlı İkizler

Ph.D. in Computer Engineering

Supervisor: Assist. Prof. Dr. Pınar Duygulu

May, 2008

Within the ever-growing video archives is a vast amount of interesting information

regarding human action/activities. In this thesis, we approach the problem of extracting

this information and understanding human motion from a computer vision perspective.

We propose solutions for two distinct scenarios, ordered from simple to complex. In

the first scenario, we deal with the problem of single action recognition in relatively

simple settings. We believe that human pose encapsulates many useful clues for recog-

nizing the ongoing action, and we can represent this shape information for 2D single

actions in very compact forms, before going into details of complex modeling. We

show that high-accuracy single human action recognition is possible 1) using spatial

oriented histograms of rectangular regions when the silhouette is extractable, 2) using

the distribution of boundary-fitted lines when the silhouette information is missing.

We demonstrate that, inside videos, we can further improve recognition accuracy by

means of adding local and global motion information. We also show that within a dis-

criminative framework, shape information is quite useful even in the case of human

action recognition in still images.

Our second scenario involves recognition and retrieval of complex human activi-

ties within more complicated settings, like the presence of changing background and

viewpoints. We describe a method of representing human activities in 3D that allows

a collection of motions to be queried without examples, using a simple and effective

query language. Our approach is based on units of activity at segments of the body,

that can be composed across time and across the body to produce complex queries.

The presence of search units is inferred automatically by tracking the body, lifting the

tracks to 3D and comparing to models trained using motion capture data. Our models

of short time scale limb behaviour are built using labelled motion capture set. Our
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query language makes use of finite state automata and requires simple text encoding

and no visual examples. We show results for a large range of queries applied to a

collection of complex motion and activity. We compare with discriminative methods

applied to tracker data; our method offers significantly improved performance. We

show experimental evidence that our method is robust to view direction and is unaf-

fected by some important changes of clothing.

Keywords: Human motion, action recognition, activity recognition, activity retrieval,

image and video processing, classification.



ÖZET

İNSAN HAREKETİNİ ANLAMA: İNSAN
AKTİVİTELERİNİN TANINMASI VE ERİŞİMİ

Nazlı İkizler

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Yrd. Doç. Dr. Pınar Duygulu

Mayıs, 2008

Sürekli olarak büyüyen video arşivlerinde insan hareketleri ve aktiviteleriyle ilgili çok

geniş miktarda ilginç bilgi bulunmaktadır. Bu tezde, bu bilgileri elde etme ve insan

hareketini anlama konusuna bilgisayarlı görü açısından yaklaşıyoruz. Bu amaçla, ko-

laydan zora doğru sıralanan iki ayrı senaryo için çözümler öneriyoruz. İlk senaryoda,

nispeten kolay sayılabilecek durumlardaki teksel aksiyon tanıma problemini ele al-

maktayız. Bu senaryo için, insan duruşunun varolan aktiviteyi tanımlamak için pekçok

faydalı ipucu içerdigine inanıyoruz ve iki boyutlu aksiyonlar için karmaşık modelle-

meye gitmeden, bu şekil bilgisini çok kompakt biçimlerde gösterebiliriz. Bu kap-

samda, yüksek doğruluk oranlı insan aksiyonu tanımanının mümkün olduğunu 1) vide-

olardan siluet bilgisi çıkarmanın mümkün olduğu durumlarda dikdörtgensel alanların

uzamsal yönelimli histogramlarını kullanarak, 2) siluet bilgisi bulunmadığı durum-

larda sınırlardan çıkarılmış çizgilerin dağılımlarını kullanarak gösteriyoruz. Buna ek

olarak, videolarda, tanıma doğruluğunu yerel ve genel hareket bilgisi eklemek suretiyle

geliştirebileceğimizi kanıtlıyoruz. Şekil bilgisinin ayrıştırıcı bir çerçeve dahilinde,

durağan resimlerdeki insan hareketlerini tanıma probleminde bile oldukça faydalı

olduğunu gösteriyoruz.

İkinci senaryo karmaşık insan aktivitelerinin, değişen arka plan ve görüş açıları

gibi komplike durumlarda tanınması ve erişimi konularını içermektedir. Böyle du-

rumlarda üç boyutlu insan aktiviteleri betimlemek ve bir hareket derlemesini görsel

örneğe ihtiyaç olmaksızın sorgulamak için bir yöntem tanımlıyoruz. Yaklaşımımız,

vücut bölümleri üzerinde oluşturulan ve zamansal ve uzamsal olarak düzenlenebilecek

aktivite birimlerine dayanmaktadır. Arama birimlerinin varlığı, önce insan vücudunun

takibi, bu takip izlerinin üçüncü boyuta taşınması ve hareket algılama verisi üzerinde

öğrenilmiş modellerle karşılaştırmak yolu ile otomatik olarak sağlanmaktadır. Kısa

zamanlı uzuv davranış modellerimiz etiketlenmiş hareket algılama veri kümesi kul-

lanılarak oluşturulmaktadır. Video sorgu dilimiz sonlu durumlu özdevinirlerden
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faydalanmaktadır ve sadece basit metin kodlamasıyla tanımlanabilir olup görsel

örneğe ihtiyaç duymamaktadır. Çalışmamızda karmaşık hareket ve aktivite der-

lemesine uyguladığımız geniş aralıktaki sorguların sonuçlarını sunuyoruz. Kendi

yöntemimizi izleme verisi üzerine uygulanmış ayrıştırıcı yöntemlerle karşılaştırıyoruz;

ve yöntemimizin belirgin derecede gelişmiş performans sergilediğini gösteriyoruz.

Deneysel kanıtlarımız, yöntemimizin görüş yönü farklılıklarına dayanıklı olduğunu ve

kıyafetlerdeki önemli değişikliklerinden etkilenmediğini ispatlamaktadır.

Anahtar sözcükler: İnsan hareketi, aksiyon tanıma, aktivite tanıma, aktivite erişimi,

resim ve video işleme, sınıflandırma.
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supported by TÜBİTAK Career grant number 104E065 and grant numbers 104E077

and 105E065.

I am deeply thankful to Deva Ramanan, for sharing his codes and invaluable tech-

nical knowledge. This thesis has benefitted a lot from the landmarks he set on tracking

and pose estimation research. Neither my research nor my days in University of Illinois

at Urbana-Champaign would be complete, without the presence and endless support

of dear Shadi, Alex and Nicolas. I cannot thank them enough for their friendship, their

motivation and support.

I am also thankful to the exquisite members of RETINA research group. Selen,

viii



ix

Fırat, Aslı and Daniya made room EA522 feel like home. Their enthusiasm was a

great motivation. I am also grateful my other friends, especially Emre and Tağmaç, for
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Chapter 1

Introduction

This thesis tries to address the problem of understanding what people are doing, which

is one of the great unsolved problems of computer vision. A fair solution opens tremen-

dous application possibilities, ranging from medical to security. The major difficulties

have been that (a) good kinematic tracking is hard; (b) models typically have too many

parameters to be learned directly from data; and (c) for much everyday behaviour,

there isn’t a taxonomy. This thesis aims to tackle with this problem in the prevalence

of these difficulties, while presenting solutions to various cases.

We approach the problem of understanding human motion in two distinct scenar-

ios, ordered simple to complex, with respect to difficulty level. While choosing these

scenarios, we try to comply with the requirements of the ongoing research trends in

the action recognition community and the real-world activities. With this intention, we

first cover the case of recognizing single actions, where the person in video(or image)

is involved in one simple (non-complex) action. Figure 1.1 illustrates an example oc-

curance of a single “walking” action. Our second scenario involves recognition and

retrieval of complex human activities within more complicated settings, like the pres-

ence of changing background and viewpoints. This scenario is more realistic than the

simple one, and covers a large portion of the available video archives which involve

full-body human activities.

We deal with the simpler scenario as our first area of interest, because the current

1
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walking walking

Figure 1.1: Example of a single action.

research in vision community has condensed around “one actor, one action, simple

background” paradigm. This is mostly due to the lack of the benchmark datasets that

cover the remaining aspects of this subject, and due to the extreme challenges of pro-

cessing the complicated settings. This paradigm is by no means a representative of the

available videos at hand, and only a small portion of the real world videos meet the

requirements stated. However, we can say that it is a good starting point for observing

the nature of human actions from a machine vision perspective.

There are three key elements that define a single action:

• pose of the body (and parts)

• relative ordering of the poses

• speed of the body (and parts)

We can formulate single action recognition as a mixture of these three elements.

The relative importance of these elements is based on the nature of the actions that

we aim to recognize. For example, if we want to differentiate an instance of a “bend”

action from a “walk” action, the pose of the human figure gives sufficient informa-

tion. However, if we want to discriminate between “jog” and “run” actions, the pose

alone may not be enough, due to the similarity in the nature of these actions in the

pose domain. In such cases, the speed information needs to be incorporated. Various

attempts in action recognition literature try to model some or all of these aspects. For

instance, methods based on spatio-temporal templates mostly pay attention to the pose

of the human body, whereas methods based on dynamical models focus their attention

to modeling the ordering of these poses in greater detail.
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We believe that the human pose encapsulates many useful clues for recognizing

the ongoing action. Even a single image may convey quite rich information for un-

derstanding the type of action taking place. Actions can mostly be represented by

configurations of the body parts, before building complex models for understanding

the dynamics.

Using this idea, we base the foundation of our method on defining the pose of the

human body to discriminate single actions, and by introducing new pose descriptors,

we try to evaluate how far we can go only with a good description of the pose of the

body in 2D. We evaluate two distinct cases here: The presence of silhouette informa-

tion in the domain, and the absence of silhouettes. We also evaluate how our system

benefits from adding the remaining action components whenever necessary.

For the case where silhouette information is easily extractable, we use rectangular

regions as our basis of shape descriptor. Unlike most of the methods that use complex

modeling of body configurations, we follow the analogy of Forsyth et al. [32], which

represents the body as a set of rectangles, and explore the layout of these rectangles.

Our pose descriptor is based on a similar intuition: the human body can be represented

by a collection of oriented rectangles in the spatial domain and the orientations of

these rectangles form a signature for each action. However, rather than detecting and

learning the exact configuration of body parts, we are only interested in the distribution

of the rectangular regions which may be the candidates for the body parts.

When we cannot extract the silhouette information from the image sequences, due

to various reasons like camera movement, zoom effect, etc., but the background is rel-

atively simple and the boundaries are identifiable, we propose to use a compact shape

representation based on boundary-fitted lines. We show how we can make use of our

new shape descriptor together with a dense representation of optical flow and global

temporal information for robust single action recognition. Our representation involves

a very compact form by making use of feature reduction techniques, decreasing the

classification time significantly.

Recognizing single actions is a relatively simpler problem compared to complex

activities; it is relatively easier to acquire training data for identifying single actions. In

addition, current datasets available only deal with static backgrounds where foreground
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picking uppicking up

carryingcarrying

runningrunning

Figure 1.2: Example of a complex activity, composed across time and across the body.

human figures are easily extractable for further processing. Under these circumstances,

we believe that a very compact representation should be enough to conform the needs

of single action recognition, and presenting such compact representations is what we

do in the first part of this thesis.

In the second part of the thesis, we consider the case of complex activity recogni-

tion, where the action units are composed over time and space and the viewpoints of

the subjects are changing frequently. Figure 1.2 shows an example complex composite

activity, in which the person performs two different activities consecutively and one

activity is the composite of two different actions. Desirable properties of a complex

activity recognition and retrieval system are:

• it should handle different clothings and varying motion speeds of different actors

• it should accomodate the different timescales over which actions are sustained

• it should allow composition across time and across the body

• there should be a manageable number of parameters to estimate

• it should perform well in presence of limited quantities of training data

• it should be indifferent to viewpoint changes

• it should require no example video segment for querying



CHAPTER 1. INTRODUCTION 5

Building such a system has many practical applications. For example, if a sus-

picious behaviour can be encoded in terms of “action word”s - w.r.t. arms and legs

separately whenever needed - one can submit a text query and search for that spe-

cific behaviour within security video recordings. Similarly, one can encode medically

critical behaviours and search for those in surveillance systems.

Understanding activities is a complex issue in many aspects. First of all, there is a

shortage of training data, because a wide range of variations of behaviour is possible.

A particular nuisance is the tendency of activity to be compositional (below). Discrim-

inative methods on appearance may be confounded by intraclass variance. Different

subjects may perform the actions with different speeds in various outfits and and these

nuisance variations make it difficult to work directly with appearance. Training a gen-

erative model directly on a derived representation of video is also fraught with diffi-

culty. Either one must use a model with very little expressive power (for example, an

HMM with very few hidden states) or one must find an enormous set of training data

to estimate dynamical parameters (the number of which typically goes as the square of

the number of states). This issue has generated significant interest in variant dynamical

models.

The second difficulty is the result of the composite nature of activities. Most of

the current literature on activity recognition deals with simple actions. However, real

life involves more than just simple “walk”s. Many activity labels can meaningfully

be composed, both over time — “walk”ing then “run”ing — and over the body —

“walk”ing while “wave”ing. The process of composition is not well understood (see

the review of animation studies in [33]), but is a significant source of complexity in

motion. Examples include: “walking while scratching head” or “running while carry-

ing something”. Because composition makes so many different actions possible, it is

unreasonable to expect to possess an example of each activity. This means we should

be able to find activities for which we do not possess examples.

A third issue is that tracker responses are noisy, especially when the background

is cluttered. For this reason, discriminative classifiers over tracker responses work

poorly. One can boost the performance of discriminative classifiers if they are trained

on noise-free environments, like carefully edited motion capture datasets. However,
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these will lack the element of compositionality.

All these points suggest having a model of activity which consists of pieces which

are relatively easily learned and are then combined together within a model of compo-

sition. In this study, we try to achieve this by

• learning local dynamic models for atomic actions distinctly for each body part,

over a motion capture dataset

• authoring a compositional model of these atomic actions

• using the emissions of the data with these composite models

To overcome the data shortage problem, we propose to make use of motion capture

data. This data does not consist of everyday actions, but rather a limited set of Ameri-

can football movements. There is a form of transfer learning problem here — we want

to learn a model in a football domain and apply it to an everyday domain — and we

believe that transfer learning is an intrinsic part of activity understanding.

We first author a compositional model for each body part using a motion capture

dataset. This authoring is done in a similar fashion to phoneme-word conjunctions

in speech recognition: We join atomic action models to have more complex activity

models. By doing so, we achieve the minimum of parameter estimation. In addi-

tion, composition across time and across body is achieved by building separate activity

models for each body part. By providing composition across time and space, we can

make use of the available data as much as possible and achieve a broader understanding

about what the subject is up to.

After forming the compositional models over 3D data, we track the 2D video with

a state-of-the-art full body tracker and lift 2D tracks to 3D, by matching the snippets

of frames to motion capture data. We then infer activities with these lifted tracks. By

this lifting procedure, we achieve view-invariance, since our body representation is in

3D.

Finally, we write text queries to retrieve videos. In this procedure, we do not re-

quire example videos and we can query for activities that have never been seen before.
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Making use of finite state automata, we employ a simple and effective query language

that allows complex queries to be written in order to retrieve the desired set of activity

videos. Using separate models for each body part, compositional nature of our system

allows us to span a huge query space.

Here, our particular interest is everyday activity. In this case, a fixed vocabulary

either doesn’t exist, or isn’t appropriate. For example, one often does not know words

for behaviours that appear familiar. One way to deal with this is to work with a no-

tation (for example, laban notation); but such notations typically work in terms that

are difficult to map to visual observables (for example, the weight of a motion). We

must either develop a vocabulary or develop expressive tools for authoring models. We

favour this third approach.

We compare our method with several controls, and each of these controls has a

discriminative form. First, we built discriminative classifiers over raw 2D tracks. We

expect that discriminative methods applied to 2D data perform poorly because intra-

class variance overwhelms available training data. In comparison, our method benefits

by being able to estimate dynamical models on motion capture dataset. Second, we

built classifiers over 3D lifts. Although classifiers applied to 3D data could be view

invariant, we expect poor performance because there is not much labelled data and

the lifts are noisy. Our third control involves classifiers trained on 3D motion capture

data and applied to lifted data. This control also performs poorly, because noise in the

lifting process is not well represented by the training data. This also causes problems

with the composition. On contrary, our model supports a high level of composition and

its generative nature handles different lengths of actions easily. In the corresponding

experiments chapter, we evaluate the effect of all these issues and also analyze the

view-invariance of our method in greater detail.

1.1 Organization of the Thesis

The remainder of this thesis is organized as follows.
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Chapter 2 starts with a brief introduction to human action/activity recognition re-

search together with possible application areas. It includes an overview of human

action/activity recognition approaches in the literature.

Chapter 3 describes our approaches to recognition of single human actions within

relatively simple scenarios. By single actions, we mean the videos including only one

action instance. Particularly, Section 3.1 and Section 3.2 introduce our histogram-

based approaches for single action recognition in videos, whereas Section 3.3 includes

application of our pose descriptor to still images. In Chapter 4, we present our meth-

ods’ performance on single action recognition case.

Later on, Chapter 5 introduces our approaches for understanding human actions in

the case of complex scenarios. These scenarios include actions composed across body

and across space, with varying viewpoints and cluttered backgrounds. We show how

we can handle those scenarios within a 3D modeling approach. Chapter 6 gathers up

our empirical evaluations of our method on complex human activities.

Chapter 7 concludes the thesis with a summary and discussions of the approaches

presented and delineates possible future directions.



Chapter 2

Background and Motivation

Immense developments in video technology, both recording (as in TiVo and surveil-

lance systems) and broadcasting (as in YouTube [1]), have greatly increased the size

of accessable video archives, thus, the demand on processing and extracting useful

information from those archives. Although the demand is quite high, the relevant

searches still depends on text-based user annotations, and visual properties mostly go

untouched. While using annotations is a sensible approach, not all the videos are an-

notated, or existing annotations/metadata are useful.

Inside those video archives is a vast amount of interesting information regarding

human action/activities.

From a pscyhological perspective, the presence of human figure inside images is

quite important. We can observe this importance from the extensive literature and his-

tory of face recognition research(see [85, 110]). People are interested in identification

and recognition of humans and their actions. Starting from the works of Eadweard

Muybridge [63], as early as 1887 (Figure 2.1), movement and action analysis and

synthesis has captured a lot of interest, which resulted in the development of motion

pictures.

Additionally, understanding what people are doing will close the semantic gap be-

tween low-level features and high-level image interpretation a great extent.

9
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(a) pickaxe man (b) dancing woman

(c) head-spring

Figure 2.1: Earliest work on human motion photography by Eadweard Muybridge [63,
64].

All these make automatic understanding of human motion a very important prob-

lem for computer vision research. In the rest of the chapter, we present a summary of

the related studies over this subject.

(a) surveillance (b) home entertainment (c) sport annotation

Figure 2.2: Possible application areas of human action recognition
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2.1 Application Areas

Human motion understanding can serve many application areas, ranging from visual

surveillance to human computer interaction(HCI) systems. Particularly, the application

domains are limited to those that involve camera setups. Below is an example list of

such systems.

• Visual Surveillance: As the video technology become more commonplace, vi-

sual surveillance systems undertook a rapid development process, and have more

or less become a part of our daily lives. Figure 2.2(a) shows an example surveil-

lance infra-red (IR) video output. Human action understanding can help to find

fraudful events –such as burglaries, fightings, etc –, to detect pedestrains from

moving vehicles, and can serve to track patients who need special attention (like

detecting a falling person [94]).

• Human-Computer Interaction: Ubiquitous computing has increased the pres-

ence of HCI systems everywhere. A recently evolving thread is in the area of

electronic games and home entertainment(see Figure 2.2(b)). These systems

are currently based on very naive video and signal processing. However, as the

technology evolve, the trend will shift towards more intelligent and sophisticated

HCI systems which involve activity and behaviour understanding.

• Sign Language Recognition: Gesture recognition, which is a subdomain of ac-

tion recognition that operates over the upper body parts, serves a lot for auto-

matic understanding of sign language [15, 38, 92].

• News, Movie and Personal Video Archives: By the decrease in the cost of video

capturing devices and by the development of sharing websites, videos become

to be a substantial part of the today’s personal visual archives. Automatic an-

notations of those archives, together with movie and news archives will help

information retrieval. In addition, automatic annotation of news and sport video

archives(see Figure 2.2(c) for an example frame) is a necessary thread for access-

ing the necessary information in a quick and easy way. People may be interested

in finding certain events, describable only by the activities involved and activity

recognition can help considerably in this case.
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• Social Evaluation of Movements: The observation of behavioural patterns of

humans is quite important for the research of sociology, architecture, and more.

Machine perception of activities and patterns can guide many researches in this

area. For example, Yan et al. tries to find estimates of where people spend time

by examining head trajectories [105]. Interestingly, research like this one will

help in urban planning.

2.2 Human Motion Understanding in Videos

There is a long tradition of research on interpreting human actions and activities in the

computer vision community. Especially during the last decade, human action recogni-

tion has gained a lot of interest. Hu et al [43] and Forsyth et al [33] present extensive

surveys on this subject.

In general, approaches to human action and activity recognition on videos can be

divided intro three main threads. First, one can use motion primitives(Section 2.2.2)

which is based on the statistical evaluation of motion clusters. Second, one can use

dynamical models, partially(Section 2.2.4) or explicitly(Section 2.2.3). Third, one can

make use of discriminative methods(Section 2.2.5), such as spatio-temporal templates

or “bag-of-words”. This section presents a literature overview of these methods.

2.2.1 Timescale

Regarding the timescale of the act, action and activity descriptions, there is a wide

range of helpful distinctions. Bobick [13] distinguishes between movements, activity

and actions, corresponding to longer timescales and increasing complexity of represen-

tation; some variants are described in two useful review papers [4, 36]. In this thesis,

we refer short-timescale representations as acts, like a forward-step or a hand-raise;

medium timescale movements as actions, like walking, running, jumping, standing,
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waving, and long timescale movements as activities. Activities are complex compos-

ites of actions, whereas actions are typically composites of multiple acts. The com-

position can be across time (sequential ordering of acts/actions) and across body(body

parts involving in different acts/actions).

2.2.2 Motion primitives

A natural method for building models of motion on longer time scales is to identify

clusters of motion of the same type and then consider the statistics of how these mo-

tion primitives are strung together. There are pragmatic advantages to this approach:

we may need to estimate fewer parameters and can pool examples to do so; we can

model and account for long term temporal structure in motion; and matching may be

easier and more accurate. Feng and Perona describe a method that first matches motor

primitives at short timescales, then identifies the activity by temporal relations between

primitives [30]. In animation, the idea dates at least to the work of Rose et al., who

describe motion verbs — our primitives — and adverbs — parameters that can be

supplied to choose a particular instance from a scattered data interpolate [82]. Prim-

itives are sometimes called movemes. Matarić et al. represent motor primitives with

force fields used to drive controllers for joint torque on a rigid-body model of the upper

body [59, 60]. Del Vecchio et al. define primitives by considering all possible motions

generated by a parametric family of linear time-invariant systems [98]. Barbic̆ et al.

compare three motion segmenters, each using a purely kinematic representation of mo-

tion [9]. Their method moves along a sequence of frames adding frames to the pool,

computing a representation of the pool using the first k principal components, and

looking for sharp increases in the residual error of this representation. Fod et al. con-

struct primitives by segmenting motions at points of low total velocity, then subjecting

the segments to principal component analysis and clustering [31]. Jenkins and Mataric

segment motions using kinematic considerations, then use a variant of Isomap (de-

tailed in [48]) that incorporates temporal information by reducing distances between

frames that have similar temporal neighbours to obtain an embedding for kinematic

variables [47]. Li et al. segment and model motion capture data simultaneously using

a linear dynamical system model of each separate primitive and a Markov model to
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string the primitives together by specifying the likelihood of encountering a primitive

given the previous primitive [56].

2.2.3 Methods with explicit dynamical methods

Hidden Markov Models (HMM’s) have been very widely adopted in activity recog-

nition, but the models used have tended to be small (e.g, three and five state models

in [19]). Such models have been used to recognize: tennis strokes [104]; pushes [101];

and handwriting gestures [106]. Toreyin et al. [94] use HMMs for falling person de-

tection, by fusing audial and visual information together. Feng and Perona [30] call

actions “movelets”, and build a vocabulary by vector quantizing a representation of

image shape. These codewords are then strung together by an HMM, representing ac-

tivities; there is one HMM per activity, and discrimination is by maximum likelihood.

The method is not view invariant, depending on an image centered representation.

There has been a great deal of interest in models obtained by modifying the HMM

structure, to improve the expressive power of the model without complicating the pro-

cesses of learning or inference. Methods include: coupled HMM’s ([19]; to classify

T’ai Chi moves); layered HMM’s ([67]; to represent office activity); hierachies ([62];

to recognize everyday gesture); HMM’s with a global free parameter ([102]; to model

gestures); and entropic HMM’s ([18]; for video puppetry). Building variant HMM’s

is a way to simplify learning the state transition process from data (if the state space

is large, the number of parameters is a problem). But there is an alternative — one

could author the state transition process in such a way that it has relatively few free

parameters, despite a very large state space, and then learn those parameters; this is the

lifeblood of the speech community.

Stochastic grammars have been applied to find hand gestures and location tracks

as composites of primitives [17]. However, difficulties with tracking mean that there is

currently no method that can exploit the potential view-invariance of lifted tracks, or

can search for models of activity that compose across the body and across time.

Finite state methods have been used directly. Hongeng et al. demonstrate recog-

nition of multi-person activities from video of people at coarse scales (few kinematic
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details are available); activities include conversing and blocking [40]. Zhao and Neva-

tia use a finite-state model of walking, running and standing, built from motion cap-

ture [109]. Hong et al. use finite state machines to model gesture [38].

2.2.4 Methods with partial dynamical models

Pinhanez and Bobick [69, 70] describe a method for detecting activities using a repre-

sentation derived from Allen’s interval algebra [5], a method for representing temporal

relations between a set of intervals. One determines whether an event is past, now or

future by solving a consistent labelling problem, allowing temporal propagation. There

is no dynamical model — sets of intervals produced by processes with quite different

dynamics could be a consistent labelling; this can be an advantage at the behaviour

level, but probably is a source of difficulties at the action/activity level. Siskind [89]

describes methods to infer activities related to objects — such as throw, pick up, carry,

and so on — from an event logic formulated around a set of physical primitives —-

such as translation, support relations, contact relations, and the like — from a repre-

sentation of video. A combination of spatial and temporal criteria are required to infer

both relations and events, using a form of logical inference. Shi et al. make use of

Propagation Nets to encode the partial temporal orderings of actions [88]. Recently,

Ryoo and Aggarwal use context-free grammars to exploit the temporal relationships

between atomic actions to define composite activities [84].

2.2.5 Discriminative methods

Methods with (partial/explicit) dynamical models mostly have a generative nature.

This section outlines the approaches which have a discriminative setting. These meth-

ods mostly rely on 2D local image features.
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2.2.5.1 Methods based on Templates

The notion that a motion produces a characteristic spatio-temporal pattern dates at

least to Polana and Nelson [71]. Spatio-temporal patterns are used to recognize ac-

tions in [14]. Ben-Arie et al. [10] recognize actions by first finding and tracking body

parts using a form of template matcher and voting on lifted tracks. Bobick and Wil-

son [16] use a state-based method that encodes gestures as a string of vector-quantized

observation segments; this preserves order, but drops dynamical information. Efros

et al. [26] use a motion descriptor based on optical flow of a spatio-temporal volume,

but their evaluation is limited to matching videos only. Blank et al. [12] define actions

as space-time volumes. An important disadvantage of methods that match video tem-

plates directly is that one needs to have a template of the desired action to perform

a search. Ye et al. moves one step further in this aspect and use matching by parts,

instead of using the whole volumetric template [50]. However, their part detection is

manual.

2.2.5.2 Bag-of-words approaches

Recently, ’bag-of-words’ approaches originated from text retrieval research is being

adopted to action recognition. These studies are mostly based on the idea of forming

codebooks of ’spatio-temporal’ features. Laptev et al. first introduced the notion of

’space-time interest points’ [53] and used SVMs to recognize actions [86]. P. Dollár

et al. extract cuboids via separable linear filters and form histograms of these cuboids

to perform action recognition [25]. Niebles et al. applied a pLSA approach over these

patches (i.e. the cuboids extracted with the method of [25]) to perform unsupervised

action recognition [66]. Recently, Wong et al. proposed using pLSA method with and

implicit shape model to infer actions from spatio-temporal codebooks [103]. They also

show the superior performance of applying SVMs for action recognition. However,

these methods are not viewpoint independent and very likely to suffer from complex

background schemes.
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2.2.6 Transfer Learning

Recently, transfer learning has become a very hot research topic in machine learning

community. It is based on transfering the information learned from one domain to the

another related domain. In one of the earlier works, Caruana approached this prob-

lem by discovering common knowledge shared between tasks via “multi-task learn-

ing” [20]. Evgeniou and Pontil [27] utilize SVMs for multi-task learning. Ando and

Zhang [6] generate some artificial auxiliary tasks to use shared prediction structures

between similar tasks. A recent application involves transfering American Sign Lan-

guage(ASL) words learned from a synthetic dictionary to real world data [28].

2.2.7 Histogramming

Histogramming is an old trick that has been frequently used in computer vision re-

search. For action recognition, Freeman and Roth [35] use orientation histograms for

hand gesture recognition. Recently, Dalal and Triggs use histograms of oriented gradi-

ents (HOGs) for human detection in images [22], which is shown to be quite successful.

Later on, Dalal et al. make use of HOGs together with orientation histograms of optical

flow for human detection in videos [23]. Christian Thurau [93] evaluate HOGs within

a motion primitive framework and use histograms of HOGs as the representation of

the videos for action recognition. Zu et al., on the other hand, utilizes histograms of

optical flow in forms of slices to recognize actions in tennis videos [111]. Recently,

Dedeoğlu et al. define a silhouette-based shape descriptor and use histogram of the

matched poses for action recognition [24].

2.3 Human Action Recognition in Still Images

Most of the effort on understanding the human actions involves video analysis with

fundamental applications such as surveillance and human computer interaction. How-

ever, action recognition on single images is a mostly ignored area. This is due to

various challenges of this topic. The lack of region model in a single image precludes
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discrimination of foreground and background objects. The presence of articulation

makes the problem much harder, for there is a large number of alternatives for the

human body configuration. Humans as being articulated objects, can exhibit various

poses, resulting in high variability of the images. Thus, the problem of action recogni-

tion on still images becomes a very challenging problem.

2.3.1 Pose estimation

Recognition of actions from still images starts with finding the person within the image

and inferring the pose of it. There are many studies in finding person images( [46]),

localizing the persons ([3]), or pedestrian detection([95]). Dalal and Triggs propose

a very successful edge and gradient based descriptor, called Histogram of Oriented

Gradients [22] for detecting and locating humans in still images. Zhu et al. advances

HOG descriptors by integrating HOG and AdaBoost to select the most suitable block

for detection [112]. In [11], Bissacco et al. also use HOGs in combination with Latent

Dirichlet Allocation for human detection and pose estimation. Oncel et al. [96], on the

other hand, define a covariance descriptor for human detection.

For inferring the human pose from 2D images, there is a bunch of recent studies.

Most of the studies are dealing with cases where human figure is easily differentiable

from the background, i.e. using a non-cluttered stable background. Those studies

include inferring 3D pose from 2D image data, as in [2] where Agarwal et al. deal

with inferring 3D pose from silhouettes. Rosales et al. estimate the 3D pose from a

silhouette using multi-view data [81]. In [87], a method based on hashing for finding

relevant poses in a database of images is presented.

Over the domain of cluttered images, Forsyth and Fleck introduce the concept of

body plans as a representation for people and animals in complex environments [32].

Body plans view people and animals as assemblies of cylindrical parts. To learn such

articulated body plans, [80] introduces using Support Vector Machines(SVMs) and

Relevant Vector Machines(RVMs). Ramanan presents an iterative parsing process for

pose estimation of articulated objects [74], which we use for extracting human parses

from still images for action recognition. We discuss this method in greater detail in
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Section 3.3.1.

Ren et al. also presents a framework for detecting and recovering human body con-

figuration [79]. In their recent work, Zhang et al. describe a hierarchical model based

on edge and skin/hair color features and deterministic and stochastic search [108].

2.3.2 Inferring actions from poses

To our best knowledge, there are quite few studies that deal with the problem of human

action recognition in static images. Wang et al. partially addresses this problem [100].

They represent the overall shape as a collection of edges obtained through canny edge

detection and propose a deformable matching method to measure distance of a pair of

images. However, they only tackle the problem in an unsupervised manner and within

single sports scenes.



Chapter 3

Recognizing Single Actions

This chapter presents the methods we developed for the recognition of single actions.

By single actions, we refer to the action sequences where the human in motion is

engaged with one action only, through the whole sequence. This chapter investigates

this simpler case, and defines new pose descriptors which are very compact and easy to

process. We define two shape-based features for this purpose. First one is applicable to

the case where the silhouette information is easily extractable from the given sequence.

The second pose descriptor handles the case when the silhouette information is not

available in the scene.

We show how we can use these pose descriptors with various supervised and un-

supervised approaches for action classification. In addition to video domain, we apply

our pose descriptors for recognition of actions inside static images. Our main goal is to

have compact, yet effective representations of single actions without going into com-

plex modelling of dynamics. In the consecutive chapter, we show that our descriptors

perform considerably well in the case of single action recognition with experimenting

over various state-of-art datasets.

20
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3.1 Histogram of Oriented Rectangles as a New Pose

Descriptor

Following the body plan analogy of Forsyth et al. [32], which considers the body of the

humans or animals as a collection of cylindrical parts, we represent the human body

as a collection of rectangular patches and we base our motion understanding approach

on the fact that the orientations and positions of these rectangles change over time

with respect to the actions carried out. With this intuition, our algorithm first extracts

rectangular patches over the human figure available in each frame, and then forms a

spatial histogram of these rectangles by grouping over orientations. We then evaluate

the changes of these histograms over time.

More specifically, given the video, first, the tracker identifies the location of the

subject. Any kind of tracker, which can extract silhouette information of the humans

can be used at this step. Using the extracted silhouettes, we search for the rectangular

patches that can be candidates for the limbs. We do not discriminate between legs and

arms here. Then, we divide the bounding box around the silhouette into an equal-sized

grid and compute the histograms of the oriented rectangles inside each region. This

bounding box is divided into N × N equal-sized spatial (grid) bins. While forming

these spatial bins, the ratio between the body parts, i.e. head, torso and legs, is taken

into account. At each time t, a pose is represented with a histogram Ht based on

the orientations of the rectangles in each spatial bin. We form our feature vector by

combining the histograms from each subregion. This process is depicted in Fig. 3.1.

In the ideal case, single rectangles that fit perfectly to the limb areas should give

enough information about the pose of the body. However, finding those perfect rectan-

gles is not straightforward and is very prone to noise. Therefore, in order to eliminate

the effect of noise, we use distribution of candidate rectangular regions as our feature.

This gives a more precise information about the most probable locations of the fittest

rectangles.

Having formed the spatio-temporal rectangle histograms for each video, we match

any newly seen sequence to the examples at hand and label the videos accordingly. We
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Figure 3.1: Here, the feature extraction stage of our approach is shown (this figure is
best viewed in color). Using the extracted silhouettes, we search for the rectangular
patches that can be candidates for the limb and compute the histograms of the oriented
rectangles.

now describe the steps of our method in greater detail.

3.1.1 Extraction of Rectangular Regions

For describing the human pose, we make use of rectangular patches. These patches are

extracted in the following way:

1) The tracker fires a response for the human figure and differentiates the human

region from the background. This is usually done using a foreground-background

discrimination method [34]. The simplest approach is to apply background subtraction,

after forming a dependable model of the background. The reader is referred to [33] for

a detailed overview of the subject. In our experiments, where we extract the silhouettes,

we use a background subtraction scheme to localize the subject in motion, as in [37].

Note that any other method that extracts the silhouette of the subject will work just

fine.

2) We then search for rectangular regions over the human silhouette using con-

volution of a rectangular filter on different orientations and scales. We make use of

undirected rectangular filters, following Ramanan et al. [76]. The search is performed

using 12 tilting angles, which are 15◦ apart, covering a search space of 180◦. Note that

since we don’t have the directional information of these rectangle patches, orientations

do not cover 360◦, but its half. To tolerate the differences in the limb sizes and in the

varying camera distances to the subject, we perform the rectangle convolution over

multiple scales.
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Figure 3.2: The rectangular extraction process is shown. We use zero-padded Gaussian
filters with 15◦ tilted orientations over the human silhouette. We search over various
scales, without discriminating between different body parts. The perfect rectangular
search for the given human subject would result in the tree structure to the right.

More formally, we form a zero-padded rectangular Gaussian filter Grect and pro-

duce the rectangular regions R(x, y) by means of the convolution of the binary silhou-

ette image I(x, y) with this rectangle filter Grect.

R(x, y) = Grect(x, y) ◦ I(x, y) (3.1)

where Grect is a zero-padded rectangular patch of a 2-D Gaussian G(x, y)

G(x, y) =
1

2πσxσy

√
1− ρ2

exp

(
− 1

2(1− ρ2)

(
x2

σx
2

+
y2

σy
2
− 2ρxy

(σxσy)

))
(3.2)

Higher response areas to this filter are more likely to include patches of a particular

kind. The filters used are shown in Fig. 3.2.

To tolerate noise and imperfect silhouette extraction, this rectangle search allows

a portion of the candidate regions to remain non-responsive to the filters. Regions

that have low overall responses are eliminated this way. We then select the k of the

remaining candidate regions of each scale by random sampling (we used k = 300).

3.1.2 Describing Pose as Histograms of Oriented Rectangles

After finding the rectangular regions of the human body, in order to define the pose,

we propose a simple pose descriptor, which is the Histogram of Oriented Rectangles
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Figure 3.3: Details of histogram of oriented rectangles (HORs). The bounding box
around the human figure is divided into an N × N grid (in this case, 3 × 3) and the
HORs from each spatial bin are shown. The resulting feature vector is a concatenation
of the HORs from each spatial bin.

(HOR). We compute the histogram of extracted rectangular patches based on their

orientations. The rectangles are histogrammed over 15◦ orientations, resulting in 12

circular bins. In order to incorporate spatial information of the human body, we eval-

uate these circular histograms within a N × N grid placed over the whole body. Our

experiments show that N = 3 gives the best results. We form this grid by splitting

the silhouette over the y-dimension based on the length of the legs. The area covering

the silhouette is divided into equal-sized bins from bottom to up and left to right (see

Fig. 3.3 for details). Note that, in this way, we give some space to the top part of the

head, to allow action space for the arms (for actions like reaching, waving, etc.).

We have also evaluated the effects of using 30◦ orientation bins and a 2 × 2 grid,

which have more concise feature representations, but coarser detail of the human pose.

We show the corresponding results in Sect. 4.2.

3.1.3 Capturing Local Dynamics

In action recognition, there may be times where one cannot discriminate two actions

by just looking at single poses. In such cases, an action descriptor based purely on

shape is not enough and temporal dynamics must be explored. To incorporate temporal

features, HORs can be calculated over snippets of frames rather than single frames.

More formally, we define histograms of oriented rectangles over a window of frames
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(HORW), such that the histogram of the ith frame will be

HORW (i) =
i∑

k=i−n

HOR(k) (3.3)

where n is the size of the window.

By using HORs over a window of frames like this, we capture local dynamics infor-

mation. In our experiments, we observe that, using HORWs is more useful especially

to discriminate actions like “jogging” and “running”, which are very similar in pose

domain, but different in speed. Therefore, over a fixed length window, the compact-

ness of these two actions will be different. We evaluate the effect of using HORs vs

HORWs in greater detail in Section 4.2.

3.1.4 Recognizing Actions with HORs

After calculating the pose descriptors for each frame, we perform action classification

in a supervised manner. There are four matching methods we perform in order to

evaluate the performance of our pose descriptor in action classification problems.

3.1.4.1 Nearest Neighbor Classification

The simplest scheme we utilize is to perform matching based on single frames (or

snippets of frames in the case of HORWs), ignoring thedynamics of the sequence. That

is, for each test instance frame, we find the closest frame in the training set and assign

its label as the label of the test frame. We then employ a voting scheme throughout

the whole sequence. This process is shown in Fig. 3.4. The pose descriptor of each

frame(snippet) is compared to that of the training set frames and the closest frame’s

class is assigned as a label to that frame. The resulting is a vote vector, where each

frame contributes with a vote and the majority class of the votes is the recognized

action label for that sequence.

The distance between frames is computed using Chi-square distance between the

histograms (as in [55]). Each frame with the histogram Hi is labeled with the class of
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Figure 3.4: Nearest neighbor classification process for a walking sequence.

the frame having histogram Hj that has the smallest distance χ2 such that

χ2(Hi, Hj) =
1

2

∑
n

(Hi(n)−Hj(n))2

Hi(n) +Hj(n)
(3.4)

We should note that both χ2 and L2 distance functions are very prone to noise,

because a slight shift of the bounding box center of the human silhouette may result

in a different binning of the rectangles and, therefore, may cause large fluctuations

in distance. One can utilize Earth Mover’s Distance [83] or Diffusion Distance [57],

which are shown to be more efficient for histogram comparison in the presence of

such shifts, by taking the distances between bins into account at the expense of higher

computation time.

3.1.4.2 Global Histogramming

Global histogramming is similar to the Motion Energy Image (MEI) method proposed

by Bobick and Davis [14]. In this method, we sum up all spatial histograms of oriented

rectangles through the sequence, and form a single compact representation for the

entire video. This is simply done by collapsing all time information into a single

dimension by summing the histograms and forming a global histogram Hglobal such
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Figure 3.5: Global histograms are generated by summing up all the sequence and
forming the spatial histograms of oriented rectangles from these global images. In this
figure, global images after the extraction of the rectangular patches are shown for 9
separate action classes. These are bend, jump, jump in place, gallop sideways, one-
hand wave, two-hands wave, jumpjack, walk and run actions.

that

Hglobal(d) =
∑

t

H(d, t) (3.5)

for each dimension d of the histogram. Each test instance’s Hglobal is compared to

that of the training instances using χ2 distance, and the label of the closest match is

reported. The corresponding global images are shown in Fig. 3.5. These images show

that for each action (of the Weizzman dataset in this case), even a simple representation

like global histogramming can provide useful interpretations. These images resemble

the Motion Energy Images of [14], however we do not use these shapes. Instead, we

form the global spatial histogram of the oriented rectangles as our feature vector.

3.1.4.3 Discriminative Classification - SVMs

Nearest neighbor schemes may fail to respond well to the complex classification prob-

lems. For this reason, we decided to make use of discriminative classification tech-

niques. We pick Support Vector Machine(SVM) [97] classifiers from the pool of dis-

criminative classifiers one could use, due to their reputation of success in various ap-

plications. We trained separate SVM classifiers for each action. These SVM classifiers

are formed using RBF kernels over snippets of frames using a windowing approach.

This process is depicted in Fig. 3.6. For choosing the parameters of the SVMs, we per-

forma a grid search over the parameter space of the SVM classifiers and select the best

classifiers using 10-fold cross validation. In our windowing approach, we segment the

sequence into k-length chunks with some overlapping ratio o, and then classify these
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Figure 3.6: SVM classification process over a window of frames

chunks separately (we achieved the best results with k = 15 , and o = 3). The whole

sequence is then labeled with the most frequent action class among its chunks.

3.1.4.4 Dynamic Time Warping

Since the periods of the actions are not uniform, comparing sequences is not straight-

forward. In the case of human actions, the same action can be performed at different

speeds, resulting in the sequence to be expanded or shrunk in time. In order to elimi-

nate such effects of different speeds and to perform robust comparison, the sequences

need to be aligned.

Dynamic time warping (DTW) is a method to compare two time series which may

be different in length. DTW operates by trying to find the optimal alignment be-

tween two time series by means of dynamic programming (for more details, see [72]).

The time axes are warped in such a way that samples of the corresponding points are

aligned.

More specifically, given two time series X = {x1 . . . xn} and Y = {y1 . . . ym}, the
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distance D(i, j) is calculated with

D(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

D(i, j − 1)

D(i− 1, j)

D(i− 1, j − 1)

⎫⎪⎪⎬
⎪⎪⎭+ d(xi, yj) (3.6)

where d(., .) is the local distance function specific to application. In our implementa-

tion, we have chosen d(., .) as the χ2 distance function, as in Equation 3.4.

We use dynamic time warping along each dimension of the histograms separately.

As shown in Fig. 3.7, we take each 1-d series of the histogram bins of the test video X

and compute the DTW distance D(X(d), Y (d)) to the corresponding 1-d series of the

training instance Y . We try to align these sequences along each histogram dimension

by DTW and report the sum of the smallest distances. Note that, separate alignment

of each histogram bin also allows us to handle the fluctuations in distinct body part

speeds. We then sum up the distances of all dimensions to compute the global DTW

distance (Dglobal) between the videos. We label the test video with the label of the

training instance that has the smallest Dglobal such that,

Dglobal(X, Y ) =

M∑
d=1

D(X(d), Y (d)) (3.7)

where M is the total number of bins in the histograms. While doing this, we exclude

the top k of the distances to reduce the effect of noise introduced by shifted bins and

inaccurate rectangle regions. We choose k based on the size of the feature vector such

that k = �#num bins/2� where #num bins is the total number of bins of the spatial

grid.

3.1.4.5 Classification with Global Velocity

When shape information is not enough, we can use speed information as a prior for

action classes. Suppose we want to discriminate two actions: “handwaving” versus

“running”. If the velocity of the person in motion is equal to zero, the probability that
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Figure 3.7: Dynamic Time Warping (DTW) over 2D histograms: We compute DTW
distances between the histograms by evaluating the DTW cost over single dimensions
separately and summing up all costs to get a global distance between sequences. Here,
histograms of two bend actions performed by different actors are shown.

he has been running is quite low.

Based on this observation, we propose a two-level classification system. In the first

level, we calculate mean velocities of the training sequences and fit a gaussian to each

action in action set A = {a1..an} . Later on, given a test instance, we compute the

posterior probability of each action ai ∈ A over these gaussians, and if the posterior

probability of ai is greater than a threshold t(we use a loose bound t = 0.1), then we

add ai to the probable set S of actions for that sequence. After this preprocessing step,

as the second level, we evaluate only the outputs of the SVMs for actions ak ∈ S, and

we take the maximum response from this subset of SVM classifiers as our classification

decision. This process is shown in Fig. 3.8.

3.2 The Absence of Silhouettes: Line and Flow His-

tograms for Human Action Recognition

In the absence of silhouettes, we can make use of simpler features: lines. In this sec-

tion, we present a pose descriptor based on the orientation of lines extracted from hu-

man boundaries. By using these lines together with optical flow information, we show
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Figure 3.8: Two-level classification of actions based on mean horizontal velocity
and histograms of oriented rectangles. First, the velocity of the subject is calculated
throughout the entire video. We evaluate the posterior probability of this velocity and
determine the probable set of actions for that video. Then, based on this probable set
of actions, we look at the responses from corresponding SVM classifiers and take the
maximum response as the classification label of that video.
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that we can have fast and reliable action recognition, even if we don’t have silhouette

information.

3.2.1 Line-based shape features

Shape is an important cue for recognizing the ongoing activity. When we cannot ex-

tract the silhouette information from the sequence, due to various reasons like camera

movement, zoom effect, etc., we propose to use a compact shape representation based

on lines.

We extract this representation as follows: First, given a video sequence, we com-

pute the probability of boundaries (Pb features [58]) based on Canny edges in each

frame. We use these Pb features rather than simple edge detection, because Pb features

delineate the boundaries of objects more strongly and eliminate the effect of noise

caused by shorter edge segments in cluttered backgrounds to a certain degree. Exam-

ple images and their corresponding boundaries are shown in Fig 3.9(a) and Fig 3.9(b).

After finding the boundaries, we localize the human figure by using the densest

area of high response Pb features. We then fit straight lines to these boundaries using

Hough transform. We do this in two-fold; first, we extract shorter lines (Fig 3.9(c))

to capture fine details of the human pose. Second, we extract relatively longer lines

(Fig 3.9(d)) to capture the coarser shape information.

We then histogram the union of short and long line sets based on their orientations

and spatial locations. The lines are histogrammed over 15◦ orientations, resulting in 12

circular bins, similar to the binning of the rectangles in our HOR descriptor. In order

to incorporate spatial information of the human body, we evaluate these orientations

within a N × N grid placed over the whole body. Our experiments show that N =

3 gives the best results (in accordance with section 3.1). This process is shown in

Fig 3.10. Resulting shape feature vector is the concatenation of all bins, having a

length |Q| = 108 where Q is the set of all features.



CHAPTER 3. RECOGNIZING SINGLE ACTIONS 33

(a) (b) (c) (d)

Figure 3.9: Extraction of line-based features. a) The original image. b) Probability of
boundary(Pb) features are extracted. c) Short line segments are fitted to the thresholded
boundary edges. d) Longer line segments are extracted to capture the more general
information about the shape. The final feature vector involves the statistics of both
short and long line segments.
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Figure 3.10: Forming line histograms are shown in this figure. An NxN grid is placed
over the bounding box of the human figure (here we use N = 3) and lines are his-
togrammed over each spatial grid based on their orientations. The resulting feature
vector is the concatenation of all spatial bins.
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3.2.1.1 Feature Selection

In our experiments, we observed that, even a feature size of |Q| = 108 is a sparse

representation for shape. That is, based on the nature of the actions, some of the

dimensions of this feature vector are hardly used. To have a more dense and compact

representation and to reduce the processing time in classification step, we make use

of a maximum-entropy based feature selection approach. By using maximum entropy,

we are able to detect regions of interest in which most of the change, i.e motion occurs.

We calculate the entropy of the features as follows: Let fj(t) represent the feature

vector of frame at time t in video j and let |Vj| denote the length of the video. The

entropy H(fn
j ) of each feature n over the temporal domain is

H(fn
j ) = −

|Vj |∑
t=1

f̂n
j (t)log(f̂n

j (t)) (3.8)

where f̂ is the normalized feature over time such that

f̂n
j =

fn
j (t)∑|Vj |

t=1 f
n
j (t)

(3.9)

This entropyH(fn
j ) is a quantative measure of energy in a single feature dimension

n. A lowH(fn
j ) means that the nth feature is stable during the action and higherH(f n

j )

means the nth feature is changing rapidly in the presence of action. We expect that

the high entropy features will be different for different action classes. Based on this

observation, we compute the entropies of each feature in all training videos separately

for each action. More formally, our reduced feature set Q′ is

Q′ =
{
fn|H(fn

j ) > τ , ∀j ∈ {1, ..,M}, n ∈ {1, .., |Q|}} (3.10)

where τ is the entropy threshold, M is the total number of videos in training set and

Q is the original set of features. After this feature reduction step, our shape feature

vector’s length reduces to ≈ 30. Note that for each action, we now have a separate set

of features.
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Figure 3.11: This figure illustrates the formation of optical flow histograms. We extract
dense block-based OF from each frame. Then, similar to forming shape histograms,
we divide the bounding box into equal-sized spatial bins. Inside each bin, we use the
total amount of optical flow in four perpendicular directions as our motion descriptor.

3.2.2 Motion features

Using pure optical flow (OF) templates increase the size of the feature vector to a great

extent. Instead, we present a compact OF representation for efficient action recogni-

tion. With this intention, we first extract dense block-based optical flow of each frame,

by matching it to the previous frame. We used L1 distance with a block size of 5 × 5

and a window size of 3 in this template matching procedure.

We then form orientation histograms of these optical flow values. This is similar to

motion descriptors of Efros et al. [26], however we use spatial and directional binning

instead of using the whole template. In addition, we skip the smoothing step, and use

the optical flow values as is. For each ith spatial bin where i ∈ {1, .., N ×N} and

direction θ ∈ {0, 90, 180, 270}, we define optical flow histogram hi(θ) such that

hi(θ) =
∑
j∈Bi

ψ(ũθ · Fj) (3.11)

where Fj represents the flow value in each pixel j, Bi is the set of pixels in the spatial

bin i, ũθ is the unit vector in θ direction and ψ function is defined as

ψ(x) =

{
0 if x ≤ 0

x if x > 0

}
(3.12)

This process is depicted in Fig 3.11.
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3.2.3 Recognizing Actions

3.2.3.1 SVM classification

After the feature extraction step, we use them for the recognition of actions. We train

separate shape and motion classifiers and combine the decisions of these by a majority

voting scheme. For this purpose, we again use SVM classifiers. We train separate

one-vs-all SVM classifiers for each action. These SVM classifiers are formed using

rbf kernels over snippets of frames using a windowing approach. In our windowing

approach, the sequence is segmented into k-length chunks with some overlapping ratio

o, then these chunks are classified individually (we achieved the best results with k = 7

, and o = 3).

We combine the vote vectors from the shape cs and motion cm classifiers using a

linear weighting scheme and obtain the final classification decision in cf , such that

cf = α cs + (1− α)cm (3.13)

and we choose the action having the maximum vote in cf . We evaluate the effect of

chosing α in the Section 4.3.

3.2.3.2 Including Global Temporal Information

In addition to our local motion information (i.e. OF histograms), we also enchance

the performance of our algorithm by using an additional global velocity information.

Here, we propose to use a simple feature, which is the overall velocity of the subject

in motion. Suppose we want to discriminate two actions: “handwaving” versus “run-

ning”. If the velocity of the person in motion is equal to zero, the probability that he is

running is quite low.

Based on this observation, we propose a two-level classification system. In the first

level, we calculate mean velocities of the training sequences and fit a univariate Gaus-

sian to each action in action set A = {a1..an} . Given a test instance, we compute the

posterior probability of each action ai ∈ A over these Gaussians, and if the posterior
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Figure 3.12: Overall system architecture with addition of mean horizontal velocity.
Classification votes from line and flow histograms are joint via a linear weighting
scheme. The global velocities are modeled using 1D gaussians and the final classi-
fication label is achieved by using global velocity as a prior.

probability of ai is greater than a threshold t (we use a loose bound t = 0.1), then we

add ai to the probable set A′ of actions for that sequence. After this preprocessing step,

as the second level, we evaluate the sequences using our shape and motion descriptor.

We take the maximum response of the SVMs for actions ak ∈ A′ as our classification

decision. The overall system is summarized in Fig. 3.12.

3.3 Single Action Recognition inside Still Images

Long before the evolution of the video technology, the human actions were conveyed

via static images. The newspapers still use action photography to picturize their news.

Although motion is a very important cue for recognizing actions, when we look at such

images, we can more or less understand human actions in the picture. This is mostly

true in news or sports photographs, where the people are in stylized poses that reflect
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Figure 3.13: Human mind can perceive the available actions even from a single image,
without examining the whole sequence. Here, we show some example images that
contaom actions. Left to right:Running, walking, kicking, crouching, throwing and
catching.

an action. Figure 3.13 shows some example images. However, understanding human

actions from still images is a widely ignored problem of computer vision.

In this section, we try to address this problem and answer the question of “Can we

recognize human actions within a single image?”. Our approach starts with employ-

ing a pose extractor, and then representing the pose via distribution of its rectangular

regions. By using classification and feature reduction techniques, we test our represen-

tation via supervised and unsupervised settings.

In still images, understanding motion is not a straightforward process. In the pres-

ence of motion, it is relatively easier to localize the person, whereas, in still images,

we need to estimate the place and pose of the person. However, in the presence of

background clutter and occlusions, it is not very straigtforward to localize the person

and represent the pose. For this reason, we first use a pose extraction algorithm for es-

timating the pose of the person in the image. Then, using our shape descriptor, we try

to identify the ongoing action. In the remaining of the section, we go into the details

of our approach for action recognition in still images.

3.3.1 Pose extraction from still images

We first use the method of Ramanan [74] to extract a pose from the still image. The

approach uses edge and region features, and constructs two deformable models using
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(a) running

(b) crouching

(c) kicking

(d) throwing

(e) catching

Figure 3.14: Pose and rectangle extraction. To the left: The original image and its
corresponding parse obtained by using iterative parsing as defined in [74]. To the
right: The extracted silhouette and the resulting rectangles.



CHAPTER 3. RECOGNIZING SINGLE ACTIONS 40

Conditional Random Fields (CRF). Edge-based deformable model consists of K num-

ber of parts denoted as li. Using the part information, the configuration of the model

is represented as L = [l1, l2, . . . lk]. This representation is a tree structure, and each

part corresponding to a node of the tree has a single parent. The deformable model

equation is defined as follows

P (L|I)α exp(
∑
i,j∈E

Ψ(li − lj) +
∑

i

φ(li))

Here, Ψ(li− lj), is the priori information of relative arrangements of part i with respect

to its parent part j. In the study, the shape prior expresses in terms of discrete binning.

φ(li) corresponds to local image features extracted from the oriented image patch lo-

cated at li. The overall edge-based deformable model is used to estimate the initial

body part positions. Then, using the previously obtained estimate, the method creates

a region model(parse) that represents an image for each one of the body parts. Then,

information obtained from part histograms become the ground for the region-based

deformable model. The initial estimates of body positions from region-base model are

utilized to build a second region-based model. The procedure continues iteratively by

constructing a region model that is based on color evidence.

While pose extraction is still in its infancy, it still gives some idea about the over-

all posture of the person. Figure 3.14 shows example images and their corresponding

poses. In Fig. 3.14(a), an example image and its parse for a “catching” action is shown.

As you can see, the background is quite cluttered and the best parse is not very infor-

mative in this image. Fig. 3.14(b) gives an example for a “running” action. The parse

in this example is more accurate.

We use these initial parses as basis and extract silhouettes by thresholding over the

probability maps. Our preliminary experiments have shown that a threshold δ = 0.1

will work the best in this case, because we want to get as many information as possible

about the location and shape of the person inside the image. Resulting silhouettes are

quite imperfect; for example it is quite difficult for the human eye, to distinguish the

silhouette extracted in Fig. 3.14(b) as a “catch” action.
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Figure 3.15: Pose representation using circular histogram of oriented rectan-
gles(CHORs). Circular grid is centered to the maximum value of the probability parse.

3.3.2 Representing the pose

For describing the human pose, we again make use of rectangular regions that we de-

fine in Section 3.1.1. These regions are extracted in the following way: Given the

human silhouettes, we search for rectangular regions over this silhouette using con-

volution of a rectangular filter on different orientations and scales, the same way we

do for computing HORs as described in Section 3.1.1. We use undirected rectangular

filters, following [76]. The search is performed using 12 tilting angles, which are 15◦

apart. To tolerate the differences in the limb sizes and in the varying camera distances

to the subject, we perform the rectangle convolution over multiple scales.

After finding rectangles over the silhouettes, we use Histogram of Oriented Rect-

angles(HORs [45]) for representing the pose. We compute the histogram of extracted

rectangular regions based on their orientations. The rectangles are histogrammed over

15◦ orientations. For still images, we do this histogramming over the spatial circular

grids and define circular HORs (CHORs), as opposed to original N × N grid form.

This is mostly because we don’t know the explicit location of the human figure. In-

stead, we use the the center of the highest probability region of the parse as the center

of our circular grid. The bins of this circular histogram are 30◦ apart, making 12 bins

in total. We depict this process in Fig 3.15.
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3.3.3 Recognizing Actions in Still Images

As we discuss in Section 3.1.2, HORs are quite compact representations for action

recognition in videos. However, we can further densify the representation. In fact, in

still image case, we have much lesser examples for action classes, therefore feature re-

duction is necessary for learning. For this purpose, we first apply Linear Discriminant

Analysis(LDA) in our feature space. By using LDA, we reduce the feature dimension

from 144 to 50.

We then train one-vs-all SVM classifiers for each action separately and use the

highest probable class label. We form the SVM classifiers using RBF kernels.

For evaluating the performance of our method on unsupervised classification, we

also apply clustering, and make a qualitative evaluation of clusters. Our clustering

procedure is as follows: We run k-means clustering algorithm over the data for M =

100 times, and take the clusters that minimize the intra-cluster distance and maximize

the inter-cluster distance. The respective results are given in Section 4.4.



Chapter 4

Experiments on Single Human Actions

In this chapter, we evaluate the performance of our methods introduced for single ac-

tion recognition in Section 3. As stated before, by single actions, we refer to the case

where the images or videos involve one action only. In the case of single actions, our

claim is that, we may not need complex modeling, hence, compact shape represen-

tations may suffice for identifying the human actions. In this chapter, we exploit the

dimensions of our claim and we further boost the classification performance by com-

bining our shape features with temporal motion features. We show that we can achieve

high-accuracy action recognition with the help of our compact spatio-temporal fea-

tures.

4.1 Datasets

We test the effectiveness of our method over two state-of-the-art datasets over the video

domain. The first dataset is the Weizzman dataset and second is the KTH dataset; these

are the current benchmark datasets in the action recognition research. For computing

the performance of our approach for action recognition in still images, we make use

of two distinct datasets, one is the ActionWeb dataset, second is the figure skating

dataset [100]. We now describe these datasets in greater detail.

43
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Figure 4.1: Example frames from the Weizzman dataset introduced in [12].

4.1.1 Video Datasets

Weizzman dataset: This is the dataset that Blank et al. introduced in [12]. We use

the same set of actions as in [12], which is a set of 9 actions: walk, run, jump, gallop

sideways, bend, one-hand wave, two-hands wave, jump in place and jumping jack.

Example frames from this dataset are shown in Fig. 4.1. We used the extracted masks

provided to localize the human figures in each image. These masks were obtained

using background subtraction. We test the effectiveness of our method using leave-

one-out cross validation.

KTH dataset: This dataset has been introduced by Schuldt et al. in [86]. It is more

challenging than the Weizzman, covering 25 subjects and 4 different recording condi-

tions of the videos with the frame rate of 25fps and a spatial resolution of 160 × 120.

There are 6 actions in this dataset: boxing, handclapping, handwaving, jogging, run-

ning and walking. One additional challenge of this dataset comes from the set of

actions available; there are two very similar actions – jogging and running – in this

dataset. Example frames from the KTH dataset are shown in Fig. 4.2. There are

four different recording conditions of this dataset, where each actor and each action is

recorded repeatedly. These are: s1: the standard outdoor recording with a stable cam-

era(Fig. 4.2(a)), s2: zoom-effect of the camera for boxing, handwaving and handclap-

ping actions, and diagonal movements (i.e. different viewpoints) for running, jogging

and walking actions(Fig. 4.2(b)), s3: actors with different outfits and carry items with
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more strong shadow effects(Fig. 4.2(c)), s4: indoor(darker) recording with consider-

able amount of illumination change and shadows(Fig. 4.2(d)). Video sequences are

in the order of 100 frames, and the actions are repeated multiple times in each video.

Since there is no change in the nature of the action throughout the whole video, pro-

cessing only first 40 frames–where the actor is in view of the camera– is sufficient for

our experiments.

Since the recording conditions of the videos in the KTH dataset are not stable,

and there is considerable amount of camera movement in some situations, silhouette

extraction in this dataset is not straightforward. For this reason, we make use of several

clues like lines and gradients, for a good extraction of the foreground human figure.

In the KTH dataset, despite the camera movement and zoom effect, the backgrounds

of the sequences are relatively simple. We used this fact to localize the human figure,

and then applied background subtraction to the localized image region to extract the

silhouettes. We perform localization based on the density of the vertical lines and

gradients. The resulting silhouettes are not perfect, but realistic. Example silhouettes

are given in Figure 4.3. The successful results on these noisy silhouettes prove that

our method does not heavily depend on perfect silhouettes. We should note that, better

silhouettes will give higher accuracy rates eventually.

4.1.2 Still Image Datasets

ActionWeb dataset: For recognition of actions from still images, we collected a

dataset from various sources like Google Image Search, Flickr, BBC Motion database,

etc. This dataset consists of 467 images and includes six different actions; these are

running, walking, catching, throwing, crouching and kicking. We choose this subset

of actions, because these are mostly visually identifiable actions from single images.

Example images for each action is shown in Fig 4.4. This image collection involve a

huge amount of diversity by means of viewpoints, shooting conditions, cluttered back-

grounds, resolution.

Figure Skating dataset: We also test our descriptor’s performance for the case of

unsupervised classification. For this purpose, we used Wang et al.’s skating images
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(a) s1 condition: outdoor(standard recording)

(b) s2 condition: zoom effect and different viewpoints

(c) s3 condition: different outfits and carry items

(d) s4 condition: indoor(darker recording)

Figure 4.2: Example frames from the KTH dataset introduced in [86].
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(a) boxing silhouettes

(b) handclapping silhouettes

(c) handclapping silhouettes

(d) jogging silhouettes

(e) running silhouettes

(f) walking silhouettes

Figure 4.3: Extracted silhouettes from the KTH dataset in s1 recording condition.
Each single silhouette image corresponds to a different actor in the dataset (a to-
tal of 25 actors). The silhouettes are quite imperfect, due to the difficulty in fore-
ground/background discrimination in this dataset.
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(a) running

(b) walking

(c) throwing

(d) catching

(e) crouching

(f) kicking

Figure 4.4: Example images of the ActionWeb dataset collected from the web sources.
There is a large amount of diversity in this dataset, with respect to pose, pose direction,
background clutter and scale.
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Figure 4.5: Example frames from the figure skating dataset introduced in [100].

dataset [100]. This dataset is a collection of 1432 images, where different figure skaters

perform various moves. Example images from this dataset is given in Fig. 4.5. The

existing categories of this figure-skating dataset can be generalized under 10 different

labels: face close-up picture, skates with arms down, skates with one arm out, skater

leans to his right, skates with both arms out, skates on one leg, sit-spin leg to the left

of the image, sit spin leg to right of the image, camel spin leg to left of the image and

camel spin leg to right of the image.

4.2 Experiments with Histogram of Oriented Rectan-

gles (HORs)

4.2.1 Optimal Configuration of the Pose Descriptor

In this section, we present the experiments regarding the performance of the histogram-

of-oriented-rectangles(HOR) pose descriptor with respect to its configuration. There

are several choices that can be made while forming the HOR pose descriptor. These

are (a) granularity of the angular bins, i.e. number of orientations for the rectangle

detection, (b) number of spatial bins and (c) choice of torso exclusion.

In the following, we first exploit the effect of using different configurations over the

Weizzman data set. Based on this evaluation, we determine the optimal configuration

and continue the rest of the experiments using this optimal configuration.
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Table 4.1: The accuracies of the matching methods with respect to angular bins (over a
grid of 3×3. The original rectangle search is done with 15◦ tilted rectangular filters. To
form 30◦ histograms, we group rectangles that fall into the same angular bins. These
results demonstrate that as we move from fine to coarser scale of angles, there is a slight
loss of information, and thus 30◦ HORs become less discriminative than 15◦ HORs.
180◦ HORs ignore the orientation information of the rectangles and performs binning
based on the spatial distribution of the rectangles over the silhouette. Surprisingly,
even the spatial distribution of the rectangular regions provide quite rich information
about the available action.

Classification Method 15◦ 30◦ 180◦

NearestNeighbor 96.30% 95.06% 92.59%
GlobalHist 96.30% 93.83% 85.19%

SVM 97.53% 93.83% 92.59%
DTW 100% 95.06% 91.36%

4.2.1.1 Granularity of Angular Bins

We first evaluate the choice of orientation angles when forming the histogram. Ta-

ble 4.1 shows the results using different angular bins. The original rectangle search is

done with 15◦ tilted rectangular filters. To form 30◦ histograms, we group rectangles

that fall into the same angular bins. Not surprisingly, we see that there is a slight loss

of information when we go from fine level orientations (i.e. 15◦ bins) to a coarser

level (30◦). More interestingly, if we do not use angular binning and instead use just

the histogram of rectangles falling into each spatial grid, we still capture a valuable

amount of information (180◦ case). 180◦ HORs ignore the orientation information of

the rectangles and performs binning based on the spatial distribution of the rectangles

over the silhouette. This confirms that describing the human figure as a collection of

rectangles is a sensible approach, and even the spatial distribution of the rectangular

regions over the silhouette provide quite rich information about the available action.

If we look at the orientation of these rectangles besides the spatial distributions, we

acquire more detail and higher accuracy about the action of the body.
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Table 4.2: The accuracies of the matching methods with respect to N ×N grids (with
15◦ angular bins, no rectangle or torso elimination). We have compared 2×2 and 3×3
partition grids. Our results show that the 3×3 grid is more effective when forming our
oriented-rectangles based pose descriptor.

Classification Method 1× 1 2× 2 3× 3

NearestNeighbor 64.20% 91.36% 96.30%
GlobalHist 55.56% 87.65% 96.30%

SVM 80.25% 90.12% 97.53%
DTW 70.37% 91.36% 100%

4.2.1.2 Number of Spatial Bins

When forming the histograms of oriented rectangles, we place an N × N grid over

the silhouette of the subject and form orientation histograms for each grid region. The

choice ofN effects the size of the feature vector (thus execution time of the matching),

and the level of detail of the descriptor. Table 4.2 compares the use of different spatial

grids. The 1 × 1 grid implies that we do not use any spatial binning and we take

the silhouette as a whole. Not surprisingly, ignoring the spatial layout and binning

only over orientations is not satisfactory, since spatial layout of the rectangles provides

useful cues for discriminating different parts of the body.

Our results over this dataset indicate that the 3× 3 grid gives a better performance

compared to 2 × 2. However, if execution time is crucial, choice of N = 2 will still

work to a certain degree of performance. One can try further levels of partitioning, even

form pyramids of these partitions. However, overly dense partitioning will not make

sense, since the subregions have to be large enough to contain a reasonable amount of

rectangular patches.

4.2.1.3 Torso Detection

One can also perform a special search for the torso rectangle, which is considerably

larger than limb rectangles, omit this torso region while searching for the remaining
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torso region limb areasoriginal silhouette

(a)

Classification Method No Torso Torso
NearestNeighbor 96.30% 96.30%

GlobalHist 96.30% 91.36%
SVM 97.53% 95.06%
DTW 100% 98.77%

(b)

Figure 4.6: Rectangle detection with torso exclusion (best viewed in color). In (a), the
torso region is detected. This is done by applying a larger rectangular filter and taking
the mean of the responses. After finding the torso, the remaining silhouette is analyzed
for candidate limb areas. In (b), the accuracies of the matching methods with respect
to torso exclusion are given (using 15◦ angular bins and 3 × 3 grid). We can say that
torso detection degrades the performance, so using the whole silhouette for candidate
rectangle regions results in higher performance.

body parts and then form rectangular histograms. An example case for this kind of

rectangular search is given in Fig. 4.6. Here, by applying a larger rectangular filter

and computing the mean among the responses, we localize the torso region. Then, we

exclude this region and apply rectangle filtering in order to find candidate limb areas

and base our pose descriptor on those remaining areas only.

In Fig. 4.6(b), we show the effect of torso detection on the overall accuracies.

We observe that with global histogramming methods, torso detection and exclusion

helps; however, SVM and DTW classifiers suffer from slight performance degradation.

So, we conclude that explicit torso detection is not necessary and extracting the HOR

descriptors from the whole silhouettes is more informative.
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Table 4.3: Overall performance of the matching methods over the Weizzman and KTH
datasets. Here, v+SVM refers to using SVM classifiers together with global velocity
Gaussians, and v+DTW corresponds to using DTW with the same set of Gaussians.

Classification Method Feature Weizzman KTH

NearestNeighbor
HOR 96.30% 75.46%

HORW 97.53% 72.22%

GlobalHist
HOR 96.30% 71.76%

HORW 69.14% 57.41%

SVM
HOR 97.53% 77.31%

HORW 95.06% 85.65%

DTW
HOR 100% 74.54%

HORW 96.30% 78.24%

v+SVM
HOR 98.77% 81.48%

HORW 95.06% 89.35%

v+DTW
HOR 100% 81.02%

HORW 98.77% 83.8%

4.2.2 Classification Results and Discussions

After deciding on the optimal configuration of the pose descriptor, we evaluate the

effect of using different classification techniques. We use the optimal configuration

found in the previous section which is a 3× 3 grid over 15◦ angular bins as our HOR

configuration.

The overall results over two datasets are shown in Table 4.3. For the Weizzman

dataset, where actions are mostly differentiable based on their shape information, ap-

plying DTW over HOR descriptors gives the best results. However, on the more com-

plex KTH dataset, we need to make use of the velocity information, because shape is

mostly not enough, especially in the presence of noise introduced by imperfect silhou-

ettes. In the KTH dataset, best results are achieved by using two level classification

with SVM models, which is the global velocity plus SVM classification(v+SVM) us-

ing HORWs as features.

In Fig. 4.7 and Fig. 4.8, we present the confusion matrices of our method in

Weizzman and KTH datasets respectively. On the Weizzman dataset we achieve the
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best results with DTW matching. This is not surprising, because the subjects do not

perform actions with uniform speeds and lengths. Thus, the sequences need aligning.

DTW matching accomplishes this alignment over the bins of the histogram separately,

making alignment of limb movements also possible. Action speed differences between

body parts are handled this way.

However, in the KTH dataset, a simple alignment using DTW is not sufficient,

because in DTW we lose valuable temporal information by warping the time axes

while trying to aligh the sequences, and only pay attention to the ordering of the poses.

The KTH dataset introduces additional challenge by including very similar actions

like jogging and running, which need temporal features to achieve better separation.

Therefore, in this dataset, v+SVM classification performs best.

We should also note that, especially on the Weizzman dataset, nearest neighbor

voting per frame and global histogramming with our pose descriptor produce surpris-

ingly good results. This suggests that we can still achieve satisfactory classification

rates even if we ignore the time domain to a certain degree and look at the frames

separately, or as a whole.

One shortcoming of our rectangle-based approach is its dependence over silhouette

extraction. We observed that most of the confusion, especially in the KTH dataset,

occurs because of the imperfect silhouettes. However, we should also note that, even

with imperfect silhouettes, our method achieves high recognition rates which shows

our method’s robustness to noise. We argue that better silhouettes will result in higher

accuracy rates eventually.

4.2.3 Comparison to other methods and HOGs

We reach a perfect accuracy (100%) over the Weizzman action dataset, using 15◦ an-

gular bins over a 3×3 spatial partitioning with DTW or v+DTW methods. We present

comparison of our results over this dataset in Table 4.4. Blank et al. report classi-

fication error rates of 0.36% and 3.10% for this dataset. Recently, Niebles and Fei

Fei [65] evaluate their hierarchial model of spatial and spatio-temporal features over
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(a) Nearest neighbor: 1 jump sequence clas-
sified as bend, 1 one-hand wave sequence
classified as jump-in-place and 1 run se-
quence misclassified as walk.
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(b) Global histogramming: 1 one-hand wave
sequence misclassified as jump-in-place, 1
jumpjack sequence misclassified as two-
hands-wave and 1 run sequence misclassified
as walk.
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(c) SVMs: 1 jump sequence is classified as
bend, 2 run sequences classified as walk, 1
run sequence misclassified as jump.
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(d) DTW method achieves 100% accuracy.

Figure 4.7: Confusion matrices for each matching method over the Weizzman dataset
with the optimal configuration.
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Figure 4.8: Confusion matrix for classification results of the KTH dataset using HORW
feature with v+SVM. The overall accuracy we achieve is 89.35% in this dataset. Most
of the confusion occurs between run and jog actions, which is quite comprehensible.

Table 4.4: Comparison of our method to other methods that have reported results over
the Weizzman dataset.

Method Accuracy
HOR 100%

Blank et al. [12] 99.64%
Jhuang et al. [49] 98.8%
Wang et al. [99] 97.78%
Niebles et al. [65] 72.8%

this dataset, acquiring an accuracy of 72.8% and Wang and Suter [99] used FCRF over

a grid-based feature, resulting in an accuracy of 97.78%.

In Table 4.5, we compare our descriptor’s performance to current results on the

KTH dataset. We should note that the numbers in Table 4.5 are not directly compara-

ble, because the testing settings are different. Some of the approaches use leave-one-

out cross-validation, whereas some others use different splitting of train and test data.

We use the train and test sets provided in the original release of the dataset by Schuldt

et al. [86]. Overall, we can say that our approach is among the top-ranking approaches

in the literature regarding this dataset.

We also compare our approach to the Histogram of Oriented Gradients(HOG),
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Table 4.5: Comparison of our method to other methods that have reported results over
KTH dataset.

Method Accuracy
Jhuang et al. [49] 91.7%
Wong et al. [103] 91.6%

HORW 89.4%
Niebles et al. [66] 81.5%
Dollár et al. [25] 81.2%

Ke et al. [51] 80.9%
Schuldt et al. [86] 71.7%

which is also based on histogramming and therefore is a natural counterpart to our

approach. The HOG method has been recently proposed by Dalal and Triggs [22].

They have used gradient orientations to detect humans in still images, and their ap-

proach has been shown to be quite successful.

We used provided HOG implementation in order to extract the HOGs in the KTH

dataset. While doing this, we omit the human detection phrase and we compute HOG

features directly over the bounding box of the extracted silhouettes, using parameters

cellsize = 8 and #ofcells = 2. This gives a feature vector of size 288, which is

computationally very expensive, especially when used with SVMs over window of

frames. In order to cope with this, and to be more computationally efficient, we reduce

the size of the HOG vectors by applying PCA and using the projections over the 80

principal components.

Table 4.6 shows the comparison results of HOGs and HORs using three of the

most successful matching methods over the KTH dataset. As the results indicate, using

HORs as opposed to HOGs gives a better classification performance in all matching

techniques.
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Table 4.6: Comparison to HOG feature based action classification over the KTH
dataset.

HOG HOR HORW

SVM 76.85% 77.31% 85.65%
DTW 67.59% 74.54% 78.24%

v+SVM 82.41% 81.48% 89.35%

Table 4.7: Run time evaluations for different matching techniques using HORs. The
results presented here are the per-frame running times over the Weizzman dataset.

NearestNeighbor GlobalHist SVM DTW v+SVM v+DTW

msec 70.58 3.82 32.0 81.84 35.49 82.47

4.2.4 Computational Evaluation

The run-time evaluation of our approach is two-fold. First is the phase of rectangle

extraction. Rectangle extraction consumes around 1sec per frame.

The second phase is the matching part. The computational evaluation of the meth-

ods (implemented in MATLAB without code optimization) is presented in Table 4.7.

These results are the running times (per frame) of corresponding methods over the

Weizzman dataset. DTW is the most time-consuming method among others, whereas

global histogramming takes the least amount of time. SVM classification has very

managable time constraints and is preferable if the running time is an important con-

sideration of the system.

4.3 Experiments with Line and Flow Histograms

When the silhouette information is not extractable, but the image sequences have rela-

tively simple backgrounds and the foreground human figure is identifiable, we can use

boundary-fitted lines instead of rectangles. In this section, we present experimental
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Figure 4.9: Choice of α and resulting confusion matrix for the KTH dataset. α = 0
means that only motion features are used, whereas α = 1 corresponds to using line-
based shape features alone. We see that the mutual combination of these two features,
with equal weights, gives the best classification accuracy.

evidence for supporting this claim.

In Fig 4.9, we show the performance of our line and flow histograms. Here, LF cor-

responds to using line and flow histograms without the velocity information, and LFV

is with global velocity. We first show the effect of adding global velocity information.

We observe that using global information gives a slight improvement on the overall

accuracy. In the same figure, we also evaluate the effect of choosing α of Eq. 3.13

which is the weight used for combining line and flow features. In this figure, α = 0

indicates that only motion features are used, whereas α = 1 corresponds to using only

shape features. Our results show that α = 0.5 gives the best combination. This co-

incides with the observations of Ke et al. [51], that the shape and motion features are

complimentary to each other.

The respective confusion matrix is shown in Fig 4.10. Not surprisingly, most of the

confusion occurs between jog and run actions which are very similar in nature.

Here, we should also note that our optical flow feature is quite successful over this

dataset. Even used solely, i.e. when α = 0, the prediction accuracy we get is 89.35%

with SVM classification.
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Figure 4.10: Resulting confusion matrix for the KTH dataset. The overall classification
accuracy we achieve is 94.0% when we use line and optical flow histograms together
with global velocity posteriors.

Table 4.8: Comparison of our method to other methods on KTH dataset.

Method Accuracy
LFV 94.0%

Jhuang [49] 91.7%
Wong [103] 91.6%
Niebles [66] 81.5%
Dollár [25] 81.2%

Ke [51] 80.9%
Schuldt [86] 71.7%
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Table 4.9: Comparison with respect to recording condition of the videos in the KTH
dataset.

Condition LFV Jhuang [49]
s1 98.2% 96.0%
s2 90.7% 86.1%
s3 88.9% 89.8%
s4 98.2% 94.8%

In Table 4.8, we compare our method’s performance to all major results on the KTH

dataset reported so far (to the best of our knowledge). We achieve the highest accuracy

rate (94%) on this state-of-art dataset, which shows that our approach successfully

discriminates action instances. This is the best accuracy obtained for KTH dataset in

the literature. We also present accuracy rates for different recording conditions of the

dataset in Table 4.9. Our approach outperforms the results of [49] in three out of four of

the conditions. Although still very close to the current best results in the literature, the

lowest prediction accuracy is in s3 condition, which is not surprising. The presence of

carry items and different outfits in this recording condition alter the histogram statistics

inevitably, thus, degrading the performance. In such cases, an individual modelling of

carry items and non-shape-conserving outfits would help.

Without feature selection, the total classification time (model construction and test-

ing) of our approach is 26.47min. Using feature selection, this time drops to 15.96min.

As expected, we gain considerable amount of time as we use a more compact feature

representation.

4.4 Experiments on Still Images

While searching for the answer to the question “Can we recognize actions from still

images?”, we applied our CHOR pose descriptor to the extracted parses from the still
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images. For performance measurement, we use ActionWeb dataset introduced in Sec-

tion 4.1.2. We follow leave-one-out cross validation scheme in our experimental eval-

uation over this dataset.

Figure 4.11 shows examples for the correctly classified images by our approach.

Note that the diversity of the images in the dataset is very large, with cluttered back-

grounds, different poses, outfits and also carry items.

We also provide examples for the misclassified images in Fig. 4.13. The misclas-

sification labels are written below the images. It can be observed that within the mis-

classified images, the lack of proper edge boundaries make the pose extraction harder.

Additionally, some of the poses are very similar, indistinguishable even to the human

eye.

Our overall accuracy rate for supervised classification on ActionWeb dataset is

85.1%. This is a surprisingly good result, given the fact that the images cover a wide

range of poses (see Fig. 3.13) and foreground parses are not that perfect (Fig. 3.14).

However, by using CHORs, these results show that we can still overcome most of such

discrepancies and achieve high accuracy rates.

The resulting confusion matrix for our method with supervised classification over

the ActionWeb dataset is given in Fig. 4.12. Most of the confusion occurs between

catching and running motions, and this is mostly due to the nature of the photographs.

Most of the catching photographs contain running as a sub-action, that is the pho-

tographs mostly illustrate the joint of a “run-catch” action. Thus, when the parses

miss out arm information, the remaining is a good match for a run action. We can

see that our method will benefit a lot from the improvements in body parse estimation

techniques.

We also present qualitative results of clustering with our approach. Figure 4.14

presents some of the clusters that we get with the Wang et al.’s dataset. We used

k = 100 in our execution of k-means clustering. As seen, the clusters we get are quite

coherent and each of them represents a certain pose.
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Figure 4.11: Examples for correctly classified images of actions running, walking,
throwing, catching, crouching, kicking in consecutive lines.
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Figure 4.12: Confusion matrix of CHOR method over the ActionWeb still images
dataset. The overall accuracy with CHOR pose descriptor for ActionWeb dataset is
85.1%. Most of the confusion occurs between catching and running motions. This is
comprehensible, when we examine the nature of the photographs. Most of the catching
photographs contain running as a sub-action, illustrating a joint of “run-catch” action.
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(a) catch, walk, catch, throw (b) run, run, run, kick

(c) catch, kick, walk, crouch

(d) run, throw, run, run

(e) kick, walk, walk, catch

(f) throw, walk, run, throw

Figure 4.13: Examples for misclassified images of actions running, walking, throwing,
catching, crouching, kicking, consecutively with their wrong classification labels.
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Figure 4.14: Clusters formed by our approach for the figure skating dataset. Each row
represents a different cluster formed by applying kmeans over CHORs.



Chapter 5

Recognizing Complex Human

Activities

In general, videos involve more than single actions. The people in motion may exhibit

composite activities, where the arms are involved in one action, and the legs are in-

volved in another action. In addition, the actions may be composed over time, forming

sequential activities. Furthermore, the direction of the actions may change rapidly, re-

sulting in different viewpoints and shooting angles of the ongoing activity. 2D models

which are trained over single viewpoints are most likely to fail under these circum-

stances.

In such cases, where simple approaches do not suffice, we need more sophisti-

cated models in order to grasp activity information. This chapter introduces such an

approach, where the body is modelled in 3D, by means of authoring compositional

activity models to distinct limbs separately. Here, we propose to make use of motion

capture data to overcome the data shortage problem. It is interesting to note that this

data does not consist of everyday actions, but rather a limited set of American foot-

ball movements. Using motion capture dataset gives us the flexibility of extending our

training set and learning from a different domain, and transfering this knowledge to

everyday-action recognition domain. This is a type of transfer learning problem, and

we believe that transfer learning helps a lot for understanding human activities.

67
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Figure 5.1: Overall system architecture for the retrieval of complex human activities.

Tracking is now a usable, if not perfect technology (section 5.2). Building ex-

tremely complex dynamical models from heterogenous data is now well understood

by the speech community, and we borrow some speech tricks to build models from

motion capture data (section 5.1) to minimize parameter estimation.

Figure 5.1 summarizes the overall system architecture.
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5.1 Representing Acts, Actions and Activities

In terms of acts and activities, there are many quite different cases. Motions could be

sustained (as in walking, running motions) or have a localizable character (as in catch-

ing, kicking). The information available to represent what a person is doing depends

on timescale. In our study, we distinguish between short-timescale representations

(acts), like a forward-step; medium timescale actions, like walking, running, jumping,

standing, waving, whose temporal extent can be short (but may be long) and are typ-

ically composites of multiple acts; and long timescale activities, which are complex

composites of actions.

In order to handle activities, we start with building separate models for actions.

Since we want our complex, composite activities to share a vocabulary of base units,

we use the kinematic configuration of the body as distinctive feature.

We want our representation to be as robust as possible to view effects and to de-

tails of appearance of the body. Furthermore, we wish to search for activities without

possessing an example. All this suggests working with an inferred representation of

the body’s configuration (rather than, say, image flow templates as in [26, 12]). An

advantage of this approach is that models of activity, etc. can be built using motion

capture data, then transferred to use on image observations, and this is what we do.

Here, we ignore limb velocities and accelerations because actions like reach/wave

can be performed at varying speeds. This is mostly true in our case where we use

motion capture dataset of American football movements. In this dataset, the players

tend to perform actions in higher velocities and accelerations. Our model would have

a higher value of velocity estimates if we strung the velocity information inside the

model. For this reason, we ignore limb velocities, and use configuration of the body

parts as our only feature. However, one should note that velocity and acceleration is a

useful clue when differentiating run and walk motions.

In this section, we first describe how we form our base units on acts and actions,

then how we string them together to form complex activity models.
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5.1.1 Acts in short timescales

Individual frames are a poor guide to what the body is up to, not least because trans-

duction is quite noisy and the frame rate is relatively high (15-30Hz). We expect better

behaviour from short runs of frames. At the short timescale, we represent motion with

three frame long snippets of the lifted 3D representation. We form one snippet for

each leg and one for each arm; we omit the torso, because torso motions appear not

to be particularly informative in practice (see section 6). Each limb in each frame is

represented with the vector quantized value of the snippet centered on that frame. That

is, we apply k-means to the 3D representation of snippets the limbs. We use 40 as

the number of clusters in vector quantization, for each limb. One can utilize different

levels of quantization, but our experiments show that for this dataset, using 40 for each

limb provides good enough generalization.

5.1.2 Limb action models

Using a vague analogy with speech, we wish to build a large dynamical model with

the minimum of parameter estimation. In speech studies, in order to recognize words,

phoneme models are built and joined together to form word models [72]. By learning

phoneme models and joining them together, word models share information within

the phoneme framework, and this makes building large vocabularies of word models

possible.

By using this analogy, we first build a model of the action of each limb (arms, legs)

for a range of actions, using Hidden Markov Models (HMM’s [73]) that emit vector

quantized snippets we formed in the previous step. We choose a set of 9 actions by

hand, with the intention of modelling our motion capture collection reasonably well;

the collection is the research collection of motion capture data released by Electronic

Arts in 2002, and consists of assorted football movements. Motion sequences from this

collection are sorted into actions using the labelling of [7]. The original annotation

includes 13 action labels; we have excluded actions with the direction information

(3 actions named turn left, turn right, backwards) and observed that

reach and catch actions do not differ significantly in practice, so we joined the
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data for these two actions and labelled them as reach altogether. Moreover, this

labelling is adapted to have separate action marks for each limb. Since actions like

wave cannot be definable for legs, we only used a subset of 6 actions for labelling legs

and 9 for labelling arms.

For each action, we fit to the examples using maximum likelihood, and searching

over 3-10 state HMM models. Experimentation with the structures shows that 3-state

models represent the data well enough. Thus, we take 3-state HMMs as our small-

est unit for action representation. Again, we emphasize that the action dynamics are

completely built on 3D motion capture data.

5.1.3 Limb activity models

Having built atomic action models, we now string the limb models into a larger HMM

by linking states that have similar emission probabilities. That is, we put a link between

states m and n of the different action models A and B if the distance

dist(Am, Bn) =

N∑
om=1

N∑
on=1

p(om)p(on)C(om, on) (5.1)

is minimal. Here, om and on are the emissions, p(om) and p(on) are the emission

probabilities of respective action model states Am and Bn, N is the number of possi-

ble emissions and C(om, on) is the Euclidean distance between the emissions centers,

which are the cluster centers of the vector-quantized 3D joint points.

The result of this linkage is a dynamical model for each limb that has a rich variety

of states, but is relatively easily learned. States in this model are grouped by limb

model, and we call a group of states corresponding to a particular limb model a limb

activity model (Figure 5.2). While linking these states, we assign uniform probability

to transition between actions and transition to the same action. That is, the probability

of the action staying the same is set equal to the probability of transferring to another

action. This is analogous to joining phoneme models to recognize words in speech

recognition. This is loosely a generative model, we compute the probability that each

sequence is generated by a certain set of action HMMs.
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Figure 5.2: Formation of activity models for each of the body parts. First, single action
HMMs for left leg, right leg, left arm, right arm are formed using motion capture
dataset. Second, single action HMMs are joint together by linking the states that have
similar emission probabilities.
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Figure 5.3: Here are some example good tracks for the UIUC video dataset. These
are two sequences performed by two different actors wearing different outfits. Top:
stand-pickup sequence. Bottom: walk-jump-reach-walk sequence.

Figure 5.4: Due to motion blur and similarities in appearance, some frames are out
of track. first: appearance and motion blur error second: legs mixed up because of
rectangle search failure on legs. third and fourth: one leg is occluded by the other
leg, the tracker tries to find second leg, mistaken by the solid dark line fifth: motion
blur causes tracker to miss the waving arm, legs scrambled.

5.2 Transducing the body

5.2.1 Tracking

We track motion sequences with the tracker of Ramanan et al. [76]; this tracker obtains

an appearance model by detecting a lateral walk pose, then detects instances in each

frame using the pictorial structure method of [29]. The advantage of using this tracker

is that it is highly robust to occlusions and complex backgrounds. There is no need for

background modelling, and this tracker has been shown to perform well on changing

backgrounds (see also section 6.5). Moreover, it is capable of identifying the distinct

limbs, which we need to form our separate limb action models.

Example outputs of the tracker is given in Fig 5.3 and Fig 5.4. In Fig 5.3, the

tracker is able to spot most of the body parts in these sequences. However, in most

of the sequences, especially in lateral views, only two out of four limbs are tracked
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because of the self-occlusions.

Kinematic tracking is known to be hard (see the review in [33]) and, while the

tracker is usable, it has some pronounced eccentricities (Figure 5.4 [77]). Note that

all such bad tracks are a part of our test collection and non-perfect tracking introduces

considerable amount of noise to our motion understanding procedure. By lifting 2D

tracks to 3D, we want to suppress the effects of such noise as much as possible.

5.2.2 Lifting 2D tracks to 3D

The tracker reports a 2D configuration of a puppet figure in the image (Figure 5.3), but

we require 3D information. Several authors have successfully obtained 3D reconstruc-

tions by matching projected motion capture data to image data by matching snippets

of multiple motion frames [41, 42, 75]. A complete sequence incurs a per-frame cost

of matching the snippet centered at the frame, and a frame-frame transition cost which

reflects (a) the extent of the movement and (b) the extent of camera motion. The best

sequence is obtained with dynamic programming. The smoothing effect of matching

snippets — rather than frames — appears to significantly reduce reconstruction ambi-

guity (see also the review in [33]).

The disadvantage of the method is that one may not have motion capture that

matches the image well, particularly if one has a rich collection of activities to deal

with. We use a variant of the method. In particular, we decompose the body into

four quarters (two arms, two legs). We then match the legs using the snippet method,

but allowing the left and right legs to come from different snippets of motion capture,

making a search over 20 camera viewing directions. The per-frame cost must now also

reflect the difference in camera position in the root coordinate system of the motion

capture; for simplicity, we follow [75] in assuming an orthographic camera with a ver-

tical image plane. We choose arms in a similar manner conditioned on the choice of

legs, requiring the camera to be close to the camera of the legs. In practice, this method

is able to obtain lifts to quite rich sequences of motion from a relatively small motion

capture collection. Our lifting algorithm is given in Algorithm 1.
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Algorithm 1 Lifting 2d tracks to 3d

for each camera c ∈ C do
for all pose p ∈ mocap do
σpc ← projection(p, c)

end for
camera transition cost δ(ci, cj)← (ci − cj)× α

end for
for each lt ∈ L (leg segments in 2D) do

for all p ∈ mocap and c ∈ C do
λ(lt, σpc)← match cost(σpc, lt)
γ(lt, lt+w)← transition cost(λ(lt, σpc), λ(lt+w, σpc))

end for
end for
do dynamic programming over δ, λ, γ for L
clegs ← (minimum cost camera sequence)
for each at ∈ A (arm segments in 2D) do

for cε ← neighborhood ε of clegs and pose p ∈ mocap do
compute λ(at, σ)← match cost(σpcε, at)
compute γ(at, at+w)← transition cost(λ(at, σpcε), λ(at+w, σpcε))

end for
end for
do dynamic programming over δ, λ, γ for A
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Figure 5.5: Posterior probability map of a walk-pickup-carry video of an arm.
This probability map corresponds to a run of forward algorithm through the activity
HMM for this particular video.

5.2.3 Representing the body

We can now represent the body’s behaviour for any sequence of frames with

P (limb activity model|frames). The model has been built entirely on motion capture

data. By computing a forward-algorithm pass of the lifted sequences over the activity

models, we get a posterior probability map representation for each video, which in-

dicates the likelihood of each snippet to be in a particular state of the activity HMMs

over the temporal domain.

Hidden Markov Models(HMMs) are statistical models that aim to describe the se-

quence of observations by means of discovering the hidden states from the observable

parameters. HMMs obey the Markovian property, where the current state depends on

the previous state(s) and are extensions of Markov chains. In Markov chains, the state

outputs are deterministic and each state corresponds to a single (observable) event [72].

On the other hand, in hidden Markov models, the observations are probabilistic func-

tions of the states, and the states cannot be directly deduced from the sequence of

observations (i.e. they are hidden).

Each HMM is defined by two sets of stochastic processes; first one describes the

state transition probabilities and second is the stochastic process that generate the ob-

servations for each state [61]. The task is to estimate these two processes that best

explain the training data.

Formally, HMMs are identified with five main components, which are (follow-

ing [72])
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• N , the number of states

• M , the number of possible observations per state, or the alphabet size, where the

individual symbols are denoted as V = {v1, v2, . . . , vM}

• A = {aij}, the state transition probability distribution where

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N. (5.2)

• B = {bj(k)}, the observation probability distribution where

bj(k) = P [vk at t|qt = Sj], 1 ≤ j ≤ N,

1 ≤ k ≤M.
(5.3)

• πi , the initial state distribution where

πi = P [q1 = Si], 1 ≤ i ≤ N. (5.4)

There are three fundamental problems of Hidden Markov Models. These are evalu-

ation, decoding and learning problem. The evaluation problem refers to the case where,

given the model, we compute how likely that a particular output sequence is generated

by that HMM model. This problem is solved by using forward algorithm, as described

in [72]. Decoding problem tries to find the sequence of states that most likely gener-

ated the given particular output, and is solved by the viterbi algorithm. The learning

(i.e training) problem, on the other hand, tries to find the underlying stochastic pro-

cesses (the model parameters A,B, π) that maximizes the fitting to the training data.

The learning problem is solved by Baum-Welch method (Expectation Maximization

(EM)). In our case, we first solve the learning problem and estimate the parameters

of the action HMMs by using EM algorithm. Then, the sequences are decoded (as

a case of decoding problem) using forward algorithm to get the possible pathway of

observations through the action states.

More formally, the posterior probability of a set of action states λ = (s1, . . . , st)

given a sequence of observations σk = o1, o2, . . . , ot and model parameters θ can be

computed from the joint. In particular, note

P (λ|σk, θ) ∝ P (λ, σk|θ)

= P (s1)

(
t−1∏
j=1

P (oj|sj)P (sj+1|sj)

)
P (ot|st)

(5.5)
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where the constant of proportionality P (σk) can be computed easily with the forward-

backward algorithm (for more details, see, for example [72]). We follow convention

and define the forward variable αt(i) = P (qt = i, o1, o2, . . . , oT |θ), where qt is the

state of the HMM at time t and T is the total number of observations. Similarly, the

backward variable βt(i) = P (ot+1, . . . , oT |qt = i, θ). We write bj(ot) = P (ot|qt = j),

aij = P (qt = j|qt−1 = i) and so have the recursions

αt+1(j) = bj(ot+1)

[
N∑

i=1

αt(i)aij

]
(5.6)

βt(j) =
N∑

i=1

aijbj(ot+1)βt+1(j) (5.7)

and

α1(i) = πibi(o1) (5.8)

βT (i) = 1 (5.9)

This gives

P (σk) =

N∑
i=1

αT (i) (5.10)

Our activity model groups states with an equivalence relation. For example, several

different particular configurations of the leg might correspond to walking. We can

compute a posterior over these groups of states in a straightforward way. We assume

we have a total of M ≤ N groups of states. Now assume we wish to evaluate the

posterior probability of a sequence of state groups λg = (g1, . . . , gt) conditioned on a

sequence of observations σk = (o1, . . . , ot). We can regard a sequence of state groups

as a set of strings Λg, where a string λ ∈ Λg if and only if s1 ∈ g1, s2 ∈ g2, . . ., st ∈ gt.

Then we have

P (λg, σk) =
∑
λ∈Λg

P (λ, σk) (5.11)

This allows us to evaluate the posterior on activity models (see, for example, Fig-

ure 5.5).

Figure 5.5 shows an example posterior probability map. Here, the rows represent

the atomic action models and columns represent the time dimension. By examining

this probability map, one can infer the timeline of the possible changes inside the
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Figure 5.6: An example query result of our system. Top: Average HMM posteriors for
the legs and arms of sequence walk-pickup-carry (performed by a male subject)
are shown. As it can be seen, maximum likelihood goes from one action HMM to
the other within the activity HMM as the action in the video changes. This way, we
achieve automatic segmentation of activities and there is no need to use other motion
segmentation procedures. Bottom: Corresponding frames from the subsequences are
shown. This sequence is correctly labeled and segmented as walk-pickup-carry
as the corresponding query is evaluated. Using activity models for each body part, we
compute posteriors of sequences. After that, HMM posteriors for right and left parts
of the body are queried together using finite state automata of the query string.

activity by following the change of intensities through the rows, i.e. action models. The

action models that constitute up the activity models are quite discriminative, therefore

we can expect a good search for a composition. Moreover, the action models give a

good segmentation in and of themselves. Despite some noise, we can clearly observe

transitions between different actions within the video.

As example sequences in Figure 5.6 and 5.7 indicate, this representation is quite

competent at discriminating between different labellings for motion capture data. In

addition, we achieve automatic segmentation of activities using this representation.

There is no need for explicit motion segmentation, since transitions between action

HMM models simply provide this information.
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Figure 5.7: Another example sequence from our system, performed by a female sub-
ject. In this sequence, the subject first walks into the scene, stops and waves for some
time, and then walks out of the sequence. A query for walk-wave-walk for arms
and walk-stand-walk for legs returned this sequence as top one, despite the noise
in tracking. Again, by examining the posterior maps for each limb, we can identify the
transitions between actions.Top: Posterior probability maps for legs and arms. Bot-
tom: Corresponding frames from the correctly identified subsequences.
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5.3 Querying for Activities

We can compute a representation of what the body is doing from a sequence of video.

By using this representation, we would like to be able to build complex queries of

composite activities, such as carrying while standing, or waving while running. We can

address composition across the body because we can represent different limbs doing

different things; and composition in time is straightforward with our representation.

This suggests thinking of querying as looking for strings, where the alphabet is a

product of possible activities at limbs and locations in the string represent locations in

time. Generally, we do not wish to be precise about the temporal location of particular

activities, but would rather find sequences where there is strong evidence for one ac-

tivity, followed by strong evidence for another, and with a little noise scattered about.

In turn, it is natural to start by using regular expressions for motion queries (we see no

need for a more expressive string model at this point).

An advantage of using regular expressions is that it is relatively straightforward to

compute ∑
strings matching RE

P (string|frames) (5.12)

which we do by reducing the regular expression to a finite state automaton and then

computing the probability this automaton reaches its final state using a straightforward

sum-product algorithm.

This query language is very simple: Suppose we want to find videos where the

subject is walking and waving his arms at the same time. For legs, we form a walk

automaton. For arms, we form a wave automaton. We simultaneously query both

limbs with these automata. Figures 5.9 and 5.10 show the corresponding automata for

example queries.

Finite State Representation for Activity Queries: A finite state automaton (FSA)

is defined with the quintuple (Q,Σ, δ, s0, F ), where Q is the finite non-empty set of

states of the FSA, Σ is the input alphabet, δ is the state transition function where

δ : Q × Σ → Q, s0 is the (set) of initial states, and F is the set of final states. In our
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S w w w w ww w w w w

Figure 5.8: The FSA for a single action is constructed based on its unit length. Here,
the expansion of the walk FSA is shown (w represents walk). As an example, unit
length of walk is set to 5 frames (uw = 5). So the corresponding FSA consist of
five states and the probability of it reaching its final state requires that we observe five
consecutive frames of walk.

representation, each state qi ∈ Q corresponds to the case where the subject is inside

a particular action. Transitions between states (δ) represent the actions taking place.

Transitions of the form xux means action x sustained for ux length, which means that

actions shorter than their specified unit length do not cause the FSA to change its state.

More specifically, each xux (shown over the transition arrows) represents a smaller

FSA on its own, as shown in Figure 5.8. This small FSA reaches in its end state when

the action is sustained for ux number of frames. This regulation is needed in order to

eliminate the effect of short-term noise.

While forming the finite state automata, as in Figure 5.9, each action is considered

to have a unit length ux. A query string is converted to a regular expression, and

then to an FSA based on these unit lengths of actions. Unit action length is based on

two factors: first is the fps of the video, second is the action’s level of sustainability.

Actions like walking and running are sustainable; thus their unit length is chosen to be

longer than those of localizable actions, like jump and reach.

We have an FSA F , and wish to compute the posterior probability of any string

accepted by this FSA, conditioned on the observations. We write ΣF for the strings

accepted by the FSA. We identify the alphabet of the FSA with states — or groups of

states — of our model, and get

P (F |o1, . . . , oT , θ) ∝
∑

σ∈ΣF

P (σ, o1, . . . , oT |θ) (5.13)

where the constant of proportionality can be obtained from the forward- backward

algorithm, as in section 5.2.3. The term
∑

σ∈ΣF
P (σ, o1, . . . , oT |θ) requires some care.
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We label the states in the FSA with indices 1, ..Q. We can compute this sum with a

recursion in a straightforward way: Write

Qijs = P{a string of length i that takes F to state j and has last element s, joint with o1, ..., oi}
=

∑
σ∈strings of length i with last character s that take F to j

P (σ, o1, . . . , oi|θ)

(5.14)

Write Pa(j) for the parents of state j in the FSA (that is, the set of all states such that

a single transition can take the FSA to state j). Write δi,s(j) = 1 if F will transition

from state i to state j on receiving s and zero otherwise; then we have

Q1js =
∑
u∈s0

P (s, o1|θ)δu,s(j) (5.15)

and

Qijs =
∑

k∈Pa(j)

δk,s(j)P (oi|s, θ)
[∑

u∈Σ

P (s|u, θ)Q(i−1)ku

]
(5.16)

Then ∑
σ∈ΣF

P (σ, o1, . . . , oT |θ) =
∑

u∈Σ,v∈se

QTvu (5.17)

and we can evaluate Q using the recursion. Notice that nothing major changes if each

item u of the FSA’s alphabet represents a set of HMM states (as long as the sets form

an equivalence relation). We must now modify each expression to sum states over the

relevant group. So, for example, if we write su for the set of states represented by the

alphabet term u, we have

Q1ju =
∑
u∈s0

∑
v∈su

P (v, o1|θ)δu,s(j) (5.18)

and

Qiju =
∑

k∈Pa(j),v∈su

δk,v(j)P (oi|v, θ)
[ ∑

u∈Σ,w∈su

P (v|w, θ)Q(i−1)ku

]
(5.19)

A tremendous attraction of this approach is that no visual example of a motion is

required to query; once one has grasped the semantics of the query language, it is easy

to write very complex queries which are relatively successful.
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S walk stand walk E
wuw sus wuw ∗

∗ − w w s w ∗

(a)

S walk wave walk E
wuw wauwa wuw ∗

∗ − w w wa w ∗

(b)

Figure 5.9: To retrieve complex composite activities, we write separate queries for each
of the body parts. Here, example query FSAs for a sequence where the subject walks
into the view, stops and waves and then walks out of the view are shown. Top: FSA
formed for the legs walk-stand-walk. Bottom: The corresponding query FSA
for the arms with the string walk-wave-walk. Here, w is for walk, s for stand, wa
for wave and ux’s are the corresponding unit lengths for each action x.

The alphabet from which queries are formed consists in principle of 62 × 92 terms

(one has one choice each for each leg and each arm). We have found that the tracker

is not sufficiently reliable to give sensible representations of both legs (resp. arms). It

is often the case that one leg is tracked well and the other poorly, mainly because of

the occlusions. We therefore do not attempt to distinguish between legs (resp. arms),

and reduce the alphabet to terms where either leg (resp. either arm) is performing an

action; this gives an alphabet of 6× 9 terms (one choice at the leg and one at the arm).

This is like a noisy OR operation over the signals coming from top and bottom parts of

the body. When any of the signals are present we take the union of them to represent

the body pose.

Using this alphabet, we can write complex composite queries, for example,

searching for strings that have several (l-walk; a-walk)’s followed by sev-

eral (l-stand; a-wave) followed by several (l-walk; a-walk) yields se-

quences where a person walks into view, stands and waves, then walks out of view (see

Figure 5.9 for corresponding FSAs). Figure 5.10 demonstrates an example query for
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S walk

pickup

crouch

walk E
uw

up

uc

uw

uw

*

∗ − w w

p

c

w ∗

S walk pickup carry E
uw up uca ∗

∗ − w w p ca ∗

Figure 5.10: Query FSA for a video where the person walks, picks something up and
carries it. Query for a video where the person walks, pickups something and carries it.
Here, w is for walk, c for crouch, p for pickup and ca is for carry actions. Notice the
different and complex representation achievable by writing queries in this form. Arms
and legs are queried separately, composited across time and body. Also note that, since
pickup and crouch actions are very similar in dynamics for the legs, we can form
an OR query and do more wide-scale searches.
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walk-pickup-carry activity sequence. Notice the different and complex repre-

sentation achievable by writing queries in this form. Arms and legs are queried sepa-

rately, composited across time and body. Also note that, since pickup and crouch

actions are very similar in dynamics for the legs, we can form an OR query and do

more wide-scale searches as in Fig 5.10.



Chapter 6

Experiments on Complex Human

Activities

This chapter presents our experimental evaluation of using limb activity models for

complex activity recognition. The experimental settings and evaluation datasets for

complex activity recognition is considerably different than the single action recogni-

tion case. Here, we need to access the distinct body parts, for this reason, we used the

tracker of Ramanan et al., which is equipped with explicitly identifying the body parts.

6.1 Experimental Setup

In this section, we describe the setup and datasets of our experiments. The nature of

the human activities inside these video sequences are more complex; the actions are

composed across time and across body. In addition, there is a considerable amount of

variation in the clothings, viewpoint and background. We test quite different cases and

experiment with a wide range of queries.

87
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Table 6.1: Our collection of video sequences, named by the instructions given to actors.
Context # videos Context # videos
crouch-run 2 run-backwards-wave 2
jump-jack 2 run-jump-reach 5
run-carry 2 run-pickup-run 5
run-jump 2 walk-jump-carry 2
run-wave 2 walk-jump-walk 2
stand-pickup 5 walk-pickup-walk 2
stand-reach 5 walk-stand-wave-walk 5
stand-wave 2 crouch-jump-run 3
walk-carry 2 walk-crouch-walk 3
walk-run 3 walk-pickup-carry 3
run-stand-run 3 walk-jump-reach-walk 3
run-backwards 2 walk-stand-run 3
walk-stand-walk 3

6.1.1 Datasets

6.1.1.1 UIUC Complex Activity Dataset

We collected our own set of motions, involving three subjects wearing a total of five

different outfits in a total of 73 movies (15Hz). Each video shows a subject instructed

to produce a complex activity. The sequences differ in length. The complete list of

activities collected is given in Table 6.1 and the example frames for this dataset is

given in Fig 6.1.

6.1.1.2 Viewpoint Dataset

For viewpoint evaluation, we collected videos of 5 actions: jog, jump, jumpjack, wave

and reach. Each action is performed in 8 different directions to the camera, making a

total dataset of 40 videos (30Hz). Figure 6.2 shows example frames of this dataset.
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Figure 6.1: Example frames from UIUC complex activity dataset. Here, there are three
actors wearing five different outfits, performing 13 different combinations of activities.
The resulting dataset has 73 movies in total.

Figure 6.2: Example frames from our dataset of single activities with different views.
Top row: Jogging 0 degrees, Jump 45 degrees, jumpjack 90 degrees, reach 135 de-
grees. Bottom row: wave 180 degrees, jog 225 degrees, jump 270 degrees, jumpjack
315 degrees.
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Figure 6.3: Example frames from the Friends dataset, which consists of 19 short se-
quences compiled from the Friends TV series (from Episode 9 of Season 3), where the
actors play football in the park. This is a challenging dataset, in which there are lots of
camera movement, scale and orientation changes, zoom-in and out effects. Occlusions
make the tracking even harder in this dataset.

6.1.1.3 Friends Dataset

For evaluating our system on complex backgrounds and also on football movements,

we used video shootage from the TV series Friends. We have extracted 19 sequences

of varying activities from the episode in which the characters play football in the park.

The result is an extremely challenging dataset; the characters change orientation fre-

quently, the camera moves, there are zoom-in and zoom-out effects and a complex and

changing background. Different scales and occlusions make tracking even harder. In

Figure 6.3, we show example frames from this dataset with superimposed tracks.

6.1.2 Evaluation Method

We evaluate the performance of our system over a set of queries, using mean average

precision (MAP) of the queries. Average precision of a query is defined as the area

under the precision-recall curve for that query and a higher average precision value
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means that more relevant items are returned earlier.

More formally, average precision AveP over a set S is defined as

AveP =

∑N
r=1(P (r)× rel(r))

number of relevant documents in S

Here, r is the rank of the item, N is the number of retrieved items and rel(r) is the

binary relevance vector for each item in S and P (r) precision at a given rank.

Clothing presents a variety of problems. We know of no methods that behave well

in the presence of long coats, puffy jackets or of skirts. Our subjects wear a standard

uniform of shirt and trousers. However, as figure 6.7 shows, the colour, arm-length

and looseness of the shirts varies, as does the cut of the trousers and the presence of

accessories (a jersey). These variations are a fairly rich subset of those that preserve

the silhouette. Our method is robust to these variations, and we expect it to be robust

to any silhouette preserving change of clothing.

Controls: In order to analyse the performance of our approach, we implemented

three controls. Control 1 is single action SVM classifiers over raw 2D tracks (de-

tails in section 6.3.2.1). We expect that discriminative methods applied to 2D data

perform poorly because intra-class variance overwhelms available training data. In

comparison, our method benefits by being able to estimate dynamical models on mo-

tion capture dataset. Control 2 is action SVMs built on 3D lifts of the 2D tracks (for

details see section 6.3.2.2). Although they have view-invariance aspect, we also ex-

pect them performing poorly, because they suffer from data shortage and noise in lifts.

And finally, Control 3 is the SVM classifiers over 3D motion capture dataset (details

in section 6.3.2.3). They are also insufficient in tolerating the different levels of sus-

tainability and different speeds of activities. This also causes problems with the com-

position. On contrary, our model supports high level of composition and its generative

nature handles different lengths of activities easily.

6.2 Expressiveness of Limb Activity Models

Limb activity models were fit using a collection of 10938 frames of motion capture
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data released by Electronic Arts in 2002, consisting of assorted football movements.

To model our motion capture collection reasonably well, we choose a set of 9 actions.

While these actions are abstract building blocks, the leg models correspond reasonably

well to: run, walk, stand, crouch, jump, pickup (total of 6 actions). Similarly, the arm

models correspond reasonably well to: run, walk, stand, reach, crouch, carry, wave,

pickup, jump motions (total of 9 actions).

Local dynamics is quite a good guide to a motion in the motion capture data set.

Figure 6.4 shows HMM interpretation of these dynamics. The posterior for each model

applied to labelled motion capture data is given. These images represent the expressive

and generative power of each action HMM. For example, pickup HMM for the legs

gives high likelihood for pickup and crouch action, whereas crouch HMM for

the legs is more certain when it observes a crouch action, therefore it produces a

higher posterior as opposed to pickup. The asymmetry present in this figure is due

to the varying number of training examples available in motion capture dataset for each

action. The higher the number of examples for an action, the better HMMs are fit. This

can be interpreted as a class confusion matrix within the motion capture dataset itself.

Most of the confusion occurs between dynamically similar actions. For example, for

pickup motion, the leg HMMs may fire pickup or crouch motions. These two

actions are in fact very similar in dynamics. Likewise, for reach motion, arm HMMs

show higher posteriors for reach, wave or jump motions.

Limb activity models require that 3D coordinates of limbs to be vector quantized.

The choice of procedure has some effect on the outcome and details of this procedure

is explored in Section 6.2.1.

We expect these HMM’s to simulate rendered activity extremely poorly, as they

are not constructed to produce good transitions between frames. We are not claiming

that the generative model concentrates probabilities only on correct human actions,

and we don’t believe that any other work in activity makes this claim; the standards of

performance required to do credible human animation are now extremely high (eg [52,

54, 8]; review in [33]), and it is known to be very difficult to distinguish automatically

between good and bad animations of humans [78, 44, 33]. Instead, we believe that the

probability that appears on actions that are not natural, does not present difficulties as



CHAPTER 6. EXPERIMENTS ON COMPLEX HUMAN ACTIVITIES 93

walk

walk

pickup

jump

stand

crouch

run

pickup jump stand crouch runrun walk

walk

wave

pickup

jump

reach

stand

crouch

carry

run

wavepickup jump reach standcrouchcarry run

Figure 6.4: Each column represents 5 frame average HMM posteriors for the motion
capture sequences (left:legs right:arms). This image can also be interpreted as a con-
fusion matrix between actions.

long as the models are used for inference, and our experimental evidence bears this

out. Crucially, when one infers activity labels from video, one can avoid dealing with

sequences that do not contain natural human motion.

6.2.1 Vector Quantization for Action Dynamics

We vector quantize 3D coordinates of the limbs when forming the action models. This

quantization step is useful to have a more general representation of the domain. We use

k-means as our quantization method. Since k-means is very dependent on the initial

cluster centers, we run each clustering 10 times and choose the best clusters such that

the inter-cluster distance is maximized and intra-cluster distance is minimized. Our

experiments show that when we choose number of clusters k in k-means as low as

10, the retrieval process suffers from information loss due to excessive generalization.

Using k = 40 gives the best results over this dataset. Note that, one can try different

levels of quantization for different limbs, however, our empirical evaluation shows that

doing so does not provide a significant performance improvement. Figure 6.5 shows

the effect of choosing the number of clusters.
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Figure 6.5: The result of choosing k in k-means. We have observed that this choice
affects the ranking considerably. More clusters force sequences which look more like
the training set to have a higher rank. However, the motions that are less alike in
appearance, but similar in semantics are penalized.

6.3 Searching

We evaluate our system by first identifying an activity to search for, then marking rel-

evant videos, then writing a regular expression, and finally determining the recall and

precision of the results ranked by P (FSA in end state|sequence). On the traditional

simple queries (walk, run, stand), MAP value is 0.9365; only a short sequence

of run action is confused with walk action. Figure 6.7 and Figure 6.8 show search

results for more complex queries. We have used k=40 in vector quantization. Our

method is able to respond to complex queries quite effectively. The biggest difficulty

we faced was to find an accurate track for each limb due to the discontinuity in track

paths and left/right ambiguity of the limbs. That’s why some sequences are identified

poorly.

We have evaluated several different types of search. In Type I queries, we encoded

activities where legs and arms are doing different actions simultaneously, for instance

“walking while carrying”. In Type II queries, we evaluated the cases where there

are two consecutive actions, same for legs and arms (like a crouch followed by a

run). Type III queries search for activities that are more complex; these are activities
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Table 6.2: The Mean Average Precison(MAP) values for different types of queries.
We have three types of query here. Type I: single activities where there is a differ-
ent action for legs and arms (ex: walk-carry). Type II: two consecutive actions like
crouch followed by a run. Type III: activities that are more complex, consisting of
three consecutive actions where different body parts may be doing different things (ex:
walk-stand-walk for legs; walk-wave-walk for arms.

Query type MAP

Type I 0.5562
Type II 0.5377
Type III 0.5902

involving three consecutive actions where different limbs may be doing different things

(ex: walk-stand-walk for legs; walk-wave-walk for arms). MAP value for

these sets of complex queries is 0.5636 with our method.

The performance over individual type of activities is presented in Table 6.2. Based

on this evaluation, we can say that our system is more successful in retrieving complex

activities as in Type III queries. That’s mostly because complex activities occur within

longer sequences which are less affected by the short-term noise of tracking and lifting.

6.3.1 Torso exclusion

In our method, we omit the torso information and query over the limbs only. This is

because we found that torso information is not particularly useful. The results demon-

strating this case is given in Figure 6.6. When we query using the whole body, in-

cluding torso, we get an Mean Average Precision of 0.501, whereas if we query using

limbs only, we get a MAP of 0.5636. We conclude that using torso is not particularly

informative. This is mostly because in our set of actions, the torso HMMs fire high pos-

teriors for more than one action, and therefore, they don’t help much in discriminating

between actions.
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Figure 6.6: Mean Average Precision values of our method with respect to torso inclu-
sion. The MAP of our method over the whole body is 0.501 when we query with the
torso, whereas it is 0.5636 when we query over the limbs only. For some queries, in-
cluding torso information increases performance slightly, however, on the overall, we
see that using torso information is not very informative.
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6.3.2 Controls

We cannot fairly compare to HMM models because complex activities require large

numbers of states (which cannot be learned directly from data) to obtain a reasonable

search vocabulary. However, discriminative methods are rather good at classifying ac-

tivities without explicit dynamical models, and it is by no means certain that dynamical

models are necessary (see section 2.2.5 in the discussion of related work). Discrimina-

tive models regard changes in the temporal structure of an action as likely to be small,

and so well covered by training data. For this reason, we choose to compare with

discriminative methods. There are three possible strategies, and we compare to each.

First, one could simply identify activities from image-time features (like, for example,

the work of [12, 26, 86]). Second, one could try to identify activities from lifted data,

using lifted data to train models. Finally, one could try to identify activities from lifted

data, but training using motion capture data.

6.3.2.1 Control 1: SVM classifier over 2D tracks

To evaluate the effectiveness of our approach, we implemented an SVM-based action

classifier over the raw 2D tracks. Using the tracker outputs for 17 videos as training set

(chosen such that 2 different video sequences are available for each action), we built

action SVMs for each limb separately. We used RBF kernel and 7 frame snippets of

tracks to build the classifiers for this setting has given the best results for this control. A

grid search over parameter space of the SVM is done and best classifiers are selected

using 10-fold cross-validation. The performance of these SVMs are then evaluated

over the remaining 56 videos. Figure 6.7 and Figure 6.8 shows the results. MAP value

over the sets of queries is 0.3970 with Control 1. Note that for some queries, SVMs

are quite successful in marking relevant documents. However, on the overall, SVMs

are penalized by the noise and variance in dynamics of the activities. Our HMM limb

activity models, on the other hand, deal with this issue by the help of the dynamics

introduced by synthesized motion capture data. SVMs would need a great deal of

training data to discover such dynamics. For some queries, SVM performances are

good, however, on the overall, their precision and recall rate is low. Also, note that the
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relevant videos are all scattered through the retrieval list.

6.3.2.2 Control 2: SVM classifier over 3D lifts

We have also trained SVM classifiers over 3D lifted track points. Mean average preci-

sion of the whole query set in this case is 0.3963. This is not surprising, since there is

some noise introduced by lifting 2d tracks, causing the performance of the classifier to

be low. In addition, HMM method still has the advantage of using the dynamics intro-

duced by motion capture dataset. The corresponding results are presented in Figure 6.7

and Figure 6.8. These results support the fact that motion capture dataset dynamics is

a good clue for human action detection in our case.

6.3.2.3 Control 3: SVM classifier over 3D motion capture set

Our third control is based on SVM classifiers built over 3D motion capture data set. We

used the same vector-quantization as in building our HMM models, for generalization

purposes. Mean average precision of the query set here is 0.3538. Although they rely

on extra information added with the presence of motion capture data set, we observed

that, these SVMs are also insufficient in tolerating the different levels of sustainability

and different speeds of activities. This also causes problems with the composition.

Generative nature of HMMs eliminate such difficulties and handle with varying length

actions/activities easily.

6.4 Viewpoint evaluation

To evaluate our method’s invariance to viewpoint, we queried 5 single activities (jog,

jump, jumpjack, reach, wave) over the separate viewpoint data set that has

8 different view directions of subjects (Figure 6.2). We assume that if these simple

sequences produce reliable results, the complex sequences will be accurate as well.

Results of this evaluation are shown in Figures 6.9 and 6.10. As it can be seen, tracker
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Figure 6.7: The results of ranking for 15 queries over our video collection. Our rep-
resentation can give quite accurate results for complex activity queries, regardless of
the clothing worn by the subject. In these images, a colored pixel indicates a relevant
video. An ideal search would result in an image where all the colored pixels are on
the left of the image. Each color represents a different outfit. We have three types of
query here (see text for details). Top left: The ranking results of our activity modeling
based on joint HMMs and motion capture data. Note that the videos retrieved in top
columns are more likely to be relevant and the retrieval results are more condensed to
the left. Note that the choice of the outfit doesn’t affect the performance. Top right:
Control 1: Separate SVM classifiers for each action over the 2D tracks of the videos.
Composite queries built on top of a discriminative (SVM) based representation are not
as successful as querying with our representation. Again, clothing does not affect the
result. Bottom left: Control 2: SVM classifiers over 3D lifted tracks. Bottom right:
Control 3: SVM classifiers over 3D motion capture data. While these classifiers benefit
from dynamics of mocap data, they suffer due to lack of composition.
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Figure 6.8: Average precision values for each query. Our method gives a mean average
precision (MAP) of 0.5636 over the whole query set. Control 1’s MAP value is 0.3970.
Control 2 acquires a MAP of 0.3963, while it is 0.3538 for Control 3.

sometimes misses the moving arm, causing the performance of the system to degrade.

However, we can say that on the overall, performance is not significantly affected with

the change in viewpoint.

As Figure 6.9 shows, the performance is not significantly affected by the change in

viewpoint, however there is slight lost of precision in some angles due to tracking and

lifting difficulties in those view directions. Examples of non-reliable tracks are also

shown in Figure 6.9. Due to occlusions and motion blur, the tracker tends to miss the

moving arms quite often, making it hard to discriminate between actions.

Figure 6.10 shows the overall precisions averaged w.r.t. angles for each action. Not

surprisingly, most confusion occurs between reach and wave actions. If the tracker

misses the arm during these actions, it is highly likely that the dynamics of these actions

will not be recovered and those two actions will resemble each another. On the other

hand, jumpjack action is a combination of wave and jump actions, which is also

subject to high confusion. Here, note that SVMs would need to be retrained for each

viewing direction, while our method does not.
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Figure 6.9: Evaluation of our method’s sensitivity to viewpoint change. (a) Aver-
age precision values for each viewing direction. Some viewing directions has slightly
worse performance due to the occlusion of the limbs and poor tracking response to
bendings of the limbs in some view directions. Here, we show some representative
frames with tracks for the wave action. (b) The ranking of the five queries of single
actions separately. The poorest response comes from reach action, which inevitably
confuses with wave, especially when the arms are out of track in the middle of the
action. Here, note that SVMs would need to be retrained for each viewing direction,
while our method does not.
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Figure 6.10: (a) The mean precisions of each action averaged over the viewpoint
change. The most confusion occurs between reach and wave actions. (b) Respective
precision-recall curves for each action averaged over the angles. SVMs would need to
be retrained for each viewing direction, while our method does not.
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Figure 6.11: Example frames from the Friends dataset with relatively good tracks
(which are superimposed).

6.5 Activity Retrieval with Complex Backgrounds

In order to see how well our algorithm will behave in football sequences with compli-

cated settings, we tested our approach over football sequences taken from Friends TV

Show. We have constructed a dataset, consisting of 19 short clips, in which characters

play football in park (from Episode 9 of Season 3). We then annotated the actions of

a single person in these clips by our available set of actions. This dataset is extremely

challenging; the characters change orientation frequently, the camera moves, there are

zoom-in and zoom-out effects and a complex and changing background. Examples

frames from these sequences are shown in Fig. 6.11.

Since we built our activity models using a dataset of motion captured American

football movements, we expect to have a higher accuracy in domains with similar

actions. We test our system using 10 queries, ranging from simple to complex, and

results are given in Fig. 6.12. For 9 out of 10 queries, the top retrieved video is a rele-

vant video including the queried activity. Our MAP of 0.8172 over this dataset shows

that our system is quite good in retrieving football movements, even in complicated

settings.
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Figure 6.12: Results of our retrieval system over the Friends dataset. Our system is
quite successful over this dataset. Since our activity models are formed using motion
capture dataset which consists of American football movements, this dataset is a nat-
ural application domain for our system. In 9 out of 10 queries, our system returns a
relevant video as the top result and we achieve a MAP of 0.8172 over this dataset.



Chapter 7

Conclusions and Discussion

We believe that for simple actions, when there is no composition or viewpoint change,

we do not need complex models of dynamics or dense templates for matching. We

show with empirical evidence that compact representations may suffice, plus, may

outperform intricate models both in terms of precision and runtime.

Within this framework, we describe how one can make use of the rectangular region

information together with simple velocity features, in the presence of silhouettes. Our

new pose-descriptor is based on the orientation of body parts; we extract the rectangu-

lar regions from a human silhouette and form a spatial oriented histogram of these rect-

angles. Our results are directly comparable and even superior to the results presented

over the state-of-art action datasets. When pose itself is not enough for discriminating

between actions, we have shown how to boost the performance by including simple

velocity features and build a hierarchical model on top of our classification scheme.

We have demonstrated how we can obtain efficient action recognition with the mini-

mum of dynamics. Result is an intuitive and fast action recognition system with high

accuracy rates, even in challenging conditions like camera zoom, camera movement,

lighting conditions and different outfits.

Our experiments on single action recognition have shown that the human pose

encapsulates many useful pieces of information about the action itself. Following this

observation, we took one step further and evaluate this claim within the still images.

105
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Our results are promising, and we have illustrated that as the humans can perceive

actions from looking at a single photograph, machines can also do so, to a certain

extent.

When the silhouettes are not easily extractable or very noisy, one alternative would

be to use the boundary-fitted lines, instead of rectangular regions. We make use of

orientation statistics of such lines and a compact representation of optical flow for sin-

gle action recognition. In our experiments, we have observed that, short lines describe

the fine details of the pose of the body, whereas longer lines give some clue about the

coarser shape. Our shape features use a concatenation of these two forms for better

recognition. We also observed that shape and motion cues are complimentary to each

other, and we can further enhance the performance by treating them together in a dis-

criminative manner. We also observed that dense templates for optical flow is not much

needed (as used in [26, 49]) and we can get quite enough information by using spatial

and directional binning of the flow. This usage, together with maximum entropy se-

lection of features, densifies the feature dimensionality a great deal, thus, reducing the

classification time. Most of the existing algorithms suffer shortcomings of processing

with large feature dimensions, since they have pixel-wise or very dense templates. This

feature reduction is, therefore, quite useful; it opens up room for application of more

sophisticated classification schemes.

There is little evidence that a fixed taxonomy for human motion is available. How-

ever, research to date has focused on multi-class discrimination of simple actions. Ev-

eryday activities are more complex in nature and people tend to perform composite

activities both on the spatio and temporal dimensions. In our second scenario, we

handled this aspect of human activity understanding. We have demonstrated a repre-

sentation of human motion that can be used to query for complex activities in a large

collection of video. We build our queries using finite state automata and for each limb,

we write separate queries. We are aware of no other method that can give comparable

responses for such queries.

Our representation uses a generative model, built using motion capture and apply-

ing it over video data. This can also be thought as an instance of transfer learning; we
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transfer the knowledge we gain from 3D motion capture data, to 2D everyday activ-

ity data. This transfer learning helps a lot for building composite activity models; if

we did not use transfer learning, we would need a considerable amount of videos for

training body part models, which is hard to acquire. By this way, we can use any set of

motion capture data and broaden our set of activities easily. Furthermore, by joining

models of atomic actions to form activity models, we do not need the train examples

for complex activity sequences and we perform minimum parameter estimation.

One of the strengths of our method is that, when searching for a particular activ-

ity, no example activity is required to formulate a query. We use a simple and ef-

fective query language; we simply search for activities by formulating sentences like

“Find action X followed by action Y ” or “Find videos where legs doing action X and

arms doing action Y ” via finite state automata. Matches to the query are evaluated

and ranked by the posterior probability of a state representation summed over strings

matching the query. Using a strategy like ours, one can search for activities that have

never been seen before.

As our results show, query responses are unaffected by clothing, and our represen-

tation is robust to aspect. Our representation significantly outperforms discriminative

representations built using image data alone. It also outperforms models built on 3D

lifted responses, meaning that the dynamics transferred from motion capture domain to

real world domain helps in retrieval of complex activities. In addition, the generative

nature of HMM models helps to compansate the different levels of sustainability of the

actions and makes composition across time easier.

Moreover, since our representation is in 3D, we don’t need to retrain our mod-

els separately for each viewing direction. We show that our representation is mostly

invariant to change in viewing direction.

7.1 Future Directions

This work introduces our baby steps for understanding of the human actions/activities.

This highly applicable topic is still at its infancy and much is left to be done. However,
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we think that we have delineated important directions for both simple and complex

activity recognition.

This work is extensible in many ways, such as:

• Rectangle-based pose description can be augmented to handle the view-

invariance case, by means of tracking rectangular regions in temporal dimen-

sion and using orthographic projections of them. The volumetric details of the

descriptor can be investigated this way.

• While forming our complex activity models, the biggest difficulty we faced was

to properly track the fast moving limbs and then lifting to 3D in the presence

of such tracking errors and ambiguities. That’s why we can say that there is

much room for improvement; a better tracker would give better results immedi-

ately. We think that this improved tracker should be appearance-based full body

tracker, whereas it might be enhanced by the use of a coarse optical flow model

of the scene.

• After tracking, the second source of noise comes from lifting 2D tracks to 3D.

An improved and unambiguous lifting mechanisms can help to improve the per-

formance of our system.

• More discriminative features can be used as a front-end to our complex activity

recognition system (after [91, 90]). Currently, we use only 3D joint points in

a loosely generative way. Addition of more features is very likely to uplift the

descriptive performance of the system.

• Our current vocabulary for defining activities are limited to that of the motion

capture data. Enriching this vocabulary would make the system more compre-

hensible and qualified for application to everyday activities. In addition, cur-

rent activity recognition research lacks the presence of a suitable vocabulary

and ontology for actions. We would definitely benefit from some theory about

how a canonical action vocabulary could be built, and how an accurate ontol-

ogy – which describes the general principles of the mutual relationships of ac-

tions [21]– can be formed.
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• Currently, we deal with the activity path of a single subject inside the videos.

However, real-world data may involve more than one person. In a similar fashion

as we do, multiple subjects can be tracked and modelled for semantic analysis of

their activity pathways. Furthermore, modelling interactions between people(as

in [68, 39, 40]) would extend the capabilities of the our complex activity system.

In this way, a higher level understanding of scene and activity semantics would

be possible.

Research in this thesis can be applied to many domains. There are recently devel-

oping systems(such as [107] which has initiated as an multi-sensor system for detecting

violence in videos) that can benefit from modeling body parts in the way that we do.

Additionally, video hosting websites like YouTube would improve their searching ca-

pabilities with a searching framework similar to ours. Since our search mechanism

need no visual examples, but pure organized text, our query system is directly adopt-

able to their structure.

7.2 Relevant Publications

• Nazlı İkizler and David A. Forsyth, “Searching for Complex Human Activities

with No Visual Examples, accepted for publication in International Journal of

Computer Vision (IJCV), 2008.

• Nazlı İkizler and Pınar Duygulu, “Histogram of Oriented Rectangles: A New

Pose Descriptor for Human Action Recognition”, submitted to Journal of Image

and Vision Computing(IMAVIS).

• Nazlı İkizler and Pınar Duygulu, “Human action recognition using distribution

of oriented rectangular patches”, 2nd Workshop on Human Motion Understand-

ing, Modeling, Capture and Animation In Conjunction with Eleventh IEEE In-

ternational Conference on Computer Vision (ICCV 2007), October 2007.

• Nazlı İkizler and David A. Forsyth, “Searching video for complex activities with

finite state models”, In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2007.
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• Nazlı İkizler, R. Gökberk Cinbiş and Pınar Duygulu, “Action Recognition with

Line and Flow Histograms”, submitted.

• Nazlı İkizler, R. Gökberk Cinbiş, Selen Pehlivan and Pınar Duygulu, “Recog-

nizing Actions from Still Images”, submitted.
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[48] O. C. Jenkins and M. J. Matarić. A spatio-temporal extension to isomap non-

linear dimension reduction. In ICML ’04: Proceedings of the twenty-first inter-

national conference on Machine learning, page 56, New York, NY, USA, 2004.

ACM Press.

[49] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system for

action recognition. In Int. Conf. on Computer Vision, 2007.

[50] Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded videos. In

Int. Conf. on Computer Vision, 2007.

[51] Y. Ke, R. Sukthankar, and M. Hebert. Spatio-temporal shape and flow correla-

tion for action recognition. In Visual Surveillance Workshop, 2007.

[52] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In Proceedings of the

29th annual conference on Computer graphics and interactive techniques, pages

473–482. ACM Press, 2002.



BIBLIOGRAPHY 116

[53] I. Laptev and T. Lindeberg. Space-time interest points. In ICCV, page 432,

Washington, DC, USA, 2003. IEEE Computer Society.

[54] J. Lee, J. Chai, P. Reitsma, J. Hodgins, and N. Pollard. Interactive control of

avatars animated with human motion data. In Proc of SIGGRAPH, 2002.

[55] T. Leung and J. Malik. Representing and recognizing the visual appearance of

materials using three-dimensional textons. Int. J. Computer Vision, 43(1):29–

44, 2001.

[56] Y. Li, T. Wang, and H.-Y. Shum. Motion texture: a two-level statistical model

for character motion synthesis. In Proceedings of the 29th annual conference

on Computer graphics and interactive techniques, pages 465–472. ACM Press,

2002.

[57] H. Ling and K. Okada. Diffusion distance for histogram comparison. In IEEE

Conf. on Computer Vision and Pattern Recognition, volume 1, pages 246–253,

2006.

[58] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image bound-

aries using local brightness, color and texture cues. PAMI, 26, 2004.
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[60] M. J. Matarić, V. B. Zordan, and M. M. Williamson. Making complex articu-

lated agents dance. Autonomous Agents and Multi-Agent Systems, 2(1):23–43,

1999.

[61] D. J. Moore. Vision-based recognition of actions using context. Technical re-

port, Georgia Institute of Technology, 2000. PhD Thesis.

[62] T. Mori, Y. Segawa, M. Shimosaka, and T. Sato. Hierarchical recognition of

daily human actions based on continuous hidden markov models. In Int. Conf.

Automatic Face and Gesture Recognition, pages 779–784, 2004.



BIBLIOGRAPHY 117

[63] E. Muybridge. Animal locomotion, 1887.

[64] E. Muybridge. The Human Figure in Motion. Dover, 1989.

[65] J. C. Niebles and L. Fei-Fei. A hierarchical model of shape and appearance

for human action classification. In IEEE Conf. on Computer Vision and Pattern

Recognition, 2007.

[66] J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action

categories using spatial-temporal words. In British Machine Vision Conference,

2006.

[67] N. Oliver, A. Garg, and E. Horvitz. Layered representations for learning and

inferring office activity from multiple sensory channels. Computer Vision and

Image Understanding, 96(2):163–180, November 2004.

[68] N. Oliver, B. Rosario, and A. Pentland. Graphical models for recognizing hu-

man interactions. In Proc. Neural Information Processing Systems, Denver,

Colorado, USA, November 1998.

[69] C. Pinhanez and A. Bobick. Pnf propagation and the detection of actions de-

scribed by temporal intervals. In DARPA IU Workshop, pages 227–234, 1997.

[70] C. Pinhanez and A. Bobick. Human action detection using pnf propagation of

temporal constraints. In IEEE Conf. on Computer Vision and Pattern Recogni-

tion, pages 898–904, 1998.

[71] R. Polana and R. Nelson. Detecting activities. In IEEE Conf. on Computer

Vision and Pattern Recognition, pages 2–7, 1993.

[72] L. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. Prentice-

Hall, 1993.

[73] L. R. Rabiner. A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of IEEE, 77(2):257–286, February 1989.

[74] D. Ramanan. Learning to parse images of articulated bodies. In Proc. Neural

Information Processing Systems, 2006.



BIBLIOGRAPHY 118

[75] D. Ramanan and D. Forsyth. Automatic annotation of everyday movements. In

Proc. Neural Information Processing Systems, 2003.

[76] D. Ramanan, D. Forsyth, and A. Zisserman. Strike a pose: Tracking people by

finding stylized poses. In IEEE Conf. on Computer Vision and Pattern Recog-

nition, pages I: 271–278, 2005.

[77] D. Ramanan, D. Forsyth, and A. Zisserman. Tracking people by learning their

appearance. IEEE T. Pattern Analysis and Machine Intelligence, 29(1):65–81,

2007.

[78] L. Ren, A. Patrick, A. A. Efros, J. K. Hodgins, and J. M. Rehg. A data-driven ap-

proach to quantifying natural human motion. ACM Trans. Graph., 24(3):1090–

1097, 2005.

[79] X. Ren, A. Berg, and J. Malik. Recovering human body configurations using

pairwise constraints between parts. Proc. ICCV, pages 824–831, 2005.

[80] R. Ronfard, C. Schmid, and B. Triggs. Learning to parse pictures of people. In

European Conference on Computer Vision, page IV: 700 ff., 2002.

[81] R. Rosales and S. Sclaroff. Specialized mappings and the estimation of body

pose from a single image. In IEEE Human Motion Workshop, pages 19–24,

2000.

[82] C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidimen-

sional motion interpolation. IEEE Comput. Graph. Appl., 18(5):32–40, 1998.

[83] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric

for image retrieval. Int. J. Computer Vision, 40(2):99–121, 2000.

[84] M. S. Ryoo and J. K. Aggarwal. Recognition of composite human activities

through context-free grammar based representation. IEEE Conf. on Computer

Vision and Pattern Recognition, June 2007.

[85] A. Samal and P. Iyengar. Automatic recognition and analysis of human faces

and facial expressions: A survey. Pattern Recognition, 25(1):65–77, 1992.



BIBLIOGRAPHY 119

[86] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local svm

approach. In ICPR, pages 32–36, Washington, DC, USA, 2004. IEEE Computer

Society.

[87] G. Shakhnarovich and P. V. T. Darrell. Fast pose estimation with parameter-

sensitive hashing. In Int. Conf. on Computer Vision, 2003.

[88] Y. Shi, Y. Huang, D. Minnen, A. Bobick, and I. Essa. Propagation networks for

recognition of partially ordered sequential action. In IEEE Conf. on Computer

Vision and Pattern Recognition, 2004.

[89] J. M. Siskind. Reconstructing force-dynamic models from video sequences.

Artificial Intelligence, 151:91–154, 2003.

[90] C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Conditional random fields

for contextual human motion recognition. In ICCV, pages 1808–1815, 2005.

[91] C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Discriminative density

propagation for 3d human motion estimation. IEEE Conf. on Computer Vision

and Pattern Recognition, 1:390–397, 2005.

[92] T. Starner, J. Weaver, and A. Pentland. Real-time american sign language recog-

nition using desk and wearable computer based video. IEEE T. Pattern Analysis

and Machine Intelligence, 20(12):1371–1375, 1998.

[93] C. Thurau. Behavior histograms for action recognition and human detection. In

Human Motion Workshop LNCS 4814, pages 299–312, 2007.

[94] B. Toreyin, Y. Dedeoglu, and A. E. Cetin. Hmm based falling person detec-

tion using both audio and video. In IEEE International Workshop on Human-

Computer Interaction(CVHCI05) held in conjunction with ICCV, LNCS 3766,

pages 211–220, Beijing, China, 2005.

[95] D. Tran and D. Forsyth. Configuration estimates improve pedestrian finding. In

Proc. Neural Information Processing Systems, 2007.

[96] O. Tuzel, F. Porikli, and P. Meer. Human detection via classification on rieman-

nian manifolds. In IEEE Conf. on Computer Vision and Pattern Recognition,

2007.



BIBLIOGRAPHY 120

[97] V. N. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.

[98] D. D. Vecchio, R. Murray, and P. Perona. Decomposition of human motion

into dynamics-based primitives with application to drawing tasks. Automatica,

39(12):2085–2098, 2003.

[99] L. Wang and D. Suter. Recognizing human activities from silhouettes: Motion

subspace and factorial discriminative graphical model. IEEE Conf. on Computer

Vision and Pattern Recognition, June 2007.

[100] Y. Wang, H. Jiang, M. S. Drew, Z.-N. Li, and G. Mori. Unsupervised discovery

of action classes. In IEEE Conf. on Computer Vision and Pattern Recognition,

2006.

[101] A. Wilson and A. Bobick. Learning visual behavior for gesture analysis. In

IEEE Symposium on Computer Vision, pages 229–234, 1995.

[102] A. Wilson and A. Bobick. Parametric hidden markov models for gesture recog-

nition. IEEE T. Pattern Analysis and Machine Intelligence, 21(9):884–900,

September 1999.

[103] S.-F. Wong, T.-K. Kim, and R. Cipolla. Learning motion categories using both

semantic and structural information. IEEE Conf. on Computer Vision and Pat-

tern Recognition, June 2007.

[104] J. Yamato, J. Ohya, and K. Ishii. Recognising human action in time sequential

images using hidden markov model. In IEEE Conf. on Computer Vision and

Pattern Recognition, pages 379–385, 1992.

[105] W. Yan and D. Forsyth. Learning the behavior of users in a public space through

video tracking. In WACV05, pages I: 370–377, 2005.

[106] J. Yang, Y. Xu, and C. S. Chen. Human action learning via hidden markov

model. IEEE Transactions on Systems Man and Cybernetics, 27:34–44, 1997.

[107] W. Zajdel, D. Krijnders, T. Andringa, and D. Gavrila. Cassandra: Audio-video

sensor fusion for aggression detection. In IEEE Int. Conf. on Advanced Video

and Signal based Surveillance (AVSS), London, 2007.



BIBLIOGRAPHY 121

[108] J. Zhang, J. Luo, R. Collins, and Y. Liu. Body localization in still images using

hierarchical models and hybrid search. In IEEE Conf. on Computer Vision and

Pattern Recognition, 2006.

[109] T. Zhao and R. Nevatia. Tracking multiple humans in complex situations.

IEEE T. Pattern Analysis and Machine Intelligence, 26(9):1208–1221, Septem-

ber 2004.

[110] W.-Y. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition: A

literature survey. ACM Computer Surveys, 35(4):399–458, 2003.

[111] G. Zhu, C. Xu, Q. Huang, and W. Gao. Action recognition in broadcast tennis

video. In Proceedings IAPR International Conference on Pattern Recognition,

2006.

[112] Q. Zhu, S. Avidan, M. Yeh, and K. Cheng. Fast Human Detection Using a

Cascade of Histograms of Oriented Gradients. IEEE Conf. on Computer Vision

and Pattern Recognition, 1(2):4, 2006.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


