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ABSTRACT

UNDERSTANDING HUMAN MOTION:
RECOGNITION AND RETRIEVAL OF HUMAN
ACTIVITIES

Nazli ikizler
Ph.D. in Computer Engineering
Supervisor: Assist. Prof. Dr. Pinar Duygulu
May, 2008

Within the ever-growing video archivesis avast amount of interesting information
regarding human action/activities. Inthisthesis, we approach the problem of extracting
thisinformation and understanding human motion from acomputer vision perspective.
We propose solutions for two distinct scenarios, ordered from simple to complex. In
the first scenario, we deal with the problem of single action recognition in relatively
simple settings. We believe that human pose encapsul ates many useful cluesfor recog-
nizing the ongoing action, and we can represent this shape information for 2D single
actions in very compact forms, before going into details of complex modeling. We
show that high-accuracy single human action recognition is possible 1) using spatial
oriented histograms of rectangular regions when the silhouette is extractable, 2) using
the distribution of boundary-fitted lines when the silhouette information is missing.
We demonstrate that, inside videos, we can further improve recognition accuracy by
means of adding local and global motion information. We also show that within adis-
criminative framework, shape information is quite useful even in the case of human
action recognition in still images.

Our second scenario involves recognition and retrieval of complex human activi-
ties within more complicated settings, like the presence of changing background and
viewpoints. We describe a method of representing human activitiesin 3D that allows
a collection of motions to be queried without examples, using a simple and effective
query language. Our approach is based on units of activity at segments of the body,
that can be composed across time and across the body to produce complex queries.
The presence of search unitsisinferred automatically by tracking the body, lifting the
tracks to 3D and comparing to models trained using motion capture data. Our models
of short time scale limb behaviour are built using labelled motion capture set. Our
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query language makes use of finite state automata and requires simple text encoding
and no visua examples. We show results for a large range of queries applied to a
collection of complex motion and activity. We compare with discriminative methods
applied to tracker data; our method offers significantly improved performance. We
show experimental evidence that our method is robust to view direction and is unaf-
fected by some important changes of clothing.

Keywords: Human motion, action recognition, activity recognition, activity retrieval,
image and video processing, classification.



OZET

INSAN HAREKETINI ANLAMA: INSAN
AKTIVITELERININ TANINMASI VE ERISIMI

Nazli Ikizler
Bilgisayar Muhendidligi, Doktora
Tez Yoneticisi: Yrd. Dog. Dr. Pinar Duygulu
Mayis, 2008

Surekli olarak buylyen video argsivlerinde insan hareketleri ve aktiviteleriyleilgili cok
genis miktarda ilging bilgi bulunmaktadir. Bu tezde, bu bilgileri elde etme ve insan
hareketini anlama konusuna bilgisayarli goru agisindan yaklasiyoruz. Bu amagla, ko-
laydan zora dogru siralanan iki ayri senaryo igin ¢oziimler dneriyoruz. Ilk senaryoda,
nispeten kolay sayilabilecek durumlardaki teksel aksiyon tanima problemini ele al-
maktayiz. Bu senaryoigin, insan durusunun varolan aktiviteyi tanimlamak i¢in pekgok
faydal1 ipucu icerdigine inaniyoruz ve iki boyutlu aksiyonlar icin karmasik modelle-
meye gitmeden, bu sekil bilgisini cok kompakt bicimlerde gosterebiliriz. Bu kap-
samda, yuksek dogruluk oranli insan aksiyonu tanimaninin mamkin oldugunu 1) vide-
olardan siluet bilgisi ¢ikarmanin miimkiin oldugu durumlarda dikdortgensel alanlarin
uzamsal yonelimli histogramlarini kullanarak, 2) siluet bilgisi bulunmadigi durum-
larda sinirlardan ¢ikarilmig cizgilerin dagilimlarini kullanarak gosteriyoruz. Buna ek
olarak, videolarda, tanimadogrulugunu yerel ve genel hareket bilgisi eklemek suretiyle
geligtirebilecegimizi kanitliyoruz. Sekil bilgisinin ayristirict bir cerceve dahilinde,
duragan resimlerdeki insan hareketlerini tanima probleminde bile oldukca faydali
oldugunu gosteriyoruz.

Ikinci senaryo karmagsik insan aktivitelerinin, degisen arka plan ve goris agilari
gibi komplike durumlarda taninmasi ve erisimi konularini icermektedir. Boyle du-
rumlarda ¢ boyutlu insan aktiviteleri betimlemek ve bir hareket derlemesini gorsel
ornege ihtiyac olmaksizin sorgulamak icin bir yontem tanimliyoruz. Yaklasimimiz,
vicut bolumleri Gzerinde olusturulan ve zamansal ve uzamsal olarak diizenlenebilecek
aktivite birimlerine dayanmaktadir. Aramabirimlerinin varligi, dnce insan viicudunun
takibi, bu takip izlerinin tglinctl boyuta tasinmasi ve hareket algilama veris Uizerinde
ogrenilmis modellerle karsilastirmak yolu ile otomatik olarak saglanmaktadir. Kisa
zamanl uzuv davranig modellerimiz etiketlenmis hareket algilama veri kiimesi kul-
lanilarak olugturulmaktadir. Video sorgu dilimiz sonlu durumlu Ozdevinirlerden
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faydalanmaktadir ve sadece basit metin kodlamasiyla tanimlanabilir olup gorsel
ornege ihtiyac duymamaktadir. Calismamizda karmasik hareket ve aktivite der-
lemesine uyguladigimiz genis araliktaki sorgularin sonuglarini sunuyoruz. Kendi
yontemimizi izleme veris Uzerine uygulanmigayristirict yontemlerle kargilastiriyoruz;
ve yontemimizin belirgin derecede gelismis performans sergiledigini gosteriyoruz.
Deneysdl kanitlarimiz, yontemimizin gorus yonu farkliliklarina dayanikli oldugunu ve
kiyafetlerdeki onemli degisikliklerinden etkilenmedigini ispatlamaktadir.

Anahtar sozciikler: Insan hareketi, aksiyon tanima, aktivite tanima, aktivite erisimi,
resim ve video igdeme, siniflandirma



Acknowledgement

Thiswas ajourney. Actualy, theinitial part of alonger one. Took longer than esti-
mated, tougher than expected. But, you know what they say: “No pain, no gain”. |
learnt alot, and it was all worth it.

During this journey, my pathway crossed with lots of wonderful people. The very
first oneis Dr. Pinar Duygulu-Sahin, who has been a great advisor for me. Her passion
for research, for computer vision and for living has been a true inspiration. She has
provided tremendous opportunities for my research career and | am deeply thankful
for her guidance, encouragement and motivation in each and every way.

| was one of the lucky people, who had the chance to meet and work with Prof.
David A. Forsyth. Words cannot express my gratitude to him. | learnt alot from his
vast knowledge. He is exceptional, both as a scientist and as a person.

| am grateful to the members of my thesis committee, Prof. Aydin Alatan, Prof.
Ozgiir Ulusoy, Prof Enis Cetin and Prof. H. Altay Givenir for accepting to read and
review this thesis and for their valuable comments. | am also thankful to Dr. Selim
Aksoy, whose guidance has been helpful in many ways.

| would like to acknowledge the financial support of TUBITAK (Scientific and
Technical Research Council of Turkey) during my visit in University of Illinois at
Urbana-Champaign(UIUC) as aresearch scholar. This research has also been partially
supported by TUBITAK Career grant number 104E065 and grant numbers 104E077
and 105E065.

| am deeply thankful to Deva Ramanan, for sharing his codes and invaluable tech-
nical knowledge. Thisthesis has benefitted alot from the landmarks he set on tracking
and pose estimation research. Neither my research nor my daysin University of Illinois
at Urbana-Champaign would be complete, without the presence and endless support
of dear Shadi, Alex and Nicolas. | cannot thank them enough for their friendship, their
motivation and support.

| am aso thankful to the exquisite members of RETINA research group. Selen,

viii



Firat, Asli and Daniya made room EA522 feel like home. Their enthusiasm was a
great motivation. | am also grateful my other friends, especially Emre and Tagmag, for
their understanding and encouragement.

Above dl, | owe everything to my parents. None of this would be possible, with-
out their unconditional love and endless support. My mother (Aysun) and my father
(Aykut), thank you for nurturing me with love, with the curiosity for learning and
research, for being my inspiration in every dimension of life, and for giving me the
strength to carry on during the hard times of this journey. | am blessed to be your
daughter. | am also blessed by the presence of my brother(Nuri) in my life. Thank you
for al the laughter and joy.

And finally, my reserved thanks are to Gokberk, for al the good and the harmony.



To my parents,
Aysun and Aykut Ikizler



Contents

1 Introduction 1
1.1 OrganizationoftheThesis . . .. .. ... ... ... ... ..... 7

2 Background and Motivation 9
21 ApplicationAreas. . . . . . .. 11
2.2 Human MotionUnderstandinginVideos . . . . ... ... ...... 12
221 Timescale . . . . . . . ... 12

222 Motionprimitives. . . . . .. ... 13

2.2.3 Methodswith explicit dynamical methods . . . . . ... . .. 14

2.24 Methodswith partial dynamicalmodels . . . . .. ... ... 15

225 Discriminativemethods . . . . ... ... 15

226 TransferLearning. . . . . . . . . . 17

227 Histogramming . . . . . ... 17

2.3 Human Action Recognitionin Still Images . . . . . . ... ... ... 17
231 Poseestimation . . . . .. ... ... 18

Xi



CONTENTS Xil

2.3.2 Inferring actionsfromposes . . . . . . . ... ... 19

3 Recognizing Single Actions 20
3.1 Histogram of Oriented Rectangles as a New Pose Descriptor . . . . . 21
3.1.1 Extractionof Rectangular Regions . . . . . . ... ... ... 22

3.1.2 Describing Pose as Histograms of Oriented Rectangles . . . . 23

3.13 CapturingLoca Dynamics. . . . ... ... ... ...... 24

3.1.4 Recognizing ActionswithHORs. . . . . ... ... ..... 25

3.2 The Absence of Silhouettes: Line and Flow Histograms for Human

ActionRecognition . . . . . . ... 30
3.2.1 Linebased shapefeatures . ... ... ... ... .. .... 32

322 Motionfeatures . . . . ... ... 35

3.23 Recognizing Actions . . . . . . .. ... 36

3.3 Single Action RecognitioninsideStill Images . . . . ... ... ... 37
331 Poseextractionfromstillimages. . . . ... ... ... ... 38

332 Representingthepose . . . ... ... ... . ... ..., 41

3.33 Recognizing ActionsinStill Images . . . . . ... ... ... 42

4 Experimentson Single Human Actions 43
41 Datasets . . . . . . e 43
411 VideoDatasets . . .. ... ... .. .. 44

412 StillImageDatasets . . . . . .. ... ... 45



CONTENTS

4.2 Experimentswith Histogram of Oriented Rectangles(HORs) . . . . .
4.2.1 Optima Configuration of the Pose Descriptor . . . . . . . ..
422 Clasdfication Resultsand Discussions . . . . . .. ... ...
4.2.3 Comparison to other methodsand HOGs . . . ... ... ..
4.2.4 Computational Evaluation . . . . ... ... .........
4.3 Experimentswith Lineand Flow Histograms . . . . ... ... ...

44 ExperimentsonStill Images . . . . . . ... ... ... ...

5 Recognizing Complex Human Activities
5.1 Representing Acts, Actionsand Activities . . . ... ... ... ...
511 Actsinshorttimescales . .. ... ... ... ........
512 Limbactionmodels . . ... ... ... ... ... ... ..
513 Limbactivitymodels . . .. ... ... .. ... .. .....
52 Transducingthebody . . . ... ... ... ... ... .. .....
521 Tracking . . . . .. ..
522 Lifting2Dtracksto3D . . . . ... ... .. ... .. ...
523 Representingthebody ... ... ...............

53 Queryingfor Activities . . . . . ... ...

6 Experimentson Complex Human Activities
6.1 Experimental Setup . . . . .. ... ... ...

6.1.1 DatasatS. . . . . . . . e

Xiii

49

49

53

58

58

61

67

69

70

70

71

73

73

74

76

81

87



CONTENTS Xiv

6.1.2 EvauationMethod . . . . .. ... .. ... ... L. 90

6.2 Expressivenessof Limb ActivityModels. . . . . ... ... ..... 91
6.2.1 Vector Quantization for ActionDynamics . . . . ... .. .. 93

6.3 Searching . ... ... .. . . . ... 94
6.3.1 Torsoexclusion . . . ... ... .. ... ..., 95

632 Controls. . . . . . . . .. 97

6.4 Viewpointevaluation . . . ... ... ... ... ... ... 98
6.5 Activity Retrieval with Complex Backgrounds . . . . . ... ... .. 103

7 Conclusionsand Discussion 105
7.1 FutureDirections . . . . . . . . . . ... 107

7.2 ReevantPublications . . . . . . . . . ... . 109



List of Figures

11

12

21

22

31

3.2

3.3

34

3.5

3.6

3.7

3.8

Exampleof asingleaction. . . . . .. ... .. ... ... . .....

Example of a complex activity, composed across time and across the

Earliest work on human motion photography by Eadweard Muy-
bridge[63,64]. . . . . . . .

Possible application areas of human action recognition . . . . . . . .

Feature extraction stage of our histogram of rectangles(HOR) approach
Rectangleextractionstep . . . . . . . . . . ...
Details of histogram of oriented rectangles(HORs) . . . . . .. ...
Nearest neighbor classification process for awalking sequence.

Global rectangle images formed by summing the whole sequence . . .
SVM classification process over awindow of frames . . . .. .. ..
Dynamic Time Warping (DTW) over 2D histograms . . . . . ... .

Two-level classification with mean horizontal velocity and SVMs
(VESVM) . e

XV

10

10

22

23

24

26

27

28

30

31



LIST OF FIGURES XVi

3.9 Extractionof line-based features . . . . . . ... ... ... ..... 33
3.10 Forminglinehistograms . . . . .. .. ... ... ... .. ..., 33
3.11 Formingoptical flow(OF) histograms . . . . ... .. ... .. ... 35

3.12 Overall system architecture with addition of mean horizontal velocity. 37
3.13 Actionsingtillimages. . . . . ... .. ... .. ... .. . ... 38

3.14 Pose and rectangle extraction. To the left: The original image and
its corresponding parse obtained by using iterative parsing as defined
in [74]. To theright: The extracted silhouette and the resulting rect-
angles. . .. 39

3.15 Pose representation using circular histogram of oriented rectan-
gles(CHORYs). Circular grid is centered to the maximum value of the

probabilityparse. . . . . . ... 41
4.1 Exampleframesfrom the Weizzman dataset introduced in[12]. ... 44
4.2 Exampleframesfromthe KTH dataset introduced in[86]. . . . . .. 46

4.3 Extracted silhouettes from the KTH dataset in sl recording condition. 47

4.4 Example images of the ActionWeb dataset collected from the web

SOUICES. . v v v o e e e e e e e e e e e 48
4.5 Example frames from the figure skating dataset introduced in[100]. . 49
4.6 Rectangle detectionwithtorsoexclusion . . . . . ... ... ... .. 52

4.7 Confusion matricesfor each matching method over the Weizzman dataset 55
4.8 Confusion matrix for classification results of the KTH dataset. . . .. 56

4.9 Choice of « and resulting confusion matrix for the KTH dataset. . . . 59



LIST OF FIGURES XVil

4.10

411

4.12

4.13

4.14

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

Resulting confusion matrix for the KTH dataset. . . . .. ... ... 60
Examples for correctly classified images of actions running, walking,
throwing, catching, crouching, kicking in consecutivelines. . . . . . . 63
Confusion matrix of CHOR method over the ActionWeb still images
dataset . . . . . . .. .. 64
Examples for misclassified images of actionsfor ActionWeb dataset . 65
Clusters formed by our approach for the figure skating dataset. . . . . 66
Overall system architecture for the retrieval of complex human activi-

teS. . . e 68
Formation of activity modelsfor each of thebody parts. . . . . . . .. 72
Example good tracks for the UIUC video dataset. . . . . . ... ... 73
Out-of-track examplesintheUIUC dataset. . . . . .. ... ... .. 73

Posterior probability map of a walk-pickup-carry video of an
AMN. . e e e e e e e e e e 76

Anexamplequery resultof oursystem. . . .. ... ... .. .... 79

Another example sequence from our system, performed by a female

subject. . ... 80
The FSA for asingle action is constructed based on itsunit length. . . 82
Here, example query FSAsfor a sequence where the subject walksinto
the view, stops and waves and then walks out of theview areshown. . 84
Query FSA for a video where the person walks, picks something up

andcarriesit. . . . . .. e 85



LIST OF FIGURES XVili

6.1 Exampleframesfrom UIUC complex activity dataset. . . . . . . . . . 89

6.2 Example frames from our dataset of single activities with different
VIBWSPOINES. . . . . o o e e 89

6.3 Example frames from the Friends dataset which is compiled from the

FriendsTV Series . . . . . . . . . 90
6.4 Average HMM posteriorsfor the motion capturedataset . . . . . . . . 93
6.5 Thechoiceof kink-means . . . . ... ... ............. A4
6.6 Effectoftorsoincluson. . . . ... ... ... ... .. ....... 96
6.7 Theresults of ranking for 15 queries over our video collection. . . . . 99
6.8 Averageprecisionvaluesforeachquery. . ... ... .. ... ... 100
6.9 Evaluation of the sensitivity to viewpointchange . . ... ... ... 101
6.10 Mean precisionsand the PR curvesfor eachaction . . . . ... ... 102
6.11 Exampletracksfor theFriendsdataset . . . ... ... ... ... .. 103

6.12 Resultsof our retrieval system over the Friendsdataset. . . . . . . .. 104



List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

6.1

The accuracies of the matching methods with respect to angular bins
(overagridof 3 x3. . .. .. ... ...

The accuracies of the matching methods with respect to NV x N grids

Overall performance of the matching methods over the Weizzman and
KTHdatasets. . . . . . . . . . . .

Comparison of our method to other methods that have reported results
overtheWeizzmandataset. . . . . .. ... ... ... ........

Comparison of our method to other methods that have reported results
over KTHdataset. . . . . . . ... ... . . .. . . ...

Comparison to HOG feature based action classification over the KTH
dataset. . . . . . . ...

Run time evaluationsfor different matching techniques using HORSs.
Comparison of our method to other methodson KTH dataset. . . . . .

Comparison with respect to recording condition of the videos in the
KTHdataset. . . ... ... . . . . . . e

Our collection of video sequences, named by the instructions given to

XiX



LIST OF TABLES

6.2 The Mean Average Precison(MAP) values for different types of
QUENES. . . . o e e e e

XX



Chapter 1

| ntroduction

Thisthesistriesto address the problem of understanding what people are doing, which
isone of the great unsolved problemsof computer vision. A fair solution openstremen-
dous application possihilities, ranging from medical to security. The major difficulties
have been that (a) good kinematic tracking is hard; (b) modelstypically have too many
parameters to be learned directly from data; and (c) for much everyday behaviour,
there isn’t a taxonomy. This thesis aims to tackle with this problem in the prevalence
of these difficulties, while presenting solutions to various cases.

We approach the problem of understanding human motion in two distinct scenar-
ios, ordered simple to complex, with respect to difficulty level. While choosing these
scenarios, we try to comply with the requirements of the ongoing research trends in
the action recognition community and the real-world activities. With thisintention, we
first cover the case of recognizing single actions, where the person in video(or image)
isinvolved in one simple (non-complex) action. Figure 1.1 illustrates an example oc-
curance of a single “walking” action. Our second scenario involves recognition and
retrieval of complex human activities within more complicated settings, like the pres-
ence of changing background and viewpoints. This scenario is more realistic than the
simple one, and covers a large portion of the available video archives which involve
full-body human activities.

We deal with the simpler scenario as our first area of interest, because the current
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Figure 1.1: Example of asingle action.

research in vision community has condensed around “one actor, one action, simple
background” paradigm. Thisis mostly due to the lack of the benchmark datasets that
cover the remaining aspects of this subject, and due to the extreme challenges of pro-
cessing the complicated settings. This paradigm is by no means arepresentative of the
available videos at hand, and only a small portion of the real world videos meet the
requirements stated. However, we can say that it isagood starting point for observing
the nature of human actions from a machine vision perspective.

There are three key elements that define a single action:

e pose of the body (and parts)
e relative ordering of the poses

e speed of the body (and parts)

We can formulate single action recognition as a mixture of these three elements.
The relative importance of these elements is based on the nature of the actions that
we aim to recognize. For example, if we want to differentiate an instance of a “bend”
action from a “walk” action, the pose of the human figure gives sufficient informa-
tion. However, if we want to discriminate between “jog” and “run” actions, the pose
alone may not be enough, due to the similarity in the nature of these actions in the
pose domain. In such cases, the speed information needs to be incorporated. Various
attemptsin action recognition literature try to model some or all of these aspects. For
instance, methods based on spatio-temporal templates mostly pay attention to the pose
of the human body, whereas methods based on dynamical models focus their attention
to modeling the ordering of these posesin greater detail.
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We believe that the human pose encapsulates many useful clues for recognizing
the ongoing action. Even a single image may convey quite rich information for un-
derstanding the type of action taking place. Actions can mostly be represented by
configurations of the body parts, before building complex models for understanding
the dynamics.

Using thisidea, we base the foundation of our method on defining the pose of the
human body to discriminate single actions, and by introducing new pose descriptors,
we try to evaluate how far we can go only with a good description of the pose of the
body in 2D. We evaluate two distinct cases here: The presence of silhouette informa-
tion in the domain, and the absence of silhouettes. We aso evaluate how our system
benefits from adding the remaining action components whenever necessary.

For the case where silhouette information is easily extractable, we use rectangular
regions as our basis of shape descriptor. Unlike most of the methods that use complex
modeling of body configurations, we follow the analogy of Forsyth et al. [32], which
represents the body as a set of rectangles, and explore the layout of these rectangles.
Our pose descriptor is based on asimilar intuition: the human body can be represented
by a collection of oriented rectangles in the spatial domain and the orientations of
these rectangles form a signature for each action. However, rather than detecting and
learning the exact configuration of body parts, we are only interested in the distribution
of the rectangular regions which may be the candidates for the body parts.

When we cannot extract the silhouette information from the image sequences, due
to various reasons like camera movement, zoom effect, etc., but the background isrel-
atively simple and the boundaries are identifiable, we propose to use a compact shape
representation based on boundary-fitted lines. We show how we can make use of our
new shape descriptor together with a dense representation of optical flow and global
temporal information for robust single action recognition. Our representation involves
a very compact form by making use of feature reduction techniques, decreasing the
classification time significantly.

Recognizing single actions is a relatively ssmpler problem compared to complex
activities; itisrelatively easier to acquire training datafor identifying single actions. In
addition, current datasets available only deal with static backgrounds where foreground
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running

Figure 1.2: Example of a complex activity, composed across time and across the body.

human figures are easily extractablefor further processing. Under these circumstances,
we believe that a very compact representation should be enough to conform the needs
of single action recognition, and presenting such compact representations is what we
dointhefirst part of thisthesis.

In the second part of the thesis, we consider the case of complex activity recogni-
tion, where the action units are composed over time and space and the viewpoints of
the subjects are changing frequently. Figure 1.2 shows an example complex composite
activity, in which the person performs two different activities consecutively and one
activity is the composite of two different actions. Desirable properties of a complex
activity recognition and retrieval system are:

e it should handle different clothings and varying motion speeds of different actors
e it should accomodate the different timescal es over which actions are sustained

e it should allow composition across time and across the body

¢ there should be a manageable number of parametersto estimate

e it should perform well in presence of limited quantities of training data

e it should be indifferent to viewpoint changes

e it should require no example video segment for querying
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Building such a system has many practical applications. For example, if a sus-
picious behaviour can be encoded in terms of “action word”s - w.r.t. arms and legs
separately whenever needed - one can submit a text query and search for that spe-
cific behaviour within security video recordings. Similarly, one can encode medically
critical behaviours and search for those in surveillance systems.

Understanding activitiesis a complex issue in many aspects. First of al, thereisa
shortage of training data, because a wide range of variations of behaviour is possible.
A particular nuisance isthe tendency of activity to be compositional (below). Discrim-
inative methods on appearance may be confounded by intraclass variance. Different
subjects may perform the actions with different speeds in various outfits and and these
nuisance variations make it difficult to work directly with appearance. Training a gen-
erative model directly on a derived representation of video is also fraught with diffi-
culty. Either one must use a model with very little expressive power (for example, an
HMM with very few hidden states) or one must find an enormous set of training data
to estimate dynamical parameters (the number of which typically goes as the square of
the number of states). Thisissue has generated significant interest in variant dynamical
models.

The second difficulty is the result of the composite nature of activities. Most of
the current literature on activity recognition deals with simple actions. However, real
life involves more than just simple “walk”s. Many activity labels can meaningfully
be composed, both over time — “walk”ing then “run”ing — and over the body —
“walk”ing while “wave’ing. The process of composition is not well understood (see
the review of animation studies in [33]), but is a significant source of complexity in
motion. Examplesinclude: “walking while scratching head” or “running while carry-
ing something”. Because composition makes so many different actions possible, it is
unreasonabl e to expect to possess an example of each activity. This means we should
be able to find activities for which we do not possess examples.

A third issue is that tracker responses are noisy, especially when the background
is cluttered. For this reason, discriminative classifiers over tracker responses work
poorly. One can boost the performance of discriminative classifiersif they are trained
on noise-free environments, like carefully edited motion capture datasets. However,
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these will lack the element of compositionality.

All these points suggest having a model of activity which consists of pieces which
arerelatively easily learned and are then combined together within amodel of compo-
sition. In this study, we try to achieve this by

e learning local dynamic models for atomic actions distinctly for each body part,
over a motion capture dataset

e authoring a compositional model of these atomic actions

e using the emissions of the data with these composite models

To overcome the data shortage problem, we propose to make use of motion capture
data. This data does not consist of everyday actions, but rather alimited set of Ameri-
can football movements. Thereisaform of transfer learning problem here — we want
to learn amodel in a football domain and apply it to an everyday domain — and we
believe that transfer learning is an intrinsic part of activity understanding.

We first author a compositional model for each body part using a motion capture
dataset. This authoring is done in a similar fashion to phoneme-word conjunctions
in speech recognition: We join atomic action models to have more complex activity
models. By doing so, we achieve the minimum of parameter estimation. In addi-
tion, composition across time and across body is achieved by building separate activity
models for each body part. By providing composition across time and space, we can
make use of the avail able data as much as possible and achieve a broader understanding
about what the subject is up to.

After forming the compositional models over 3D data, we track the 2D video with
a state-of-the-art full body tracker and lift 2D tracks to 3D, by matching the snippets
of frames to motion capture data. We then infer activities with these lifted tracks. By
this lifting procedure, we achieve view-invariance, since our body representation isin
3D.

Finally, we write text queries to retrieve videos. In this procedure, we do not re-
quire example videos and we can query for activities that have never been seen before.
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Making use of finite state automata, we employ a simple and effective query language
that allows complex queriesto be written in order to retrieve the desired set of activity
videos. Using separate models for each body part, compositional nature of our system
allows us to span a huge query space.

Here, our particular interest is everyday activity. In this case, a fixed vocabulary
either doesn’t exist, or isn’t appropriate. For example, one often does not know words
for behaviours that appear familiar. One way to deal with thisisto work with a no-
tation (for example, laban notation); but such notations typically work in terms that
are difficult to map to visual observables (for example, the weight of a motion). We
must either develop avocabulary or devel op expressivetoolsfor authoring models. We
favour this third approach.

We compare our method with several controls, and each of these controls has a
discriminative form. First, we built discriminative classifiers over raw 2D tracks. We
expect that discriminative methods applied to 2D data perform poorly because intra-
class variance overwhelms available training data. 1n comparison, our method benefits
by being able to estimate dynamical models on motion capture dataset. Second, we
built classifiers over 3D lifts. Although classifiers applied to 3D data could be view
invariant, we expect poor performance because there is not much labelled data and
the lifts are noisy. Our third control involves classifiers trained on 3D motion capture
dataand applied to lifted data. This control also performs poorly, because noise in the
lifting process is not well represented by the training data. This also causes problems
with the composition. On contrary, our model supportsahigh level of composition and
its generative nature handles different lengths of actions easily. In the corresponding
experiments chapter, we evaluate the effect of al these issues and also analyze the
view-invariance of our method in greater detail.

1.1 Organization of the Thesis

The remainder of thisthesisis organized as follows.



CHAPTER 1. INTRODUCTION 8

Chapter 2 starts with a brief introduction to human action/activity recognition re-
search together with possible application areas. It includes an overview of human
action/activity recognition approaches in the literature.

Chapter 3 describes our approaches to recognition of single human actions within
relatively simple scenarios. By single actions, we mean the videos including only one
action instance. Particularly, Section 3.1 and Section 3.2 introduce our histogram-
based approaches for single action recognition in videos, whereas Section 3.3 includes
application of our pose descriptor to still images. In Chapter 4, we present our meth-
ods performance on single action recognition case.

Later on, Chapter 5 introduces our approaches for understanding human actionsin
the case of complex scenarios. These scenarios include actions composed across body
and across space, with varying viewpoints and cluttered backgrounds. We show how
we can handle those scenarios within a 3D modeling approach. Chapter 6 gathers up
our empirical evaluations of our method on complex human activities.

Chapter 7 concludes the thesis with a summary and discussions of the approaches
presented and delineates possible future directions.



Chapter 2

Background and M otivation

Immense developments in video technology, both recording (as in TiVo and surveil-
lance systems) and broadcasting (as in YouTube [1]), have greatly increased the size
of accessable video archives, thus, the demand on processing and extracting useful
information from those archives. Although the demand is quite high, the relevant
searches still depends on text-based user annotations, and visual properties mostly go
untouched. While using annotations is a sensible approach, not all the videos are an-
notated, or existing annotations/metadata are useful.

Inside those video archivesis a vast amount of interesting information regarding
human action/activities.

From a pscyhological perspective, the presence of human figure inside images is
guite important. We can observe thisimportance from the extensive literature and his-
tory of face recognition research(see [85, 110]). People are interested in identification
and recognition of humans and their actions. Starting from the works of Eadweard
Muybridge [63], as early as 1887 (Figure 2.1), movement and action analysis and
synthesis has captured a lot of interest, which resulted in the development of motion
pictures.

Additionally, understanding what people are doing will close the semantic gap be-
tween low-level features and high-level image interpretation a great extent.
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(c) head-spring

Figure 2.1: Earliest work on human motion photography by Eadweard Muybridge [63,
64].

All these make automatic understanding of human motion a very important prob-
lem for computer vision research. In the rest of the chapter, we present a summary of
the related studies over this subject.

(a) surveillance (b) home entertainment (c) sport annotation

Figure 2.2: Possible application areas of human action recognition
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2.1 Application Areas

Human motion understanding can serve many application areas, ranging from visual
surveillance to human computer interaction(HCI) systems. Particularly, the application
domains are limited to those that involve camera setups. Below is an example list of
such systems.

e Visua Surveillance: As the video technology become more commonplace, vi-
sual surveillance systems undertook arapid devel opment process, and have more
or less become a part of our daily lives. Figure 2.2(a) shows an example surveil-
lance infra-red (IR) video output. Human action understanding can help to find
fraudful events —such as burglaries, fightings, etc —, to detect pedestrains from
moving vehicles, and can serve to track patients who need special attention (like
detecting afaling person [94]).

e Human-Computer Interaction: Ubiquitous computing has increased the pres-
ence of HCI systems everywhere. A recently evolving thread is in the area of
electronic games and home entertainment(see Figure 2.2(b)). These systems
are currently based on very naive video and signal processing. However, as the
technology evolve, the trend will shift towards moreintelligent and sophisticated
HCI systems which involve activity and behaviour understanding.

e Sign Language Recognition: Gesture recognition, which is a subdomain of ac-
tion recognition that operates over the upper body parts, serves a lot for auto-
matic understanding of sign language [15, 38, 92].

e News, Movie and Personal Video Archives: By the decrease in the cost of video
capturing devices and by the development of sharing websites, videos become
to be a substantial part of the today’s personal visual archives. Automatic an-
notations of those archives, together with movie and news archives will help
information retrieval. In addition, automatic annotation of news and sport video
archives(see Figure 2.2(c) for an exampleframe) isanecessary thread for access-
ing the necessary information in aquick and easy way. People may be interested
in finding certain events, describable only by the activities involved and activity
recognition can help considerably in this case.
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e Socia Evaluation of Movements: The observation of behavioura patterns of
humansis quite important for the research of sociology, architecture, and more.
Machine perception of activities and patterns can guide many researches in this
area. For example, Yan et al. tries to find estimates of where people spend time
by examining head trajectories [105]. Interestingly, research like this one will
help in urban planning.

2.2 Human Motion Understanding in Videos

Thereisalong tradition of research on interpreting human actions and activitiesin the
computer vision community. Especially during the last decade, human action recogni-
tion has gained a lot of interest. Hu et al [43] and Forsyth et al [33] present extensive
surveys on this subject.

In general, approaches to human action and activity recognition on videos can be
divided intro three main threads. First, one can use motion primitives(Section 2.2.2)
which is based on the statistical evaluation of motion clusters. Second, one can use
dynamical models, partially(Section 2.2.4) or explicitly(Section 2.2.3). Third, one can
make use of discriminative methods(Section 2.2.5), such as spatio-temporal templates
or “bag-of-words’. This section presents a literature overview of these methods.

2.2.1 Timescale

Regarding the timescale of the act, action and activity descriptions, there is a wide
range of helpful distinctions. Bobick [13] distinguishes between movements, activity
and actions, corresponding to longer timescal es and increasing complexity of represen-
tation; some variants are described in two useful review papers [4, 36]. In thisthesis,
we refer short-timescale representations as acts, like a forward-step or a hand-raise;
medium timescale movements as actions, like walking, running, jumping, standing,
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waving, and long timescale movements as activities. Activities are complex compos-
ites of actions, whereas actions are typicaly composites of multiple acts. The com-
position can be across time (sequential ordering of acts/actions) and across body(body
partsinvolving in different acts/actions).

2.2.2 Motion primitives

A natural method for building models of motion on longer time scales is to identify
clusters of motion of the same type and then consider the statistics of how these mo-
tion primitives are strung together. There are pragmatic advantages to this approach:
we may need to estimate fewer parameters and can pool examples to do so; we can
model and account for long term temporal structure in motion; and matching may be
easier and more accurate. Feng and Perona describe a method that first matches motor
primitives at short timescales, then identifiesthe activity by temporal relations between
primitives [30]. In animation, the idea dates at |east to the work of Rose et al., who
describe motion verbs — our primitives— and adverbs — parameters that can be
supplied to choose a particular instance from a scattered data interpolate [82]. Prim-
itives are sometimes called movemes. Matari€ et al. represent motor primitives with
force fields used to drive controllersfor joint torque on arigid-body model of the upper
body [59, 60]. Del Vecchio et al. define primitives by considering all possible motions
generated by a parametric family of linear time-invariant systems [98]. BarhiC et al.
compare three motion segmenters, each using a purely kinematic representation of mo-
tion [9]. Their method moves along a sequence of frames adding frames to the pool,
computing a representation of the pool using the first £ principal components, and
looking for sharp increases in the residual error of this representation. Fod et al. con-
struct primitives by segmenting motions at points of low total velocity, then subjecting
the segmentsto principal component analysisand clustering [31]. Jenkinsand Mataric
segment motions using kinematic considerations, then use a variant of Isomap (de-
tailed in [48]) that incorporates temporal information by reducing distances between
frames that have similar temporal neighbours to obtain an embedding for kinematic
variables [47]. Li et al. segment and model motion capture data simultaneously using
a linear dynamical system model of each separate primitive and a Markov model to
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string the primitives together by specifying the likelihood of encountering a primitive
given the previous primitive [56].

2.2.3 Methodswith explicit dynamical methods

Hidden Markov Models (HMM’s) have been very widely adopted in activity recog-
nition, but the models used have tended to be small (e.g, three and five state models
in[19]). Such models have been used to recognize: tennis strokes [104]; pushes[101];
and handwriting gestures [106]. Toreyin et al. [94] use HMMs for faling person de-
tection, by fusing audial and visual information together. Feng and Perona [30] call
actions “movelets’, and build a vocabulary by vector quantizing a representation of
image shape. These codewords are then strung together by an HMM, representing ac-
tivities; thereisone HMM per activity, and discrimination is by maximum likelihood.
The method is not view invariant, depending on an image centered representation.
There has been a great deal of interest in models obtained by modifying the HMM
structure, to improve the expressive power of the model without complicating the pro-
cesses of learning or inference. Methods include: coupled HMM’s ([19]; to classify
T'ai Chi moves); layered HMM's ([67]; to represent office activity); hierachies ([62];
to recognize everyday gesture); HMM’swith a global free parameter ([102]; to model
gestures); and entropic HMM’s ([18]; for video puppetry). Building variant HMM's
isaway to smplify learning the state transition process from data (if the state space
is large, the number of parameters is a problem). But there is an aternative — one
could author the state transition process in such a way that it has relatively few free
parameters, despite avery large state space, and then learn those parameters; thisisthe
lifeblood of the speech community.

Stochastic grammars have been applied to find hand gestures and location tracks
as composites of primitives[17]. However, difficulties with tracking mean that thereis
currently no method that can exploit the potential view-invariance of lifted tracks, or
can search for models of activity that compose across the body and across time.

Finite state methods have been used directly. Hongeng et al. demonstrate recog-
nition of multi-person activities from video of people at coarse scales (few kinematic



CHAPTER 2. BACKGROUND AND MOTIVATION 15

details are available); activities include conversing and blocking [40]. Zhao and Neva-
tia use a finite-state model of walking, running and standing, built from motion cap-
ture [109]. Hong et al. use finite state machines to model gesture [38].

2.2.4 Methodswith partial dynamical models

Pinhanez and Bobick [69, 70] describe a method for detecting activities using arepre-
sentation derived from Allen’sinterval algebra[5], amethod for representing temporal
relations between a set of intervals. One determines whether an event is past, now or
future by solving aconsistent labelling problem, allowing temporal propagation. There
is no dynamical model — sets of intervals produced by processes with quite different
dynamics could be a consistent labelling; this can be an advantage at the behaviour
level, but probably is a source of difficulties at the action/activity level. Siskind [89]
describes methodsto infer activities related to objects — such as throw, pick up, carry,
and so on — from an event logic formulated around a set of physical primitives —-
such as trandation, support relations, contact relations, and the like — from a repre-
sentation of video. A combination of spatial and temporal criteria are required to infer
both relations and events, using a form of logical inference. Shi et al. make use of
Propagation Nets to encode the partial temporal orderings of actions [88]. Recently,
Ryoo and Aggarwal use context-free grammars to exploit the temporal relationships
between atomic actions to define composite activities [84].

2.2.5 Discriminative methods

Methods with (partial/explicit) dynamical models mostly have a generative nature.
This section outlines the approaches which have a discriminative setting. These meth-
ods mostly rely on 2D local image features.
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2251 Methodsbased on Templates

The notion that a motion produces a characteristic spatio-temporal pattern dates at
least to Polana and Nelson [71]. Spatio-temporal patterns are used to recognize ac-
tionsin [14]. Ben-Arieet al. [10] recognize actions by first finding and tracking body
parts using a form of template matcher and voting on lifted tracks. Bobick and Wil-
son [16] use a state-based method that encodes gestures as a string of vector-quantized
observation segments; this preserves order, but drops dynamical information. Efros
et al. [26] use a motion descriptor based on optical flow of a spatio-temporal volume,
but their evaluation is limited to matching videos only. Blank et al. [12] define actions
as space-time volumes. An important disadvantage of methods that match video tem-
plates directly is that one needs to have a template of the desired action to perform
asearch. Yeet al. moves one step further in this aspect and use matching by parts,
instead of using the whole volumetric template [50]. However, their part detection is
manual.

2.25.2 Bag-of-words approaches

Recently, ’bag-of-words' approaches originated from text retrieval research is being
adopted to action recognition. These studies are mostly based on the idea of forming
codebooks of 'spatio-temporal’ features. Laptev et al. first introduced the notion of
'space-time interest points' [53] and used SVMs to recognize actions [86]. P. Dollar
et al. extract cuboids via separable linear filters and form histograms of these cuboids
to perform action recognition [25]. Niebleset al. applied a pLSA approach over these
patches (i.e. the cuboids extracted with the method of [25]) to perform unsupervised
action recognition [66]. Recently, Wong et al. proposed using pL SA method with and
implicit shape model to infer actions from spatio-temporal codebooks[103]. They aso
show the superior performance of applying SVMs for action recognition. However,
these methods are not viewpoint independent and very likely to suffer from complex
background schemes.
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2.2.6 Transfer Learning

Recently, transfer learning has become a very hot research topic in machine learning
community. It is based on transfering the information learned from one domain to the
another related domain. In one of the earlier works, Caruana approached this prob-
lem by discovering common knowledge shared between tasks via “multi-task learn-
ing” [20]. Evgeniou and Pontil [27] utilize SVYMs for multi-task learning. Ando and
Zhang [6] generate some artificial auxiliary tasks to use shared prediction structures
between similar tasks. A recent application involves transfering American Sign Lan-
guage(ASL) words learned from a synthetic dictionary to real world data [28].

2.2.7 Histogramming

Histogramming is an old trick that has been frequently used in computer vision re-
search. For action recognition, Freeman and Roth [35] use orientation histograms for
hand gesture recognition. Recently, Dalal and Triggs use histograms of oriented gradi-
ents (HOGs) for human detection inimages[22], which isshown to be quite successful.
Later on, Dalal et al. make use of HOGstogether with orientation histograms of optical
flow for human detection in videos [23]. Christian Thurau [93] evaluate HOGs within
a motion primitive framework and use histograms of HOGs as the representation of
the videos for action recognition. Zu et al., on the other hand, utilizes histograms of
optical flow in forms of dlices to recognize actions in tennis videos [111]. Recently,
Dedeoglu et al. define a silhouette-based shape descriptor and use histogram of the
matched poses for action recognition [24].

2.3 Human Action Recognition in Still Images

Most of the effort on understanding the human actions involves video analysis with
fundamental applications such as surveillance and human computer interaction. How-
ever, action recognition on single images is a mostly ignored area. This is due to
various challenges of thistopic. The lack of region model in a single image precludes



CHAPTER 2. BACKGROUND AND MOTIVATION 18

discrimination of foreground and background objects. The presence of articulation
makes the problem much harder, for there is a large number of alternatives for the
human body configuration. Humans as being articulated objects, can exhibit various
poses, resulting in high variability of the images. Thus, the problem of action recogni-
tion on still images becomes a very challenging problem.

2.3.1 Poseestimation

Recognition of actionsfrom still images starts with finding the person within the image
and inferring the pose of it. There are many studies in finding person images( [46]),
localizing the persons ([3]), or pedestrian detection([95]). Dalal and Triggs propose
a very successful edge and gradient based descriptor, called Histogram of Oriented
Gradients [22] for detecting and locating humans in still images. Zhu et al. advances
HOG descriptors by integrating HOG and AdaBoost to select the most suitable block
for detection [112]. In [11], Bissacco et al. also use HOGs in combination with Latent
Dirichlet Allocation for human detection and pose estimation. Oncel et al. [96], on the
other hand, define a covariance descriptor for human detection.

For inferring the human pose from 2D images, there is a bunch of recent studies.
Most of the studies are dealing with cases where human figure is easily differentiable
from the background, i.e. using a non-cluttered stable background. Those studies
include inferring 3D pose from 2D image data, as in [2] where Agarwal et al. deal
with inferring 3D pose from silhouettes. Rosales et al. estimate the 3D pose from a
silhouette using multi-view data[81]. In [87], a method based on hashing for finding
relevant posesin a database of images is presented.

Over the domain of cluttered images, Forsyth and Fleck introduce the concept of
body plans as a representation for people and animals in complex environments [32].
Body plans view people and animals as assemblies of cylindrical parts. To learn such
articulated body plans, [80] introduces using Support Vector Machines(SVMs) and
Relevant Vector Machines(RVMs). Ramanan presents an iterative parsing process for
pose estimation of articulated objects [74], which we use for extracting human parses
from still images for action recognition. We discuss this method in greater detail in
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Section 3.3.1.

Ren et al. also presentsaframework for detecting and recovering human body con-
figuration [79]. In their recent work, Zhang et al. describe a hierarchical model based
on edge and skin/hair color features and deterministic and stochastic search [108].

2.3.2 Inferring actions from poses

To our best knowledge, there are quite few studiesthat deal with the problem of human
action recognition in static images. Wang et al. partially addresses this problem [100].
They represent the overall shape as a collection of edges obtained through canny edge
detection and propose a deformable matching method to measure distance of a pair of
images. However, they only tackle the problem in an unsupervised manner and within
single sports scenes.



Chapter 3
Recognizing Single Actions

This chapter presents the methods we developed for the recognition of single actions.
By single actions, we refer to the action sequences where the human in motion is
engaged with one action only, through the whole sequence. This chapter investigates
thissimpler case, and defines new pose descriptorswhich are very compact and easy to
process. We define two shape-based features for this purpose. First oneisapplicableto
the case where the silhouette information is easily extractable from the given sequence.
The second pose descriptor handles the case when the silhouette information is not
availablein the scene.

We show how we can use these pose descriptors with various supervised and un-
supervised approaches for action classification. In addition to video domain, we apply
our pose descriptorsfor recognition of actionsinside static images. Our main goal isto
have compact, yet effective representations of single actions without going into com-
plex modelling of dynamics. In the consecutive chapter, we show that our descriptors
perform considerably well in the case of single action recognition with experimenting
over various state-of-art datasets.

20
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3.1 Histogram of Oriented Rectangles as a New Pose
Descriptor

Following the body plan analogy of Forsyth et al. [32], which considers the body of the
humans or animals as a collection of cylindrical parts, we represent the human body
as acollection of rectangular patches and we base our motion understanding approach
on the fact that the orientations and positions of these rectangles change over time
with respect to the actions carried out. With thisintuition, our algorithm first extracts
rectangular patches over the human figure available in each frame, and then forms a
gpatial histogram of these rectangles by grouping over orientations. We then evaluate
the changes of these histograms over time.

More specifically, given the video, first, the tracker identifies the location of the
subject. Any kind of tracker, which can extract silhouette information of the humans
can be used at this step. Using the extracted silhouettes, we search for the rectangular
patches that can be candidates for the [imbs. We do not discriminate between legs and
arms here. Then, we divide the bounding box around the silhouette into an equal-sized
grid and compute the histograms of the oriented rectangles inside each region. This
bounding box is divided into N x N equal-sized spatial (grid) bins. While forming
these spatial bins, the ratio between the body parts, i.e. head, torso and legs, is taken
into account. At each time ¢, a pose is represented with a histogram H; based on
the orientations of the rectangles in each spatial bin. We form our feature vector by
combining the histograms from each subregion. This processis depicted in Fig. 3.1.

In the ideal case, single rectangles that fit perfectly to the limb areas should give
enough information about the pose of the body. However, finding those perfect rectan-
glesisnot straightforward and is very prone to noise. Therefore, in order to eliminate
the effect of noise, we use distribution of candidate rectangular regions as our feature.
This gives a more precise information about the most probable locations of the fittest
rectangles.

Having formed the spatio-temporal rectangle histograms for each video, we match
any newly seen sequence to the examples at hand and |abel the videos accordingly. We
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Figure 3.1: Here, the feature extraction stage of our approach is shown (thisfigureis
best viewed in color). Using the extracted silhouettes, we search for the rectangular
patches that can be candidates for the limb and compute the histograms of the oriented
rectangles.

now describe the steps of our method in greater detalil.

3.1.1 Extraction of Rectangular Regions

For describing the human pose, we make use of rectangular patches. These patches are
extracted in the following way:

1) The tracker fires a response for the human figure and differentiates the human
region from the background. This is usually done using a foreground-background
discrimination method [34]. The simplest approach isto apply background subtraction,
after forming a dependable model of the background. The reader isreferred to [33] for
adetailed overview of the subject. In our experiments, where we extract the silhouettes,
we use a background subtraction scheme to localize the subject in motion, asin [37].
Note that any other method that extracts the silhouette of the subject will work just
fine.

2) We then search for rectangular regions over the human silhouette using con-
volution of a rectangular filter on different orientations and scales. We make use of
undirected rectangular filters, following Ramanan et al. [76]. The search is performed
using 12 tilting angles, which are 15° apart, covering a search space of 180°. Note that
since we don’'t have the directional information of these rectangle patches, orientations
do not cover 360°, but its half. To tolerate the differences in the l[imb sizes and in the
varying camera distances to the subject, we perform the rectangle convolution over
multiple scales.
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Figure 3.2: Therectangular extraction processis shown. We use zero-padded Gaussian
filters with 15° tilted orientations over the human silhouette. We search over various
scales, without discriminating between different body parts. The perfect rectangular
search for the given human subject would result in the tree structure to the right.

More formally, we form a zero-padded rectangular Gaussian filter G, and pro-
duce the rectangular regions R(x, y) by means of the convolution of the binary silhou-
etteimage I (x, y) with thisrectangle filter G,

R(I, ?J) - G'r‘ect(xu y) o I(I7 y) (31)
where G, isa zero-padded rectangular patch of a2-D Gaussian G(z, y)
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Higher response areas to thisfilter are morelikely to include patches of a particular
kind. Thefilters used are shownin Fig. 3.2.

To tolerate noise and imperfect silhouette extraction, this rectangle search allows
a portion of the candidate regions to remain non-responsive to the filters. Regions
that have low overall responses are eliminated this way. We then select the & of the
remaining candidate regions of each scale by random sampling (we used & = 300).

3.1.2 Describing Pose as Histograms of Oriented Rectangles

After finding the rectangular regions of the human body, in order to define the pose,
we propose a simple pose descriptor, which is the Histogram of Oriented Rectangles
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Figure 3.3: Details of histogram of oriented rectangles (HORS). The bounding box
around the human figure is divided into an N x N grid (in this case, 3 x 3) and the
HORs from each spatial bin are shown. The resulting feature vector is a concatenation
of the HORs from each spatial bin.

(HOR). We compute the histogram of extracted rectangular patches based on their
orientations. The rectangles are histogrammed over 15° orientations, resulting in 12
circular bins. In order to incorporate spatial information of the human body, we eval-
uate these circular histograms withina N x N grid placed over the whole body. Our
experiments show that N = 3 gives the best results. We form this grid by splitting
the silhouette over the y-dimension based on the length of the legs. The area covering
the silhouette is divided into equal-sized bins from bottom to up and left to right (see
Fig. 3.3 for details). Note that, in this way, we give some space to the top part of the
head, to allow action space for the arms (for actions like reaching, waving, etc.).

We have also evaluated the effects of using 30° orientation binsand a2 x 2 grid,
which have more concise feature representations, but coarser detail of the human pose.
We show the corresponding resultsin Sect. 4.2.

3.1.3 Capturing Local Dynamics

In action recognition, there may be times where one cannot discriminate two actions
by just looking at single poses. In such cases, an action descriptor based purely on
shapeis not enough and temporal dynamics must be explored. To incorporate temporal
features, HORs can be calculated over snippets of frames rather than single frames.
More formally, we define histograms of oriented rectangles over a window of frames
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(HORW), such that the histogram of the ith frame will be

HORW (i) = Z HOR(k) (3.3)

k=i—n

where n isthe size of the window.

By using HORs over awindow of frameslikethis, we capturelocal dynamicsinfor-
mation. In our experiments, we observe that, using HORWSs is more useful especially
to discriminate actions like “jogging” and “running”, which are very similar in pose
domain, but different in speed. Therefore, over a fixed length window, the compact-
ness of these two actions will be different. We evaluate the effect of using HORs vs
HORWSsin greater detail in Section 4.2.

3.1.4 Recognizing Actionswith HORs

After calculating the pose descriptors for each frame, we perform action classification
in a supervised manner. There are four matching methods we perform in order to
evaluate the performance of our pose descriptor in action classification problems.

3.141 Nearest Neighbor Classification

The simplest scheme we utilize is to perform matching based on single frames (or
snippets of framesin the case of HORWS), ignoring thedynamics of the sequence. That
is, for each test instance frame, we find the closest frame in the training set and assign
its label as the label of the test frame. We then employ a voting scheme throughout
the whole sequence. This process is shown in Fig. 3.4. The pose descriptor of each
frame(snippet) is compared to that of the training set frames and the closest frame's
classis assigned as a label to that frame. The resulting is a vote vector, where each
frame contributes with a vote and the mgority class of the votes is the recognized
action label for that sequence.

The distance between frames is computed using Chi-square distance between the
histograms (asin [55]). Each frame with the histogram H is|abeled with the class of
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Figure 3.4: Nearest neighbor classification process for a walking sequence.

the frame having histogram H that has the smallest distance x? such that

2 1 Hz n)— Hj n 2

We should note that both x? and L, distance functions are very prone to noise,
because a dlight shift of the bounding box center of the human silhouette may result
in a different binning of the rectangles and, therefore, may cause large fluctuations
in distance. One can utilize Earth Mover’s Distance [83] or Diffusion Distance [57],
which are shown to be more efficient for histogram comparison in the presence of
such shifts, by taking the distances between bins into account at the expense of higher
computation time.

3.1.4.2 Global Histogramming

Global histogramming is similar to the Motion Energy Image (MEI) method proposed
by Bobick and Davis[14]. In thismethod, we sum up all spatial histograms of oriented
rectangles through the sequence, and form a single compact representation for the
entire video. This is simply done by collapsing all time information into a single
dimension by summing the histograms and forming a global histogram H g0, such
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Figure 3.5: Global histograms are generated by summing up all the sequence and
forming the spatial histograms of oriented rectangles from these global images. In this
figure, global images after the extraction of the rectangular patches are shown for 9
separate action classes. These are bend, jump, jump in place, gallop sideways, one-
hand wave, two-hands wave, jJumpjack, walk and run actions.

that
Hgiobar(d) = H(d, 1) (3.5)

for each dimension d of the histogram. Each test instance's H gy, is compared to
that of the training instances using x? distance, and the label of the closest match is
reported. The corresponding global images are shown in Fig. 3.5. These images show
that for each action (of the Weizzman dataset in thiscase), even asimple representation
like global histogramming can provide useful interpretations. These images resemble
the Motion Energy Images of [14], however we do not use these shapes. Instead, we
form the global spatial histogram of the oriented rectangles as our feature vector.

3.1.4.3 Discriminative Classification - SVMs

Nearest neighbor schemes may fail to respond well to the complex classification prob-
lems. For this reason, we decided to make use of discriminative classification tech-
niques. We pick Support Vector Machine(SVM) [97] classifiers from the pool of dis-
criminative classifiers one could use, due to their reputation of success in various ap-
plications. We trained separate SVM classifiersfor each action. These SVM classifiers
are formed using RBF kernels over snippets of frames using a windowing approach.
Thisprocessisdepicted in Fig. 3.6. For choosing the parameters of the SVMs, we per-
formaagrid search over the parameter space of the SVM classifiers and select the best
classifiers using 10-fold cross validation. In our windowing approach, we segment the
sequence into k-length chunks with some overlapping ratio o, and then classify these
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Figure 3.6: SVM classification process over awindow of frames

chunks separately (we achieved the best resultswith £ = 15, and o = 3). The whole
sequence is then labeled with the most frequent action class among its chunks.

3.1.4.4 Dynamic Time Warping

Since the periods of the actions are not uniform, comparing sequences is not straight-
forward. In the case of human actions, the same action can be performed at different
speeds, resulting in the sequence to be expanded or shrunk in time. In order to elimi-
nate such effects of different speeds and to perform robust comparison, the sequences
need to be aligned.

Dynamic time warping (DTW) is a method to compare two time series which may
be different in length. DTW operates by trying to find the optimal alignment be-
tween two time series by means of dynamic programming (for more details, see [72]).
The time axes are warped in such a way that samples of the corresponding points are
aligned.

More specifically, giventwotimeseries X = {z; ...z, } andY = {y; ...y}, the
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distance D(i, j) iscaculated with

D(Z7.] - 1)
D(i,j) =< D(i—1,7) + d(z;, ;) (3.6)
D(i—1,5—1)

where d(., .) isthe local distance function specific to application. In our implementa-
tion, we have chosen d(., .) asthe x? distance function, asin Equation 3.4.

We use dynamic time warping along each dimension of the histograms separately.
AsshowninFig. 3.7, we take each 1-d series of the histogram bins of the test video X
and compute the DTW distance D (X (d), Y (d)) to the corresponding 1-d series of the
training instance Y. We try to align these sequences along each histogram dimension
by DTW and report the sum of the smallest distances. Note that, separate alignment
of each histogram bin also allows us to handle the fluctuations in distinct body part
speeds. We then sum up the distances of al dimensions to compute the global DTW
distance (D 00q:) between the videos. We label the test video with the label of the
training instance that has the smallest D ,;,,; such that,

Dglobal(X7 Y) - Z D(X(d)7 Y(d)) (37)
d=1

where M isthe total number of binsin the histograms. While doing this, we exclude
the top & of the distances to reduce the effect of noise introduced by shifted bins and
inaccurate rectangle regions. We choose & based on the size of the feature vector such

that & = |#num_bins/2| where #num_bins isthe total number of bins of the spatial
grid.

3.1.45 Classification with Global Velocity

When shape information is not enough, we can use speed information as a prior for
action classes. Suppose we want to discriminate two actions: “handwaving” versus
“running”. If the velocity of the person in motion is equal to zero, the probability that



CHAPTER 3. RECOGNIZING SINGLE ACTIONS 30

bend action bend action
(performed by daria (performed by denis
in Weizzman dataset) in Weizzman dataset)

Figure 3.7: Dynamic Time Warping (DTW) over 2D histograms. We compute DTW
distances between the histograms by evaluating the DTW cost over single dimensions
separately and summing up all coststo get aglobal distance between sequences. Here,
histograms of two bend actions performed by different actors are shown.

he has been running is quite low.

Based on this observation, we propose atwo-level classification system. In thefirst
level, we cal culate mean velocities of the training sequences and fit a gaussian to each
action in action set A = {a;..a,} . Later on, given atest instance, we compute the
posterior probability of each action a; € A over these gaussians, and if the posterior
probability of a; is greater than a threshold ¢(we use aloose bound ¢t = 0.1), then we
add «; to the probable set .S of actionsfor that sequence. After this preprocessing step,
as the second level, we evaluate only the outputs of the SVMsfor actionsa;, € S, and
we take the maximum response from this subset of SVM classifiersasour classification
decision. Thisprocessis shownin Fig. 3.8.

3.2 The Absence of Silhouettes: Line and Flow His-
togramsfor Human Action Recognition

In the absence of silhouettes, we can make use of simpler features: lines. In this sec-
tion, we present a pose descriptor based on the orientation of lines extracted from hu-
man boundaries. By using these lines together with optical flow information, we show
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Figure 3.8: Two-level classification of actions based on mean horizontal velocity
and histograms of oriented rectangles. First, the velocity of the subject is calculated
throughout the entire video. We evaluate the posterior probability of this velocity and
determine the probable set of actions for that video. Then, based on this probable set
of actions, we look at the responses from corresponding SVM classifiers and take the
maximum response as the classification label of that video.
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that we can have fast and reliable action recognition, even if we don’t have silhouette
information.

3.2.1 Line-based shapefeatures

Shape is an important cue for recognizing the ongoing activity. When we cannot ex-
tract the silhouette information from the sequence, due to various reasons like camera
movement, zoom effect, etc., we propose to use a compact shape representation based
on lines.

We extract this representation as follows: First, given a video sequence, we com-
pute the probability of boundaries (Pb features [58]) based on Canny edges in each
frame. We use these Pb features rather than simple edge detection, because Pb features
delineate the boundaries of objects more strongly and eliminate the effect of noise
caused by shorter edge segments in cluttered backgrounds to a certain degree. Exam-
ple images and their corresponding boundaries are shown in Fig 3.9(a) and Fig 3.9(b).

After finding the boundaries, we localize the human figure by using the densest
area of high response Pb features. We then fit straight lines to these boundaries using
Hough transform. We do this in two-fold; first, we extract shorter lines (Fig 3.9(c))
to capture fine details of the human pose. Second, we extract relatively longer lines
(Fig 3.9(d)) to capture the coarser shape information.

We then histogram the union of short and long line sets based on their orientations
and spatial locations. The lines are histogrammed over 15° orientations, resultingin 12
circular bins, similar to the binning of the rectangles in our HOR descriptor. In order
to incorporate spatial information of the human body, we evaluate these orientations
withina N x N grid placed over the whole body. Our experiments show that N =
3 gives the best results (in accordance with section 3.1). This process is shown in
Fig 3.10. Resulting shape feature vector is the concatenation of all bins, having a
length || = 108 where () isthe set of all features.
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Figure 3.9: Extraction of line-based features. @) The origina image. b) Probability of
boundary(Pb) features are extracted. c) Short line segments arefitted to the thresholded
boundary edges. d) Longer line segments are extracted to capture the more general
information about the shape. The final feature vector involves the statistics of both
short and long line segments.

2N

&

W

P b

i'

)

~

[ —

\

SEDO N I < AN IS N RO N

s‘/ \\ g'/\(\\\%ll \\ // \\\

A N

= (L | = ;‘/
N | g

é\\\\ll / \\ «'/<\\\‘\|“ 7 \\ (/\/\\\\II \\\

20
a 15

Figure 3.10: Forming line histograms are shownin thisfigure. An Nz N grid is placed
over the bounding box of the human figure (here we use N = 3) and lines are his-
togrammed over each spatial grid based on their orientations. The resulting feature

vector isthe concatenation of all spatial bins.
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3.2.1.1 Feature Saection

In our experiments, we observed that, even a feature size of || = 108 is a sparse
representation for shape. That is, based on the nature of the actions, some of the
dimensions of this feature vector are hardly used. To have a more dense and compact
representation and to reduce the processing time in classification step, we make use
of a maximum-entropy based feature selection approach. By using maximum entropy,
we are able to detect regions of interest in which most of the change, i.e motion occurs.

We calculate the entropy of the features as follows: Let f;(t) represent the feature
vector of frame at time ¢ in video j and let |V;| denote the length of the video. The
entropy H (f}') of each feature n over the temporal domainiis

Vil

H(f7) ==Y fr(®)log(f1 (1) (3.8)

t=1
where f isthe normalized feature over time such that

fr= _ (3.9)

SV ()

Thisentropy H(f7') isaquantative measure of energy in asingle feature dimension
n. A low H(f') meansthat thenth featureis stable during the action and higher H (1)
means the nth feature is changing rapidly in the presence of action. We expect that
the high entropy features will be different for different action classes. Based on this
observation, we compute the entropies of each feature in all training videos separately
for each action. More formally, our reduced feature set ()’ is

Q' = {f”\H(ff) >7,Vje{l,.,.M},ne{l,., |Q\}} (3.10)

where 7 is the entropy threshold, M is the total number of videos in training set and
Q isthe original set of features. After this feature reduction step, our shape feature
vector’s length reduces to ~ 30. Note that for each action, we now have a separate set
of features.
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Figure 3.11: Thisfigureillustratesthe formation of optical flow histograms. We extract
dense block-based OF from each frame. Then, similar to forming shape histograms,
we divide the bounding box into equal-sized spatia bins. Inside each bin, we use the
total amount of optical flow in four perpendicular directions as our motion descriptor.

3.2.2 Motion features

Using pure optical flow (OF) templatesincrease the size of the feature vector to a great
extent. Instead, we present a compact OF representation for efficient action recogni-
tion. With thisintention, we first extract dense block-based optical flow of each frame,
by matching it to the previous frame. We used L, distance with ablock size of 5 x 5
and awindow size of 3 in thistemplate matching procedure.

We then form orientation histograms of these optical flow values. Thisissimilar to
motion descriptors of Efroset al. [26], however we use spatial and directional binning
instead of using the whole template. In addition, we skip the smoothing step, and use
the optical flow values as is. For each " spatial bin wherei € {1,.., N x N} and
direction 6 € {0,90, 180, 270}, we define optical flow histogram %;(#) such that

hi(0) =Y (i - F)) (3.11)
JjEB;
where F; represents the flow value in each pixel j, B; isthe set of pixelsin the spatial
bin i, uy isthe unit vector in 6 direction and ¢ function is defined as

m@:{O”xSO} (3.12)

xz ifz>0

This processisdepicted in Fig 3.11.
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3.2.3 Recognizing Actions
3.23.1 SVM classification

After the feature extraction step, we use them for the recognition of actions. We train
separate shape and motion classifiers and combine the decisions of these by a majority
voting scheme. For this purpose, we again use SVM classifiers. We train separate
one-vs-all SVM classifiers for each action. These SVM classifiers are formed using
rbf kernels over snippets of frames using a windowing approach. In our windowing
approach, the sequence is segmented into k-length chunks with some overlapping ratio
o, then these chunks are classified individually (we achieved the best resultswith £ = 7
,and o = 3).

We combine the vote vectors from the shape ¢, and motion ¢,, classifiers using a
linear weighting scheme and obtain the final classification decision in ¢, such that

cf=ac,+ (1 —a)cy, (3.13)

and we choose the action having the maximum vote in c;. We evaluate the effect of
chosing « in the Section 4.3.

3.2.3.2 Including Global Temporal Information

In addition to our local motion information (i.e. OF histograms), we also enchance
the performance of our algorithm by using an additional global velocity information.
Here, we propose to use a simple feature, which is the overall velocity of the subject
in motion. Suppose we want to discriminate two actions. “handwaving” versus “run-
ning”. If the velocity of the person in motion is equal to zero, the probability that heis
running is quite low.

Based on this observation, we propose atwo-level classification system. In thefirst
level, we calculate mean velocities of the training sequences and fit a univariate Gaus-
sian to each action in action set A = {a;..a,} . Given atest instance, we compute the
posterior probability of each action a; € A over these Gaussians, and if the posterior
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Figure 3.12: Overal system architecture with addition of mean horizontal velocity.
Classification votes from line and flow histograms are joint via a linear weighting
scheme. The global velocities are modeled using 1D gaussians and the final classi-
fication label is achieved by using global velocity asaprior.

probability of a; is greater than athreshold ¢ (we use aloose bound ¢t = 0.1), then we
add a; to the probable set A’ of actionsfor that sequence. After this preprocessing step,
as the second level, we evaluate the sequences using our shape and motion descriptor.
We take the maximum response of the SVMsfor actions a;,, € A’ as our classification
decision. The overall system is summarized in Fig. 3.12.

3.3 Single Action Recognition inside Still I mages

Long before the evolution of the video technology, the human actions were conveyed
via static images. The newspapers still use action photography to picturize their news.
Although motion isavery important cue for recognizing actions, when welook at such
images, we can more or less understand human actions in the picture. This is mostly
true in news or sports photographs, where the people are in stylized poses that reflect
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Figure 3.13: Human mind can perceive the available actions even from asingle image,
without examining the whole sequence. Here, we show some example images that
contaom actions. Left to right:Running, walking, kicking, crouching, throwing and
catching.

an action. Figure 3.13 shows some example images. However, understanding human
actions from still imagesis awidely ignored problem of computer vision.

In this section, we try to address this problem and answer the question of “Can we
recognize human actions within a single image?’. Our approach starts with employ-
ing a pose extractor, and then representing the pose via distribution of its rectangular
regions. By using classification and feature reduction techniques, we test our represen-
tation via supervised and unsupervised settings.

In still images, understanding motion is not a straightforward process. In the pres-
ence of motion, it is relatively easier to localize the person, whereas, in still images,
we need to estimate the place and pose of the person. However, in the presence of
background clutter and occlusions, it is not very straigtforward to localize the person
and represent the pose. For thisreason, we first use a pose extraction algorithm for es-
timating the pose of the person in the image. Then, using our shape descriptor, we try
to identify the ongoing action. In the remaining of the section, we go into the details
of our approach for action recognition in still images.

3.3.1 Poseextraction from still images

We first use the method of Ramanan [74] to extract a pose from the still image. The
approach uses edge and region features, and constructs two deformable models using
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