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HYPERGRAPH PARTITIONING-BASED FILL-REDUCING ORDERING

ÜMIT V. ÇATALYÜREK∗, CEVDET AYKANAT†, AND ENVER KAYAASLAN‡

Abstract. A typical first step of a direct solver for linear system Mx = b is reordering of symmetric matrix M
to improve execution time and space requirements of the solution process. In this work, we propose a novel nested-
dissection-based ordering approach that utilizes hypergraph partitioning. Our approach is based on formulation of
graph partitioning by vertex separator (GPVS) problem as a hypergraph partitioning problem. This new formulation
is immune to deficiency of GPVS in a multilevel framework hence enables better orderings. In matrix terms, our
method relies on the existence of a structural factorization of the input M matrix in the form of M = AAT (or
M = AD2AT ). We show that the partitioning of the row-net hypergraph representation of rectangular matrix A
induces a GPVS of the standard graph representation of matrix M . In the absence of such factorization, we also
propose simple, yet effective structural factorization techniques that are based on finding an edge clique cover of
the standard graph representation of matrix M , and hence applicable to any arbitrary symmetric matrix M . Our
experimental evaluation has shown that the proposed method achieves better ordering in comparison to state-of-
the-art graph-based ordering tools even for symmetric matrices where structural M = AAT factorization is not
provided as an input. For matrices coming from linear programming problems, our method enables even faster and
better orderings.

Key words. Fill-reducing ordering; hypergraph partitioning; combinatorial scientific computing.

AMS subject classifications. 05C65, 05C85, 68R10, 68W05

1. Introduction. In most scientific computing applications, the core of the computation
is solving a symmetric system of linear equations in the form Mx=b . Direct methods, such
as LU and Cholesky factorizations, are commonly preferred for solving such systems for
their numerical robustness. A typical first step of a direct method is a heuristic reordering
of the rows and columns of M to reduce fill in the triangular factor matrices. The fill is the
set of zero entries in M that become nonzero in the triangular factor matrices. Another goal
in reordering is to reduce the number of floating-point operations required to perform the
triangular factorization, also known as operation count. It is equal to the sum of the squares
of the nonzeros of each eliminated row/column, hence it is directly related with the number
of fills.

For a symmetric matrix, the evolution of the nonzero structure during the factorization
can easily be described in terms of its graph representation [42]. In graph terms, the elimi-
nation of a vertex (which corresponds to a row/column of the matrix) creates edges for every
pair of its adjacent vertices. In other words, elimination of a vertex makes its adjacent ver-
tices clique of size its degree minus one. In this process, the added edges directly correspond
to the fill in the matrix. Obviously, the amount of fill and operation count depends on the
row/column elimination order. The aim of ordering is to reduce these quantities which leads
to both faster and less memory intensive solution of the linear system. Unfortunately this
problem is known to be NP-hard [46], hence we consider heuristic ordering methods.

Heuristic methods for fill reducing ordering can be divided into mainly two categories:
bottom-up (also called local) and top-down (also called global) approaches [41]. In the
bottom-up category, one of the most popular ordering methods is Minimum Degree (MD)
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heuristic [44] in which at every elimination step vertex with minimum degree, hence the
name, is chosen for elimination. Success of the MD heuristic is followed by many variants of
it, such as Quotient Minimum Degree (QMD) [25], Multiple Minimum Degree (MMD) [40],
Approximate Minimum Degree (AMD) [2], and Approximate Minimum Fill (AMF) [43].
Among the top-down approaches, one the most famous and influential one is surely nested
dissection (ND) [24]. The main idea of ND is as follows: Consider a partitioning of vertices
into three sets: V1 , V2 and VS , such that the removal of VS , called separator, decouples V1

and V2 . If we order the vertices of VS after the vertices of V1 and V2 , certainly no fill can
occur between the vertices of V1 and V2 . Furthermore, the elimination process in V1 and V2

are independent tasks and their elimination only incurs fill to themselves and VS . Hence, the
ordering of the vertices of V1 and V2 can be computed by applying the algorithm recursively.
In ND, since the quality of the ordering depends on the size of VS , finding a small separator
is desirable.

Although the ND scheme has some nice theoretical results [24], it has not been widely
used until the development of recent multilevel graph partitioning tools. State-of-the-art or-
dering tools [17, 29, 32, 37] are mostly a hybrid of top-down and bottom-up approaches
and built using incomplete ND approach that utilizes a multilevel graph partitioning frame-
work [10, 28, 31, 35] for recursively identifying separators until a part becomes sufficiently
small. After this point, a variant of MD, like Constraint Minimum Degree (CMD) [41] is used
for the ordering of parts.

Some of these tools are built around graph partitioning by edge separator (GPES) frame-
works [10, 35], whereas the others directly employs graph partitioning by vertex separator
(GPVS) in a multilevel framework [32]. Any edge separator found by a GPES tool can be
transformed into a wide vertex separator by including all the vertices incident to separator
edges into the vertex separator. Here, a separator is said to be wide if a subset of it forms a
separator and narrow otherwise. The GPES-based tools utilize algorithms like vertex cover
to obtain a narrow separator from this initial wide separator. It has been shown that the
GPVS-based tools outperforms the GPES-based tools [32], since the GPES-based tools do
not directly aims to minimize vertex separator size. However, as we will demonstrate in §2.5,
even GPVS-based approaches have a deficiency in multilevel frameworks.

In this work, we propose a new incomplete ND-based fill reducing ordering. Our ap-
proach is based on a novel formulation of the GPVS problem as a hypergraph partitioning
(HP) problem which is immune to GPVS’s deficiency in multilevel partitioning frameworks.
Our formulation relies on finding an edge clique cover of the standard graph representation
of matrix M . The edge clique cover is used to construct a hypergraph, which is referred to
here as the clique-node hypergraph. In this hypergraph, the nodes correspond to the cliques
of the edge clique cover and the hyperedges correspond to the vertices of the standard graph
representation of matrix M . We show that the partitioning of the clique-node hypergraph can
be decoded as a GPVS of the standard graph representation of matrix M . In matrix terms,
our formulation corresponds to finding a structural factorization of matrix M in the form
of M = AAT (or M = AD2AT ). Such factorizations, luckily, exist in applications like the
solution of linear programming (LP) problems using an interior point method. Furthermore,
we develop matrix sparsening techniques that allow faster orderings of matrices coming from
LP problems.

To the best of our knowledge, our work, including our preliminary work that had been
presented in [12, 16], is the first work that utilizes hypergraph partitioning for fill reducing
ordering. This paper presents a much more detailed and formal presentation of our proposed
HP-based GPVS formulation in §3, and its application for fill reducing ordering symmetric
matrices in §4. A recent and complimentary work [27] follows a different path and tack-
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les unsymmetric ordering by leveraging our hypergraph models for permuting matrices into
singly bordered block-diagonal form [8]. The HP-based fill reducing ordering method we
introduce in §4 is targeted for ordering symmetric matrices and uses our proposed HP-based
GPVS formulation. For general symmetric matrices, the theoretical foundations of HP-based
formulation of GPVS presented in this paper lead to development of two new hypergraph
construction algorithms which we present in §3.2. For matrices arising from LP problems,
we present two structural factor sparsening methods in §4.2, one of which is a new formula-
tion of the problem as a minimum set cover problem. A detailed experimental evaluation of
the proposed methods is presented in §5 shows that our method achieves better orderings in
comparison to the state-of-the-art ordering tools. Finally, we conclude in §6.

2. Preliminaries.

2.1. Graph partitioning by vertex separator (GPVS). An undirected graph G=(V, E)
is defined as a set V of vertices and set E of edges. Every edge eij ∈ E connects a pair of
distinct vertices vi and vj . We use the notation AdjG(vi) to denote the set of vertices that
are adjacent to vertex vi in graph G . We extend this operator to include the adjacency set of
a vertex subset V ′⊆V , i.e., AdjG(V ′)={vj ∈ V−V ′ : vj ∈AdjG(vi) for some vi∈V ′} . The
degree di of a vertex vi is equal to the number of edges incident to vi , i.e., di = |AdjG(vi)| .
A vertex subset VS is a K -way vertex separator if the subgraph induced by the vertices in
V −VS has at least K connected components. ΠV S = {V1,V2, . . . ,VK ;VS} is a K-way
vertex partition of G by vertex separator VS ⊆ V if the following conditions hold: Vk ⊆ V
and Vk 6= ∅ for 1 ≤ k ≤ K ; Vk ∩V` = ∅ for 1 ≤ k ≤ ` ≤ K and Vk ∩VS = ∅ for
1≤ k≤K ;

⋃K
k=1Vk∪VS =V ; removal of VS gives K disconnected parts V1,V2, . . . ,VK

(i.e., AdjG(Vk)⊆VS for 1≤k≤K ).
In the GPVS problem, the partitioning constraint is to maintain a balance criteria on

the weights of the K parts of the K-way vertex partition ΠV S = {V1,V2, . . . ,VK ;VS} .
The weight Wk of a part Vk is usually defined by the number of the vertices in Vk , i.e.,
Wk = |Vk| , for 1 ≤ k ≤ K . The partitioning objective is to minimize the separator size,
which is usually defined as the number of vertices in the separator, i.e.,

Separatorsize(ΠVS) = |VS |. (2.1)

2.2. Hypergraph partitioning (HP). A hypergraph H= (U ,N ) is defined as a set U
of nodes (vertices) and a set N of nets (hyperedges). We refer to the vertices of H as nodes,
to avoid the confusion between graphs and hypergraphs. Every net ni∈N connects a subset
of nodes of U , which are called as the pins of ni and denoted as Pins(ni) . The set of nets
that connect node uh is denoted as Nets(uh) . Two distinct nets ni and nj are said to be
adjacent, if they connect at least one common node. We use the notation AdjH(ni) to denote
the set of nets that are adjacent to ni in H , i.e., AdjH(ni) = {nj ∈N−{ni} : Pins(ni) ∩
Pins(nj) 6=∅} . We extend this operator to include the adjacency set of a net subset N ′⊆N ,
i.e., AdjH(N ′) = {ni ∈N −N ′ : ni ∈AdjH(nj) for some nj ∈N ′} . The degree dh of a
node uh is equal to the number of nets that connect uh , i.e., dh = |Nets(uh)| . The size si

of a net ni is equal to the number of its pins, i.e., si = |Pins(ni)| .
ΠHP = {U1,U2, . . . ,UK} is a K-way node partition of H if the following conditions

hold: Uk ⊆U and Uk 6= ∅ for 1≤ k≤ K ; Uk ∩ U` = ∅ for 1≤ k < `≤K ;
⋃K

k=1Uk = U .
In a partition ΠHP of H , a net that connects at least one node in a part is said to connect
that part. A net ni is said to be an internal net of a node-part Uk , if it connects only part
Uk , i.e., Pins(ni) ⊆ Uk . We use Nk to denote the set of internal nets of node-part Uk , for
1≤k≤ K . A net ni is said to be cut (external), if it connects more than one node part. We
use NS to denote the set of external nets, to show that it actually forms a net separator, that
is, removal of NS gives at least K disconnected parts.
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In the HP problem, the partitioning constraint is to maintain a balance criteria on the
weights of the parts of the K-way partition ΠHP = {U1,U2, . . . ,UK} . The weight Wk of a
node-part Uk is usually defined by the cumulative effect of the nodes in Uk , for 1≤k≤ K .
However, in this work, we define Wk as the number of internal nets of node-part Uk , i.e.,
Wk = |Nk| . The partitioning objective is to minimize the cutsize defined over the external
nets. There are various cutsize definitions. The relevant one used in this work is the cut-net
metric, where cutsize is equal to the number of external nets, i.e.,

Cutsize(ΠHP ) = |NS | (2.2)

2.3. Net-intersection graph (NIG) representation of a hypergraph. The NIG repre-
sentation [18], also known as intersection graph [1, 9], was proposed and used in the literature
as a fast approximation approach for solving the HP problem [33]. In the NIG representa-
tion NIG(H) = (V, E) of a given hypergraph H = (U ,N ) , each vertex vi of NIG(H)
corresponds to net ni of H . There exist an edge between vertices vi and vj of NIG(H)
if and only if the respective nets ni and nj are adjacent in H , i.e., ei,j ∈ E if and only if
nj ∈ AdjH(ni) which also implies that ni ∈ AdjH(nj) . This NIG definition implies that
every node uh of H induces a clique Ch in NIG(H) where Ch = Nets(uh) .

2.4. Graph and hypergraph models for representing sparse matrices. Several graph
and hypergraph models are proposed and used in the literature, for representing sparse matri-
ces for a variety of applications in parallel and scientific computing [30].

In the standard graph model, a square and symmetric matrix M ={mij} is represented
as an undirected graph G(M) = (V, E) . Vertex set V and edge set E respectively correspond
to the rows/columns and off-diagonal nonzeros of matrix M . There exists one vertex vi for
each row/column ri /ci . There exists an edge eij for each symmetric nonzero pair mij and
mji , i.e., eij ∈ E if mij 6=0 .

Three hypergraph models are proposed and used in the literature; namely row-net, column-
net, and row-column-net (a.k.a. fine-grain) hypergraph models [11, 13, 15, 45]. We will only
discuss the row-net hypergraph model which is relevant to our work. In the row-net hyper-
graph model, a rectangular matrix A = {aij} is represented as a hypergraph HRN(A) =
(U ,N ) . Node set U and net set N respectively correspond to the columns and rows of ma-
trix A . There exist one node uh for each column ch and one net ni for each row ri . Net
ni connects the nodes corresponding to the columns that have a nonzero entry in row i , i.e.,
ch∈Pins(ni) if aih 6=0 .

2.5. Deficiency of GPVS in multilevel framework. A multilevel graph/hypergraph
partitioning framework basically contains three phases; coarsening, initial partitioning and
uncoarsening. During the coarsening phase, vertices/nodes are visited in some (possibly ran-
dom) order and usually two (or more) of them are coalesced to construct the vertices/nodes
of the next-level coarsened graph/hypergraph. After multiple coarsening levels, an initial
partition is found on the coarsest graph/hypergraph, and this partition is projected back to
the original graph/hypergraph in the uncoarsening phase with further refinements at each
level of uncoarsening. Both GPES and HP problems are well suited for the multilevel
framework, because the following nice property holds for the edge and net separators in
multilevel GPES and HP: Any edge/net separator at a given level of uncoarsening forms a
valid narrow edge/net separator of all the finer graphs/hypergraphs, including the original
graph/hypergraph. Here, an edge/net separator is said to be narrow, if no subset of edges/nets
of the separator forms a separator.

However, this property does not hold for the GPVS problem. Consider the two examples
displayed in Figure 2.1 as partial illustration of two different GPVS partitioning results at
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vi..n
vi

vi+1

vi+n

VS

vi

vj vk

VS
vijk

FIG. 2.1. Partial illustration of two sample GPVS results to demonstrate the deficiency of the graph model in
multilevel framework.

some level m of a multilevel GPVS tool. In the first one, n+1 vertices {vi, vi+1, . . . , vi+n}
are coalesced to construct vertex vi..n as a result of one or more levels of coarsening. This,
VS = {vi..n} , is a valid and narrow vertex separator for level m . The GPVS tool computes
the cost of this separator as n+1 at this level. However, obviously this separator is a wide
separator of the original graph. In other words, there is a subset of those vertices which is a
valid narrow separator of the original graph. In fact, any single vertex in {vi, vi+1, . . . , vi+n}
is a valid separator of size 1 of the original graph. Similarly, for the second example, the
GPVS tool computes the size of the separator as 3, however, there is a subset of constituent
vertices of VS = {vijk} = {vi, vj , vk} which is a valid narrow separator of size 1 in the
original graph That is, either VS = {vi} or VS = {vk} is a valid narrow separator.

3. HP-based GPVS Formulation. We are considering to solve the GPVS problem for
a given undirected graph G = (V, E) .

3.1. Theoretical foundations. The following theorem lays down the basis for our HP-
based GPVS formulation.

THEOREM 1. Consider a hypergraph H = (U ,N ) and its NIG representation NIG(H)
= (V, E) . A K-way node-partition ΠHP = {U1,U2, . . . ,UK} of H can be decoded as a
K-way vertex separator ΠV S = {V1,V2, . . . ,VK ;VS} of NIG(H) , where
(a) partitioning objective of minimizing the cutsize of ΠHP according to (2.2) corresponds

to minimizing the separator size of ΠV S according to (2.1).
(b) partitioning constraint of balancing on the internal net counts of node parts of ΠHP

infers balance among the vertex counts of parts of ΠV S

Proof. As described in [8], the K -way node-partition ΠHP = {U1,U2, . . . ,UK} of
H can be decoded as a (K +1)-way net-partition {N1,N2, . . . ,NK ;NS} . We consider
this (K +1) -way net-partition ΠHP = {N1,N2, . . . ,NK ;NS} of H as inducing a K -
way GPVS ΠV S = {V1,V2, . . . ,VK ;VS} on NIG(H) , where Vk ≡ Nk , for 1≤ k≤ K ,
and VS ≡ NS . Consider an internal net nj of node-part Uk in ΠHP , i.e., nj ∈ Nk . It
is clear that AdjH(nj) ⊆ Nk ∪ NS , which implies AdjH(Nk) ⊆ NS . Since Vk ≡ Nk

and VS ≡ NS , AdjH(Nk) ⊆ NS in ΠHP implies AdjG(Vk) ⊆ VS in ΠV S . In other
words, AdjG(Vk) ∩ V` = ∅ , for 1 ≤ ` ≤ K and ` 6= k . Thus, VS of ΠV S constitutes
a valid separator of size |VS | = |NS | . So, minimizing the cutsize of ΠHP corresponds to
minimizing the separator size of ΠV S . Since |Vk| = |Nk| , for 1≤k≤ K , balancing on the
internal net counts of node parts of ΠHP corresponds to balancing the vertex counts of parts
of ΠV S .

COROLLARY 1. Consider an undirected graph G . A K-way partition ΠHP of any
hypergraph H for which NIG(H)≡ G can be decoded as a K-way vertex separator ΠV S

of G .
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Although NIG(H) is well-defined for a given hypergraph H , there is no unique reverse
construction. We introduce the following definitions and theorems which show our approach
for reverse construction.

DEFINITION 3.1 (Edge clique cover (ECC) [39]). Given a set C = {C1, C2, . . .} of
cliques in G = (V, E) , C is an ECC of G if for each edge eij ∈ E there exists a clique
Ch ∈ C that contains both vi and vj .

DEFINITION 3.2 (Clique-node hypergraph). Given a set C = {C1, C2, . . .} of cliques in
graph G = (V, E) , the clique-node hypergraph CNH(G, C) = H = (U ,N ) of G for C is
defined as a hypergraph with |C| nodes and |V| nets, where H contains one node uh for each
clique Ch of C and one net ni for each vertex vi of V , i.e., U ≡ C and N ≡ V . In H , the
set of nets that connect node uh corresponds to the set Ch of vertices, i.e., Nets(uh) ≡ Ch

for 1≤h≤ |C| . In other words, the net ni connects the nodes corresponding to the cliques
that contain vertex vi of G .

Figure 3.1(a) displays a sample graph G with 11 vertices and 18 edges. Figure 3.1(b)
shows the clique-node hypergraph H of G for a sample ECC C that contains 12 cliques.
Note that H contains 12 nodes and 11 nets. As seen in Figure 3.1(b), the 4-clique C5 =
{v4, v5, v10, v11} in C induces node u5 with Nets(u5) = {n4, n5, n10, n11} in H . Fig-
ure 3.2(a) shows a 3-way partition ΠHP of H , where each node part contains 3 internal nets
and the cut contains 2 external nets. Figure 3.2(b) shows the 3-way GPVS ΠV S induced
by ΠHP . In ΠV S , each part contains 3 vertices and the separator contains 2 vertices. In
particular, the cut with 2 external nets n10 and n11 induces a separator with 2 vertices v10

and v11 . The node-part U1 with 3 internal nets n1 , n2 and n3 induces a vertex-part V1 with
3 vertices v1 , v2 and v3 .

The following two theorems state that, for a given graph G , the problem of constructing
a hypergraph whose NIG representation is same as G is equivalent to the problem of finding
an ECC of G .

THEOREM 2. Given a graph G = (V, E) and a hypergraph H = (U ,N ) , if NIG(H) ≡
G then H ≡ CNH(G, C) with C = {Ch≡Nets(uh) : 1≤h≤|U|} is an ECC of G .

Proof. Since NIG(H) ≡ G , there is an edge eij = {vi, vj} in G if and only if nets
ni and nj are adjacent in H which means there exists a node uh in H such that both
ni ∈ Nets(uh) and nj ∈ Nets(uh) . Since uh induces the clique Ch ∈ C , Ch contains both
vertices vi and vj .
Note that C = {Ch ≡ Nets(uh) : 1 ≤ h ≤ |U|} is the unique ECC of G satisfying H ≡
CNH(G, C) .

THEOREM 3. Given a graph G = (V, E) , for any ECC C of G , the NIG representation
of clique-node hypergraph of C is equivalent to G , i.e., NIG(CNH(G, C)) ≡ G .

Proof. By construction, two nets ni and nj are adjacent in CNH(G, C) if and only if
there exists a clique Ch ∈ C such that Ch contains both vertices vi and vj in G . Since C is
an ECC of G , there is such a clique Ch ∈ C if and only if there is an edge eij in G .

3.2. Hypergraph construction based on edge clique cover. According to the theoret-
ical findings given in § 3.1, our HP-based GPVS approach is based on finding an ECC of the
given graph and then partitioning the respective clique-node hypergraph. Here, we will briefly
discuss the effects of different ECCs on the solution quality and the run-time performance of
our approach.

In terms of solution quality of hypergraph partitioning, it is not easy to quantify the met-
rics for a “good” ECC. In a multilevel HP-tool that balances internal net weights, the choice
of an ECC should not affect the quality performance of the FM-like [22] refinement heuristics
commonly used in the uncoarsening phase. However, the choice of an ECC may consider-
ably affect the quality performance of the node matchings performed in the coarsening phase.
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FIG. 3.1. (a) A sample graph G ; (b) the clique-node hypergraph H of G for ECC C = {C1 =
{v1, v2, v3}, C2 = {v2, v10, v11}, C3 = {v2, v3, v11}, C4 = {v1, v2}, C5 = {v4, v5, v10, v11}, C6 =
{v5, v6, v11}, C7 = {v5, v6} , C8 = {v4, v5}, C9 = {v7, v9}, C10 = {v7, v8, v9}, C11 = {v7, v11}, C12 =
{v7, v8}}
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FIG. 3.2. (a) A 3-way partition ΠHP of the clique-node hypergraph H given in Fig. 3.1(b); (b) the 3-way
GPVS ΠV S of G (given in Fig. 3.1(a)) induced by ΠHP

For example, large cliques in the ECC may lead to better quality node matchings even in the
initial coarsening levels. On the other side, large amounts of edge overlaps among the cliques
of a given ECC may adversely affect the quality of the node matchings. Therefore, having
large but non-overlapping cliques might be desirable for solution quality.

The choice of the ECC may affect the run-time performance of HP-tool depending on the
size of the clique-node hypergraph. Since the number of nets in the clique-node hypergraph
is fixed, the number of cliques and the sum of the clique sizes, which respectively correspond
to the number of nodes and pins, determine the size of the hypergraph. Hence, an ECC with
small number of large cliques is likely to induce a clique-node hypergraph of small size.

Although not a perfect match, the ECC problem [39], which is stated as finding an ECC
with minimum number of cliques, can be considered to be relevant to our problem of find-
ing a “good” ECC. Unfortunately, the ECC problem is also known to be NP-hard [39]. The
literature contains a number of heuristics [26, 38, 39] for solving the ECC problem. How-
ever, even the fastest heuristic’s [26] running time complexity is O(|V||E|) , which makes it
impractical in our approach.

In this work, we investigate three different types of ECCs, namely C2, C3, and C4 , to
observe the effects of increasing clique size in the solution quality and run-time performance
of the proposed approach. Here, C2 denotes the ECC of all 2-cliques (edges), i.e., C2 = E ;
C3 denotes an ECC of 2- and 3-cliques; C4 denotes an ECC of 2-, 3-, and 4-cliques. In
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FIG. 3.3. The 2-clique-node hypergraph H2 of graph G given in Fig. 3.1(a)

general, Ck denotes an ECC of cliques in which maximum clique size is bounded above
by k . Note that C2 is unique, whereas C3 and C4 are not necessarily unique. We will refer
to the clique-node hypergraph induced by Ck as Hk = CNH(G, Ck) .

The clique-node hypergraph H2 deserves special attention, since it is uniquely defined
for a given graph G . In H2 , there exists one node of degree 2 for each edge eij of G . The
net ni corresponding to vertex vi of G connects all nodes corresponding to the edges that
are incident to vertex vi , for 1≤ i≤|V| . So, H2 contains |E| nodes, |V| nets, and 2|E| pins.
The running time of HP-based GPVS using H2 is expected to be quite high because of the
large number of nodes and pins. Figure 3.3 displays the 2-clique-node hypergraph H2 of the
sample graph G given in Figure 3.1(a). As seen in the figure, each node of H2 is labeled as
uij to show the one-to-one correspondence between nodes of H2 and edges of G . That is,
node uij of H2 corresponds to edge eij of G , where Nets(uij)={ni, nj} .

Algorithm 1 and Algorithm 2 display the algorithms developed for constructing a C3

and a C4 , respectively. The goal of both algorithms is to minimize the number of pins in the
clique-node hypergraphs as much as possible. Both algorithms visit the vertices in random or-
der in order to introduce randomization to the ECC construction process. In both algorithms,
each edge is processed along only one direction (i.e., from low to high numbered vertex) to
avoid identifying the same clique more than once.

In Algorithm 1, for each visited vertex vi , the 3 -clique(s) that contain vi are searched
for by trying to locate 2 -cliques between the vertices in AdjG(vi) . This search is performed
by scanning the adjacency list of each vertex vj in AdjG(vi) . For each vertex, a parent field
π1 is maintained for efficient identification of 3 -cliques during this search. An identified
3 -clique Ch is selected for inclusion in C3 if the number of already covered edges of Ch is at
most 1 . The rationale behind this selection criteria is as follows: Recall that a 3 -clique in C3

adds 3 pins to H3 , since it incurs a node of degree 3 in H3 . If only one edge of Ch is already
covered by other 3 -clique(s) in C3 , it is still beneficial to cover the remaining two edges of
Ch by selecting Ch instead of selecting the two 2 -cliques covering those uncovered edges,
because the former selection incurs 3 pins whereas the latter incurs 4 pins. If, however, any
two edges of Ch are already covered by another 3 -clique in C3 , it is clear that the remaining
uncovered edge is better to be covered by a 2 -clique. After scanning the adjacency list of
vj in AdjG(vi) , if edge {vi, vj} is not covered by any 3 -clique then it is added to C3 as a
2 -clique.

In Algorithm 2, for each visited vertex vi , the 4 -clique(s) that contain vi are searched for
after finding the 3 -clique(s) that contain vi as in Algorithm 1. For each 3 -clique {vi, vj , vk}
identified in AdjG(vi) , the 4 -clique(s) that contain the 3 -clique {vi, vj , vk} are searched for
by scanning AdjG(vk) , where vk is the last vertex added to the 3 -clique. For each vertex, a
second parent field π2 is maintained together with π1 for efficient identification of a vertex
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Algorithm 1 C3 Construction Algorithm
Require: G = (V, E)

1: for each vertex v ∈ V do
2: π1 [v ] ← NIL
3: for each edge eij ∈ E do
4: cover[eij ] ← 0
5: C3 ← ∅
6: for each vertex vi ∈ V do
7: for each vertex vj ∈ AdjG(vi) with j > i do
8: π1 [vj ] ← vi

9: for each vertex vj ∈ AdjG(vi) with j > i do
10: for each vertex vk ∈ AdjG(vj) with k > j do
11: if π1 [vk ]= vi then
12: if

P
e∈({vi,vj,vk}

2 )
cover[e ]< 2 then

13: C3 ← C3 ∪ {{vi, vj , vk}} . Add the 3-clique to C3

14: for each edge e ∈
`{vi,vj ,vk}

2

´
do

15: cover[e ] ← 1
16: if cover[eij ] = 0 then
17: C3 ← C3 ∪ {{vi, vj}} . Add the 2-clique to C3
18: cover[eij ] ← 1

v` in AdjG(vk) that is adjacent to both vj and vi . A 4 -clique Ch = {vi, vj , vk, v`} is
selected to be added to C4 , if at most 3 out of 6 edges of Ch are already covered by other
3 - and/or 4 -clique(s) in C4 . After scanning AdjG(vk) , if at most one edge of the 3 -clique
{vi, vj , vk} is covered by other 3 - or 4 -cliques then it is added to C4 as a 3 -clique. After
scanning AdjG(vj) , if edge {vi, vj} is not covered by any 3 - or 4 -clique then it is added to
C4 as a 2 -clique.

We should note here that the ideas in Algorithms 1 and 2 can be extended to a general
approach for constructing Ck . However, this general approach requires maintaining k−2
parent fields for each vertex.

3.3. Matrix-theoretic view of HP-based GPVS formulation. Here, we will try to re-
veal the association between the graph-theoretic and matrix-theoretic views of our HP-based
GPVS formulation. Given a p×p symmetric and square matrix M , let G(M) = (V, E)
denote the standard graph representation of matrix M .

A K -way GPVS ΠV S = {V1,V2, . . . ,VK ;VS} of G(M) can be decoded as permut-
ing matrix M into a doubly-bordered block diagonal (DB) form MDB = PAPT as fol-
lows: ΠV S is used to define the partial row/column permutation matrix P by permuting the
rows/columns corresponding to the vertices of Vk after those corresponding to the vertices
of Vk−1 for 2 ≤ k ≤ K , and permuting the rows/columns corresponding to the separa-
tor vertices to the end. The partitioning objective of minimizing the separator size of ΠV S

corresponds to minimizing the number of coupling rows/columns in MDB , whereas the par-
titioning constraint of maintaining balance on the part weights of ΠV S infers balance among
the row/column counts of the square diagonal submatrices in MDB .

In graph-theoretic discussion given in § 3.2, we are looking for a hypergraph H whose
NIG representation is equivalent to G(M) . In matrix-theoretic view, this corresponds to
looking for a structural factorization M = AAT of matrix M , where A is an p× q rectan-
gular matrix. Here, structural factorization refers to the fact that A = {aij} is a {0,1}-matrix,
where AAT determines the sparsity patterns of M . In this factorization, the rows of matrix
A correspond to the vertices of G(M) and the set of columns of matrix A determines an
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Algorithm 2 C4 Construction Algorithm
Require: G = (V, E)

1: for each vertex v ∈ V do
2: π1 [v ] ← π2 [v ] ← NIL
3: for each edge eij ∈ E do
4: cover[eij ] ← 0
5: C4 ← ∅
6: for each vertex vi ∈ V do
7: for each vertex vj ∈ AdjG(vi) with j > i do
8: π1 [vj ] ← vi

9: for each vertex vj ∈ AdjG(vi) with j > i do
10: for each vertex vk ∈ AdjG(vj) with k > j do
11: π2 [vk ] ← vj

12: for each vertex vk ∈ AdjG(vj) with k > j do
13: if π1 [vk ]= vi then
14: if

P
e∈({vi,vj,vk}

2 )
cover[e ]< 2 then

15: for each vertex v` ∈ AdjG(vk) with ` > k do
16: if π1 [v` ]= vi and π2 [v` ]= vj then
17: if

P
e∈({vi,vj,vk,v`}

2 )
cover[e ]< 4 then

18: C4 ← C4 ∪ {{vi, vj , vk, v`}} . Add the 4-clique to C4

19: for each edge e ∈
`{vi,vj ,vk,v`}

2

´
do

20: cover[e ] ← 1
21: if

P
e∈({vi,vj,vk}

2 )
cover[e ]< 2 then

22: C4 ← C4 ∪ {{vi, vj , vk}} . Add the 3-clique to C4

23: for each edge e ∈
`{vi,vj ,vk}

2

´
do

24: cover[e ] ← 1
25: if cover[eij ] = 0 then
26: C4 ← C4 ∪ {{vi, vj}} . Add the 2-clique to C4
27: cover[eij ] ← 1

ECC C of G(M) . So, matrix A can be considered as a clique incidence matrix of G(M) .
That is, column ch of matrix A corresponds to a clique Ch of C , where aih 6= 0 implies
that vertex vi∈Ch . The row-net hypergraph model HRN(A) of matrix A is equivalent to the
clique-node hypergraph of graph G(M) for the ECC C determined by the columns of A , i.e.,
HRN(A) ≡ CNH(G(M), C) . In other words, the NIG representation of row-net hypergraph
model HRN(A) of matrix A is equivalent to G(M) , i.e., NIG(HRN(A)) ≡ G(M) .

As shown in [8], a K -way node-partition ΠHP = {U1,U2, . . . ,UK} , which induces a
(K+1) -way net partition {N1,N2, . . . ,NK ;NS} , of HRN(A) can be decoded as permuting
matrix A into a K -way rowwise singly-bordered block diagonal (SB) form

ASB = PAQ =


A1

. . .
AK

AB1 . . . ABK

 . (3.1)

Here, the K -way node partition is used to define the partial column permutation matrix
Q by permuting the columns corresponding to the nodes of part Uk after those corresponding
to the nodes of part Uk−1 for 2≤k≤K . The (K+1)-way partition on the nets of HRN(A) is
used to define the partial row permutation matrix P by permuting the rows corresponding to
the nets of Nk after those corresponding to the nets of Nk−1 for 2≤k≤K , and permuting
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FIG. 3.4. (a) Matrix A whose row-net hypergraph representation is given in Fig. 3.1(b) and its 3-way SB form

ASB induced by the 3-way partition ΠHP given in Fig. 3.2(a); (b) Matrix M whose standard graph representation
is given in Fig. 3.1(a) and its 3-way DB form MDB induced by ASB

the rows corresponding to the external nets to the end. Here, the partitioning objective of
minimizing the cutsize of ΠHP corresponds to minimizing the number of coupling rows in
ASB . The partitioning constraint of balancing on the internal net counts of node parts of
ΠHP infers balance among the row counts of the rectangular diagonal submatrices in ASB .
It is clear that the transpose of ASB will be in a columnwise SB form.

An SB form ASB of A induces a DB form MDB of M , since multiplying ASB with
its transpose produces a DB form of M . That is,

ASBAT
SB =


A1

. . .
AK

AB1 . . . ABK


 AT

1 AT
B1

. . .
...

AT
K AT

BK



=


A1A

T
1 A1A

T
B1

. . .
...

AKAT
K AKAT

B1

AB1A
T
1 . . . ABK

AT
K

∑
k ABk

AT
k

 = MDB (3.2)

As seen in (3.2), the number of rows/columns in the square diagonal block AkAT
k of

MDB is equal to the number of rows of the rectangular diagonal block Ak of ASB . Fur-
thermore, the number of coupling rows/columns in MDB is equal to the number of coupling
rows in ASB . So, minimizing the number of coupling rows in ASB corresponds to minimiz-
ing the number of coupling rows/columns in MDB , whereas balancing on row counts of the
rectangular diagonal submatrices in ASB infers balance among the row/column counts of the
square diagonal submatrices in MDB . Thus, given a structural factorization M = AAT of
matrix M , the proposed HP-based GPVS formulation corresponds to formulating the prob-
lem of permuting M into a DB block diagonal form as an instance of the problem of per-
muting A into an SB block diagonal form. Figure 3.4 shows the matrix theoretical view of
our HP-based GPVS formulation on the sample graph, hypergraph and their partitions given
in Figures 3.1 and 3.2.

4. HP-based fill-reducing ordering. Given a p×p symmetric and square matrix M =
{mij} for fill reducing ordering, let G(M) = (V, E) denote the standard graph representation
of matrix M .
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FIG. 4.1. (a) A sample 4-way SB form of a matrix A obtained through a 2-level recursive hypergraph biparti-
tioning process; (b) the corresponding 4-way DB form of matrix M = AAT

4.1. Incomplete-nested-dissection-based orderings via recursive hypergraph bipar-
titioning. As described in [6], the fill-reducing matrix reordering schemes based on incom-
plete nested dissection can be classified as: nested dissection (ND) and multisection (MS).
Both schemes apply 2-way GPVS (bisection) recursively on G(M) until the parts (domains)
become fairly small. After each bisection step, the vertices in the 2-way separator (bisector)
are removed and the further bisection operations are recursively performed on the subgraphs
induced by the parts of bisection. In the proposed recursive-HP-based ordering approach,
the constructed hypergraph H (where NIG(H) ≡ G(M)) is bipartitioned recursively until
the number of internal nets of the parts become fairly small. After each bipartitioning step,
the cut nets are removed and the further bipartitioning operations are recursively performed
on the sub-hypergraphs induced by the node parts of the bipartition. Note that this cut-net
removal scheme in recursive 2-way HP corresponds to the above-mentioned separator-vertex
removal scheme in recursive 2-way GPVS.

As mentioned above, both ND and MS schemes effectively obtain a multiway separator
(multisector) at the end of the recursive 2-way GPVS operations. In both schemes, the parts
of the multiway separator are ordered using an MD-based algorithm before the separator. It is
clear that the parts can be ordered independently. These two schemes differ in the order that
they number the vertices of the multiway separator. In the ND scheme, the 2-way separators
constituting the multiway separator are numbered using an MD-based algorithm in depth-first
order of the recursive bisection process. Note that the 2-way separators at the same level of
the recursive bisection tree can be ordered independently. In the MS scheme, the multiway
separator is ordered using an MD-based algorithm as a whole in a single step.

Figure 4.1 displays a sample 4-way SB form of matrix A and the corresponding 4-way
DB form of matrix M induced by a 2-level recursive bipartitioning/bisection process. Here,
the bipartitioning/bisection operation at the root level is numbered as 0, whereas the bipar-
titioning/bisection operations at the second level are numbered as 1 and 2. The parts of a
bipartition/bisection are always numbered as 1 and 2, whereas the border is numbered as
B. For example, A11 /M11 and A12 /M12 denote the diagonal domain submatrices corre-
sponding to the two parts of the bipartitioning/bisection operation 1, whereas A21 /M21 and
A22 /M22 denote the diagonal domain submatrices corresponding to the two parts of the
bipartitioning/bisection operation 2. As seen in the figure, M0B = A0BAT

0B denotes the
diagonal border submatrix corresponding to the 2-way separator obtained at the root level,
whereas M1B = A1BAT

1B and M2B = A2BAT
2B denote the diagonal border submatrices

corresponding to the 2-way separators obtained at the second level. Note that MB denotes
the diagonal border submatrix corresponding to the overall 4-way separator. In both ND and
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MS schemes, diagonal domain submatrices are ordered before the diagonal border submatrix
MB . In the ND scheme, the Schur complements of the diagonal border submatrices are or-
dered in depth-first order M1B , M2B and M0B of the recursive bisection process. In the
MS scheme, the Schur complement of the overall diagonal border submatrix MB is ordered
as a whole.

4.2. Structural factor sparsening for ordering LP matrices. Interior point methods
are widely used for solving linear programming problems [20]. These are iterative methods
and usually adopt the normal equations approach [3]. The main computational cost at each
iteration is the solution of a symmetric positive definite system of the form Mx = b , where
M = AD2AT . Here, A = {aij} is a p×q sparse rectangular constraint matrix which re-
mains constant throughout the iterations, and D2 is a q×q diagonal scaling matrix which
changes from iteration to iteration. This linear system is typically solved by computing the
Cholesky factorization (M = LLT ) of M , and solving the triangular system through for-
ward and backward substitution. So, fill-reducing ordering of matrix M is crucial in the
overall performance of the interior point algorithm.

Since D2 is a diagonal matrix, AAT determines the sparsity pattern of M . So, by
neglecting numerical cancellations that may occur in matrix-matrix-transpose multiplication
AAT , we can consider A = {aij} as a {0,1}-matrix so that M = AAT gives us a structural
factorization of matrix M . Note that matrix A may contain redundant columns and/or nonze-
ros in terms of determining the sparsity pattern of M . Here, we will propose and discuss two
matrix sparsening algorithms which aim at deleting as many columns and/or nonzeros of ma-
trix A without disturbing the sparsity pattern of matrix M . The objective is to speed up the
proposed HP-based GPVS method for ordering LP matrices through decreasing the size of
the row-net hypergraph representation of matrix A . Both algorithms consider both column
and nonzero deletions. However the first algorithm is nonzero-deletion oriented, whereas the
second one is column-deletion oriented.

4.2.1. Nonzero-deletion-oriented sparsening. We define bij to denote the number of
common columns between rows ri and rj of matrix A . A column ch is said to be common
between rows ri and rj if both rows have a nonzero in column ch . Note that bij is equal
to the integer value of nonzero mij of matrix M if M = AAT is computed using A as a
{0,1}-matrix. So, the sparsity pattern of M will remain to be the same as long as bij values
corresponding to the nonzeros of matrix M remain to be greater than or equal to 1 during
nonzero deletions in matrix A . In particular, a nonzero aih of matrix A can be deleted if
bij >1 for each nonzero ajh in column ch of matrix A .

The proposed nonzero-deletion-based sparsening algorithm is given in Algorithm 3. The
algorithm does not require M matrix as input. Note that the quality of the sparsening depends
on processing order of nonzeros for deletion. Algorithm 3 considers the nonzeros for deletion
in row major order. In the doubly-nested for loop in lines 4 – 6, the bij values for row ri are
computed in 1D array B . Then, for each nonzero aih in row ri , the for loop in lines 9 – 12
checks whether the condition bij >1 holds for each nonzero ajh in column ch of matrix A .
If it is so, the relevant bij (i.e., Bj ) values are decremented and the nonzero aih is deleted in
lines 13 – 16. At the end of the algorithm, the columns that become empty due to the nonzero
deletions are detected and deleted by the for loop in lines 20 – 22. This algorithm runs in
O(

∑
ch∈A |ch|2) time, where |ch| denotes the number of nonzeros in column ch .

4.2.2. Column-deletion-oriented sparsening. Consider the problem of maximizing
the number of A -matrix column deletions without disturbing the sparsity pattern of matrix
M . This problem can be formulated as a minimum set cover problem as follows: The set
of M -matrix nonzeros constitutes the main set of elements, whereas the set of A -matrix
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Algorithm 3 Nonzero-Deletion-Oriented Sparsening Algorithm
Require: A : both in CSR and CSC formats

1: for each row ri ∈ A do
2: B [ i ] ← 0
3: for each row ri ∈ A do
4: for each nonzero aih ∈ ri do
5: for each nonzero ajh ∈ ch do
6: B[j]← B[j]+1
7: for each nonzero aih ∈ ri do
8: flag ← TRUE
9: for each nonzero ajh ∈ ch do

10: if B[j] = 1 then
11: flag ← FALSE
12: break
13: if flag = TRUE then
14: for each nonzero ajh ∈ ch do
15: B[j]← B[j]−1
16: delete nonzero aih

17: for each nonzero aih ∈ ri do
18: for each nonzero ajh ∈ ch do
19: B[j]← 0
20: for each column ch ∈ A do
21: if ch is empty then
22: delete column ch

columns constitutes the family F of subsets of main set. For each A -matrix column ch , the
subset S(ch) of main set of elements is defined as S(ch) = {mij ∈ M : aih and ajh are
nonzeros} . That is, each nonzero pair (aih, ajh) in column ch contributes mij to the subset
S(ch) . A subset of F is said to cover the main set of elements if its union is equal to the main
set. The objective of the minimum set cover problem is to find a minimum number of subsets
covering the main set. This objective corresponds to minimizing the number of A -matrix
columns to be retained (maximizing the number of A -matrix columns to be deleted) without
disturbing the sparsity pattern of matrix M .

The minimum set cover problem is known to be NP-hard [34]. However, there is a well
known (lnn ) -approximation algorithm [19], which works as follows: It grows a cover set
using a sequence of greedy decisions. The greedy decision at each step is to select a subset
that covers as many uncovered elements as possible. The algorithm terminates when all
elements are covered.

A two-phase sparsening algorithm can be developed based on this minimum set cover
algorithm as follows: In the first phase, the set cover algorithm is used to obtain a matrix
Ac whose columns correspond to a minimum set of A -matrix columns that covers the set
of all nonzeros of M . In the second phase, Algorithm 3 is run on matrix Ac for nonzero
deletions. However, for the sake of efficiency, we propose Algorithm 4 which interleaves
column selection operations with nonzero deletion operations.

In Algorithm 4, two successive for loops at lines 2 – 10 construct the list of A -matrix
columns that cover each M -matrix nonzero and compute the number of M -matrix nonzeros
covered by each A -matrix column. A priority queue Q which contains all A -matrix columns
is built in line 11, where A -matrix columns are keyed by the number of uncovered M -matrix
nonzeros that they cover. The while loop in lines 12 – 26 repeatedly identifies and selects an
A -matrix column that covers the maximum number of uncovered M -matrix nonzeros and
then updates the relevant data structures accordingly. Meanwhile, the nonzeros of the selected
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Algorithm 4 Column-Deletion-Oriented Sparsening Algorithm
Require: A : in CSC format, M : in CSR / CSC format

1: totalUncovered ← 0
2: for each nonzero mij ∈M with i≤j do
3: ColCoverList[mij ] ← ∅
4: covered[mij ] ← FALSE
5: totalUncovered ← totalUncovered +1
6: for each column ch ∈ A do
7: key[ch ] ← 0
8: for each nonzero pair (aih, ajh) ∈ ch with i≤j do
9: ColCoverList[mij ] ← ColCoverList[mij ] ∪{ch}

10: key[ch ] ← key[ch ] +1
11: Q ← PriorityQueue({ch : ch is column of A} , key)
12: while totalUncovered > 0 do
13: ch ← EXTRACT-MAX(Q )
14: for each nonzero aih ∈ ch do
15: DeleteFlag[aih ] ← TRUE
16: for each nonzero pair (aih, ajh) ∈ ch with i≤j do
17: ColCoverList[mij ] ← ColCoverList[mij ] −{ch}
18: if covered[mij ] = FALSE then
19: covered[mij ] ← TRUE
20: totalUncovered ← totalUncovered −1
21: for each column ch′ ∈ ColCoverList[mij ] do
22: key[ch′ ] ← key[ch′ ] −1 . DECREASE-KEY operation
23: DeleteFlag[aih ] ← DeleteFlag[ajh ] ← FALSE
24: for each nonzero aih ∈ ch do
25: if DeleteFlag[aih ] = TRUE then
26: delete nonzero aih

27: for each column ch ∈ Q do
28: delete column ch

A -matrix column are processed for deletion with respect to set of previously selected and
processed A -matrix columns. After detecting a full coverage of the M -matrix nonzeros, the
set of columns remaining in the priority queue are deleted in lines 27 – 28. This algorithm can
also be made to run in O(

∑
ch∈A |ch|2) time through a priority queue implementation with

O(1)–time extract-max and decrease-key operations. A sorted linear array implementation
can achieve the desired bounds for those operations by exploiting the bounded integer key
values and decrement-type decrease-key operations.

5. Experimental Results. The proposed HP-based GPVS formulation is embedded into
the state-of-the-art HP tool PaToH [14] and the resulting HP-based fill-reducing ordering tool
is referred to here as oPaToH. In oPaToH, the recursive hypergraph bipartitioning process
is continued until the number of internal nets of a part of a bipartition drops below 200 or
the number of nodes of a part of a bipartition drops below 100. oPaToH implements both
MS and ND schemes which will be referred as oPaToH-MS and oPaToH-ND, respectively.
Both oPaToH-MS and oPaToH-ND use the CMD algorithm for ordering decoupled diagonal
domain submatrices and the MMD algorithm for ordering Schur complements of the diagonal
border submatrices.

The performance of oPaToH is compared against the state-of-the-art ordering algorithms
and tools MeTiS [37], MMD [40] implementation from SPARSPAK [23], and SMOOTH [5]1.

1SMOOTH sparse matrix ordering package later included in sparse linear system solver package called
SPOOLES [4]. We will continue to use name SMOOTH to denote that we are referring the ordering package.



16 ÇATALYÜREK, AYKANAT, KAYAASLAN

MeTiS v4.0 [37] provides two multilevel nested dissection [36] programs, one is GPVS based,
onmetis, the other, oemetis, is GPES based. Both onmetis and oemetis use MMD for ordering
decoupled diagonal domain submatrices and Schur complements of the diagonal border sub-
matrices. We use SMOOTH with MS scheme, CMD for ordering decoupled diagonal domain
submatrices and MMD for ordering Schur complements of the diagonal border submatrices.
All ordering tools and methods were run on a PC equipped with a 1.6 Ghz Pentium 4, and
1 GB memory.

We performed experimental evaluation of the proposed HP-based fill reducing ordering
approach using 50 matrices obtained from the University of Florida sparse matrix collec-
tion [21]. The first 25 matrices are general symmetric and square M matrices arising in
different application domains, whereas the remaining 25 M matrices are derived from LP
constraint matrices using M = AAT . Table 5.1 illustrates the properties of these matrices.
In this table, p and nnz(M) denote, respectively, the number of rows/columns and nonzeros
of matrix M . For an M -matrix derived from an LP problems, the number of columns q and
nonzeros nnz(A) are also listed for the respective A -matrix. Note that the number of rows
of A is equal to the number of rows/columns of M . The general matrices are further divided
into three groups (first 5, second 5 and remaining 15) according to the size of the maximum
cliques that can be obtained from their graph representations. The reason for this division
will become clear during the discussion of Table 5.3. The matrices in each category/group
are listed in increasing order of number of nonzeros. This table also displays the perfor-
mance of the onmetis ordering in terms of operation count in triangular factorization (shown
as “opc”), number of nonzeros in the triangular factor (shown as nnz(L)), and ordering time
in seconds.

Table 5.2 compares the performance of nonzero-deletion-oriented (Alg3) and column-
deletion-oriented (Alg4) matrix sparsening algorithms for ordering LP matrices. In the first 4
columns of Table 5.2, the sparsening performances of these two algorithms are compared in
terms of the number of remaining columns and nonzeros after deletion, which are normalized
with respect to the number of columns and nonzeros of the original A matrix, respectively.
From now on, Ã and q̃ refer to the sparsened A matrix and its number of columns. As
seen in the table, Algorithm 3 and Algorithm 4 display very close sparsening performance
in terms of both number of columns and nonzeros. In the last 6 columns of Table 5.2, the
ordering quality and run-time performances obtained by oPaToH-MS using these two spars-
ening algorithms are displayed as normalized with respect to those obtained by oPaToH-MS
using the original A matrix without sparsening. Here, total ordering time includes A -matrix
sparsening, hypergraph construction, hypergraph partitioning and ordering times. As seen in
the table, oPaToH-MS using Algorithm 3 and Algorithm 4 displays very close performance
in ordering quality in terms of both operation-count and fill-in metrics. As seen in the table,
the sparsened A -matrices obtained by both algorithms do not degrade the ordering quality
of oPaToH-MS. In fact the sparsened A -matrices obtained by Algorithm 3 lead to slight im-
provements in the ordering quality (e.g., 2% less operation count on the average). As also
seen in the table, both sparsening algorithms amortize by reducing the total ordering time of
oPaToH-MS considerably. In the relative comparison of these two algorithms, oPaToH-MS
using Algorithm 3 runs considerably faster than oPaToH-MS using Algorithm 4 in almost all
ordering instances (except one instance). oPaToH-MS using Algorithm 3 and Algorithm 4 for
sparsening respectively runs 20% and 8% faster than oPaToH-MS using the original A ma-
trix, on the average. Very similar results were obtained in the relative performances of these
two sparsening algorithms in oPaToH-ND. Therefore, Algorithm 3 is used for sparsening in
oPaToH for LP matrices.

Table 5.3 displays the properties of the hypergraphs in terms of number of nodes and
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TABLE 5.1
Properties of test matrices and results of onmetis orderings

p×p M matrix p×q A matrix onmetis
name p nnz(M) q nnz(A) opc nnz(L) time (s)

General M matrices
ncvxqp9 23,047 45,540 - - 5.94E+06 123,462 0.16
aug3dcqp 50,286 100,572 - - 2.78E+08 1,011,206 0.54
c-53 170,989 341,978 - - 3.03E+07 391,804 0.57
c-59 219,627 439,254 - - 2.48E+09 3,221,503 0.96
c-67 236,980 473,960 - - 1.32E+07 439,898 1.06

lshp3025 8,904 17,808 - - 3.01E+06 72,058 0.01
lshp3466 10,215 20,430 - - 3.65E+06 84,338 0.02
bodyy4 52,196 104,392 - - 3.29E+07 501,494 0.18
rail 20209 59,512 119,024 - - 1.31E+07 319,401 0.24
cvxbqp1 149,984 299,968 - - 4.56E+08 1,978,965 0.65

shuttle eddy 46,585 93,170 - - 2.07E+07 352,363 0.11
nasa4704 50,026 100,052 - - 3.88E+07 303,720 0.03
bcsstk24 78,174 156,348 - - 4.14E+07 314,104 0.02
skirt 91,964 183,925 - - 2.92E+07 465,553 0.17
bcsstk28 107,307 214,614 - - 5.40E+07 403,052 0.03
s1rmq4m1 137,811 275,622 - - 1.07E+08 646,878 0.03
vibrobox 165,250 330,500 - - 1.31E+09 2,482,629 0.34
crystk01 155,508 311,016 - - 2.73E+08 1,003,272 0.60
bcsstm36 165,097 319,314 - - 1.14E+08 879,713 0.38
gridgena 231,561 463,122 - - 3.61E+08 2,671,255 0.72
k1 san 256,411 512,821 - - 4.00E+08 2,605,291 1.20
finan512 261,120 522,240 - - 1.56E+08 1,747,840 1.29
msc23052 565,881 1,131,762 - - 6.40E+08 2,934,092 0.22
bcsstk35 709,963 1,419,926 - - 4.81E+08 3,049,203 0.30
oilpan 1,761,718 3,523,436 - - 2.78E+09 9,137,443 0.64

Linear programming M =AAT matrices
delf A 36 3,170 33,508 6,654 15,397 1.76E+006 50,185 0.03
lp dfl001 6,071 82,267 12,230 35,632 7.34E+008 1,277,948 0.12
model9 2,879 103,961 10,939 55,956 4.86E+006 97,041 0.06
nl 7,039 105,089 15,325 47,035 4.20E+007 298,181 0.09
ge 10,099 112,129 16,369 44,825 2.28E+007 267,891 0.14
lp ken 13 28,632 161,804 42,659 97,246 1.72E+007 349,677 0.30
lpi gosh 3,792 206,010 13,455 99,953 3.66E+007 249,770 0.11
cq9 9,278 221,590 21,534 96,653 4.10E+007 406,070 0.17
lp osa 14 2,337 230,023 54,797 317,097 6.21E+006 116,160 0.14
co9 10,789 249,205 22,924 109,651 5.03E+007 471,887 0.20
pltexpa 26,894 269,736 70,364 143,059 1.57E+008 1,229,360 0.50
model10 4,400 293,260 16,819 150,372 5.69E+007 392,002 0.15
fome12 24,284 329,068 48,920 142,528 2.58E+009 4,732,776 0.67
lp cre d 8,926 372,266 73,948 246,614 2.05E+008 752,413 0.35
r05 5,190 406,158 9,690 104,145 1.21E+008 528,707 0.17
world 34,506 582,064 67,147 198,883 3.52E+008 2,001,206 0.83
mod2 34,774 604,910 66,409 199,810 4.24E+008 2,214,268 0.87
lp maros r7 3,136 664,080 9,408 144,848 7.19E+008 1,401,207 0.32
ex3sta1 17,443 679,857 17,516 68,779 7.89E+009 8,052,424 0.45
psse2 28,634 736,338 11,028 115,262 7.67E+007 963,141 0.22
fxm3 16 41,340 765,526 85,575 392,252 2.76E+007 686,497 0.90
Kemelmacher 28,452 781,148 9,693 100,875 1.11E+009 4,152,721 0.94
graphics 29,493 1,577,187 11,822 117,954 1.33E+009 4,966,956 0.39
stat96v5 2,307 1,790,467 75,779 233,921 2.55E+009 2,169,949 0.67
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TABLE 5.2
Sparsening properties and ordering performances of sparsening algorithms relative to original A matrix for

LP problems

Sparsening properties Ordering performance of oPaToH-MS
Alg3 Alg4 opc nnz(L) time

name q̃ nnz(Ã) q̃ nnz(Ã) Alg3 Alg4 Alg3 Alg4 Alg3 Alg4
lp pds 02 0.98 0.99 0.98 0.99 0.93 0.99 0.98 1.00 0.95 0.92
delf A 36 0.41 0.61 0.38 0.59 0.92 1.10 0.98 1.02 0.77 0.83
lp dfl001 0.87 0.94 0.87 0.94 1.01 0.99 1.00 0.99 0.97 1.10
model9 0.59 0.86 0.60 0.86 1.02 1.00 1.00 1.00 0.99 1.09
nl 0.53 0.77 0.52 0.76 0.95 0.97 0.99 0.99 1.04 1.12
ge 0.57 0.71 0.56 0.71 0.94 0.87 0.99 0.97 0.88 0.92
lp ken 13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.06 1.15
lpi gosh 0.73 0.95 0.73 0.95 0.96 0.99 0.99 0.99 0.98 1.08
cq9 0.54 0.73 0.53 0.72 1.01 1.02 1.00 1.01 0.76 0.88
lp osa 14 0.96 0.52 0.96 0.52 1.00 1.00 1.00 1.00 0.12 0.17
co9 0.54 0.72 0.52 0.71 1.00 1.00 1.00 1.00 0.70 0.80
pltexpa 0.57 0.79 0.57 0.79 1.00 1.12 1.00 1.03 1.15 1.19
model10 0.86 0.94 0.86 0.94 0.95 0.97 0.98 0.98 0.97 1.11
fome12 0.87 0.94 0.87 0.94 1.01 1.02 1.00 1.01 1.01 1.08
lp cre d 0.94 0.86 0.97 0.87 0.93 0.98 0.97 0.99 0.78 0.85
r05 0.93 0.99 0.93 0.99 1.00 1.00 1.00 1.00 1.30 1.63
world 0.45 0.79 0.45 0.79 0.99 1.00 1.00 1.00 0.97 0.97
mod2 0.45 0.79 0.45 0.79 1.01 1.01 1.00 1.00 0.90 0.98
lp maros r7 0.32 0.50 0.32 0.44 0.99 1.00 1.00 1.00 0.88 1.21
ex3sta1 0.41 0.82 0.41 0.82 1.03 1.01 1.01 1.00 1.08 1.21
psse2 0.43 0.51 0.43 0.51 1.01 1.05 1.00 1.01 0.91 1.16
fxm3 16 0.56 0.53 0.55 0.51 0.98 0.98 1.00 0.99 0.63 0.66
Kemelmacher 0.99 1.00 0.99 1.00 0.97 1.00 0.99 1.00 0.98 1.13
graphics 0.33 0.75 0.33 0.75 0.99 1.00 1.00 1.00 1.21 1.68
stat96v5 0.02 0.04 0.02 0.04 0.93 0.93 0.97 0.97 0.13 0.23
geomean 0.53 0.69 0.53 0.68 0.98 1.00 0.99 1.00 0.80 0.92

pins. In the table, H2 , H3 and H4 denote the clique-node hypergraphs induced by ECCs
C2 , C3 and C4 , respectively. Recall that ECCs C3 and C4 are constructed from G(M)
using Algorithm 1 and Algorithm 2, respectively. For LP matrices, HRN(Ã) refers to the
hypergraphs obtained from row-net representations of the sparsened A matrices. Note that,
for ordering LP matrices, we recommend to use HRN(Ã) hypergraphs. Here, we provide
the results for H2 , H3 and H4 hypergraphs are given for the sake of completeness. Also
note that, for a given M matrix, all hypergraphs have the same number of nets, which is
equal to the number of rows/columns of M . In the table, the H2 model is considered as
the base model, so the number of nodes and pins of H3 , H4 and HRN(Ã) are displayed as
normalized with respect to those of H2 .

As seen in Table 5.3, the size of clique-node hypergraph for a given M matrix decreases
in terms of both number of nodes and pins when larger cliques of G(M) are considered while
constructing the hypergraph. That is, H4 has smaller size than H3 , which in turn has smaller
size than H2 . However, the first five and the first ten out of 25 general matrices do not lead to
3-cliques and 4-cliques, respectively. So, the H2 , H3 and H4 hypergraphs are the same for
the first five general M matrices, whereas the H3 and H4 hypergraphs are the same for the
first ten general M matrices. The second geomean row shows the values when those five
and ten matrices are excluded from the geometric averaging. That is, 6– and 11– refer to the
geometric averages when the first five and the first ten matrices are excluded, respectively. As
seen in Table 5.3, for LP matrices, HRN(Ã) hypergraphs have drastically smaller size than
even H4 hypergraphs in general.
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TABLE 5.3
Hypergraph properties

H2 H3 H4 HRN(Ã)

name #nets #nodes #pins #nodes #pins #nodes #pins #nodes #pins
General Matrices

ncvxqp9 23,047 23,047 45,540 1.00 1.00 1.00 1.00 - -
aug3dcqp 50,286 50,286 100,572 1.00 1.00 1.00 1.00 - -
c-53 170,989 170,989 341,978 1.00 1.00 1.00 1.00 - -
c-59 219,627 219,627 439,254 1.00 1.00 1.00 1.00 - -
c-67 236,980 236,980 473,960 1.00 1.00 1.00 1.00 - -

lshp3025 8,904 8,904 17,808 0.35 0.53 0.35 0.53 - -
lshp3466 10,215 10,215 20,430 0.35 0.53 0.35 0.53 - -
bodyy4 52,196 52,196 104,392 0.36 0.53 0.36 0.53 - -
rail 20209 59,512 59,512 119,024 0.48 0.71 0.48 0.71 - -
cvxbqp1 149,984 149,984 299,968 0.45 0.67 0.45 0.67 - -

shuttle eddy 46,585 46,585 93,170 0.51 0.75 0.43 0.68 - -
nasa4704 50,026 50,026 100,052 0.48 0.72 0.29 0.57 - -
bcsstk24 78,174 78,174 156,348 0.49 0.73 0.30 0.60 - -
skirt 91,964 91,964 183,925 0.48 0.72 0.30 0.57 - -
bcsstk28 107,307 107,307 214,614 0.49 0.73 0.31 0.62 - -
s1rmq4m1 137,811 137,811 275,622 0.49 0.74 0.32 0.64 - -
vibrobox 165,250 165,250 330,500 0.50 0.74 0.33 0.61 - -
crystk01 155,508 155,508 311,016 0.50 0.74 0.31 0.62 - -
bcsstm36 165,097 165,097 319,314 0.52 0.74 0.34 0.59 - -
gridgena 231,561 231,561 463,122 0.54 0.74 0.39 0.60 - -
k1 san 256,411 256,411 512,821 0.45 0.65 0.27 0.49 - -
finan512 261,120 261,120 522,240 0.49 0.68 0.27 0.47 - -
msc23052 565,881 565,881 1,131,762 0.49 0.74 0.32 0.63 - -
bcsstk35 709,963 709,963 1,419,926 0.49 0.73 0.30 0.60 - -
oilpan 1,761,718 1,761,718 3,523,436 0.49 0.74 0.30 0.59 - -
geomean 0.54 0.74 0.42 0.65 - -
6–,11– 0.47 0.69 0.32 0.59 -

LP Problems
lp pds 02 10,164 2,953 20,328 0.75 0.83 0.74 0.81 0.74 0.81
delf A 36 15,169 3,170 30,338 0.48 0.70 0.34 0.60 0.18 0.31
lp dfl001 38,098 6,071 76,196 0.51 0.70 0.37 0.56 0.28 0.44
model9 50,730 2,879 101,271 0.51 0.75 0.33 0.62 0.13 0.48
nl 49,034 7,039 98,059 0.52 0.74 0.36 0.61 0.16 0.37
ge 51,015 10,099 102,030 0.50 0.72 0.35 0.60 0.18 0.31
lp ken 13 66,586 28,632 133,172 0.62 0.72 0.62 0.72 0.64 0.73
lpi gosh 101,213 3,792 202,322 0.52 0.75 0.35 0.66 0.10 0.47
cq9 106,187 9,278 212,343 0.50 0.74 0.34 0.60 0.11 0.33
lp osa 14 113,843 2,337 227,686 0.51 0.76 0.48 0.74 0.46 0.73
co9 119,330 10,789 238,538 0.50 0.74 0.35 0.63 0.10 0.33
pltexpa 121,421 26,894 242,842 0.51 0.69 0.43 0.63 0.33 0.46
model10 144,431 4,400 288,861 0.51 0.75 0.33 0.62 0.10 0.49
fome12 152,392 24,284 304,784 0.51 0.70 0.37 0.56 0.28 0.44
lp cre d 184,120 8,926 365,790 0.57 0.78 0.47 0.68 0.38 0.58
r05 200,503 5,190 400,987 0.50 0.74 0.34 0.66 0.04 0.26
world 274,179 34,506 547,958 0.49 0.72 0.34 0.60 0.11 0.29
mod2 285,487 34,774 570,555 0.49 0.72 0.34 0.60 0.10 0.28
lp maros r7 330,472 3,136 660,944 0.50 0.75 0.35 0.70 0.01 0.11
ex3sta1 331,207 17,443 662,414 0.49 0.73 0.31 0.61 0.02 0.08
psse2 353,852 28,634 707,704 0.48 0.72 0.30 0.60 0.01 0.08
fxm3 16 362,093 41,340 724,186 0.51 0.74 0.37 0.65 0.13 0.29
Kemelmacher 376,348 28,452 752,696 0.48 0.72 0.31 0.62 0.03 0.13
graphics 773,847 29,493 1,547,694 0.49 0.74 0.32 0.64 0.01 0.06
stat96v5 894,082 2,307 1,788,162 0.50 0.75 0.34 0.68 0.00 0.01
geomean 0.52 0.74 0.37 0.64 0.09 0.26
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The performances of the ordering tools are displayed in Tables 5.4, 5.5 and 5.6 as nor-
malized to those of onmetis. Tables 5.4 and 5.5 compare the ordering quality of the tools
in terms of operation-count and fill-in metrics, respectively, whereas Table 5.6 compares the
running times of the tools. In these tables, “oe” and “SM” abbreviations are used for oemetis
and SMOOTH, respectively. For general matrices, in the second geomean row, 1–, 6– and
11– refer to the geometric averages when none, the first five and the first ten of the matrices
are excluded, respectively.

First, we discuss the relative ordering quality performance of existing methods and tools
on the results displayed in Tables 5.4 and 5.5. For general matrices, MMD shows the worst
performance compared to the other ordering tools. SMOOTH and onmetis show very close
performance both in terms of operation-count and fill-in metrics. oemetis also shows close
performance to onmetis in terms of fill-in metric, however it performs considerably worse
than (8% worse on average) onmetis in terms of operation-count metric. These results con-
firm that GPVS-based ordering in general performs better than GPES-based ordering, and
comply with the results reported in [32]. Our results also show that, for LP matrices, onmetis
performs drastically better than all other existing methods and tools, on the average. As seen
in Table 5.6, MMD is the fastest for general matrices, whereas oemetis is the fastest for LP
matrices, on the average. However, onmetis is the second fastest tool in both general and LP
matrices, on the average.

Second, we discuss the effect of different clique cover finding algorithms and ordering
schemes implemented in oPaToH. As seen in Tables 5.4 and 5.5, the ordering quality of
oPaToH increases in general when larger cliques of G(M) are considered while constructing
the hypergraph. That is, in general, oPaToH using H4 produces better orderings than oPaToH
using H3 , which in turn produces better orderings than oPaToH using H2 . Note that the
second geomean row should be considered while making this evaluation since using H3 /H4

will not improve the performance if G(M) does not contain 3-cliques/4-cliques at all. For
LP matrices, oPaToH using HRN(Ã) usually produces better orderings than oPaToH using
H2 , H3 and H4 . These results justify our earlier choice on the use of HRN(Ã) for ordering
LP matrices. As seen in Tables 5.4 and 5.5, oPaToH-MS performs better than oPaToH-ND in
terms of both operation-count and fill-in metrics. These experimental results comply with the
results reported in [7] that favor the MS scheme over the ND scheme. Furthermore, as seen
in Table 5.6, oPaToH-MS and oPaToH-ND shows very close performance in running time.
So, we recommend the use of the MS scheme in our oPaToH ordering tool.

Third, we discuss the ordering performance of oPaToH-MS with respect to onmetis,
since onmetis appears to be the best existing ordering tool, on the overall average. As seen
in Tables 5.4 and 5.5, oPaToH produces considerably better orderings than onmetis, for both
general and LP matrices, where the performance gap is more pronounced in the ordering
of LP matrices. As seen in Table 5.4, the ordering quality of oPaToH-MS increases with
increasing clique sizes used in clique-node hypergraph construction, on the average. For
example, for general matrices, oPaToH-MS using H2 ,H3 and H4 produce orderings with
8%, 12% and 16% less operation count than onmetis, respectively, on the average. For LP
matrices, oPaToH-MS using HRN(Ã) produces orderings with 21% less operation count than
onmetis, on the average. Comparison of Tables 5.4 and 5.5 shows that the performance gap
between oPaToH and onmetis is smaller in terms of fill-in metric than in terms of operation-
count metric, as expected. As seen in Table 5.5, for general matrices, oPaToH-MS using
H2 ,H3 and H4 produce orderings with 3%, 6% and 8% less nonzeros in factor matrices
than onmetis, respectively, on the average. For LP matrices, oPaToH-MS using HRN(Ã)
produces orderings with 9% less nonzeros in factor matrices than onmetis, on the average.
Since oPaToH and onmetis are HP-based and GPVS-based ordering tools, respectively, the
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TABLE 5.4
Operation counts of various ordering methods and tools relative to onmetis

oPaToH-MS oPaToH-ND

name MMD oe SM H2 H3 H4 HRN(Ã) H2 H3 H4 HRN(Ã)

General Matrices
ncvxqp9 1.42 1.13 1.24 0.74 0.74 0.74 - 0.72 0.72 0.72 -
aug3dcqp 1.63 1.03 1.01 0.92 0.92 0.92 - 0.84 0.84 0.84 -
c-53 1.72 3.11 1.34 0.85 0.85 0.85 - 0.86 0.86 0.86 -
c-59 1.36 1.25 1.34 1.17 1.17 1.17 - 1.07 1.07 1.07 -
c-67 0.85 2.43 1.10 0.88 0.88 0.88 - 0.91 0.91 0.91 -

lshp3025 1.11 0.98 1.05 0.97 1.02 1.02 - 0.99 0.99 0.99 -
lshp3466 1.20 1.09 1.05 0.99 0.91 0.91 - 1.06 0.99 0.99 -
bodyy4 1.55 1.04 1.10 1.04 1.03 1.03 - 1.03 1.02 1.02 -
rail 20209 1.18 1.13 1.21 1.01 0.98 0.98 - 1.10 1.06 1.06 -
cvxbqp1 7.48 0.95 1.08 0.99 0.98 0.98 - 0.91 0.92 0.92 -

shuttle eddy 1.34 1.00 0.95 1.09 1.06 1.04 - 1.12 1.09 1.11 -
nasa4704 0.74 0.91 0.86 0.63 0.70 0.67 - 0.66 0.68 0.66 -
bcsstk24 0.90 1.11 0.79 0.91 0.83 0.82 - 0.85 0.86 0.87 -
skirt 1.23 1.04 0.92 1.09 1.00 0.97 - 1.20 1.07 1.05 -
bcsstk28 0.65 0.80 0.70 0.76 0.78 0.76 - 0.72 0.77 0.78 -
s1rmq4m1 1.11 0.80 0.84 0.93 0.92 0.91 - 0.89 0.87 0.96 -
vibrobox 0.62 0.67 0.97 0.79 0.56 0.53 - 0.93 0.58 0.52 -
crystk01 1.37 0.82 0.86 1.20 1.12 1.17 - 1.18 1.07 1.10 -
bcsstm36 0.95 0.97 1.14 0.76 0.75 0.77 - 0.79 0.80 0.79 -
gridgena 1.18 0.96 0.99 0.88 0.84 0.84 - 1.01 0.97 0.97 -
k1 san 3.19 1.02 0.77 1.30 0.86 0.93 - 1.36 0.84 0.94 -
finan512 20.71 1.00 1.05 0.95 0.91 0.80 - 0.77 0.82 0.71 -
msc23052 1.01 1.15 1.10 0.84 0.85 0.85 - 0.86 0.90 0.89 -
bcsstk35 0.87 1.22 1.14 0.82 0.80 0.81 - 0.84 0.85 0.84 -
oilpan 1.28 1.00 1.08 0.95 0.97 1.00 - 0.98 0.99 1.04 -
geomean 1.40 1.08 1.01 0.92 0.89 0.88 - 0.93 0.89 0.89 -
1–,6–,11– 0.92 0.88 0.84 - 0.93 0.90 0.87 -

LP Problems
lp pds 02 1.01 1.03 1.18 0.85 0.84 0.82 0.77 1.41 0.81 0.76 0.81
delf A 36 0.99 1.18 1.01 0.98 0.86 0.87 0.80 0.96 1.00 0.95 0.85
lp dfl001 1.49 1.65 4.17 0.75 0.72 0.70 0.72 0.67 0.64 0.63 0.62
model9 0.91 0.85 0.88 0.68 0.67 0.67 0.70 0.69 0.68 0.67 0.72
nl 0.92 30.05 0.96 0.87 0.88 0.90 0.87 0.95 0.93 0.94 0.94
ge 1.64 1.22 1.04 1.15 1.19 0.99 0.93 1.22 1.15 0.97 0.91
lp ken 13 1.00 18.36 1.09 0.98 0.97 0.97 0.97 0.98 0.97 0.97 0.97
lpi gosh 1.14 1.03 1.04 0.96 0.88 0.84 0.81 1.13 0.92 0.81 0.81
cq9 1.43 43.63 1.33 1.00 0.99 1.00 0.91 1.05 1.05 1.06 0.98
lp osa 14 1.06 1.00 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
co9 1.32 50.74 0.96 0.96 0.97 0.97 0.96 1.00 0.98 1.01 0.98
pltexpa 8.21 1.82 3.34 0.78 0.68 0.67 0.68 0.85 0.84 0.85 0.83
model10 1.85 1.09 2.13 1.06 0.99 0.97 0.99 0.98 0.94 0.94 0.96
fome12 2.00 1.84 5.00 0.93 0.93 0.91 0.91 0.77 0.72 0.72 0.72
lp cre d 1.51 0.83 9.01 0.87 0.90 0.89 0.84 1.00 0.98 0.99 0.94
r05 0.62 12.63 0.60 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44
world 0.81 2.04 2.32 0.71 0.71 0.71 0.64 0.96 0.87 0.86 0.77
mod2 0.62 1.76 1.77 0.57 0.55 0.55 0.52 0.77 0.69 0.70 0.66
lp maros r7 0.74 0.94 1.10 1.10 1.09 1.02 0.92 1.14 1.11 1.02 0.92
ex3sta1 9.51 1.03 1.26 1.35 1.22 1.59 1.03 1.43 1.24 1.73 0.94
psse2 0.73 1.25 0.91 0.68 0.70 0.65 0.62 0.80 0.80 0.76 0.72
fxm3 16 0.72 1.09 1.23 0.72 0.74 0.72 0.73 0.89 0.93 0.92 0.94
Kemelmacher 1.93 0.87 1.04 1.65 1.28 1.14 0.89 1.78 1.29 1.11 0.91
graphics 1.13 1.02 1.07 0.83 0.82 0.84 0.73 0.89 0.89 0.90 0.77
stat96v5 0.76 1.04 0.76 0.94 0.98 0.88 0.79 0.93 0.97 0.89 0.79
geomean 1.27 2.22 1.42 0.88 0.86 0.84 0.79 0.96 0.89 0.88 0.83
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TABLE 5.5
Factor nonzero counts of various ordering methods and tools relative to onmetis

oPaToH-MS oPaToH-ND

name MMD oe SM H2 H3 H4 HRN(Ã) H2 H3 H4 HRN(Ã)

General Matrices
ncvxqp9 1.09 1.05 1.14 0.95 0.95 0.95 - 0.95 0.95 0.95 -
aug3dcqp 1.12 1.01 1.00 0.90 0.90 0.90 - 0.87 0.87 0.87 -
c-53 1.40 1.45 1.15 1.07 1.07 1.07 - 1.07 1.07 1.07 -
c-59 1.08 1.15 1.10 0.97 0.97 0.97 - 0.96 0.96 0.96 -
c-67 1.03 1.22 1.05 1.02 1.02 1.02 - 1.03 1.03 1.03 -

lshp3025 1.04 0.99 1.01 0.99 1.00 1.00 - 0.99 0.99 0.99 -
lshp3466 1.06 1.03 1.01 0.99 0.97 0.97 - 1.01 0.99 0.99 -
bodyy4 1.15 1.01 1.02 1.01 1.00 1.00 - 1.01 1.00 1.00 -
rail 20209 1.07 1.04 1.07 1.02 1.01 1.01 - 1.04 1.03 1.03 -
cvxbqp1 2.12 0.98 1.04 0.97 0.97 0.97 - 0.96 0.97 0.97 -

shuttle eddy 1.13 1.00 0.97 1.03 1.01 1.01 - 1.03 1.02 1.03 -
nasa4704 0.85 0.96 0.94 0.81 0.83 0.82 - 0.82 0.83 0.82 -
bcsstk24 0.93 1.05 0.91 0.94 0.91 0.91 - 0.92 0.93 0.93 -
skirt 1.06 1.02 0.95 1.02 0.99 0.98 - 1.05 1.01 1.01 -
bcsstk28 0.85 0.96 0.88 0.89 0.90 0.90 - 0.88 0.90 0.90 -
s1rmq4m1 1.03 0.92 0.94 0.96 0.96 0.95 - 0.95 0.95 0.98 -
vibrobox 0.82 0.82 1.01 0.85 0.74 0.72 - 0.91 0.75 0.72 -
crystk01 1.12 0.91 0.91 1.06 1.03 1.05 - 1.06 1.02 1.03 -
bcsstm36 0.96 0.98 1.00 0.90 0.90 0.90 - 0.91 0.91 0.91 -
gridgena 1.09 0.99 0.96 0.96 0.95 0.94 - 1.00 0.98 0.98 -
k1 san 1.66 1.00 0.90 1.12 0.94 0.97 - 1.14 0.94 0.97 -
finan512 2.88 1.02 1.07 1.02 0.99 0.96 - 0.96 0.96 0.92 -
msc23052 0.95 1.03 0.97 0.90 0.90 0.91 - 0.91 0.92 0.91 -
bcsstk35 0.92 1.06 1.00 0.90 0.90 0.90 - 0.91 0.91 0.91 -
oilpan 1.05 1.01 1.02 0.96 0.97 0.98 - 0.97 0.97 0.99 -
geomean 1.13 1.02 1.00 0.97 0.95 0.95 - 0.97 0.95 0.95 -

0.97 0.94 0.92 - 0.97 0.95 0.93 -
LP Problems

lp pds 02 1.01 0.98 1.09 0.97 0.96 0.95 0.93 1.11 0.95 0.93 0.95
delf A 36 0.99 1.07 1.00 0.98 0.95 0.95 0.93 0.98 0.99 0.97 0.94
lp dfl001 1.14 1.30 2.10 0.85 0.83 0.82 0.83 0.82 0.80 0.79 0.79
model9 0.98 0.93 0.94 0.86 0.86 0.86 0.87 0.87 0.86 0.86 0.88
nl 0.95 5.18 0.99 0.94 0.94 0.95 0.94 0.96 0.96 0.96 0.96
ge 1.12 1.06 1.03 1.01 1.01 0.97 0.96 1.03 1.00 0.97 0.95
lp ken 13 1.02 2.17 1.08 1.02 1.02 1.02 1.02 1.03 1.02 1.02 1.02
lpi gosh 1.01 1.03 1.00 0.97 0.94 0.94 0.92 1.02 0.95 0.93 0.92
cq9 1.12 4.74 1.10 0.99 0.99 0.99 0.96 1.01 1.01 1.01 0.98
lp osa 14 1.02 1.00 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
co9 1.07 5.23 0.96 0.97 0.97 0.97 0.96 0.98 0.97 0.98 0.97
pltexpa 2.04 1.33 1.90 0.85 0.81 0.81 0.81 0.86 0.85 0.85 0.84
model10 1.27 1.05 1.38 1.03 1.00 0.99 0.99 1.00 0.98 0.98 0.99
fome12 1.33 1.39 2.30 0.95 0.95 0.94 0.93 0.88 0.85 0.85 0.85
lp cre d 1.17 0.93 2.56 0.93 0.95 0.94 0.92 0.98 0.98 0.98 0.96
r05 0.93 3.33 0.92 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82
world 0.90 1.39 1.48 0.86 0.86 0.86 0.83 0.95 0.92 0.91 0.88
mod2 0.82 1.32 1.32 0.79 0.78 0.78 0.76 0.87 0.84 0.84 0.82
lp maros r7 0.87 0.97 1.03 1.03 1.03 1.00 0.95 1.05 1.04 1.00 0.96
ex3sta1 3.23 1.00 1.13 1.12 1.09 1.26 0.99 1.14 1.09 1.31 0.95
psse2 0.87 1.07 0.95 0.87 0.87 0.86 0.84 0.90 0.90 0.89 0.87
fxm3 16 0.93 1.03 1.07 0.93 0.94 0.93 0.94 0.97 0.98 0.97 0.98
Kemelmacher 1.31 0.96 1.02 1.23 1.10 1.04 0.94 1.28 1.10 1.03 0.95
graphics 0.98 0.99 0.97 0.89 0.89 0.89 0.85 0.91 0.91 0.92 0.87
stat96v5 0.88 1.02 0.88 0.97 0.99 0.94 0.90 0.97 0.99 0.95 0.90
geomean 1.10 1.40 1.19 0.95 0.94 0.94 0.91 0.97 0.95 0.95 0.92
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better quality orderings produced by oPaToH confirm the validity of our HP-based GPVS
formulation in the application of fill reducing ordering of sparse matrices.

As seen in Table 5.6, for general matrices, searching for 3-cliques in the construction
of clique-node hypergraphs amortizes its cost in 11 out of 20 matrices by reducing the total
ordering time. oPaToH-MS using H3 takes 3.2% less ordering time than oPaToH-MS using
H2 , on the average. However, as seen in the table, searching for 4-cliques in the construction
of clique-node hypergraphs amortizes its cost in only 6 out of 15 matrices. oPaToH-MS using
H4 takes 8.8% more ordering time than oPaToH-MS using H2 , on the average. As seen in the
table, oPaToH-MS is significantly slower than onmetis for the ordering of general matrices.
For example, oPaToH-MS using H3 is 263% slower than onmetis, on the average. However,
for LP matrices, oPaToH-MS using HRN(Ã) is quite fast and it is only 79% slower than
onmetis, on the average. The slower run-time performance of oPaToH compared to onmetis
is expected, because hypergraph partitioning is computationally more expensive than graph
partitioning, in general.

The above discussions given on Tables 5.4–5.6 show that oPaToH produces considerably
better quality orderings than onmetis at a higher computational cost. Thus, the higher com-
putational cost of oPaToH can be typically justified for applications which involve multiple
numerical factorization of matrices with the same sparsity patterns and/or multiple solutions
with different right hand side vectors. Interior point methods that adopt the normal equa-
tions approach constitute such a typical case. This is because the numerical factorization
M = LLT of matrix M is required at each iteration, where the sparsity pattern of matrix M
is independent of the value of diagonal D2 matrix and hence remains same at all iterations.

6. Conclusion. Direct solvers are one of the preferred methods for solving linear sys-
tems due to their numerical robustness. A typical first step in this process is reordering
of input matrix to improve execution time and space requirements of the solution process.
Graphs have been extensively used to model the evolution of the nonzero structure during
the factorization step of direct solvers and hence for the reordering process. Decades after
the first theoretical work on nested dissection, recent advances in multilevel graph partition-
ing framework finally enabled the development of long-waited, successful nested dissection
based ordering tools that work in wider range of problems. The state-of-the-art nested dissec-
tion based ordering tools directly employ graph partitioning by vertex separator (GPVS). In
this work, we showed that GPVS has a deficiency in multilevel frameworks. We introduced
a novel hypergraph partitioning (HP) formulation of GPVS that is not vulnerable to GPVS’s
deficiency in multilevel framework. We have exploited this finding to develop a novel HP-
based fill reducing ordering method. In matrix terms, our approaches rely on existence of a
structural factorization of a symmetric matrix M in the form of M = AAT , where A is
a rectangular matrix. Such structural factorizations arise in different contexts, such as solu-
tion of LP problems, where M = AD2AT and D2 is a diagonal matrix. In the absence of
such structural factorization, we also proposed simple, yet effective structural factorization
techniques that can be applied to any arbitrary symmetric matrix to obtain such structural
factorization. For matrices coming from LP problems, we also proposed two structural factor
sparsening methods.

We performed our experimental evaluations using 50 publicly available test matrices,
where 25 of them come from LP problems, and 25 are general symmetric matrices. We have
implemented and tested multisection (MS) and nested-dissection (ND) ordering schemes [7]
in our HP-based ordering tool, oPaToH, and compared our results to MS implementation in
SMOOTH [5], as well as GPVS- and GPES-based orderings implemented in MeTiS [37],
MMD [40] implementation from SPARSPAK [23]. Among the existing tools we tested, in
general, GPVS-based onmetis produces best results in terms of operation counts and amount
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TABLE 5.6
Total execution times of various ordering methods and tools relative to onmetis

oPaToH-MS oPaToH-ND

name MMD oe SM H2 H3 H4 HRN(Ã) H2 H3 H4 HRN(Ã)

General Matrices
ncvxqp9 0.63 0.69 2.31 2.06 2.06 2.06 - 2.07 2.07 2.07 -
aug3dcqp 1.70 0.80 1.61 1.30 1.30 1.30 - 1.30 1.30 1.30 -
c-53 9.04 0.98 15.51 3.41 3.41 3.41 - 3.16 3.16 3.16 -
c-59 7.68 0.73 8.27 3.77 3.77 3.77 - 3.66 3.66 3.66 -
c-67 1.66 0.91 5.08 9.40 9.40 9.40 - 9.61 9.61 9.61 -

lshp3025 1.00 1.00 4.00 9.30 6.00 6.00 - 10.30 6.00 6.00 -
lshp3466 1.00 1.00 3.00 5.70 3.50 3.50 - 5.65 3.65 3.65 -
bodyy4 0.83 0.83 1.94 4.45 2.62 2.62 - 4.26 2.49 2.49 -
rail 20209 0.63 0.83 1.83 4.18 2.44 2.44 - 4.37 2.45 2.45 -
cvxbqp1 1.48 0.86 2.02 5.52 3.47 3.43 - 5.52 3.56 3.65 -

shuttle eddy 0.64 0.82 1.91 6.43 4.05 3.53 - 6.34 3.98 3.75 -
nasa4704 0.67 2.00 4.67 4.10 4.57 4.70 - 4.50 4.63 4.73 -
bcsstk24 0.50 3.00 8.50 3.85 5.05 8.30 - 3.60 5.60 8.25 -
skirt 0.65 0.88 2.24 8.40 5.26 4.23 - 8.51 5.21 4.30 -
bcsstk28 0.33 3.33 7.67 1.93 3.23 5.03 - 1.87 3.20 5.03 -
s1rmq4m1 0.67 4.33 7.33 2.30 5.03 7.43 - 2.27 5.10 7.40 -
vibrobox 1.21 0.79 4.91 10.14 6.61 5.45 - 9.98 6.56 5.45 -
crystk01 0.50 2.50 7.17 4.03 5.97 8.05 - 4.23 5.80 8.33 -
bcsstm36 0.18 2.29 4.16 0.85 0.98 1.03 - 0.84 0.92 1.00 -
gridgena 0.74 0.89 1.68 6.63 4.46 3.73 - 6.21 4.15 3.66 -
k1 san 0.44 0.83 1.54 4.61 2.47 1.95 - 4.55 2.49 1.92 -
finan512 0.79 0.78 1.91 5.08 2.98 1.72 - 5.22 2.98 1.61 -
msc23052 0.32 3.27 5.59 1.82 3.52 4.52 - 1.82 3.51 4.47 -
bcsstk35 0.43 3.13 6.67 2.43 3.56 5.57 - 2.46 3.48 5.53 -
oilpan 0.42 4.23 8.52 1.45 2.60 4.69 - 1.49 2.57 4.72 -
geomean 0.81 1.34 3.86 3.75 3.52 3.74 - 3.75 3.50 3.73 -
1–,6–,11– 3.75 3.63 4.08 - 3.75 3.61 4.07 -

LP Problems
lp pds 02 2.00 1.00 5.00 5.80 4.95 5.05 5.10 5.40 4.90 5.60 4.70
delf A 36 0.67 0.67 3.00 5.17 3.80 3.57 1.70 5.13 3.97 3.50 1.70
lp dfl001 6.08 0.67 4.92 5.28 3.97 3.76 2.44 5.23 3.92 3.48 2.50
model9 0.83 1.17 2.33 9.35 8.05 7.22 2.62 9.43 8.17 7.30 2.63
nl 3.67 1.00 9.67 11.19 7.06 6.50 2.30 11.18 7.00 6.28 2.24
ge 0.64 0.71 3.21 4.78 3.41 2.82 1.48 4.56 3.31 2.82 1.49
lp ken 13 1.80 0.97 2.63 6.10 3.49 4.06 3.42 6.04 3.67 4.14 3.37
lpi gosh 2.18 0.91 6.64 17.22 13.65 11.83 3.33 17.40 13.55 11.86 3.24
cq9 4.06 1.00 9.29 20.19 13.43 12.53 2.75 20.29 13.07 12.11 2.86
lp osa 14 1.00 0.93 20.79 0.55 11.86 34.02 0.92 0.54 11.90 34.02 0.89
co9 5.05 1.00 10.60 19.63 13.75 11.43 2.51 19.76 13.17 12.04 2.52
pltexpa 0.90 0.78 1.50 4.26 2.80 2.53 1.80 4.29 2.77 2.47 1.78
model10 1.20 1.20 5.80 15.15 13.97 12.62 4.03 15.23 13.64 11.92 4.00
fome12 4.96 0.70 3.97 7.98 4.89 4.07 2.78 7.96 4.79 3.86 2.71
lp cre d 4.06 0.74 7.66 47.90 26.63 19.69 13.35 40.53 28.21 18.94 13.20
r05 0.47 1.12 2.82 6.64 4.59 5.24 1.53 6.56 4.42 5.14 1.58
world 2.96 0.87 3.73 11.95 7.00 5.54 1.77 11.52 7.08 5.24 1.67
mod2 2.87 0.83 4.44 11.18 7.04 5.34 1.60 11.24 6.79 5.25 1.64
lp maros r7 0.56 0.84 9.69 51.00 31.61 30.35 1.23 52.42 32.00 30.12 1.28
ex3sta1 1.56 1.09 17.64 8.18 7.81 6.34 0.82 8.23 7.76 6.02 0.80
psse2 0.41 2.64 7.55 2.50 3.34 4.38 0.85 2.40 3.38 4.44 0.83
fxm3 16 0.58 0.87 2.96 7.72 5.78 5.42 1.42 7.69 6.13 5.10 1.42
Kemelmacher 0.35 0.80 2.51 11.74 6.36 5.46 0.91 12.15 6.94 5.57 0.89
graphics 0.38 2.69 6.77 3.04 4.86 6.59 0.71 3.16 4.82 6.59 0.69
stat96v5 4.25 1.00 4.97 175.4 104.9 82.98 0.16 172.7 108.2 83.00 0.16
geomean 1.46 0.98 5.19 9.38 7.89 7.62 1.79 9.27 7.92 7.53 1.77
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of fill-in. In terms of operation counts, our HP-based tool oPaToH-MS produced orderings
that require 16% and 21% less operation counts than the ones produced by onmetis for general
and LP matrices, respectively, on the average. In terms of number of nonzero counts in the
triangular factors, oPaToH-MS produces 8-9% less nonzeros in comparison to onmetis. These
reductions come at the expense of higher execution time. oPaToH is up to 4 times slower than
onmetis on general symmetric matrices, however it is only 1.8 times slower for ordering LP
matrices. These higher computational costs can be easily amortized in applications involving
multiple numerical factorization of matrices with the same sparsity patterns and/or multiple
solutions with different right hand side vectors.
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