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ABSTRACT

ANIMATED MESH SIMPLIFICATION BASED ON
SALIENCY METRICS

Ahmet Tolgay

M.S. in Computer Engineering

Supervisors: Assoc. Prof. Dr. Uğur Güdükbay

and Asst. Prof. Dr. Tolga K. Çapın

July, 2008

Mesh saliency identifies the visually important parts of a mesh. Mesh simplifica-

tion algorithms using mesh saliency as simplification criterion preserve the salient

features of a static 3D model. In this thesis, we propose a saliency measure that

will be used to simplify animated 3D models. This saliency measure uses the

acceleration and deceleration information about a dynamic 3D mesh in addition

to the saliency information for static meshes. This provides the preservation of

sharp features and visually important cues during animation. Since oscillating

motions are also important in determining saliency, we propose a technique to de-

tect oscillating motions and incorporate it into the saliency based animated model

simplification algorithm. The proposed technique is experimented on animated

models making oscillating motions and promising visual results are obtained.

Keywords: simplification; animation; mesh saliency; deformation.
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ÖZET

CANLANDIRILAN MODELLERİN DİKKAT ÇEKİCİ
BÖLGE ÖLÇEĞİNE DAYALI OLARAK

BASİTLEŞTİRİLMESİ

Ahmet Tolgay

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Doç. Dr. Uğur Güdükbay

ve Yrd. Doç. Dr. Tolga K. Çapın

Temmuz, 2008

Üç boyutlu bir poligonsal modeldeki görsel açıdan önemli bölgeler dikkat çekici

bölge kavramı ile tanımlanır. Bu kavramı kullanan poligonsal model basitleştirme

algoritmaları sabit bir üç boyutlu model üzerindeki dikkat çekici detayları koru-

yarak çalışır. Bu çalışmada hareketli üç boyutlu modeller üzerinde basitleştirme

için kullanılacak olan bir dikkat çekici bölge metriǧi ortaya koyulmaktadır. Bu

metrikte duraǧan modeller için geliştirilmiş olan metriǧe ek olarak dinamik bir

modeldeki hızlanma ve yavaşlama bilgisi kullanılmaktadır. Bu, animasyondaki

görsel açıdan önemli ve dikkat çekici özelliklerin korunmasını saǧlar. Harmonik

ve periyodik salınım türü hareketler bir canlandırma sürecinde önemli ölçüde

göze çarpmaktadır. Bu tez çalışmasında hareket eden poligonsal modellerde bu

tür hareketleri algılayabilen ve çarpıcı bölge tespitinde kullanabilen bir model

basitleştirme yöntemi geliştirilmiştir. Geliştirilen model basitleştirme yöntemi

harmonik ve periyodik salınım türü hareket yapan modeller üzerinde kullanılmış

ve görsel kalite açısından başarılı sonuçlar elde edilmiştir.

Anahtar sözcükler : Model basitleştirme, dikkat çekici bölge ölçümü, salınım

hareketi algılama, dinamik model animasyonu.
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Chapter 1

Introduction

Continuous increase in the visual quality and complexity of 3D meshes has led

the problem of simplifying them while preserving their visual properties. As they

contain more information, we need more processing power for visualization using

previous techniques. However in the current time frame, processing capabilities

are limited in terms of memory and instructions per second even if we consider

parallel computing systems. These limitations bring the need for new techniques

that are able to reduce the information so that it is more feasible in terms of

processing speed while quality of mesh is as close as possible to the original.

Since this necessity is as old as the first meshes ever used in industry, this

problem has been studied extensively and many techniques have been developed.

For an in depth survey, see [7]. Most of these studies have focused on techniques

that simplify single static meshes. In this thesis, the main concern is animated

mesh sequences that are composed of a number of meshes deforming in time. This

kind of data has additional information that should be taken into consideration,

such as the speed and acceleration that different parts of the mesh have and

specific kinds of patterns about the motion, such as oscillations. Connectivity

is preserved during this deformation. Otherwise, acceleration information of the

mesh would be lost. There are many applications using these kinds of animations,

which build the motivation behind this study. Skinned meshes using the motion

data coming from an articulated skeleton either captured or created by an artist

1



CHAPTER 1. INTRODUCTION 2

are common in virtual environments and video games. Our method can be applied

to these meshes or any complete set of mesh data with preserved connectivity.

The goal is reaching a predefined number of vertices for all frames having the

maximum visual quality and minimum error. For this reason, a view-independent

error metric for the saliency-based simplification of animated meshes is proposed.

The proposed error metric is composed of two parts that are used to define

the important regions of the sequence:

• The mesh saliency metric developed by [16]. This part works on static

meshes and it is calculated for every single mesh independent of each other.

• The animated mesh saliency metric that is proposed by this thesis, which

depends on the speed and acceleration information contained in an anima-

tion.

Evidently, the main concern here is detecting the salient parts of meshes. This

is currently an open problem that involves many disciplines including psychology,

psychophysics and neuroscience. The main contribution of this work is addressing

this problem and proposing algorithms towards building a solution base. After

detecting salient parts using the proposed metric, those parts are preserved during

the simplification process. An extended version of the QSlim [26] algorithm for

the simplification of static meshes is used by including the saliency information

derived from the deformation which constrains simplification in deforming areas.

This method targets generic deformable meshes and is closely related to the

algorithms presented in [1, 6].

The organization of this thesis is as follows. Chapter 2 provides background

information on mesh simplification and saliency, for both static and animated

meshes. In chapter 3, saliency metric for static meshes and our animated mesh

saliency metric are presented. Afterwards details about our oscillation detection

algorithm are given. Chapter 4 provides simplification results of our metric and

two different approaches to use it. Finally chapter 5 concludes.



Chapter 2

Background

Previous work about this study can be classified in two parts: mesh simplification

and saliency. These concepts were combined recently by the work of [16]. In this

chapter, related work about mesh simplification and saliency will be explained.

Afterwards, studies about saliency-based metrics and animated meshes will be

discussed.

2.1 Mesh Simplification

The idea that we benefit from simple meshes was initiated with using different

resolutions of static meshes for different viewing distances [19]. Since then, many

methods have been developed, which can be categorized according to several

criteria, such as view dependence, metric being used, change in topology and the

mechanism used as explained with detail in the survey by [7] and [8]. Q-Slim is

one of the popular algorithms that uses iterative edge contractions (see Figure 2.1)

with the help of quadric error metric (QEM) [26]. Basically, it works in 5 steps:

1. find the quadric matrices for every vertex,

2. select the pairs that can be contracted,

3



CHAPTER 2. BACKGROUND 4

3. find the target vertex for each pair and the cost for that contraction,

4. insert all the pairs in a min-heap,

5. remove the minimum cost pair by contracting them and compute the new

costs related to that pair.

Figure 2.1: Edge contraction. Vertices v1 and v2 (connected on left and uncon-
nected on right) are contracted to v̄

Here, cost is the error introduced by contraction and calculated by summing

the squared distances between the new vertex and the planes of the contracted

vertices v1 and v2. It has been enhanced for simplifying meshes with geometry and

other additional attributes like color, texture, etc. and the area of adjacent faces

were incorporated to the algorithm for improving edge cost metric [27, 15]. The

original algorithm has a good balance between speed and space, but numerous

innovative algorithms focused on QEM have been introduced; either advancing it

or using it in a different simplification procedure. A topology preserving variation

was introduced [10] and later implemented using QEM [39].

Progressive meshes [14] are used to maintain levels-of-detail of static mesh

models. The method tracks the edge collapse and vertex-split operations to move

from finer to coarser level of detail and vertex-split operations to get to the finer

level of detail from the coarse mesh. Lindstorm et al. [31] use the quadric error

metric for selecting the representative vertex of a cluster minimizing the error,

using the fact that vertex clustering is equal to the contraction operation applied

on every vertex of a cluster at the same time. Shaffer and Garland [11] use dual

quadric metric, which is a measure of distance of a plane to a set of points just

as the quadric metric is about the distance of a point to a set of planes. Their

algorithm is a two-pass process. In the first pass, the model is quantized using

a grid and surface information is calculated in the form of dual quadrics. In the
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second pass, the original vertices are clustered using a BSP tree constructed by

the surface information in the first pass.

Zhang and Turk [12] use a visibility measure for guiding the priority of edges

to be contracted. In their work, it is considered if some edge is not visible enough

from an evenly distributed number of camera viewpoints, then that edge does

not cause much error in terms of visible quality when contracted. Hong and

Kaufman [40] use a similar decimation algorithm using a different error metric

on tetrahedral meshes. Their error metric uses the gradient magnitude, density

value and the volume for calculating error cost associated with the decimation.

Wu et al. [43] add global geometry features of the mesh as a weight coefficient for

the edge costs of QEM. Their geometry feature is based on the crease angle of an

edge stating that the smaller the crease angle, the more important the geometry

feature is.

Ho et al. [38] use Q-Slim with the help of a user for selecting the regions

to remain detailed. They have a system composed of two stages: weighting and

local refinement. In the weighting stage, the user selects an important region that

causes delaying the collapses in that region. After this stage is completed with

satisfactory result, the user selects a new set of vertices in the local refinement

stage. The system splits these vertices and collapses some low cost edges in

order to preserve the polygon count. This system is specifically successful when

the polygon count is very low. DeCoro et al. use QEM for calculating the

optimal representative vertex position of a cluster for their real-time simplification

algorithm [5]. They utilize the GPU for increased performance having an average

of 20 fold increase in the throughput compared to CPU. Cook et al. [35] use

stochastic simplification in order to simplify excessively complex scenes which

otherwise can not be rendered using current resources in terms of hardware and

software.
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2.2 Concept of Saliency

Saliency, which characterizes the level of significance of the subject being ob-

served, has been a subject of cognitive sciences for more than 20 years. It is

closely related to many disciplines like artificial intelligence, neuroscience, psy-

chology and recently computer graphics. In this section, recent studies about

saliency and perception related to computer graphics or mesh simplification will

be mentioned briefly.

Reddy [28] uses the models of visual perception, including vision metrics such

as visual spatial frequency and contrast, to optimize the visual quality of render-

ing of flythrough in a scene. Luebke and Hallen propose a perceptually-driven

rendering framework which evaluates local simplification operations according to

worst-case contrast gratings and worst-case spatial frequency of features they can

induce in the image. In their work, contrast grating is a sinusoidal pattern that

alternate between two extreme luminance values and worst-case one is a grat-

ing with the most perceptible combination of contrast and frequency possibly

induced by a simplification operation [9]. They apply the simplification only if

a grating with that contrast and frequency is not expected so they do not get

any perceptible effect which results a high fidelity model. A set of experiments

have been performed using three groups of tasks for measuring visual fidelity [4].

These tasks are naming the model, rating likeness of the simplified model com-

pared to a standard one using a 7-point scale and choosing the better model

among two equally simplified models using Q-Slim and V-clust [21]. The results

of these experiments and some automated fidelity measures ([24], [30]) show that

automated tools are poor predictors of naming times but very good predictors of

ratings and preferences.

Williams et al. extend the perceptual simplification framework by [9] to mod-

els with texture and light effects [29]. Howlett et al. use an eye tracker to identify

salient regions and the fixation time on those regions of models and modify Q-

Slim to simplify those regions with a weight value [36]. As a result of experiments

similar to [4] it is shown that the modified Q-Slim performs better on natural ob-

jects but not on man-made artifacts which indicate that saliency detection is
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an important property with promising results. A saliency metric that does not

make use of eye trackers is developed by [16] and used in our study. This metric

heavily depends on the curvature information of surface model and gives results

with higher fidelity compared to Q-Slim. It is shown that visual attention can

be directed by increasing the saliency at user selected regions using geometric

modification [41]. With a weight change in the center-surround mechanism, they

modify mean curvature values of vertices by using bilateral displacements and

verify that the change increases user attention by using eye trackers.

Another saliency metric and a measure for degree of visibility is proposed

by [25]. Their saliency metric makes use of the Jensen-Shannon divergence of

probability distributions [18] by evaluating the average variation of JS-divergence

between two polygons yielding similar results as [16]. A saliency map for selective

rendering which makes use of colors, intensity, motion, depth, edges, and habitu-

ation which refers to saliency reduction over time as the object stays on screen is

developed using GPU [32]. Their saliency map is based on the model suggested

by [23].

Saliency is also used in viewpoint selection criteria [17]. In their study, some

viewpoints are selected among a sample point set forming the vertices of a graph

on the bounding sphere of an object. The graph is partitioned according to the

degree of similarity between its edges and the selected viewpoints represent par-

titions with the most similar edges. Then, they are sorted using [16] to select the

most salient one. The mesh saliency metric is improved using Morse theory [42].

In this work, two main disadvantages of [16] are pointed out. One is the Gaussian-

weighted difference of fine and coarse scales can result in same saliency values for

two opposite and symmetric vertices because of the absolute difference in the

equation (see Equation 3.1) and the other one is combining saliency maps at dif-

ferent scales makes controlling the number of critical points difficult. Therefore,

instead of the Gaussian filter they use a bilateral filter and define the saliency of a

vertex as the Gaussian-weighted average of the scalar function difference between

its neighboring vertices and the vertex itself.
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A recent work uses database of objects to measure the distinctiveness of dif-

ferent regions of an object [33]. It is based on the idea that if a region has the

most unique shape which is used to differentiate the object from other objects,

then that region is an important part of the object. It works by selecting sev-

eral random points which are centers of overlapping spheres over the surface and

generating shape descriptors from the surfaces covered by those spheres. Next,

a measurement of how distinctive is each region with respect to a database of

multiple object classes is taken and if the best matches of a region are all from

that objects own class then that region is distinctive. Although a database is

required, it gives better results than [16] in terms of simplification quality.

2.3 Animated Mesh Simplification

Simplifying animated meshes includes the same problems as static meshes, but

animation increases the data to be processed heavily. This topic has not been

much studied until the Deformation Sensitive Decimation (DSD) algorithm [1].

It works on an animation with k different example poses which have the same

connectivity. When a model is simplified using Q-Slim and then animated, the

deforming regions can be low quality since the algorithm cannot know those

regions in advance. To solve this problem, they simply assign the total cost of an

edge over every pose so that a deforming region which has high costs for some

poses is not much simplified because of the other poses and only the edges which

have low cost totally get simplified first.

Based on [22], Brown et al. propose a visual attention based LOD manage-

ment technique [34]. Their framework uses a visual attention model to predict

eye movements and then attaches importance values to different regions of scene

using these predictions. The visual model is composed of size, position, rotational

and translative motion information and luminance of objects in the scene during

an animation. The triangle budget is spent non-uniformly giving high detail to

important objects detected using the attention model.
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In another work [6], simplification of articulated body animation is studied.

An approximate probability distribution is required instead of a set of example

poses providing pose independency. All vertices are transformed into a frame of

reference and the error costs of transformed vertices are summed with respect to

that frame of reference. Any articulated and skinned mesh can be handled by

this algorithm. Simplifying only a static pose of an articulated figure is proposed

by [20]. Dynamic mesh simplification methods have been proposed by [2, 3] where

the low frequency affine transformation information is separated from the high

frequency deformation information between mesh models at subsequent poses.

This method focuses on run-time simplification with an auxiliary set of data

structures such as T-Directed Acyclic Graph [2], pre-computed offline. For a

better quality simplification of highly deformed regions, a Deformation Oriented

Decimation (DOD) algorithm is proposed by [13]. It incorporates deformation

information into the cost metric by adding a deformation cost ξ to the DSD

cost [1],which is composed of three components.

ξij = wij ∗ Āij ∗
(
Δlij

)2
(2.1)

Here ξij is the cost that is added for contracting vertices vi and vj along all

the frames. Δlij is the average length change that contributes as the deformation

measurement. It is the sum of edge length changes between two consecutive

frames for the entire animation. Āij is the total area of triangles that share

the edge between vi and vj along all frames. wij is a weight representing the

normalized maximum deformation and helps to preserve the edge with irregular

deformations. This weight is the result of the fact that we pay more attention to

unexpected sudden deformations.

Sumner et. al propose a new way of transferring deformation from a source

mesh sequence to a target mesh [37]. They specify a set of marker vertices man-

ually for building correspondence between the source and target meshes. Then

the set of transformations of source mesh are computed and applied on the target

mesh.
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Despite all these innovations, the problem of finding salient regions over an

entire animation is still an open problem. Saliency metrics developed for static

meshes, such as [33] or [42], can also be used on dynamic meshes, but they do not

use any specific information about the motion. DOD is already an improvement

over DSD and it focuses on deformation, not saliency. Therefore, we propose

a new animation saliency metric that uses static mesh saliency and the motion

information available in the animation. We developed an experimental oscillation

detection algorithm because we suppose oscillating motions increase the saliency

of the region performing that kind of motion.



Chapter 3

Saliency of Animated Meshes

In this thesis, we propose a new, view-independent animation saliency metric

that estimates the visual importance of a vertex in a dynamic mesh during the

course of an animation. It is view-independent to make it suitable for a general-

purpose algorithm. Our work extends static mesh saliency metric, as proposed

by Lee et al. [16], to animated meshes. Lee et al. aim to find a metric to define

the visually important parts of an input static mesh that could be used in mesh

simplification and viewpoint selection. The static mesh saliency of a vertex v is

calculated as follows:

S(υ) = |G(C(υ), σ) − G(C(υ), 2σ)| (3.1)

where S(υ) is the mesh saliency and G(C(υ), σ) is the Gaussian-weighted average

of the mean curvature at vertex υ at a distance σ.

In other words, mesh saliency is computed by calculating curvature on each

vertex of the mesh, finding the absolute difference between Gaussian-weighted

averages of these curvatures at fine and coarse scales, and repeating this process

to combine different saliency values found for different standard deviations of the

Gaussian filter. This saliency value relies on the intuition that regions with dif-

ferent curvature characteristics from their neighborhood are attractive to human

11



CHAPTER 3. SALIENCY OF ANIMATED MESHES 12

vision. Lee et al. have also demonstrated a mesh simplification solution using

this saliency value, where the least salient regions are simplified first. The exper-

imental results show that saliency-based simplification of static meshes provides

perceptually better results compared to earlier methods.

An example result from our saliency based simplification is shown in Fig-

ure 3.1. Except the feet, most salient parts of the horse are grouped on its head

because of the frequent change of curvature there. Its feet (see Figure 3.2) are

highly salient due to animated activity but since they do not contain much de-

tail, weight is given to static saliency in this sample. Its head being salient causes

significant decrease in the number of polygons on its neck and back.

Figure 3.1: Comparison between Q-Slim and saliency metrics. (a) is a model
simplified to 50% using Q-Slim, (b) is the saliency map of the same model and
(c) is the same model simplified to 50% using saliency map.

Our work extends this saliency metric to animated meshes, which determine

the priority to be given to each region of the mesh. The proposed animation

saliency metric can be used for animated mesh simplification, compression, view-

point selection, etc. We demonstrate the application of this metric for the sim-

plification of animated mesh sequences.
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Figure 3.2: Four successive frames with salient regions shown in green.

One solution to the problem of finding salient regions in an animated mesh is

to compute a static saliency map for each frame of the animation, then averaging

of the saliency for the complete sequence, and finally simplifying the mesh with

these average saliency values. Alternatively, a small number of important regions

can be computed for the whole animation using a combination of the static mesh

saliency and other cues related to animation. Our solution follows the second ap-

proach. This significantly decreases the computational and storage requirements

as compared to computing and storing a different saliency map for each frame.
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3.1 Animated Mesh Models

For labeling the vertices of our mesh sequence with n frames, each having m

vertices, the following notation is used:

V 1
1 , ..., V 1

m, ...., V n
1 , ..., V n

m

We assume that animated meshes that we work on can have several kinds

of animations such as object transformations, local mesh deformations, or any

combinations of these. We assume that transformations are affine and can be of

any nature - such as simple linear animations (e.g., by keyframe animation with

linear interpolation), highly dynamic motions (e.g., motion captured character

animation), periodic movements (e.g., walking), or scaling in any axis combina-

tion. Similarly, we place no constraints on the type of deformation of an object -

it could have a small-scale deformation (such as a flag flapping with the force of

wind, or creases formed in cloth animation), or medium-to-large scale (such as an

object morphing into another object). We assume that the number of vertices and

the connectivity of the original mesh do not change throughout the animation,

which is the case for most deformable and skinned mesh animations.

For being able to work on different kinds of animations performing motions we

want, we used motion capture data. For transferring the motion data a skeleton

and envelopes around the skeleton segments were used. The segments which get

the motion from the capture data are effective on the vertices around them and

on the vertices at the neighboring segments’ tips. Envelopes define the level of

affection which helps lowering the effect as we go from the middle to the tip

of the segment. However, during the motion transfer to our humanoid model,

many regions were unnaturally deformed due to effects of several segments of the

underlying skeleton. Around highly deformed parts of the model like hip or neck,

where more than one skeleton segment are effective on the motion, it is hard to

define the boundary curve that indicates the end of affection for a segment. With

that many controls it becomes very hard to characterize the motion effecting

elements of every vertex over a highly complex model. For this reason, we have

used these models for only detecting periodic motions which is actually the only
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reason for their existence.

3.2 Perceptual Model

Since we are to simplify an animated mesh sequence, we need a new metric for

defining salient regions because different types of motion change the focus of

attraction on the animation. A 3D object with moving parts would have salient

points in those regions, because human visual system is object-bound: we tend to

track and follow moving objects in a scene, and we are also able to compensate for

moving viewpoint while tracking the moving object with the help of our vestibulo-

ocular reflex.

Our method finds salient regions in an animation in two stages. The first stage

finds the magnitude of motion using the positions of vertices at each frame in the

world coordinate system. We calculate the Euclidean distances for all vertices in

all frames as follows:

dij =
∥∥∥Vi

j − Vi−1
j

∥∥∥ , (3.2)

where Vi
j is the global position of the jth vertex of ith frame, Vi−1

j is the global

position of the jth vertex of (i − 1)th frame, and i ∈ 2 . . . n.

Then, we normalize these distances for each frame by dividing all of them to

the maximum one and compare the relative movement of each vertex between two

consecutive frames. We can detect most of the simple motions (mesh deformation,

no global transformation) successfully by this way (see Figure 3.2).

At this point, our contraction cost for an edge formed by vertices vx and vy

of frame i is in the form below:

Ci
xy = QEM i

xy +

(
δi
x + δi

y

)
× wa +

(
S (vi

x) + S
(
vi

y

))
× ws

2 × Bf
(3.3)
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where QEMxy is the quadric error for that edge, δi
x is normalized distance be-

tween vertices vi
x and vi−1

x , S(vi
x) is the static saliency of vertex vi

x. wa and ws

are the user-defined weight coefficients for animated and static saliency metrics,

respectively. Bf is the balancing factor, which is explained in Chapter 4.

Briefly, we find the moving regions and mark them as salient as faster they

move in this stage. For many cases a small region is salient; however there

are some cases in which nearly the entire object is moving at the same speed

and some little regions are moving slower causing the whole object look salient.

In such cases we see that whole object is marked as salient incorrectly since

it is uncommon that most parts of an object draw attention simultaneously.

Consequently, if the animated mesh has smaller parts with very small acceleration

compared to a larger accelerating component, they should be expected to be

salient because of their relative motion to the rest of the object. For that reason,

we define a threshold (τ, ρ) with τ being the threshold saliency value and ρ being

the threshold ratio. It is interpreted as follows. If more than ρ% vertices of a

frame have a saliency value higher than τ , then change all the saliency values τ

with 1-τ . This procedure corrects the possibly wrong saliency information that

may be introduced (see Figure 3.3).

Figure 3.3: With the help of threshold value (0.5, 70) we correct the animation
saliency values on this collapsing horse model. Note that lighter regions are more
salient.

In the second stage, we detect a special oscillation motion by using the distance

information extracted in the first part. Since we have the distance information

at each frame and the time passed between each frame is equal, that gives us the

velocity information in a different scale. At this stage, we use the information of
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direction change. Direction change happens if the angle between two segments

connecting three vertices in frames i − 1, i and i + 1 is not equal to 180 degrees.

Since we do not have direction information in the first stage, the graph shows

the motion as if it is happening on a line. If we can obtain the direction changes

on the timeline, we can deduce the signs of an oscillating move at that vertex. In

this way, we can mark the vertices with a higher saliency compared to a moving

part with a similar velocity. In order to detect a regular direction change pattern,

we need a model with that kind of motion. To this end, we transferred several

motion capture data to our model. It is also possible to work on raw motion

capture data for detecting specific motions but that would be relevant for only

the animations that use those motion capture data.

Measuring the direction change between frames is relatively easy. The first

frame has no direction; first two frames form a direction but they cannot have

any direction change; therefore, only at the third frame there can be a measur-

able direction change. Beginning from the third frame, we calculate the angle

between the two line segments formed by vertices of three consecutive frames as

in Figure 3.4.

Figure 3.4: The angles between segments to measure direction change between
frames.

We define a significant direction change as an angle smaller than 90 degrees

but not every oscillating motion has to have vertices having a 90 degrees of change

during the course of motion so this angle threshold is subject to change according

to the motion or oscillation. After identifying the frames that have direction
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change smaller than the threshold, we determine how distant two consecutive

frames that have similar direction change. We mark each frame with 1 if it has

a direction change and 0 if not. Let the number of frames which do not have

direction change between two 1-marked frames be σi. That σ series give us the

information we need since we are looking for a sequence of similar numbers as

the indication of regular direction change behavior.

Figure 3.5 shows a sample of how far each two consecutive frame labeled as 1

is generated. The idea is if most of the 1-frames are at similar distance to each

other, then we have a regular motion pattern at that vertex. Therefore, we find

the variance of that distance list for each vertex and mark the vertices that have

specific variances. Since we do not have many motion samples, we have to find

those specific variances manually by checking the variances at the regions that

do the specific motion and updating the variance control in our implementation.

Figure 3.5: Frames having a direction change smaller than the threshold are
labeled with 1.

Figure 3.6 gives the oscillation detection algorithm. It measures the variance

of the distance between two direction changes seeking for a regular window length

change in the array unchangedWindow. The complexity of this algorithm is

O(mn) where m is the number of vertices in the model and n is number of

frames. Thus, it does not bring too much processing overhead.
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[1] for each vertex Vi
j

//here unchangedAngleWindow is the window length specifying
the distance between two angle changes happening with an angle
smaller than the threshold

[2]unchangedAngleWindow = 0
[3] currentSlot = 0
[4] do for i = 3 to n (for n total frames)
[5] if Vi

j.angleChange > angleThreshold
//meaning the direction has not changed

[6] then unchangedAngleWindow ← unchangedAngleWindow + 1
[7] else

//then it is the end of unchangedAngleWindow therefore close
the window, empty it and save it in the array’s next slot

[8] unchangedWindow[currentSlot] ← unchangedAngleWindow
[9] unchangedAngleWindow = 0
[10] currentSlot ← currentSlot + 1
[11] find the variance of data in unchangedWindow
[12] if variance is within limits
[13] then mark every frame of current vertex
[14] else
[15] unmark every frame of current vertex

Figure 3.6: The oscillation detection algorithm
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Results

We use QSlim to simplify the animated model by integrating the proposed

saliency metric and the quadric error metric it uses [26]. With different weights,

we can get a good simplification in different sequences. For a model with a

dominating static saliency, we can decrease the animated saliency weight by de-

creasing the coefficient wa(see Equation 3.3). For a model without significant

regions having static saliency, we can increase the weight of animated saliency.

The effect of weights become more clear as we further simplify the model. The

regions having salient vertices are shown in green in animated saliency maps

(see Figures 4.1 (b) and 4.2).

Figure 4.1 compares the QSlim quadric error metric applied to each frame

individually to our animated mesh saliency metric for mesh simplification. Since

the fastest moving parts are the model’s feet they have high saliency for most

of the frames. In Figure 4.1 (c), the upper part has more polygons making it

high fidelity and less error prone in case of deformation. There are two ways of

incorporating the saliency values into the quadric error metric:

1. We could set the errors before any simplification is made. In this case,

the contraction costs specifying the order of contractions are calculated

using our saliency metric (see Equation 3.3) and inserted to the heap before

simplification starts. No modification or calculation related to saliency is

20
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Figure 4.1: Comparison between Q-Slim and our animation saliency metric. Both
models are simplified to 25%.

made during the simplification.

2. We could add the saliency values during the simplifying process. In this

case, no calculations or changes are made before the simplification. Since

the saliency values are available for each vertex, we can use them as we do

the contractions. We add the saliency metric to QEM metric iteratively be-

fore each contraction. Since the saliency values are added one-by-one after

each contraction, they accumulate after some time causing some vertices to

be highly salient. This leads to contractions happening around those salient

regions most of the time, which cause an imbalanced order of simplification.

We divide all the saliency values with a balancing factor to prevent this.

We tried both approaches and observed that the second approach results in

a better model in terms of both distance from original and perception (see Fig-

ures A.1 and A.5, A.3 and A.10). The comparisons indicating the distance be-

tween original and simplified models for QEM and our metric are listed as graphs

in appendix. The first four graphs are generated using first approach and the

rest are results of the second one. Although it is affordable, we get worse result

compared to QEM either way because it is designed to achieve the least geomet-

ric error and since we modify the order of contraction for a better perceptual

result, we get more geometric error inevitably. The Hausdorff distance graph in
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Figure A.2 has many spikes since it measures the most distant parts but we get

significantly better results using the second approach as can be seen in Figures A.6

and A.8. The effect of different weights for animation and static saliency values is

not very significant in terms of distance from original (see Figures A.11 and A.12,

A.5 and A.9). The reason is at these level of contractions (25% and 50%) simpli-

fications are not enough to cause severe deformations allowing different weights

change the contraction distribution safely.

In Figures 4.3 and 4.4, there are some vertices mostly on legs marked as os-

cillating, which are actually not oscillating like the regions we want to identify.

It is generally because those vertices also do little oscillations that have similar

variation patterns which are hardly attracted by our attention. In some other

animation those kinds of little oscillations may be salient depending on the view-

point but our algorithm is view independent. In order to eliminate those false

positives, a classification using relatively unique properties like the angle change

pattern or distance graph of vertices can be made. However, most of the tar-

get regions (the hands and feet in Figure 4.3 and the hands in Figure 4.4) are

correctly marked.

We tested our algorithm on cloth simulations. For motions under gravitational

and wind forces, we observe that in many cases cloth behavior is too random for

finding a regular oscillation pattern. Figure 4.5 shows the result of one sample

data that we could generate acceptable oscillation. In this example, four vertices

are fixed and the rest of the cloth moves under gravitational force. The cloth is

not so stiff thus it can generate oscillating motion.
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Figure 4.2: The results of our saliency-based dynamic mesh simplification. Here
the dancer model is simplified to 18.5 % of its original complexity. The subfigures
are several sample frames from the animation. Note that the magnified regions
in the top row show the salient regions marked as green at the right subfigure
and non-salient regions at the middle subfigure left as blue.
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Figure 4.3: The results of our oscillating motion detection algorithm. The di-
rection change threshold angle is taken as 100 degrees and we mark the vertices
having variance less than 2. Green is an indicator of the salient regions; red is an
indicator of an oscillating motion.
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Figure 4.4: The results of oscillating motion detection on another motion capture
sequence. The direction change threshold angle is taken as 90 degrees and we
mark the vertices having variance between 2 and 6.
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Figure 4.5: The result of oscillation detection on cloth simulation. First five
frames show the salient regions based on our animation saliency metric. Direction
change threshold angle is 90 degrees and vertices having variance between 20 and
50 are marked as oscillating at the last frame. There are four fixed vertices
holding the cloth. They can be noticed clearly in the second frame as they are
in the middle of four salient regions near the four corners of cloth. The left two
vertices cause left part oscillate separately and middle regions of that part are
marked as well.
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Conclusion

We have proposed a saliency metric for finding visually important regions in

an animated mesh and used it for simplifying animated meshes. The proposed

solution provides a better estimate of the most important regions of a mesh.

We think that the straight logic of the more dynamic the motion is, the more

the saliency will be is not enough to determine the saliency measure. Moreover,

the eye cannot catch very fast motions causing a decrease in the saliency level in

some speeds higher than a threshold depending on many factors like viewpoint,

light conditions, eye performance, etc. For years numerous researches have been

done in psychology and psychophysics to find out the factors that draw human

attention. For a detailed review see [22]. We see that many parameters exist in

a correct model of attention and we think it can never be as simple as finding

faster moving regions. Thus, we develop an algorithm for detecting the motions

that have a harmonic nature. On top of these there are other parameters like

color, contrast, viewpoint, etc.

For future work, we are planning to use more sample motions to have a precise

definition on what will be the limit for variation and angle change threshold. For

that, preparing a user interface that enables users to select the salient regions on

an animation would greatly improve our metric because of more learning data.

Moreover, the detail capture ability of human visual system is not linear. We

27
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cannot capture the details of fast movements. Depending on the viewing distance

and the object detail, we can reduce the saliency value if the motion has a higher

frequency/speed than a limit. The static saliency information can be used to

decide the level of object detail and the parts exceeding threshold can have low

saliency exploiting the visual degradation of our eyes. One great improvement to

our oscillation detection algorithm would be adding it the capability of finding the

oscillating part of the animation. It examines all the frames and finds oscillation

in the entire course of animation therefore the cases where several small parts

contain different kinds of periodic motion are not handled currently.
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Appendix A

Mesh Simplification Distance

Graphs

The graphs in Figures A1, A2, A3 and A4 show the mean distances between the

original and simplified models. For these four graphs saliency metrics are added

before simplification. Distance measurements are taken with Metro tool using

subdivision sampling [30]. Forward distance is the distance from original model

to the simplified one. Backward distance is the distance from simplified model to

the original.

The graphs from A.5 to A.12 are created by simplification done by saliency

values propagated during the simplification. Since our saliency values are added

along with the contractions, they accumulate on the vertex they get contracted

with. Therefore some early contractions get heavy in terms of error value causing

an imbalanced saliency distribution. For decreasing this effect we reduce the

values using simple division so that the accumulation is little from the beginning.

For some models we divide the saliency values by 1,000 (Figures A.7, A.8, A.11,

A.12) and for Figure A.10 we divided by 10,000.
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Figure A.1: The mean distance graph for the horse gallop animation simplified
to 50%. Here ws is 3 and wa is 0.5.

Figure A.2: The Hausdorff distance graph for the horse gallop animation simpli-
fied to 50%. Here ws is 3 and wa is 0.5.
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Figure A.3: The mean distance graph for the dance animation simplified to 50%.
Here ws is 3 and wa is 0.5.

Figure A.4: The mean distance graph for the horse gallop animation simplified
to 25%. Here ws is 3 and wa is 0.5.
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Figure A.5: The mean distance graph for the horse gallop animation simplified
to 50%. Here ws is 0.5 and wa is 0.5.

Figure A.6: The Hausdorff distance graph for the horse gallop animation simpli-
fied to 50%. Here ws is 0.5 and wa is 0.5.
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Figure A.7: The mean distance graph for the horse gallop animation simplified to
25%. Here ws is 0.5 and wa is 0.5. To prevent imbalanced propagation combined
saliency values are divided by 1000.

Figure A.8: The Hausdorff distance graph for the horse gallop animation simpli-
fied to 25%. Here ws is 0.5 and wa is 0.5. To prevent imbalanced propagation
combined saliency values are divided by 1000.
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Figure A.9: The mean distance graph for the horse gallop animation simplified
to 50%. Here ws is 2.0 and wa is 0.1.

Figure A.10: The mean distance graph for the dance animation simplified to
50%. Here ws is 0.5 and wa is 0.5. To prevent imbalanced propagation combined
saliency values are divided by 10000.
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Figure A.11: The mean distance graph for the horse gallop animation simplified to
25%. Here ws is 0.8 and wa is 0.2. To prevent imbalanced propagation combined
saliency values are divided by 1000.

Figure A.12: The mean distance graph for the horse gallop animation simplified to
25%. Here ws is 0.2 and wa is 0.8. To prevent imbalanced propagation combined
saliency values are divided by 1000.


