
INTEGRATED SEGMENTATION AND
RECOGNITION OF CONNECTED

OTTOMAN SCRIPT

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BİLKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

İsmet Zeki Yalnız

August, 2008

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay (Co-supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. İbrahim Körpeoǧlu

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ahmet Coşar

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Dr. Cengiz Çelik

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

iii

ABSTRACT

INTEGRATED SEGMENTATION AND RECOGNITION
OF CONNECTED OTTOMAN SCRIPT

İsmet Zeki Yalnız

M.S. in Computer Engineering

Supervisors: Prof. Dr. Özgür Ulusoy and

Assoc. Prof. Dr. Uğur Güdükbay

August, 2008

In this thesis, a novel context-sensitive segmentation and recognition method

for connected letters in Ottoman script is proposed. This method first extracts

a set of possible segments from a connected script and determines the candidate

letters to which extracted segments are most similar. Next, a function is defined

for scoring each different syntactically correct sequence of these candidate letters.

To find the candidate letter sequence that maximizes the score function, a directed

acyclic graph is constructed. The letters are finally recognized by computing the

longest path in this graph. Experiments using a collection of printed Ottoman

documents reveal that the proposed method provides very high precision and

recall figures in terms of character recognition. In a further set of experiments

we also demonstrate that the framework can be used as a building block for an

information retrieval system for digital Ottoman archives.

Keywords: Optical character recognition (OCR), segmentation and recognition

of connected scripts, connected scripts, information retrieval (IR).

iv

ÖZET

BİTİŞİK OSMANLICA YAZI İÇİN TÜMLEŞİK
BÖLÜTLEME VE TANIMA

İsmet Zeki Yalnız

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. Özgür Ulusoy ve

Doç. Dr. Uğur Güdükbay

Ağustos, 2008

Bu tez çalışmasında, Osmanlıca bitişik metinlerdeki bağlı karakterler için

içeriğe dayalı tümleşik bir bölütleme ve tanıma yöntemi önerilmiştir. Bu

yöntem, öncelikle dökümanlardaki bağlı bileşenlerden sistematik olarak bir

takım olası parçalar çıkartır ve bu parçalara en çok benzeyen aday karak-

terleri belirler. Sonrasında ise belirlenen çok sayıdaki aday karakterlerin

arasından sözdizim olarak en olası olanlarını seçmek için bir skor fonksiyonu

tanımlanmıştır. Bu skor fonksiyonunu maksimize eden karakterler, döngüsüz bir

çizge oluşturulup bu çizge üzerindeki en uzun yolu hesaplayarak bulunmaktadır.

Deney sonuçları göstermektedir ki, önerilen yöntem yüksek duyarlık ve tanıma

oranları sağlamaktadır. Yapılan bilgi erişim deneyleri ise, önerilen yöntemin Os-

manlıca matbaa metinler için tasarlanmış bir bilgi erişim sisteminin bir parçası

olarak kullanılabileceğini göstermektedir.

Anahtar sözcükler : Optik karakter tanıma (OCR), bağlı karakterin bölütlenmesi

ve tanınması, bitişik yazı, bilgi erişim (IR).

v

Acknowledgement

First of all, I would like to express my sincere gratitude to my supervisors Prof.

Dr. Özgür Ulusoy and Assoc. Prof. Dr. Uğur Güdükbay for their instructive

comments, suggestions, support and encouragement during this thesis work.

I am grateful to Asst. Prof. Dr. İbrahim Körpeoǧlu, Assoc. Prof. Dr. Ahmet

Coşar and Dr. Cengiz Çelik for reading and reviewing this thesis.

I would also like to thank to my colleagues, especially to İsmail Sengör

Altıngövde, for their support and collaboration during all stages of this study.

Special thanks to my family for their support during my education and their

never lasting efforts on me.

Finally, I would like to thank to TÜBİTAK for their financial support during

my graduate education.

vi

Contents

1 Introduction 1

2 The Ottoman Script 4

3 Related Work 7

3.1 Segmentation Methods . 8

3.2 Recognition of Ottoman Script . 11

4 The Segmentation and Recognition Framework 15

4.1 Extracting and Segmenting Connected Components 17

4.2 Extraction of Segment Features 19

4.3 Determining Candidate Letters 20

4.4 Recognition . 21

5 An Information Retrieval Framework for Ottoman Archives 26

5.1 Typical Components of an IR System 27

5.2 Information Retrieval Framework for Ottoman Documents 29

vii

CONTENTS viii

6 Experimental Results 33

6.1 Recognition Evaluation . 33

6.2 Information Retrieval Experiments 38

7 Conclusion 41

Bibliography 43

A Ottoman Archives Explorer 46

B Annotation Tool 49

C Codebook Viewer Tool 51

List of Figures

2.1 The Ottoman alphabet without diacritics and dots. Letters in the

rectangles are either repeated letters or can be formulated by the

other letters, and thus they are not included in the library. 5

2.2 An Ottoman word “Ensari” written using connected script. 5

3.1 (a) The original isolated component, (b) its vertical histogram,

(c) the segmented characters, and (d) a larger view of (b). The

threshold is computed as the 0.6 of the histogram mean. Each

segment is required to be larger than a predefined minimum width

[25]. 9

3.2 The segmentation of the contour of a word. (a) Original, (b) the

contour, (c) segmented contour [16]. 10

3.3 The pseudocode for the greedy segmentation and recognition algo-

rithm. 13

3.4 Illustration of the greedy approach: windows are segmented in the

order of descending similarity score, i.e., 5, 1 and 3. Since the third

window is an incorrect segment that overlaps with windows 2 and

4; once it is removed, it is not anymore possible to recognize the

other two medial type letters in windows 2 and 4. 14

4.1 The stages of the proposed segmentation and recognition approach. 16

ix

LIST OF FIGURES x

4.2 Determining the line height information. 17

4.3 An Ottoman letter. 18

4.4 Angular and distance span of the letter in Figure 4.3. 19

4.5 The pseudo code for the graph construction. It should be noted

that, the resulting graph is topologically sorted. 23

4.6 The graph constructed for a sample connected component shown

at the upper left corner. The longest path corresponding to the

recognition is indicated with straight lines. Final node is shown in

gray. 24

5.1 Grouping recognized letters into words and mapping these words

into ASCII characters. 30

5.2 The architecture of IR framework for Ottoman Archives. 31

6.1 Sample lines from our dataset with different font size and letter

thickness. 34

6.2 The change in recognition performance as the constant c is varied. 35

6.3 The recognition results for a sample document. For each line, the

lower part includes the original script and the upper part includes

the recognized letters, as recorded in the library (i.e., without dots

and diacritics). 37

6.4 The method to test the effect of OCR errors on IR performance. . 39

A.1 Ottoman Archives Explorer Web user interface. 47

A.2 A rectangular region over the document selected by the user for

querying. Letters recognized inside the rectangle are used for query

resolution. 48

LIST OF FIGURES xi

A.3 A matching word is shown in the rectangle in a matching document

for the query formulated in Figure A.2. 48

B.1 The user interface of the annotation tool. The selected component

(shown in the rectangle) is annotated with the letter ids 23, 36, 26,

27, 35 and 40 as entered to the textbox at the bottom. Annotated

letters are redrawn over their connected components in order to

make the annotater to see annotated letters better. 50

C.1 Codebook viewer user interface. 52

List of Tables

5.1 Definitions of some statistical terms. 28

6.1 Recognition performance of the proposed method. 35

6.2 Recognition rates per connected component including varying

number of letters. 36

6.3 Symmetric difference for the top K retrieved documents with dif-

ferent document similarity metrics. 39

xii

Chapter 1

Introduction

Ottoman archives include a wealth of historical documents that provide valu-

able information on many aspects of an empire, which shaped the history of the

“old world” for several centuries. Not surprisingly, providing means of electronic

access even for a subset of this huge collection of handwritten and printed docu-

ments would be an exciting and priceless contribution for researchers from several

disciplines and countries. Along with the recent advances in the hardware and

reduction in the costs, digitizing collections of historical documents or even entire

books becomes a more attainable goal. Accordingly, a growing body of Ottoman

archives is also being digitized by the State Archives Office of Turkey (Devlet

Arşivleri Ofisi), where the majority of this cultural heritage is kept. That is,

digital images of historical Ottoman documents are obtained for the purposes of

persistent storage and electronic access.

A robust and effective character recognition approach is the first stage of

providing automatic access and sophisticated search and retrieval functionalities

for such textual image archives. In this thesis, an integrated segmentation and

recognition method for connected letters in digital Ottoman documents is de-

scribed. Although Ottoman has several common features with Arabic, it has

also significant differences, which disallows using the off-the-shelf OCR (Optical

Character Recognition) software. Furthermore, even for Arabic, OCR is still a

problem that is not completely solved and the recognition rates reported in the

1

CHAPTER 1. INTRODUCTION 2

literature are less successful in comparison to those for other languages based on,

say, Latin characters [3]. Due to the difficulty of the problem, we essentially focus

on the printed Ottoman script in this study. Note that, the printed documents

in the Ottoman Archives mostly belong to the last eras of the empire and can be

found in different fonts and styles due to available technology of the age they are

created. Thus, the recognition of letters from these printed documents is not a

trivial problem and can serve as a first step to fuel further research in this area.

The proposed recognition method first extracts all connected components from

a document. A connected component may be a single letter or a connected

group of letters. Next, a set of (possibly overlapping) segments are obtained

by applying sliding-windows of varying sizes over these connected components.

It should be noted that the sliding-window does not attempt to figure out the

real letter boundaries, what it does is simply extracting some possible segments

within predefined width ranges. The determination of the actual letter boundaries

is postponed to and interleaved with the recognition stage. Then, each such

segment is compared to a predefined letter library and determined as a candidate

letter, for which it produces the highest similarity score.

Given a set of candidate letters, we define a score function to rank the possible

sequences of candidate letters that do not overlap and can precede each other

in the connected component, and choose the one with the highest score as the

recognized letter(s). It should be noted that the highest scoring sequence may

include candidate letters of varying sizes as the letters in the actual documents

would not be of the same size [9]. In this way, the score function takes into

account the size of the segment, the similarity score to the candidate letter and

the unigram and bigram frequencies of the consecutive letters in a sequence. The

candidate letter sequence maximizing the score function is efficiently computed

by constructing a directed acyclic graph. Each candidate letter corresponds to a

node in the graph. An edge connects two nodes if one of the candidate letters

precedes the other in the connected component from which they are extracted.

Edge weights are based on the score function. The final recognition of letters is

obtained by computing the longest path in this graph.

CHAPTER 1. INTRODUCTION 3

Our experiments with a set of printed Ottoman documents reveal that the

proposed method for segmenting and recognizing letters is very successful and

provides precision and recall figures that are greater than 90 percent. Further

experiments indicate that resulting OCR errors have limited effect on informa-

tion retrieval (IR) performance; therefore the proposed framework can be used

as a building block for an information retrieval environment for printed digital

Ottoman archives.

The organization of the rest of the thesis is as follows. Various properties

of Ottoman script are described in Chapter 2. In Chapter 3, related studies in

the literature are briefly reviewed. Chapter 4 describes the proposed segmenta-

tion and recognition framework. In Chapter 5, an IR framework that is built

upon the output of the segmentation and recognition process is discussed. Chap-

ter 6 presents the experimental evaluation of the both recognition and retrieval

stages. In Chapter 7 gives conclusions and future research directions. Appendix

A describes the Web user interface of Ottoman Archives Explorer. Appendix B

briefly explains the annotation tool used for annotating Ottoman texts. Appendix

C mentions about the codebook viewer tool.

Chapter 2

The Ottoman Script

Ottoman and Arabic scripts have common characteristics in many ways. Ottoman

script is also read from right to left and most letters in its alphabet are the same

as Arabic alphabet. There are only 5 additional letters compared to Arabic

alphabet [4]. After the removal of diacritics and dots, the Ottoman alphabet is

shown in Figure 2.1. It should be noted that, a letter may have one of the four

different forms according to its position in a word, namely being the beginning,

medial or end letter in a word, or being written isolated. From the figure, it can be

observed that there are repetitions. This is due to the fact that a particular form

of a letter at a particular position may be the same as the form of another letter

at another position. Some of the letter repetitions also caused by the removal

of the diacritics and dots, which is a simplifying assumption for the purposes of

this thesis. Another slight modification to alphabet is removing these letters that

can be constructed by using the other letters. For instance, in Figure 2.1, the

first letter at line 2 can be constructed from the second and fourth letters at the

same line. After eliminating such letters, 48 distinct letters remain and they are

referred as the letter library in this thesis.

In Ottoman script, each connected component should either involve a single

-isolated- letter, or a group of letters, which strictly starts with one of the letters

of the beginning form, continues with zero or more letters of the medial form end

finally finishes with a letter of the end form. One or more connected components

4

CHAPTER 2. THE OTTOMAN SCRIPT 5

Figure 2.1: The Ottoman alphabet without diacritics and dots. Letters in the
rectangles are either repeated letters or can be formulated by the other letters,
and thus they are not included in the library.

Figure 2.2: An Ottoman word “Ensari” written using connected script.

CHAPTER 2. THE OTTOMAN SCRIPT 6

form an Ottoman word. In Figure 2.2, there is a word which has 4 connected

components. Three of them include single letters and one of them contains three

letters.

Another property of Ottoman script is that, a letter may have different sounds

in different words. For example, the last letter of the word in Figure 2.2 can give

three different sounds in different contexts: ’y’, ’t’ and ’i’. Sometimes there may

be no way to understand the sound of a letter by just considering the word itself.

There are words for which writing is exactly the same but the pronunciation and

meaning are different. The reader should guess the intended word according to

the context. In addition to this, Ottoman script lacks a set of important diacritics

called ’harakat’ unlike Arabic script. They are placed under and over some letters

in order to identify the sound of a letter. Without these diacritics, Ottoman script

becomes harder to read in comparison to Arabic script [17].

Chapter 3

Related Work

Text recognition is the automatic reading of the text written in digital images.

The ultimate aim is to imitate human ability to read printed text with human

accuracy with a higher speed [16]. Text recognition is widely studied in the

literature and various methods are proposed for different scripts, fonts, noise level,

etc. There are various problems involved in text recognition, such as segmentation

of connected letters. Digital documents may contain connected letters due to

noise or low resolution. There are also some scripts, such as Ottoman, Arabic

and Hebrew, whose letters are meant to be connected in certain ways according to

some syntactic rules. In such cases, recognition of individual letters in documents

becomes quite hard. Advanced techniques should be developed in order to handle

such problems.

In Section 3.1, character segmentation methods in the literature are classified

and briefly explained. Our proposed method is placed into the context. Later,

in Section 3.2, related work for recognizing text in Ottoman documents is elabo-

rated.

7

CHAPTER 3. RELATED WORK 8

3.1 Segmentation Methods

There are two major unknowns for the recognition of connected letters. These

are the number of letters and their letter boundaries in a word or connected com-

ponent. There may also be unexpected dissections or connections between letters

due to noise in the document image. In such cases, recognition of individual

letters becomes even harder. The aim of segmentation methods is to find bet-

ter letter boundaries so that these letters can be classified in a straight-forward

manner. Once the letters are segmented correctly, it is possible to recognize these

isolated letters with high accuracy. Apparently, letter segmentation is a critical

stage for the OCR process.

There are various segmentation methods proposed in the literature [16, 8].

Systems that employ any letter segmentation method are called “Segmentation-

based systems”. These systems can be classified as given below [16]:

1. Isolated/pre-segmented characters: The focus of such systems is not the seg-

mentation of letters. It is assumed that letters are obtained from a reliable

segmentation algorithm. The aim is to recognize isolated or segmented let-

ters with high accuracy. These systems are not practical. They can not be

deployed and used directly, especially for connected scripts. As an example

of such systems, see [19].

2. Segmenting a word into characters: Letters in a connected component can

be divided into letters by using an explicit segmentation algorithm prior to

recognition. In this way, segmented letters can be classified directly by a

classifier, just like in Latin OCR. However, overall success heavily depends

on the accuracy of the segmentation algorithm used. It is not easy to build

a robust segmentation algoritm, which tries to segment a connected compo-

nent by using only features like vertical and horizontal projection vectors,

connected component contours, etc. In Figure 3.1, a connected component

with connected letters is segmented by tracing vertical projection vector.

In this method, a threshold is provided for detecting connectivity points.

It can be seen that connectivity points exhibit the least sum of the average

CHAPTER 3. RELATED WORK 9

Figure 3.1: (a) The original isolated component, (b) its vertical histogram, (c) the
segmented characters, and (d) a larger view of (b). The threshold is computed
as the 0.6 of the histogram mean. Each segment is required to be larger than a
predefined minimum width [25].

summation over all columns [2, 3, 25]. It should also be noted that, ex-

plicit segmentation methods do not use outputs of any letter classifier for

establishment of letter boundaries.

3. Segmenting a word into primitives: There are methods that tries to seg-

ment a connected component into symbols, which may represent letters,

fractions of letters or ligatures. One way to obtain these symbols can be

oversegmentation of the connected component by tracing the contour of

the connected components. It can be done by finding points on the contour

where there is a transition from a column, which has all its black pixels

within the baseline boundaries, to another column, which does not [1]. See

Figure 3.2 as an example. Associated symbols that form particular letters

can later be learned and used for recognition in further stages.

CHAPTER 3. RELATED WORK 10

Figure 3.2: The segmentation of the contour of a word. (a) Original, (b) the
contour, (c) segmented contour [16].

4. Integration of segmentation and recognition: The segmentation and recog-

nition stages can be interleaved so that better letter boundaries and con-

sequently recognition rates can be obtained. In such systems, the con-

nected component is systemmatically divided into many overlapping seg-

ments without regarding their contents. Each such segment is later classi-

fied and used for determination of a coherent segmentation and recognition.

The main principle of such methods is to bypass the segmentation problem.

Such methods can also be called segmentation-free, since they do not em-

ploy any feature-based segmentation method. In such systems, recognition

errors are mostly due to failures in classification [8].

The segmentation and recognition framework proposed in this thesis is also

in this catagory. The segmentation problem is bypassed by integrating seg-

mentation and recognition stages. By sliding windows over each connected

component, a set of segments are gathered and classified. Then, a set of

non-overlapping segments are chosen according to a score function so that

the recognition accuracy can be maximized. Details are explained in Chap-

ter 4.

There are also text recognition systems which do not employ any segmenta-

tion method. These are called “segmentation-free systems”. In principle, these

systems tries to recognize words as a whole instead of individual characters or

primitives. It is achieved by extracting features from each word and matching

these features to the database of features extracted from the words in the vocab-

ulary. The most likely word is selected as the match. One drawback for such

CHAPTER 3. RELATED WORK 11

systems is the limited vocabulary. Rare words may not be included in the vo-

cabulary. Moreover, broader vocabulary may degrade the system performance

significanty. Examples for segmentation-free systems include [4, 5].

3.2 Recognition of Ottoman Script

In the literature, there are relatively few works that directly attack the character

recognition problem for Ottoman documents. This may be mostly due to the

fact that it is not a currently spoken language. Ottoman is essentially captured

in the historical documents and attracts the interests of scholars. Furthermore,

until recently, there were relatively few digital Ottoman documents available. On

the other hand, Arabic, which reveals some common features with Ottoman, is a

language still spoken by millions of people all over the world. Therefore, we first

briefly review the works for character recognition in Arabic documents. Next, we

provide a more detailed discussion of the works focusing on character recognition

and automatic retrieval for Ottoman documents.

Comprehensive surveys [3, 16] on off-line Arabic character recognition discuss

a variety of approaches adapted for segmentation and recognition, involving meth-

ods based on local and global features, neural networks, graph-based algorithms,

stochastic methods like Hidden Markov Models (HMMs), etc. Amin [3] concludes

that Arabic OCR is still an open research area and most of the research results

are inconclusive as they are provided on small datasets that are not available

to others. More recently, encouraging results for automatic retrieval on textual

images of Arabic documents are reported [9]. The method described there has

some similarities to our approach. In both works, the segmentation is achieved

in an integrated manner with the recognition. However, the actual recognition

in that work employs the HMM, whereas in this thesis a graph-based model is

constructed.

In one of the earliest works for Ottoman character recognition, first a chain

code transformation is applied to the main strokes of the characters and then the

CHAPTER 3. RELATED WORK 12

recognition of these transformed characters is achieved by using the HMM [6].

The success of this approach is said to be dependent on the performance of the

thinning process. In [19], a neural network (NN) based recognition approach is

applied for Ottoman characters. Although the recognition rate is said to be high,

both of the training and testing stages seem to be applied on manually segmented

characters. The segmentation problem of the connected letters is not attacked.

In [4], a retrieval system for Ottoman documents is proposed, which involves first

segmenting lines and words in a document and then comparing words as a whole

for the querying purposes. In this approach, word comparisons are performed by

using quantized vertical projection profiles. In a more recent work [5], querying

Ottoman documents is considered as an image retrieval problem. More precisely,

each word image in a document is represented by a set of visual terms, which are

obtained by the vector quantization of SIFT descriptors extracted from salient

points. Words are matched by comparing the similarity of these visual terms. In

[4] and [5], queries can only be constructed by finding examples of the words over

sample documents. There can also be rare words that a user may want to search

for. It may be a time consuming task for the user.

Saykol et al. propose an effective method for the compression of Ottoman

documents and content-based retrieval (CBR) on them [21]. In their work, in-

stead of a static character library as in the typical practice of OCR methods,

a dynamic library of symbols is constructed. The construction process begins

with an empty library and each extracted component is compared to the current

elements of the library to check if it is (or, it contains) an already discovered

symbol. If so, the location of the occurrence is recorded to the document’s code-

book and the symbol is removed from the document. If it is a new symbol, it is

added to the library, as well. Of course, this comparison stage includes further

complexities to ensure that the symbols occurring in the connected components

can be correctly deduced. Once the codebooks are constructed, the user queries

can be processed. The number of symbols in the dynamic symbol library tends

to increase as more documents are processed. Consequently, processing new doc-

uments becomes inefficient, when there are thousands of symbols to be compared

in the symbol library. Users can construct queries only by query by example

CHAPTER 3. RELATED WORK 13

GREEDY APPROACH (A connected component CC, a letter library LL)
1. Found segment FS = null
2. Repeat
3. Obtain a segment S of CC
4. Compare S with each letter L in LL
5. if for some L, Similarity (S, L) > threshold T
6. T = Similarity (S, L)
7. FS = S
8. end if
9. Until (All possible windows are slid horizontally on CC)
10. if (FS is not null)
11. Remove FS from CC
12. Record FS and its matching letter
13. Call GREEDY APPROACH for remaining parts of CC
14. Endif

Figure 3.3: The pseudocode for the greedy segmentation and recognition algo-
rithm.

(QBE) as in [4] and [5]. That is, the user must find an instance of the query word

in the processed documents.

In another study, we adapted the symbol segmentation approach described

in [21] and employed a static character library for a more traditional OCR task,

i.e., where only textual images are considered and documents involving figures,

drawings, decorations, etc. are discarded [2, 25]. In Figure 3.2, we provide the

pseudo code for the greedy segmentation and recognition approach for connected

letters [25]. In a nut shell, this algorithm slides several windows with varying

sizes over each connected component, and for each such window it computes the

similarity of the letter in the library and the segment extracted by the window.

The highest scoring segment is then decided as a correct recognition and removed

from the connected component. The same approach is then recursively applied

for the remaining parts of the connected component, until it is totally consumed.

Queries can be given by either using a virtual keyboard designed for Ottoman

script or selecting a query region over processed documents (QBE).

CHAPTER 3. RELATED WORK 14

Figure 3.4: Illustration of the greedy approach: windows are segmented in the
order of descending similarity score, i.e., 5, 1 and 3. Since the third window is an
incorrect segment that overlaps with windows 2 and 4; once it is removed, it is
not anymore possible to recognize the other two medial type letters in windows
2 and 4.

The greedy segmentation of letters may not always provide the optimum re-

sults. This is essentially caused by the greedy nature of the algorithm: an in-

correct choice especially at the earlier stages of the recognition may mislead the

following stages and significantly reduce the overall recognition rate. For instance,

in Figure 3.4, we illustrate how the greedy algorithm may fail while segmenting

and recognizing the letters from a connected component that actually includes 4

letters. Furthermore, the greedy method can not use the statistical information

like letter occurrence frequencies and n-gram probabilities. To overcome these

problems, we propose a new method that has almost the same complexity with

the greedy approach but postpones the recognition decision at the end, in order

to find optimum letter boundaries and exploit the occurrence probabilities among

letters.

Chapter 4

The Segmentation and

Recognition Framework

In Figure 4.1, we illustrate the stages of the proposed segmentation and recog-

nition framework. In this study, we start with extracting connected components

from the Ottoman documents and obtain a set of possible segments from a com-

ponent by applying sliding-windows of varying sizes. As we mention before, the

purpose of obtaining these segments is not actually determining the real letter

boundaries, which will be achieved along with recognition in the final stage. For

each extracted segment, a number of features, such as the segment’s aspect ra-

tio, and distance and angular span vectors, are computed. Each such segment

is compared to the letters in the library and matched to a candidate letter that

yields the highest similarity score. It should be noted that, there might be several

different (overlapping) segmentations and candidate letter recognitions for a par-

ticular connected component due to the varying sizes of sliding-windows. Finally,

by using a graph-based model, we efficiently compute a particular sequence of the

candidate letters that maximizes a scoring function over all possible candidate

letter sequences. Each stage is described in detail in the following sections.

15

CHAPTER 4. THE SEGMENTATION AND RECOGNITION FRAMEWORK16

Figure 4.1: The stages of the proposed segmentation and recognition approach.

CHAPTER 4. THE SEGMENTATION AND RECOGNITION FRAMEWORK17

Figure 4.2: Determining the line height information.

4.1 Extracting and Segmenting Connected Com-

ponents

A connected component is defined as a connected group of black pixels in the doc-

ument image. Connected components are extracted using the approach outlined

in [24]; that is, the document is scanned from left to right and top to bottom,

and whenever a black pixel is encountered a 4-connected boundary detection al-

gorithm is employed to obtain the bitmap of the component and remove it from

the original document. It should be noted that the nested components, diacrit-

ics and dots are detected separately. For the purposes of this study, we restrict

ourselves to recognize letters without diacritics and dots (as shown in the alpha-

bet in Figure 2.1), thus these components are discarded by using the predefined

thresholds for component width, height and area. This operation also removes

some of the noise in the document images.

The line height information is also extracted from documents while connected

components are identified. This is achieved by using the horizontal projection

vector of the document (see Figure 4.2). Upper and lower bounds for each line

are found by tracing horizontal projection vector and detecting peaks. In this

CHAPTER 4. THE SEGMENTATION AND RECOGNITION FRAMEWORK18

Figure 4.3: An Ottoman letter.

way, all connected components learn the height of the line that they belong to.

The ratio of the letter height to the height of the line is later used during the

determination of candidate letters.

Once the connected components are extracted, the next step is obtaining a set

of segments. The sliding-window segmentation approach does not make an initial

“guess” about the letter boundaries, but simply slides a window of varying sizes

over the bitmap of the connected component. In particular, the window is applied

for all sizes between the component width and a predefined minimum width, so

that almost all possible sizes can be tried. This is necessary in order to find the

letter boundaries as accurate as possible in the following stages. The content

of each such window is stored as a segment, along with a number of features as

discussed in the next subsection. It should be noted that, while some segments

may correspond to a single letter, which is the preferred case, some others may

include parts of one or more letters. The latter type of erroneous segments will be

eliminated in the candidate letter determination stage, as discussed in Section 4.3.

CHAPTER 4. THE SEGMENTATION AND RECOGNITION FRAMEWORK19

Figure 4.4: Angular and distance span of the letter in Figure 4.3.

4.2 Extraction of Segment Features

A number of features for each segment are computed, as described below.

• Segment aspect ratio is basically the ratio of width and height of the ex-

tracted segment.

• Segment height ratio is the ratio of a segment’s height to the height of the

line that it belongs to.

• Angular span vector is the number of black pixels in θ-degree slices centered

at the center of mass with respect to the horizontal axis.

• Distance span vector is the number of black pixels in between the concentric

circles centered at the center of mass with radius r, 2r, 3r, etc.

The angular and distance span vectors are the spatial domain features as

described in [21] for the Ottoman character recognition task. The entries of these

vectors are normalized by the area, which is the total number black pixels, of the

segment. In this work, angular and distance span vectors of the sizes 12 and 8 are

used, respectively. Figure 4.4 illustrates these vectors for an example letter from

CHAPTER 4. THE SEGMENTATION AND RECOGNITION FRAMEWORK20

the alphabet. It should be noted that, both of these features are scale invariant.

Rotation invariance can be achieved by simply shifting entries of angular span

vector by one slice to the left and right.

4.3 Determining Candidate Letters

At this stage, the segments are compared to a predefined library of Ottoman

letters to obtain a similarity score. For each letter in the library, the features

discussed in the previous section are also computed and stored. During candidate

letter determination, the similarity of each segment to the letters in the library

is computed and the top score for each segment (and the corresponding letter)

is obtained. If the highest similarity score for a segment is less than a threshold

value, this segment is discarded (e.g., it may include a part of a letter or more

than one letter, etc.). Otherwise, the best-matching letter for that particular

segment is called a “candidate letter”, and it is stored along with the similarity

score and segment width, to be used in the final recognition stage.

Recall that, a letter can have four different positions and for each position it

can have different shapes in Ottoman script. This information can be exploited

to reduce the number of similarity computations between a segment and the

letters in the library. More specifically, for each segment, we keep track of its

relative position type (i.e., beginning, medial, end or isolated) with respect to the

component from which it is extracted, and compare the segment with only those

letters that can appear at that particular position.

In this work, the histogram intersection technique [23] is adapted for mea-

suring similarity between two feature vectors H1 and H2, that belongs to an

extracted segment and a letter in the library, respectively. In Equation 4.1, |H|
denotes the sum of all entries of vector H. Here, the range for the similarity mea-

sure is [0, 1]. If two letters are similar, their feature vectors are also similar and

their histogram intersection value is close to 1. Conversely, if they are dissimilar,

similarity value is relatively lower.

CHAPTER 4. THE SEGMENTATION AND RECOGNITION FRAMEWORK21

Similarity(H1, H2) =

∑n
i=1 min(H1[i], H2[i])

min(|H1| , |H2|)
(4.1)

The overall similarity of the segment S and the letter L is computed as an

equally weighted (i.e., 0.5) linear sum of the histogram intersection scores for

the distance and angular span vectors. There are two more features involved in

similarity calculation. These are the aspect ratio of the segment and the ratio of

the segment’s height to the height of the line that it belongs to. If at least one of

these ratios for S is different than the corresponding ratio for L by a predefined

threshold, the similarity of S and L is set to 0 without further computation.

4.4 Recognition

Given a set of segments and corresponding candidate letters, our goal in the

recognition stage is to define a function for scoring each different syntactically

correct sequence of these candidate letters, and choose the sequence that max-

imizes this function. To this end, we first formally define the scoring function,

which also exploits letter statistics, and then describe a graph-based model to

efficiently find the sequence that maximizes the scoring function.

Recall that, the segments and corresponding candidate letters obtained from

a particular connected component can have varying sizes, overlapping boundaries

and various similarity scores. Thus, while determining a sequence of these can-

didate letters as the final recognition, we want to satisfy the following goals, to

the greatest extent possible:

1. the candidate letters in the sequence should cover the connected component,

2. the boundaries of candidate letters should not overlap,

3. the candidate letters should have high similarity scores, and

4. the probability of letters for being consecutive should be as high possible.

CHAPTER 4. THE SEGMENTATION AND RECOGNITION FRAMEWORK22

Remarkably, it may not be possible to maximize all of these goals at the same

time. For instance, two candidate letters with the highest similarity scores may

have overlapping boundaries. Or, it may be impossible for these letters to appear

consecutively in a connected component according to the Ottoman language rules

(e.g., both letters may be in the form that can only appear at the beginning of a

component). Thus, the overall problem can be seen as a maximization problem

expressed in the form of the score function shown in Equation 4.2.

Score =
n∑

i=1

(wi × si + P (li|li−1, li−2, ..., lo)× c) + (w0 × s0 + P (l0)× c) (4.2)

such that End-X-coordinate(i -1) < Start-X-coordinate(i)

In this equation, wi denotes the ratio of the candidate letter i ’s width to the

width of the connected component from which this letter is extracted, and si

denotes the similarity score of this candidate letter. P (li|li−1, li−2, ..., lo) denotes

the probability of encountering the letter li after seeing a sequence of letters lo

to li−1. Finally, c is a constant (0 < c < 1), which assigns weight for the letter

statistics. It should be noted that, these three elements of the equation maps

to the goals 1, 3 and 4 discussed above. The constraint stating that the end

x-coordinate of the (i-1)th letter should be less than the start x-coordinate of the

ith letter corresponds to the goal 2, and the new candidate letters can be added

to the current sequence as long as this constraint is not violated. Typically,

the number of letters in a sequence (n) would be less than the total number of

candidate letters extracted from the connected component.

It should be noted that Equation 4.3 is an approximation of Equation 4.2 and

it uses only unigram and bigram frequencies of the letters. In this work, we use

Equation 4.3 since unigram and bigram frequencies can be easily obtained from

the datasets and it gives way to an efficient solution. That is, the sequence of

candidate letters that maximizes Equation 4.3 can be found in polynomial time

by using a graph-based model.

Score =
n∑

i=1

(wi × si + P (li|li−1)× c) + (w0 × s0 + P (l0)× c) (4.3)

CHAPTER 4. THE SEGMENTATION AND RECOGNITION FRAMEWORK23

CONSTRUCT GRAPH (A candidate letter list CLL)
1. Create a graph G with a single node FINAL
2. Sort CLL in descending order according to end-X

coordinate of candidate letters.
3. for each candidate letter i in CLL in descending order
4. Add node i to G
5. Add an edge weighted from i to FINAL
6. for each node j in G except FINAL node
7. if segment of j and segment of i does not overlap

&& candidate letter j can be followed by i
8. Add edge from i to j
9. Set edge weight
10. end if
11. end for
12. end for
13. Return G

Figure 4.5: The pseudo code for the graph construction. It should be noted that,
the resulting graph is topologically sorted.

Graph construction is achieved as follows: Each candidate letter is added

as a node to construct a directed acyclic graph. An edge from the node i to

node j is created if these candidate letters do not overlap and the position of j

precedes i (as Ottoman is written from right to left) in the component from which

they are extracted. Ottoman syntax constraints for the letter forms appearing

in a connected component are also considered. For instance, no edges can exist

between any two candidate letters that are both in the beginning or end form.

There is no incoming edge for a letter in the isolated form and the only outgoing

edge is to the final node. Finally, no edge can occur from a letter in the end or

medial form to a letter in the beginning form. The weight for an outgoing edge

is given as wi × si + P (li|li−1)× c, where P (li|li−1) is the probability of the letter

sequence implied by the transition. There is an additional node in the graph called

“final node”, which is needed for transforming the problem into a simple search

for the longest path. The final node has incoming edges from all nodes and no

outgoing edges. Edges that arrive to the final node is given weight wi×si +P (li),

since there is no bigram frequency for the letter sequence arriving to this special

node. In this way, partially recognized connected components are not ignored. In

CHAPTER 4. THE SEGMENTATION AND RECOGNITION FRAMEWORK24

Figure 4.6: The graph constructed for a sample connected component shown
at the upper left corner. The longest path corresponding to the recognition is
indicated with straight lines. Final node is shown in gray.

Figure 4.5, we provide the pseudo code for the graph construction. Remarkably,

the construction procedure outlined here yields a topologically sorted graph. Once

the graph is constructed, we find the longest path in this graph. The resulting

path, which maximizes Equation 4.3, includes the sequence of letters that are

returned as the recognized letters for a particular component.

In Figure 4.6, an example graph is depicted for a connected component in-

cluding 4 letters. Recall that Ottoman script is written from right to left. Sub-

sequently, the nodes are topologically sorted from right to left according to their

distance to the rightmost pixel of the connected component. In this graph, there

are two candidate letters for the beginning position, four candidate letters for the

medial position and two candidate letters for the end position. Indeed, the ac-

tual graph for this example involves approximately 65 nodes and more than 1000

edges, which are not shown for simplicity. That is, the segments with different

sizes may lead several candidate letters for a particular connected component.

CHAPTER 4. THE SEGMENTATION AND RECOGNITION FRAMEWORK25

For instance, consider the candidate letters for the leftmost position of the com-

ponent in Figure 4.6. A wider segment (incorrectly) led to the ‘b’ like candidate

letter whereas a narrower one yields the (correct) ‘l’ like candidate letter. In the

figure, we illustrate two paths on the graph: the longest path and another path

with a lower score, corresponding to the correct recognition and a faulty recogni-

tion, respectively. Clearly, the actual segmentation of the letters is also achieved

along with the recognition.

Chapter 5

An Information Retrieval

Framework for Ottoman Archives

The ultimate aim of the character-based recognition of Ottoman documents is

to build an information retrieval (IR) environment for digital Ottoman archives,

which provides effective query formulation and resolution within reasonable time

constraints. As it is mentioned in the related work chapter, earlier works in the

literature essentially focus on content-based retrieval [5, 4, 21], which is flexible

yet far from providing the efficiency advantages of a typical IR system, especially

for large collections of documents. Furthermore, since CBR approaches essentially

rely on image similarities, they tend to allow QBE based user interfaces, and users

can not construct their queries as in a typical keyword-search scenario. Thus, a

compromise may be constructing an IR system for the printed and/or well-written

Ottoman documents, for which a recognition system as described above can reach

high accuracy rates. This would allow both fast access and sophisticated querying

features of an IR system for a large subset of the Ottoman archives. For harder

documents (i.e., unreadable handwritten documents, etc.) that would probably

yield lower recognition rates, content-based solutions can still be applied.

26

CHAPTER 5. AN INFORMATION RETRIEVAL FRAMEWORK ... 27

In what follows, essentials of an IR system and its performance on OCRed

collections are briefly reviewed as published in the literature. Then, our IR frame-

work is presented, which is based upon the document contents that are OCRed as

described in the previous section. In the next Chapter, the effects of the proposed

recognition framework on the information retrieval performance is evaluated.

5.1 Typical Components of an IR System

In an IR system, finding the set of relevant documents to a user query depends

on both the representation of documents and the similarity metric defined ac-

cordingly between a document and a query. Vector Space Model is one of the

most widely used document representation methods in the literature. In this

model, term frequencies are regarded as the content descriptors of documents.

A document is represented as a vector of d dimensions, where d is the number

of index terms. Each dimension corresponds to a separate index term. For a

document, frequencies of its index terms are used to assign a value to the respec-

tive dimension of the vector. This value may also be a Boolean value (0 or 1),

solely indicating the existence of the index terms in documents. These vectors

are called as document vectors [20].

In a full-text index, all of the terms encountered in the documents are used for

indexing and constitute the vocabulary of the dataset. Stopping is a widely used

technique for ignoring terms that are ineffective in discriminating documents

for query resolution. A stopword list is a collection of such terms. Since the

storage efficiency is not a concern for our experiments and there is no available

stopword list constructed for Ottoman language, a stopword list is not used in our

framework. Stemming is another method that not only shrinks the vocabulary

of the dataset, but may also increase the effectiveness of an IR environment

depending on design factors such as the stemming algorithm and the language

used [15]. For highly inflected languages, such as Arabic and Ottoman, developing

effective stemmers is a hard task and not within the scope of this thesis.

CHAPTER 5. AN INFORMATION RETRIEVAL FRAMEWORK ... 28

Table 5.1: Definitions of some statistical terms.
Term Meaning
fd,t The frequency of term t in document d
fq,t The frequency of term t in the query
ft The number of documents containing one or more occur-

rences of term t
Ft The number of occurrences of term t in the dataset
N The number of documents in the dataset
n The number of indexed terms in the dataset

An inverted file is the state-of-the-art indexing preference for large-scale search

engines and IR systems [29, 28]. Inverted file structure is composed of posting lists

for each index term and an array of document weights. A posting list typically

contains <document ID, frequency> pairs and may also include term positions in

each document. A pair indicates existence of the term in a document by keeping

the ID of the document along with the term frequency.

During the evaluation of a keyword-based query, only the posting lists of

the terms that appear in the query are retrieved. Partial similarity scores for

each document are calculated by iterating over these posting lists and they are

summed up over an array of “accumulator” variables. At the end, highest scoring

documents are retrieved by using the accumulator array. Several optimizations

over this basic processing scheme are proposed in the literature and effectively

employed in the real-life systems [28].

In the above process, the similarity between a query and documents can be

calculated by one of the several measures in the literature. These measures ba-

sically assign weights for the terms in the query and documents, making use of

some statistics derived from the collection (see Table 5.1).

Similarity (q, d) =

∑
t∈q
wq,t × wd,t∑
t∈d
fd,t

, where wd,t = fd,t and wq,t =
N

ft

(5.1)

Each query term’s weight may be proportional to the inverse document frequency

(IDF) of the term. The weights of terms in documents may be proportional to

the term frequency (TF). A general name for such weighting schemes is TF x

IDF formulations. See Equation 5.1 for a simple TF x IDF similarity formulation

CHAPTER 5. AN INFORMATION RETRIEVAL FRAMEWORK ... 29

between a query q and a document d. Most similarity measures defined in the

literature are the variations of the TF x IDF formulation.

The earlier works also identify that there is an important need to evaluate

the IR performance on OCRed collections as the recognition process may mislead

IR systems, which essentially use the information that whether a term appears

or not in a document, in one way or the other. To remedy this problem, several

methods are proposed. These methods generally try to correct OCR errors or

expand the query [11, 14, 18]. In these works, it is shown that negative effects

of OCR errors can be reduced by such advanced methods. On the other hand,

for the cases where OCR is highly successful, the IR performance is observed to

be insensitive to the recognition errors and there may be no need for any further

modification in the IR system [11].

5.2 Information Retrieval Framework for Ot-

toman Documents

In this section, an IR framework is described for the Ottoman documents that

have passed through the recognition stage as described before. Note that, since

there are several high-quality prototype systems for IR with sophisticated fea-

tures, we prefer to use one of these systems instead of constructing a new one

from the scratch. In particular, we use the Zettair search engine, which is pro-

vided by RMIT and widely used in the literature [26]. Zettair creates an inverted

index file for a given collection and then executes the queries on top of this index

by employing one of the several available similarity metrics.

To be able to use Zettair with the OCRed Ottoman documents, we have to

solve two problems. First of all, IR systems typically index and search words as a

whole, whereas our recognition results are per connected component. Recall that,

an Ottoman word may involve several connected components separated by white

space. Thus, we need a method for re-constructing terms to be indexed, at the

CHAPTER 5. AN INFORMATION RETRIEVAL FRAMEWORK ... 30

Figure 5.1: Grouping recognized letters into words and mapping these words into
ASCII characters.

first place. In this thesis, word boundaries are decided by using the original doc-

ument collection, i.e., before the recognition process. In particular, it is achieved

by applying a threshold for the distance between two connected components. It

is obvious that there can not be a global threshold for word segmentation through

the entire collection. Therefore, for each line, a threshold is calculated by con-

sidering the distances between its connected components. In Figure 5.1 (a) we

illustrate a line from an original Ottoman document and in Figure 5.1 (b) we show

how the word boundaries are detected. Next, the document is passed through our

recognition process, after which the boundaries are still kept as obtained before

(See Figure 5.1 (c)).

Clearly, the documents to be indexed contain the recognition results involving

Ottoman letters, which are not supported by the Zettair system. To overcome

this difficulty, we simply decided to convert an OCRed Ottoman text (as in

Figure 5.1 (c)) to a version including ASCII characters. More specifically, each

CHAPTER 5. AN INFORMATION RETRIEVAL FRAMEWORK ... 31

Figure 5.2: The architecture of IR framework for Ottoman Archives.

Ottoman letter is converted to a set of ASCII characters; for instance the leftmost

Ottoman letter in Figure 5.1 is mapped to V2 and the second one is mapped to

A2. In Figure 5.1 (d), the letter-id of the Ottoman characters are illustrated as

recognized by our system, and in Figure 5.1e their corresponding ASCII represen-

tation is shown. Note that, this basic approach is for experimental purposes only,

i.e., to evaluate the IR performance on top of the OCRed documents. A real life

IR system should better be extended to handle Ottoman characters, which could

be expressed in some standard way, e.g., by UTF encoding, in both recognition

results and in the queries. For the simplistic framework defined here, the queries

are also processed in Ottoman in the same manner (i.e., by converting to ASCII

characters before evaluation).

In Figure 5.2, the architecture of our IR framework for OCRed Ottoman doc-

uments are illustrated. Note that, in this framework, the query can be specified

either by selecting a region from an example document (QBE) or by typing the

actual word(s) using the letters in our library. For the former case, we decide

CHAPTER 5. AN INFORMATION RETRIEVAL FRAMEWORK ... 32

on the word boundaries in the query, recognize the letters and then map them

to ASCII exactly in the same manner as for the documents. For the latter case,

it is presumed that a virtual keyboard including the Ottoman letters in the li-

brary shown in Figure 2.1 are presented to the user, so that the word boundary

detection and character recognition stages are redundant and the query word(s)

are immediately sent to the query processing module once they are mapped to

ASCII characters.

Chapter 6

Experimental Results

Experiments are divided into two sections. In the first section, the proposed

segmentation and recognition method is evaluated. Next, the impact of OCR

errors on the retrieval performance is analyzed.

Experiments are performed on 100 pages of printed text, scanned from two

different books teaching Ottoman script [10, 17]. The documents are scanned at

300 dpi and saved as gray scale images. Page skew is avoided manually in this

step. Nearest color reduction method is used to binarize images. Processing time

is approximately 4 seconds per document on a personal computer with 2.0 GHz

Intel processor.

6.1 Recognition Evaluation

The library used in this study includes the 48 letters shown in Figure 2.1. All

model images in the library are manually extracted from a single Ottoman doc-

ument. During candidate letter determination, we discard the segments that are

not similar to any letter in the library more than a predefined threshold, i.e., 0.85.

The dataset includes documents with different font sizes and thickness (see

Figure 6.1). To obtain the ground truth data, the letters in these documents

33

CHAPTER 6. EXPERIMENTAL RESULTS 34

Figure 6.1: Sample lines from our dataset with different font size and letter
thickness.

are manually annotated (i.e., matched against the letters in the library) by using

a tool developed for this purpose in our research group. 50 randomly selected

documents are used for learning unigram and bigram frequencies and the remain-

ing documents in the dataset are used for testing. On the whole dataset, there

were 34,298 annotated connected components, each of which contains 2.04 letters

on the average. The experiments yield the highest recognition rates when the

constant c in Equation 4.3 is set to 0.025. In Figure 6.2, the optimum value

of c for our test case can be observed. As the bias introduced to the system is

further increased, system performance measures (i.e., precision and recall rates)

fall drastically. It is basically due to excessive promotion of links between nodes

in the graph, whose occurance probabilities are higher.

In Table 6.1, we provide recognition success over train and test sets in terms of

precision and recall. Precision is the number of correct letter recognitions divided

by the number of all recognitions as returned by our system. Recall is the number

of correct letter recognitions divided by the total number of annotated letters in

the dataset. The results shown in the first two rows of Table 6.1 reveal that

CHAPTER 6. EXPERIMENTAL RESULTS 35

Figure 6.2: The change in recognition performance as the constant c is varied.

Collection Precision Recall Number of
annotated letters

Train set (50 pages)c = 0.025 0.936 0.942 33,133
Test set (50 pages) c = 0.025 0.931 0.939 36,908

Test set (50 pages) c = 0 0.907 0.904 36,908

Table 6.1: Recognition performance of the proposed method.

the proposed approach achieves very high recognition rates for both train and

test sets. We also evaluate the effect of using letter frequencies in Equation4.3

by setting the c constant to 0. In this case, both precision and recall drop for

the test set. This shows that, using letter frequencies is an important factor for

improving overall performance. In Figure 6.3, the recognition results are shown

for a sample document.

In Table 6.2, more detailed recognition statistics are given according to the

number of letters in a connected component. Each connected component may

include a number of letters. More than half of the components in our dataset

are composed of two or more letters. In Table 6.1, if all letters are correctly

recognized for a component, then it is called an exact match. If some additional

CHAPTER 6. EXPERIMENTAL RESULTS 36

Number of Subset Superset Exact Total number Exact/
letters per Match Match Match of connected Total
component components

1 0 4 7,619 7,746 0.98
2 11 47 4,608 5,138 0.90
3 14 53 2,392 2,919 0.82
4 5 35 1,014 1,263 0.80

5+ 4 79 573 921 0.62
Total 34 218 16,206 17,987 0.90

Table 6.2: Recognition rates per connected component including varying number
of letters.

letters are found for a component, it is called a superset match. If a subset of

the letters in a component is recognized correctly, it is called a subset match.

In the ideal case, the ratio of exact matches to the total number of components

should be high. In our experiments, we observe that this ratio is 90 percent.

This result is another indication that system can be used as a building block for

a content-based retrieval system for Ottoman archives.

CHAPTER 6. EXPERIMENTAL RESULTS 37

Figure 6.3: The recognition results for a sample document. For each line, the
lower part includes the original script and the upper part includes the recognized
letters, as recorded in the library (i.e., without dots and diacritics).

CHAPTER 6. EXPERIMENTAL RESULTS 38

6.2 Information Retrieval Experiments

In the following experiments, the possible effect of OCR errors on IR performance

is analyzed. Note that, the goal is not to evaluate the IR effectiveness on Ottoman

documents, which would require a larger collection, TREC-like query topics and

their relevance judgments. Instead, we solely compare for a given set of queries

whether the query results significantly differ when the query is executed over the

original (ground truth) document collection and its OCRed version.

Experiments are performed on both ground truth and OCRed documents as

follows. As it is mentioned before, the ground truth texts are obtained by manu-

ally annotating the original documents (100 pages). These texts are then indexed

by using the open source Zettair search engine. Most frequent 50 words are iden-

tified out of the 6870 index terms and used as the query set. These queries are

evaluated and the top K (where K is typically 10) most-similar documents are

obtained by using several different similarity measures implemented in Zettair.

That is, during query evaluation, we experimented with four different similarity

measures, namely Cosine [22], Okapi BM25 [13], Hawking’s Okapi variant [12]

and a language modeling based approach with Dirichlet smoothing [27]. For all

of these measures (and all other parameters) default settings of Zettair are used.

Next, OCRed versions of the same documents are obtained by using our segmen-

tation and recognition framework. OCRed texts are also indexed in the same

way and 7542 index terms are found. The same set of queries is also evaluated

on the OCRed texts by using the same document similarity metrics. Ranked

list of documents for each similarity metric are later compared by calculating a

symmetric difference score (see Figure 6.4).

The symmetric difference score computes the similarity of the two results lists

for a query, generated from the ground truth and OCRed documents, by ignoring

the order of the documents retrieved. If y is the size of the union of the top

K retrieved documents in the lists and x is the number of the documents that

appear only in one of the two lists, then the symmetric difference score is assigned

to be 1-x/y. If the two lists are similar, the symmetric difference score is close

to 1. If these two lists are totally disjoint, then the score becomes 0 [7].

CHAPTER 6. EXPERIMENTAL RESULTS 39

Figure 6.4: The method to test the effect of OCR errors on IR performance.

Table 6.3: Symmetric difference for the top K retrieved documents with different
document similarity metrics.

K Cosine Dirichlet Okapi Hawkapi
Measure (µ=1500) BM25 (α=0.5)

1 0.920 0.880 0.900 0.880
2 0.833 0.813 0.813 0.860
3 0.786 0.780 0.806 0.802
5 0.781 0.776 0.801 0.782
10 0.773 0.784 0.805 0.782

CHAPTER 6. EXPERIMENTAL RESULTS 40

In Table 6.2, it is seen that top K documents that are retrieved by using

the OCRed and ground truth texts mostly overlap for varying values of K, as

the symmetric difference score is over 0.8 in most of the cases. It can also be

observed that the symmetric difference scores do not vary significantly for different

similarity metrics and a particular K. This implies that the choice of the similarity

measure does not affect the retrieval results significantly in this case.

From the above observations we conclude that 5 percent accuracy loss in OCR

as reported in Section 6.1 has a limited impact on the retrieval performance. This

also conforms to the earlier findings in the literature, i.e., in [11] it is claimed most

IR systems are almost unaffected by errors when OCR accuracy is higher than

95 percent.

Chapter 7

Conclusion

In this thesis, a novel method for recognizing connected letters for printed Ot-

toman script is proposed. Segmentation and recognition stages are integrated

so that weaknesses of the classifier can be compensated by taking into account

possible letter sequences for a particular connected component. The sequence of

candidate letters that formulates a connected component is found by tracing the

longest path over the acyclic graph constructed for the bigram approximation

of our score function. Experiments show that high recognition rates are achiev-

able by using the proposed approach. It is also experimented and verified that

the negative effects of OCR errors on IR performance are tolerable when high

recognition rates are obtained. Thus, it is possible to construct an IR framework

for printed digital Ottoman archives on top of the proposed segmentation and

recognition method.

The framework proposed for recognition of Ottoman characters in this thesis

can be generalized for other fonts and scripts as well. It is possible to learn a letter

library from sample documents automatically instead of manual creation of the

letter library. The letter library should involve a set of segments extracted from

training documents so that all the connected components of training documents

can be formulated with learned segments. These segments can later be used

for recognizing the text in similar documents. It should be noted that letters

may repeat in various connected components in different positions in training

41

CHAPTER 7. CONCLUSION 42

documents. Therefore learned segments is also expected to match actual letters

of the alphabet of the training documents.

As a future work, it is possible to improve the proposed method by integrat-

ing it with some OCR correcting schemes in the literature in order to reduce

misrecognition rates. Since alternative set of candidate letters lays over different

paths in the graph, it is also possible that the correct sequence of letters may be

on the second or even third longest path. The use of a dictionary and collection

frequencies of terms in the train set may further improve the recognition rates.

Another future research direction would be to see the performance of the proposed

approach for other printed or handwritten datasets with varying characteristics.

Bibliography

[1] M. Allam. Segmentation vs. segmentation-free for recognizing arabic text.

Proceedings of the International Society for Optical Engineering, 2422:228–

235, 1995.

[2] I. S. Altingovde, E. Saykol, O. Ulusoy, U. Güdükbay, E. Çetin, and

M. Göçmen. Osmanlı arşivleri içerik-bazlı sorgulama (ibs) sistemi. In SUI

’06: IEEE Sinyal İşleme ve Uygulamaları Kurultayı. IEEE, 2006.

[3] A. Amin. Off-line arabic character recognition: the state of the art. Pattern

Recognition, 31(5):517–530, 1998.

[4] E. Ataer and P. Duygulu. Retrieval of ottoman documents. In Multimedia

Information Retrieval, pages 155–162, 2006.

[5] E. Ataer and P. Duygulu. Matching ottoman words: an image retrieval

approach to historical document indexing. In CIVR ’07: Proceedings of

the 6th ACM International Conference on Image and Video Retrieval, pages

341–347, New York, NY, USA, 2007. ACM.

[6] A. A. Atici and F. T. Yarman-Vural. A heuristic algorithm for optical char-

acter recognition of arabic script. Signal Process., 62(1):87–99, 1997.

[7] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. S. Maarek, and

A. Soffer. Static index pruning for information retrieval systems. In SIGIR

’01: Proceedings of the 24th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 43–50, New

York, NY, USA, 2001. ACM.

43

BIBLIOGRAPHY 44

[8] R. G. Casey and E. Lecolinet. A survey of methods and strategies in charac-

ter segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 18(7):690–706,

1996.

[9] J. Chan, C. Ziftci, and D. Forsyth. Searching off-line arabic documents. In

CVPR ’06: Proceedings of the 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 1455–1462, Washington,

DC, USA, 2006. IEEE Computer Society.

[10] H. Develi. Osmanlı Türkçesi Kılavuzu 1. 3F Yayınevi, İstanbul, TURKEY,

2006.

[11] D. Doermann. The indexing and retrieval of document images: a survey.

Comput. Vis. Image Underst., 70(3):287–298, 1998.

[12] D. Hawking, T. Upstill, and N. Craswell. Toward better weighting of anchors.

In SIGIR ’04: Proceedings of the 27th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages

512–513, New York, NY, USA, 2004. ACM.

[13] K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of infor-

mation retrieval: development and comparative experiments. Inf. Process.

Manage., 36(6):779–808, 2000.

[14] P. B. Kantor and E. M. Voorhees. The trec-5 confusion track: Comparing

retrieval methods for scanned text. Inf. Retr., 2(2-3):165–176, 2000.

[15] M. Kantrowitz, B. Mohit, and V. Mittal. Stemming and its effects on tfidf

ranking (poster session). In SIGIR ’00: Proceedings of the 23rd Annual

International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, pages 357–359, New York, NY, USA, 2000. ACM.

[16] M. S. Khorsheed. Off-line arabic character recognition - a review. Pattern

Analysis & Applications, 5:31–45, 2002.

[17] Y. Kurt. Osmanlıca Dersleri 1. Akçağ Yayınları, Ankara, TURKEY, 2006.

[18] W. Magdy and K. Darwish. Effect of ocr error correction on arabic retrieval.

Information Retrieval, 11(5):405–425, 2008.

BIBLIOGRAPHY 45

[19] A. Öztürk, S. Güneş, and Y. Özbay. Multifont ottoman character recogni-

tion. In ICECS ’07: Proceedings of the 7th IEEE Int. Conf. on Electronics

Circuits and Systems, pages 945–949. IEEE, 2007.

[20] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic

indexing. Commun. ACM, 18(11):613–620, 1975.

[21] E. Saykol, A. K. Sinop, U. Güdükbay, Ö. Ulusoy, and A. E. Çetin. Content-

based retrieval of historical ottoman documents stored as textual images.

IEEE Transactions on Image Processing, 13(3):314–325, 2004.

[22] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normal-

ization. In SIGIR ’96: Proceedings of the 19th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,

pages 21–29, New York, NY, USA, 1996. ACM.

[23] M. J. Swain and D. H. Ballard. Color indexing. International Journal of

Computer Vision, 7(1):11–32, 1991.

[24] I. H. Witten, T. C. Bell, and A. Moffat. Managing Gigabytes: Compressing

and Indexing Documents and Images. John Wiley & Sons, Inc., New York,

NY, USA, 1994.

[25] I. Z. Yalniz, I. S. Altingovde, U. Güdükbay, and O. Ulusoy. Ottoman archives

explorer: A retrieval system for digital ottoman archives. under review, 2006.

[26] Zettair. Zettair search engine, version 0.9.3. Available:

http://www.seg.rmit.edu.au/zettair/, 2008.

[27] C. Zhai and J. Lafferty. A study of smoothing methods for language models

applied to information retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

[28] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Comput.

Surv., 38(2):6, 2006.

[29] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus signature

files for text indexing. ACM Trans. Database Syst., 23(4):453–490, 1998.

Appendix A

Ottoman Archives Explorer

Figure A.1 shows the Web interface of Ottoman Archives Explorer. It is a proto-

type content-based retrieval system for digital Ottoman archives. The user can

specify a query in two different ways, either by browsing through the available

documents and selecting an example region to be searched for, or directly en-

tering the query word in the virtual keyboard, which is at the right-hand side

frame of the user interface. Figures A.2 and A.3, illustrate the former method,

example-based querying (QBE). The user selects a rectangular area including one

or more components, as shown in Figure A.2. The system consults to the cor-

responding document’s codebook to obtain the recognized characters ids’ within

the coordinates of the given region and than looks for the same or similar char-

acter sequences in all other codebooks. Finally, matches are returned to user in

the order of similarity. Figure A.3 shows the query result for the example. While

computing the similarity score, each exact matching component is weighted by 1;

each component that is a superset or subset of the query component is weighted

by 0.5; and each component that has overlapping characters with the query com-

ponents are weighted by 0.25.

In Figure A.1, the use of virtual keyboard can also be seen. In this case, the

user enters the query using the alphabet including all forms of characters (e.g.,

isolated, beginning, middle and end) so that the word may be constructed with

correct character sequence (but of course the connecting lines or curves between

46

APPENDIX A. OTTOMAN ARCHIVES EXPLORER 47

Figure A.1: Ottoman Archives Explorer Web user interface.

the characters are not shown). The query grid includes three lines, the middle

one is used for entering the actual query word and the upper and lower lines are

for the dots or other special characters that are above or below the characters in

the query word [25].

The Ottoman Archives Explorer prototype system is accessible online:

http://www.cs.bilkent.edu.tr/~bilmdg/ottoman/demo.htm.

APPENDIX A. OTTOMAN ARCHIVES EXPLORER 48

Figure A.2: A rectangular region over the document selected by the user for
querying. Letters recognized inside the rectangle are used for query resolution.

Figure A.3: A matching word is shown in the rectangle in a matching document
for the query formulated in Figure A.2.

Appendix B

Annotation Tool

Figure B.1 shows the annotation tool with a sample Ottoman document. At the

first step of the annotation, the document image is processed by the proposed

OCR framework and an annotation file is automatically generated. Next, the an-

notator fixes the mistakes in recognition in order to create the ground truth data.

In this way, it becomes easier and consequently faster to annotate large number

of pages, especially when recognition rates are high. Annotation is performed by

simply clicking on misrecognized connected components and selecting the correct

letter(s) by using the letter library on the right of the screen. The annotation

process for a document can be saved and resumed later.

49

APPENDIX B. ANNOTATION TOOL 50

Figure B.1: The user interface of the annotation tool. The selected component
(shown in the rectangle) is annotated with the letter ids 23, 36, 26, 27, 35 and 40
as entered to the textbox at the bottom. Annotated letters are redrawn over their
connected components in order to make the annotater to see annotated letters
better.

Appendix C

Codebook Viewer Tool

Figure C.1 depicts the codebook viewer. It shows the characters in the library

at the right hand-side panel and the character id on top of each recognized seg-

ment in the main panel. This tool is useful for having a visual understanding of

the performance of the character recognition task. Furthermore, this tool may

be used to gather relevance feedback from the users, to improve the success of

recognition [25].

51

APPENDIX C. CODEBOOK VIEWER TOOL 52

Figure C.1: Codebook viewer user interface.

