
QUERY PROCESSING FOR AN MPEG-7
COMPLIANT VIDEO DATABASE

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BİLKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Hayati Çam

September, 2008

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay (Co-supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ahmet Coşar

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. İbrahim Körpeoǧlu

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Dr. Cengiz Çelik

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

iii

ABSTRACT

QUERY PROCESSING FOR AN MPEG-7 COMPLIANT
VIDEO DATABASE

Hayati Çam

M.S. in Computer Engineering

Supervisors: Prof. Dr. Özgür Ulusoy and

Assoc. Prof. Dr. Uğur Güdükbay

September, 2008

Based on the recent advancements in multimedia, communication, and storage

technologies, the amount of audio-visual content stored is increased dramatically.

The need to organize and access the growing multimedia content led researchers

to develop multimedia database management systems. However, each system has

its own way of describing the multimedia content that disables interoperability

among other systems. To overcome this problem and to be able to standardize the

description of audio-visual content stored in those databases, MPEG-7 standard

has been developed by MPEG (Moving Picture Experts Group).

In this thesis, a query language and a query processor for an MPEG-7 compli-

ant video database system is proposed. The query processor consists of three main

modules: query parsing module, query execution module, and result fusion module.

The query parsing module parses the XML based query and divides it into sub-

queries. Each sub-query is then executed with related query execution module

and the final result is obtained by fusing the results of the sub-queries according

to user defined weights. The prototype video database system BilVideo v2.0,

which is formed as a result of this thesis work, supports spatio-temporal and low

level feature queries that contain any weighted combination of keyword, temporal,

spatial, trajectory, and low level visual feature (color, shape and texture) queries.

Compatibility with MPEG-7, low-level visual query support, and weighted result

fusion feature are the major factors that highly differentiate between BilVideo

v2.0 and its predecessor, BilVideo.

Keywords: MPEG-7, XML databases, video databases, multimedia databases,

query processing, content-based retrieval, video query languages.

iv

ÖZET

MPEG-7 UYUMLU VİDEO VERİTABANINDA SORGU
İŞLEME

Hayati Çam

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. Özgür Ulusoy ve

Doç. Dr. Uğur Güdükbay

Eylül, 2008

Mültimedya, iletişim ve depolama teknolojilerindeki gelişmeler sayesinde de-

polanan işitsel-görsel içerik miktarı önemli ölçüde artmıştır. Bu büyeyen

mültimedya içeriǧini düzenlemek ve içeriǧi erişilebilir hale getirmek ihtiyacı

araştırmacıları mültimedya veri tabanı sistemleri geliştirmeye yöneltmiştir.

Fakat, geliştirilen sistemlerin mültimedya içeriǧini tanımlama yollarının farklı

olması sistemlerin birlikte işlerliǧine olanak vermiyordu. Bu sorunu çözmek

ve işitsel-görsel içeriǧin tanımlanmasını standartlaştırmak için MPEG grubu

tarafından MPEG-7 standardı geliştirilmiştir.

Bu tezde, MPEG-7 uyumlu bir video veri tabanı için sorgu dili ve sorgu

işlemcisi önerilmektedir. Sorgu işlemcisi üç ana parçadan oluşmaktadır: sorgu

ayrıştırıcı, sorgu yürütücü, ve sonuç birleştirici. Sorgu ayrıştırıcı, XML tabanlı

sorguyu ayrıştırır ve alt sorgulara böler. Her bir alt sorgu ilgili sorgu yürütücü

tarafından çalıştırılır ve kullanıcı tarafından belirlenen aǧırlıklara göre alt sorgu

cevapları birleştirilerek asıl sorgu sonucu oluşturulur. Bu tez çalışması sonucunda

oluşan BilVideo v2.0 video veritabanı sistemi anahtar kelime tabanlı, yerleşimsel,

zamansal, hareket izdüşüm ve alt seviyedeki (renk, şekil ve desen) video sorgu-

larına olanak tanımaktadır. BilVideo v2.0 MPEG-7 uyumluluǧu, alt seviyedeki

sorguları desteklemesi ve aǧırlıklı sorgu birleştirmesiyle atası olan BilVideo siste-

minden ayrılmaktadır.

Anahtar sözcükler : MPEG-7, XML veritabanları, video veri tabanları,

Mültimedya veri tabanları, sorgu işleme, içerik-tabanlı veri alma, video sorgu

dilleri.

v

Acknowledgement

I would like to express my sincere gratitude to my supervisors Prof. Dr. Özgür

Ulusoy and Assoc. Prof. Dr. Uğur Güdükbay for their instructive comments,

suggestions, support and encouragement during this thesis work.

I am grateful to Assoc. Prof. Dr. Ahmet Coşar, Asst. Prof. Dr. İbrahim

Körpeoǧlu and Dr. Cengiz Çelik for reading and reviewing this thesis. Addition-

aly, I cannot forget the invaluable support of Muhammet Baştan in all phases of

this thesis work.

I would like to thank my friends Sevgi Keskin and Ülkü Tuǧba Terzi for their

caring friendship and motivation. I also would like to thank Tuǧçe Çınar for her

friendship and profound assistance. I am grateful to all of my friends who filled

my life with joy.

Above all, I owe everything to my family, who supported me in each and

every way, believed in me permanently and inspired me in all dimensions of life.

Without their everlasting love, this thesis would never be completed.

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 System Architecture . 3

1.3 Features of the System . 5

1.4 Organization of the Thesis . 6

2 Background 8

2.1 MPEG-7 . 8

2.2 XML Databases . 11

2.2.1 Native versus XML Enabled Databases 12

2.2.2 Tamino . 13

2.3 Multimedia Database Systems . 14

3 The Query Language 16

3.1 Query Statements and Types . 17

3.1.1 Keyword Query . 18

vii

CONTENTS viii

3.1.2 Temporal Query . 18

3.1.3 Spatial Query . 19

3.1.4 Trajectory Query . 20

3.1.5 Low Level Query . 22

3.1.6 Composite Query . 28

3.2 Query Samples . 30

4 Query Processing 35

4.1 Software Architecture . 35

4.2 Query Parsing . 37

4.3 Query Execution . 39

4.3.1 Keyword Query Execution 40

4.3.2 Temporal Query Execution 41

4.3.3 Spatial Query Execution 42

4.3.4 Trajectory Query Execution 43

4.3.5 Low Level Feature Query Execution 44

4.4 Result Fusion . 45

5 User Interface and System Performance 47

5.1 Visual Query Interface . 47

5.1.1 General View . 49

5.1.2 Keyword Query Interface 50

CONTENTS ix

5.1.3 Temporal Query Interface 50

5.1.4 Spatial Query Interface . 50

5.1.5 Trajectory Query Interface 53

5.1.6 Low Level Query Interface 55

5.1.7 Composite Query Interface 56

5.2 Sample Queries . 57

5.3 Performance . 61

6 Conclusion and Future Work 64

Bibliography 66

List of Figures

1.1 The system architecture of BilVideo v2.0 4

2.1 MPEG-7 descriptors and description schemes used in BilVideo v2.0 10

3.1 The spatial west relation . 20

4.1 The software architecture of the query processor 36

5.1 The architecture of visual query interface 48

5.2 The top level window of the visual query interface 49

5.3 The video table of contents . 51

5.4 The options menu: the user selects the output type of the query . 52

5.5 The keyword query interface . 52

5.6 The temporal query interface . 52

5.7 The spatial query interface . 53

5.8 The trajectory query interface . 54

5.9 The low level query interface . 55

x

LIST OF FIGURES xi

5.10 The result of the segmentation process 56

5.11 The composite query interface . 56

List of Tables

3.1 The temporal query relation types 19

3.2 The spatial query relation types 20

4.1 The maximum distances for the keyframes in TRECVID 2008 De-

velopment Data . 45

5.1 The query execution times . 62

xii

Chapter 1

Introduction

With the technological improvements achieved in the last two decades, record-

ing, playing and storing Audio-Visual (AV) data become an essential part of the

daily life. Thousands of broadcasting companies tend to produce 24 hour con-

tent everyday, the film industry produces hundreds of movies every year, and

even regular people record AV content by using their mobile phones. All of these

mean the amount of AV content made available increases in every second. To

be able to organize this tremendous valuable content and to make this available

information accessible, researchers from academic and industrial world proposed

the notions of Multimedia Database Management Systems and Content Based

Visual Information Retrieval Systems. Some database vendors extended their

traditional database management systems, which are not suitable to store mul-

timedia content, in order to support AV content storage whereas some other

companies developed special database management systems for multimedia. Un-

fortunately, the descriptions of audio and visual content stored in these databases

were completely different. To bring this chaotic situation to an end, MPEG (Mov-

ing Picture Experts Group), which is a working group of ISO/IEC responsible for

development of standards for digital audio and video, released MPEG-7 standard.

In this thesis, query processing for an MPEG-7 compliant multimedia

database management system, namely BilVideo v2.0, is introduced. BilVideo

1

CHAPTER 1. INTRODUCTION 2

v2.0 is designed to be extensible to offer a full-fledged multimedia querying ex-

perience. Currently, it is focused on querying videos, but its design enables it to

be extendible to support audio queries and image queries as well. The query pro-

cessor of BilVideo v2.0 allows user to query the videos using keyword, temporal

and spatial queries, which are conceptually based on the database system aspect.

The related results are definite. Additionally, BilVideo v2.0 supports trajectory

and low level feature (color, texture, shape) queries, where results are indefinite,

but ranked according to the distance to query. And this is the content based

retrieval aspect of BilVideo v2.0.

The query processor of BilVideo v2.0 contains three major components. The

first component is query parsing module that is used for parsing the XML based

query and dividing it into sub-queries. It is worth mentioning that BilVideo

is unique for using a simple XML based query language, which is introduced

with the influence of very complex query languages in current multimedia video

databases. After parsing, each sub-query is sent to the related query execution

module (e.g., temporal query is sent to temporal query execution module), which

forms the second major component of the query processor. The query execu-

tion module performs XQuery on MPEG-7 compliant XML files and used for

generating the results. The results from each sub-query is finally combined in

third component named result fusion module. The query processor works in a

client-server architecture, and is a distributable component of BilVideo v2.0 video

database.

1.1 Motivation

To keep pace with advancements in multimedia databases, Multimedia Database

Group (MDG) of Bilkent University developed a video database management

system which is introduced in [6, 7, 8], named BilVideo. BilVideo supports spatio-

temporal queries along with trajectory and semantic queries. It introduces a

SQL-like query language to support these types of queries. Additionally, it has

its own way of storing descriptions about the videos. The description of each

CHAPTER 1. INTRODUCTION 3

video is stored in a relational database management system and the inter-object

relations of objects in the videos are stored in a knowledge-base. The query

results are combinations of SQL query results from the relational database and

rule based query results from the knowledge-base.

In fact, with its impressive results BilVideo is an advanced system. However,

it needs to be improved for the following reasons. Firstly, its way of storing

description of video is not compatible with any standard. The knowledge-base

and relational database table structure are specific to BilVideo. Moreover, the

implementation, and thus, the maintenance of the system, is complicated because

of the use of several programming languages such as C++, Java, Prolog.

To overcome the problems explained above, BilVideo v2.0 is proposed. It is

designed to use standard MPEG-7 schemes to store data in order to solve the

interoperability problem that its predecessor had faced. To store the description

data which are MPEG-7 schema compliant XML files, it makes use of an industrial

XML database management system, called Tamino, which is used for storing

and querying large XML collections. This also saves overhead of maintaining

two different storage environments: Relational database management system and

fact-base. Low level query (i.e., color, shape, texture) support is introduced to

make it a full-fledged video database. In addition, the programming environment

is unified by using only C++.

1.2 System Architecture

BilVideo v2.0 has a distributable, extensible and scalable architecture that the-

oretically allows it to be used either by end-users in personal computers or by

broadcasting companies or even as a database for video search engines in the

Internet.

The main building blocks of the system are:

CHAPTER 1. INTRODUCTION 4

Figure 1.1: The system architecture of BilVideo v2.0

Automatic Video Annotator: Parses the input video and extracts low level fea-

tures. Additionally, segments the image and helps the user to easily label

the objects in the video. The output of this component is an MPEG-7

compliant XML file that is to be stored in the native XML database. The

processed video is also sent to the raw video database.

Visual Query Interface: It is the query interface prepared to query the video

database. It enables the user to perform

• keyword queries,

• temporal queries by keywords,

• temporal queries by sketch,

• spatial queries by keywords,

• spatial queries by sketch,

• trajectory queries,

• low level queries, and

CHAPTER 1. INTRODUCTION 5

• composite queries (which is any combination of above mentioned

queries).

Query Processor: Query processor parses the query from visual query interface

or from any source that is compatible with BilVideo query language. It

processes the query and sends the result back to the requesting client.

Native XML Database: Native XML database is the logical storage unit where

the XML files are stored. In current version, it is Software AG Tamino XML

Database. However, it could be replaced by any native XML database that

supports standard XQUERY language.

Raw Video Database: It is the physical file system location where the video files

are stored. In distributed deployment scenario, raw video database location

should be accessible by visual query interface by either network mapping

or by web server installation.

1.3 Features of the System

BilVideo v2.0 is planned to be a full-fledged multimedia database management

system. The visual part of the videos are supported in the current version. The

features of the current version are as follows:

• compatibility with MPEG-7,

• spatio-temporal and object appearance query support,

• motion trajectory query support,

• the low level query support,

• video table of contents, and

• result fusion by user-specified weights.

The low level queries support the following feature descriptors:

CHAPTER 1. INTRODUCTION 6

1. Color features:

• dominant color(s),

• scalable color,

• color layout,

• color-structure, and

• GoF/GoP color.

2. Texture features:

• homogeneous texture,

• texture browsing, and

• edge histogram.

3. Shape features:

• region shape and

• contour shape.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows:

• Chapter 2 gives an overview of MPEG-7 and explains the aspects of MPEG-

7 scheme used in this work in detail. Then, it continues with a brief overview

of XML databases and ends with the review of the research in the literature

that is related to our work.

• Chapter 3 explains the query language used in BilVideo v2.0 and provides

example queries of each type of query supported by the system.

• Chapter 4 presents the query processor developed for BilVideo v2.0. The

architecture of query processor and its components are detailed in this chap-

ter.

CHAPTER 1. INTRODUCTION 7

• Chapter 5 presents the visual query interface of BilVideo v2.0 and provides

some performance results about BilVideo v2.0

• Chapter 6 states the conclusions of the thesis and gives a general perspective

of the possible future work.

Chapter 2

Background

2.1 MPEG-7

MPEG-7 (Multimedia Content Description Interface) is an ISO/IEC standard

developed by MPEG (Moving Picture Experts Group) for describing the multi-

media content data. MPEG-7 does not target any specific application, rather the

aim of this standardization is to support as many application areas as possible.

The scope of MPEG-7 is the description of multimedia content data, which

differs it from other standards that are developed by MPEG, such as MPEG-1,

MPEG-2, and MPEG-4. MPEG-7 standard consists of the following elements

[15]:

Description Tools :

1. Descriptors (D): The element that defines the features supported by

the standard.

2. Descriptor Schemes (DS): The element that defines the relationship

among features and other descriptor schemes.

8

CHAPTER 2. BACKGROUND 9

Description Definition Language (DDL): The syntax that is used to define ex-

isting descriptors and descriptor schemes. Additionally, DDL allows gener-

ation of new descriptors and descriptor schemes.

System Tools: The tools that defines the optimized ways of storing and trans-

mitting MPEG-7 content.

To supply a better understanding of the elements of the standard, the following

example can be given. The color layout is a descriptor in MPEG-7. On the other

hand, the moving region is a descriptor scheme that may contain color layout

descriptor and a still region descriptor scheme, which may contain additional

descriptors. DDL can be used to define a new descriptor that can be contained

in still region descriptor scheme. Finally, if you want to transfer the MPEG-7

content to another computer after creation, you can use the system tools that

define how to binarize the data to improve transfer performance.

MPEG-7 allows the description of various aspects of the multimedia content.

For instance, creation date, director, encoding, colors, textures, melodies, objects,

events, interactions of objects, regions, motion tracking information and a lot

more data about a video can be kept in a single content description data file.

BilVideo v2.0 currently deals with only the visual part of MPEG-7, which

contains color, texture, shape information, objects and their spatio-temporal re-

lations, and trajectories of objects in a video segment. To store and query these

kind of information, BilVideo v2.0 makes use of the descriptors and description

schemes which are detailed in the following.

In Figure 2.1, it can be observed that BilVideo v2.0 deals with only the video

part of the standard. The figure also depicts the recursive structure allowed

in MPEG-7. According to the figure, the videos are divided into shorter video

segments, named shots. A shot is a single piece of video without cuts. After

obtaining shots, each shot is again divided into key-segments and moving regions.

A key-segment is a piece of shot, whose boundary is detemined by the introduction

of a new object to the frame or by the exit of an existing object from the frame.

CHAPTER 2. BACKGROUND 10

Figure 2.1: MPEG-7 descriptors and description schemes used in BilVideo v2.0

CHAPTER 2. BACKGROUND 11

There are visual descriptors that are used in moving regions, still regions or key-

segments. The visual descriptors used in MPEG-7 are as follows:

1. Color descriptors:

• dominant color (supported),

• scalable color (supported),

• color layout (supported),

• color-structure (supported), and

• GoF/GoP color (not supported).

2. Texture descriptors:

• homogeneous texture (supported),

• texture browsing (not supported), and

• edge histogram (supported).

3. Shape descriptors:

• region shape (supported),

• contour shape (supported), and

• shape 3D (not supported).

2.2 XML Databases

XML (eXtensible Markup Language) is a markup language, which is a W3C

recommendation, to generate custom markup languages [24]. It does nothing

for the presentation of the data; the main goal of its design is to carry data.

XML simplifies data sharing and data transportation. Sometimes, it is required

to store XML-formatted data in a repository, which allows easy retrieval and

manipulation of data. For this purpose, XML databases are proposed. XML

databases are repositories or databases that support the storage of XML files

CHAPTER 2. BACKGROUND 12

in a data-centric or document-centric way. The databases that store XML data

in data-centric way are called XML-enabled databases. On the other hand, the

databases that store the XML data in a document-centric way are called Native

XML Databases (NXD).

2.2.1 Native versus XML Enabled Databases

Conceptually, there are two different ways to store XML documents in a database.

The first way is to map the data model of XML Document to a database model

and convert XML data according to this mapping. The other way is to map

XML model into a fixed set of persistent structures, which can store any XML

document. Databases that support the former method are called XML-enabled

databases whereas databases that support the latter method are called native

XML databases. XML-enabled databases map instances of the XML data model

to instances of their own data model (relational, hierarchical, object-oriented,

etc.). On the contrary, native XML databases use the XML data model di-

rectly [16].

The advantages of the native XML databases in comparison with the XML-

enabled databases are as follows:

• Native XML databases do not require user to know XML document schema

in advance. A native XML data store is able to store and retrieve any well-

formed XML document, even if schema information of the document is not

available. An XML-enabled database, however, needs schema definitions

for each table, so a document with an unknown tag would require a change

request for a new schema definition, to be built and approved before it can

be put into production.

• Native XML databases support data models that do not fit into other mod-

els (relational, hierarchical, object-oriented). Relational database manage-

ment systems may appear to be a possible choice to facilitate the exchange

of XML objects. However, the table-based data model of the XML enabled

CHAPTER 2. BACKGROUND 13

database does not suit the hierarchical and interconnected nature of XML

objects.

• Native XML databases provide extensibility. On the other hand, XML-

enabled relational databases and more advanced databases, such as multi-

dimensional relational databases or object-oriented databases, cannot han-

dle data with dynamic structure, which is the key to the extensibility of

XML.

• Native XML databases do not suffer from the cost of mapping, which is

a problem faced in XML-enabled databases. Storing XML data natively

has an enormous advantage in comparison to the XML-enabled relational

databases, because no extra data conversion layer is required as, for ex-

ample, needed for XML-enabled relational databases and the document

structure is kept intact.

• Native XML databases process queries faster. An XML-enabled relational

database would need to break an XML document down into a multitude

of interrelated tables. A query against this database would result in many

relational retrieval and join operations, requiring high processing power to

overcome a considerable degradation of performance.

2.2.2 Tamino

For the reasons listed above, a native XML database, named Tamino, is used

to store MPEG-7 XML descriptions of video content in BilVideo v2.0 system.

Tamino XML Server is able to work on both Linux and Windows environ-

ments [20]. It is a high performance data management platform based on XML

standards, which is developed by Software AG and is built to:

• efficiently store XML documents natively, that is in their original format,

• store non-XML documents such as Microsoft Office documents or PDF files,

CHAPTER 2. BACKGROUND 14

• expose information residing in various external XML or non-XML sources

(legacy data) or applications to the outside world in XML format, and

• to search effectively on the information Tamino has access to.

Tamino supports XQuery [25] as well as X-Query [20] which is a language

specific to Tamino database and easier to write for simple queries. However, we

used only XQuery to be compatible with other XML databases.

2.3 Multimedia Database Systems

Multimedia database systems and content based retrieval systems are developed

in a variety of researches. In this section, the works on multimedia database

systems and MPEG-7 compliant multimedia database systems are mentioned.

One of the most important works in the area is the Informedia Digital Video

Understanding Research Project [3, 4, 9]. The project combines several aspects of

multimedia such as speech recognition, image understanding and natural language

processing to segment and index videos. However, the output is not compatible

with MPEG-7. The Informedia II project, which is under development, is planned

to support MPEG-7.

Another notable system, VideoQ [2], uses the animated sketch paradigm to

query its database. It allows the users to draw sketches and query the database

according to the given sketch. The system allows to query along the database

according to the following attributes: motion, spatio-temporal ordering, shape,

color and texture. The results of the query are presented using a web-interface,

which is implemented using the Java applet technology. The drawback about the

system is that it has separate feature databases for each feature that is supported.

Like Informedia, it does not make use of MPEG-7 standard to keep the features.

MARS (Multimedia Analysis and Retrieval System) [10] project brings to-

gether the research efforts in computer vision, compression, information manage-

ment and database management to develop a multimedia database management

CHAPTER 2. BACKGROUND 15

system. The system supported keyword queries, color, color layout, shape and

texture queries. The system makes use of POSTGRES database [21], which is an

object relational database.

BilVideo is also a video database system that has no MPEG7 support [6, 7, 8].

BilVideo supports spatio-temporal queries along with trajectory and semantic

queries. The query can be sent to the system using a SQL-like query language.

In BilVideo, the description of each video is stored in a relational database man-

agement system and the spatio-temporal relations between objects in the videos

are stored in a knowledge-base. The query results are combinations of SQL

query results from the relational database and rule based query results from the

knowledge-base.

After the release of MPEG-7, while some researchers stick to their video de-

scriptions, some others have started to migrate their system to be compatible

with the new standard. VIRS [13] is one of the projects, that makes use of the

new standard. The goal of the project was to automatically extract visual de-

scriptors of MPEG-7 without human interaction, and allow the users to query the

videos using Query-By-Example or Query-By-Drawing. The database does not

contain any annotation, therefore it does not have the ability to allow temporal,

spatio-temporal and keyword queries.

MPEG-7 MMDB [5] is another multimedia database that supports MPEG-7.

The system makes use of Oracle Database with XML extensions. It has mapping

rules to map the XML schema of MPEG-7 to the Oracle database tables. The

system only supports image retrieval and audio querying. It does not have any

support for videos.

When compared to the existing multimedia databases, the innovative parts

of BilVideo v2.0 are (i) the description model relying on XML-based MPEG-

7 standard, (ii) a new query language, (iii) the query processor for MPEG-7,

and (iv) supporting composite queries, which are any combination of keyword,

temporal, spatial, trajectory, or low level feature queries.

Chapter 3

The Query Language

Unlike relational databases, multimedia databases store multimedia content along

with textual data. Hence, they require different data models and query structures.

Generally, the multimedia databases store multimedia content in the file system

and store the description of these files in one of the following ways:

• in a relational database,

• in a relational database that has XML extension,

• in the file system as text files,

• in the file system as XML files, or

• in a native XML database.

BilVideo v2.0 makes use of a native XML database, while its predecessor

uses a relational approach. No matter what strategy is chosen, each multimedia

database has its own query language. Because specifying SQL queries for an

MM-DBMS that makes use of a relational database, or writing XQuery for an

MM-DBMS that makes use of an XML database is very difficult, and requires

advanced knowledge of the database design and the query language. For instance,

BilVideo introduced its own SQL-like query language. We have not used the same

16

CHAPTER 3. THE QUERY LANGUAGE 17

query language because low level queries are difficult to describe in an SQL-like

fashion. Since we are using XML files as the description data format, we decided

to use XML-structured queries. In this way, we developed human and machine

readable simple XML constructs and used them as query statements.

The following is a sample query statement to query videos where “Blair ap-

pears before Clinton”:

<BilVideoQuery outputType = "Video">

<TemporalQuery type="before">

<Object1>Blair</Object1>

<Object2>Clinton</Object2>

</TemporalQuery>

</BilVideoQuery>

3.1 Query Statements and Types

All BilVideo v2.0 query statements start with <BilVideoQuery> tag. As an

attribute, you can choose the output type of the query when possible by specifying

a value for outputType attribute. The possible values for the output type are:

• Video

• Shot

• Key-segment

By specifying the output type, you mean “Return the videos [shots, key-

segments] where the condition is satisfied”.

Then, one or more query type elements are followed by element name

according to the query types. The possible query types embedded inside

<BilVideoQuery> are:

CHAPTER 3. THE QUERY LANGUAGE 18

• <KeywordQuery>

• <TemporalQuery>

• <SpatialQuery>

• <TrajectoryQuery>

• <LowLevelQuery>

In the following sub-sections, each query type, its related syntax, and some sample

queries along with their meanings are described.

3.1.1 Keyword Query

Keyword query is used for searching object appearance in videos, shots or key-

segments. It allows users to query for an object and a group of objects by using

grouping words (and, or). Its syntax is as follows:

<BilVideoQuery outputType = "[output_type]">

<KeywordQuery>

<FreeText>[keyword_search_text]</FreeText>

</KeywordQuery>

</BilVideoQuery>

The keyword search text is composed of any keyword, grouping symbols (i.e.,

“(”, “)”) and search reserved words (“and”, “or”).

3.1.2 Temporal Query

Temporal query is used to search objects according to temporal properties of

object appearances in videos, shots or key-segments. It allows user to specify two

objects and their temporal relation. Temporal relation types that are supported

CHAPTER 3. THE QUERY LANGUAGE 19

by BilVideo v2.0 are given in Table 3.1. The syntax of the temporal query is as

follows:

<BilVideoQuery outputType = "[output_type]">

<TemporalQuery type="[temporal_relation_type]">

<Object1>[name_of_first_object]</Object1>

<Object2>[name_of_second_object]</Object2>

</TemporalQuery>

</BilVideoQuery>

Type Meaning
Before The first object appears before the second object
After The first object appears after the second object
Equal The first object and the second object appear at the same time

and disappear at the same time
NotEqual The first object and the second object do not appear

at the same time
During The first object appears while the second object is appearing
Contains The second object appears while the first object is appearing
Overlaps The first object appears, the second object appears,

the first object disappears a little bit later
OverlappedBy The second object appears, the first object appears,

the second object disappears a little bit later
Meets The second object appears. Then, the first object appears,
MetBy The first object appears. Then, the second object appears
Starts The first object and the second object appear at the same time
Finishes The first object and the second object disappear at the same time

Table 3.1: The temporal query relation types

3.1.3 Spatial Query

Spatial query is used to search objects according to spatial locations of object

in frames. It allows user to specify two objects and their spatial relation. In

Figure 3.1, the spatial west relation is shown. The light gray object is assumed

to be on the west of dark gray object according to our algorithms. Spatial relation

types that are supported by BilVideo v2.0 are given in Table 3.2. The syntax of

the spatial query is as follows:

CHAPTER 3. THE QUERY LANGUAGE 20

Figure 3.1: The spatial west relation

<BilVideoQuery outputType = "[output_type]">

<SpatialQuery type="[spatial_relation_type]">

<Object1>[name_of_first_object]</Object1>

<Object2>[name_of_second_object]</Object2>

</SpatialQuery>

</BilVideoQuery>

Type Meaning
West The first object is on the west of the second
East The first object is on the east of the second
North The first object is on the north of the second
South The first object is on the the south of the second
NorthWest The first object is on the north west of the second
NorthEast The first object is on the north east of the second
SouthWest The first object is on the south west of the second
SouthEast The first object is on the south east of the second
Left The first object is on the left of the second
Right The first object is on the right of the second
Below The first object is below the second
Above The first object is above the second

Table 3.2: The spatial query relation types

3.1.4 Trajectory Query

Trajectory query is used to search object trajectories. It allows user to specify

trajectory and to retrieve videos, shots or key-segments where an object moves

in a similar trajectory. The syntax of the trajectory query is as follows:

CHAPTER 3. THE QUERY LANGUAGE 21

<BilVideoQuery outputType="[output_type]">

<TrajectoryQuery>

<Params>

<KeyTimePoint>

<MediaRelIncrTimePoint>[t0]</MediaRelIncrTimePoint>

<MediaRelIncrTimePoint>[t1]</MediaRelIncrTimePoint>

<MediaRelIncrTimePoint>[t2]</MediaRelIncrTimePoint>

<MediaRelIncrTimePoint>[t3]</MediaRelIncrTimePoint>

</KeyTimePoint>

<InterpolationFunctions>

<KeyValue>[x0]</KeyValue>

<KeyValue>[y0]</KeyValue>

<KeyValue>[x1]</KeyValue>

<KeyValue>[y1]</KeyValue>

<KeyValue>[x2]</KeyValue>

<KeyValue>[y2]</KeyValue>

<KeyValue>[x3]</KeyValue>

<KeyValue>[y3]</KeyValue>

</InterpolationFunctions>

</Params>

</TrajectoryQuery>

</BilVideoQuery>

Trajectory query specification is more complicated because it uses an XML

structure similar to the MPEG-7 schema. In this way, the parsing of the query

and the parsing of the values stored in the database are unified. Here, for each

<MediaRelIncrTimePoint>, we have two <KeyValue>s. [x0] and [y0] give the

position of the object at [t0].

CHAPTER 3. THE QUERY LANGUAGE 22

3.1.5 Low Level Query

Low level query is used to search frames or objects in frames according to their

color, shape or texture. It allows user to specify low level feature values and to re-

trieve videos, shots or key-segments that are similar to query feature values. Low

level queries use a similar XML structure with MPEG-7 schema, like trajectory

query. The syntax of the low level query is as follows:

<BilVideoQuery outputType="[output_type]">

<LowLevelQuery searchIn = "[Search_In_Type]"

weight="[Low_Level_Feature_Query_Weight]">

...

</LowLevelQuery>

</BilVideoQuery>

In a low level query, we encounter two new attributes. The first one, named

SearchIn, is used for specifying where to search the queried feature. The possible

values are:

• whole frame: search this feature in a frame in the database,

• still region: search this feature in a still region in the database,

• moving region: search this feature in a moving region in the database, and

• shot: search this feature in a shot in the database.

The second attribute, named weight, is the weight of this low level feature

among other low level features. The “...” part is different for each low level

feature descriptor.

Since the low level feature queries use the low level feature descriptors, they

are far from being human-readable. These queries are generated by Visual Query

CHAPTER 3. THE QUERY LANGUAGE 23

Interface, so the user does not need to understand how the values are obtained.

The samples below are provided to give an idea about the syntax of each type.

Dominant Color Feature Query : Dominant Color Descriptor (DCD) gives the

distribution of salient colors in an image or image part. DCD provides an effective,

compact and intuitive representation of colors in a region of interest [14]. DCD

makes use of two other MPEG-7 color descriptors: Color Space Descriptor for

specifying the used color space and Color Quantization Descriptor for specifying

the used color quantization. DCD stores the representative (dominant) colors,

their percentages, the optional color variances for each dominant color, and the

optional spatial coherency of the dominant colors [23].

<BilVideoQuery outputType="[output_type]">

<LowLevelQuery searchIn = "[Search_In_Type]" >

<VisualDescriptor xsi:type="DominantColorType">

<ColorSpacetype="RGB"/>

<ColorQuantization>

<Component>R</Component>

<NumOfBins>8</NumOfBins>

<Component>G</Component>

<NumOfBins>8</NumOfBins>

<Component>B</Component>

<NumOfBins>8</NumOfBins>

</ColorQuantization>

<SpatialCoherency>23</SpatialCoherency>

<Value>

<Percentage>18</Percentage>

<Index>255 255 255</Index>

<ColorVariance>1 1 1</ColorVariance>

</Value>

</VisualDescriptor>

</LowLevelQuery>

</BilVideoQuery>

CHAPTER 3. THE QUERY LANGUAGE 24

Scalable Color Feature Query : Scalable Color Descriptor (SCD) gives the distri-

bution of colors of an image or image part in HSV (Hue-Saturation-Value) color

space. SCD is basically a color histogram encoded by a Haar transform. It uses

the HSV colors space uniformly quantized to 255 bins [18]. The binary represen-

tation of SCD is scalable in terms of bin numbers. SCD stores the coefficients

values of the histogram.

<BilVideoQuery outputType="[output_type]">

<LowLevelQuery searchIn = "[Search_In_Type]">

<VisualDescriptor numOfBitplanesDiscarded="0" numOfCoeff="128"

xsi:type="ScalableColorType">

<Coeff>-58 14 -88 40 -7 -1 9 27 -15 -9 3 18 11 7 14 22 7 -6

-3 3 15 -3 0 1 14 0 1 0 15 4 1 -4 -2 3 -1 1 1 2 2 4 0 0 -3

3 1 2 4 4 0 -3 -3 -1 -1 1 3 0 0 -15 -1 -2 1 0 -3 -3 -1 1 0

0 0 -1 0 1 0 0 4 1 2 2 2 2 -2 1 -3 -3 -1 -3 0 -1 2 1 0 1 3

3 2 0 -1 3 -1 -2 -1 0 2 2 2 -7 1 1 3 3 1 0 -1 -2 0 1 0 0 1

0 1 1 1 0 1 0 -1 1</Coeff>

</VisualDescriptor>

</LowLevelQuery>

</BilVideoQuery>

Color Layout Feature Query : Color Layout Descriptor (CLD) specifies the spa-

tial distribution of colors of an image. CLD is obtained in four steps [12]: (i)

partition of image into 64 blocks, (ii) dominant color selection, (iii) Discrete Co-

sine Transform (DCT), and (iv) non-linear quantization of the zig-zag scanned

DCT coefficients. CLD is suitable for the comparison of images in different scales

because the distribution of colors does not change after rescaling.

<BilVideoQuery outputType="[output_type]">

<LowLevelQuery searchIn = "[Search_In_Type]">

<VisualDescriptor xsi:type="ColorLayoutType">

<YDCCoeff>23</YDCCoeff>

<CbDCCoeff>28</CbDCCoeff>

CHAPTER 3. THE QUERY LANGUAGE 25

<CrDCCoeff>32</CrDCCoeff>

<YACCoeff5>9 10 15 22 12</YACCoeff5>

<CbACCoeff2>6 14</CbACCoeff2>

<CrACCoeff2>18 22</CrACCoeff2>

</VisualDescriptor>

</LowLevelQuery>

</BilVideoQuery>

Color Structure Feature Query : Color Structure Descriptor (CSD) is used to

express local color features in images [18]. CSD is obtained by scanning the

image with an 8x8 block in a sliding window approach. With each shift of the

structuring element, the number of times a particular color is contained in the

structure element is counted, and a color histogram is constructed in this way.

<BilVideoQuery outputType="[output_type]">

<LowLevelQuery searchIn = "[Search_In_Type]">

<VisualDescriptor colorQuant="2" xsi:type="ColorStructureType">

<Values>0 85 2 0 0 0 0 0 0 0 255 69 12 8 0 0 0 0 0 0 0 0 0 0

84 89 46 16 37 36 22 2 6 16 6 0 3 2 2 0 50 43 14 7 45 37 22 2

24 25 12 4 5 7 2 0 27 34 38 16 7 7 2 2</Values>

</VisualDescriptor>

</LowLevelQuery>

</BilVideoQuery>

GoF/GoP Color Feature Query : Group-of-Frames/Group-of-Pictures Color De-

scriptor (GoF/GoP CD) defines a structure for color features representation of

a collection of pictures or video frames by means of the SCD. It consists of the

average, median, and intersection histograms of groups of frames, which are cal-

culated based on the individual frame histograms [18].

<BilVideoQuery outputType="[output_type]">

<LowLevelQuery searchIn = "[Search_In_Type]">

<VisualDescriptor aggregation="Average" xsi:type="GoFGoPColorType">

CHAPTER 3. THE QUERY LANGUAGE 26

<ScalableColor numOfBitplanesDiscarded="0" numOfCoeff="256">

<Coeff>255 -50 -127 -11 -12 -24 -15 11 -31 -39 -9 -5 -12

-10 -20 19 7 -13 -2 4 15 -11 1 6 15 -7 1 1 15 2 1 -4 -3 3

1 4 3 1 0 -1 -4 -1 -6 0 0 -4 4 -1 -1 -3 -8 -3 2 0 2 -2 0

-15 -3 -2 1 0 -3 -3 -1 1 2 -2 -1 -1 -2 1 -1 2 5 0 3 2 2 1

-1 1 -3 -4 -1 -3 -4 -2 -1 -2 -2 1 1 3 2 0 -1 3 2 -4 -3 -1

1 2 2 -7 -1 1 3 3 1 0 -4 0 -2 -1 -3 -7 1 0 1 -2 1 0 1 0 -1

1 -1 0 0 0 0 0 0 0 1 1 -3 0 1 -1 0 0 1 1 -3 -1 1 -1 1 0 1

0 0 -1 0 -3 1 3 1 1 -1 1 1 0 -1 0 2 0 -3 -1 1 -2 0 0 1 1

-3 -1 0 0 1 -2 0 3 -1 0 0 0 1 -1 0 1 0 0 1 -2 -1 1 1 1 -3

-2 1 -1 1 0 0 1 -2 -1 0 1 1 -2 0 3 0 0 0 1 0 -1 -1 -1 0 0

3 -3 0 -1 1 -1 0 0 1 0 0 -1 0 1 0 0 0 1 0 -1 0 2 0 0 0 1

0 1</Coeff>

</ScalableColor>

</VisualDescriptor>

</LowLevelQuery>

</BilVideoQuery>

Homogeneous Texture Feature Query : Homogeneous Texture Descriptor (HTD)

characterizes the region texture using the energy and energy deviation values

of the Fourier transform of the image. HTD vectors are made up of an image

intensity mean, a standard deviation, 30 energy values and 30 energy deviations.

For further details about the extraction of the vectors, see [17].

<BilVideoQuery outputType="[output_type]">

<LowLevelQuery searchIn = "[Search_In_Type]">

<VisualDescriptor xsi:type="HomogeneousTextureType">

<Average>123</Average>

<StandardDeviation>91</StandardDeviation>

<Energy>179 198 200 202 193 192 210 188 174 190 162 151 198

174 135 170 125 147 151 136 118 167 121 95 158 95 77 139 81

61</Energy>

<EnergyDeviation>176 197 204 200 198 193 200 180 173 190 152

CHAPTER 3. THE QUERY LANGUAGE 27

142 188 169 120 159 109 142 145 117 111 156 114 88 161 82 58

140 56 50</EnergyDeviation>

</VisualDescriptor>

</LowLevelQuery>

</BilVideoQuery>

Edge Histogram Feature Query : Edge Histogram Descriptor (EHD) is the most

commonly used structure to represent any global feature composition of an image.

It is invariant to image translation and rotation, and normalizing the histogram

leads to scale invariance [22]. EHD captures spatial distribution of edges, like

color layout descriptor. After partition of image into 16 non-overlapping blocks

of equal size, edge information is calculated for each block in five edge categories:

(i) vertical, (ii) horizontal, (iii) 45◦, (iv) 135◦, and nondirectional edge [18].

<BilVideoQuery outputType="[output_type]">

<LowLevelQuery searchIn = "[Search_In_Type]">

<VisualDescriptor xsi:type="EdgeHistogramType">

<BinCounts>2 3 0 0 1 1 4 5 3 4 1 4 2 0 2 3 3 1 0 2 2 1 1 0

0 6 0 0 1 3 0 1 0 0 0 2 0 2 0 0 3 1 0 0 1 4 1 6 1 5 0 2 0

2 0 2 1 0 1 0 1 6 0 3 2 0 4 0 4 5 0 3 0 0 2 1 1 0 0 0

</BinCounts>

</VisualDescriptor>

</LowLevelQuery>

</BilVideoQuery>

Region Shape Feature Query : Region Shape Descriptor expresses pixel distri-

butions withnin a 2-D object or region [15]. It employs a 2-D Angular Radial

Transformation (ART), which is defined on a unit disk. For further information

about the region shape descriptor used in MPEG-7, see [1].

<BilVideoQuery outputType="[output_type]">

<LowLevelQuery searchIn = "[Search_In_Type]">

<VisualDescriptor xsi:type="RegionShapeType">

CHAPTER 3. THE QUERY LANGUAGE 28

<MagnitudeOfART>3 5 2 5 6 2 5 3 6 2 3 4 5 6 2 3 3 5 3 2 2

5 6 2 3 6 2 3 5 3 6 2 3 5 2</MagnitudeOfART>

</VisualDescriptor>

</LowLevelQuery>

</BilVideoQuery>

Contour Shape Feature Query : Contour Shape Descriptor expresses object out-

line (contour) shape properties. The objects for which the characteristic shape

features are contained in the contour are efficiently described by the contour

shape descriptor [1]. Contour Shape Descriptor is robust to noise, scale, and

orientation. For details about this descriptor, see [1].

<BilVideoQuery outputType="[output_type]">

<LowLevelQuery searchIn = "[Search_In_Type]">

<VisualDescriptor xsi:type="ContourShapeType">

<GlobalCurvature>27 4</GlobalCurvature>

<PrototypeCurvature>3 11</PrototypeCurvature>

<HighestPeakY>56</HighestPeakY>

<Peak peakX="16" peakY="2"/>

<Peak peakX="4" peakY="2"/>

<Peak peakX="56" peakY="5"/>

</VisualDescriptor>

</LowLevelQuery>

</BilVideoQuery>

3.1.6 Composite Query

BilVideo v2.0 has another important query type, named composite query. Com-

posite queries allow the user to enter any number of above mentioned queries in

any order and query the database. For composite queries, the user needs to de-

cide the weights that will be used when merging the query results from all types.

The syntax of the composite query is as follows:

CHAPTER 3. THE QUERY LANGUAGE 29

<BilVideoQuery outputType = "[output_type]"

keywordQWeight="[weight]" temporalQWeight="[weight]"

spatialQWeight="[weight]" trajectoryQWeight="[weight]"

lowLevelQWeight="[weight]">

<KeywordQuery>

<FreeText>[keyword_search_text]</FreeText>

</KeywordQuery>

<TemporalQuery type="[temporal_relation_type]">

<Object1>[name_of_first_object]</Object1>

<Object2>[name_of_second_object]</Object2>

</TemporalQuery>

<SpatialQuery type="[spatial_relation_type]">

<Object1>[name_of_first_object]</Object1>

<Object2>[name_of_second_object]</Object2>

</SpatialQuery>

<LowLevelQuery searchIn = "[Search_In_Type]"

weight="[Low_Level_Feature_Query_Weight]">

...

</LowLevelQuery>

<TrajectoryQuery>

<Params>

<KeyTimePoint>

<MediaRelIncrTimePoint>[t0]</MediaRelIncrTimePoint>

<MediaRelIncrTimePoint>[t1]</MediaRelIncrTimePoint>

<MediaRelIncrTimePoint>[t2]</MediaRelIncrTimePoint>

<MediaRelIncrTimePoint>[t3]</MediaRelIncrTimePoint>

</KeyTimePoint>

<InterpolationFunctions>

<KeyValue>[x0]</KeyValue>

<KeyValue>[y0]</KeyValue>

<KeyValue>[x1]</KeyValue>

<KeyValue>[y1]</KeyValue>

<KeyValue>[x2]</KeyValue>

CHAPTER 3. THE QUERY LANGUAGE 30

<KeyValue>[y2]</KeyValue>

<KeyValue>[x3]</KeyValue>

<KeyValue>[y3]</KeyValue>

</InterpolationFunctions>

</Params>

</TrajectoryQuery>

</BilVideoQuery>

Each query type may exist 0 or more times in a composite query. Note

that lowLevelQueryWeight is not the same as the weight in <LowLevelQuery>

element. lowLevelQueryWeight in <BilVideoQuery> is the weight of the low

level query among the other query types (i.e., keyword, temporal, etc.). On the

other hand, the weight in <LowLevelQuery> is the weight of that feature among

other features.

3.2 Query Samples

To have a solid idea about the supported queries in BilVideo v2.0 and its capa-

bilities, some sample queries and their specifications are given below.

Return videos where Blair appears

<BilVideoQuery outputType = "Video">

<KeywordQuery>

<FreeText>Blair</FreeText>

</KeywordQuery>

</BilVideoQuery>

Return shots where “Blair and Clinton” or “Blair and Hillary and Cheryl” appears

in the same frame.

CHAPTER 3. THE QUERY LANGUAGE 31

<BilVideoQuery outputType = "Shot">

<KeywordQuery>

<FreeText>

(Blair and (Clinton or (Hillary and Cheryl)))

</FreeText>

</KeywordQuery>

</BilVideoQuery>

Return key-segments where Blair appears while Clinton is appearing.

<BilVideoQuery outputType = "Keysegment">

<TemporalQuery type="during">

<Object1>Blair</Object1>

<Object2>Clinton</Object2>

</TemporalQuery>

</BilVideoQuery>

Return shots where Blair appears after Clinton.

<BilVideoQuery outputType = "Shot">

<TemporalQuery type="after">

<Object1>Blair</Object1>

<Object2>Clinton</Object2>

</TemporalQuery>

</BilVideoQuery>

Return shots where Blair appears on the left of Clinton in a frame.

<BilVideoQuery outputType = "Shot">

<SpatialQuery type="left">

<Object1>Blair</Object1>

<Object2>Clinton</Object2>

</SpatialQuery>

</BilVideoQuery>

CHAPTER 3. THE QUERY LANGUAGE 32

Return videos where Golfer appears on the northwest (upperleft) of Golf-car in a

frame.

<BilVideoQuery outputType = "Video">

<SpatialQuery type="northWest">

<Object1>Golfer</Object1>

<Object2>Golf-car</Object2>

</SpatialQuery>

</BilVideoQuery>

Return shots where an object moves in a similar trajectory to:

- (206, 99) at frame t,

- (122, 191) at frame t+5,

- (78, 283) at frame t+10, and

- (301, 325) t+15.

<BilVideoQuery outputType="Shot">

<TrajectoryQuery>

<Params>

<KeyTimePoint>

<MediaRelIncrTimePoint>0</MediaRelIncrTimePoint>

<MediaRelIncrTimePoint>5</MediaRelIncrTimePoint>

<MediaRelIncrTimePoint>10</MediaRelIncrTimePoint>

<MediaRelIncrTimePoint>15</MediaRelIncrTimePoint>

</KeyTimePoint>

<InterpolationFunctions>

<KeyValue>206</KeyValue>

<KeyValue>99</KeyValue>

<KeyValue>122</KeyValue>

<KeyValue>191</KeyValue>

CHAPTER 3. THE QUERY LANGUAGE 33

<KeyValue>78</KeyValue>

<KeyValue>283</KeyValue>

<KeyValue>301</KeyValue>

<KeyValue>325</KeyValue>

</InterpolationFunctions>

</Params>

</TrajectoryQuery>

</BilVideoQuery>

Return shots [with the same spatial and keyword query weights] where Blair, Clin-

ton and Hillary appears, and Blair is on the left of Clinton.

<BilVideoQuery outputType = "Shot" keywordQWeight = "1"

spatialQWeight="1">

<KeywordQuery>

<FreeText>Blair and Clinton and Hillary</FreeText>

</KeywordQuery>

<SpatialQuery type="left">

<Object1>Blair</Object1>

<Object2>Clinton</Object2>

</SpatialQuery>

</BilVideoQuery>

Return shots [with the same spatial and keyword query weights] where Blair, Clin-

ton and Hillary appears, and Blair is on the left of Clinton.

<BilVideoQuery outputType = "Shot" keywordQWeight = "1"

spatialQWeight="1">

<KeywordQuery>

<FreeText>Blair and Clinton and Hillary</FreeText>

</KeywordQuery>

<SpatialQuery type="left">

<Object1>Blair</Object1>

CHAPTER 3. THE QUERY LANGUAGE 34

<Object2>Clinton</Object2>

</SpatialQuery>

</BilVideoQuery>

Return videos where Golfer appears with weight of (3/(1 + 3) = 0.75) and Color

Structure of a moving region is as specified with weight of ((1/(1+3))∗(2/(1+2)) =

0.17) and Color Layout of a frame is as specified with weight of ((1/(1 + 3)) ∗
(1/(1 + 2)) = 0.08).

<BilVideoQuery outputType = "Video" lowLevelQWeight = "1"

keywordQWeight="3">

<KeywordQuery>

<FreeText>Golfer</FreeText>

</KeywordQuery>

<LowLevelQuery searchIn = "MovingRegion" weight="2">

<VisualDescriptor colorQuant="2" xsi:type="ColorStructureType">

<Values>0 85 2 0 0 0 0 0 0 0 255 69 12 8 0 0 0 0 0 0 0 0 0 0

84 89 46 16 37 36 22 2 6 16 6 0 3 2 2 0 50 43 14 7 45 37 22

2 24 25 12 4 5 7 2 0 27 34 38 16 7 7 2 2</Values>

</VisualDescriptor>

</LowLevelQuery>

<LowLevelQuery searchIn = "WholeFrame" weight="1">

<VisualDescriptor xsi:type="ColorLayoutType">

<YDCCoeff>23</YDCCoeff>

<CbDCCoeff>28</CbDCCoeff>

<CrDCCoeff>32</CrDCCoeff>

<YACCoeff5>9 10 15 22 12</YACCoeff5>

<CbACCoeff2>6 14</CbACCoeff2>

<CrACCoeff2>18 22</CrACCoeff2>

</VisualDescriptor>

</LowLevelQuery>

</BilVideoQuery>

Chapter 4

Query Processing

4.1 Software Architecture

BilVideo v2.0 queries are processed and results are generated by the query proces-

sor. The query processor is a multi-threaded server side component that listens

a configured TCP port and processes the queries that are sent to it through the

network. The components of the query processor and their responsibilities are as

follows (see Figure 4.1):

1. Query listener: This module is responsible for listening the configured TCP

port. When a client connects to the server, it generates a new thread to

handle this client. Then, it sends each query from the connected client to

the query parser module. It is also responsible for sending the result back

to the requesting client.

2. Query parser: This module is responsible for parsing the queries received

from clients. The queries are parsed according to the rules specified in

the next section. In the final process of parsing, the module decomposes

the query into sub-queries in case it may contain multiple queries (i.e., the

query is a composite query). It generates a query structure and sends it to

the result fusion module. Then, it sends each sub-query to its related query

35

CHAPTER 4. QUERY PROCESSING 36

Figure 4.1: The software architecture of the query processor

execution module.

3. Query executor : This module has 5 sub-modules:

• the keyword query executor,

• the temporal query executor,

• the spatial query executor,

• the trajectory query executor, and

• the low level query executor.

Each sub-module is responsible for executing the sub-queries that they re-

ceive from the query parser according to the query type. The sub-queries

are executed by performing one or more XQueries in XML database, and

merging the results of these XQueries. After the sub-query result is gener-

ated, the module sends the result to the result fusion module.

CHAPTER 4. QUERY PROCESSING 37

4. Result fusor : It is responsible for the fusion of the query results. The results

are merged according to the user-specified weights.

4.2 Query Parsing

Since BilVideo queries are structured as XML statements, they are parsed through

a widely used XML parser library for C++, named Xerces. Using the library, the

XML structures are parsed and query properties are extracted. As a result of this

extraction, SQuery and SPartialQuery structures are generated. The properties

of SQuery and SPartialQuery are as follows:

struct SQuery

{

id of the query

query output type (video, shot or key-segment)

requesting client

number of subqueries

arrival time of the query

execution completion time

query data

results of the query

weights of query types

}

struct SPartialQuery

{

id of parent query

query output type (video, shot or key-segment)

type of the query (keyword, spatial, etc.)

searchInType

name of first object

name of second object

CHAPTER 4. QUERY PROCESSING 38

freetext

subquery type (before, after, west, dominant color, etc.)

feature list

}

SQuery structure contains general query properties. For each received query

the parser generates a unique ID and assigns it. Result parser also timestamps

the query when it arrives. Hence, the query processing time can be calculated

when the execution is completed. “Number of subqueries” and “weights of the

query types” properties are needed by the result fusion module to combine sub

query results. After construction of SQuery, the structure is passed to the result

fusion module for later use in merging of subquery results.

Partial query structure contains data needed to perform the query by any

type of query executor.

• “searchInType” and “feature for list” properties are used by low level query

execution module.

• “name of first object” and “name of second object” properties are used

by temporal (spatial) query execution modules to identify the objects that

have temporal (spatial) relation.

• “free-text” property is used by keyword query execution module as the

free-text keyword(s); e.g., “((blair and hillary) or (clinton and cheryl))”.

• “subquery” type is used by all query execution modules.

After the construction of Partial query structures, each subquery structure is

sent to its related execution module that is defined in “type of query property”

for further processing.

CHAPTER 4. QUERY PROCESSING 39

4.3 Query Execution

Query execution takes place in 5 self-threaded sub-modules that are specific to

the kind of the query. These 5 sub-modules share the same infrastructure for per-

forming common tasks. These common tasks include Tamino connectivity, which

is for connecting to Tamino database and sending XQueries to Tamino, and re-

sult parsing, which is for parsing the result obtained from Tamino XML database.

The components to perform these duties are Tamino connector component and

result parsing component, respectively.

1. Tamino connector component is responsible for connecting to Software AG

Tamino XML database using Tamino API for C and sending XQuery state-

ment for querying descriptors of videos. In case of replacement of XML

database used in the system, this component could be replaced by another

component with the same interface.

2. Result parsing component is responsible for parsing the result from XML

database. Since the results of XML database are again in XML structured

form, they require further processing to get ready for using. Result parsing

component parses a result from Tamino and generates a structure called

TaminoResult. By doing so, it enables query executors to use the results

from XML database.

The properties of TaminoResult structure are as follows:

struct STaminoResult

{

name of the video

id of the shot

output starting frame

output end frame

actual starting frame

actual end frame

CHAPTER 4. QUERY PROCESSING 40

positions for trajectory query

feature vector for low level query

}

In this structure, (actual starting frame, output starting frame) and

(actual end frame, output end frame) pairs draw attention. The ones that

start with output means the results that the user will get as the final result, on

the other hand the ones that start with actual means the exact start and end

frames that satisfy the condition of the query. For instance, if a query condition

is satisfied in the interval of [345, 900] in a video with 1000 frames, and if the

output type is video, then, the properties would be as follows:

• actual starting frame: 345

• actual end frame: 900

• output starting frame: 0

• output end frame: 1000

As it is seen from the example, the output start and end frames change according

to the query output type (i.e., video, shot or key-segment).

4.3.1 Keyword Query Execution

Keyword query execution takes place in the sub-module keyword query executor.

First, the free text in partial query structure is parsed and an XQuery state-

ment is generated according to this query text. Then, this XQuery statement

is executed using the Tamino connector component. Finally, the Tamino result

is parsed and a new structure SPartialQueryResult is sent to the result fusion

module. The properties of SPartialQueryResult are given below:

CHAPTER 4. QUERY PROCESSING 41

struct SPartialQueryResult

{

id of the query

output type of the query

type of the query

type of the subquery

list of tamino results

}

In SPartialQueryResult structure, the most important property is the list

of Tamino results. This list contains the results that satisfy the query condition.

4.3.2 Temporal Query Execution

Temporal query execution is performed in temporal query execution module. The

major difference between the execution of a temporal query and a keyword query

is that in a temporal query there are two XQueries, which are sent to the XML

database. One query is used for finding the temporal existence of the first object

and the second query is for the second object. The results returned from Tamino

for these two queries are merged according to the rule of temporal relations. For

instance, for the equal relation, the results from database are compared whether

they exist in the same time interval. The remaining execution is the same as

keyword query execution.

The merge rules for temporal queries according to the subquery type are given

below (Notation: Start1 means start of temporal existence of the first object):

VideoName1 = VideoName2 AND ShotName1 = ShotName2 AND

KeySegmentName1 = KeySegmentName2 AND

• before: End1 < Start2

• after: Start1 > End2

CHAPTER 4. QUERY PROCESSING 42

• equal: Start1 = Start2 AND End1 = End2

• notEqual: End1 < Start2 OR End2 < Start1

• during: Start1 > Start2 AND End1 < End2

• contains: Start1 < Start2 AND End1 > End2

• overlaps: Start1 < Start2 AND End1 > Start2 AND End1 < End2

• overlappedBy: Start2 < Start1 AND End2 > Start1 AND End2 < End1

• meets: Start1 < Start2 AND End1 > Start2

• metBy: Start2 < Start1 AND End2 > Start1

• starts: Start1 = Start2

• finishes: End1 = End2

4.3.3 Spatial Query Execution

Spatial query execution is performed in spatial query execution module. Like

temporal query execution, two XQueries are needed to find spatial locations of two

objects in the database. The query results from database are merged according

to the rule of spatial relations. The important point in merging is not only the

spatial locations should fit into spatial relation rule, but also the frame that the

rule is satisfied should be the same for two objects. After the merge operation,

the partial query result is sent to the result fusion module.

The merge rules for spatial queries according to the subquery type are given

below (Notation: X11 means X1 of the first object, X21 means X2 of the first

object):

VideoName1 = VideoName2 AND ShotName1 = ShotName2 AND

KeySegmentName1 = KeySegmentName2 AND

FrameNumber1 = FrameNumber2 AND

CHAPTER 4. QUERY PROCESSING 43

• west: x11 <= x12 AND y11 < y22 AND y21 > y12

• east: x11 >= x12 AND y11 < y22 AND y21 > y12

• north: y11 <= y12 AND x11 < x22 AND x21 > x12

• south: y11 >= y12 AND x11 < x22 AND x21 > x12

• northWest: y11 < y12 AND y21 < y22 AND x11 < x12 AND x21 < x22

• northEast: y11 < y12 AND y21 < y22 AND x11 > x12 AND x21 > x22

• southWest: y11 > y12 AND y21 > y22 AND x11 < x12 AND x21 < x22

• southEast: y11 > y12 AND y21 > y22 AND x11 > x12 AND x21 > x22

• left: x11 <= x12 AND y11 < y22 AND y21 > y12

• right: x11 >= x12 AND y11 < y22 AND y21 > y12

• below: y11 >= y12 AND x11 < x22 AND x21 > x12

• above: y11 <= y12 AND x11 < x22 AND x21 > x12

4.3.4 Trajectory Query Execution

This query execution procedure is completely different from the previously men-

tioned execution processes. In this execution, first of all, motion trajectories of

all moving objects, which are stored in the XML database, are retrieved. Then,

the positional differences of the objects from the query and database are com-

pared according to the Equation 4.1, which makes use of the position similarity

calculation of the motion trajectory similarity equation, as described in [11].

MP (T1, T2) =

n∑
i=1

√
(x1i − x2i)2 + (y1i − y2i)2

n
(4.1)

CHAPTER 4. QUERY PROCESSING 44

where MP (T1, T2) is the linear weighting of two object positions, i is the index

of the trajectory sample point and n is the number of trajectory sample points

used in comparison.

After the calculation of the trajectory distances, they are normalized using

the diagonal length of the video images, and all the distances are mapped to the

[0,1] interval and the trajectory ranks are calculated using the following formula:

ranki = (1 − diq

ddiag
),

where i is the index of the moving region and diq is the distance between the

trajetory of ith moving region and the trajectory query. ddiag is the maximum

diagonal length of a frame in the database. After the ranks are calculated, the

results are sorted according to the rank and the ones whose normalized distances

are smaller than 0.5 are passed to the result fusion module.

4.3.5 Low Level Feature Query Execution

Low level query execution is performed in low level query execution module.

This execution starts in a similar fashion with trajectory query execution. All

the feature vectors are retrieved from the database according to the search in

type. For instance: if search in type is still region and low level query type is

scalable color, then the scalable color features of all still regions in the database

are retrieved. Then, the distances between these feature vectors and query feature

vector are calculated. The retrieved distances are normalized using the maximum

of distances of that low level feature. In this way, the distances are mapped within

the interval [0,1]. Then, ranks of the still regions are calculated using the following

formula:

ranki = (1 − diq

dmax
) × weight,

where i is the index of the still region and diq is the distance between the ith

still region feature vector and the query feature vector. The dmax is calculated

CHAPTER 4. QUERY PROCESSING 45

Low level Maximum
feature distance
Color structure 6701
Scalable color 1549
Color layout 571
Edge histogram 423
Homogeneous texture 12403

Table 4.1: The maximum distances for the keyframes in TRECVID 2008 Devel-
opment Data

by comparing each pair of keyframes from TRECVID 2008 development data.

The list of maximum distance values obtained from this collection are given in

Table 4.1. After the ranks are calculated, the results are sorted and the ones

whose normalized distances are smaller than 0.5 are passed to the result fusion

module.

4.4 Result Fusion

Result fusion is the final step of query processing and is performed by result

fusion module, which is a self-threaded module. Result fusion module receives

SQuery structure from the query parsing module. In this structure query id

and number of subqueries of that query are specified. The result fusion module

waits for SPartialQueryResult structures that have the same parent query id

with SQuery structure. When all partial results for this SQuery are received,

the result fusion module starts the fusion process. In fusion process, all partial

query results are ranked using the weights for query types. We have described

the method of calculating low level query ranks before. The ranks given there

are different from the fusion ranks. The fusion rank calculation is done in the

following way:

rank of query resulti =
ns∑

j=1

rj, (4.2)

where ns is the number of subqueries,

CHAPTER 4. QUERY PROCESSING 46

rj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 x weighttemporal query if sqt is temporal query

1 x weightspatial query if sqt is spatial query

low level rankj x weightlow level query if sqt is low level query

trajectory rankj x weighttrajectory query if sqt is trajectory query

where sqt is the subquery type. After the ranks are calculated according to

Equation 4.2, the results are sorted and top 10 results are sent to the client.

Chapter 5

User Interface and System

Performance

In the first part of this chapter, the visual query interface and its architecture

are introduced. Then, some sample queries generated through the visual query

interface and their results are presented. Finally, some sample query process

durations are provided to give an idea about the performance of BilVideo v2.0

5.1 Visual Query Interface

A visual query interface has been developed for BilVideo v2.0 to simplify the

query specification for the users who are not familiar with XML and MPEG-7.

The visual query interface is implemented using WxWidgets library for C++.

WxWidgets is a cross-platform C++ framework providing GUI and other facili-

ties. It supports MS Windows, UNIX with GTK+, UNIX with Motif and MacOS.

It was developed at University of Edinburgh and made publicly available [19].

Visual Query Interface also makes use of the well known computer vision

library OpenCV for image processing, some parts of XM Software, which is the

reference software of MPEG-7 for feature extraction and comparison, and JSegLib

47

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 48

Figure 5.1: The architecture of visual query interface

for image segmentation. The architecture and interfaces of Visual Query Interface

is depicted in Figure 5.1.

A user can query the system using:

• keywords (in keyword query, temporal query and spatial query),

• sketches (in temporal query, spatial query and trajectory query), and

• input images (in low level query).

When the input images are used, the user can use the whole input image or a

part of the image. JSegLib comes to play when the user wants to use a part of the

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 49

Figure 5.2: The top level window of the visual query interface

query image. A query image is segmented when the user wants to automatically

segment the image and wants to use one or more segments as the query.

5.1.1 General View

The visual query interface is a form-based application that connects to the query

processor to send queries and retrieve the results (see Figure 5.2). When the

visual query interface is started, the user can see a tabbed page on the left, the

query result panel on the upper right corner, and a media player on the lower left

part of the form. The tabbed page contains the interfaces for the keyword query,

the temporal query, the spatial query, the trajectory query, the low level query,

and finally, the composite query.

The results of the query are shown in the results list panel. When the user

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 50

selects an item from this list, and double clicks on it, the result video or video

part is played in the media player.

Additionally, there are two menus (the file menu and the options menu) in the

form. From the file menu, the user can open the Video TOC (Table of Contents),

from where the videos, shots, still regions and moving regions in the database

can be viewed (see Figure 5.3). From the options menu, the user can select the

output type of the query (see Figure 5.4).

5.1.2 Keyword Query Interface

This interface is used to prepare the keyword queries (Figure 5.5). There is only

a single textbox to prompt the user to enter the query words. The “Query”

button, which is common in all query interfaces, are used to query the database.

The “Add to Composite Query” button, which is again common in all interfaces,

except the composite query interface, is used to add the query to the composite

query.

5.1.3 Temporal Query Interface

This interface is used to prepare temporal queries (Figure 5.6). Temporal query

can be prepared either by keywords or by drawing sketches. When using query

by keyword, the user specifies two objects and their temporal relationship by

choosing the relationship from a drop down menu. When querying-by-sketch, the

user defines the relationship by drawing a sketch in a time-line.

5.1.4 Spatial Query Interface

This interface is used to prepare spatial queries (Figure 5.7). Like a temporal

query, user can specify the queries by keyword or by sketch. In query-by-keyword,

the user writes the name of the objects and selects the spatial relationship type

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 51

Figure 5.3: The video table of contents

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 52

Figure 5.4: The options menu: the user selects the output type of the query

Figure 5.5: The keyword query interface

Figure 5.6: The temporal query interface

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 53

Figure 5.7: The spatial query interface

from a drop down. In query-by-sketch, the user defines the relationship type by

drawing a sketch of the relationship in a canvas.

5.1.5 Trajectory Query Interface

Using this interface, the user can specify trajectory queries (see Figure 5.8). In

this interface, there is a canvas, where users can insert trajectory path mark by

right clicking. Users can also change the location of a specified path mark by

dragging it. The inserted path marks are used as the query trajectory and the

moving regions that moved in this trajectory are retrieved from the database.

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 54

Figure 5.8: The trajectory query interface

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 55

Figure 5.9: The low level query interface

5.1.6 Low Level Query Interface

The low level query interface is the most complicated interface. We explain the

low level query specification step by step in the sequel.

Figure 5.9 is the general view of the low level query interface. From the check

boxes in the upper part, the user can select the low level descriptors that will be

used in the query. Then, from the first drop down menu, the user chooses the

part of the query image that will be used. The user can select the whole image

or any part of the image. If the whole image is selected, the low level features

of the query image are extracted. If the user wants to use a part of the image,

then the image part can be selected manually or with the help of automatic

segmentation. Another drop down menu is used to specify the features to search

in the database. The user can search the low level features within shots, moving

regions, still regions, or frames. After these drop down menu selections, the user

browses for an image file, which will be used as the query image.

In the case of segmentation, the user has to select the segments or parts of

the image as query image, as shown in Figure 5.10.

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 56

Figure 5.10: The result of the segmentation process

Figure 5.11: The composite query interface

5.1.7 Composite Query Interface

This interface is used for preparing composite queries, in fact for defining the

weights of query types that will be used in composite query (see Figure 5.11).

The query statements are defined in the related query interface and inserted to

the composite query statement by pressing “Add to Composite Query” button.

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 57

5.2 Sample Queries

In this section, examples of the query results displayed for different query types

are presented.

Keyword Query

INPUT: (blair and clinton) or (hillary and cheryl)

OUTPUT:

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 58

Temporal Query

INPUT: golfer equal golf-car

OUTPUT:

Spatial Query

INPUT: blair right clinton

OUTPUT:

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 59

Trajectory Query

INPUT:

OUTPUT:

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 60

Low Level Query

INPUT: Scalable color of the following input image

OUTPUT:

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 61

Composite Query

INPUT: blair right clinton + blair equal clinton

OUTPUT:

As it is seen from the output of the composite query, since the first two video

parts (upper-left and upper-right) satisfy both conditions, they are shown with

higher rank than the other video parts, which only satisfy the second query.

5.3 Performance

To evaluate the query processing performance, query execution times for different

query types are calculated. When a query arrives at the query processor, it is

timestamped. After producing the result of the query, the query is timestamped

again, and the difference between these two timestamps are calculated.

In Table 5.1, the execution times for different types of queries are given in

milliseconds. These values are obtained by performing the queries 25 times and

taking the average of these 25 values. During the evaluation process, the database

contains three videos which contain 5046 frames in total.

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 62

Query type Content Execution times
(msec.)

Keyword query - 54
Temporal query - 135
Spatial query - 124
Trajectory query - 64
Low level query 1 feature 52
Low level query 2 features 190
Low level query 3 features 343
Composite query 2 keyword 87
Composite query 2 temporal 220
Composite query 2 spatial 224
Composite query 2 trajectory 207
Composite query 3 keyword 111
Composite query 3 temporal 305
Composite query 3 spatial 294
Composite query 3 trajectory 362
Composite query keyword + temporal 128
Composite query keyword + spatial 132
Composite query keyword + trajectory 84
Composite query keyword + low level 78
Composite query temporal + spatial 298
Composite query temporal + trajectory 129
Composite query temporal + low level 121
Composite query spatial + trajectory 145
Composite query spatial + low level 132
Composite query keyword + temporal + spatial 229
Composite query temporal + spatial + low level 234

Table 5.1: The query execution times

CHAPTER 5. USER INTERFACE AND SYSTEM PERFORMANCE 63

As it is seen in Table 5.1, the spatial and temporal queries are more costly

than the other query types. The reason for this difference is the 2 XQuery-Per-

Query requirement of these two query types. For the composite query and the

low-level query with more than one feature, it can be observed that the number

of subqueries does not affect the processing time. This is achieved by using

multi-threading.

Chapter 6

Conclusion and Future Work

In this thesis, query processing component of theBilVideo v2.0 system is pre-

sented. BilVideo v2.0 has been planned as a full-fledged multimedia database

management system. Currently, it supports spatio-temporal, keyword, low-

level feature (color, shape, texture), trajectory queries and composite queries

for videos. BilVideo v2.0 has its own XML-based query language. The query

processing subsystem interprets the queries and generates XQuery statements.

Using XQuery, the query processor queries the native XML Database (NXD),

named Tamino, which stores the descriptions of videos in XMLs that are com-

patible with MPEG-7. Then, the results obtained from Tamino are processed

further by the query processor to produce the final query result.

Keyword queries, spatial queries and trajectory queries are fully supported

by the system. However, there may be some extensions to these queries like

addition of new relations, addition of advanced keyword queries, etc. For the

trajectory query case, the query trajectory is interpolated to fit the trajectories

in the database. Some other approaches can be tried to allow retrieval of more

accurate results. For instance, querying sub-trajectories may be one of these

approaches. Another approach may be allowing the user to give the name of the

object, whose trajectory is going to be queried.

For low level queries, the descriptors defined by MPEG-7 standard are queried.

64

CHAPTER 6. CONCLUSION AND FUTURE WORK 65

Low level queries require the libraries from the video annotation tool. The de-

velopment of the video annotation tool of BilVideo v2.0 is ongoing. After its

finalization, the low level queries that are not implemented or supported cur-

rently will also be implemented. By this way, the video part of the system would

be completed.

Moreover, the composite query allows to query the database using any number

of query types in the same query. Composite query allows definition of query

weights that will be used by the query processor. By using composite query,

users can narrow the result set that will be returned by the system.

BilVideo v2.0 is an evolving project and will serve as a framework for more

researches in the multimedia area. Researchers who are interested in content

based retrieval can use BilVideo v2.0 to compare their results when proposing new

distance calculations for MPEG-7 low level features. Moreover, it can be used for

testing new features that are generated by extending MPEG-7 with DDL rules.

On the other hand, some researches on query weighting can be conducted to

find an optimum recall/precision. And some additional MPEG-7 related research

works can be performed using BilVideo v2.0.

With its current version, BilVideo v2.0 is a full-fledged video database system.

In the near future, with the addition of audio and image querying support, Bil-

Video v2.0 would achieve its mission of being a full-fledged multimedia database

system. In addition to being a full-fledged video database system, additional

innovative characteristics of BilVideo v2.0 are the description model relying on

XML-based MPEG-7 standard, a special simplified query language, and a query

processor for MPEG-7 which supports composite queries.

Bibliography

[1] M. Bober. Mpeg-7 visual shape descriptors. IEEE Transactions on Circuits

and Systems for Video Technology, 11(6):716–719, 2001.

[2] S.-F. Chang, W. Chen, H. J. Meng, H. Sundaram, and D. Zhong. VideoQ:

an automated content based video search system using visual cues. In Pro-

ceedings of the Fifth ACM International Conference on Multimedia, pages

313–324, 1997.

[3] M. G. Christel. Carnegie Mellon University Traditional Informedia Digital

Video Retrieval System. In CIVR ’07: Proceedings of the 6th ACM Interna-

tional Conference on Image and Video Retrieval, pages 647–647, 2007.

[4] M. G. Christel, J. Richardson, and H. D. Wactlar. Facilitating access to large

digital oral history archives through informedia technologies. In JCDL ’06:

Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries,

pages 194–195, 2006.

[5] M. Doller and H. Kosch. The MPEG-7 Multimedia Database System

(MPEG-7 MMDB). Journal of Systems and Software, 81(9):1559–1580, 2008.

[6] M. E. Dönderler, Özgür Ulusoy, and U. Güdükbay. A rule-based approach to

represent spatio-temporal relations in video data. In ADVIS ’00: Proceedings

of the First International Conference on Advances in Information Systems,

pages 409–418. Springer-Verlag, 2000.

[7] M. E. Dönderler, Özgür Ulusoy, and U. Güdükbay. A rule-based video

database system architecture. Information Sciences, 143(1-4):13–45, 2002.

66

BIBLIOGRAPHY 67

[8] M. E. Dönderler, Özgür Ulusoy, and U. Güdükbay. Rule-based spatiotempo-

ral query processing for video databases. The VLDB Journal, 13(1):86–103,

2004.

[9] A. Hauptmann, D. Ng, R. Baron, M.-Y. Chen, M. Christel, P. Duygulu,

C. Huang, W.-H. Lin, H. Wactlar, N. Moraveji, N. Papernick, C. Snoek,

G. Tzanetakis, J. Yang, R. Yan, and R. Jin. Informedia at TRECVID 2003:

Analyzing and Searching Broadcast News Video. In Proceedings of (VIDEO)

TREC 2003 (Twelfth Text Retrieval Conference), November 2003.

[10] T. Huang, S. Mehrotra, and K. Ramchandran. Multimedia Analysis and

Retrieval System (MARS) Project. In Proceedings of 33rd Annual Clinic on

Library Application of Data Processing - Digital Image Access and Retrieval,

1996.

[11] S. Jeannin and A. Divakaran. MPEG-7 Visual Motion Descriptors. IEEE

Transactions on Circuits and Systems for Video Technology, 11(6):720–724,

2001.

[12] E. Kasutani and A. Yamada. The MPEG-7 Color Layout Descriptor: a com-

pact image feature description for high-speed image/video segment retrieval.

In Proceedings of the IEEE International Conference on Image Processing

(ICIP), volume 1, pages I–674 – I–677, 2001.

[13] J.-H. Lee, H.-J. Kim, and W.-Y. Kim. Video/image retrieval system based

on MPEG-7 (VIRS). In Proceedings of the International Conference on In-

formation Technology: Research and Education (ITRE2003), pages 79–83,

2003.

[14] B. Manjunath, J.-R. Ohm, V. Vasudevan, and A. Yamada. Color and texture

descriptors. IEEE Transactions on Circuits and Systems for Video Technol-

ogy, 11(6):703–715, 2001.

[15] B. S. Manjunath, P. Salembier, and T. Sikora, editors. Introduction to

MPEG-7 Multimedia Content Description Interface. Wiley, England, 2002.

BIBLIOGRAPHY 68

[16] G. Pavlović-Lažetić. Native XML databases vs. relational databases in deal-

ing with XML documents. Kragujevac Journal of Mathematics, 30:181–199,

2007.

[17] Y. M. Ro, M. Kim, H. K. Kang, B. Manjunath, and J. Kim. MPEG-7 Homo-

geneous Texture Descriptor. Electronics and Telecommunications Research

Institute (ETRI) Journal, 23(2):41–51, 2001.

[18] T. Sikora. The MPEG-7 Visual Standard for Content Description-An

Overview. IEEE Transactions on Circuits and Systems for Video Technology,

11(6):696–702, 2001.

[19] J. Smart, R. Roebling, V. Zeitlin, and R. Dunn et al. wxWidgets 2.8.6: A

portable C++ and Python GUI toolkit. http://docs.wxwidgets.org/2.8.6/,

2007.

[20] Software AG. Tamino XML Server Documentation, 4.4.1 edition, 2006.

[21] M. Stonebraker, L. A. Rowe, and M. Hirohama. The implementation of

POSTGRES. IEEE Transactions on Knowledge and Data Engineering,

2(1):125–142, 1990.

[22] C. S. Won, D. K. Park, and S.-J. Park. Efficient Use of MPEG-7 Edge His-

togram Descriptor. Electronics and Telecommunications Research Institute

(ETRI) Journal, 24(1):23–30, 2002.

[23] K.-M. Wong, L.-M. Po, and K.-W. Cheung. Dominant color structure de-

scriptor for image retrieval. In Proceedings of the IEEE International Con-

ference on Image Processing (ICIP), volume 6, pages VI–365 – VI–368, 2007.

[24] World Wide Web Consortium. Extensible Markup Language (XML).

http://www.w3.org/XML/, 2003.

[25] World Wide Web Consortium. XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/xquery/, 2007.

