
REAL-TIME PARAMETERIZED
LOCOMOTION GENERATION

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bİlkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Muzaffer Akbay

September, 2008

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Enis Çetin

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

REAL-TIME PARAMETERIZED LOCOMOTION
GENERATION

Muzaffer Akbay

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Güdükbay

September, 2008

Reuse and blending of captured motions for creating realistic motions of human

body is considered as one of the challenging problems in animation and com-

puter graphics. Locomotion (walking, running and jogging) is one of the most

common types of daily human motion. Based on blending of multiple motions,

we propose a two-stage approach for generating locomotion according to user-

specified parameters, such as linear and angular velocities. Starting from a large

dataset of various motions, we construct a motion graph of similar short motion

segments. This process includes the selection of motions according to a set of

predefined criteria, the correction of errors on foot positioning, pre-adjustments,

motion synchronization, and transition partitioning. In the second stage, we gen-

erate an animation according to the specified parameters by following a path on

the graph during run-time, which can be performed in real-time. Two different

blending techniques are used at this step depending on the number of the input

motions: blending based on scattered data interpolation and blending based on

linear interpolation. Our approach provides an expandable and efficient motion

generation system, which can be used for real time applications.

Keywords: Animation, data scattered interpolation, blending, locomotion.

iii

ÖZET

GERÇEK ZAMANLI PARAMETRİK GEZME
HAREKETİ TÜRETİLMESİ

Muzaffer Akbay

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Uğur Güdükbay

Eylül, 2008

Gerçekçi insan vücut animasyonu yapımında özel donanım yardımıyla yakalanmış

hareketlerin tekrar kullanımı ve karıştırılması animasyon ve bilgisayar grafiǧinin

en zor problemlerinden biridir. Yürüme, hızlı ve yavaş koşma günlük insan eylem-

leri arasında en sık kullanılanlardandır. Bu tezde, bu tür hareketlerin kullanıcı

tarafından tanımlanmış açısal ve doǧrusal hız gibi parametreler doǧrultusunda

üretilmesi için çoklu karıştırmaya dayalı iki aşamalı bir yöntem önerilmiştir. Bir-

inci aşamada, geniş bir veri tabanından başlayarak benzer ve kısa hareketler-

den oluşan bir çizge oluşturulmaktadır. Bu aşama, bahsi geçen veri tabanından

hareket ayıtlanması, ön ayarlamalar, hata düzeltilmesi, hareketlerin senkronize

edilmesi, ve hareket geçişlerine göre kısımlara ayrılmasından oluşur. İkinci

aşamada, oluşturulan çizge üzerinde bir yol takip edilerek verilen parametrelere

göre animasyon gerçek zamanda üretilir. Bu aşamada, karıştırmada kullanılacak

hareket sayısına göre iki ayrı yaklaşım kullanılır: saçılmış veri aradeǧerlemesine

dayalı karıştırma ve doǧrusal aradeǧerlemeye dayalı karıştırma. Tanımlanan sis-

tem genişletilebilir ve etkili bir sistemdir, ve gerçek zamanlı uygulamalarda kul-

lanılabilir.

Anahtar sözcükler : Canlandırma, saçılmış veri aradeǧerlemesi, karıştırma, gezme

hareketi.

iv

Acknowledgement

I would like to acknowledge the supervision of Assoc. Prof. Dr. Uğur Güdükbay

who supported and guided my research on this topic.

I would like to express my gratitudes to Prof. Dr. Enis Çetin and Prof. Dr.

Özgür Ulusoy for kindly accepting to spend their valuable time to evaluate my

thesis.

I am grateful to my family for supporting my academic and social education,

and I would like to thank H. Emre Kale and E. Büşra Çelikkaya for their comments

and support on this study.

The data used in this project was obtained from http://mocap.cs.cmu.edu.

The database was created with funding from NSF EIA-0196217.

v

Contents

1 Introduction 1

2 Background 6

2.1 Motion Representation . 6

2.1.1 Representing Poses . 6

2.1.2 Representing Orientations 7

2.1.3 Representing Motion . 9

2.2 Motion File Types . 10

2.2.1 Biovision BHV/BHA . 10

2.2.2 Acclaim ASF/AMC . 10

3 Related Work 14

3.1 Motion Synthesis and Editing Techniques 14

3.1.1 Manual Synthesis . 14

3.1.2 Forward/Inverse Kinematics 15

3.1.3 Physically-based Synthesis 17

vi

CONTENTS vii

3.1.4 Data-Driven Synthesis . 18

4 Real-Time Locomotion Generation 22

4.1 Graph Construction . 24

4.1.1 Selection of Example Motions 25

4.1.2 Motion Error Pre-correction 26

4.1.3 Parameter Extraction . 27

4.1.4 Weight Computation . 28

4.1.5 Motion Synchronization 30

4.2 Motion Generation . 32

4.2.1 Overview . 32

4.2.2 Sub-global Timing . 34

4.2.3 Incremental Posture Blending 36

4.2.4 Transition Handling . 41

4.2.5 Input Model . 45

5 Experimental Results 46

5.1 Results and Evaluation . 46

6 Conclusion 58

Bibliography 60

List of Figures

2.1 The angles of different joints on a small motion with respect to

frames. 9

2.2 An example of BHV file for crawling motion. 12

2.3 An example of AMC/ASF file pair for walking motion. 13

3.1 The overview of the system described in [27]. 21

4.1 The overview of the real-time locomotion generating system. . . . 23

4.2 The motion graph model of our system. 24

4.3 The weight values according to the user-specified parameters. . . . 29

4.4 A comparison of pair wise linear mapping and global linear map-

ping: (a) linear mapping between two walking motions M1 and

M2, (b) linear mapping between actual and global time of M2. . . 31

4.5 The effect of timewarping on motions. 33

4.6 The γ values for the user-specified parameters. 35

4.7 The radial basis function. 36

4.8 Our skeletal model. 37

viii

LIST OF FIGURES ix

4.9 The illustration of the example motions in each node and the ex-

ample transition on each edge. 41

4.10 A transition period on the edge that connects Nodei and Nodej. . 42

4.11 The α values for normalized time values of part B and part E: db

and de, respectively, where db = t−bstart

bend−bstart
or de = t−eend

eend−estart
. . . . 44

5.1 The positions of left and right toes of the motions are shown with

solid line while the corrected positions are represented by dotted

line: (a) the correction on a run motion, and (b) the correction on

a transition motion. 47

5.2 A successful arc fitting of root position trajectory.The red line

shows the trajectory, while the blue line is the fitted circular arc. . 48

5.3 An unsuccessful arc fitting of root position trajectory. The red line

shows the trajectory. Since the system cannot fit the trajectory to

an arc, blue line for the fitted circular arc is not drawn. 49

5.4 The weight values (w) vs. the normalized angular velocities. The

solid lines represent the weights for example motions and the dot-

ted line shows the overall sum. 50

5.5 The weight values for incremental time update (γ) vs. normal-

ized angular velocities. The solid lines represent the weights for

example motions and the dotted line shows the overall sum. . . . 51

5.6 The user-specified parameters and the corresponding output pa-

rameters generated by weighted blending the parameters of the

example motions: (a) the linear velocities are compared, with a

fixed arbitrary angular velocity, (b) the angular velocities are com-

pared, with a fixed arbitrary linear velocity. 52

5.7 The foot position correction is shown on an example motion: (a)

before correction, (b) after correction. 53

LIST OF FIGURES x

5.8 Motions with different angle and speed parameters: (a) running

motion with changing speed, (b) running motion with changing

speed and angle. 54

5.9 The illustration of incremental position blending on a running mo-

tion: (a) a motion generated with normal position blending, (b)

a motion generated with incremental position blending with the

same input parameters. 55

5.10 An example of walk-to-run transition motion, generated by our

system. 56

5.11 An example of run-to-stop transition motion, generated by our

system. 56

5.12 An example of walk-to-stop transition motion, generated by our

system. 57

List of Tables

5.1 Example motion parameters, where Mi is the ith motion, ω is the

angular velocity and v is the linear velocity. 49

5.2 The posture blending weights (w) and the time update function

weights (γ) of example motions Mi for the user-specified parameter

p with v = 3.4 and ω = −30. 50

xi

Chapter 1

Introduction

Early animation techniques consist of displaying images consecutively in order to

achieve motion. In the last twenty years, with the rapid development in com-

puter technology, the studies on animation technologies, aiming for more realistic

motions with more control and flexibility for the animators, has become popu-

lar. Articulated figure animation is used extensively in making of many movies

and games. Motion capture technology is one of the most common methods for

obtaining articulated figure animation. The use of motion capture in animation

has begun in the late 1970s, and nowadays it spreads quickly.

Motion Capture (MoCap) technology is a recording technology, and it is used

to record the behaviors of actors. After the recording, these recordings are con-

verted into a virtual 3D environment for further editing. In general, MoCap

targets the motions of the actors, not their physical appearance. However, in re-

cent studies for muscular simulation, the skin deformations of the actors are also

captured [2]. In movie industry, this technique is used for creating scenes that

are physically impossible and also for projecting the motions of the stunts onto

main actors of the scenes. In game industry, MoCap is mainly used for acquiring

realistic motions, such as martial arts and athletics, and for applying them on

3D models.

There have been various techniques employed for motion capturing, which

1

CHAPTER 1. INTRODUCTION 2

made its first sight as a photogrammetric analysis tool in biomechanics research

in 1970s and 1980s.

Optical systems: Optical systems use several image sensors (cameras) for pro-

jecting the captured data from all camera angles onto 3D environment.

These systems traditionally perceive the motions by tracking the special

markers attached to various places on the actors’ body. The raw data pro-

duced by optical systems generally includes positions of the markers in 3D

space. Then, this data is processed and converted into a hierarchical rep-

resentation with the joint angles and the root positions. For instance, the

markers on hip, femur and tibia are used in acquiring angle of the knee.

There are various types of markers. Passive markers reflect back the light

that is generated near camera lens. For calibration, a bright object is placed

at a known position and positioning of the other markers are measured with

respect to this object. Active markers emit their own light, rather than re-

flecting an external light. The LEDs on the markers are blinked very quickly

one after another. By calibrating the capturing frequency with blinking fre-

quency, the markers can be identified. In place identification of markers are

very important for real time applications. For instance, directors can ob-

serve both the performance of the actor and the MoCap driven 3D model

at the same time. Recent progress in computer vision led to the develop-

ment of markerless optical systems. These systems do not require actors to

wear special equipments. Specific algorithms are used to project the record-

ings from several cameras onto the virtual character. While these systems

work effectively with large motions in real-time, they might not successfully

capture small motions such as finger movements.

Inertial systems: Inertial motion capture systems are based on tiny inertial

sensors. Inertial sensors capture the joint angles, and transmit this data to

a processing unit wirelessly. The captured rotations are translated into a

skeleton in software environment. These systems have low costs in terms of

computation and finance, and unlike optical systems they do not require a

specialized studio.

CHAPTER 1. INTRODUCTION 3

Mechanical systems: In mechanical systems a mechanical equipment that di-

rectly tracks the joint orientations is attached to a performer. Like inertial

systems, they have low costs and uses wireless technology to transmit data.

The ultimate drawback of such systems is that the special mechanical suit

that captures the motion, limits the actors performance.

Magnetic systems: Magnetic systems use electro-magnetic theory for capturing

position and orientation of each joint. Three orthogonal coils are placed

on each transmitter and receiver. These systems acquire the motion data

by measuring the relative intensity of the voltage or current. However they

may be affected by the interference caused by electrical devices, and they

are not highly reliable.

As the motion capturing systems became widespread, many industrial and

academic research groups have dedicated themselves to improve the reliability

and efficiency of these systems. Along with the developments in motion capture

technology, various motion editing techniques, which aim to consummate the

animation by altering the MoCap data, are proposed. Some of the important

techniques will be explained at §3.1 in detail.

The main reasons for the existence of motion editing techniques are the lim-

itations on the quality and the quantity of the captured data. Although the

technology is widespread, capturing every single kind of motion is impossible.

Thus, some altering techniques are proposed to modify the captured data in a

way that it can be, at least partially, converted into another motion. Captured

data might not be perfect in terms of quality and quantity. Hence, most of the

time the raw data requires cleaning. Clean up is the process of correcting the

errors on data that are generally caused by the capturing hardware. Other than

clearing visually apparent errors, these methods improve the physical validity of

motions. Other important reasons for motion editing are as follows:

• As mentioned earlier, one of the most common applications of motion cap-

ture technology is projecting the data onto another actor. However, if the

CHAPTER 1. INTRODUCTION 4

physical appearances of the actors are different, the output would not be

realistic. Retargeting methods are employed for correcting such errors.

• Sometimes, especially in film industry, the captured data may not satisfy

some criteria or the aimed scene may be impossible for a performer to act.

Therefore, some visual effects may be required to alter the captured data.

The term locomotion has the dictionary meaning: ‘the act of moving place to

place’. In animation, locomotion refers to a group of basic daily motions, such as

walking, running, and jogging in which the subject moves on ground. Since these

motions are very common, they are frequently encountered in computer games

and animations. Moreover, most of the main animation packages include loco-

motion generation functions. However, creating such motions with an arbitrary

database is a challenging task, which requires selection of proper motions and

applying motion specific adjustments.

In this research, we aim to develop a methodology for generating locomotion

on real-time according to user-provided parameters. The methodology is also

supported with an implementation. Another aspect of our study is to describe the

preliminary steps to compose such a system; that is, what steps should be taken

in order to select and create base motions from a large dataset. This procedure

includes selection of motions according to predefined criteria, correction of errors

on foot positioning, and pre-adjustments.

In order to create motions on real time, we constructed a graph based data

structure. In this graph, each node represents a class of motions, and includes

motions of that class with a variety of parameters. As in motion graphs [18],

any walk on this graph can be converted into a set of sequential motions, which

produces a large final motion. As an addition, our system provides the user the

flexibility to change the motion parameters over the walk. Moreover, with our

proposed methodology the system can easily be expanded, to include various

other motions.

For transforming the walks and set of parameters into a long locomotion, inter

and intra-blending schemes, which are based on scattered data interpolation and

CHAPTER 1. INTRODUCTION 5

linear interpolation, respectively, are described and implemented. The weighting

algorithm in [33] is employed, for pre-computing the weight constants at off-line

stage and calculating the parameter-specific weights for each motion on run-time.

The organization of the rest of the thesis is as follows. In Chapter 2, back-

ground on motion representation and motion figure types are provided. In Chap-

ter 3, some of the distinguished works on motion editing are briefly introduced

and discussed. A detailed explanation of our work is provided in Chapter 4.

The implementation details and the evaluation of the results of our approach are

provided in Chapter 5. Chapter 6 gives conclusions.

Chapter 2

Background

2.1 Motion Representation

In order to understand and apply motion reuse technologies, it is important to

perceive how the poses and motions are represented. In this section, different

types of motion and posture representations are explained.

2.1.1 Representing Poses

Motion capture data provides the pose of the character at each instant. This pose

consists of values for all of the characters parameters at that instant. The choice

of in how the poses are represented affects both the efficiency and effectiveness

of a technique, as it provides actual numbers to be altered.

Typically, a hierarchical rigid skeleton is used to represent a character. Param-

eters of a skeleton consist of the position and absolute orientation of each piece

(typically referred as bone) and relative orientations among connected pieces. In

most of the editing techniques, local positioning of bones except the root is pre-

ferred, since it simplifies the required calculations. Because of this selection the

rotation representation selection becomes more significant, since the local location

6

CHAPTER 2. BACKGROUND 7

parameters are static in skeletons.

2.1.2 Representing Orientations

Orientation is expressed as a rotation relative to some other coordinate system,

either a fixed ’world’ coordinate system or another joint in the hierarchy. Indeed

selection of how the orientations are represented is same as selecting another space

to map from S2. The spatial nature of this mapping affects the applicability of a

reuse method.

2.1.2.1 Rotation Matrix

Rotation matrices are very useful in implementation step since most of the hard-

ware and the libraries, such as OpenGL, support it. This representation provides

a mapping from S2 to R
9. Some problems, such as difficulty in interpolation,

arise because of the discontinuity of the inverse mapping function; however, some

actions such as consecutive rotations can be performed very easily by simply

multiplying matrices.

2.1.2.2 Euler Angles

Euler Angles represent the orientation as a fixed set of consecutive rotations

around local coordinate system axes. Any rotation can be expressed as a rotation

around the X axis, followed by a rotation around the Y axis and a rotation around

the Z axis.

Euler Angles provide a better understanding of the rotation and a more com-

pact representation than rotation matrix. However, they are prone to many

problems. Since the mapping from S2 to R
3 is not continuous, the interpolation

becomes problematic. Another problem, Gimbal Lock arises because three values

representing the rotation are not independent. Despite these problems, Euler An-

gles are the most commonly used method for representing angles, since they do

CHAPTER 2. BACKGROUND 8

not require sophisticated mathematical knowledge and are easy to observe with

motion capture technologies.

2.1.2.3 Quaternions

The most common alternative to the Euler Angles for rotations is unit quater-

nions [32]. A quaternion consists of four values (x, y, z, w) , where x, y, z forms

the vector part v, while w forms the scalar part s. A unit quaternion represents

a rotation around vector v, of magnitude of s. A rotation of θ degrees around

the unit vector u can be represented as:

q =

(
s

v

)
=

(
cos(θ/2)

sin(θ/2)u

)
(2.1)

The most important advantage of the quaternions is their success in inter-

polation. For this reason, we used SLERP (Spherical Linear intERPolation) for

quaternion interpolation in our implementation. Another advantage of quater-

nions is that successive rotations can be calculated by simply multiplying the

quaternion. The details of calculating the exponential and logarithmic functions

of quaternions are given below.

Given the quaternion q:

q =

(
s

v

)
(2.2)

The exponential of q is given as:

exp(q) = exp(s)

(
cos(|v|)
v
|v| sin(|v|)

)
(2.3)

and the logarithm of q is given as:

log(q) =

(
log(|q|)

v
|v| arccos(s

|s|)

)
(2.4)

CHAPTER 2. BACKGROUND 9

Figure 2.1: The angles of different joints on a small motion with respect to frames.

These functions will be used to map the quaternion displacements to R
3 in

posture blending.

2.1.3 Representing Motion

A motion is represented as a multidimensional function (Equation 2.5) that maps

the time to a pose. It can be represented as a set of parameter curves, which

corresponds to the position of root and joint orientations at time t (see Figure 2.1):

M(t) = (p(t), q1(t), q2(t), . . . qn(t)) , (2.5)

where p(t) is root position and qi(t) is the orientation of joint i. It should be

noted that each motion is defined as a set of frames, which means it is discrete

and value of time t depends on frame rate.

CHAPTER 2. BACKGROUND 10

2.2 Motion File Types

There are various types of files that use the representations above, such as Acclaim

ASF/AMC, Biovision BHV/BHA, C3D, FBX. The most common ones used in

motion editing are Acclaim ASF/AMC and Biovision BHV/BHA. In this section,

some brief information about these file types are provided.

2.2.1 Biovision BHV/BHA

The BioVision Hierarchical (BVH) file format was developed by BioVision, a

motion capture service company. The BVH format is a binary file that contains

both a skeleton and motion capture data, and it allows each segment of a skeleton

to have a specified order of transformation.

The BHV file format is very flexible and relatively easy to edit. It has two

sections: The hierarchy section and the motion section. The hierarchy section

contains the definition of a skeleton hierarchy within nested braces. The motion

section of the file contains the total number of frames in the animation in the

motion section, the frame rate, and the parameters for each entry (bone) in the

hierarchy section. Figure 2.2 illustrates a BHV file.

A drawback of the BVH format is that it lacks a full definition of the initial

pose. Moreover, the BVH format is often implemented differently in different

applications.

2.2.2 Acclaim ASF/AMC

ASF (Acclaim Skeleton File) and AMC (Acclaim Motion Capture) are the file

formats for MoCap developed by Acclaim Entertainment, Inc. The format in-

cludes two files: .ASF file, which describes the actual skeleton and its hierarchy,

and the .AMC file, which contains the motion data. In Figure 2.3, you can see

an example of each ASF and AMC files.

CHAPTER 2. BACKGROUND 11

The ASF file contains all the information of the skeleton, such as bones, doc-

umentation, root bone information, bone definitions, degrees of freedom, limits,

hierarchy definition, and file names of skin geometries, but not the motion data

itself. In addition, the ASF file contains an initial pose for the skeleton.

The AMC file contains the actual motion data for the skeleton defined by an

ASF file. The bone data is sequenced in the order as the order of transformation

specified in the ASF file.

In our implementation, ASF/AMC files are used to store the motions. This

choice was straightforward, since the motions in the database are initially stored

in this format.

CHAPTER 2. BACKGROUND 12

HIERARCHY

ROOT Hips

{

OFFSET 39.5157 99.4896 24.7913

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

JOINT ToSpine

{

OFFSET -0.0105055 1.38907 -7.13956

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Spine

{

OFFSET 0.0105055 10 1

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Spine1

{

OFFSET 0 12 1.60637

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Neck

{

OFFSET 0 27 2.26658

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Head

{

OFFSET 0 9 2.12705

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0 11 2

}

}

}

JOINT LeftShoulder

{

OFFSET 8 19.6109 2.86452

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftArm

{

OFFSET 12 1 0.681055

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftForeArm

. . .

. . .

}

}

} # HIERARCHY PART ENDS HERE

MOTION

Frames: 153

Frame Time: 0.0333333

39.5107 99.4851 24.7919 1.29283 -5.72371 0.672317 0 0 0 2.52727 5.05271

0.319096 -5.56434 3.32673 1.29694 8.53147 3.12242 -2.34842 -4.43757

-2.29464 1.341 -29.1055 3.86484 -7.45312 -41.6174 27.5825 -18.4723

-6.84645 -13.417 0.262612 -9.01332 0.37924 -4.80751 26.2911 6.48437

16.3051 50.6802 17.8657 5.35063 5.04918 -6.43848 9.88527 2.839 0.0844801

3.41222 0.52226 7.09518 7.26472 -1.1878 5.46476 -9.93351 3.56859 -7.9309

0.247298 0.693993 2.24148 -3.2565 -3.21779 7.68437 -9.34312 0.0551059

5.01404 -4.71352 -8.88908 -3.36204 -0.261081 3.329 -12.1909 -3.65467

. . .

Figure 2.2: An example of BHV file for crawling motion.

CHAPTER 2. BACKGROUND 13

AST/ASF file generated by VICON BodyLanguage

--

:version 1.10

:name VICON

:units

mass 1.0

length 0.45

angle deg

:root

order TX TY TZ RX RY RZ

axis XYZ

position 0 0 0

orientation 0 0 0

:bonedata

begin

id 1

name lhipjoint

direction 0.655637 -0.713449 0.247245

length 2.52691

axis 0 0 0 XYZ

end

begin

id 2

name lfemur

direction 0.34202 -0.939693 0

length 7.59371

axis 0 0 20 XYZ

dof rx ry rz

limits (-160.0 20.0)

(-70.0 70.0)

(-60.0 70.0)

end

...

:hierarchy

begin

root lhipjoint rhipjoint lowerback

lhipjoint lfemur

lfemur ltibia

ltibia lfoot

lfoot ltoes

...

end

#!OML:ASF TakeoMonday.ASF

:FULLY-SPECIFIED

:DEGREES

1

root 9.62745 17.7973 -1.03923

-6.37909 -22.4014 3.49382

lowerback 5.60025 1.12798 -0.0431347

upperback 2.77139 1.49305 0.791281

thorax -0.311801 0.736113 0.749946

lowerneck -8.90502 6.57112 0.322245

upperneck 1.33699 8.87524 -3.9415

head 2.15388 4.30658 -0.892614

rclavicle -5.42682e-014 8.74653e-015

rhumerus -26.2308 10.8446 -85.4595

rradius 32.4455

rwrist -15.5297

rhand -23.7652 16.4224

rfingers 7.12502

rthumb 2.70415 -13.5402

lclavicle -5.42682e-014 8.74653e-015

lhumerus -31.3304 15.8471 84.3404

lradius 34.38

lwrist 26.2658

lhand -24.6861 18.635

lfingers 7.12502

lthumb 1.81469 48.607

rfemur 5.94355 -4.3449 19.6053

rtibia 16.8854

rfoot -16.8444 -20.544

rtoes 1.44864

lfemur -6.98547 0.557427 -21.3734

ltibia 17.0463

lfoot -2.75734 18.7084

ltoes -9.6083

2

root 9.62656 17.8064 -1.04088

-6.77019 -22.4714 4.31411

lowerback 5.63075 1.18462 -0.822496

upperback 2.76579 1.52792 0.503344

thorax -0.347203 0.748779 0.888507

...

Figure 2.3: An example of AMC/ASF file pair for walking motion.

Chapter 3

Related Work

With the developments in motion capturing technology, motion editing became

a popular subject. In last fifteen years, there have been many studies that con-

tributed the progress in this area. In this section, we provide a compilation and

analysis of the most significant works in this subject.

3.1 Motion Synthesis and Editing Techniques

In the field of motion editing, many algorithms and techniques for generating

realistic motions from captured motions are proposed. These methods can be

classified into categories according to their perception of the problem and the

approaches they provide. These categories are explained in detail below along

with some of the most important studies in each one.

3.1.1 Manual Synthesis

Manual synthesis is the earliest form of motion synthesis. It is actually the clas-

sical cartoon drawing technique adapted to computer environment with some

14

CHAPTER 3. RELATED WORK 15

simple interface and in-betweening techniques. Burtnyk et al. [8] describes ba-

sic adaptation schemes and interpolation techniques for keyframed animation.

In [20], John Lasseter describes the simple concepts for traditional animation

that can be applied to keyframed animation for visually better results. As the

animator specifies individual DOFs (Degree of Freedom) and joint torques at all

keyframes, he will have full control over motion. However, introducing so many

keyframes in the absence of appropriate automation techniques is a tedious work.

Therefore, several methods that aim to shoulder this load as much as possible are

introduced in literature.

3.1.2 Forward/Inverse Kinematics

As mentioned earlier, most of the motion reuse techniques define the configura-

tion space in SO(n) where n is number of joints. However, the tasks and the

environment are described with respect to workspace R
3. In other words, the

joint parameters are represented as local orientations, but the constraints such

as foot positioning and specific joint isolations are represented in Cartesian space

world coordinates. This difference in representations forces invocation of forward

and inverse mappings. These mapping functions are named Forward Kinematics

(FK) and Inverse Kinematics (IK), respectively [4].

Let the vector �Θ be the skeleton’s orientation and �P be its respective world

coordinate in Cartesian space. The sizes of the vectors �Θ and �P are equal to the

structure’s DOF. Then Forward Kinematics mapping is described by f , if:

�P = f(�Θ) (3.1)

Straightforwardly, f−1 defines Inverse Kinematics, that is:

�Θ = f−1(�P) (3.2)

Until recent years, published works focused on describing an efficient way

for solving and applying inverse kinematics in computer animation. Various ap-

proaches are proposed for this problem. These methods can be categorized into

CHAPTER 3. RELATED WORK 16

three groups: analytical, iterative, and hybrid. Analytical methods [9, 31, 34, 44]

define a set of algebraic equations and then solve them, while iterative meth-

ods use Newton-Raphson root finding method to solve IK problems. In Cyclic

Coordinate Descent (CCD) [37] method, an iterative approach updates the joint

angles until the target destination is reached. This method is popular since it has

the speed of an analytical approach and effectiveness of an iterative approach.

The approach proposed in [21] uses hybrid systems that solve the minimization

problem for reduced set of bones.

The main usage of inverse kinematics methods in animation is to force the

global constraints during or after motion synthesis; that is, finding the character

poses that satisfies the given constraints. In literature, many solutions for this

problem are proposed [5, 12, 38]. However, as one can imagine, this problem has

more than solution including the ones that are not physically correct or visually

satisfactory. Due to this undetermined nature of the problem, another problem

arouses: selecting the most appropriate posture among many possible solutions.

Because of the difficulty of this selection process, the role of inverse kinematics

is limited to supplying correction algorithms for motion synthesis in most of the

proposed systems, such as [24, 28, 45, 46].

There are exceptional researches that directly create motions/poses using In-

verse Kinematics, or narrow the solution space in order to increase the possibility

of finding visually/physically sufficient ones. In [26], mass displacement from a

reference pose is used as a measure for correctness of generated motion. Simi-

larly, Grassia calculated this metric by measuring the energy consumption of a

motion [13]. Popović et al. applied training algorithms to minimize distance of a

pose to the ones in the training examples [14]. They tested their algorithms on

applications such as interactive character posing, trajectory keyframing, real time

motion capture with missing markers, etc. and the approach seemed effective. In

one of their demonstrations, they showed that the system is capable of creating

poses that matches a real pose of a baseball player, with only adjusting a few

end-effectors consecutively.

CHAPTER 3. RELATED WORK 17

3.1.3 Physically-based Synthesis

As the human motions are affected and sometimes completely controlled by phys-

ical laws, several motion synthesis approaches are proposed that keeps the motion

in the boundary of fundamental physic laws, such as Newton’s Laws. This kind of

approach requires information more than joint angles and positions, such as mass

distribution and the joint torques. The biomechanics, including mass distribution

information, is well explained in [40]. Hodgins et al. [16] focused on joint torque

calculations for highly dynamic motions such as running, vaulting and bicycling.

They used finite state machines to enforce a correspondence between the phase of

the behavior and the active control laws; and used proportional derivative control

laws for low level control. In [42, 43], similar methods, for generating gymnastic

motions are introduced.

These methods, in general, formulate the synthesis as optimization functions,

whose constraints are based on given task and a selected set of applicant physics

laws [11]. In [41], space-time constraints are introduced to describe how the mo-

tion should be performed inside the boundaries of physical validity. The method

proposed in [6] used search algorithms for torque/force generators (controllers).

Hodgins and Pollard [15] additionally adapted a controller to a new body.

Hybrid methods that use biomechanics data have also been studied. The stud-

ies [1, 26] proposed different methods for modifying input motion to obtain new

motions with different objectives. Liu et al. [22] also invoked a hybrid method.

They tried to optimize minimum mass displacement of a reduced model, in light

of physical constraints such as momentum and different types foot/hand con-

tacts. Their system was able to handle highly dynamic motions, such as running,

hopscotch, high bar and handspring. Popović et al. [10] also proposed a hy-

brid method. Their approach determines controllers in the guidance of style and

balance feedbacks from reference motions. They used iterative optimization on

a reduced model, a three link model, for computing the corresponding control

forces of each reference motion.

Physical approach sometimes generates motions that lack personality. Ne and

CHAPTER 3. RELATED WORK 18

Fiume [23] tried to overcome this kind of stiffness on such motions by focusing of

tension and relaxation. Safonova et al. [30] reduced the dimensionality, DOF, of

the motion using Principal Components Analysis (PCA), then applied physically

constrained optimization on this model and increased the model dimensions back

to normal. By solving the optimization for higher levels, the unchanged lower

levels help maintaining the personality of the motion.

Physical-based methods combined with data driven techniques are also ex-

panded to produce dynamic responses for outer forces. Arikan et al. [3] syn-

thesized response and balancing motions for a wandering character after a push

in different directions. Zordan et al. diversified the falling motion of a human

body after a short and strong impact, such as being kicked, from a few captured

examples [46].

In summary, physically based methods typically generate realistic body con-

figurations and motions; however, the animator should be aware of the stiffness,

which is brought by most of these techniques.

3.1.4 Data-Driven Synthesis

Motion capture technologies provide reliable realistic motions. As this technology

become widespread and used to gather large sample sets, data-driven methods

became applicable for creating new motions. Blending techniques (see §3.1.4.1)

are also considered as data-driven methods.

In some studies, the motion data is treated as a set of signals. Signal

processing methods are applied to these signals to alter the captured motion.

Unuma et al. [35] introduced this approach; they extrapolate and interpolate

the Fourier coefficients of joints between walking motions of different moods, in

the frequency domain. In [7], motions are also processed in frequency domain.

They provide the system user a graphical equalizer of gains on frequency bands of

joint angles. With this technique, the user can generate anticipation effects with

tedious effort, because the correspondence between the parameters on equalizer

CHAPTER 3. RELATED WORK 19

and output motion is not good. In other words, it was hard to anticipate what

kind of effects it will create on the output motion, after changing parameters.

Wang et al. [36] used inverted Laplacian of a Gaussian (LoG) filter to create

anticipation and follow through effects as described earlier by John Lasseter [20].

Their work greatly extended previous techniques. With the one parameter in-

terface, the user can specify the exaggeration magnitude easily. Their unified

approach was applicable not only to MoCap data but also to video recordings,

and even, on simple animations on PowerPoint.

3.1.4.1 Motion Blending

In this technique, a set of similar motions are blended. The blending is typically

achieved by interpolating the basic parameters, such as joint angles and root

positions. Ken Perlin’s work [25] was one of the first studies that include motion

interpolation. In this system, blending operations are applied on a motion dataset

to create new motions and transitions between them. Wiley and Hahn [39] used

linear interpolation and spherical linear interpolation on a set motions including

pointing and reaching behaviors to create new directions for these actions.

In [27], radial basis functions are invoked for interpolating locomotions. Rose

and his colleagues defined some analogous structures for simplicity; the base

example motions are referred as verbs, while the control parameters describing

these motions, such as mood, are called adverbs. The overview of their system is

illustrated in Figure 3.1. As a result of their research they succeeded in creating

new motions by interpolating example motions with new values for adverbs. In

our work, we have used an incremental version of their approach for interpolation.

In most of the interpolating approaches proposed, linear interpolation is used

widely for position values and spherical linear interpolation for quaternion repre-

sentations of joint orientations.

A similarity metric for frames of two motions is proposed in [17, 18]. In these

works, they used this metric to find appropriate interpolation timings in between

the motions. Their system generates motion graphs using these times for creating

CHAPTER 3. RELATED WORK 20

edges/transitions. They also described a technique for automatically registering

motions for interpolation.

Shin et al. [24] use interpolation techniques for creating an on-line locomotion

motion with given parameters. In their work, they manually clip some short

segments of the motions with the exact keyframe sequence and use time warping

for synchronizing these motions before interpolating them according to the given

set of control parameters, as in [27]. Shin and Kwon [19] developed a system for

automatic segmentation and classification of long motions for using them in a

similar system.

Safonova and Hodgins [28] analyzed the interpolated motions that have static

control parameters for flight phase (with no ground contact) with respect to phys-

ical validity. They tested the angular and linear momentum of created motions,

along with stability of foot during contact and static balance. They showed that,

in many cases, the interpolation method creates physically valid motions.

Recently, Safonova and Hodgins [29] constructed motion graphs with nodes,

that have two similar poses to be interpolated and a weight value. This repre-

sentation increases the flexibility of generated motions, while maintaining graph

structure. By doing so, long sequence motions can be created by simply follow-

ing transitions on the graph, as in original paper [18]. A search algorithm that

optimizes the weight values at each node according to given sketch and tasks is

also provided.

CHAPTER 3. RELATED WORK 21

Figure 3.1: The overview of the system described in [27].

Chapter 4

Real-Time Locomotion

Generation

In this work, we aimed a system that is capable of generating locomotion, such as

walking and running, with user-specified parameters. The general overview of our

system is shown in Figure 4.1. The system consists of two stages. The first stage is

the motion graph construction. The motions are selected based on some criteria

and error correction, pre-adjustments, motion snychronization, and transition

partitioning steps are applied to construct a motion graph from a huge database

of raw motions. The second stage uses the motion graph constructed in the

first stage and converts the nodes of the graph into motion segments using data

scattered interpolation. Then, an output motion is generated by concatenating

these motion segments. The concatenation is done by linearly blending the motion

segments with respective transition motions, which are represented as edges on

the graph. The main structure of the motion graph is constructed at off-line

stage, while the second part, motion generation, is done during runtime. This

separated manner in system flow, improves the overall functioning and efficiency

of the system.

22

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 23

Figure 4.1: The overview of the real-time locomotion generating system.

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 24

4.1 Graph Construction

For generating locomotions, with flexibility of anytime transitioning, we used

graph structures as in [18, 19]. In Figure 4.2, a reduced visual model of our graph

is presented. Unlike motion graphs [18], each node at our graph represents a set

of similar motions, such as running. The set of motions at each node are first

selected from a huge database of motions, and labeled according to their action

content. Then, the visible errors on these motions are eliminated by Linear

Function Fitting. After the selected motions are calibrated, keyframe timings are

synchronized using Incremental Time Warping according to the other motions at

each node.

Figure 4.2: The motion graph model of our system.

Each edge in our graph model represents a transition between motions. Exam-

ple transition motions between every single pair of nodes are selected in the same

manner and pruned as in Motion Graphs, in order to cut off redundant frames.

After these steps, any walk in the graph can be converted in to a long motion

by sequencing the blended sets of motions at each graph one after another. This

step will be explained in §4.2.

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 25

4.1.1 Selection of Example Motions

For successful transitions and blending of motions, the quality and diversity of

the example motions are very crucial. In our work, we selected our motions from

MoCap database of Carnegie Mellon University, which includes large amounts of

motions of varying styles, actions and qualities. This diversity of the database

imposes the problem of selecting right motions. In choosing appropriate motions

for our implementation, we take into account the following criteria:

• Motion action content and styles: The first criterion should obviously be

the content of motions. Fortunately, the on-line database provided labeling

of most of the content. According to these labels, we extracted hundreds of

motions for each category that matches this criterion.

• Number of frames and frame rate: The motions are expected to be long

enough to be blended into meaningful and smooth motions. The motions,

whose number of frames is lower than a threshold, are removed from set

of candidates. Motions with dissimilar frame rates are also omitted for

compatibility issues.

• Predicted motion parameters: In order to predict the motion parameters

that will be precisely extracted after the selection, we implemented small

scripts that identify overall change and average of the parameters. Un-

fortunately, the database included some repetitive motions that would be

eliminated by our filter, although they have partially acceptable motions.

Hence, we applied our script to motion segments of predetermined sizes.

• Diversity of candidate motions: After eliminating undesired motions, we

grouped the motions according to their predicted parameters.

• Motion quality: Capturing motions in large batches reduces the quality of

MoCap data. Although correction algorithms are implemented for elimi-

nating such errors (see §4.1.2), it cannot recover all of the errors, such as

joint angle registration flaws and disconnectivity in the motions. Therefore,

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 26

we eliminated motions at each group with lower quality, and nominated one

motion from each parameter group.

The nominated members of each group of the same action content are gathered

into a node model.

4.1.2 Motion Error Pre-correction

Correction of motions consists of aligning the starting position and orientation of

first poses according to a reference point and direction. For calculative simplicity,

we selected the reference position as the origin of X-Y plane of global coordinate

systems and X-Axis direction is selected as reference direction. The positional

displacement vector �d is formulated as:

�d = −�p1, (4.1)

where �p1 is the root position of the first pose in the motion. The angular displace-

ment θ can be found by calculating the angle between X-Axis and the tangent of

the arc formed by the relative root positions in first n frames.

Error pre-correction plays a major role in our approach. It eliminates the

footing errors at the stage of graph building, unlike many similar methods that use

Inverse Kinematics after the motions are generated. This choice is grounded on

works of Safonova and Hodgins [28]. In their research, they have shown that the

physical validity of motions to be interpolated is directly reflected on correctness

of interpolated motion. By correcting the errors in advance, we aim to reduce the

load on CPU at motion generation stage, while preserving the physical validity.

In the pre-correction step, the motion is repositioned as close as possible to the

ground. This step is required since the capturing technology used was not capable

of precisely aligning motions into the world coordinates. The motions used in our

implementation had a visible amount of deviation from ground in general, which

increases or decreases linearly with the internal time of the motions. In order to

solve this issue, each motion is considered as a rigid body consisting of poses with

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 27

static links among them, like a bulk iron statue. We tried to fit the minimum

points, that are actual ground contact points of this rigid body into a line L

formulated as y = ax + b. For this purpose, least square method is used to solve

the error function for a and b:

min
a,b

(

n∑
i=1

(axi + b)2), (4.2)

where xi is the foot position of ith minimum point of the motion and is calculated

using Forward Kinematics. By interpolating a and b values for other frames, we

found a y-displacement for each frame that will minimize the overall distance of

the motion to the ground.

4.1.3 Parameter Extraction

In most of the studies, locomotion parameterization is based on three components:

speed, turning angle, and style [19, 30]. In this work, we stick to this approach.

However, due to the limitations caused by the diversity of parameters at style

context, we narrowed the parameter space to contain only speed and angle. As

mentioned earlier, our example motion data set have three types of motions: walk,

run and stop. In the sequel, we will describe the formulations for extracting the

parameters of walking and running. The parameters of the stop motion are

assigned to zero, due to its immobile nature.

We calculate the angular velocity (ω) and linear velocity (v) parameters, as

discussed in [24]. According to classical physics, an object with constant linear

and angular velocities follows a circular trajectory. Grounding this fact, we cal-

culated a best fit of motions into circular arcs of finite length. It should be noted

that no classification of trajectories into ‘turning’ and ‘straight’ locomotions is

required, since a straight line can be expressed as an arc of infinite radius.

Let p̃ be the projection of the root trajectory of a motion on the floor, we

approximate p̃ as a circular arc a of radius r, centered at o. The arc also has

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 28

starting point a0 and subtend angle θ. The least square fitting of this minimiza-

tion is formulated as:

min
o,a0,θ

F∑
i=1

(p̃i − pa(i; a0, o, θ))
2, (4.3)

where F is number of frames, and pa(i; a0, o, θ) is the starting position of ith

segment of the arc defined by a0, o and θ, which is split into F segments. Then,

the speed and the angular speed of the motion are given by:

v =
rθ

T
, ω =

θ

T
, (4.4)

where T is the duration of motion. It should be noted that at this step, v should

be calculated by simply averaging the root positions for motions with infinite

radius.

4.1.4 Weight Computation

We define the weight functions according to the scattered data interpolation

method, as described in [33]. In the graph building stage, we use the weight

functions and the parameter vectors to calculate the constant matrices for weight

computation. The details of using weights for interpolation will be discussed

at §4.2.3. Let p be our parameter vector. Then, the weight wi(p) of example

motion i is defined as:

wi(p) =

Np∑
k=0

aikAk(p) +

Ne∑
l=1

rilRl(p), (4.5)

where Np is the number of parameters, Ne is number of example motions, R and

r are the radial basis function and its NexNe coefficient matrix, and A and a is

the linear basis function and its NexNp coefficient matrix, respectively. Rl(p) is

the radial basis function of the Euclidean distance of p and parameter vector of

example motion l, pl:

Rl(p) = B

(‖p − pl‖
αl

)
, l ∈ [1, Ne] , (4.6)

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 29

where α is the dilation factor and αl = min(pj − pl), for j, l ∈ [1, Ne], and B is

the cubic spline. Linear basis function Ak(p) is equal to pk for k > 0, and 1 if

k = 0.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Parameter (p)

W
ei

gh
ts

w
1
(p)

w
2
(p)

w
3
(p)

w
4
(p)

w
5
(p)

Σ w
i
(p)

p
4

p
1

p
3 p

2
p

5

Figure 4.3: The weight values according to the user-specified parameters.

Given the weight formulations and parameter vectors of example motions, the

coefficient matrices r and a is calculated by assigning weight values for parameter

vector pj of each example motion j for 1 ≤ j ≤ Ne:

wi(pj) =

{
1, if i = j

0, else
(4.7)

First, matrix a is calculated by employing a least square method for the first

part of the weight equation (omitting the last part of the formula):

wi(p) =

Np∑
k=0

aikAk(p). (4.8)

Having a values, r matrix is calculated by solving the linear systems given

in Equation 4.9. Obtaining a and r values, we can calculate weight value for

an arbitrary vector p by using Equation 4.5, and forward it as an input for our

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 30

blending scheme.

rR = wi(p) −
Np∑
k=0

aikAk(p), (4.9)

where Rij = Ri(pj).

4.1.5 Motion Synchronization

In order to generate longer motions with heterogeneous speed and angular ve-

locity, we need compatible small scaled motions with nearly stable parameters.

In this section, we find the key frames of motions, prune them respectively and

synchronize them using incremental time warping.

4.1.5.1 Keyframing

Keyframes are the important instants of a motion, since they are frequently used

to describe the motion roughly. In locomotions, the significant frames are the

ones with foot contact. Therefore, we defined the keyframes of our scheme to be

the beginning and end frames of each foot contact. The extraction of keyframes

is done manually. Yet, we developed a method for easier analysis. The height of

heels and toes are plotted and the patterns for keyframes are observed. According

to these observations, the keyframes are successfully labeled on the plot, avoiding

the process of playing back and forward the motions each time

4.1.5.2 Time Warping

Time warping plays an important role in motion blending, since it formulates the

correspondence between frames of motions that should be interpolated. Having

the keyframes, a linear mapping from frames of a motion Mi to motion Mj can

be calculated effortlessly. However, this pair wise mapping would bend the space

of Mi, causing loss of realism. Moreover, for blending more than two motions

this scheme does not work. Therefore, it is required to define a global time along

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 31

(a)

(b)

Figure 4.4: A comparison of pair wise linear mapping and global linear mapping:
(a) linear mapping between two walking motions M1 and M2, (b) linear mapping
between actual and global time of M2.

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 32

with its mapping functions for each motion. We employed the incremental time-

warping scheme described in [24]. The global time is calculated by distributing

the keyframes to [0, 1] interval uniformly. Given keyframes [K1, KNk
] of motion

Mi for 1 ≤ i ≤ Ne, where Ne is number of example motions and Nk is the number

of keyframes for that motion, actual time Ti can be mapped to global time t(Ti)

as follows:

t(Ti) =

(
(m − 1) +

Ti − Km

Km+1

− Km

)
1

Nk − 1
, (4.10)

where m is the largest index such that t(Ti) > Km. As seen in example in Fig-

ure 4.4 the mapping between actual time and global time is monotone, therefore

the inverse function Ti(t) exists, and defined as:

Ti(t) = ((Nk − 1)t − (m − 1)) (Km+1 − Km) + Km. (4.11)

In Figure 4.5, the before and after effects of timewarping is illustrated. For-

mulating the forward and inverse mappings between actual times and global time,

we are able to find the corresponding frames of motions in a node, given global

time t. The update function for t is defined in §4.2.3. With this step, the graph

construction stage is completed.

4.2 Motion Generation

In this section, we will define the algorithms and formulations required to effi-

ciently blend these motions and create transitions on run-time.

4.2.1 Overview

Given the constructed motion graph, a sequence of parameters, first, converted

into a graph walk according to specified motion types. Then, the graph walk is

converted into output motion step by step:

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 33

Figure 4.5: The effect of timewarping on motions.

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 34

• A local timing scheme is attached to each node for calculating the cor-

responding frames of each motion inside. According to given parameter

sequence and length for each motion type, the motions in the correspond-

ing nodes are blended, and one output motion for each node is generated.

While blending, the same approach in §4.1.4 is used to compute weights of

each example.

• The frames between the consecutive nodes are created using predefined

transition motions on edges between those nodes. The transition motion

and the output motion of the following node are transformed according to

global position and orientation of the model.

• The transition motions are partially blended with the output motions of

preceding and succeeding nodes using linear interpolation in order to create

smooth transitions.

• The transformed and blended motions are concatenated one after another

in order to form the final output motion.

4.2.2 Sub-global Timing

As mentioned earlier, for synchronizing motions in a node a global timing scheme

is required. However, this scheme is used only inside the motions; therefore, it

will be referred as sub-global timing scheme. We have already defined the nature

of this scheme and the maps between the sub-global time and local times of the

motions in §4.1.5. In this section, the initialization and update function of the

sub-global time will be explained.

Let tin be the time at the nth frame of output motion of node Ni. The

initialization step is quite simple, that is, tin=0. For calculating the time of next

frame an incremental approach is employed, and tin is formulated as follows:

tin = tin−1 + Δtin−1. (4.12)

In order to preserve the original frame rate of each motion, Δt is calculated

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 35

by interpolating the sub-global time change per frame,Γj(t) for each motion j.

Δtin−1 =

(
Ne∑
j=1

γj(p) Γj(t
i
n − 1)

)
, (4.13)

where Ne is number of example motions in the node. γj is the weight for motion

j according to given parameter p, and is formulated as follows:

γj(p) =
1

Ne
+

Ne∑
k=1

rjkRjk(p). (4.14)

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.2

0.4

0.6

0.8

1

Parameter (p)

G
am

m
a

(γ
)

γ
1
(p)

γ
2
(p)

γ
3
(p)

γ
4
(p)

γ
5
(p)

Σ γ
i
(p)

p
4

p
1

p
3

p
2

p
5

Figure 4.6: The γ values for the user-specified parameters.

Here, R is the radial basis function, as formulated in Equation 4.6 and shown

in Figure 4.7. r is Ne × Ne coefficient matrix, and it is calculated by solving the

linear equation:

rR = γj(p) − 1

Ne
. (4.15)

The constant 1
Ne

plays a critical role, for calculating Δt. It simply ensures that

the weight, γ, for each motion and Δt is non-negative. The updates continues

until the sub-global time reaches 1.0 limit.

With the timing scheme described, the corresponding posture of each frame

can be found using the mappings defined earlier. These postures are blended

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 36

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

R
(x

)

Figure 4.7: The radial basis function.

based on a data scattering interpolation approach, which is explained at the

following section.

4.2.3 Incremental Posture Blending

By blending the corresponding postures of example motions at generic time t

according to weight values for target parameter vector, the target posture is

generated. As mentioned earlier, a posture P (t) can be represented as:

P (t) =
{
pr(t), q1(t), q2(t), . . . , qNj

(t)
}

, (4.16)

where Nj is number of joints in our skeleton model. In our implementation, we

used one of the skeletons defined in the MoCap database; the joint hierarchy of

our model can be seen at Figure 4.8.

4.2.3.1 Incremental Position Blending

For interpolating the root positions of the corresponding frames at generic time

tn, we use an incremental method. In this method, we interpolate the positional

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 37

Figure 4.8: Our skeletal model.

displacement of corresponding frames. Let pi(T (tn)) be the root position of pos-

ture Pi(T (tn)) for actual time T (tn), then the displacement Δpi(T (tn)) is:

Δpi(T (tn)) =

{
�0 , if T (tn) = 1

pi(T (tn)) − pi(T (tn) − 1), else
(4.17)

The root position pG of output posture at TG(tn) is calculated as:

pG(TG(tn)) =
Ne∑
i=1

wiΔpi(Ti(tn)) + pG(TG(tn−1)), (4.18)

where wi is the weight for corresponding motion, at tn.

This incremental approach overcomes the possible errors emerged when there

is a high jump in input parameters. There occurs a visible error in the blended

motion, since a high jump in input parameter vector rapidly reduces the weights of

motions that were high according to previous parameters and vice versa. Because

of this rapid change, the position of the generated motion skips to the position of

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 38

the others. Although this method eliminates visible jumps in positions, jumps in

orientations are still a problem if this jump is too high. This can be corrected by

spreading the jump to upcoming frames by using a sinusoidal function. However,

this reduces the flexibility of transitioning system. In other words, this approach

would ignore the high jump request of the user, by replacing it with a sequence

of smaller jumps. Although this problem is not in the scope of this study, we

suggest applying anticipation algorithms, as described in [45].

4.2.3.2 Incremental Orientation Blending

We preferred representing orientations with quaternions, since using interpolation

methods on Euler Angles may result into poor outputs. The main reason for that

is the representation of a rotation is not unique when Euler Angles are used.

Although the quaternions also have two representations, say Q1 and Q2 for an

orientation, there is a relation between these values, that is Q1 = −Q2. This

kind of ambiguity can be cleared, by selecting the representation that is closest

to the corresponding quaternions of the other poses. The details for handling this

ambiguity will be explained later.

In many approaches, Spherical Linear Interpolation is used for interpolating

quaternions; however, it can only handle blends of size two. So, we employ the

blending scheme for multiple motions, as described in [24]. The basic idea is

to transform the orientation into a vector space �3, with respect to a reference

orientation. Then, a linear weighted interpolation is applied on positions (see

§4.2.3.1), and finally the output vector is reverted back into orientation space.

In order to carry out the transform, we used logarithm and exponential maps

(cf. Equations 2.3 and 2.4). A quaternion q is mapped into its corresponding

displacement vector v with respect to a reference quaternion q∗, by using the

logarithm map:

v = log(q−1
∗ q). (4.19)

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 39

And it can be transformed back from displacement vector v as:

q = q∗ exp(v). (4.20)

As mentioned earlier, there is a possibility that q may be on the opposite

hemispheres on the sphere with q∗. In that case, we use the other representation

of the same orientation, that is −q. However, working with more than one motion

requires the reference quaternion q should be on the same hemisphere with all the

quaternions q1, q2, . . . qNe , where qi is the corresponding orientation of motion i

in the example set. To minimize the total distance of q∗ to all other quaternions,

the following distance metric is used:

dist(q1, q2) = sin(
∥∥log(q−1

1 q2)
∥∥). (4.21)

This distance metric is preferred since it is differentiable at every point be-

tween [0, π]. Using this metric, the sum of square distances at Equation 4.22

should be minimized to obtain q∗.

E =

Ne∑
i=1

‖dist(q∗, qi))‖2 , (4.22)

where Ne is the number of example motions. This equation can be written as:

E =
Ne∑
i=1

sin2 θi, (4.23)

where θi = ‖log (q−1
∗ q2)‖. Since sin2(θi) = (1 − cos2(θi) and the cos(θ) is the dot

product of the quaternions, i.e. cos(θi) = qT
i · q∗, total error E can be written as:

E =

Ne∑
i=1

(
1 − (qT

i · q∗)2
)
. (4.24)

The Lagrangian multiplier method, with multiplier λ is employed to find q∗
that minimizes E:

∂E

∂q∗
= λ

∂
(
1 − ‖q∗|2

)
∂q∗

. (4.25)

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 40

Combining Equations 4.25 and 4.24, we have:(
Ne∑
i=1

qi · qT
i

)
q∗ = λq∗ or Aq∗ = λq∗, (4.26)

where A is a 4 × 4 matrix, and q∗ is a 4 × 1 vector. By doing so the problem

of finding q∗ is reduced into finding the eigenvector of A that minimizes E. In

order to blend the quaternions of each pose we need to calculate the reference

quaternion for every frame, which decreases the speed of our system. Therefore,

assuming that the adjacent frames in a motion have similar orientations, we

calculate the reference quaternion only for first frame. For the rest of the frames,

the output orientation of the previous frame is used, as shown in Equation 4.27:

q∗(tn) =

{
q0∗, if n = 1

q(tn−1), else
(4.27)

where q0∗ is the reference quaternion for first frame, calculated as specified earlier.

Given q(tn−1) at frame n−1, the displacement vector vi(tn) for qi(tn) of ith motion,

where 1 ≤ i ≤ Ne and Ne number of example motion, is formulated as follows:

vi(tn) = log(q∗(tn)−1qi(tn)). (4.28)

We determine the displacement vector v(tn) for the generated motion by

blending the displacement vectors of all motions as:

v(tn) =
Ne∑
i=1

wivi(tn), (4.29)

where wi is the weight for corresponding motion, at tn. By applying the inverse

transformation at Equation 4.20, we find the blended orientation q(tn) as follows:

q(tn) = q∗(tn) exp(v(tn)). (4.30)

It should be noted that the blended orientation q(tn) will be used as the

reference orientation for frame n + 1.

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 41

Figure 4.9: The illustration of the example motions in each node and the example
transition on each edge.

4.2.4 Transition Handling

As the motion segments for each node are formed according to given parameters,

the transition motions are created. Unlike other motions, transition motions are

represented as edges, which ensures the connectivity of the graph (see Figure 4.9).

The graph walk is converted into locomotion by concatenating the motions on

the edges and the generated motions of the nodes on the graph one after another.

Transition motions are very similar to motions in the node groups. They also

have keyframes, each of which contain a posture with ground contact. However,

unlike other motions, not all of their postures with foot contact are selected as

keyframes. Transition motions, basically consists of three parts. Let Mi and Mj

be the output motions, which are generated according to user-specified parame-

ters, of the nodes Ni and Nj , respectively; and Tij be the transition motion on

the edge Eij , which connects node Ni and node Nj. Then, the three parts of

motion Tij can be described as follows:

• Part Bij is the motion segment at the beginning of transition motion that

will be blended with the motion of node Ni. The ending frame of part Bij

is fixed.

• Part Cij is the core of the transition movement, and it is not blended with

any other motion. Unlike other parts this part has exactly two keyframes

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 42

at the beginning and at the end. The frames in between may have foot

contacts, but they are not labeled as keyframes. Both the beginning and

ending frames of part Cij is fixed.

• Part Eij is the motion segment at the end of transition motion that will be

blended with the motion of node Nj . The beginning frame of part Eij is

fixed.

Given that Eij connects the nodes Ni and Nj, for constructing the transition

motion Tij, first, the beginning and ending frames of the transition should be

found. Let the frame sets Bi = [bi
s, b

i
e] and Bij = [bij

s , bij
e] be the segments of Mi

and Tij, which will be blended, respectively. These frames on the border are,

mandatorily, keyframes. With bij
e fixed, bi

e is the largest keyframe of Mi, with

f(bij
e) = f(bi

e) where function f(g) returns the foot contact type of the frame g.

Then, bij
s is the first keyframe, that f(bij

s) = f(bi
s), after a transition is scheduled.

It should be noted that f function of Bij is the time shifted version of f of Mi.

Similarly, the frame sets Ej = [ej
s, e

j
e] and Eij = [eij

s , eij
e] be the segments of

Mj and Tij, which will be blended, respectively. Again, with eij
s fixed, ej

s is the

smallest keyframe on Mj , such that f(eij
s) = f(ej

s). This time, the blending is

kept as large as possible; Therefore eij
e and ej

e are the farthest keyframes, ensuring

the keyframes at the respective intervals have the same foot contact sequences.

Figure 4.10: A transition period on the edge that connects Nodei and Nodej .

As the segments of Mi, Mj , and Tij to be blended is defined, we will define the

blending scheme we apply on B and E parts of output motion, with B and E are

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 43

as shown in Figure 4.10. For this example, there are only two motions that should

be blended; therefore, we do not need to use a data scattered interpolation based

approach for blending. A linear interpolation based blending serves the purpose.

Before applying the blending scheme, the corresponding postures should be

found. For this purpose, we use the synchronization approach described in §4.1.5.

Moreover, since the position and the rotation of a motion depend the preceding

motions on the walk, we need to transform the motion according to preceding

motions, before blending it with the previous one. For this purpose, a global posi-

tion, PG and orientation, QG, is defined. Let Mk be the motion to be concatenated

with foot position pk(t) and root orientation q0
k(t) represented as quaternion. Mk

is first rotated by QG and moved by PG before the interpolation is applied. It

should be noted that start frame of Mk is positioned at the origin and its di-

rection is aligned to x-axis. However, the transformation is applied according to

frame i where the transition blending starts. Therefore, before re-orienting the

motion we need to find the rotation,ΔQi, and position, ΔPi of frame i according

to frame 1:

ΔQi = q0
k(i) (qk(1))−1. (4.31)

ΔPi = pk(i) − pk(1). (4.32)

It should be noted that ΔPi = pk(i) since the motion is positioned at the

origin at first frame. Then the rotation, q̃0
k(t) and position p̃k(t) of the posture

at frame t after transformation can be calculated as follows.

p̃k(t) = PG + (QG) (ΔQi)
−1 (pk(t) − ΔPi) (Qi) (Q∗

G). (4.33)

q̃0
k(t) = (QG) (ΔQi)

−1 (q0
k(t)). (4.34)

Given Pi and Pij as corresponding postures at Bi and Bij, respectively, and

P̃ as the corresponding posture of part B of the output motion T̃ij . The blend p̃

of respective root positions, pi and pij , is calculated using Linear Interpolation,

that is:

p̃ = αpi + (1 − α)pij. (4.35)

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 44

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Time for Parts E or B (d
e
 , d

b
)

α

Figure 4.11: The α values for normalized time values of part B and part E: db

and de, respectively, where db = t−bstart

bend−bstart
or de = t−eend

eend−estart
.

For computing α, a sinusoidal function, as shown in Figure 4.11, is employed,

that is,

α = 0.5 + 0.5 cos

(
π

t − bstart

bend − bstart

)
, (4.36)

where bend and bstart is the global end and start frames of output segment B,

and t is the global frame number of postures Pi and Pij. In order to blend the

orientations, qi and qij , Spherical Linear Interpolation is employed:

q̃ = Slerp(qi, qij , α) =
qi sin((1 − α)θ) + qij sin(αθ)

sin(θ)
, (4.37)

where θ = arccos(qi · qij), and is the half of the angle between qi and qij .

Part E of the output motion T̃ij is formed very similarly. The position and

orientation of each frame is computed using the same equations (Equation 4.35

and 4.37). Only difference is that, the formula for computing α (see Equa-

tion 4.36) is adapted in following way:

α = 0.5 + 0.5 cos

(
π

t − estart

eend − estart

)
, (4.38)

CHAPTER 4. REAL-TIME LOCOMOTION GENERATION 45

where eend and estart is the global end and start frames of output segment E, and

t is the global frame number of postures Pj and Pij.

The core of the transition, part C, is imported into the output motion as it

is, after the transformation.

4.2.5 Input Model

As the input, the user is asked to enter a sequence of motions and their respective

parameters; e.g.,

Run {2.0, [0: (3.0, 0)], [0.7: (3.5, 60)], [1.7: (3.0, 0)]},

Walk {1.0, [0: (2.7, 30)], [0.5: (1.1, 0)},

Stop,

· · ·

The first part of each input segment defines the type of the motion, such

as Run, Walk, Stop. The first number after the curly braces is the length of

the motion on global time and it is followed by the parameter items, which

are bounded with square brackets. A parameter item consists of parameters, in

parentheses, and their timings. The transitions are handled automatically. Their

duration should also be considered, while preparing an input sequence. Another

issue is that the parameters are not applied on the exact timings given by the

user. They are only applied if there is a foot contact, otherwise they are waited

to be applied on the next foot contact. This approach should strictly be applied,

in order to preserve the physically correctness of motions according to [28].

Chapter 5

Experimental Results

5.1 Results and Evaluation

In order to test our system, we performed experiments on various aspects of the

system. First, we provide brief information about our implementation and test

platform. Then, the results for tests on subjects, such as foot positioning proce-

dure, weight calculation schemes, are provided. We also illustrate the resulting

motions with sample still frames from animations. In our experiments, we used

nineteen example motions: nine walking, nine running, and a standing motion.

The walking and running motions differ from each other in linear and angular

velocities. The skeletal model, (see Figure 4.8), consists of 62 DOFs: 6 DOF’s for

the root position and orientation, 3 DOFs for the head, 15 DOFs for the spine

and neck, 24 DOFs for the arms, and 14 DOFs for the legs. The experiments are

performed on a PC with Pentium IV 2.8 GHz CPU and 1.5 Gb memory.

In our experiments, the foot positioning approach gives feasible results most

of the time. In Figure 5.1, the displacements for the toes are demonstrated.

In general, the repositioned postures with foot contact are attached to ground

successfully. However, in some motions, the captured data had little errors on

z rotation of the posture and the minimum foot positions were unbalanced. We

tried to rotate back the posture, but it resulted in a tilted motion. Nevertheless,

46

CHAPTER 5. EXPERIMENTAL RESULTS 47

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

Frames

R
ig

ht
 F

oo
t P

os
iti

on

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

Frames

Le
ft

F
oo

t P
os

iti
on

(a)

0 20 40 60 80 100 120
−0.05

0

0.05

0.1

0.15

Frames

R
ig

ht
 F

oo
t P

os
iti

on

0 20 40 60 80 100 120

0

0.05

0.1

Frames

Le
ft

F
oo

t P
os

iti
on

(b)

Figure 5.1: The positions of left and right toes of the motions are shown with
solid line while the corrected positions are represented by dotted line: (a) the
correction on a run motion, and (b) the correction on a transition motion.

CHAPTER 5. EXPERIMENTAL RESULTS 48

these errors are relatively small and do not affect the output motion. In Figure 5.7,

the effect of foot planting error correction method is shown on an example motion.

−0.4 −0.2 0 0.2 0.4

−2.4

−2.3

−2.2

−2.1

−2

−1.9

−1.8

−1.7

X−coordinates of the Root

Z
−

co
or

di
na

te
s

of
 th

e
R

oo
t

Actual Position
Fitted Arc

Figure 5.2: A successful arc fitting of root position trajectory.The red line shows
the trajectory, while the blue line is the fitted circular arc.

We computed the linear and the angular velocity parameters, as specified

in §4.1.3. The extracted parameters of example motions are shown in Table 5.1.

In Figure 5.2, successful examples for arc fitting method for angular speed ex-

traction are shown. In our tests, it is observed that the angle extracting approach

fails if the circular motion does not have a stable angular velocity. Therefore, it

requires a database that has MoCap data which is captured with the knowledge

of latter usage. However, our database has arbitrary motions, and cleaning or

pruning processes for the motions are strictly required. In Figure 5.3, the motion

trajectories that have failed to be perceived as circular arcs are illustrated.

We also tested our weight calculation scheme. In Figure 5.4, the output weight

values vs. normalized angular velocities (wi) are shown, for linear velocity is fixed

to 3.64. In Figure 5.5, the γ values for the same parameter values are depicted.

It should be noted that in both of the figures the total weight value is always one,

moreover the weights for the incremental time update (γ) are always non-negative

which ensures the update is also non-negative. In Table 5.2, the computed weight

CHAPTER 5. EXPERIMENTAL RESULTS 49

−1 −0.8 −0.6 −0.4 −0.2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

X−coordinates of the Root

Z
−

co
or

di
na

te
s

of
 th

e
R

oo
t

Actual Pos
Fit Pos

Figure 5.3: An unsuccessful arc fitting of root position trajectory. The red line
shows the trajectory. Since the system cannot fit the trajectory to an arc, blue
line for the fitted circular arc is not drawn.

M1 M2 M3 M4 M5 M6 M7 M8 M9

Run
ω 4 5 6 55 -52 84 -67 42 -35
v 2.8 3.7 5.2 4.3 4.2 3.3 3.6 2.8 2.9

Walk
ω 4 2 7 26 -22 74 -87 42 -35
v 0.6 1.2 1.6 0.8 0.7 0.9 1.0 1.2 1.2

Table 5.1: Example motion parameters, where Mi is the ith motion, ω is the
angular velocity and v is the linear velocity.

CHAPTER 5. EXPERIMENTAL RESULTS 50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Parameters

W
ei

gh
ts

Figure 5.4: The weight values (w) vs. the normalized angular velocities. The
solid lines represent the weights for example motions and the dotted line shows
the overall sum.

M1 M2 M3 M4 M5 M6 M7 M8 M9

γ(p) 0.24 0.21 0 0.10 0.05 0.21 0.22 0.11 0.03
w(p) 0.19 0.25 0 -0.10 -0.05 0.21 0.12 0.11 0.03

Table 5.2: The posture blending weights (w) and the time update function weights
(γ) of example motions Mi for the user-specified parameter p with v = 3.4 and
ω = −30.

values (w, γ) for an arbitrary parameter p.

We tested our system for several parameters and motion sequences. In most

of the cases, we obtained motions that are capable of conforming to the given

parameters. In Figures 5.8, . . ., 5.12, some of the generated motions are depicted.

Due to the limitations on the original database example motion parameters are

not well distributed; hence, in some cases extrapolation produces unrealistic re-

sults.

In Figure 5.6, the output parameters, which are calculated using linear inter-

polation with pre-computed weights, are compared with user-specified parame-

ters. As shown in these figures, the weighting scheme produces the user-specified

parameters by blending example parameters successfully.

CHAPTER 5. EXPERIMENTAL RESULTS 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Parameter

γ

Figure 5.5: The weight values for incremental time update (γ) vs. normalized
angular velocities. The solid lines represent the weights for example motions and
the dotted line shows the overall sum.

Our incremental posture blending scheme produces smooth motions for quick

changes in parameter sequences. As seen in Figure 5.9, while the normal approach

fails to produce continuous motions, our method gives better results.

The longer motion clips are generated successfully using transition generation

method, as illustrated in Figures 5.10, 5.11, and 5.12. In the majority of our

experiments, smooth motion transitions are obtained. However, in some tran-

sitions, that have quick changes in speed, the results were not as good. In our

opinion, this is the consequence of having single motions for transitions. As a

future extension we plan on employing more than one example motion for each

edge, and using the difference between the parameters of the preceding and the

successor nodes as input parameter.

CHAPTER 5. EXPERIMENTAL RESULTS 52

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

User−specified Linear Velocity

B
le

nd
 o

f E
xa

m
pl

e
M

ot
io

n
−

 L
in

ea
r

V
el

oc
iti

es

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

User−specified Angular Velocity

B
le

nd
 o

f E
xa

m
pl

e
M

ot
io

n
−

 A
ng

ul
ar

 V
el

oc
iti

es

(b)

Figure 5.6: The user-specified parameters and the corresponding output parame-
ters generated by weighted blending the parameters of the example motions: (a)
the linear velocities are compared, with a fixed arbitrary angular velocity, (b) the
angular velocities are compared, with a fixed arbitrary linear velocity.

CHAPTER 5. EXPERIMENTAL RESULTS 53

(a)

(b)

Figure 5.7: The foot position correction is shown on an example motion: (a)
before correction, (b) after correction.

CHAPTER 5. EXPERIMENTAL RESULTS 54

(a)

(b)

Figure 5.8: Motions with different angle and speed parameters: (a) running
motion with changing speed, (b) running motion with changing speed and angle.

CHAPTER 5. EXPERIMENTAL RESULTS 55

(a)

(b)

Figure 5.9: The illustration of incremental position blending on a running motion:
(a) a motion generated with normal position blending, (b) a motion generated
with incremental position blending with the same input parameters.

CHAPTER 5. EXPERIMENTAL RESULTS 56

Figure 5.10: An example of walk-to-run transition motion, generated by our
system.

Figure 5.11: An example of run-to-stop transition motion, generated by our sys-
tem.

CHAPTER 5. EXPERIMENTAL RESULTS 57

Figure 5.12: An example of walk-to-stop transition motion, generated by our
system.

Chapter 6

Conclusion

Locomotion is one of the most frequently used actions in daily life. Therefore,

modeling of motions of this kind is very important in animating humans. In

this thesis, we proposed a system that creates locomotion according to the user-

specified parameters. The system works on real-time. Motion graphs provides

an effective way for utilizing large motion sets, hence, we registered the motions

in our dataset to a motion graph. For constructing the motion graph, several

techniques that serve the system in different aspects are employed. Moreover, a

method is proposed for using these techniques systematically. With this method,

it is easy to utilize the datasets that have low quality motions, which are poorly

categorized and not parameterized.

The proposed system consists of two stages: on-line and off-line stages. This

kind of separation increases the run-time efficiency of the system by reducing

the respective processes. Also, it is important for the comprehensibility of the

system. At off-line stage the motion graph is constructed, while at on-line stage

an output motion is generated according to user-specified parameters using the

motion graph. Unlike other approaches, the error correction is handled in off-line

stage. This increases the speed of on-line step without disturbing the expected

motion quality. At on-line stage, we used incremental posture blending. This

approach allows rapid changes in parameter space below a threshold.

58

CHAPTER 6. CONCLUSION 59

In future studies, the interface for the system can be improved. Medium level

controls such as following mouse can be implemented over the current system,

as well as some high level controls such as path planning. The system is also

expandable in parameter space. Therefore, some other parameters such as style

or terrain information can also be added.

Although the current implementation may not satisfy a professional animator

in industry due to the limited motion variety and its low level interface, we believe

that it provides basic tools and interface for researches and amateur studies.

Moreover, since it works with keyframes and is easy-to-expand, it can be easily

incorporated into other animation platforms as a locomotion generation tool.

Bibliography

[1] Y. Abe, C. K. Liu, and Z. Popović. Momentum-based parameteriza-

tion of dynamic character motion. Graphical Models (Special Issue on

ACM/Eurographics Symposium on Computer Animation 2004), 68(2):194–

211, 2006.

[2] B. Allen, B. Curless, Z. Popović, and A. Hertzmann. Learning a correlated

model of identity and pose-dependent body shape variation for real-time

synthesis. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, pages 147–156, 2006.

[3] O. Arikan, D. A. Forsyth, and J. F. O’Brien. Pushing people around. In

Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 59–66, 2005.

[4] N. I. Badler, C. B. Phillips, and B. L. Webber. Simulating Humans: Com-

puter Graphics, Animation and Control. Oxford University Press, Inc., 1993.

[5] B. Bodenheimer, C. Rose, S. Rosental, and J. Pella. The process of motion

capture: Dealing with the data. In D. Thalmann and M. van de Panne,

editors, Proceedings of the Eurographics Workshop on Computer Animation

and Simulation 97, pages 3–18, September 1997.

[6] D. C. Brogan, R. A. Metoyer, and J. K. Hodgins. Dynamically simulated

characters in virtual environments. IEEE Computer Graphics and Applica-

tions, 18(5):58–69, 1998.

60

BIBLIOGRAPHY 61

[7] A. Bruderlin and L. Williams. Motion signal processing. In ACM Computer

Graphics (Proceedings of SIGGRAPH ’95), pages 97–104, 1995.

[8] N. Burtnyk and M. Wein. Interactive skeleton techniques for enhancing

motion dynamics in key frame animation. Communications of the ACM,

19(10):564–569, 1976.

[9] K.-J. Choi and H.-S. Ko. On-line motion retargetting. In Proceedings of the

Pacific Graphics ’99, pages 32–42, 1999.

[10] M. da Silva, Y. Abe, and J. Popović. Interactive simulation of stylized human

locomotion. ACM Transactions on Graphics (Proceedings of SIGGRAPH

’08), 27(3), Article No. 82, 2008.

[11] A. C. Fang and N. S. Pollard. Efficient synthesis of physically valid human

motion. ACM Transactions on Graphics, 22(3):417–426, 2003.

[12] M. Girard and A. A. Maciejewski. Computational modeling for the com-

puter animation of legged figures. ACM Computer Graphics (Proceedings of

SIGGRAPH ’85), 19(3):263–270, 1985.

[13] F. S. Grassia. Believable Automatically Synthesized Motion by Knowledge-

enhanced Motion Transformation. PhD thesis, School of Computer Science,

Carnegie Mellon University, 2000.

[14] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović. Style-based

inverse kinematics. ACM Transactions on Graphics (Proceedings of SIG-

GRAPH ’04), 23(3):522–531, 2004.

[15] J. K. Hodgins and N. S. Pollard. Adapting simulated behaviors for new

characters. In ACM Computer Graphics (Proceedings of SIGGRAPH ’97),

pages 153–162, 1997.

[16] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. Animating

human athletics. In ACM Computer Graphics (Proceedings of SIGGRAPH

’95), pages 71–78, 1995.

BIBLIOGRAPHY 62

[17] L. Kovar and M. Gleicher. Automated extraction and parameterization of

motions in large data sets. ACM Transactions on Graphics (Proceedings of

SIGGRAPGH ’04), 23(3):559–568, 2004.

[18] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. ACM Transactions

on Graphics (Proceedings of SIGGRAPH ’02), 21(3):473–482, 2002.

[19] T. Kwon and S. Y. Shin. Motion modeling for on-line locomotion synthe-

sis. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, pages 29–38, 2005.

[20] J. Lasseter. Principles of traditional animation applied to 3d computer ani-

mation. In ACM Computer Graphics (Proceedings of SIGGRAPH ’87), pages

35–44, 1987.

[21] J. Lee and S. Y. Shin. A hierarchical approach to interactive motion editing

for human-like figures. In ACM Computer Graphics (Proceedings of SIG-

GRAPH ’99), pages 39–48, 1999.

[22] C. K. Liu and Z. Popović. Synthesis of complex dynamic character motion

from simple animations. ACM Transactions on Graphics (Proceedings of

SIGGRAPH ’02), 21(3):408–416, 2002.

[23] M. Neff and E. Fiume. Modeling tension and relaxation for computer ani-

mation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, pages 81–88, 2002.

[24] S. I. Park, H. J. Shin, and S. Y. Shin. On-line locomotion generation based

on motion blending. In Proceedings of the ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 105–111, 2002.

[25] K. Perlin. Real time responsive animation with personality. IEEE Transac-

tions on Visualization and Computer Graphics, 1(1):5–15, 1995.

[26] Z. Popović and A. Witkin. Physically based motion transformation. In ACM

Computer Graphics (Proceedings of SIGGRAPH ’99), pages 11–20, 1999.

BIBLIOGRAPHY 63

[27] C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidi-

mensional motion interpolation. IEEE Computer Graphics and Applications,

18(5):32–40, 1998.

[28] A. Safonova and J. K. Hodgins. Analyzing the physical correctness of interpo-

lated human motion. In Proceedings of the ACM SIGGRAPH / Eurographics

Symposium on Computer Animation, pages 171–180, 2005.

[29] A. Safonova and J. K. Hodgins. Construction and optimal search of in-

terpolated motion graphs. ACM Transactions on Graphics (Proceedings of

SIGGRAPH ’07), 26(3), Article No. 106, 2007.

[30] A. Safonova, J. K. Hodgins, and N. S. Pollard. Synthesizing physically re-

alistic human motion in low-dimensional, behavior-specific spaces. ACM

Transactions on Graphics (Proceedings of SIGGRAPH ’04), 23(3):514–521,

2004.

[31] H. J. Shin, J. Lee, S. Y. Shin, and M. Gleicher. Computer puppetry: An

importance-based approach. ACM Transactions on Graphics, 20(2):67–94,

2001.

[32] K. Shoemake. Animating rotation with quaternion curves. ACM Computer

Graphics (Proceedings of SIGGRAPH ’85), 19(3):245–254, 2006.

[33] P.-P. J. Sloan, I. Charles F. Rose, and M. F. Cohen. Shape by example. In

Proceedings of the Symposium on Interactive 3D Graphics (I3D ’01), pages

135–143, 2001.

[34] D. Tolani, A. Goswami, and N. I. Badler. Real-time inverse kinematics

techniques for anthropomorphic limbs. Graphical Models, 62(5):353–388,

2000.

[35] M. Unuma, K. Anjyo, and R. Takeuchi. Fourier principles for emotion-

based human figure animation. In ACM Computer Graphics (Proceedings of

SIGGRAPH ’95), pages 91–96, 1995.

BIBLIOGRAPHY 64

[36] J. Wang, S. M. Drucker, M. Agrawala, and M. F. Cohen. The cartoon ani-

mation filter. ACM Transactions on Graphics (Proceedings of SIGGRAPH

’06), 25(3):1169–1173, 2006.

[37] L. Wang and C. Chen. A combined optimization method for solving the

inverse kinematics problem of mechanical manipulators. IEEE Transactions

On Robotics and Applications, 7(4):489–499, 1991.

[38] C. Welman. Inverse Kinematics and Geometric Constraints for Articulated

Figure Manipulation. Master’s thesis, Simon Fraser University, 1993.

[39] D. J. Wiley and J. K. Hahn. Interpolation synthesis of articulated figure

motion. IEEE Computer Graphics and Applications, 17(6):39–45, 1997.

[40] D. A. Winter. Biomechanics and Motor Control of Human Movement. Wiley,

August 2004.

[41] A. Witkin and M. Kass. Spacetime constraints. In ACM Computer Graphics

(Proceedings of SIGGRAPH’88), pages 159–168, 1988.

[42] W. L. Wooten. Simulation of Leaping, Tumbling, Landing, and Balancing

Humans. PhD thesis, Georgia Institute of Technology, 1998.

[43] W. L. Wooten and J. K. Hodgins. Simulation of human diving. In Proceedings

of Graphics Interface ’95, pages 1–9, 1995.

[44] X. Zhao. Kinematic Control of Human Postures for Task Simulation. PhD

thesis, Department of Computer and Information Science, University of

Pennsylvania, 1996.

[45] V. Zordan, A. Macchietto, J. Medin, M. Soriano, C.-C. Wu, R. Metoyer, and

R. Rose. Anticipation from example. In Proceedings of the ACM Symposium

on Virtual Reality Software and Technology (VRST ’07), pages 81–84, 2007.

[46] V. B. Zordan, A. Majkowska, B. Chiu, and M. Fast. Dynamic response for

motion capture animation. ACM Transactions on Graphics (Proceedings of

SIGGRAPH ’05), 24(3):697–701, 2005.

