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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Adnan Yazıcı

ii



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Fazlı Can

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Enis Çetin
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ABSTRACT

IMPROVING THE EFFICIENCY OF SEARCH
ENGINES: STRATEGIES FOR FOCUSED CRAWLING,

SEARCHING, AND INDEX PRUNING

İsmail Sengör Altıngövde

Ph.D. in Computer Engineering

Supervisor: Prof. Dr. Özgür Ulusoy

July, 2009

Search engines are the primary means of retrieval for text data that is abun-

dantly available on the Web. A standard search engine should carry out three

fundamental tasks, namely; crawling the Web, indexing the crawled content, and

finally processing the queries using the index. Devising efficient methods for these

tasks is an important research topic. In this thesis, we introduce efficient strate-

gies related to all three tasks involved in a search engine. Most of the proposed

strategies are essentially applicable when a grouping of documents in its broad-

est sense (i.e., in terms of automatically obtained classes/clusters, or manually

edited categories) is readily available or can be constructed in a feasible manner.

Additionally, we also introduce static index pruning strategies that are based on

the query views.

For the crawling task, we propose a rule-based focused crawling strategy that

exploits interclass rules among the document classes in a topic taxonomy. These

rules capture the probability of having hyperlinks between two classes. The rule-

based crawler can tunnel toward the on-topic pages by following a path of off-topic

pages, and thus yields higher harvest rate for crawling on-topic pages.

In the context of indexing and query processing tasks, we concentrate on con-

ducting efficient search, again, using document groups; i.e., clusters or categories.

In typical cluster-based retrieval (CBR), first, clusters that are most similar to a

given free-text query are determined, and then documents from these clusters are

selected to form the final ranked output. For efficient CBR, we first identify and

evaluate some alternative query processing strategies. Next, we introduce a new

index organization, so-called cluster-skipping inverted index structure (CS-IIS).

It is shown that typical-CBR with CS-IIS outperforms previous CBR strategies
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(with an ordinary index) for a number of datasets and under varying search pa-

rameters. In this thesis, an enhanced version of CS-IIS is further proposed, in

which all information to compute query-cluster similarities during query evalua-

tion is stored. We introduce an incremental-CBR strategy that operates on top

of this latter index structure, and demonstrate its search efficiency for different

scenarios.

Finally, we exploit query views that are obtained from the search engine query

logs to tailor more effective static pruning techniques. This is also related to the

indexing task involved in a search engine. In particular, query view approach

is incorporated into a set of existing pruning strategies, as well as some new

variants proposed by us. We show that query view based strategies significantly

outperform the existing approaches in terms of the query output quality, for both

disjunctive and conjunctive evaluation of queries.

Keywords: Search engine, focused crawling, cluster-based retrieval, static index

pruning.



ÖZET

ARAMA MOTORLARININ VERİMLİLİĞİNİ
ARTIRMAK: ODAKLANMIŞ TARAMA, ARAMA VE

İNDEKS BUDAMA STRATEJİLERİ

İsmail Sengör Altıngövde

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Özgür Ulusoy

Temmuz, 2009

Arama motorları, Ağ üzerinde bol miktarda bulunan metin verilerini getirmenin

birincil aracıdırlar. Standart bir arama motoru üç temel görevi yerine getirir: Ağ

tarama, indirilen içeriği indeksleme ve bu indeks üzerinde sorgu işleme. Bu işler

için verimli yöntemler geliştirmek önemli bir araştırma konusudur. Bu tezde, bir

arama motorunun yaptığı bu üç temel işe ilişkin verimli stratejiler önerilmektedir.

Önerilen yöntemlerin çoğu, en geniş anlamıyla belge gruplarının (ki bunlar

otomatik olarak elde edilmiş belge demetleri/sınıfları ya da elle düzenlenmiş

kategorizasyonlar olabilir) halihazırda bulunduğu veya etkin bir şekilde elde

edilebileceği durumlarda uygulanabilir. Ek olarak, sorgu görünümlerini kullanan

bir statik indeks budama stratejisi de önerilmektedir.

Ağ tarama işi için, bir konu sınıflandırmasındaki belge sınıfları arasındaki ku-

ralları kullanan kural-tabanlı bir odaklanmış tarama stratejisi önerilmiştir. Bu

kurallar, iki sınıf arasındaki birbirlerine Ağ bağlantısı verme olasılığını temsil e-

derler. Önerilen kural-tabanlı tarayıcı, bir yol üzerindeki aranan konuya ilişkisiz

sayfaları takip ederek konuyla ilişkili bir sayfaya ulaşabilmekte (yani tünelleme

yapabilmekte) ve böylece aranan konuda daha yüksek oranda sayfa bulabilmek-

tedir.

İndeksleme ve sorgu işleme kapsamındaysa belge gruplarını (demetler veya

kategoriler) kullanarak arama yapma işine yoğunlaşılmıştır. Geleneksel demet-

tabanlı getirme (DTG) senaryosunda, öncelikle verilen bir serbest metin

sorgusuna en benzer belge demetleri belirlenir, sonra da bu demetlerdeki belgeler

arasından sorgu yanıtı olanlar seçilip sıralanarak sunulur. Verimli DTG için, ilk

olarak bazı alternatif sorgu işleme yöntemleri belirlenmiş ve değerlendirilmiştir.
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Sonra, yeni bir indeks organizasyonu olarak demet-atlayan ters indeks yapısı

(DA-TİY) tanıtılmıştır. Bu yeni yapıyı kullanan DTG’nin klasik indeks kul-

lanan önceki stratejilere göre daha başarılı olduğu çeşitli veri kümeleri ve arama

parametreleri kullanılarak gösterilmiştir. Bu tezde DA-TİY’in sorgu-demet ben-

zerliğini hesaplamakta kullanılacak tüm bilgileri içeren daha geliştirilmiş bir

hali de önerilmektedir. Bahsedilen indeks yapısı üzerinde çalışan artırımlı-DTG

yaklaşımı tanıtılmakta ve farklı senaryolar için arama verimliliği gösterilmektedir.

Son olarak, arama motoru sorgu kütüklerinden elde edilen sorgu görünümleri

kullanılarak daha başarılı statik indeks budama yöntemleri geliştirilmiştir. Bu

da yine arama motorlarındaki indeksleme işiyle ilgilidir. Sorgu görünümü

yaklaşımı literatürde bulunan çeşitli budama algoritmalarına ve bunların bizim

tarafımızdan önerilen bazı başka biçimlerine yerleştirilmiştir. Sorgu görünümü

tabanlı stratejilerin, mevcut diğer teknikleri hem “ve” hem de “veya” cinsi

sorgu işleme durumlarında sorgu cevap kalitesi bakımından önemli ölçüde geçtiği

gösterilmiştir.

Anahtar sözcükler : Arama moturu, odaklanmış tarama, demet-tabanlı getirme,

statik indeks budama.
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also deserves my gratitude for our never-ending technical (and less inspiring non-

technical) discussions. I also thank to my colleague and office-mate Rıfat Özcan
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Chapter 1

Introduction

1.1 Motivation

In the digital age, data is abundant. The Web hosts an enormous amount of text

data in various forms, such as Web pages, news archives, blogs, forums, manuals,

digital libraries, academic publications, e-mail archives, court transcripts and

medical records [122]. Search engines are the primary means of accessing the

text content on the Web. To satisfy its users, a search engine should answer

the user queries accurately and quickly. This is a demanding goal, which calls

for a good and fast retrieval model and a large and up-to-date coverage of Web

content.

To achieve these requirements, a search engine employs three main compo-

nents [17, 34]: a crawler, to collect the Web resources; an indexer, to create an

index of the text content, and a query processor, to evaluate the user queries.

The first two tasks, crawling and indexing, are conducted off-line, whereas query

processing is carried out on-line. Given the magnitude of the data on the Web,

efficiency and scalability for each of these components are of crucial importance

for the success of a search engine.

To have a better understanding of the requirements on search engines, let us

1
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consider the growth of Web in the last decade. A major search engine, Google,

announced the world’s first billion-page index in 20001. The number of indexed

pages reached to 4.2 billion in 2004. At the time of this writing, major search

engines, like Google and Yahoo!, are supposed to index approximately 40–60

billion pages. These figures imply a text collection and a corresponding index

in the order of hundreds of terabytes, which can only be stored in clusters of

tens of thousands of computers. Obviously, this evolution of Web data puts more

pressure on satisfying the user needs; i.e., finding accurate results from the largest

possible coverage of the Web, and doing it fast.

Subsequently, in the last two decades, a number of methods are proposed to

improve the efficiency and scalability of a search engine. Paradigms from parallel

and distributed processing are exploited for all components of a search engine,

to cope with the growth of data. Furthermore, new approaches for crawling,

indexing and query processing are introduced to improve the efficiency.

One such paradigm is prioritizing the Web pages and crawling only the “valu-

able” regions of Web, where the definition of a page’s value depends on the specific

application. Such focused crawlers cover only a specialized portion of Web and

avoid the cost of crawling the entire Web, which is far beyond the capacity of

individuals or institutions other than the largest players in the industry. The idea

of focused crawling can be used to generate topical (also known as specialized,

vertical, or niche) search engines that aim to provide high quality and up-to-date

query results in a specific area for their users.

Such new approaches are also proposed for the other two components, namely

indexer and query processor, of the search systems. For instance, a survey on in-

verted index files (i.e., the state-of-the-art index structure for large scale text

retrieval) demonstrates that it is possible to significantly optimize these compo-

nents by a number of techniques from recent research [122]. In comparison to a

straightforward implementation, such techniques can reduce the disk space usage

(up to a factor of five), memory space usage (up to a factor of twenty), query

evaluation time in CPU (by a factor of three or more), disk traffic (by a factor of

1http://www.google.com/corporate/history.html



CHAPTER 1. INTRODUCTION 3

five in volume and two or more in time) and index construction time (by a factor

of two).

Note that, the efficiency issues for search engines are also important to be

able to provide higher quality results [34]. That is, devising efficient strategies

for the components of a search engine may allow reserving more computing, stor-

age and/or networking resources for improving the result quality. For instance,

efficient crawling strategies may increase the coverage of the search engine, or

efficient query processing strategies may allow more sophisticated ranking algo-

rithms.

Given the key role of search engines for accessing information on the Web and

the dynamicity, variability and growth of the Web data, exploring new methods

for improving search efficiency is a popular topic that attracts many researchers

from the academia and industry. In this thesis, we propose efficient strategies for

the major components involved in a search engine.

1.2 Contributions

The contributions in this thesis consist of developing efficient techniques that are

related to all three tasks, namely crawling, indexing and query processing, in-

volved in a search engine. In the scope of the crawling task, we present a focused

crawling strategy that exploits interclass rules. Next, we turn our attention to

searching document groups; i.e., clusters and categories. To this end, we intro-

duce a new inverted-index structure (and then, an enhanced version of it) and a

cluster-based retrieval strategy. Clearly, these contributions are related to latter

two tasks, namely; indexing and query processing, in a search engine. These

strategies are essentially applicable when a grouping structure on top of the doc-

ument collection is readily available or can be constructed in a feasible manner.

That is, our approaches best fit to the cases where the collection is inherently

clustered (e.g., as in a Web directory), or can be clustered/classified by an unsu-

pervised clustering or supervised classification algorithm, respectively. Our work
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includes several different scenarios corresponding to such cases. In this thesis,

we also exploit search engine query logs for devising efficient methods for index

pruning. In particular, we propose strategies using the query views for static

index pruning. Our contributions in this context are most relevant to indexing

task, as we present an off-line pruning approach for the underlying index. In

the following paragraphs, we provide an overview of our particular contributions

together with the organization of the thesis.

In Chapter 2 (based on [10]), we consider a focused crawling framework where

Web pages are grouped (i.e., classified within a taxonomy) and the crawling is

intended to find pages from a target class. We propose a rule-based focused

crawling strategy that obtains and uses interclass rules while deciding the next

page to be visited. These rules capture the probability of having hyperlinks

between two classes. While crawling for a particular class, the rules are employed

to assign higher priority to those pages that are from the target class or point to

target class with high probability. We show that this strategy remedies some of

the problems in a pioneering focused crawling strategy in the literature [48].

In Chapter 3 (based on [2, 3, 7, 37]), we again use document groups but

for searching purposes. In particular, we consider both cases where documents

are automatically clustered or manually categorized, and propose efficient strate-

gies for typical cluster-based retrieval (typical-CBR). It is shown that, once the

clusters that are most relevant to a query are obtained (or given by the users, as

searching in Web directories [30, 31]), it is more efficient to use this information as

early as possible while selecting the documents within from these clusters. As the

major contribution of this chapter, we introduce a cluster-skipping inverted index

structure (CS-IIS) and show that it is the most efficient approach for typical-CBR

under realistic assumptions. We provide experimental evaluations using classical

TREC [108] datasets that are automatically clustered in partitioning mode. Ad-

ditionally, we discuss the use of typical-CBR strategy with CS-IIS in two different

cases, namely, in a Turkish news portal and for searching within a hierarchical

Web-directory.

In Chapter 4 (based on [4, 5]), we further enhance the CS-IIS discussed in
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Chapter 3, and propose an incremental-CBR strategy, which interleaves select-

ing the clusters and documents that are most similar to a given query. We

adapt state-of-the-art techniques for index compression and document identifier

reassignment so that the storage requirements of the CS-IIS can be significantly

reduced. We also show that our incremental-CBR strategy with CS-IIS can serve

as a dynamic pruning approach in a framework in which Web pages are simply

grouped according to their hosting Web sites.

In Chapter 5 (based on [8]), we propose exploiting query views to tailor more

effective static index pruning strategies for both disjunctive and conjunctive query

processing; i.e., the most common query processing modes in search engines. The

query view approach is incorporated into a number of existing pruning techniques

in the literature, as well as some adaptations proposed by us. An extensive

comparison of all these techniques is also provided in a realistic experimental

setup.

Finally, we conclude and point to some future work directions in Chapter 6.



Chapter 2

Exploiting Interclass Rules for

Focused Crawling

A focused crawler is an agent that concentrates on a particular target topic and

tries to visit and gather only relevant pages from a narrow Web segment. In this

chapter, we exploit the relationships among document groups; more specifically,

classes, to improve the performance of focused crawling. In particular, we extract

rules that represent the linkage probabilities between different document classes

and employ these rules to guide the focused crawling process.

In Sections 2.1 and 2.2, we provide a brief introduction to focused crawling

and review the previous works in the literature, respectively. In Section 2.3,

we first discuss the design issues for a general-purpose Web crawler. Then, we

describe the baseline focused crawler, which is based on a pioneering work in the

literature [48], and identify some problems of this approach. In Section 2.4, we

introduce our rule-based focused crawling strategy. Experimental results for the

proposed approach are presented in Section 2.5. Finally, we discuss our findings

and point to future work in Section 2.6.

6
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2.1 Introduction

With the very fast growth of WWW, the quest for locating the most relevant

answers to users’ information needs becomes more challenging. In addition to

general purpose Web directories and search engines, several domain specific Web

portals and search engines also exist, which essentially aim to cover a specific

domain/topic (e.g., education), product/material (e.g., product search for shop-

ping), region (e.g., transportation, hotels etc. at a particular country [33]) or

media/file type (e.g., mp3 files or personal homepages [99]). Such specialized

search tools may be constructed manually —by also benefiting from possible

assistance of the domain experts— or automatically. Some examples of the au-

tomatic approaches simply rely on intelligent combination and ranking of results

obtained from traditional search tools (just like meta search engines), whereas

some others first attempt to gather the domain specific portion of the Web using

focused crawling techniques and then apply other operations (e.g., information

extraction, integration, etc.) on this collection.

To create a repository of Web resources on a particular topic, the first step is

gathering (theoretically) all and only relevant Web pages to our topic of interest.

A recently emerging solution for such a task is so-called focused crawling [45].

As introduced by Chakrabarti et al. [48], “A focused crawler seeks, acquires,

indexes and maintains pages on a specific set of topics that represent a relatively

narrow segment of the Web.” Thus, an underlying paradigm for a focused crawler

is implementing a best-first search strategy, rather than the breadth-first search

applied by general-purpose crawlers.

In this chapter, we start with a focused-crawling approach introduced in [48]

and use the underlying philosophy of their approach to construct a baseline fo-

cused crawler. This crawler employs a canonical topic taxonomy to train a naive-

Bayesian classifier, which then helps determine the relevancy of crawled pages.

The baseline crawling strategy also relies on the assumption of topical locality

to decide which URLs to visit next. However, an important problem of this

approach is its inability to support tunneling, i.e., it cannot tunnel toward the

on-topic pages by following a path of off-topic pages [19]. To remedy this problem,
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we introduce a rule-based strategy, which uses simple rules derived from interclass

(topic) linkage patterns to decide its next move. Our experimental results show

that the rule-based crawler improves the baseline focused crawler’s harvest rate

and coverage.

2.2 Related Work

A focused crawler searches the Web for the most relevant pages on a particular

topic. Two key questions are how to decide whether a downloaded page is on-

topic and how to choose the next page to visit [49]. Researchers have proposed

several ideas to answer these two questions.

2.2.1 Early Algorithms

The FISHSEARCH system is one of the earliest approaches that has attempted

to order the crawl frontier (for example, through a priority queue of URLs) [24].

The system is query driven. Starting from a set of seed pages, only those pages

that have content matching a given query (expressed as a keyword query or a

regular expression) and their neighborhoods (pages pointed to by these matched

pages) are considered for crawling.

The SHARKSEARCH system [64] is an improvement over the former one.

It uses a weighting method of term frequency (tf ) and inverse document fre-

quency (idf ) along with the cosine measure to determine page relevance. SHARK-

SEARCH also smooths the depth cutoff method that its predecessor used.

Cho et al. [51] have also proposed reordering the crawl frontier according

to page importance, which can be computed using various heuristics such as

PageRank, number of pages pointing to a page (in-links), and so on. These early

algorithms do not employ a classifier, but rather rely on techniques based on

information retrieval (IR) to determine relevance.
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2.2.2 Focused Crawling with Learners

Chakrabarti et al. [48] were the first to propose a soft-focus crawler, which obtains

a given page’s relevance score (i.e., relevance to the target topic) from a classifier

and assigns this score to every URL extracted from that page. We refer to

this soft-focus crawler as the baseline focused crawler and discuss in detail in

Section 2.3.2. In a more recent work, they have proposed using a secondary

classifier to refine the URL scores and increase the accuracy of this initial soft

focused crawler [47]. This is also elaborated later in this chapter.

An essential weakness of the baseline focused crawler is its inability to model

tunneling; that is, it cannot tunnel toward the on-topic pages by following a path

of off-topic pages [19]. Two other remarkable projects, the context-graph-based

crawler [56] and Cora’s focused crawler [76], achieve tunneling.

The context-graph based crawler [56] also employs a best-search heuristic, but

the classifiers used in this approach learn the layers which represent a set of

pages that are at some distance to the pages in the target class (layer 0). More

specifically, given a set of seeds, for each page in the seed set, pages that directly

refer to this seed page (i.e., parents of the page) constitute layer-1 train set, pages

that are referring to these layer-1 pages constitute the layer-2 train set, and so

on; up to some predefined depth limit. The overall structure is called the context

graph, and the classifiers are trained so that they assign a given page to one

of these layers with a likelihood score. The crawler simply makes use of these

classifier results and inserts URLs extracted from a layer-i page to the layer-i

queue, i.e., it keeps a dedicated queue for each layer. URLs in each queue are

also sorted according to the classifier’s score. While deciding the next page to

visit, the crawler prefers the pages nearest to the target class —that is, the URLs

popped from the queue that correspond to the first nonempty layer with the

smallest layer label. This approach clearly solves the problem of tunneling, but

it requires constructing the context graph, which in turn requires finding pages

with links to a particular page (back links). In contrast, our rule-based crawler

uses forward links while generating the rules and transitively combines these rules

to effectively imitate tunneling behavior.
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CORA, on the other hand, is a domain-specific search engine on computer

science research papers and it relies heavily on machine-learning techniques [76].

In particular, reinforcement learning is used in CORA’s focused crawler. CORA’s

crawler basically searches for the expected future reward by pursuing a path

starting from a particular URL. The training stage of classifier(s) involves learning

the paths that may lead to on-topic pages in some number of steps. In contrast,

our rule-based crawler does not need to see a path of links during training, but

constructs the paths using the transitive combination and chaining of simple rules

of length 1.

The focused crawler of Web Topic Management System (WTMS) fetches only

pages that are close (i.e., parent, child, and sibling) to on-topic pages [80]. In

WTMS, the relevancy of a page is determined by only using IR-based methods.

In another work, Aggarwal et al. attempt to learn the Web’s linkage structure to

determine a page’s likelihood of pointing to an on-topic page [1]. However, they

do not consider interclass relationships in the way we do in this study. Bingo!

is a focused-crawling system for overcoming the limitations of initial training

by periodically retraining the classifier with high quality pages [103]. Recently,

Menczer et al. present an evaluation framework for focused crawlers and introduce

an evolutionary crawler [78]. In another work, Pant and Srinivasan provide a

systematic comparison of classifiers employed for focused crawling task [86].

Two recent methods that exploit link context information are explored in [87].

In the first approach, so called text-window, only a number of words around each

hyperlink is used for determining the priority of that link. The second one, tag-

tree heuristic, uses the words that are in the document object model (DOM) tree

immediately in the node that a link appears, or its parents, until a threshold is

satisfied. In [6], we propose a similar but slightly different technique, so-called

page segmentation method, which fragments a Web page according to the use of

HTML tags.

Focused crawling paradigm is employed in a number of prototype systems

for gathering topic/domain specific Web pages. For instance, in [106], focused
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crawling is used for obtaining high quality pages on a mental health topic (depres-

sion). In [88], a prototype system is constructed that achieves focused crawling

and multilingual information extraction on the laptop and job offers domains.

2.3 Baseline Focused Crawler

In this section, we first outline the design issues and architecture of a general-

purpose crawler, based on the discussion in [45]. Next, we describe the focused

crawler as proposed in [48], which is used as a baseline in our study.

2.3.1 A Typical Web Crawler

With the Web’s emergence in the early 1990s, crawlers (also known as robots,

spiders, or bots) appeared on the market with the purpose of fetching all pages

on the Web; so that other useful tasks (such as indexing) can be done over these

pages afterwards. Typically, a crawler begins with a set of given Web pages, called

seeds, and follows all the hyperlinks it encounters along the way, to eventually

traverse the entire Web [45]. General-purpose crawlers insert the URLs into a

queue and visit them in a breadth-first manner. Of course, the expectation of

fetching all pages is not realistic, given the Web’s growth and refresh rates. A

typical crawler runs endlessly in cycles to revisit the modified pages and access

unseen content.

Figure 2.1 illustrates the simplified crawler architecture we implemented based

on the architecture outlined in [45]. This figure also reveals various subtleties to

consider in designing a crawler. These include caching and prefetching of Do-

main Name System (DNS) resolutions, multithreading, link extraction and nor-

malization, conforming to robot exclusion protocol, eliminating seen URLs and

content, and handling load balancing among servers (i.e., the politeness policy).

We ignored some other issues, such as refresh rates, performance monitoring, and

handling hidden Web, as they’re not essential for our experimental setup.
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Figure 2.1: Our implementation of a typical crawler.

Our crawler operates as follows. The URL queue is initially filled with several

seed URLs. Each DNS thread removes a URL from the queue and tries to resolve

the host name to an Internet Protocol (IP) address. For efficiency purposes, a

DNS database that basically serves as a cache is employed in the system. A DNS

thread first consults the DNS database to see whether the host name has been

resolved previously; if so, it retrieves the IP from the database. Otherwise, it

obtains the IP from a DNS server. Next, a read thread receives the resolved IP

address, tries to open an HTTP socket connection to the destination host, and

asks for the Web page. After downloading the page, the crawler checks the page

content to avoid duplicates. Next, it extracts and normalizes the URLs in the

fetched page, verifies whether robots are allowed to crawl those URLs, and checks

whether it has previously visited those extracted URLs (so that the crawler is

not trapped in a cycle). For this latter purpose, the crawler hashes the URLs

with the MD5 message-digest algorithm1 and stores the hash values in the URL

database. Finally, if this is the first time the crawler has encountered the URL,

it inserts this URL into the URL queue; i.e., a first-in, first-out (FIFO) data

structure in a general-purpose crawler. Of course, it is not desirable to overload

1http://www.rsasecurity.com/rsalabs/node.asp?id=2253
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the servers with excessive number of simultaneous requests, so the first time the

crawler accesses a server, it marks it as busy and stores it with a time stamp.

The crawler accesses the other URLs from this server only after this time stamp

is old enough (typically after a few seconds, to be on the safe side). During this

time, if a thread gets a URL referring to such a busy server, the crawler places

this URL in the busy queue. The threads alternate between accessing the URL

queue and the busy queue, to prevent starvation in one of the queues. A more

complicated solution, devoting a dedicated URL queue for each server, is left out

for the purposes of this study. (For more details, see [45].)

2.3.2 Baseline Focused Crawler

On top of the basic crawler described in the above, we implemented the fo-

cused crawling strategy that is introduced in [48] as our baseline focused crawler

(shortly, baseline crawler). We use this crawler to present our rule-based crawling

strategy and to evaluate its performance. The baseline crawler uses a best-first

search heuristic during the crawling process. In particular, both page content

and link structure information are used while determining the promising URLs

to visit.

The system includes a canonical topic (or, class2) taxonomy, i.e., a hierarchy of

topics along with a set of example documents. Such a taxonomy can be obtained

from the Open Directory Project3 or Yahoo!4. Users can determine the focus

topics by browsing this taxonomy and marking one or more topics as the targets.

In [48], it is assumed that the taxonomy induces a hierarchical partitioning of

Web pages (i.e., each page belongs to only one topic), and we also rely on this

assumption for our work.

An essential component of the focused crawler is a document classifier. In [48],

an extended naive-Bayes classifier called Rainbow [77] is used to determine the

crawled document’s relevance to the target topic. During the training phase, this

2Note that, the terms “topic” and “class” are used interchangeably in this chapter.
3www.dmoz.org
4www.yahoo.com
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classifier is trained with the example pages from the topic taxonomy, so that it

learns to recognize the taxonomy.

Once the classifier constructs its internal model, it can determine a crawled

page’s topic; e.g., as the topic in the taxonomy that yields the highest probability

score. Given a page, the classifier returns a sorted list of all class names and

the page’s relevance score to each class. Thus, the classifier is responsible for

determining the on-topic Web pages. Additionally, it determines which URLs to

follow next, assuming that a page’s relevance can be an indicator of its neighbor’s

relevance; i.e., the radius-1 hypothesis. The radius-1 hypothesis contends that if

page u is an on-topic example, and u links to v, then the probability that v

is on-topic is higher than the probability that a randomly chosen Web page is

on-topic [45].

Clearly, this hypothesis is the basis of the baseline focused crawler and can

guide crawling in differing strictness levels [48]. In a hard-focus crawling approach,

if the crawler identifies a downloaded page as off-topic, it does not visit the URLs

found at that page; in other words, it prunes the crawl at this page. For example,

if the highest-scoring class returned by the classifier for a particular page does

not fall within the target topic, or if the score is less than a threshold (say, 0.5),

the crawler concludes that this page is off-topic and stops following its links.

This approach is rather restrictive with respective to its alternative, soft-focus

crawling. In the latter approach, the crawler obtains from the classifier the given

page’s relevance score (a score on the page’s relevance to the target topic) and

assigns this score to every URL extracted from this particular page. Then, these

URLs are inserted to a priority queue on the basis of these relevance scores.

Clearly, the soft-focus crawler does not totally eliminate any pages but enforces

a relevance-based prioritization among them. Another major component of the

baseline crawler is the distiller, which exploits the link structure to further refine

the URL frontier’s ordering.

In our research, we did not include the distiller component in the baseline

crawler implementation because we expect its effect to be the same for the base-

line crawler and our rule-based crawler. In particular, our baseline focused crawler
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includes a naive-Bayesian classifier and decides on the next URL to fetch accord-

ing to the soft-focus crawling strategy. This means that in the architecture shown

in Figure 2.1, we simply add a new stage immediately before the URL extraction

stage to send the downloaded page to the classifier and obtain its relevance score

to the target topic. We also replace the FIFO queues with priority queues.

2.4 Rule-Based Focused Crawler

An important problem of the baseline focused crawler is its inability to support

tunneling. More specifically, the classifier employed in the crawler cannot learn

that a path of off-topic pages can eventually lead to high-quality, on-topic pages.

For example, if you’re looking for neural network articles, you might find them by

following links from a university’s homepage to the computer science department’s

homepage and then to the researchers’ pages, which might point to the actual

articles (a similar example is also discussed by Diligenti et al. [56]). The baseline

focused crawler described above would possibly attach low relevance scores to

university homepages5, which seems irrelevant to target topic of neural networks,

and thus might miss future on-topic pages. The chance of learning or exploring

such paths would further decrease as the lengths of the paths to be traversed

increase.

As another issue, Chakrabarti et al. report that they have identified situations

in which pages of a certain class refer not only to other pages of its own class

(as envisioned by the radius-1 hypothesis) but also to pages from various other

classes [48]. For example, they observed that pages for the topic “bicycle” also

refer to “red-cross” and “first-aid” pages; and pages on “HIV/AIDS” usually refer

to “hospital” pages more frequently than other “HIV/AIDS” pages. Such cases

cannot be handled or exploited by the baseline crawler, as well.

To remedy these problems, we propose to extract rules that statistically cap-

ture linkage relationships among the classes (topics) and guide our focused crawler

5For instance, naive-Bayes classifiers are reported to be biased for returning either too high
or too low relevance scores for a particular class [47].
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Figure 2.2: Stages of the rule generation process: (a) train the crawler’s classifier
with topic taxonomy T and the train-0 set to form internal model M , which learns
T , (b) use page set P ′, pointed to by P , to form the train-1 set, (c) generate rules
of the form Ti → Tj(X), where X is the probability score.

by using these rules. Our approach is based on determining relationships such as

“pages in class A refer to pages in class B with probability p.” During focused

crawling, we ask the classifier to classify a particular page that has already been

crawled. According to that page’s class, we compute a score indicating the to-

tal probability of reaching the target topic from this particular page. Then, the

crawler inserts the URLs extracted from this page into the priority queue with

the computed score.

The training stage for our approach proceeds as follows. First, we train the

crawler’s classifier component with a class taxonomy and a set of example docu-

ments for each class, as in the baseline crawler. We call this the train-0 set (see

Figure 2.2(a)). Next, for each class in the train-0 set, we gather all Web pages

that the example pages in the corresponding class point to (through hyperlinks).

Once again we have a collection of class names and a set of fetched pages for each

class, but this time the class name is the class of parent pages in the train-0 set

that point to these fetched documents. This latter collection is called the train-1

set. We give the train-1 set to the classifier to find each page’s actual class labels

(see Figure 2.2(b)). At this point, we know the class distribution of pages to

which the documents in each train-0 set class point. So, for each class in the

train-0 set, we count the number of referred classes in the corresponding train-1
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Table 2.1: Class distribution of pages fetched into the train-1 set for each class
in the train-0 set (for the example scenario)

Department homepages (DH) Course homepages (CH) Personal homepages (PH) Sport pages (SP)

8 pages of class CH 2 pages of class DH 3 pages of class DH 10 pages of class SP
1 page of class PH 4 pages of class CH 4 pages of class CH
1 page of class SP 4 pages of class PH 3 pages of class PH

Table 2.2: Interclass rules of the example scenario for the distribution in Table 2.1
(the number following each rule is the probability score)

Department homepages (DH) Course homepages (CH) Personal homepages (PH) Sport pages (SP)

DH → CH (0.8) CH → DH (0.2) PH → DH (0.3) SP → SP (1.0)
DH → PH (0.1) CH → CH (0.4) PH → CH (0.4)
DH → SP (0.1) CH → PH (0.4) PH → PH (0.3)

page set and generate rules of the form Ti → Tj(X), meaning that a page of class

Ti can point to a page of class Tj with probability score X (see Figure 2.2(c)).

Probability score X is computed as the ratio of train-1 pages in class Tj to all

pages in train-1 pages that the Ti pages in the train-0 set refer to. Once the rules

are formed, they are used to guide the focused crawler. That is, a focused crawler

seeking Web pages of class Tj would attach priority score X to the pages of class

Ti that are encountered during the crawling phase.

To demonstrate our approach, we present an example scenario. Assume that

our taxonomy includes four classes and a number of example pages for each class.

The classes are “department homepages (DH)”, “course homepages (CH)”, “per-

sonal homepages (PH)” and “sports pages (SP )”.

Next, for each class, we should retrieve the pages that this class’s example

pages refer to. Assume that we fetch 10 such pages for each class in the train-0

set and that the class distribution among these newly fetched pages (that is, the

train-1 set) is as listed in Table 2.1. Then, the rules of Table 2.2 can be obtained

in a straightforward manner.

Now, we compare the behavior of the baseline and rule-based crawlers to

see how the rule-based crawler overcomes the aforementioned problems of the

baseline crawler. Assume that we have the situation given in Figure 2.3(a). In

this scenario, the seed page is of class PH, which is also the target class; that is,

our crawler is looking for personal homepages. The seed page has four hyperlinks,
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Figure 2.3: An example scenario: (a) seed page S of class PH, (b) steps of the
baseline crawler, (c) steps of the rule-based crawler. Shading in (a) denotes pages
from the target class; shading in (b) and (c) highlights where the two crawlers
differ in Step 2.

such that links URL 1 through URL 4 refer to pages of classes CH, DH, PH,

and SP , respectively. Furthermore, the CH page itself includes another hyperlink

(URL 5) to a PH page.

As Figure 2.3(b) shows, the baseline crawler begins by fetching the seed page,

extracting all four hyperlinks, and inserting them into the priority queue with

the seed page’s relevance score, which is 1.0 by definition (Step 1). Next, the

crawler fetches URL 1 from the queue, downloads the corresponding page, and

forwards it to the classifier. With the soft-focus strategy, the crawler uses the

page’s relevance score to the target topic according to the classifier. Intuitively,

the CH page’s score for target class PH would be less than 1, so the crawler

adds URL 5, extracted from the CH page, to the end of the priority queue (Step
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2). Thus, at best, after downloading all three pages with URLs 2 through 4,

the crawler downloads the page pointed to by URL 5, which is indeed an on-

topic page. If there are other intervening links or if the classifier score has been

considerably low for URL 5, it might be buried so deep in the priority queue that

it will never be recalled again.

In contrast, as Figure 2.3(c) shows, the rule based crawler discovers that the

seed page of class PH can point to another PH page with probability 0.3 (due

to the rules in Table 2.2), so it inserts all four URLs to the priority queue with

score 0.3 (Step 1). Next, the crawler downloads the page pointed to by URL 1

and discovers that it is a CH page. By firing rule CH → PH(0.4), it inserts

URL 5 to the priority queue, which is now at the head of the queue and will be

downloaded next (Step 2), leading to an immediate award, i.e., an on-topic page.

Figure 2.3 captures the overall scenario.

The rule-based crawler can also support tunneling for longer paths using a

simple application of transitivity among the rules. For example, while evaluating

URL 2 in the previous scenario, the crawler would learn (from the classifier) that

the crawled page is of class DH. Then, the direct rule to use is DH → PH(0.1).

Besides, the crawler can easily deduce that rules DH → CH(0.8) and CH →

PH(0.4) exist and can then combine them to obtain path DH → CH → PH

with a score of 0.8× 0.4 = 0.32 (assuming the independence of probabilities). In

effect, the rule-based crawler becomes aware of path DH → CH → PH, even

though it is trained only with paths of length 1. Thus, the crawler assigns a

score of, say, the sum of the individual rule scores (0.42 for this example), to the

URLs extracted from this DH and inserts these URLs into the priority queue

accordingly.

Our rule-based scoring mechanism is not directly dependent of a page’s simi-

larity to the target page, but rather relies on the probability that a given page’s

class refers to the target class. In contrast, the baseline classifier would most

probably score the similarity of a DH page to target topic PH significantly lower

than 0.42 and might never reach a rewarding on-topic page.
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2.4.1 Computing the Rule-Based Scores

There can be cases with no rules (for example, the train-0 and train-1 sets might

not cover all possible situations). To handle such cases, the scoring mechanisms

for soft-focus and rule-based crawling strategies can be simply combined. In

Equation 2.1, we define the soft-focus strategy score as the likelihood of a page

P being from class T , which is determined by the classifier model M [48].

SSoft = MP,T (2.1)

Next, assuming independence of the probabilities, we define the score of a

rule path R of T1 → T2 → · · · → Tk, as in Equation 2.2, where Xi,j denotes the

probability score of the rule Ti → Tj.

SR =
k−1
∏

i=1

Xi,i+1 (2.2)

Note that, as the rules can chain in a transitive manner, we define the

MAXDEPTH as the maximum depth of allowed chaining. Typically, we allow

rules to have a depth of at most 2 or 3. Also, when there is more than one

path from an initial class to the target class, the crawler must merge their scores

accordingly. Two potential merging functions are maximum and sum; and the

latter is employed for the experiments reported in this work. The final scoring

function of the rule-based crawling strategy for a URL u extracted from page P

is given in Equation 2.3.

SP,u =















∑

R∈RS

SR, if ∃ rule path R : Ti → · · · → Tk

s.t. length(R) < MAXDEPTH and Tk is the target class;

SSoft, otherwise.

(2.3)

where RS denotes a set of rule paths R, each of which has a length less than
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Figure 2.4: Rule-based score computation: (a) graph representation of the rule
database and (b) computation of rule paths and scores –for example, a DH page
has the score (0.8 × 0.4) + 0.1 = 0.42. Once again, shading denotes pages from
the target class.

MAXDEPTH and reaches to the target class, Tk.

Finally, all the rules and their scores for a particular set of target topics can

be computed from the rule database before beginning the actual crawling. The

rule database can be represented as a graph, as shown in Figure 2.4(a). Then, for

a given a target class, T , the crawler can efficiently find all cycle-free paths that

lead to this class (except the paths T → · · · → T ) by modifying the breadth-first-

search algorithm (see [52] for a general discussion). For instance, in Figure 2.4(b)

we demonstrate the rule-based score computation process for a page of class DH,

where the target class is PH, and MAXDEPTH is 2.

2.5 Experiments

2.5.1 Experimental Setup

To evaluate our rule-based crawling strategy, we created the experimental setup

described in earlier works [47, 48]. Train-0 set is created by using the ODP

taxonomy and data [85], as follows. In ODP taxonomy, we moved the URLs

found at a leaf node to its parent node if the number of URLs was less than a
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predefined threshold (set to 150 for these experiments), and then we removed the

leaf. Next, we used only the remaining leaves of the canonical class taxonomy;

we discarded the tree’s upper levels. This process generated 1,282 classes with

approximately 150 URLs for each class. When we attempted to download all

these URLs, we successfully fetched 119,000 pages (including 675,000 words),

which constituted our train-0 set.

Next, due to time and resource limitations, we downloaded a limited number of

URLs referred from the pages in 266 semantically interrelated classes on science,

computers, and education in the train-0 set. This amounted to almost 40,000

pages, and constituted our train-1 set. Since the target topics for our evaluations

are also chosen from these 266 classes, downloading the train-1 set sufficed to

capture most of the important rules for these classes. We presume that even

if we missed a rule, its score would be negligibly low (for example, a rule from

Top.Arts.Music.Styles.Opera to Top.Computer.OpenSource might not have

a high score, if it exists).

We employed the Bow library and the Rainbow text classifier as the default

naive-Bayesian classifier [77]. We trained the classifier and created the model

statistics with the train-0 data set in almost 15 minutes. Next, we classified the

train-1 data set using the constructed model (which took about half an hour). In

the end, using the train sets, we obtained 4,992 rules.

For crawling purposes, first a general purpose crawler (as shown in Figure 2.1)

is implemented in C and then it is modified to support the baseline and rule-based

focused crawling strategies described before. The underlying databases to store

DNS resolutions, URLs, seen-page contents, hosts, extracted rules and the URL

priority queues are all implemented by using Berkeley DB6. During the crawling

experiments, the crawler is executed with 10 DNS and 50 read threads.

6www.sleepycat.com
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2.5.2 Results

Here, we provide performance results for three focused crawling tasks using the

baseline crawler with the soft-focus crawling strategy and our rule-based crawl-

ing strategy. The target topics were Top.Science.Physics.QuantumMechanics,

Top.Computer.History, and Top.Computer.OpenSource, for which there were

41, 148, and 212 rules, respectively, in our rule database. For each topic, we

constructed two disjoint seed sets of 10 URLs each, from the pages listed at

corresponding entries of the ODP and Yahoo! directories.

The performance of a focused crawler can be evaluated with the harvest ratio,

a simple measure of the average relevance of all crawler-acquired pages to the

target topic [45, 48]. Clearly, the best way to solicit such relevance scores is to

ask human experts; however, this is impractical for crawls ranging from thousands

to millions of pages. So, following the approach of earlier works [48], we again

use our classifier to determine the crawled pages’ relevance scores. The harvest

ratio is computed as in Equation 2.4.

HR=

N
∑

i=1

Relevance(URLi, T )

N
(2.4)

In Equation 2.4, Relevance(URLi, T ) is the relevance of the page (with URLi)

to target topic T as returned by the classifier, and N is the total number of pages

crawled.

Table 2.3 lists the harvest ratio of the baseline and rule-based crawlers for the

first few thousands of pages for each target topic and seed set. The harvest ratios

vary among the different topics and seed sets, possibly because of the linkage

density of pages under a particular topic or the quality of seed sets. The results

show that our rule-based crawler outperforms the baseline crawler by approxi-

mately 3 to 38 percent. Second, we provide the URL overlap ratio between the

two crawlers. Interestingly, although both crawlers achieve comparable harvest

ratios, the URLs they fetched differed significantly, implying that the coverage of
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Table 2.3: Comparison of the baseline and rule-based crawlers; percentage im-
provements are given in the column “impr.”

Seed set 1 Seed set 2

Target topic Evaluation Baseline Rule Impr. (%) Baseline Rule Impr. (%)
metrics based based

Quantum mechanics
Harvest ratio 0.28 0.30 7.1 0.25 0.29 16
URL overlap 10% 10% NA 16% 16% NA
Exclusive HR 0.27 0.29 7.4 0.23 0.28 22

Computer history
Harvest ratio 0.29 0.40 38.0 0.36 0.37 3
URL overlap 27% 27% NA 22% 22% NA
Exclusive HR 0.26 0.39 50.0 0.35 0.37 6

Open source
Harvest ratio 0.52 0.56 9.0 0.48 0.61 27
URL overlap 10% 10% NA 8% 8% NA
Exclusive HR 0.51 0.54 6.0 0.47 0.61 30

these crawlers also differs. For each crawler, we extracted the pages exclusively

crawled by it and computed the harvest ratio. The last row of Table 2.3 for each

topic shows that the harvest ratio for pages that the rule-based crawler exclu-

sively crawled is also higher than the harvest ratio for pages that the baseline

crawler exclusively crawled.

In our second experiment, we investigate the effects of seed set size on crawler

performance. To this end, we searched Google with the keywords “open” and

“source” and used the top 50 URLs to constitute a seed set. The harvest ratios

were similar to the corresponding case with the first seed set in Table 2.3. For this

case, we plot the harvest rate, which is obtained by computing the harvest ratio

as the number of downloaded URLs increased. The graph in Figure 2.5 reveals

that both crawlers successfully keep retrieving relevant pages, but the rule-based

crawler does better than the baseline crawler after the first few hundred pages.

2.6 Conclusions and Future Work

In this study, we propose and evaluate an intuitive rule-based approach to assist

guiding a focused crawler. Our findings are encouraging in that the rule-based

crawling technique achieves better harvest ratio with respect to a baseline classi-

fier while covering different paths on the Web. In a recent paper [47], Chakrabarti

et al. enhanced the baseline crawler with an apprentice, a secondary classifier that
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Figure 2.5: Harvest rates of baseline and rule-based crawlers for the target topic
Top.Computer.OpenSource, 50 seeds.

further refines URL ordering in the priority queue. In one experiment, they pro-

vided their secondary classifier with the class name of a page from which the

URL was extracted, which resulted in a up to 2% increase in accuracy. They also

report that because of a crawler’s fluctuating behavior, it is difficult to measure

the actual benefit of such approaches. We experienced the same problems, and

in the future, we plan to conduct further experiments to provide more detailed

measurements.

Chakrabarti and his colleagues also investigated the structure of broad topics

on the Web [46]. One result of their research was a so-called topic-citation matrix,

which closely resembles our interclass rules. However, the former uses sampling

with random walk techniques to determine the source and target pages while

filling the matrix, whereas we begin with a class taxonomy and simply follow

the first-level links to determine the rules. Their work also states that the topic-

citation matrix might enhance focused crawling. It would be interesting and

useful to compare and perhaps combine their approach with ours.

Our research has benefited from earlier studies [45, 48], but it has significant

differences in both the rule generation and combination process as well as in the
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computation of final rule scores. Nevertheless, considering the diversity of the

Web pages and topics, it is hard to imagine that a single technique would be the

most appropriate for all focused-crawling tasks. Our experimental results also

justify this claim and are promising for future research.

Our rule-based framework can be enhanced in several ways. It is possible to

employ more sophisticated rule discovery techniques (such as the topic citation

matrix we have discussed), refine the rule database online, and consider the entire

topic taxonomy instead of solely using the leaf level.



Chapter 3

Search Using Document Groups:
Typical Cluster-Based Retrieval

In the following two chapters of the thesis, we concentrate on the efficiency of

search using document clusters. Typical cluster-based retrieval (CBR) is a two

stage process where for a given free-text query first the best-clusters that are

most relevant to the query are selected and then the best-documents that match

the query are determined from within these clusters. In this chapter our goal is

providing efficient means for typical-CBR. To this end, we first propose different

query processing strategies and then introduce a new index organization; namely,

cluster-skipping inverted index structure (CS-IIS). Finally, we provide extensive

experimental evaluation of the proposed strategies using automatically clustered

and manually categorized datasets and for automatically or manually determined

best-clusters sets.

The rest of this chapter is organized as follows. In Section 3.1, we provide the

motivation for our work. In Section 3.2, we provide a review of query processing

in large scale IR systems, giving more emphasis to cluster-based retrieval studies

in the literature. Section 3.3 proposes alternative query processing strategies

for typical-CBR. In Section 3.4, we introduce CS-IIS to be used for CBR. The

following two sections, 3.5 and 3.6, are devoted respectively to the experimental

setup and results where the proposed approaches are evaluated on TREC datasets

that are automatically clustered by a partitioning algorithm. In Section 3.7,

we provide further results, but this time using the largest Turkish corpora in

27



CHAPTER 3. SEARCH USING DOCUMENT GROUPS: TYPICAL-CBR 28

the literature. Finally, in Section 3.8, we evaluate the success of typical-CBR

with CS-IIS for the case of searching Web directories that involve a hierarchical

clustering of documents. Conclusive remarks are given in Section 3.9.

3.1 Introduction

In an information retrieval (IR) system the ranking-queries, or Web-like queries,

are based on a list of terms that describe user’s information need. Search engines

provide a ranked document list according to potential relevance of documents

to user queries. In ranking-queries, each document is assigned a matching score

according to its similarity to the query using the vector space model [96]. In this

model, the documents in the collection and queries are represented by vectors,

of which dimensions correspond to the terms in the vocabulary of the collection.

The value of a vector entry can be determined by one of the several term weighting

methods proposed in the literature [97]. During query evaluation, query vectors

are matched with document vectors by using a similarity function. The docu-

ments in the collection are then ranked in the decreasing order of their similarity

to the query and the ones with highest scores are returned. Note that Web search

engines exploit the hyperlink structure of the Web or the popularity of a page for

improved results [25, 74].

However, exploiting the fact that document vectors are usually very sparse,

an inverted index file can be employed instead of full vector comparison during

the ranking-query evaluation. Using an inverted index, the similarities of those

documents that have at least one term in common with the query are computed.

Throughout this thesis, a ranking-query evaluation with an inverted index is

referred to as full search (FS). Many state-of-the art large-scale IR systems such

as Web search engines employ inverted files and highly optimized strategies for

ranking-query evaluation [122].

An alternative method of document retrieval is first clustering the documents

in the collection into groups according to their similarity to each other. Clus-

ters are represented with centroids, which can include all or some of the terms
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that appear in the cluster members. During query processing, only those clusters

that are most similar to the query are considered for further comparisons with

cluster members; i.e., documents. This strategy, so-called cluster-based retrieval

(CBR) is intended to improve both efficiency and effectiveness of the document re-

trieval systems [67, 95, 98, 113]. It can improve efficiency, as the query-document

matches are computed for only those documents that are in the clusters most

similar to the query. Furthermore, it may enhance effectiveness, according to

the well-known cluster hypothesis [110, 111]. Note that, the resulting ranking

returned by CBR can be different from that of FS, as the former considers only

those documents in the promising clusters.

Surprisingly, despite these premises of CBR for improving effectiveness and ef-

ficiency, the information retrieval community has witnessed contradictory results

in terms of both aspects in the last few decades [73, 96, 113]. This inconsistency

relatively reduced the interest on CBR and its consideration as an alternative

retrieval method to full search. On the other hand, the growth of Web as an

enormous digital repository of every kind of media, and essentially text, also

creates new opportunities for the use of clustering and CBR. For example, Web

directories (e.g., ODP [85], Yahoo!, etc.), a major competitor of search engines,

allow users browse through the categories and assign a query on a particular

category. This is a kind of CBR, except that clusters are browsed manually.

Furthermore, there exist several large-scale text repositories that are available on

Web or on proprietary networks with again manual and/or automatic classifica-

tion/clustering of the content. Clearly, CBR, as a model of information retrieval,

perfectly fits to the requirements of such environments, given that the suspects

on its effectiveness and efficiency are remedied. A recent attempt addressing the

effectiveness front is by Liu and Croft [73], which shows that by using language

models CBR effectiveness can be significantly better than what it is assumed to

be in the literature. The efficiency of CBR is investigated in Chapters 3 and 4 of

this thesis.

For any given IR system involving document clusters (or categories) -created

either automatically or manually, for legacy data or Web documents and in a flat
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or hierarchical structure- the best-match CBR strategy has two stages: i) best(-

matching) clusters selection: the clusters that are most similar to the submitted

query are determined by using cluster centroids; ii) best(-matching) documents

selection: the documents from these best-matching clusters are matched with the

query to obtain the final query result. In the early days of IR, once best-clusters

are obtained, it is presumed to be a reasonable strategy to compare the query

with the document vectors of the members of those clusters (exhaustive search).

This may be a valid and efficient strategy if the clusters are rather small and

queries are rather long. In contrary, the state-of-the art applications for CBR,

such as Web directories or digital libraries, involve collections with large number

of documents with respect to number of clusters (or, categories) and attempt to

respond a very high load of typically short queries. Indeed, the inefficiency of

the exhaustive strategy has been long recognized [96, 113]. As a remedy, the use

of inverted index files for both stages of CBR (i.e., comparison with centroids

and documents) has been proposed [36] (please see Section 3.2.3.3 for a more

detailed discussion). More specifically, once the best-clusters are obtained, a full

search is conducted over the entire collection to find the documents that have

non-zero similarity to the query; i.e., the candidates to be the best-documents.

Next, among these documents, only those from the best-clusters are filtered to be

presented to the user. This is a practical approach that is also applied for Web

directories [30, 31]. In this work, we refer to this strategy using an IIS for both

stages as typical-CBR.

However, typical-CBR still involves some significant redundancy. At the best-

documents selection stage, the inverted index is used to find “all” documents that

have non-zero similarity to the query (note that, this is nothing but the FS). Since

only documents from best-clusters are returned, the computations (decoding the

postings, computing partial similarities, updating accumulators, inserting into

and extracting from the heap for the final output, etc.) for the eliminated docu-

ments are all wasted. Furthermore, there is the cost of computing best-clusters.

If the index files are kept on disk (a relaxable assumption considering the ad-

vances in the hardware, as we discuss later), accessing these structures requires
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two direct (random) disk accesses per query term, one for the centroid and an-

other for document posting lists (assuming that the lists are read entirely once

located on disk). These issues imply that, typical-CBR, as defined here; cannot

be a competitor of FS in terms of efficiency, as it already involves the cost of FS

in addition to the latter costs specific to best-clusters selection stage.

In Chapters 3 and 4, we attempt to remedy above problems and devise more

efficient means of searching clusters. In this chapter, we first explore how the

performance of typical-CBR can be further improved by using the best-cluster

information as early as possible during query processing and propose alterna-

tive strategies. The major contribution of this chapter is a new data structure,

so-called cluster-skipping inverted index structure (CS-IIS) that blends cluster

membership information and typical postings. We show that, typical-CBR using

CS-IIS outperforms the other CBR strategies, and even FS, given that the best-

cluster selection cost is excluded. This latter case is possible when best-clusters

are provided by the users, say, by browsing in a Web directory. In Chapter 4, we

will further relax this condition and introduce a new CBR strategy that can be

as efficient as FS, even when best-clusters have to be computed automatically for

a query. Finally, our experiments in this chapter are in an environment where

the files are not compressed, whereas evaluation with compression is reported in

Chapter 4.

3.2 Related Work and Background

In the following, we first review the two basic IR strategies, namely FS and

typical-CBR, and their implementations employing an IIS for ranking-queries.

For the sake of completeness, we also include inverted index compression and

optimization techniques for FS in this section, although these latter issues are

discussed in Chapter 4.
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3.2.1 Full Search using Inverted Index Structure (IIS)

In an IR system, typically two basic types of queries are provided: Boolean

and ranking-queries. In the former case, query terms are logically connected by

the operators AND, OR and NOT and those documents that make this logical

expression true (i.e., satisfy the query) are retrieved. In ranking-queries (or,

free-text queries [75]), each document is assigned a matching score according to

its similarity to the query using the vector space model [98]. In this thesis, we

concentrate on the ranking-queries, which are more frequently used in the Web

search engines and IR systems. However, our approach proposed here can be

applicable to Boolean queries, as well.

In the vector space model, documents of a collection are represented by vec-

tors. For a document collection including T distinct terms, each document is

represented by a T -dimensional vector. For those terms that do not appear in

the document, the corresponding vector entries are zero. On the other hand, the

entries for those terms that appear in the document can be determined by one of

the several “term weighting” methods described in the literature [97]. The goal

of these methods is to assign higher weights to the terms that can potentially

discriminate a document among others, and vice versa. One of the most widely

used weighting methods is the term frequency (tf) × inverse document frequency

(idf) formulation. While computing the weight of term t in document d, de-

noted as wd,t, tf is computed as the number of occurrences of t in d, and idf is

ln( number of documents

number of documents including t
+1). In the literature, several variants of tf-idf scheme

are proposed (such as sublinear tf scaling or augmented tf normalization, see [75]

for a general discussion). For example, augmented normalized frequency formula

for a term t in document d is defined as 0.5 + (0.5 × fd,t)/max-tf. Here max-tf

denotes the maximum number of times any term appears in d. The term weights

for query terms wQ,t can also be calculated in a similar fashion to document term

weights.

After obtaining weighted document (d) and query (Q) vectors in a T di-

mensional vector space the query-document matching is performed using the,

so-called, cosine similarity function [98] shown in Equation 3.1.
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Similarity(Q, d)=
∑

t∈Q

wQ,t × wd,t (3.1)

Note that, for Equation 3.1 we assume that a term’s weight in a document is

computed by using the tf-idf formula, and then normalized by using the document

length. Document lengths (denoted as Wd) are computed using Equation 3.2. No

normalization is needed for query terms since it does not affect document ranking.

Wd =

√

∑

t∈d

(wd,t)
2 (3.2)

There are other weighting methods and similarity functions based on statisti-

cal principles (such as the well known Okapi BM25 metric) or language models.

These methods also make use of the term frequencies, document lengths, etc.

but in a different manner. A detailed discussion of these methods are available

in [75, 118, 122].

It is possible to evaluate ranking-queries very efficiently by using an inverted

index of document vectors. In this case, the query vector is not matched against

every document vector (most of which would probably yield no similarity at all),

but only those that have at least one common term with the query. Indeed,

we can safely state that an inverted index is the state-of-the-art data structure

for processing ranking-queries in large scale IR systems and Web search engines.

An inverted file has a header (also called as vocabulary) part, including list of

terms in the collection, and pointers to the posting lists for each term. Along

with the terms, ft, number of documents in which this term appears, is kept. A

posting list for a term consists of the documents that include the term and is

usually a list of (document id d, within-document term frequency fd,t) pairs. The

posting lists are stored contiguously on disk. This is usually called a document-

level index and adequate to process Boolean and ranking queries [122]. It is

also possible to capture the positions of each term within the document in the

postings, to be able process phrase and proximity queries. In the rest of this

thesis, all ordinary inverted index structures keep only document identifiers and

term frequency information; i.e., they are document-level, unless explicitly stated
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otherwise.

During ranking-query evaluation, an accumulator structure with as many en-

tries as the collection size is kept in the memory (note that variations are pos-

sible [61, 122]). The weighted query vector is constructed as described above.

For each term t in the query vector Q, a direct access is made to the disk to

locate t’s posting list by using the pointer stored in the IIS header. Once located,

the posting list associated with this term t is read sequentially (as it is stored

on contiguous disk blocks) and brought to main memory. For each document d

in the posting list, first wd,t is computed by using the tf-idf formula (or, some

other weighting method). Note that, the tf component corresponds to the fd,t

values that are stored along with the document ids in the posting lists. The

idf component can be easily computed using term frequency ft stored in the IIS

header. Next, using a similarity function the partial similarity of the query to

the document is computed (i.e., wd,t ×wQ,t for the cosine function [118]) for this

particular term, and the resulting value is added to the accumulator entry for this

document. After all query terms are processed in the same manner, the entries of

accumulator are normalized; i.e., divided by the pre-computed document lengths.

Finally, the accumulators (documents) are sorted in descending similarity order

and returned as the query output. If only top-k documents are required and

k is much smaller than the collection size, which is the common case as in the

Web, using the min-heap data structure significantly reduces the query process-

ing time. Further details of ranking-query processing are discussed extensively

in [32, 34, 118, 122].

In this study, a ranking-query evaluation as described in the previous para-

graph is referred to as full search (FS). It is “full” in the sense that it returns

exactly the same results as the sequential collection scan and uses all terms in the

documents (except stop words, as we mention in the experimental setup). The

query evaluation algorithm for FS is given in Algorithm 1 (based on [118, 122]).

Note that, the details of query-document partial similarity computations and

length normalization are not shown, as they are dependent on the actual term

weighting and scoring function.
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Algorithm 1 Typical ranking-query evaluation algorithm for free-text queries

Input: Query Q, Index I
Output: Top-k best matching documents
1: for each term t in Q do

2: Retrieve It from I
3: for each posting (d, fd,t) in It do

4: DAcc[d]← DAcc[d] + PartialSimilarity(d, Q)
5: Build a min-heap H of size k for nonzero DAcc entries
6: Extract top-k best-matching documents from H

3.2.1.1 Compression of IIS

There are several works regarding the compression of inverted indexes, and in

this section we briefly summarize them based on the discussion in [118]. The key

point for compressing posting lists is storing the document ids in list elements

as a sequence of d-gaps. For instance, assume that posting list for a term t

includes the following documents: 3, 7, 11, 14, 21, 24; using d-gaps this can

be stored as 3, 4, 4, 3, 7, 3. In this representation, the first document id is

stored as-is whereas all others are represented with a d-gap (id difference) from

the previous document id in the list. The expectation is that the d-gaps are

much smaller than the actual ids. Among many possibilities, variable-length

encoding schemes are usually preferred to encode d-gaps and term frequencies as

they allow representing smaller integers in less space than larger ones. There are

several bitwise encoding schemes. In the next chapter, we will focus on the Elias-

γ and Golomb codes, following the approach implemented in [79, 118]. More

recently, Anh and Moffat [13] propose another compression scheme, which is also

applicable in our framework.

In the literature, a particular choice for encoding typical posting list elements

(i.e., (d, fd,t) pairs) is using the Golomb and Elias-γ schemes for d-gaps and term

frequency values, respectively [118]. Elias-γ code is a non-parameterized tech-

nique that allows easy encoding and decoding. Golomb code is a parameterized

technique, which, for some parameter b, encodes a nonzero integer x in two parts.

For inverted index compression, the parameter b can be determined by using a

global Bernoulli process modeling the probabilistic distribution of document id
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occurrences in posting lists. Golomb code can be further specialized by using a

local Bernoulli model for each posting list. In this case, the d-gaps for frequent

terms (with longer posting lists) are coded with small values of b, whereas d-

gaps for less frequent terms are coded with larger values. During encoding and

decoding, the b value is determined for a particular posting list It by Equation 3.3.

b = 0.69×
N

ft

(3.3)

where N is the number of documents, and ft is the frequency of term t in the

collection (i.e., the length of the posting list It).

3.2.1.2 Optimization Techniques for FS

There are various optimization techniques used for inverted index searches [12,

14, 15, 26, 27, 71, 79, 89, 90]. These techniques aim to use only the most promis-

ing parts of posting lists and try to increase efficiency of query processing without

deteriorating retrieval effectiveness. For instance, quit and continue techniques

enforce a limit on the number of accumulator entries that can be updated during

query evaluation. In this case, memory consumption is reduced as the accumula-

tors for storing partial similarities can be implemented by dynamic data structures

instead of a collection-size array. Furthermore, these two strategies coupled with

a skipping index are shown to improve Boolean and ranking-query efficiency [79].

Persin et al. propose to use frequency-sorted indexes to avoid reading entire post-

ing lists from the disk [90]. More recently, Anh et al. introduced impact-sorted

lists to improve the efficiency of FS [12, 15].

Using skip-elements in an inverted file to improve query evaluation efficiency

in a non-clustering environment was first proposed in [79]. They compress posting

lists by using some fixed length skips, which serve as synchronization points, and

are able to decompress posting lists from any point of skips without decompressing

the undesired parts. For example, the (posting) list (1, 5, 10, 13, 18, 23, 50, 57,

58, 60) could be reorganized with four synchronization points: 1, 13, 50, and

60. For simplicity let us assume that we are in a conjunctive Boolean query

environment, and also assume that another list has already been processed and
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it is known that the query has no answers between documents 13 and 50, then

the original list only needs to be accessed (and decompressed) up to document

13 and after document 50 —this means 7 posting list positions instead of 10.

Our cluster-skipping inverted file proposed in this thesis is inspired by this

former work, but extends it in various ways. We leave the details of this approach

to Section 4.5.2.3 of Chapter 4, where we also provide an experimental comparison

to our approach.

3.2.2 Document Clustering for IR

Clustering algorithms group a set of documents into subsets, or clusters [75]. They

essentially fall into two groups: partitioning and hierarchic. The partitioning al-

gorithms, such as K-means and C3M , produce a flat clustering of documents,

which may or may not belong to more than one clusters; whereas hierarchic ones

yield a hierarchy of clusters. The hierarchic algorithms are either top-down or

bottom-up. The bottom-up approach, also known as hierarchical agglomerative

clustering (HAC), starts with individual documents and then proceeds by succes-

sively merging pairs of documents or clusters. The most widely implemented HAC

algorithms are single-link, average-link, complete-link and Ward’s algorithm.

A good survey of clustering in information retrieval is provided in [116]. The

books by Salton [95, 96], Salton and McGill [98], van Rijsbergen [110] and An-

derberg [11] also cover previous work on clustering in information retrieval. A

more recent survey of clustering in various application areas can be found in [66].

A good discussion of algorithms for clustering data and cluster validation ap-

proaches is available in a beautiful concise book by Jain and Dubes [65]. In this

thesis, without loss of generality, we use a partitioning algorithm, C3M , to au-

tomatically cluster the document collections. The details of this algorithm are

discussed in the next section.

There are various applications of clustering in IR as we briefly summarize

from [75]. A recent use of clustering is in result-presentation (for instance,

see [107]) where a clustered set of search results are presented to a user, instead
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of a plain top-k list. This approach is also applied successfully in a commercial

search engine, Vivisimo1. In another application, so-called scatter-gather, clus-

tering is used as a means of building a better search interface [62]. Liu and Croft

revisit clustering for improving retrieval effectiveness while using language mod-

els. Finally, a classical use of clustering is for improving retrieval efficiency; i.e.,

cluster-based retrieval [50, 94, 95, 111]. This latter usage is the core of Chapters

3 and 4 of this thesis, and thus elaborated in more depth in Section 3.2.3.

3.2.2.1 C3M Clustering Algorithm

In the experimental evaluations of this work, we use the C3M algorithm, which

is known to have good information retrieval performance. The C3M algorithm

assumes that the operational environment is based on the vector space model.

Using this model, a document collection can be abstracted by a document, D,

matrix of size m by n whose individual entries, di,j(1 ≤ i ≤ m, 1 ≤ j ≤ n),

indicate the number of occurrences of term j (tj) in document i (di).

Determining the number of clusters in a collection is a difficult problem [65]. In

other clustering algorithms, if it is required, the number of clusters, nc, is usually

a user specified parameter; in C3M it is determined by using the cover-coefficient

(CC) concept [42, 120, pp. 376-377]. In C3M some of the documents are selected

as cluster seeds and non-seed documents are assigned to one of the clusters initi-

ated by the seed documents. According to CC, for an m by n document matrix

the value range of nc and the average cluster size (dc) are as follows.

1 ≤ nc ≤ min(m,n); max(1,m/n) ≤ dc ≤ m

In C3M , the document matrix D is mapped into an m by m cover-coefficient

(C) matrix using a double-stage probability experiment. This asymmetric C ma-

trix shows the relationships among the documents of a database. Note, however,

that the implementation of C3M does not require the complete C matrix. The

diagonal entries of C are used to find the number of clusters, nc, and the selection

of cluster seeds. During the construction of clusters, the relationships between a

1http://vivisimo.com/
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non-seed document (di) and a seed document (dj) is determined by calculating

the ci,j entry of C, where ci,j indicates the extent with which (di) is covered by

(dj). Therefore, the whole clustering process implies the calculation of (m+ (m−

nc) × nc) entries of the total m2 entries of C. This is a small fraction of m2, as

nc � m (for some examples please refer to Table 3.1 in Section 3.5). A thorough

discussion and complexity analysis of C3M are available in [42].

The CC concept reveals the relationships between indexing and clustering [42].

These relationships can be used to predict the clustering structure generated by

the algorithm. The CC-based indexing-clustering relationships are formulated as

follows.

nc = t/(xd × tg) = (m× n)/t = m/tg = n/xd, and dc = m/nc = tg

In these formulas, the meanings of the variables not used in the text so far are as

follows.

dc : m/nc, average number of documents per cluster,

t: total number of non-zero entries in D matrix,

tg : t/n, average number of different documents a term appears (term gener-

ality), and

xd : t/m, average number of distinct terms per document (depth of indexing).

It is shown that the algorithm can be used in a dynamic environment in an

incremental fashion and such an approach saves clustering time and generates a

clustering structure comparable to that of cluster regeneration by C3M [35, 38].

C3M and its concepts have also attracted the attention of other researchers in

various application areas, such as chemical information systems [41, 117], clus-

tering tendency testing [57], automatic hypertext structure generation [68], and

search output clustering [70].



CHAPTER 3. SEARCH USING DOCUMENT GROUPS: TYPICAL-CBR 40

3.2.3 Search Using the Document Clusters

The well-known clustering hypothesis states that “closely associated documents

tend to be relevant to the same request.” It is this hypothesis that motivates clus-

tering of documents in a collection [110]. In the IR research, automatic clustering

of documents has been originally introduced with the expectation of increasing

the efficiency and effectiveness of the retrieval process [67, 95]. The premise of

CBR is restricting the search to only the most-relevant clusters that is determined

by the query-cluster similarity, and thus improving the efficiency.

Today, CBR is not only limited to automatically clustered collections. In

the last two decades, we witnessed the creation of some of the largest document

hierarchies, Web directories (such as Yahoo! and ODP [85]) that attracts a certain

attention of users. Such directories allow the users to browse through categories

or issue queries that are restricted to a certain subset of these categories [30, 31].

This is again a form of CBR, where the clusters to be searched are explicitly

determined by the user.

In what follows, we first discuss representation of clusters from the retrieval

point of view. Then, we briefly discuss some of the earlier CBR approaches that

are essentially addressing the collections with hierarchical clusters. Finally, we

discuss more recent techniques that employ inverted index files during CBR.

3.2.3.1 Cluster Centroids

A classical issue for the cluster-based retrieval is deciding on the terms that

should appear in the cluster representatives; i.e., centroids, and determining the

maximum centroid vector length and centroid term weights. Murray [82] states

that the effectiveness of retrieval does not increase linearly with the centroid

length. Thus, in the literature, a limited number of terms selected by various

methods are used as cluster centroids. For instance, in hierarchical clustering

experiments described by Voorhees [112, 113], the sum of fd,t values of each

term in a cluster is computed and the terms are sorted by decreasing frequency.

Next, top-k terms are selected as the cluster centroid, where an appropriate value
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of k is experimentally determined [112]. Note that, based on Murray’s centroid

definition [82], Voorhees attempted to find the shortest centroid vectors that cause

minimal deterioration on effectiveness. However, the results reported in that work

show variability to draw a conclusion for the relationship of the centroid length

and effectiveness for several hierarchical CBR techniques. This earlier work uses

centroid size of 250 while noting that “further research into a theory of centroid

creation and weighting” is required.

Several other methods are also proposed for selecting centroid terms. In [67],

terms that appear in more than log2 (C) documents, where C is the cluster size,

are selected as this cluster’s centroid terms. Yet another approach may be select-

ing terms that have a total fd,t value greater than the average of fd,t values for

the terms in the cluster. Muresan and Harper [81] propose to use cluster terms

that have positive Kullback-Leibler divergence score. A recent work [107], which

reviews many of these methods for deriving cluster centroids, claims that “the ef-

fect of centroids on CBR effectiveness has not been extensively investigated” and

“the challenge raised by Voorhees seventeen years ago still stands unaddressed”.

In this study, we employ several centroid selection and weighting methods and

compare their impact on retrieval effectiveness and efficiency.

3.2.3.2 Earlier CBR Strategies with Vector Comparisons

In a hierarchical clustering setup [112, 113], a CBR system requires several files:

the representation of the cluster hierarchy, the centroid vectors and the document

vectors. In this setup, a top-down search begins by placing the root of the cluster

hierarchy into a max-heap [118]. During the search the top element of the heap,

which has the highest similarity to the query, is extracted. If it is a document, it

is added to the output set. If the extracted element is a cluster, then its children,

which may be other clusters or documents, are inserted into the heap according to

their similarity to the query (only those with non-zero similarity are considered).

The top-down search ends when the heap is empty or a pre-defined number of

documents is retrieved. Notice that, the actual centroid and document vectors —

but not index files— are employed during the query-cluster and query-document
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similarity computations.

A bottom up search strategy, again for hierarchical environments, starts with

the top ranking document(s) that is at the bottom of the cluster tree, and goes

up looking for proper clusters. This approach needs the top ranking document(s)

information, which can only be obtained by a full search (the study also introduces

another method that uses the centroids of bottom-most clusters) [53]. The search

may switch back and forth between documents and clusters.

3.2.3.3 Typical-CBR using the Inverted Index Structure (IIS)

In partitioning clustering, a flat clustering of the documents is produced and

the search is typically achieved by the best-match strategy. The best-match

CBR search strategy has two stages i) selection of ns number of best-clusters

using centroids, ii) selection of ds number of best-documents of the selected best-

clusters. For item (i) we have two file structure possibilities: centroid vectors and

IIS of centroids. For item (ii) we again have two possibilities: document vectors

and IIS of all documents. One remaining possibility for (ii), a separate inverted

index for the members of each cluster, is not considered due to its excessive cost in

terms of disk accesses (for a query Q with q terms it would involve q direct disk

accesses for each selected cluster) and maintenance overhead. Hence, possible

combinations of (i) and (ii) determine four different implementation alternatives.

In [36] the efficiency of the above alternatives is measured in terms of CPU

time, disk accesses, and storage requirements in a simulated environment defined

in [113]. It is observed that the alternative employing an IIS for both centroids

and documents (separately) is significantly better than the others. Notice that,

the query processing in this case is quite similar to ranking-query evaluation for

FS discussed in Section 3.2.1, and repeats this procedure twice, using centroid IIS

and document IIS, respectively. A final stage is also required for filtering those

documents that are retrieved by the second stage (i.e., FS using the document

index) but do not belong to the best-clusters. A similar approach is typically used

for processing queries restricted to certain categories on Web directories (with the

only distinction that best cluster(s) are explicitly specified by the user instead
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Figure 3.1: Centroid and document IIS for typical-CBR.

of an automatic computation) [30, 31]. Throughout the thesis, we refer to this

particular two-stage approach using an IIS for each stage as typical-CBR.

Example 3.1 In Figure 3.1, we illustrate the centroid and document IIS files

for this strategy. The example provided in Figure 3.1 is for a document by

term D matrix with three clusters C1, C2, and C3. In the D matrix, rows and

columns respectively indicate documents and terms. It shows that document 2

(d2) contains term 1 (t1) once and t2 three times. We assume that, for simplicity,

all terms appearing in the member documents of a cluster are used in the centroid

and the centroid inverted index is created accordingly. For instance, term t1

appears in two documents, d1 and d2, once in each. Since both documents are in

C1, the posting element for C1 in the list of t1 stores the value 2 as the within-

cluster term frequency (i.e., fC,t).

In [36], it is further stated that typical-CBR is inferior to FS in terms of

query evaluation efficiency. This is an expected result, as the best-document

selection stage of typical-CBR is actually nothing but a full search on the entire
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collection. Furthermore, selecting the best-clusters and the final result filtering

would also incur additional costs. This latter cost, integrating the best-clusters

and documents is discussed in detail below.

3.2.3.4 Result Integration Stage for Typical-CBR

Once the best-clusters and best-documents are obtained separately using corre-

sponding inverted index files, there are two ways to eliminate the best-documents

that are not a member of the best-clusters [30, 31]; i.e., to integrate the results of

best-cluster and document selection stages. We call these alternatives “document-

id intersection based integration” and “cluster-id intersection based integration”,

and describe in detail next.

• Document-id intersection based integration: This alternative uses an in-

verted index such that for each cluster, the documents that fall into this

particular cluster are stored (i.e., cluster-document (CD)-IIS). In this case,

by using this latter index, first the union of all documents that are within

the best-clusters is determined, and then the resulting document set is in-

tersected with the best-documents to obtain the final result. Note that, in

an IR environment with clustering, such an inverted index of documents

per cluster (i.e., a member document list for each cluster) is required in any

case, to allow the browsing functionality.

• Cluster-id intersection based integration: The second integration alterna-

tive is just the reverse: for each document in the best-document set, the

cluster(s) in which this document lies is found by using an (inverted) index

that stores the list of clusters for each document (i.e., document-cluster

(DC)-IIS). Then, the obtained cluster id(s) are intersected with the best-

clusters set and if the result is not empty, the document is added to the

final query output set.

The first integration alternative would be efficient when the number of docu-

ments per cluster is relatively small, whereas the second approach would be more
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efficient when the best-document set to be processed is small. Also note that,

the inverted index required by the second alternative is redundant, as it is the

transpose of the CD-IIS that would be implemented in any case to support the

browsing functionality. On the other hand, as the integration process required

by the first alternative requires first obtaining a union of several document lists

and then an intersection, it would be less efficient in terms of query processing

time, whereas storing an additional inverted index (DC-IIS) is not a major con-

cern given the storage capabilities of modern systems [30]. In this thesis, we

assume that the cluster-id intersection based integration, which seems to be more

practical for large-scale IR systems, is employed in typical-CBR. In Section 3.3,

we propose alternative query processing strategies for typical-CBR under this

assumption and discuss their efficiency trade-offs.

Example 3.2 Consider the centroid and document IIS files in Figure 3.1. Let

us assume that the user query Q contains the terms {t3, t5}, ns = 1 (i.e., a

single best-cluster would be selected) and ds= 2 (i.e., top-2 documents will be

retrieved). At the first stage, the query is forwarded to the centroids IIS and

postings list for each term is processed. Since C3 has the highest total term

frequency in these lists, let us assume that it is determined as the best-cluster.

Next, the query is sent to document IIS. Notice that the postings for the query

terms include all documents di (for 1 ≤ i ≤ 7), so all of these documents would

be ranked as they have non-zero similarity to query. Assume they are ranked as

from d1 to d7, for simplicity. For each of these documents, its cluster id would

be intersected with the best-clusters set. Considering the cluster information in

Figure 3.1, only documents d5, d6 and d7 are from the best-clusters set, which

includes C3 in our case; and top-2 of these documents, d5 and d6, will be retrieved

as the query output. Note that, in practice, it would suffice to rank a reasonably

larger number of documents than ds, instead of ranking all documents that have

non-zero similarity to the query. This issue is further elaborated in Section 3.3.
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3.2.3.5 Typical-CBR using Modified Inverted Index Structures

To avoid the integration step mentioned above, it is proposed to modify the in-

verted index used during the document selection. In [31], document identifiers in

the postings are created as signatures, which convey information about the hierar-

chy of clusters in which a document belongs to. However, since the signatures can

produce false drops; i.e., only provide an approximate filtering of best-document

set, there is still a need for the cluster-id based integration approach to obtain

the final query result. In [30], another, so-called, optimistic approach is intro-

duced, which embeds the cluster information into the actual document identifiers

in the index. That is, for a, say, 32-bit document identifier, the first 10-bits are

used to represent the cluster identifier of the document, whereas the rest of the

bits store the actual document identifier. Note that, this structure requires bit-

wise processing of identifiers during query evaluation. In Section 3.4, we propose

a new, cluster-skipping inverted index structure that both eliminates the result

integration stage and improves the performance of the best-document selection

stage.

3.3 Query Processing Strategies for Typical-
CBR

As discussed in the previous section, typical-CBR involves selection of best-

clusters and documents, which is followed by a result integration stage. Let us

assume that the best-clusters set is already obtained either automatically (i.e., by

query-cluster matching using the centroid IIS) or manually (i.e., by browsing, as

in a category-restricted query [30, 31]). Then, a typical ranking query evaluation

algorithm as shown in Algorithm 1 can be employed during the best-document

selection stage. Finally, those documents that are not from the best-clusters

can be discarded from the query output. In this section, we propose different

strategies for the best-document selection stage so that result integration can be

achieved earlier during the processing. We show that these strategies improve

the performance under certain conditions.
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The query processing strategies discussed here differ in how they answer the

following questions: (i) at what point during the best-document selection should

the cluster-id(s) of a particular document be intersected with the best-cluster

ids, and (ii) what kind of data structure should be used to keep best-cluster ids?

Considering the query evaluation shown in Algorithm 1, the cluster ids can be

intersected at three different points, yielding three implementation alternatives:

(i) before updating the accumulator entry for a document, (ii) before inserting

a document to the min-heap, or (iii) after extracting the top scoring documents

from the min-heap (i.e., the traditional baseline approach as described in [30, 31]).

Two potential data structures to store best-cluster ids are (i) a sorted array of

best-clusters, or (ii) a 0/1 mark array in which entries for best-clusters are 1 and

all others are 0. We discuss these alternatives and their efficiency trade-offs in

the following.

Intersect Before Update (IBU). In this approach (Algorithm 2), only those

accumulator entries that belong to documents from best-clusters are updated.

To achieve this, after a posting list is retrieved for a query term, the cluster to

which each document in the posting list belongs is determined and intersected

with the best-cluster set. If the document’s cluster is found in the best-cluster

set, its accumulator entry is updated. Otherwise, there is no need to compute

the partial query-document similarity and accumulator update for this particular

document.

Note that, this alternative would also increase the efficiency of the last two

steps of the algorithm (i.e., building and extracting from the heap as shown in

lines 7-8 in Algorithm 2), since all of the nonzero entries in the accumulator

structure are for the documents that are from best-clusters. On the other hand,

the performance of this approach crucially depends on the cost of determining the

clusters to which a document belongs (line 4) and cluster-id intersection operation

(line 5). For the former operation, the algorithm should access document-cluster

(DC) IIS for each element of the posting lists. However, if document-cluster

associations are kept in the main memory or cached efficiently, this cost can be

avoidable. This seems reasonable, since DC-IIS can be expected to be relatively

small in size and can be shared among several query processing threads. For
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Algorithm 2 The query processing algorithm for intersect before update (IBU)
approach

Input: Query Q, Index I, Best-clusters BestClus, Document-category index IDC

Output: Top-k best matching documents
1: for each term t in Q do

2: Retrieve It from I
3: for each posting (d, fd,t) in It do

4: Retrieve Id from IDC

5: if Id ∩BestClus 6= ∅ then

6: DAcc[d]← DAcc[d] + PartialSimilarity(d, Q)
7: Build a min-heap H of size k for nonzero DAcc entries
8: Extract top-k best-matching documents from H

instance, assuming that documents are not repeated in more than one clusters,

the main memory requirement to cache the entire DC-IIS would be O(N), i.e., in

the order of the number of documents. In this study, without loss of generality,

we assume that each document belongs to at most one cluster and the DC-IIS is

stored in the main memory.

Assuming each document belongs to only one cluster, the cost of a cluster-id

intersection is O(log S), if a sorted array of size S is used to store best-cluster

ids; and O(1) if a 0/1 mark array is used for this purpose. Note that, the data

structure for best-clusters can be a sorted array if the memory reserved per query

is scarce and/or total number of clusters is quite large. In this case, the docu-

ment’s cluster id can be searched within best-clusters using binary search. A 0/1

mark array is obviously more efficient but can only be preferred if the memory

is not a concern and/or number of clusters is relatively small. Finally, if the

number of best-clusters is relatively small, which is possible in a practical setup,

a hash-table can also be used instead of a mark array to provide similar look-up

efficiency but less space consumption.

Intersect Before Insert (IBI). In this approach, instead of applying the cluster

id intersection for each doc-id in each posting list, we do it once for each non-zero

accumulator entry while building the heap (Algorithm 3). This alternative is

preferable if the number of non-zero accumulator entries is expected to be low

and/or the cost of cluster id intersection is high, e.g., DC-IIS is on disk.
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Algorithm 3 The query processing algorithm for intersect before insert (IBI)
approach

Input: Query Q, Index I, Best-clusters BestClus, Document-category index IDC

Output: Top-k best matching documents
1: for each term t in Q do

2: Retrieve It from I
3: for each posting (d, fd,t) in It do

4: DAcc[d]← DAcc[d] + PartialSimilarity(d, Q)
5: for each Dacc[d] 6= 0 do

6: Retrieve Id from IDC

7: if Id ∩BestClus 6= ∅ then

8: Insert d into the min-heap H of size k
9: Extract top-k best-matching documents from H

Intersect After Extract (IAE). As illustrated in the example in Sec-

tion 3.2.3.4, this is the simplest result integration approach that is probably

employed in current systems (e.g., [30, 31]). Roughly, in this approach the best-

document selection stage proceeds as FS, and the elimination of documents that

are not from best-clusters are achieved at the very end. This approach allows an

existing IR system using FS to easily adapt a clustering or classification struc-

ture on top of its document collection without any modification; but, in turn,

cannot utilize the best-clusters information while selecting best-documents. We

still outline this strategy for the sake of completeness and to use it as a baseline

in the evaluation of strategies that we propose above and in the next section.

In this strategy (Algorithm 4) the entire query processing works as in Algo-

rithm 1 and only at the end of the evaluation, the cluster-ids of top-k documents

are intersected with the best-clusters. Of course, if some of those k documents

are not from the best-clusters, then the build-heap step and extraction should be

repeated. To avoid such a repetition, the initial evaluation can be executed for

top-L documents, where L > k. In this case, the cost of cluster-id intersection

would be negligible as it is postponed at the end of processing and L � N . On

the other hand, it is important to choose L appropriately, if L is much larger than

k (e.g., L = N as an extreme case), the gains in the intersection stage would be

lost during the build-heap and extraction. If L is too small (i.e., very close to

k), we may need more than one iteration to find at least k documents that are

in the best-clusters. Thus, IAE alternative will be useful if it can somehow be
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Algorithm 4 The query processing algorithm for intersect after extract (IAE)
approach

Input: Query Q, Index I, Best-clusters BestClus, Document-category index IDC

Output: Top-k best matching documents
1: for each term t in Q do

2: Retrieve It from I
3: for each posting (d, fd,t) in It do

4: DAcc[d]← DAcc[d] + PartialSimilarity(d, Q)
5: Build a min-heap H of size L(L ≥ k) for nonzero DAcc entries
6: ResultNum← 0
7: while ResultNum < k and H is not empty do

8: Extract d with the highest score from H
9: Retrieve Id from IDC

10: if Id ∩BestClus 6= ∅ then

11: Insert d into output, ResultNum← ResultNum + 1
12: if ResultNum < k then

13: Set L to some M s.t. M > L, go to Line 5

guaranteed that in a small number of highest scoring documents, there will be at

least k documents from the best-clusters. More specifically, this approach would

be better than the previous alternative only if cluster intersection is costly; and

better than the IBU algorithm if both intersection test is expensive and too many

nonzero accumulator entries arise.

3.4 Cluster-Skipping Inverted Index Structure
for Typical-CBR

In the previous section, we described some strategies for implementing the best-

document selection and result integration stages in a more efficient manner. In

this section we introduce a new inverted index organization that has the potential

of further improving the CBR efficiency. In this data structure, the (document,

term frequency) pairs in a posting list are re-organized such that all documents

from the same cluster are grouped together, and at the beginning of each such

group an extra element, so-called skip-element, is stored in the form of (cluster id,

next cluster address). During the best-document selection stage, if the cluster id in

that additional index element is not found in the best-cluster set, the documents

in that cluster are skipped and the query processor jumps to the next cluster
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Figure 3.2: Cluster-skipping inverted index structure (CS-IIS) for typical-CBR.

pointed by the “next cluster address”. Thus, for each posting list, only the parts

that include documents from the best-clusters are processed.

An example file structure for our approach is provided in Figure 3.2 for a D

matrix. In this figure each posting list header contains the associated term, the

number of posting list elements associated with that term, and the posting list

pointer (disk address). The posting list elements are of two types, (cluster id,

next cluster address) and (document id, term frequency) for the preceding cluster.

Our skip structure is simple yet novel. In the previous CBR research a similar

approach has not been used. For example, Salton and McGill’s classical text-

book [98, pp. 223-224] defines three cluster search strategies. Two of them are

related to hierarchical cluster search and their concern is the storage organiza-

tion of the cluster centroids. In the third CBR strategy, documents (not their
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inverted lists) are stored in cluster order, that is, one access to the “document

file” retrieves a cluster of related documents. Our skip idea provides a completely

new way of implementing CBR by clustering the individual posting lists elements.

This is certainly different than accessing the “documents” in cluster order.

In [96, p. 344] Salton states that: “In general, the efficiencies of inverted-

file search techniques are difficult to match with any other file-search system

because the only documents directly handled in the inverted-list approach are

those included in certain inverted lists that are known in advance to have at least

one term in common with the queries. In a clustered organization, on the other

hand, many cluster centroids, and ultimately many documents, must be compared

with query formulations that may have little in common with the queries.”

The CBR using the skip-based inverted index search technique overcomes the

problem stated by Salton; i.e., it prevents matching many unnecessary documents

with the queries. For example, in the clustering environment of Figure 3.2, if we

assume that the user query contains the terms {t3, t5} and the best-clusters for

this query are {C1, C3}, using the CS-IIS during query processing after selecting

the best-clusters we only consider the posting lists associated with t3 and t5.

While processing the posting list of t3 we skip the portion corresponding to C2

(since it is not a best-cluster). Similarly, while processing the posting list of t5,

we again skip the unnecessary C2 portion of the posting list and only consider

the part corresponding to C3. In other words, by using the skip approach we

only handle the documents that we really need to match with the query. Note

that, during query processing, best-clusters can be stored in a sorted array and

a linear scan for each query term would suffice while comparing to clusters ids in

the posting lists.

Remarkably, CS-IIS allows us to update accumulator entries for only those

documents that are actually from the best-clusters, thus providing all benefits of

IBU strategy discussed in the previous section. Furthermore, there is no need for

accessing the cluster-membership information of each document in the posting

lists of the query terms as in IBU, as this information is already incorporated

into the postings. If the cluster membership information (i.e., document-category
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index as discussed in Section 3.3) is kept on disk, this would incur a prohibitive

cost for IBU strategy. Our approach with CS-IIS provides a further benefit if the

inverted index is compressed, a typical situation in large scale IR systems. In

that latter case, CS-IIS would decompress only necessary postings, whereas the

IBU strategy would still waste CPU cycles for decoding some postings, just to

be discarded when it is realized that they are not from the best-clusters. On the

other hand, the CS-IIS slightly increases posting list sizes (due to additional index

elements) and thus expected to perform better when the number of documents is

much larger than the number of clusters. In the experiments, we show that our

claims are justified and the cost of reading longer posting lists is compensated

by the in-memory gains during the query processing. Furthermore, gains would

be even higher given that many IR systems and Web search engines cache most,

even all, of the posting lists (see [105], for example, with a similar assumption).

In the implementation of the skip idea, another alternative is to store the

cluster id and skip information at the start of the posting lists. Here we adopt

the approach illustrated in Figure 3.2. These two alternatives would have no

major difference in terms of posting list I/O time, if the query term posting

lists have to be read in their entirety. This is possible, because a term usually

appears in enough number of different clusters that would require fetching its

whole posting list. However, the former organization can be a viable option if it

is possible to evaluate the query by only reading a few cluster blocks from each

posting list, in a similar manner to reading only few impact blocks of an impact-

sorted list [109]. This alternative organization and its implications especially for

the disk access cost and caching performance are left as a future work.

3.5 Experimental Environment

Datasets. In the experiments of this section, we use two datasets. The Financial

Times collection (1991-1994) of TREC [108] Disk 4, referred to as the FT dataset,

and the AQUAINT corpus of English News Text, referred to as the AQUAINT

dataset, are used in previous TREC conferences and include the actual data,

query topics and relevance judgments. During the indexing stage, we eliminated
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Table 3.1: Comparison of the characteristics of FT and AQUAINT datasets to
some other datasets in the literature (for (*)ed cases, approximate nc value is
calculated using the cover-coefficient-based formula: nc = n/xd)

Dataset No. of No. of Avg. no. of distinct No. of Avg. no. of
documents(M) terms(n) terms/doc. (xd) clusters (nc) docs./clus. (dc)

BLISS-1* 152,850 166,216 25.7 6,468 25
MARIAN 42,815 59,536 11.2 5,218 8
INSPEC 12,684 14,573 32.5 475 27
NPL 11,429 7,491 20.0 359 32
FT 210,158 229,748 140.6 1,640 128
AQUAINT 1,033,461 776,820 164.5 5,163 200

English stop-words, and indexed the remaining words, and no stemming is used.

For easy reference, statistical characteristics of the FT and AQUAINT col-

lections are provided in Table 3.1 along with some other databases to give some

sense of sizes of the important variables in traditional (INSPEC, NPL), and OPAC

(BLISS, MARIAN) [38, 69] collections. In this table the number of clusters, nc,

is obtained by using C3M clustering algorithm. The numbers show that datasets,

more specifically their vector spaces, show various degrees of sparsity as indicated

by the number of clusters. For example, FT collection is quite cohesive and the

number of clusters is not that high. On the other hand, vector spaces for OPAC

(library), BLISS-1 and MARIAN are sparse and contain relatively large num-

ber of clusters, since they cover documents in many different subject areas. The

content cohesiveness of a dataset may be uniformly distributed and clusters may

contain approximately the same number of documents or it can be skewed and it

may contain a few number of large clusters containing relatively high number of

related documents. We will revisit this issue later in Section 3.6.1.

Queries. We used the TREC-7 query topics (queries 351-400) corresponding

to the FT collection along with their relevance judgments. For the AQUAINT

dataset, we used the topics and judgments used for TREC 2005 robust track.

For the experiments, we created two different types of queries, namely Qshort

and Qmedium that are obtained from these query sets. Qshort queries include

TREC query titles, and Qmedium queries include both titles and descriptions.

For the FT query set, we also formed a third query type, Qlong, which is created

from the top retrieved document of each Qmedium query in the query set. A few

of the queries do not have any relevant documents in relevance judgment files,
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and they are discarded from the query sets. This yielded 49 queries for each of

the query sets Qshort, Qmedium and Qlong of FT; and 50 queries for Qshort

and Qmedium sets of AQUAINT. Our query sets cover a wide spectrum from

very short Web-style queries (the Qshort case) to extremely long ones (the Qlong

case). Notice that, the latter type of queries can capture the case where a user

likes to retrieve similar documents to a particular document and the document

itself serves as a query. This provides insight on the behavior of retrieval system

at extreme conditions.

Similarity computation. In the following experiments, we used the following

term weighting preferences that are reported to yield good retrieval effectiveness

in previous works (e.g., [97]). The document term weights are assigned using

the tf-idf formula whereas query terms are weighted using the augmented nor-

malized frequency formula (see Section 3.2.1). Pre-computed document lengths

are employed for normalization. The cosine function is employed for both query-

cluster and query-document matching. The selection of centroids and centroid

term weigthing are discussed later in this section.

Implementation. The experiments are conducted on a Pentium Core2 Duo 3.0

GHz PC with 2GB memory and 64-bit Linux operating system. All IR strate-

gies are implemented using the C programming language and source codes are

available on our Web site2. Implementations of the IR strategies are tuned to

optimize query processing phase for which we measure the efficiency in the fol-

lowing experiments. In particular, a min-heap is used to select best-clusters and

best-documents from the corresponding accumulators as recommended in previ-

ous works [118]. Unless stated otherwise, we assume that the posting list per

query term is fully brought into the main-memory, processed and then discarded;

i.e., more than one term’s posting list is not memory resident simultaneously.

2http://www.cs.bilkent.edu.tr/~ismaila/PhD/sources.htm
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3.6 Experimental Results

In this study, FT and AQUAINT datasets are automatically clustered using the

C3M algorithm. In the following set of experiments, we first investigate the va-

lidity of C3M clustering for the FT collection, and determine some parameters to

be used with typical-CBR. Next, we compare the effectiveness of typical-CBR to

FS and show that the former is a worthwhile retrieval strategy. In Section 3.6.3.1,

we compare the efficiency of typical-CBR strategies described in Section 3.3 for

various parameters and identify the most efficient ones. These best-performing

strategies and FS (as another baseline) are then compared to our CS-IIS based

CBR approach in Section 3.6.3.2. Finally, we give results that reveal the scala-

bility of our findings in Section 3.6.4. Please note that, in the following sections,

CBR is interchangeably used with typical-CBR for brevity.

3.6.1 Clustering Experiments

3.6.1.1 Cluster Generation and Characteristics of the Generated
Clustering Structure

In this study, C3M algorithm is used to obtain a flat and non-overlapping cluster-

ing of datasets, FT and AUQAINT. For the FT collection, our experiments yield

1,640 clusters. The generated clustering structure follows the indexing-clustering

relationships implied by the CC concept. For example, the indexing-clustering

relationships nc = (m× n)/t = m/tg = n/xd, and dc = tg are all observed in the

experiments (for easy reference the values of these variables are repeated here,

m =210,158, n =229,748, t =29,545,234, xd =140.6, tg = 128.6 and the values

obtained for nc and dc after clustering are 1,640 and 128). For example, by sub-

stituting the corresponding values (m,n, and t) to the above formula, nc was

implied as 1,634 by the relationships, which shows only a 0.4% percent deviation

from the real value obtained by actual clustering. Similarly, the dc (128) value is

almost identical with tg. As shown in the related previous work [35, 36, 42] for

a given D matrix the clustering structure to be generated by C3M is predictable

from the indexing characteristics of a database.
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(a) (b)

Figure 3.3: Cluster size distribution information: (a) cluster distributions in
terms of the number of clusters per cluster size (logarithmic scale), and (b) ratio
of total number of documents observed in various cluster size windows.

The size distribution of the clusters is presented in Figure 3.3. In Figure 3.3(a)

the x-axis (in logarithmic scale) shows the cluster size in terms of documents

and y-axis shows the number of clusters for the corresponding size. The figure

reveals that cluster sizes show variety, there are a few large clusters (largest

one containing 26,076 documents) and some small clusters, and there are many

clusters close to the average cluster size. Figure 3.3(b) shows that majority of

the documents (about 73% of them) are stored in clusters with a size 1 to 3,000.

Please note that for only 10% of the queries top ten results include documents

from the largest cluster, which means that our results are not significantly biased

by the existence of a large cluster.

3.6.1.2 Validation of the Generated Clustering Structure

Before using a clustering structure for IR, we must show that it is significantly

different from, or better than, random clustering in terms of reflecting the intrinsic

nature of the data. Such a clustering structure is called valid. Two other cluster

validity issues, clustering tendency and validity of individual clusters, are beyond

the scope of this study [65].
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Figure 3.4: Histogram of ntr values for the FT database (nt = 20.1).

Our cluster validation approach is based on the users’ judgment on the rele-

vance of documents to queries and follows the methodology defined in [42]. Given

a query, a cluster is said to be a target cluster if it contains at least one relevant

document to the query. Let nt denote the average number of target clusters for

a set of queries. Next, let us preserve the clustering structure and distribute all

documents randomly to these clusters. The average number of target clusters for

this case is shown by ntr and its value can be calculated without creating random

clusters by the modified form [42] of Yao’s formula [119]; however, we need the

distribution of the ntr values for the validity decision. The case nt ≥ ntr suggests

that the tested clustering structure is invalid, because it is unsuccessful in placing

the documents relevant to the same query into a fewer number of clusters than

that of the average random case. The case, nt < ntr, is an indication of the

validity of the clustering structure; however, to decide validity one must show

that nt is significantly less than ntr.

According to our validity criterion, we must know the probability density

function of ntr. For this purpose, we perform a Monte Carlo experiment and ran-

domly distribute the documents to the cluster structure for 1000 times and for

each experiment compute the average number of target clusters. The minimum,

maximum, and average ntr values are observed as 27.78, 29.02 and 28.41 (see Fig-

ure 3.4 for the probability density function of the ntr values). Then, we compute

the nt value, and it is 20.1. Clearly, nt is significantly different than the random

distributions ntr, since it is less than all of the observed random ntr values. These
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Figure 3.5: MAP versus number of best-clusters (ns) for ds = 10 and query set
Qmedium.

observations show that the clustering structure used in the retrieval experiments

is not an artifact of the C3M algorithm, on the contrary, significantly better than

random and valid.

3.6.1.3 Determining the Number of Best-Clusters for CBR

The experiments show that selecting more clusters increases effectiveness since

as we increase ns (i.e., the number of selected clusters) more relevant documents

would be covered [95, p. 376]. In a previous work, it was observed that effective-

ness increases up to a certain ns value, after this (saturation) point, the retrieval

effectiveness remains the same or improves very slowly [42, Figure 6]. For the

INSPEC database, this saturation point is observed when ns is about 10% of the

clusters and during the related experiments about the same percentage of the

documents is considered for retrieval. This percentage is typical for (best-match)

CBR [95, p. 376].

In our experiments, for a range of ns values, we retrieved top-10 documents

for the query set Qmedium and measured the effectiveness in terms of mean

average precision (MAP). The results depicted in Figure 3.5 also confirm the
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(a) (b)

Figure 3.6: Relationship between number of selected clusters and number of
documents in the selected clusters shown in: (a) table, and (b) plot.

above observation regarding INSPEC, where the effectiveness increases up to 164

clusters (10% of the cluster number nc for FT dataset) and then no major change

occurs. Therefore, we use 10% of nc as the number of best-clusters in the retrieval

experiments.

In Figure 3.6, we report the total number of documents in the clusters for

each value of ns. Figure 3.6(a) and (b) show that, for example, if we select the

first best matching 164 clusters (10% of the existing clusters) we need to match

9.09% of the documents with the queries, since this many documents exist in

the selected clusters (the numbers are averages for all queries). The observations

show that there is a linear relationship between the percentage of clusters selected

and the percentage of the documents included in these clusters for FT dataset.

3.6.1.4 Cluster Centroids and Centroid Term Weighting

In the experiments below, we take a simplistic approach and use all cluster mem-

ber documents’ terms as centroid terms for a cluster. One reason for this choice

is that, our preliminary experiments with the FT dataset have shown that the

effectiveness does not vary significantly for centroid lengths 250, 500 and 1000;

whereas using all cluster terms in the centroid yields slightly better performance.

Another reason is that by using all cluster terms in centroids, we avoid making
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Table 3.2: Term weighting schemes for centroids

Weighting scheme Term frequency(tf) Inverse document frequency (idf)

CW1 1 ln( number of clusters

number of centroids including the term
+1)

CW2 within-cluster term frequency ln( number of clusters

number of centroids including the term
+1)

CW3 within-cluster term frequency ln( sum of occurrence numbers in the clusters

number of occurrence in the cluster
+1)

an arbitrary decision to determine the centroid length. This choice of centroids

also enables us being independent of a particular centroid term selection method.

Nevertheless, in Section 3.7, we also investigate the performance of different cen-

troid term selection methods for another dataset and show that using all terms

of a cluster in its centroid is more effective.

In the rest of this work, we assume that three centroid term weighting schemes

are employed: CW1, CW2, and CW3; in all of them the weight of a centroid term

is computed by the formula tf-idf. In Table 3.2, the three centroid term weighting

schemes are summarized. During the best-cluster selection stage of query pro-

cessing, weights are normalized by using the pre-computed cluster lengths for the

corresponding scheme.

3.6.2 Effectiveness Experiments

To evaluate the effectiveness of the IR strategies, namely FS and typical-CBR,

top-1000 (i.e., ds= 1000) documents are retrieved for each of the query sets. The

effectiveness results are presented by using the precision at 10 (P@10) and mean

average precision (MAP) values (i.e., average of the precision values observed

when a relevant document is retrieved) [28] for each of the experiments. For a

particular case, we also provide an interpolated 11-point precision-recall graph.

All effectiveness figures are computed using the treceval software [108].

Table 3.3 provides the P@10 and MAP values for the retrieval strategies.

The results essentially reveal that there is no single best approach for IR, and

either one of CBR or FS can perform better for different queries. In particular,

typical-CBR with CW1 achieves the best performance for short and medium

length queries on FT dataset, whereas FS is better for AQUAINT dataset and
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Table 3.3: MAP and P@10 values for retrieval strategies (ns = 164 for FT,
ns = 516 for AQUAINT, ds = 1000)

Datasets Query Type
Evaluation FS Typical CBR

metrics CW1 CW2 CW3

FT

Qshort
MAP 0.107 0.126 0.109 0.102
P@10 0.149 0.180 0.149 0.137

Qmedium
MAP 0.122 0.134 0.121 0.113
P@10 0.163 0.182 0.157 0.149

Qlong
MAP 0.124 0.113 0.114 0.109
P@10 0.186 0.176 0.178 0.169

AQUAINT
Qshort

MAP 0.091 0.046 0.081 0.071
P@10 0.244 0.176 0.240 0.234

Qmedium
MAP 0.100 0.048 0.089 0.074
P@10 0.244 0.204 0.260 0.248

long queries on FT dataset. For a more detailed comparison, consider the 11-

point interpolated precision-recall graph given in Figures 3.7 and 3.8 for FT and

AQUAINT datasets, respectively. These graphs also imply that the effectiveness

of FS and CBR are quite close to each other for different sets of queries with

varying lengths. Thus, we conclude that CBR is a valuable retrieval strategy

such as FS and improving its efficiency is an important contribution.

Note that, our CBR approaches that blend inverted indexes with cluster based

retrieval lead to new opportunities for combining the best results of both strate-

gies, in a way that has not been done before. For example, during query process-

ing we can handle query terms as in FS or CBR like a mixture depending on the

query term properties.

3.6.3 Efficiency Experiments

3.6.3.1 Efficiency of Typical-CBR Strategies

Along with the lines of Section 3.3, we discuss three query processing implementa-

tions (IBU, IBI, IAE) and two versions for each such implementation —the version

that uses a sorted array (SA) to keep and look up best-clusters, and the version

that uses a 0/1 mark array (MA) for the same purpose. During query evaluation,

first the queries are matched with the cluster centroids to obtain the best-clusters
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(a) (b)

(c)

Figure 3.7: Interpolated 11-point precision-recall graph for IR strategies using
FT dataset and (a) Qshort, (b) Qmedium, and (c) Qlong.

(a) (b)

Figure 3.8: Interpolated 11-point precision-recall graph for IR strategies using
AQUAINT dataset and (a) Qshort, and (b) Qmedium.
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Table 3.4: Efficiency comparison of the typical-CBR strategies (IBU : Intersect
Before Update, IBI : Intersect Before Insert, IAE : Intersect After Extract, SA:
Sorted Array, MA: Mark Array) for FT dataset using CW1

Time (ms) and operation IBU-SA IBU-MA IBI-SA IBI-MA IAE-SA/MA IAE-SA/MA
counts (all averages) L = ds L = N

Q
s
h
o
r
t

Query evaluation time 3 2 4 3 3 7
No. of accumulator updates 908 908 9,792 9,792 9,792 9,792
No. of nonzero accumulators 848 848 9,462 9,462 9,462 9,462
No. of intersections 9,792 9,792 9,462 9,462 877 6,931
No. of heap insertion calls 848 848 848 848 9,462 9,462

Q
m

e
d
iu

m

Query evaluation time 12 5 11 6 7 31
No. of accumulator updates 3,786 3,786 49,416 49,416 49,416 49,416
No. of nonzero accumulators 2,899 2,899 39,496 39,496 39,496 39,496
No. of intersections 49,416 49,416 39,496 39,496 1,000 10,128
No. of heap insertion calls 2,899 2,899 2,899 2,899 39,496 39,496

Q
lo

n
g

Query evaluation time 329 89 108 84 89 224
No. of accumulator updates 124,115 124,115 1.8 M 1.8 M 1.8 M 1.8 M
No. of nonzero accumulators 11,718 11,718 189,510 189,510 189,510 189,510
No. of intersections 1.8 M 1.8 M 189,510 189,510 1,000 9,503
No. of heap insertion calls 11,718 11,718 11,718 11,718 189,510 189,510

(top 10% of clusters) as described above. Next, best-documents within these best-

clusters and final query outputs are computed using the three possible algorithms

with two different data structures (SA, MA) for best-clusters. We measure the

efficiency of this latter stage; i.e., selecting the best-documents while filtering out

those that are not from the best-clusters. In Tables 3.4 and 3.5, we provide the

results for FT dataset for two of the centroid term weighting schemes, namely

CW1 and CW2, respectively. The efficiency figures for CW3 are quite similar to

CW1 in all cases, and thus not reported here to keep the discussion simple. In

Tables 3.6 and 3.7, we give results for AQUAINT dataset, again for CW1 and

CW2.

In Tables 3.4 to 3.7, we report in-memory processing time for each strategy, as

well as the average number of accumulator update operations, number of nonzero

document accumulator entries, number of cluster-id intersection operations and

finally number of heap insertion operations, for FT and AQUAINT datasets.

Note that, for IAE strategy, we experiment with two different values of the min-

heap size (L), namely for L = N (total number of documents) and L = ds; i.e.,

1000. As discussed in Section 3.3, for the latter case, it is possible that less than

ds documents have been retrieved from the best-clusters, which would require

rebuilding a larger heap. Still, for Web search scenarios where the user interested
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Table 3.5: Efficiency comparison of the typical-CBR strategies (IBU : Intersect
Before Update, IBI : Intersect Before Insert, IAE : Intersect After Extract, SA:
Sorted Array, MA: Mark Array) for FT dataset using CW2

Time (ms) and operation IBU-SA IBU-MA IBI-SA IBI-MA IAE-SA/MA IAE-SA/MA
counts (all averages) L = ds L = N

Q
s
h
o
r
t

Query evaluation time 4 2 4 3 3 7
No. of accumulator updates 2,509 2,509 9,792 9,792 9,792 9,792
No. of nonzero accumulators 2,367 2,367 9,462 9,462 9,462 9,462
No. of intersections 9,792 9,792 9,462 9,462 877 2,390
No. of heap insertion calls 2,367 2,367 2,367 2,367 9,462 9,462

Q
m

e
d
iu

m

Query evaluation time 13 6 11 7 7 30
No. of accumulator updates 13,612 13,612 49,416 49,416 49,416 49,416
No. of nonzero accumulators 10,200 10,200 39,416 39,416 39,496 39,496
No. of intersections 49,416 49,416 39,416 39,416 1,000 3,021
No. of heap insertion calls 10,200 10,200 10,200 10,200 39,496 39,496

Q
lo

n
g

Query evaluation time 363 145 110 86 89 227
No. of accumulator updates 752,920 752,920 1.8 M 1.8 M 1.8 M 1.8 M
No. of nonzero accumulators 71,700 71,700 189,510 189,510 189,510 189,510
No. of intersections 1.8 M 1.8 M 189,510 189,510 1,000 1,595
No. of heap insertion calls 71,700 71,700 71,700 71,700 189,510 189,510

Table 3.6: Efficiency comparison of the typical-CBR strategies (IBU : Intersect
Before Update, IBI : Intersect Before Insert, IAE : Intersect After Extract, SA:
Sorted Array, MA: Mark Array) for AQUAINT dataset using CW1

Time (ms) and operation IBU-SA IBU-MA IBI-SA IBI-MA IAE-SA/MA IAE-SA/MA
counts (all averages) L = ds L = N

Q
s
h
o
r
t

Query evaluation time 23 10 26 15 15 71
No. of accumulator updates 5,289 5,289 81,412 81,412 81,412 81,412
No. of nonzero accumulators 4,907 4,907 76,596 76,596 76,596 76,596
No. of intersections 81,412 81,412 76,596 76,596 1,000 13,978
No. of heap insertion calls 4,907 4,907 4,907 4,907 76,596 76,596

Q
m

e
d
iu

m

Query evaluation time 92 28 84 38 43 299
No. of accumulator updates 27,237 27,237 401,370 401,370 401,370 401,370
No. of nonzero accumulators 19,558 19,558 297,885 297,885 297,885 297,885
No. of intersections 401,370 401,370 297,885 297,885 1,000 11,124
No. of heap insertion calls 19,558 19,558 19,558 19,558 297,885 297,885

in top-k results where k is usually less than 30 [100], this strategy is very tempting

as a reasonably large heap, say of size 1000, would be adequate for most of the

cases.

From our findings, the following observations can be drawn.

• First of all, for all strategies, the versions that employ a 0/1 mark array to

store best-clusters are faster than their sorted array based counterparts. Of

course, the former takes more memory space than the sorted array. How-

ever, a hash-table can also be used instead of a mark array, with less space
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Table 3.7: Efficiency comparison of the typical-CBR strategies (IBU : Intersect
Before Update, IBI : Intersect Before Insert, IAE : Intersect After Extract, SA:
Sorted Array, MA: Mark Array) for AQUAINT dataset using CW2

Time (ms) and operation IBU-SA IBU-MA IBI-SA IBI-MA IAE-SA/MA IAE-SA/MA
counts (all averages) L = ds L = N

Q
s
h
o
r
t

Query evaluation time 26 13 28 16 16 68
No. of accumulator updates 21,960 21,960 81,412 81,412 81,412 81,412
No. of nonzero accumulators 20,088 20,088 76,596 76,596 76,596 76,596
No. of intersections 81,412 81,412 76,596 76,596 1,000 1,787
No. of heap insertion calls 20,088 20,088 20,088 20,088 76,596 76,596

Q
m

e
d
iu

m

Query evaluation time 99 39 86 41 43 294
No. of accumulator updates 103,883 103,883 401,370 401,370 401,370 401,370
No. of nonzero accumulators 71,967 71,967 297,885 297,885 297,885 297,885
No. of intersections 401,370 401,370 297,885 297,885 1,000 1,816
No. of heap insertion calls 71,967 71,967 71,967 71,967 297,885 297,885

usage and similar efficiency figures (as long as the number of best-clusters

is relatively small, which is possible in a practical setting). Thus, in the

upcoming sections, we use the versions with MA, unless stated otherwise.

Note that, the CBR approach with CS-IIS can employ a sorted array as

efficient as a mark array, since the query processing algorithm described in

Section 3.4 works in the merge-join fashion while comparing clusters in the

postings to the best-cluster set.

• For all query sets IAE approach with a min-heap of size N is inferior to

its counterpart with a smaller heap; due to very high costs of building and

extracting from the large min-heap. For instance, in Table 3.4, IAE for

Qmedium takes 31 and 7 milliseconds for a min-heap of size N and ds,

respectively. Everything else being the same, the former approach inserts

results to a very large heap, as N = 210,158 here; in contrast to a heap of

size ds, 1000. Also, the former approach extracts 10,128 results from the

heap until it obtains top-1000 results from the best-clusters. In contrast,

IAE with a heap size of 1000 considers only top-1000 results. For this case,

we observed that there is a very slight reduction in P@10 and MAP, so

for IAE approach, it is an efficient and effective approach to keep a min-

heap of size ds (or, maybe a slightly larger heap). Note that, since IAE-SA

and IAE-MA approaches do not differ significantly in terms of performance,

their efficiency figures are shown in the same columns in the tables.
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• Assuming that document-cluster index (DC-IIS) is kept in the main mem-

ory, the performance of IBU-SA and IBI-SA approaches seem to be very

similar, the same is true for the IBU-MA and IBI-MA approaches. IBU-MA

approach performs better than IAE-MA and IBI-MA and provides consid-

erable reductions in query processing times for short and medium length

queries in all cases. This means that, it is better to use the best-cluster

information as early as possible during the query processing, instead of

postponing the result integration as in IAE. This allows updating much

smaller number of accumulators (i.e., smaller number of query-document

similarity computations) and smaller number of insertions to the min-heap;

all of which yield a smaller execution time. For instance, in Table 3.6, for

Qshort set of AQUAINT, IAE-MA and IBI-MA takes 15 ms whereas IBU-

MA takes 10 ms, a relative improvement of 33%. For Qmedium, there are

still important gains; IBU reduces 43 ms of IAE and 38 ms of IBI to only

28 ms. For very long queries (as in the case of Qlong set of FT dataset),

again IBU and IBI approaches with MA seem to be the most reasonable

implementation candidates. In this case, IBU-SA suffers from the excessive

cost of cluster-id intersection operations and performs even worse than IAE;

so if IBU is the choice of implementation, it should be coupled with MA

data structure. Nevertheless, our findings reveal that IBI-MA approach

outperforms IBU-MA and seems to be the most efficient approach for long

queries.

• If it is impossible to keep DC-IIS in memory, the IAE method with the

minimum number of cluster-id intersection operations would be the method

of choice. In this case, IBU, the best strategy for short and medium length

queries, would be extremely costly. However, we envision that this case may

not be highly probable given the modern systems’ memory capacities. For

instance, in our experimental setup, the size of DC-IIS is only a few MBs.

• Finally, we see that absolute query processing times for cases with CW2 are

higher than their counterparts when CW1 is employed. For both dataset

and all query sets, CW2 selects larger clusters, since the number of non-zero

accumulators considerably increases. The trends discussed above are still
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valid, but the relative differences between strategies are less emphasized.

To sum up, we conclude that if document-cluster index (DC-IIS) can be stored

in the main memory, it is better to use the best-cluster set information as early as

possible during the query processing, and thus IBU, which checks cluster mem-

bership before updating the accumulators, performs best for short and medium

length query types. If all of the DC-IIS cannot be stored in memory, then IAE

(with a reasonable min-heap size) is the best choice. Note that, the latter means

that we simply process the query (as if FS) and then filter out the documents at

the very end; i.e., do not use best-clusters information during the best-documents

selection stage. Since this approach can be implemented on top of an existing

IR system without any modification in the query processing algorithm, it is em-

ployed as the baseline approach in [30, 31]. In what follows, we use both IBU

and IAE (with MA structure) as the baselines to compare to CBR with CS-IIS.

3.6.3.2 Efficiency of Typical-CBR with CS-IIS

In this section, we evaluate the efficiency of typical-CBR with CS-IIS and com-

pare it to CBR strategies IBU and IAE. We also compare it to FS, as a further

baseline. In Tables 3.8 and 3.9 we provide in-memory query processing times

and number of various operations for the IR strategies for FT and AQUAINT

datasets, respectively.

From Tables 3.8 and 3.9, we see that IAE strategy is actually equivalent to

FS in the number of in-memory operations; of course, given that best-clusters are

already computed or given by the user (as in category-restricted searches of Web

directories [30, 31]). IAE has an additional cost of the final result integration

(denoted as “number of intersections” in the tables), which is almost negligible.

Thus, these two strategies take almost the same amount of time.

On the other hand, CBR with CS-IIS makes the same amount of in-memory

operations with IBU strategy, but the former does very few intersections between

cluster-ids due to skipping, whereas IBU, as discussed before, should check the

cluster of every document in the posting lists of the query terms. In terms of
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Table 3.8: Efficiency comparison of typical-CBR with CS-IIS to best performing
CBR strategies for FT dataset

FS Typical CBR

CW1 CW2

Time (ms) and operation IAE-MA IBU-MA CS-ISS IAE-MA IBU-MA CS-ISS
counts (all averages) L = ds L = ds

Q
s
h
o
r
t

Query evaluation time 3 3 2 1 3 2 2
# of accumulator updates 9,792 9,792 908 908 9,792 2,509 2,509
# of nonzero accumulators 9,462 9,462 848 848 9,462 2,367 2,367
# of intersections 0 877 9,792 1,430 877 9,792 1,429
# of heap insertion calls 9,462 9,462 848 848 9,462 2,367 2,367

Q
m

e
d
iu

m

Query evaluation time 7 7 5 2 7 6 4
# of accumulator updates 49,416 49,416 3,786 3,786 49,416 13,612 13,612
# of nonzero accumulators 39,496 39,496 2,899 2,899 39,496 10,200 10,200
# of intersections 0 1,000 49,416 6,652 1,000 49,416 6,651
# of heap insertion calls 39,496 39,496 2,899 2,899 39,496 10,200 10,200

Q
lo

n
g

Query evaluation time 87 89 89 14 89 145 53
# of accumulator updates 1.8 M 1.8 M 124,115 124,115 1.8 M 752,920 752,920
# of nonzero accumulators 189,510 189,510 11,718 11,718 189,510 71,700 71,700
# of intersections 0 1,000 1.8 M 177,220 1,000 1.8 M. 177,670
# of heap insertion calls 189,510 189,510 11,718 11,718 189,510 71,700 71,700

Table 3.9: Efficiency comparison of typical-CBR with CS-IIS to best performing
CBR strategies for AQUAINT dataset

FS Typical CBR

CW1 CW2

Time (ms) and operation IAE-MA IBU-MA CS-ISS IAE-MA IBU-MA CS-ISS
counts (all averages) L = ds L = ds

Q
s
h
o
r
t

Query evaluation time 15 15 10 6 16 13 10
# of accumulator updates 81,412 81,412 5,289 5,289 81,412 21,960 21,960
# of nonzero accumulators 76,596 76,596 4,907 4,907 76,596 20,088 20,088
# of intersections 0 1,000 81,412 6,093 1,000 81,412 6,092
# of heap insertion calls 76,596 76,596 4,907 4,907 76,596 20,088 20,088

Q
m

e
d
iu

m

Query evaluation time 42 43 28 11 43 39 21
# of accumulator updates 401,370 401,370 27,237 27,237 401,370 103,883 103,883
# of nonzero accumulators 297,885 297,885 19,558 19,558 297,885 71,967 71,967
# of intersections 0 1,000 401,370 26,167 1,000 401,370 26,122
# of heap insertion calls 297,885 297,885 19,558 19,558 297,885 71,967 71,967

execution times, this provides a great advantage for CS-IIS based strategy; the

gains are stable with increasing query length and dataset size. For instance, for

using FT dataset and CW1 scheme, it takes 5 and 2 ms to process a medium

length query (a relative improvement of 60%) for CBR with CS-IIS and IBU,

respectively. In the same case for AQUAINT, the execution times are 28 and 11

ms, still yielding a relative improvement of 60%. Also note that, since cluster

membership information is already stored in the posting lists of CS-IIS, there is

no need for a separate DC-IIS to be stored in the memory. As before, trends

are similar for CW2, but gains are relatively smaller, around 30–40%. Obviously,
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Table 3.10: Disk access figures for FT dataset

IIS CS-ISS

Qshort
Total list length 9,792 11,229
Simulated disk access time (ms) 22.6 22.9

Qmedium
Total list length 49,416 56,104
Simulated disk access time (ms) 81.1 82.5

Qlong
Total list length 1,813,734 1,991,781
Simulated disk access time (ms) 2,032.4 2,071.4

Table 3.11: Disk access figures for AQUAINT dataset

IIS CS-ISS

Qshort
Total list length 81,412 87,520
Simulated disk access time (ms) 39.7 41.0

Qmedium
Total list length 401,370 427,594
Simulated disk access time (ms) 168.9 174.6

CBR with CS-IIS outperforms IAE strategy for typical-CBR and also FS (given

that best-clusters are pre-computed) with a much wider margin than IBU. For

instance, again for AQUAINT and Qmedium set, the improvement of CS-IIS

approach over FS is around 74% and 51%, for CW1 and CW2, respectively.

Typical-CBR with CS-IIS makes use of the skip elements to determine the

cluster of succeeding documents, and thus avoids excessive number of cluster id

intersections that occurs in IBU strategy. In return, CS-IIS has longer posting

lists than a traditional inverted index. In Tables 3.10 and 3.11, we report the

average length of the posting lists that are fetched from the disk and average

simulated disk access time. Clearly, FS, CBR strategies IAE and IBU all use

the same ordinary document-level index and thus shown in a single column. We

prefer to report simulated disk times since it is hard and rather unreliable to

make actual measurements due to operating system buffering effects. Simulation

parameters are obtained for a Seagate Cheetah ST37405LC disk for which average

seek time and latency add up to 8.6 ms and transfer time per sector of 512 bytes

is 0.014 ms [63]. Note that, these are compatible with more recent parameters

(for instance, [93] uses 4KB blocks with a transfer time of 1 ms, which would

yield almost the same results with our parameters).

The results reveal that the average length of CS-IIS lists that are fetched from

the disk is only slightly larger than the length of postings of an ordinary index;

and the overhead does not exceed 10% in any of the experiments. Therefore, the
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increase in the disk access time is well-compensated by the in-memory gains of the

CS-IIS in our experimental framework. For instance, for AQUAINT dataset and

Qmedium query set, average execution times for CW1 (CW2) using IBU and CS-

IIS are 28 (39) and 11 (21) ms, respectively (from Table 3.9). So, even when disk

access time difference (174.6 - 168.9 ≈ 6 ms, from Table 3.11) is added, CS-IIS is

still more efficient than its most efficient competitor, IBU. We presume that this

would be the case for other datasets, as long as the number of documents is much

larger than the number of clusters; which seems like a reasonable assumption.

To sum up, we show that typical-CBR with CS-IIS is considerably more ef-

ficient than typical-CBR strategies IBU and IAE. Furthermore, if there is no

best-cluster computation cost, e.g., best-clusters are provided by the user; then

typical-CBR with CS-IIS can be even more efficient than FS. Note that, other

optimizations that are employed for improving the performance of FS in the liter-

ature (as discussed in Section 3.2.1.2) can be further adapted to our CS-IIS based

approach. In the next chapter, we discuss a modified version of CS-IIS which can

compete with FS even when best-cluster computation cost is also involved.

3.6.4 Scalability Experiments

The scalability of C3M , especially from an incremental clustering point of view,

has been thoroughly studied in previous works [35, 38]. In this section, we consider

the scalability of our typical-CBR strategy with CS-IIS in terms of its efficiency,

effectiveness, and storage structures.

For the scalability experiments we obtained two smaller versions of the FT

dataset containing approximately one third and two thirds of the original col-

lection. We refer to them as FT small (FTs) and FT medium (FTm). The

characteristics of all FT datasets are given in Table 3.12 (for easy reference the

original FT is also repeated in the same table). FTs and FTm, respectively,

contain the first 69,507 and 138,669 documents of the original collection. It may

be noted in passing that the indexing-clustering relationships are again observed.

For example, the indexing-clustering relationship nc = n/xd implies 989 and 1345

clusters for the FTs and FTm databases, respectively. The difference between
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Table 3.12: Characteristics of the FT Datasets
Dataset No. of No. of Avg. no. of distinct No. of Avg. no. of

documents(M) terms(n) terms/doc. (xd) clusters (nc) docs./clus. (dc)

FTs 69,507 144,080 145.7 955 73
FTm 138,669 191,112 142.1 1,319 105
FT 210,158 229,748 140.6 1,640 128

Table 3.13: MAP and P@10 values for retrieval strategies using the subsets of
FT dataset for Qmedium (ns = 10% of nc, ds = 1000)

Dataset
Evaluation FS Typical CBR

metrics CW1 CW2 CW3

FTs
MAP 0.053 0.053 0.053 0.046

P@10 0.131 0.127 0.131 0.118

FTm
MAP 0.088 0.094 0.090 0.088

P@10 0.139 0.159 0.139 0.145

FT
MAP 0.122 0.134 0.121 0.113

P@10 0.163 0.182 0.157 0.149

actual numbers and projected numbers is less than 4% as in the case of FT.

In the scalability experiments, as a representative case, we only consider the

Qmedium query set, which is the mid-way in terms of the query sizes we used. In

the experiments we again retrieve 10% of the clusters (ns = 0.1×nc), examine the

top-1000 documents (ds= 1000) for performance measurement, and use centroids

with all terms of clusters as in the previous experiments.

3.6.4.1 Scalability of Effectiveness

The experimental results in terms of P@10 and MAP are reported here. Ta-

ble 3.13 shows that when we use the small database, FTs, the CBR effectiveness

is comparable to that of FS. In the case of FTm and FT the performance of

CBR improves and outperforms FS. These observations confirm that our CBR

methodology scales well with the collection size. This improvement of CBR effec-

tiveness can be attributed to the refinement of cluster structures with increasing

collection size for FT.
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Table 3.14: Efficiency comparison of typical-CBR with CS-IIS to best performing
CBR strategies for FTs dataset and Qmedium

FS Typical CBR

CW1 CW2

IAE-MA IBU-MA CS-ISS IAE-MA IBU-MA CS-ISS
L = ds L = ds

Query evaluation time 2 3 1 1 3 2 1
No. of accumulator updates 16,876 16,876 1,479 1,479 16,876 6,023 6,023
No. of nonzero accumulators 13,441 13,441 1,118 1,118 13,441 4,556 4,556
No. of intersections 0 993 16,876 3,059 993 16,876 3,053
No. of heap insertion calls 13,441 13,441 1,118 1,118 13,441 4,556 4,556

Table 3.15: Efficiency comparison of typical-CBR with CS-IIS to best performing
CBR strategies for FTm dataset and Qmedium

FS Typical CBR

CW1 CW2

IAE-MA IBU-MA CS-ISS IAE-MA IBU-MA CS-ISS
L = ds L = ds

Query evaluation time 4 5 3 2 5 4 3
No. of accumulator updates 32,917 32,917 2,491 2,491 32,917 10,346 10,346
No. of nonzero accumulators 26,295 26,295 1,892 1,892 26,295 7,804 7,804
No. of intersections 0 1,000 32,917 4,848 1,000 32,917 4,846
No. of heap insertion calls 26,295 26,295 1,892 1,892 26,295 7,804 7,804

3.6.4.2 Scalability of Efficiency

Tables 3.14 and 3.15 provide the in-memory processing times and number of

operations for various IR strategies that are obtained for FTs and FTm datasets,

respectively. The numbers reported for the in-memory operations increase almost

linearly with the dataset size; and the CS-IIS based approach is still superior

to others. However, the improvement of CS-IIS over other strategies does not

behave perfectly linear. This is due to the fact as the datasets get smaller, the

absolute time values also become very small and somewhat inaccurate to measure.

Nevertheless, we can still claim that the number of operations and their reflection

to time is scalable.

For the sake of completeness, in Tables 3.16 and 3.17, we report the average

posting list lengths that are fetched from the disk and simulated disk access

times. Again, these values scale well. For disk read times, please note that

average disk seek and rotational delay time for Qmedium set is around 70 ms,

and the remaining time values are for sequential reading of posting lists; namely,
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Table 3.16: Disk access figures for FTs dataset and Qmedium

IIS CS-ISS

Total list length 16,876 19,952
Simulated disk access time (ms) 73.4 74.1

Table 3.17: Disk access figures for FTm dataset and Qmedium

IIS CS-ISS

Total list length 32,917 37,799
Simulated disk access time (ms) 77.4 78.5

3.4, 7.4 and 12.5 ms as obtained for FTs (Table 3.16), FTm (Table 3.17) and

FT (Table 3.10). Thus, simulated disk read times also increase linearly with the

collection size.

3.6.4.3 Scalability of Storage Space

In Table 3.18, we compare the storage space used of CS-IIS and ordinary

document-level IIS for the FT datasets and AQUAINT. As we increase the size

of the database, the cost of storing CS-IIS slightly decreases (from 0.30 to 0.26)

with respect to IIS. This is due to the fact that the rate of increase in the number

of clusters is smaller than that of documents (see Table 3.12). Note that, while

these values are for the uncompressed case, most large scale IR systems and Web

search engines store inverted files in the compressed form. In Chapter 4, we

investigate this issue and show that storage overhead of CS-IIS can be further

reduced.

3.6.5 Summary of the Results

In Section 3.6, we provided an evaluation of typical-CBR in an environment where

the documents are automatically clustered by using a partitioning algorithm

Table 3.18: Storage requirements (in MB) for inverted index files

Storage Component FTs FTm FT AQUAINT

IIS 77 150 225 1,360
CS-IIS 101 (+31%) 190 (+27%) 284 (+26%) 1,630 (+20%)
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(C3M). During query processing, best-clusters set for each query is automat-

ically determined as the clusters that yield the highest query-cluster similarity.

The size of best-clusters set is set to the 10% of the total number of clusters in

the collection. From the experiments, we draw the following conclusions:

• Both retrieval models, namely FS and typical-CBR, achieve similar effec-

tiveness values.

• We discuss three strategies for typical-CBR, and show that exploiting the

best-clusters set information as early as possible during the query process-

ing improves in-memory execution performance. Furthermore, our CS-IIS

based typical-CBR strategy outperforms all three CBR strategies, and even

FS; if there is no best-cluster computation time involved. This is possible

for the cases where the user manually determines the best-clusters to be

searched.

• The posting lists for CS-IIS are slightly longer than the lists of an ordi-

nary index due to additional information stored; however, the increase in

sequential read times are compensated by the in-memory gains, as long as

the number of documents is much larger than the number of clusters. This

overhead could be further reduced by the OS buffering effects and posting

list caching techniques employed in search engines (e.g., see [18]).

• The results are independent of the centroid lengths and weighting schemes,

as the variations over these parameters do not significantly affect the pre-

sented results.

• Disk storage space for CS-IIS is only moderately higher than a traditional

index, and current compression techniques may further reduce this over-

head. In CS-IIS, such a reduction has the potential of further improving

the processing time, since by using our skipping approach the decompression

time can be reduced significantly. We explore these directions in Chapter 4.

• The experiments show that our results are scalable. Effectiveness of CBR

slightly increases while the efficiency improvements of CBR with CS-IIS

remain stable with increasing collection size.



CHAPTER 3. SEARCH USING DOCUMENT GROUPS: TYPICAL-CBR 76

3.7 Case Study I: Performance of Typical-CBR
with CS-IIS on Turkish News Collections

In this section, we present an application of typical-CBR and another set of CBR

experiments using the largest Turkish IR test collection in the literature. Our goal

is to verify our findings that are discussed in the previous sections and put our

ideas to work by building a practical Turkish news portal that allows cluster-based

searches. To our knowledge, our work presented here involves the experiments

for automatic document clustering and CBR using the largest available corpora

in Turkish IR literature. To this end, in the following experiments we investigate

the effectiveness and efficiency implications of

• cluster centroid term selection and weighting mechanisms,

• automatic clustering and manual classification of documents,

• alternative strategies for typical-CBR, and

• employing CS-IIS for typical-CBR.

3.7.1 Experimental Setup

Dataset. We use the recently constructed Milliyet dataset for Turkish along

with the TREC-style query and relevance judgments sets [39, 40]. The dataset

includes 408,305 documents. Following the findings in an earlier study [39], we

eliminated the stopwords and then stemmed the remaining terms using a simple

5-prefix stemmer. After stemming, the dataset includes 180,000 distinct terms

including numbers. The query set includes 72 queries with 14.4 terms on the

average. For query-document matching, we use a variant of the cosine function

that has shown to yield the best effectiveness results for this dataset [39].

Clusters, centroid term selection and weighting. We again automatically

cluster the dataset using C3M algorithm [37] in partitioning mode, which yields

1,357 clusters. We also use a manual classification of newspaper articles as pro-

vided by the publisher Web site (e.g., economics, art, politics, etc.), which includes
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Table 3.19: Bpref figures for CBR strategies with different centroid term selection
and weighting methods

AllSel LogSel AvgSel

MAN AUT MAN AUT MAN AUT

CW2 0.35 0.40 0.33 0.39 0.29 0.39
CW3 0.27 0.40 0.02 0.09 0.01 0.10

12 classes. In the following, these clustering structures are referred to as AUT

and MAN, respectively. We investigate several different approaches for determin-

ing centroid terms of each cluster (class). We name these selection strategies as

follows (see [107] for details):

• All terms (AllSel): All terms that are in the clusters are employed as cen-

troid terms. This is the approach employed in Section 3.6.

• Log selected terms (LogSel): The terms that appear in a number of doc-

uments that is larger than the value log2 (C) documents (where C is the

cluster size) are selected as centroid terms.

• Average selected terms (AvgSel): The selected terms are those that have

a total frequency in a cluster which is larger than the average of all term

frequencies in that cluster.

We only employ CW2 and CW3 centroid term weighting schemes, as described

before (see Table 3.2).

3.7.2 Experimental Results

In Table 3.19, we compare the centroid term selection and weighting methods in

terms of effectiveness. For automatic (manual) clustering, AllSel, LogSel, AvgSel

selection methods yield 4,419 (42,208), 755 (15,036) and 915 (4,174) distinct

centroid terms on the average, respectively. In the following experiments, we use

AllSel method with CW2, which leads to the highest effectiveness for both MAN

and AUT cases.
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Figure 3.9: Bpref figures of CBR for varying percentages of selected clusters.

In Figure 3.9, we illustrate the CBR effectiveness figures of automatic cluster-

ing (AUT) and manual classification (MAN) for varying percentages of selected

best-clusters. As MAN includes only 12 clusters, we consider cases where percent-

age of best-clusters start from 1/12 (8%) and increases by 8%. It is seen that,

when best-clusters are 17% of the all clusters, AUT case achieves comparable

bpref scores with full-search (i.e., 0.40 vs. 0.42, respectively). MAN case cannot

reach to the same bpref figures until almost 33-42% of all clusters are selected.

We think that this is due to the skewness of the data distribution in MAN. That

is, some of these clusters, such as politics or economics, are very crowded whereas

some others like magazine or astrology include relatively few news stories.

Finally, in Table 3.20, we provide in-memory efficiency figures when 17% of

the clusters are selected as best-clusters. We exclude best-cluster selection time,

as before. The results reveal that, FS, which takes 0.134 seconds, is only slightly

more efficient than IAE strategy for CBR (0.136 and 0.139 sec. for MAN and

AUT, respectively). Note that, in this case, IBU and IBI are also inferior to IAE

(and FS). We think that this may be explained by choosing a larger number of

clusters as best-clusters in this framework. Furthermore, there are only 1,357

cluster for 400K documents, whereas FT dataset yielded 1,640 clusters for 200K

documents (see Table 3.1). This implies that clusters are larger and imbalanced.

Finally, the query lengths for this setup are much longer (i.e., 14.4 terms on

average, whereas Qmedium set for FT and AQUAINT datasets include 8.2 and
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Table 3.20: In-memory query processing efficiency for IR approaches (in ms)

Clustering structure FS Typical-CBR

IBU IBI IAE CS-IIS

MAN
134

152 157 136 98
AUT 191 166 139 126

9.4 terms on average, respectively). Nevertheless, Table 3.20 reveals that CBR

with CS-IIS, our major contribution in this chapter, still outperforms all of them.

3.8 Case Study II: Performance of Typical-CBR
with CS-IIS on Web Directories

In the previous Sections 3.6 and 3.7, we evaluated CBR effectiveness and effi-

ciency on document collections that are automatically clustered by a partitioning

algorithm (C3M), which yields a flat clustering structure. In contrast, Web di-

rectories typically involve a hierarchy of categories and employ human editors

who assign Web pages to corresponding categories. Web surfers make use of such

directories either for merely browsing, or issuing a query under a certain category

that they have chosen (i.e., a category-restricted search [30, 31]).

The major contribution of this section is demonstrating how CS-IIS can be

employed in a hierarchical clustering framework, such as a Web directory, and

how exactly the gains or costs are affected due to some unique properties of this

framework. The experiments are held using the largest available Web directory

dataset as provided by Open Directory Project (ODP). This work differs from

the earlier experiments presented in this chapter in the following ways: i) in Sec-

tions 3.6 and 3.7, an automatic and partitioning clustering structure is assumed,

whereas the Web directory domain involves a hierarchical taxonomy, ii) the pre-

vious sections involve moderate number of categories (although they were quite

large figures in the automatic text clustering literature) whereas Web directories

involve hundreds of thousands of categories, and iii) both the data, categorization

and queries are generated by real users, which makes this environment a unique

opportunity to show the applicability of the CS-IIS approach.
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Figure 3.10: A hierarchical taxonomy and the corresponding CS-IIS. Given the
query = {t2, t3} that is restricted to C1, the query processor first identifies the
target categories (C1, C3 and C4, as shown within dotted lines) and then processes
posting lists. Note that, only the shaded parts of the posting lists are processed
and the rest is skipped.

Note that in the following sub-sections, we use the term “category” instead of

“cluster”. To be consistent with the terminology of Web directories, we also refer

to best-clusters set as the “target categories”. In this framework, the user specifies

an initial category for his/her query, and the target categories are those under the

user specified category; i.e., the sub-tree (or graph, more generally) rooted at the

user’s initial category selection (e.g., see [30]). We call this a category-restricted

search (as in [30, 31]).

While constructing the CS-IIS for a hierarchy as in the case of a Web directory,

documents in a posting list are grouped with the categories under which they

immediately appear (see Figure 3.10). This is different from an earlier proposal

where the signature of the full category path is stored for each document [31].

Once CS-IIS is constructed, query processing proceeds as described in previous

sections.

3.8.1 ODP Dataset Characteristics and Experimental
Setup

Dataset. For this study, we use the largest publicly available category hierarchy

as provided by ODP Web site [85]. After preprocessing and cleaning data files,

we end up with a category hierarchy of approximately 719K categories and 4.5

million URLs. For most of the URLs, a one- or two-sentence length description

is also provided in the data file. In this work, we use these descriptions as the
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actual documents. Note that, this yields significantly shorter documents (with a

few words on the average) than usual.

While constructing the hierarchy using the data files, we decided to use

narrow, symbolic and letterbar tags in the data file as denoting the children of

a category. The resulting hierarchy is more like a graph than a tree in that only

36% of the categories have a single parent. This indicates that, it would be better

to keep track of the immediate category of a document as in our CS-IIS (and also

the approach in [30]) with respect to keeping the entire path (e.g., see [31]), as

there may be several paths to a particular document.

We find that a great majority of categories are rather small; i.e., 98% of them

includes less than 50 documents. Furthermore, 93% of the documents (about 4.2

million) belong to only one category, whereas 6% of the documents belong to two

parents and only the remaining 1% of the documents appears in three or more

categories. These numbers are important for CS-IIS, since a posting list needs to

store the same documents as many times as they appear in different categories.

The above trends conform the observations in earlier works [30, 31], and show

that the waste of storage space due to overlapping documents among categories

would not be high.

Indexing. After preprocessing, the document description file takes 2 GB on disk.

During inverted index creation, all words (without stemming) are used except

numbers and stopwords, yielding 1.1 million terms at the end. The resulting size

of the ordinary inverted file (i.e., to be used by the baseline approach) is 342 MB

whereas the size of the CS-IIS file is 609 MB. Note that, the additional space

used in CS-IIS is unusually large in comparison to our previous findings (i.e.,

in Section 3.6, only 26% and 10% more space usage was observed for FT and

AQUAINT datasets, respectively). We attribute two reasons for this outcome,

and state their remedies as follows: i) the dataset includes too many categories

with respect to the number of documents. In Section 3.6, for instance, AQUAINT

collection of approximately 1M documents yields only 5,163 clusters, whereas here

approximately 4.5M pages are distributed to 719K categories. We believe this

situation would change for our benefit in time, as the growth rate of hierarchy may
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possibly be less than that of the collection. Furthermore, the taxonomy may be

populated to reach to a much larger collection size using automatic classification

techniques. ii) the documents are unusually short, as we use just the summaries

in this initial stage of our work.

Queries and query processing efficiency. We use two methods for obtaining

category-restricted queries. First, we prepared a Web-based system which allows

users (graduate students) to specify queries along with categories and evaluate

the results.

For this experiment, we use 64 category-restricted queries from this system

and refer to them as manual-category queries. Additionally, we employ the ef-

ficiency task topics of TREC 2005 terabyte track. This latter set includes 50K

queries, and 46K of them are used in the experiments after those without any

matches in the collection are discarded. This set is referred to as automatic-

category queries.

Notice that, the latter query set lacks any initial target category specification,

so we had to match the queries to categories automatically as discussed in the

previous sections. To achieve this, we again use all terms in categories as centroids

to compute query-category similarities. At this stage, the well-known tf-idf term

weighting with the cosine measure is employed. Next, for each query, we find the

top-10 highest scoring category and choose a single one with the shortest distance

to the root (i.e., imitating the typical user behavior of selecting a category as

shallow as possible [31] while browsing).

For both query sets, this initial target category is then further expanded;

i.e., the sub-graph is obtained. In the following experiments, the time cost for

obtaining target categories is not considered, as this stage is exactly the same for

both of the compared strategies and can be achieved very efficiently by using the

method in [30]. The query-document matching stage also uses the tf-idf based

weighting scheme and cosine similarity measure as described in Section 3.2.1.

Top-100 results are returned for each query.
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Table 3.21: In-memory query processing efficiency (all average values, relative
improvement in query execution time by CS-IIS is shown in parantheses)

Query set Time (ms) and operation Baseline CBR CBR with CS-IIS
counts (all averages) (IAE)

Manual-category
Query evaluation time 128 109 (15%)
No. of nonzero accumulators 17,219 11,758
No. of postings fetched 17,339 28,913

Automatic-category
Query evaluation time 158 100 (37%)
No. of nonzero accumulators 19,900 250
No. of postings fetched 20,367 33,271

3.8.2 Experimental Results

The in-memory average query processing (CPU) times are reported in Table 3.21,

as well as the number of non-zero accumulators and the average length of posting

lists fetched. For these set of experiment, we only employ IAE strategy for CBR

as the baseline, following the practice in the literature [30, 31].

Table 3.21 reveals that for both query sets, using CBR with CS-IIS improves

the efficiency of work done in main memory. This gain is caused by two factors:

first, skipping irrelevant clusters reduces the redundant partial similarity compu-

tations. Secondly, but equally importantly, the number of non-zero accumulators

at the end of query, which are to be inserted into and extracted from a min-heap,

is considerably reduced. We even favor the IAE strategy by assuming that the

document-category index (DC-IIS) is in the memory. Note that, the gains would

be more emphasized if compression had been used, as skipping would also reduce

the burden of decoding operations as we discuss in Chapter 4. A second observa-

tion is that, the manual-category queries apparently cover a larger sub-graph and

thus process more documents for both strategies. Indeed, in that query set, 55%

of the queries are restricted to categories at depth 1. In contrary, the automatic-

category queries usually locate the initial target category in a deeper position in

the graph. That is why the latter makes much less operations and obtains more

gains. Nevertheless, we used the same automatic category computation technique

for the manual-category query set, and observed that most of the returned cat-

egories are reasonably relevant to queries, but not necessarily the same as the

ones as specified by the user. Our current work involves a quantitative analysis

of target category selection and using more sophisticated term weighting schemes
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to represent categories.

For the disk access issues, we assume that posting lists are brought to memory

entirely and discarded once they are used (i.e., no caching). In Table 3.21, the

difference between the list lengths fetched from the disk is around 12 K postings

(for manual-category query set), adding up to 96 KB (i.e., 8 bytes/posting).

Considering a typical disk with the transfer rate of 20 MB/s, the additional

sequential read cost is only 5 ms, which is clearly less than the in-memory gains

for this case.

3.8.3 Discussions and Summary

For Web directories, typical-CBR with CS-IIS has some other advantages in com-

parison to the earlier works in the literature. We observe that the real life hierar-

chies are quite large (in contrast to those in [30, 31] as discussed in Section 3.2.3.5).

So, it may be difficult to use the signature-file based system as in [31]. The ap-

proach discussed in [30] enforces an upper limit on the number of categories (e.g.,

1024). Furthermore, both of these earlier works involve using a part of document

id to represent its categories, which would require bitwise operations during query

processing and may complicate the use of typical index compression schemes. On

the other hand, CS-IIS imposes no limits on neither the size of category nor the

number of documents and can be practically used in existing systems, even with

compression. This latter issue is further discussed in Chapter 4.

In this section, the CS-IIS is adapted for hierarchical categories in Web di-

rectories to allow efficient processing of category-restricted queries. Our current

results show that, despite the use of very short document descriptions and the im-

balance between the number of categories and documents, the proposed strategy

is quite promising.



CHAPTER 3. SEARCH USING DOCUMENT GROUPS: TYPICAL-CBR 85

3.9 Conclusions

In this chapter of the thesis, we investigated the effectiveness and efficiency of

cluster-based retrieval for various clustering scenarios and using several parame-

ters. We showed that CBR is a worthwhile retrieval technique as an alternative

or complementary approach to FS. To improve the efficiency of typical-CBR, we

first proposed some alternative query processing techniques. Next, as the most

essential contribution of this chapter, we introduced a cluster-skipping inverted

index structure (CS-IIS) that is shown to be superior to the other CBR strategies

that use an ordinary document-level index. We presented a wide range of exper-

iments involving automatically clustered and manually categorized datasets, and

automatically and manually determined best-cluster sets. In all cases, CS-IIS

provides significant improvements for the in-memory (CPU) time efficiency. Fur-

thermore, under the realistic assumption, we showed that the slightly larger disk

access cost of CS-IIS can also be compensated by the aforementioned gains.

Finally, we emphasize that typical-CBR with CS-IIS can be even more efficient

than FS, if the best-cluster computation time is not involved. In the next chapter,

we further improve our CS-IIS data structure so that the above restriction can

be relaxed. We will also provide efficiency results in a framework where all index

files are stored in a compressed form, a practice which is possibly adapted by all

large scale IR systems and Web search engines.



Chapter 4

Search Using Document Groups:
Incremental Cluster-Based
Retrieval

In this chapter, we propose a modified version of our cluster-skipping inverted

index structure (CS-IIS) and a new, incremental, cluster-based retrieval (CBR)

approach. In Section 4.1, we discuss the motivation for this part of our re-

search and list our major contributions. Next, in Section 4.2, we introduce the

incremental-CBR strategy that operates on top of the CS-IIS, which is enriched

to include cluster centroid information. In Section 4.3, we discuss the compres-

sion of the CS-IIS with an emphasis on the benefits of document id reassignment

in our framework. Sections 4.4 and 4.5 are devoted to experimental setup and

results, respectively. We extensively evaluate the proposed strategy and compare

to an enhanced FS implementation based on dynamic pruning and skips [79]. In

Section 4.6, we show that our new strategy coupled with CS-IIS can be used in

a dynamic pruning framework for Web search engines, where the documents are

simply clustered according to their Web sites. Finally, we conclude and point to

future work directions in Section 4.7.

86
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4.1 Introduction

In Chapter 3, we have introduced the CS-IIS to improve the efficiency of second

stage of typical-CBR; i.e., selecting the best-documents that belong to the best-

clusters. In this chapter, we attempt to optimize both stages of typical-CBR

so that almost no redundant work is done. That is, our goal is to design a

CBR strategy that can overcome the efficiency weaknesses of typical-CBR and

be as efficient as FS while still providing comparable effectiveness with FS and

typical-CBR. We envision that our new CBR approach can either be used in

environments that are inherently clustered/categorized due its own application

requirements (such as the Web directories or digital libraries), or in the cases

where the collection is clustered essentially for the purposes of search efficiency;

i.e., as another dynamic pruning technique for FS (see Section 3.2.1.2 for others).

We propose some modifications on CS-IIS and based on this structure intro-

duce a new CBR strategy. In the modified CS-IIS file, in addition to the cluster

membership information, within-cluster term frequency information is also em-

bedded into the inverted index. By this extension, centroids are now stored

along with the original term posting lists. This enhanced inverted file elimi-

nates the need for accessing separate posting lists for centroid terms (recall that

typical-CBR uses a separate centroid IIS for best-cluster selection, as shown in

Figure 3.1). In the new CBR method, the computations required for selecting

the best-clusters and the computations required for selecting the best-documents

of such clusters are performed together in an incremental and interleaved fash-

ion. The query terms are processed in a discrete manner in non-increasing term

weight order. That is, we envision a term-at-a-time query processing mode in

this work; whereas another highly efficient alternative, document-at-a-time is out

of scope [15]. As we switch from the current query term to the next, the set

of best-clusters is re-computed and can dynamically change. In the document

matching stage of CBR only the portions of the current query term posting list

corresponding to the latest best-clusters set are considered. The rest is skipped,

hence is not involved in document matching. During document ranking, only the

members of the most recent best-clusters set with a non-zero similarity to the
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query are considered.

In the literature, it is observed that the size of an inverted index file can be

very large [118]. As a remedy, several efficient compression techniques are pro-

posed that significantly reduce the file size. In this chapter, we concentrate on

the IR strategies with compression where the performance gains of our approach

become more emphasized. Indeed, our incremental-CBR strategy with the new

inverted file is tailored to be most beneficial in such a compressed environment.

That is, skipping irrelevant portions of the posting lists during query process-

ing eliminates the substantial decompression overhead (as in [79]) and provides

further improvement in efficiency. In compression, we exploit the use of multi-

ple posting list compression parameters and reassign document ids of individual

cluster members to increase the compression rate, as recently proposed in the

literature [23, 102].

The proposed approach promises significant efficiency improvements: If the

memory is scarce (say, for digital libraries and proprietary organizations) and the

index files have to be kept on disk, the incremental-CBR algorithm with modified

CS-IIS allows the queries to be processed by only one direct disk access per query

term (assuming that a posting list is read entirely at once). Furthermore, even

if the centroid and/or document index is stored in memory, which is probable

with the recent advances in hardware (see [105], as an example), the CS-IIS saves

decoding and processing the document postings that are not from best-clusters,

a non-trivial cost. We show that, the most important overhead of CS-IIS, longer

posting lists, is reduced to an affordable overhead by our compression heuristics

and even with a moderate disk, the gains in efficiency can compensate for the

slightly longer disk transfer times (given that the number of clusters tends to

be much smaller than the number of documents, as discussed in the previous

section).

Our comparative efficiency experiments cover various query lengths and both

storage size and execution time issues in a compressed environment. The re-

sults even with lengthy queries demonstrate the robustness of our approach. We

show that our approach scales well with the collection size. In the experiments,
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we use multiple query sets and three datasets of sizes 564MB, 3GB and 27GB,

corresponding to 210,158, 1,033,461 and 4,293,638 documents, respectively.

4.1.1 Contributions

Our contributions in this chapter are:

• Introducing a pioneering CBR strategy: we introduce an original CBR

method using an enriched cluster-skipping inverted index structure and

refer to it as incremental-CBR. The proposed strategy interleaves query-

cluster and query-document matching stages of typical-CBR for the first

time in the literature.

• Embedding the centroid information in document inverted indexes: For

memory-scarce environments (e.g., private networks, digital libraries, etc.)

where the index files should be kept on disk, we eliminate disk accesses

needed for centroid inverted index posting lists by embedding the centroid

information in document posting lists. This embedded information enables

best-cluster selection by only accessing the document inverted index. By

this way during query processing, each query term requires only one direct

disk access rather than separate disk accesses for centroid and document

posting lists. (We assume that a posting list for a term is entirely fetched

once it is located on the disk. It is also possible to read a posting list in a

block-by-block manner for some index organizations and early pruning pur-

poses. Even in this case, embedding centroid information may allow one

less direct disk access. In such a setup, alternative organizations of CS-IIS

can also be possible, e.g., by sorting the cluster blocks in each list according

to some importance score and then reading the list in a blockwise manner.

These directions are left as a future work.)

• Outperforming full search (FS) efficiency: we show that for large datasets

incremental-CBR outperforms FS (and the IAE strategy, which usually
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serves as a baseline typical-CBR strategy as discussed in the previous chap-

ter) in efficiency while yielding comparable (or sometimes better) effective-

ness figures. We also show that efficiency of our approach scale well with the

collection size. The proposed approach is also superior to an enhanced im-

plementation of FS approach that employs the “continue” pruning strategy

accompanied with a skipping IIS, as described in [79].

• Adapting the compression concepts to a CBR environment : we adapt mul-

tiple posting list compression parameters and specify a cluster-based docu-

ment id reassignment technique that best fits the features of CS-IIS.

• CBR experiments using a realistic corpus size with no user behavior assump-

tion: we use the largest corpora reported in the CBR literature, assume no

user interaction, and perform all decisions in an automatic manner. Only

a few studies on CBR use collections as large as ours (e.g., [73]).

4.2 Incremental-CBR with CS-IIS

4.2.1 CS-IIS with Embedded Centroids

A cluster-skipping inverted index structure (CS-IIS) differs from a typical IIS

since in posting lists it stores the documents of each cluster in a group adjacent

to each other. It contains a skip-element preceding each such group to store the

id of cluster to which the following document group belongs, and a pointer to

the address where the next skip-element can be accessed in the posting list. In

Chapter 3, it is shown that cluster-skipping in query processing improves the

query processing time. Furthermore, since cluster membership information is

embedded into the IIS, it needs no separate cluster membership test as it is

required in other typical-CBR methods (such as those in Section 3.3).

In this work, we introduce an enriched cluster-skipping IIS, which contains an

additional centroid-element for each cluster in a given posting list (Figure 4.1).

Note that, in Figure 4.1, the same D matrix and clusters of Figure 3.2 are used

to emphasize similarities and differences between the two skip approaches. The



CHAPTER 4. SEARCH USING DOCUMENT GROUPS: INCR.-CBR 91

C1 1d21d1

C1 3d21d1

C1 1d21d1 C2 C31d4 1d7

C1 C21d2 d3 3 7d4

C2 C32d3 d5 1 1d71d6

d1 1 1d3C2 C3 4d65d5 1d7C1

t1

t3

1t2

1

t5

2t4

3

2

3t6

4

4

7

10

8

11

2 1

2 2

2 1

1 1

1 2

1 1

1 1

2 5

3 1

1 1

1 1

3 3

C1 = {d1, d2}

C2 = {d3, d4}

C3 = {d5, d6, d7}

D =

t1 t2 t3 t4 t5 t6

d2

d3

d4

d5

d7

d6

d11 1 0 0 1

1 3 1 1 0 0

0 0 0 3 2 1

0 0 1 7 0 0

0 0 0 0 1 5

0 0 0 0 1 4

0 0 1 0 1 1

1

Figure 4.1: Cluster-Skipping Inverted Index Structure (CS-IIS) (embedded skip-
and centroid-elements are shown as shaded).

new centroid-element stores: i) the number of documents (i.e., sub-posting list

length, explained later), and ii) average within-cluster term frequency (fC,t) for

the term in the corresponding cluster. These fields are used during query-cluster

similarity computation and in fact, represent the centroids used for the selec-

tion of the best-clusters. Therefore, in our approach the centroid information is

stored with, or embedded into document posting lists. In Figure 4.1 each post-

ing list header contains the associated term, the number of posting list elements

(pairs) associated with that term, number of clusters containing the term, and

the posting list pointer (disk address). The posting list elements are of three

types, (cluster id, position of the next cluster), (number of documents in the

sub-posting list, average within-cluster term frequency) and (document id, term

frequency). Note that, while the latter is a typical posting list element, the first

two are called skip-element and centroid-element, respectively. In a posting list,

the skip- and centroid-element along with succeeding typical elements (till the

next skip-element) are called a sub-posting list.

In Figure 4.1, the posting list for t6 includes documents from three clusters.
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For the first two clusters, the centroid-elements simply store (1, 1) since the

number of documents in cluster C1, (C2) is 1, as well as the average within-cluster

term frequency. For the last cluster in this posting list, the centroid-element is

(3, 3) since there are three documents in cluster (d5, d6, d7) and the average

within-cluster term frequency (as an integer) in the cluster is (5+4+1)/3 = 3.

An immediate benefit of this new inverted index structure is that, there is

no need for a separate centroid index, and subsequently there is no need for

an additional direct disk access time per query term for fetching the centroid

IIS posting list (assuming that the latter would reside on disk). By embedding

cluster information into the posting lists, any term in a cluster (or all of the

terms) can be chosen as a centroid term and during the query processing its

weight can be computed by using the methods described in Section 3.2.3.1. For

simplicity, assume that all terms that appear in a cluster are used in the cluster

centroids. In this case, the within-cluster term frequency of the term is required

to compute the tf component of the term weighting schemes (e.g., CW2 and CW3

of Table 3.2). This value is approximately computed as the product of the values

stored in the centroid-element in a sub-posting list (i.e., sub-posting list length

× average within-cluster term frequency), as shown in the line 7 of Algorithm 5.

Note that, instead of storing the actual fC,t value in the centroid-element, we

prefer to store the average frequency value, and obtain the actual value by a

multiplication. This is for the benefit of compression process (discussed in the

next section), as smaller integers occupy less space during compression. We

expect that using an approximate value instead of the actual fC,t in a cluster

does not affect overall system effectiveness, which is justified by the experimental

results. For the idf component of weighting schemes, the number of clusters

including a term is required. Notice that, this information is captured in the

CS-IIS header (see Figure 4.1).

Note that, we assume that cluster lengths (i.e., centroid normalization factors

used in matching [97]) are pre-computed and stored just like document lengths

for whichever term weighting scheme is used. During query processing, centroid

term weights are normalized by using the pre-computed cluster lengths.
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Algorithm 5 The ranking-query evaluation algorithm for incremental-CBR with
CS-IIS
Input: Query Q, CS-IIS I, document lengths DL, cluster lengths CL, no. of best-

clusters to be selected ns, no. of best-documents to be selected ds

1: Sort the terms t of Q in descending order of term weight wq,t

2: for each term t in Q do

3: Retrieve It from I
4: // First pass over the posting list: selecting the best-clusters
5: for each sub-posting list ISt in It do

6: Access the (Cid, address) and centroid-element in ISt

7: Compute wCid,t using centroid-element
8: CAcc[Cid]← CAcc[Cid] + wq,t × wCid,t

9: Go to the next skip-element pointed to by address
10: Normalize nonzero CAcc entries using CL
11: Select ns clusters with highest CAcc scores into BestClus using a min-heap
12: // Second pass over the posting list: selecting the best-documents
13: for each sub-posting list ISt in It do

14: Access the skip-element (Cid, address) from ISt

15: if Cid ∈ BestClus then

16: for each posting (d, fd,t) in ISt do

17: Compute wd,t using fd,t

18: DAcc[d]← DAcc[d] + wq,t × wd,t

19: else

20: Go to the next skip-element pointed to by address
21: Normalize nonzero DAcc entries
22: Select ds documents with highest DAcc scores using a min-heap

4.2.2 Incremental Cluster-Based Retrieval

In incremental-CBR, we determine the best-clusters by only accessing the cluster-

skipping IIS. The basic heuristic is that, instead of determining the final best-

clusters before ranking the documents in these clusters, as in the case of typical-

CBR, we progress both processes in incremental fashion. In this new strategy,

the query terms are processed in decreasing order according to their weights. For

a given query, the posting list for the most important query term is brought to

memory. In the first pass over its posting list, the best-clusters-so-far are deter-

mined using an appropriate centroid term weighting scheme (see Section 3.2.3.1)

and similarity measure. Notice that, the information required for these schemes

are available in the skip- and centroid-elements (as mentioned in the above sec-

tion), so during the first pass it is sufficient to access only to those elements of
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each sub-posting list. In the second pass, only those documents whose clusters fall

into the best-clusters-so-far are considered, while the system skips the documents

that are not in the best-clusters as before. The same is repeated for the next term

in order (see Algorithm 5). Remarkably, during query processing only necessary

elements of the CS-IIS are accessed in each pass. This is especially important for

reducing the number of decoding operations in a compressed environment.

For instance, assume a query that contains the terms {t4, t6} and the number

of best-clusters (ns) and number of best-documents (ds) to be selected are 2.

Further, assume that t4 has a higher term weight than t6 for this query (see

Figure 4.2). Then, first the posting list of t4 is fetched. In the first pass, the

query processor reaches only the skip- and centroid-elements in the posting list

and updates the cluster accumulator entries for C1 and C2. Let us assume that

their similarity scores are (partially) computed as 0.65 and 0.75, respectively.

Then, since the number of best-clusters to be selected is 2, these two clusters

will be in best-clusters-so-far, and in the second pass the document accumulator

entries for the documents in these clusters, namely, documents d2, d3, d4 will be

updated (say, as 0.1, 0.3, 0.7, respectively). Next, the posting list of t6 is fetched.

Let us assume that this updates cluster accumulator entries for clusters C1, C2

and C3 with the additional values 0.20, 0.05 and 0.90, respectively. Now, the best-

clusters-so-far includes C1 and C3 with scores 0.85 and 0.90 whereas C2 with score

0.80 is out, and thus the documents from these two clusters are considered but

sub-posting list for C2 is skipped during the second pass. That is, the documents

d1, d5, d6 and d7 will be updated (say, as 0.1, 0.5, 0.4 and 0.1, respectively). The

highest-ranking two documents, d4 and d5, are returned as the query output.

In summary, the proposed incremental-CBR strategy with the CS-IIS file has

two major advantages: First, embedding cluster information into the IIS and the

incremental query evaluation method eliminate the need for a separate centroid

IIS and hence disk access time to retrieve its posting lists. This means, in a

memory-scarce environment where the index files are kept on disk, incremental-

CBR achieves half of the number of direct disk accesses required by typical-CBR,

and the same number of direct disk accesses required by FS. Second, cluster

skipping and thus, decoding only relevant portions of CS-IIS during both stages of
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Figure 4.2: Example query processing using incremental-CBR strategy (accessed
and decompressed list elements are shown with light gray, best documents and
clusters are shown with dark gray).
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query processing saves significant decompression overhead. This means improved

in-memory query processing performance with respect to typical-CBR and FS. In

the next section, we discuss how we handle the only overhead of CS-IIS, storage

consumption due to newly added skip- and centroid-elements, by adapting the

compression techniques in the literature 3.2.1.1.

4.3 Compression and Document ID Reassign-
ment for CS-IIS

4.3.1 Compressing CS-IIS

As discussed before, the cluster-skipping IIS includes three types of elements in

posting lists: i) the skip-elements in the form of (cluster id, position of the next

cluster), ii) the centroid-elements in the form of (sub-posting list length, average

fC,t), and iii) the typical elements of type (d, fd,t). For the compression of such

a posting list, we consider three types of gaps: c-gaps between the cluster ids of

two successive sub-posting lists, a-gaps between address fields (i.e., following the

approach taken in [79]), and the typical d-gaps for document ids.

Example 4.1 Let us consider the posting list entry for t3 of Figure 4.1, in which

skip- and centroid-elements are shown in bold.

(1, add2) (2, 1) (1, 1) (2, 1) (2, add3) (1, 1) (4, 1) (3, EOL) (1, 1) (7, 1)

The list to be compressed will be represented as follows:

(1, add2) (2, 1) (1, 1) (1, 1) (1, add3-add2) (1, 1) (4, 1) (1, EOL) (1, 1)

(7, 1)

Note that, the underlined fields are represented as gaps. End Of List (EOL) is

represented by the smallest possible integer that can be compressed; i.e., 1.

There are two subtle issues regarding the above representation. Assume that

d-gaps are encoded by using the Golomb code with the local Bernoulli model,

which is a common practice in the literature [118]. In this case an appropriate way
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of computing the Golomb parameter (b) is required, since the original formulation

does not consider that documents in our CS-IIS are grouped together according

to their clusters (i.e., into sub-posting lists) and the document id distribution

probability must be revised to reflect this modification, as well. As a simple

solution, for posting list It for term t we revise the previously given formula

(Equation 3.3) as in Equation 4.1, assuming that the documents with term t

is uniformly distributed among the clusters that appear in It. The number of

clusters is assumed to be stored with the header of the IIS (see Figure 4.1).

b = 0.69×
N

ft/(no. of clusters in It)
(4.1)

The second important observation from the above representation is that, for

the CS-IIS, the first document id in each sub-posting list per cluster (e.g., d1, d4

and d7 in the above example) should be encoded as-is, which may significantly

diminish the compression ratio. In the next section, we propose a remedy for this

problem.

4.3.2 Document Id Reassignment

Document id reassignment is an emerging research topic that attempts to make

document ids in a posting list as close as possible, so that the frequency of small

d-gaps improves compression rates [102]. Here, we apply an apparently natural

document id reassignment method: essentially, the documents in the same cluster

are assigned consecutive ids, and the order among clusters is determined accord-

ing to their creation order by the clustering algorithm. Similarly, the order of the

documents in a cluster is determined by the order of entrance of these documents

into the cluster. Notice that, a similar approach using k-means clustering algo-

rithm is reported in [102] among many other techniques. In that work, it is also

reported that some other techniques (as in [23]) can provide better compression

rates (i.e., up to 10% smaller) with respect to a cluster-based scheme as described

above. However, we prefer to use the cluster-based reassignment method, which

can be amortized by and computed during the clustering process.



CHAPTER 4. SEARCH USING DOCUMENT GROUPS: INCR.-CBR 98

For CS-IIS, the expected benefit of document id reassignment is two fold:

i) in each sub-posting list per cluster, the d-gaps between successive documents

ids are reduced, and ii) more importantly, the id of the first document, which

must be encoded as-is, in each sub-posting list can be reassigned a smaller value.

Indeed, with a little main-memory consumption, it is possible to amplify the

benefit mentioned in (ii) significantly. In each cluster, documents are assigned

a real id, which is determined as described above, and a virtual id, which starts

from 1 and increments by 1, just to be used for the compression purposes. During

compression, virtual ids are compressed, so that each sub-posting list would start

with a considerably smaller id than the original one. During query processing,

an array is kept in main memory to store prefix sum of cluster sizes, so-called,

size-sum array. Whenever a document id field is decoded, the decoded virtual

id is added to the prefix sum value stored for this document’s cluster (which is

already known, since decoding starts from the skip-element per sub-posting list)

in the size-sum array to obtain the real id, and corresponding correct document

accumulator is updated for this real id.

Example 4.2 Assume that cluster C1 includes two documents and cluster C2

includes three documents. The documents from C1 and C2 will be assigned to

real ids 1, 2, and 3, 4, 5, respectively. The virtual ids are also 1 and 2 for C1, but 1,

2 and 3 for C2. The size-sum array will store 0 for C1, 0+sizeof(C1) = 0+2 = 2

for C2. During query processing, if a document id in C2’s sub-posting list is

decoded as 2, it will be added to size-sum array value for C2, which is also 2, to

obtain the real id as 4.

Note that, number of clusters would be smaller than the number of documents

in the order of magnitudes, so that storing size-sum array in the memory is not

a major problem. Furthermore, the array can be kept in the shared memory and

accessed by several query processing threads at the same time; i.e., it is query

invariant. Finally, if the Golomb code is employed for encoding d-gaps, the b

parameter should be further revised. In particular, we refine it as Equation 4.2,

since the virtual documents ids in each sub-posting list can range from 1 to

“average cluster size” on the average.
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b = 0.69×
average cluster size

ft/(no. of clusters in It)
(4.2)

As another alternative, we can define a dedicated b value to compress each

sub-posting list separately (Equation 4.3). Note that, cluster size Ci can be easily

computed from the size-sum array as the difference of array entries for i+1 and i,

without requiring an extra data structure. The number of occurrences of t in Ci

(ft,Ci
) is captured in the centroid-element of ISi (i.e., sub-posting list length) and

will be decoded immediately before the decoding of d-gaps start. In Section 4.5,

we evaluate and compare the storage figures for various compression schemes and

parameters.

b = 0.69×
size(Ci)

ft,Ci

(4.3)

4.4 Experimental Environment

4.4.1 Datasets and Clustering Structure

In the experiments, three datasets are used. The Financial Times collection

(1991-1994) of TREC [108] Disk 4, referred to as the FT dataset, and the

AQUAINT corpus of English News Text, referred to as the AQUAINT dataset,

are used in previous TREC conferences and include the actual data, query topics

and relevance judgments. These two datasets are also used in the experiments of

Chapter 3 and their features are repeated here for easy referencing. As a third

dataset, we obtained the crawl data from the Stanford WebBase Project Repos-

itory [114]. This latter dataset, referred to as the WEBBASE, includes pages

collected from the US government Web sites during the first quarter of 2007. As

there are no query topics and relevance judgments for this dataset, it is solely

used for evaluating query processing efficiency. During the indexing stage, we

eliminated English stop-words, and indexed the remaining words, and no stem-

ming is used. For the WEBBASE dataset, the words that appear in only one

document are also removed, as the Web pages include a high number of mistyped
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Table 4.1: Characteristics of the datasets
Dataset Size on disk No. of No. of No. of No. of Avg. no. of

documents(N) terms(n) clusters (d, fd,t) pairs docs/clusters

FT 564 MB (text) 210,158 229,748 1,640 29,545,234 128
AQUAINT 3 GB (text) 1,033,461 776,820 5,163 170,004,786 200
WEBBASE 140 GB (HTML) 4,293,638 4,290,816 13,742 790,291,775 312

words. In Table 4.1, we provide statistics for the datasets and the indexing re-

sults. Notice that, the original WEBBASE dataset spans more than 140 GB on

disk in HTML. After preprocessing and removing all HTML tags, scripts, white

spaces, etc. the pure text on disk (tagged in TREC style) takes 27 GB.

The datasets are clustered using C3M algorithm [42] in partitioning mode as

discussed in Chapter 3, which yields 1,640, 5,163 and 13,742 clusters for the FT,

AQUAINT and WEBBASE datasets, respectively. An important parameter for

CBR is the number of best-clusters. In Chapter 3 it has been reported that the

effectiveness increases up to a certain ns value, after this (saturation) point, the

retrieval effectiveness remains the same or improves very slowly for increasing ns

values. This saturation point is found around 10 to 20% in the literature [42, 95,

p. 376]. Therefore, in the retrieval experiments reported in Section 4.5, we use

10% of the total number of clusters as the number of best-clusters to be selected

(i.e., ns is 164, 516 and 1,374 for the corresponding datasets). In this study, we

provide results for retrieving top-1000 documents; i.e., number of best-documents

to be selected, ds, is 1000.

The clustering of the largest dataset (WEBBASE) takes around twelve hours

using a rather out-dated implementation of C3M algorithm. Once the clustering

is completed, creating the typical IIS and CS-IIS takes almost equal times, which

is around a few hours for this dataset, by again using an unoptimized implemen-

tation. Nevertheless, any partitioning type clustering algorithm could be used

in our setup, given that the algorithm can provide reasonable effectiveness by

accessing a relatively small percentage of all clusters.
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Table 4.2: Query sets’ summary information

Dataset & No. of Avg. no. of Query Avg. no. Min no. Max no.
Query Sets queries relevant documents type of terms of terms of terms

FT, Qset1 47 31.8
Qshort 2.5 1 4
Qmedium 10.8 4 30

FT, Qset2 49 38.1
Qshort 2.4 1 3
Qmedium 8.2 2 19
Qlong 190.0 13 612

FT, Qset3 49 33.4
Qshort 2.4 1 3
Qmedium 7.3 3 19

AQUAINT, Qset1 50 131.2
Qshort 2.5 1 4
Qmedium 9.4 4 20

WEBBASE, Qset1 50,000 N/A Qshort 2.3 1 9

4.4.2 Query Sets and Query Matching

For the FT dataset, we used three different query sets along with their relevance

judgments that are obtained from the TREC Web site [108]. The three query

sets, referred to as Qset1, Qset2 and Qset3, include TREC queries 300-350, 351-

400 and 401-450, respectively. Note that, the relevance judgments for some of

the queries in these sets refer to the documents that are from datasets other than

the ones used in this work. Such irrelevant judgments are eliminated, and for

each query set we produce a relevance judgment file, which includes only the

documents from the FT dataset. A few of the queries do not have any relevant

documents, and they are discarded from the query sets. Table 4.2 shows the

remaining number of queries for each query set of FT. For the AQUAINT dataset,

we used the topics and judgments used for TREC 2005 robust track. Finally, for

the WEBBASE dataset, the efficiency task topics of TREC 2005 terabyte track

are employed. Note that, this query set have been used on top of the TREC

GOV2 dataset, which also includes Web data from the “gov” domain. Since the

WEBBASE collection also captures the same domain, we presume that this query

set is a reasonable choice for efficiency evaluation with WEBBASE.

In the experiments, we used two different types of queries, namely Qshort

and Qmedium that are obtained from the query sets discussed above. Qshort

queries include TREC query titles, and Qmedium queries include both titles and

descriptions. For one of the FT query sets (FT-Qset2), we also formed a third

query type, Qlong, which is created from the top retrieved document of each
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Qmedium query in this query set. Our query sets cover a wide spectrum from

very short Web-style queries (the Qshort case) to extremely long ones (the Qlong

case). Notice that, the latter type of queries can capture the case where a user

likes to retrieve similar documents to a particular document and the document

itself serves as a query. Table 4.2 provides query sets’ summary information.

In the following experiments, the document term weights are assigned using

the tf-idf formula. The cosine function is employed for both query-cluster and

query-document matching. Please refer to Section 3.2.1 for further details.

4.4.3 Cluster Centroids and Centroid Term Weighting

For the cluster centroids, we follow the practice in Chapter 3 and use all cluster

member documents’ terms as centroid terms. Note that, this choice of centroids

also enables us being independent of a particular centroid term selection method.

Nevertheless, it is possible to apply other centroid term selection schemes in our

framework as well. The experiments employ the three centroid weighting schemes

as described in Table 3.2. Recall that, the information stored in the enhanced

CS-IIS file is adequate to compute all three schemes, as mentioned in Section 4.3.

4.5 Experimental Results

The experiments are conducted on a Pentium Core2 Duo 3.0 GHz PC with 2GB

memory and 64-bit Linux operating system. All IR strategies are implemented

using the C programming language and source codes are available on our Web

site. Implementations of the IR strategies are tuned to optimize query process-

ing phase for which we measure the efficiency in the following experiments. In

particular, a min heap is used to select best-clusters and best-documents from

the corresponding accumulators as recommended in previous works [118]. Unless

stated otherwise, we assume that the posting list per query term is read into

main-memory, processed and then discarded; i.e., more than one term’s posting

list is not memory resident simultaneously. The document lengths and cluster

lengths are pre-computed.
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In what follows, we first compare the effectiveness figures of the incremental-

CBR strategy with those of the FS and typical-CBR, to demonstrate that the new

strategy does not deteriorate the quality of query results. Next, we focus on the

efficiency of the proposed strategy and show that incremental-CBR is better than

FS in total query processing performance (involving in-memory evaluation and

disk accesses) with a reasonable overhead in the storage requirements. Finally,

we show that incremental-CBR is superior than not only a basic implementation

of FS but a faster approach that employs the “continue” pruning strategy along

with a skip embedded IIS, as described in [79].

4.5.1 Effectiveness Experiments

In this section, we compare three IR strategies, FS, typical-CBR, and incremental-

CBR with CS-IIS. To evaluate the effectiveness of the proposed strategy, the

top 1000 (i.e., ds= 1000) documents are retrieved for each of the query sets.

The effectiveness results are presented by using a single mean average precision

(MAP) value for each of the experiments. All MAP scores are computed using

the treceval software [108] and the result files are available at our Web site1.

The effectiveness results obtained for FS experiments are compared to those

obtained by using a publicly available search engine, Zettair [121], to verify the

validity of our findings and robustness of our implementation. The indexing and

querying stages with Zettair are achieved under almost the same conditions as

our own implementations. During indexing, no stemming is used. In query pro-

cessing, the same stop-word list as we use in our system is provided to Zettair and

the cosine similarity measure is chosen. For each dataset, Qshort and Qmedium

query types are evaluated by retrieving top-1000 results. We found that, in al-

most all experiments our MAP values are slightly better than those of Zettair,

which validates our implementation.

The first observation that can be deduced by a quick glance over Table 4.3

is that for each query set and type, all MAP values are very close to each other

1http://www.cs.bilkent.edu.tr/~ismaila/PhD/sources.htm
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Table 4.3: MAP values for retrieval strategies (ns = 164 for FT, ns = 516 for
AQUAINT, ds = 1000)

Datasets &
Query Type

FS Typical-CBR Incremental-CBR

Query Sets CW1 CW2 CW3 CW1 CW2 CW3

FT, Qset1
Qshort 0.161 0.162 0.168 0.154 0.163 0.167 0.166

Qmedium 0.152 0.173 0.148 0.143 0.158 0.153 0.155

FT, Qset2
Qshort 0.107 0.126 0.109 0.102 0.131 0.110 0.110

Qmedium 0.122 0.134 0.121 0.113 0.137 0.120 0.120
Qlong 0.124 0.113 0.114 0.109 0.119 0.120 0.119

FT, Qset3
Qshort 0.154 0.142 0.144 0.131 0.134 0.150 0.147

Qmedium 0.170 0.150 0.166 0.123 0.159 0.161 0.142

AQUAINT, Qset1
Qshort 0.091 0.046 0.081 0.071 0.047 0.081 0.077

Qmedium 0.100 0.048 0.089 0.074 0.057 0.090 0.081

(the best ones are shown in bold). Thus, it is hard to claim that one single

strategy totally outperforms the others. Still, the results demonstrate that CBR

is a worthwhile alternative to FS for accessing large document collections.

From the above results it is clear that the proposed strategy has no adverse

effect on CBR effectiveness and in particular cases, it can even improve effective-

ness. In particular, Table 4.3 reveals that incremental-CBR strategy is better

than the typical-CBR for the majority of the cases, although the absolute MAP

improvement is rather marginal. For Qshort and Qmedium query types of Qset2

on the FT dataset, the incremental-CBR strategy yields the best effectiveness fig-

ures, outperforming both FS and typical-CBR. Another interesting observation

is that for the CBR strategies, CW1 and CW2 are the most promising centroid

term-weighting schemes.

We conduct a series of matched pair t-tests to determine whether incremental

and typical CBR strategies with CW1, CW2, and CW3 are as effective as FS.

The null hypotheses in this case would be that the effectiveness of each of these

methods is as good as FS and the alternative is that they are not as good. For

this purpose, we examine the performance differences of these two approaches

provided in Table 4.3. Note that we are performing one-sided t-tests so we would

divide the two-sided p-value by 2. Since we are also performing 6 hypothesis

tests we perform a Bonferonni correction by multiplying each p-value by 6. Thus,

combining the two adjustments, we end up multiplying each two sided p-value by

3. So a significant result would be a p-value that is less than 0.05/3 = 0.016. Each
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difference is the average of the CBR method subtracted from the full search (FS)

for each query type. Since the average differences are negative, on the average, FS

outperforms each cluster method in terms of MAP. However, the only significant

difference (based on p-values) is the difference between CW3 for typical-CBR

and FS (p < 0.01). In this case, FS significantly outperforms typical-CBR with

CW3. However, in the other tests there is a lack of evidence that FS significantly

outperforms CBR. Since CBR with CW1 and CW2 outperform FS for some query

types, CBR has the potential of being as effective as FS.

Finally, it should be emphasized that the incremental-CBR strategy with

CS-IIS is not at all intended to improve effectiveness of CBR, but it aims to

improve efficiency without deteriorating the effectiveness of the typical-CBR while

providing compatible effectiveness with FS. Recall that, there are recent proposals

to improve CBR effectiveness [73] that can obviously be applied in our framework,

as well.

4.5.2 Efficiency Experiments

In the following experiments, we compare incremental-CBR to only FS, as our

goal in this chapter is to propose a CBR strategy that is more efficient than FS

especially when the best-cluster selection cost is also involved for the former one.

For the efficiency experiments, we report the results obtained by using all three

datasets shown in Table 4.1 and corresponding query sets. However, to shorten

the discussion, we only use Qset2 for the FT dataset, for which the effectiveness

of incremental-CBR also peaks.

4.5.2.1 Storage Efficiency

In Table 4.4, we provide the compressed file sizes for the evaluated IR strategies.

In particular, the term frequency values in typical IIS and both fields of the skip-

and centroid-elements in CS-IIS are encoded with Elias-γ code. The values d-

gaps are encoded by using Elias-γ and Golomb codes in separate experiments.

This is due to the observation that, one of the schemes, namely the Golomb code,
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Table 4.4: File sizes (in MBs) of IIS (for FS) and CS-IIS (for Incremental-CBR),
Raw: no compression, LB: local Bernoulli model, OrgID: original doc ids, ReID:
reassigned doc ids

FS Incremental-CBR

Dataset
Raw Golomb(LB) Elias-γ Raw Golomb(LB) Elias-γ
IIS OrgID ReID OrgID ReID IIS OrgID ReID OrgID ReID

FT 225 34 33 44 43 343 84 45 105 50
(14%>FS)

AQUAINT 1,360 211 209 236 216 1,900 520 254 602 250
(16%>FS)

WEBBASE 6,322 1,076 1,079 767 770 7,362 2,315 968 1,745 844
(10%>FS)

appears to be unaffected from the document id reassignment methods for typical

IIS.

Table 4.4 reveals that for the FT and AQUAINT datasets, when the original

documents ids in the collections are used, the best compression rates for typical

index files are achieved by using the Golomb code with LB (using Equation 3.3).

For the WEBBASE dataset, however, Elias-γ performs better (i.e., 767 vs. 1,076

MB). We attribute this to the observation that in the latter dataset, which is

yielded by a crawling session, the original document ids are sorted in URL order

that exhibits strong locality [101]. On the other hand, the Golomb code is rather

insensitive to such locality and performs best on random distributions [23]. This

phenomenon is strongly emphasized by the experiments with the reassigned doc-

ument ids and further discussed below. Nevertheless, for the WEBBASE dataset,

the typical IIS size drops from 6,322 MB to 1,076 MB (17%) and 767 MB (13%)

with Elias-γ and Golomb (with the LB model using Equation 4.1) schemes, re-

spectively. The compressed IIS sizes also correspond to only 4% and 3% of the

uncompressed text document collection (27 GB) for respective cases. This con-

forms to the results reported in other works in the literature [118]. On the other

hand, it is seen that the compression gains on CS-IIS by using original document

ids are not as good, and for WEBBASE dataset, the compressed file sizes are 31%

and 24% of the uncompressed index using the two compression schemes. How-

ever, at this point, the potential of document id reassignment, which is naturally

applicable for CS-IIS, has not been exploited yet.
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Next, we applied the document id reassignment method mentioned in Sec-

tion 4.3.2, so that documents in each cluster have consecutive ids. For this ex-

periment, we first discuss the results when the Golomb code is used to encode

d-gaps. Note that, the b parameter for LB is set as in Equation 3.3 for typical IIS,

whereas the enhanced formula derived in Section 4.3.2 is (Equation 4.3) employed

for CS-IIS, to reflect the distribution of sub-posting lists as accurate as possible.

Remarkably, the Golomb code with LB provides almost no improvement for the

typical IIS, whereas CS-IIS highly benefits from the reassignment. For instance,

the size of CS-IIS file for WEBBASE dataset drops from 2,315 to 968 MB, a

reduction of more than 50%. This is even less than the compressed size of typical

IIS (1,079 MB) for the corresponding case. As it is mentioned before, the insen-

sitivity of typical IIS for reassigned ids is caused from the characteristics of the

Golomb code, which cannot exploit the locality (i.e., it should still use the same

b parameter for LB after reassignment). In particular, for FT and AQUAINT

datasets the reductions in the compressed index sizes are at most 3%, hard to

call as an improvement. For WEBBASE, there is even a slight increase (0.3%)

in the index size. On the other hand, after reassignment, the CS-IIS allows to

use an enhanced b parameter (Equation 4.3) and benefits from the reassignment

procedure even when the Golomb code is used.

For the sake of fairness, we repeated the experiments with reassigned ids and

by encoding d-gaps with the Elias-γ method. In this case, as Table 4.4 demon-

strates, the typical IIS also obtains some gains from document id reassignment,

but the gains are still less impressive in comparison to CS-IIS. Noticeably, the

storage space used for compressed index files of FT and AQUAINT drops by 2%

and 9%, respectively. For WEBBASE, there is no improvement on the index

size, but again a slight increase is observed. This is due to the fact that, the

originally URL-ordered ids for this dataset provides quite strong locality, and the

reassignment based on clustering does not further improve the compression rate

(a result also shown in [101]). To validate this claim, we assigned random ids

to documents in the WEBBASE dataset and repeated the compression experi-

ments. In this case, the compressed index sizes are 1,132 and 1,473 MB for the

Golomb and Elias-γ methods, respectively. These results support our claims, in
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that, i) if the original document ids are not sorted in URL order, the Golomb

code with LB would provide better compression rates (as in the cases of FT and

AQUAINT) with respect to Elias-γ, ii) the Golomb code is rather not sensitive

to any locality (the file sizes for random and URL-sorted experiments are very

close, 1,132 and 1,076 MB, respectively) whereas Elias-γ is just the reverse (i.e.,

the index size drops from 1,473 to 776 MB), and iii) sorting by URL order pro-

vides a very good d-gap distribution as shown by the results of Elias-γ, and the

typical IIS size cannot be reduced by further reassignment. In contrast, CS-IIS

still significantly benefits from id reassignment; i.e., yielding reductions of more

than 50% in size For instance, by using the Elias-γ encoding method, the CS-IIS

file for WEBBASE only takes 844 MB on disk, which is only 10% larger than

the typical IIS for corresponding case (770 MB). This is a striking result for the

space utilization of CS-IIS that is obtained by using a cluster-based document id

reassignment technique which is a natural advantage of our framework.

Recall that, the document reassignment method for CS-IIS employs virtual

ids instead of real ids in the sub-posting lists, to encode the first document of

each sub-posting list more efficiently (see Section 4.3.2). We devised a separate

experiment to evaluate the performance of this heuristic. For the WEBBASE

dataset, we simply reassigned documents ids. In this case, the first document id

of each posting list, which should be compressed as-is, takes 330 MB and 232 MB

of the resulting CS-IIS file, for the Elias-γ and the Golomb code with LB (using

Equation 3.3), respectively. Next, we applied the optimization of Section 4.3.2

(i.e., virtual ids are assigned within each cluster to reduce the actual value of

first document ids in sub-posting lists). In this case, only 100 MB and 76 MB

of CS-IIS is devoted to first ids, again for the Elias-γ and the Golomb code with

LB, respectively. For the latter scheme, the b parameter for Golomb is now set as

in Equation 4.3, which is a unique opportunity allowed by CS-IIS. Notice that,

for both compression schemes, our optimization reduces the space used for first

ids to almost one third of the original space. Moreover, our formulation for the b

parameter allows the Golomb code to provide much better compression ratio with

respect to Elias-γ; i.e., leading to a further 24% reduction in size. This experiment

shows that, efficient compression of the first document id in each sub-posting list
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Figure 4.3: Contribution of CS-IIS posting list elements to compressed file sizes
for the three datasets.

of CS-IIS is important for the overall compression efficiency, and the heuristic

outlined in this study provides significant gains. Therefore, in all reassigned id

experiments for CS-IIS (as reported in Table 4.4), the first document ids are

always encoded with the Golomb code, regardless of the schemes the remaining

d-gaps are compressed. Note that, in this heuristic, the size-sum array (of size

number of clusters) takes only a few KBs of in-memory space even for WEBBASE,

which is a negligible cost.

In summary, by using a cluster-based id reassignment approach, both the

Golomb coding with the LB model and Elias-γ schemes prove to be quite suc-

cessful for compressing CS-IIS. Remarkably, by using the Elias-γ scheme, the

additional cost of storing CS-IIS, with respect to typical IIS, is at most 16% (see

the last column of Table 4.4). In the remaining experiments, we use the com-

pressed typical IIS and CS-IIS files that are obtained by the id reassignment and

the Elias-γ encoding for d-gaps; i.e., those shown as bold in Table 4.4.

In Figure 4.3, we provide the percentage of storage for each field in the com-

pressed CS-IIS file (for the file sizes in the last column of Table 4.4). Considering

the figure, we realize that for WEBBASE, 70% of the file is used to store actual

(document id, tf) pairs, whereas 15% is used for the skip-elements (i.e., in the
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form of (cluster id, next address)), and 5% is used for the centroid-elements (i.e.,

in the form of (sub-posting list length, avg. fC,t)). Since each sub-posting list

encodes its first document as-is, a considerable fraction of the file (around 10%)

is used for this purpose. Notice that, while our extra posting list elements cause

30% of the overall cost in CS-IIS, they also allow document id reassignment to

be more efficient, and thus the overall size remains within an acceptable margin

of typical IIS. Figure 4.3 also shows that the percentage of the additional storage

in CS-IIS reduces as the dataset gets larger; i.e. 50%, 45%, and 30% for FT,

AQUAINT, and WEBBASE, respectively. Remarkably, these percentages are

not necessarily reflected to CS-IIS file size as increments, as discussed above.

Finally, the compression process takes the same time for corresponding cases

by using our own implementations, ranging from a few minutes (for FT) to an

hour (for WEBBASE).

4.5.2.2 Query Processing Time Efficiency

In Table 4.5, we report average CPU (in-memory) processing times per query,

as well as the average number of decode operations (i.e., total number of Elias-γ

and Golomb decode operations). The experimental results are provided for CW1

and CW2; the CW3 case is omitted since its efficiency figures are similar to that

of CW1.

The results reveal that incremental-CBR decompresses significantly smaller

number of elements compared to FS. This is caused by the fact that the former

decompresses only relevant portions of a posting list, whereas FS, of course, must

decode the entire posting list for a query term (note that, in Section 4.5.2.3, we

also discuss a skipping-based pruning technique for FS, as discussed in [79]). For

CW1, the savings of the incremental-CBR in terms of number of decode opera-

tions are more emphasized, ranging from 58% to 80% of the decode operations

by FS. For CW2, incremental-CBR decodes more elements, but still the number

of decoded elements is almost half of the FS case. These savings are reflected

to time figures rather conservatively, especially for shorter queries. The time

savings improve as the queries become longer (e.g., for AQUAINT the savings
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Table 4.5: Efficiency comparison of FS and Incremental-CBR (times in ms)

Datasets &
Query Type

Avg. time & no. FS Incremental-CBR Imp. over FS
Query Sets of decode op. CW1 CW2 CW1 CW2

FT, Qset2

Qshort
Exe. time 5 3 4 40 20

Decode op. 19,524 8,212 11,614 58 41

Qmedium
Exe. time 16 7 9 56 44

Decode op. 98,832 36,701 51,772 63 48

Qlong
Exe. time 389 144 222 63 43

Decode op. 3,627,468 1,091,212 2,079,408 70 43

AQUAINT, Qset1
Qshort

Exe. time 27 15 19 44 30
Decode op. 162,824 37,860 73,249 77 55

Qmedium
Exe. time 95 34 48 64 49

Decode op. 802,740 172,415 313,291 79 61

WEBBASE, Qset1 Qshort
Exe. time 66 36 57 45 14

Decode op. 432,238 87,289 318,431 80 26

are 44% (30%) and 64% (49%) for Qshort and Qmedium using CW1 (CW2),

respectively). If we assume that posting lists are kept in the main memory (due

to OS caching and large memories), then these savings become final execution

time improvements.

Note that, savings in time are not directly proportional to saving in the num-

ber of decode operations, because the incremental-CBR strategy with CS-IIS has

also some overheads, such as jumping to the next bit position to be decompressed

and selecting the best-clusters from the cluster accumulators for each query term.

In Figure 4.4(a), we plot the number of best-clusters selected vs. average

number of decode operations (shown on the left y-axis of the plot) and av-

erage CPU query processing time (shown on the right y-axis of the plot) for

FS and incremental-CBR, for Qmedium using CW1 centroid weighting scheme

and the AQUAINT dataset. At the extreme point, all clusters are selected and

incremental-CBR degenerates into FS. The number of decode operations realized

by incremental-CBR and execution time is lower than that by FS until more than

50% of clusters (i.e., greater than 2580) are selected. Nevertheless, in practical

CBR systems, the number of best-clusters to be selected is a relatively small

percentage of the total number of clusters [42, 95].

In Figure 4.4(b), we plot the variation of the number of best-clusters selected

vs. effectiveness. Note that, after 30% of clusters are selected as best-clusters,

the MAP figures change slightly. Thus, for AQUAINT dataset it is possible to set
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Figure 4.4: Effects of the selected best cluster number on (a) processing time
and decode operation number, (b) effectiveness (for Qmedium using CW1 on
AQUAINT dataset).

Table 4.6: Average size of fetched posting lists per query (all in KBs)

Dataset & Query type FS Incremental-CBR Overhead
query set over FS(%)

FT, Qset2
Qshort 10.54 12.56 19
Qmedium 51.09 60.78 19
Qlong 1670.77 1962.12 17

AQUAINT, Qset1
Qshort 73.48 83.55 14
Qmedium 345.64 391.26 13

WEBBASE, Qset1 Qshort 147.96 157.75 7

best-clusters as 30% of all clusters (i.e., 1548). Note that, even for this case, both

the number of decompression operations and execution time are still significantly

less than those for FS (see Figure 4.4(a)). For the sake of uniformity, we keep

best-clusters as 10% throughout the experiments.

In Table 4.6 we provide the average size of posting lists fetched from the disk

during query processing. Both FS and incremental-CBR make only one direct

access per query term, assuming that the entire list for a term is fecthed at

once. As expected, the incremental-CBR fetches slightly longer posting lists with

respect to FS (due to the storage overhead of skip and centroid- elements). Note

that, the increase in the posting sizes remains marginal and does not exceed 20%.

We expect that the cost of these longer sequential accesses would be com-

pensated by the in-memory improvements in decoding times. For instance, as-

sume a (rather slow) disk with the transfer rate 10 MB/s. In this case, the
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additional sequential read time cost of CS-IIS with respect to FS for process-

ing a query in Qshort set of WEBBASE would be around only ≈ 1 ms (i.e.,

(157.75 − 147.96)KB/10MB/s). For this latter case, FS takes 66 ms in CPU

whereas incremental-CBR takes 36 and 57 ms for CW1 and CW2 cases, respec-

tively (see Table 4.5). Clearly, even with a slow disk, in-memory time improve-

ments are far larger than the disk read overhead (i.e., 30 ms (for CW1) and 9 ms

(for CW2) vs. 1 ms). Thus, as long as the number of clusters is significantly less

than the number of documents, which is a reasonable assumption, our approach

would be feasible. Furthermore, assuming that all or most of the posting lists

are kept in the main memory, which is the case for some Web search engines,

our significant performance gains obtained during in-memory query processing

become the conclusive improvements.

4.5.2.3 Experiments with FS using the Continue Strategy and Skip-
ping IIS

We also compare our method with a more efficient FS approach using another

pruning technique in the literature. In particular, since our approach is in-

spired from an earlier work that enriches the typical inverted index with skip

elements [79], it seems to be a natural choice to implement it and compare with

our incremental-CBR approach.

In [79], a posting list has a number of skip-elements each followed by a

constant-sized block of typical elements. A skip-element has two components:

the smallest document id in the following block and pointer to the next skip-

element (and block). This was shown to be very efficient for conjunctive Boolean

queries in a compressed environment. In particular, after the first posting list is

processed, a candidate set of document id’s are obtained, which are looked for

in the other lists. Obviously, while searching to see whether a document is in

a particular block, skip-elements are very useful: if the document id at hand is

greater than the current skip-element and less than the next one, this block is

decompressed; otherwise search process jumps to the next skip-element without

redundantly decompressing the block. Note that, this technique is impossible to
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be used as-is with the ranking-queries, since there is no set of candidate docu-

ments as in the Boolean case. Therefore, quit and continue pruning strategies

are accompanied with ranking-query evaluation to allow the skipping inverted

index to be used. Since the effectiveness figures of continue is quite close to the

FS without any pruning (referred to as typical FS below), we prefer to use the

continue strategy in this work.

In the continue strategy, the query processor is to allowed to update only a

limited number k of accumulators. Until this limit is reached, it decodes the entire

posting list for each query term, just like typical FS. After this limit is reached, the

non-zero accumulators that are updated up to this time serve as the candidate

document ids in the Boolean case and are the only accumulators that can be

updated. Thus, it is possible to use skip elements and avoid decompressing blocks

that do not include any documents with corresponding non-zero accumulators.

We refer to this strategy as skipping FS.

In [79], each posting list can have different number of skip elements, according

to the size of the posting list and the candidate document set [79, p. 363]. It is also

stated that the continue strategy can achieve comparable or better effectiveness

figures even when 1% of total accumulators are allowed for update. A good choice

while constructing the skipping inverted index is assuming that the same k value

represents the number of candidate documents for the queries.

In this section, we use AQUAINT, the largest dataset with relevance judg-

ments for the experiments. Since this collection includes around 1M documents,

k is set to 10,000 (i.e., 1% of the total document number). For the same k value,

a skipping IIS is constructed in exactly the same way as described in [79]. The

resulting index file takes 279 MB, which is 18% larger than the IIS with no skips

(i.e., 236 MB, as shown in Table 4.4). In Figure 4.5, the MAP figures using

this IIS file and varying number of accumulators (k) is shown. As expected, the

effectiveness figures at k = 10K is as good as the effectiveness score when all 1M

accumulators are available; i.e., as in typical FS.

In Figure 4.6, CPU execution times for skipping FS strategy with varying
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Table 4.7: Number of decompression operations for skipping FS (with varying
number of accumulators), typical FS and incremental-CBR

Query type
Skipping FS with continue strategy

FS
Incremental-CBR

k=1K k=10K k=100K k=1M CW1 CW2

Qshort 40,377 106,150 190,556 190,635 162,824 37,860 73,249
Qmedium 123,777 408,601 886,858 930,714 802,740 172,415 313,291

number of accumulators are reported (results for typical FS and incremental-

CBR with CW1 and CW2 are also repeated from Table 4.5 for easy comparison).

Clearly, skipping FS improves time performance of typical FS, up to 41% for

Qshort and 63% for Qmedium when k = 1K. However, for this case, MAP

scores also decrease. For k = 10K case, the improvements of skipping FS are 7%

and 19% for Qshort and Qmedium, respectively. Nevertheless, the performance

of incremental-CBR (with both CW1 and CW2) still remains to be superior. In

Table 4.7, we report the number of decompression operations for the correspond-

ing cases. Again, skipping FS improves over typical-FS, but cannot catch the

incremental-CBR, for k = 10K case.

Finally note that, dynamic pruning techniques such as the one described above

can also be applied to both typical- and incremental-CBR. For instance, during

the best-documents selection stage of typical-CBR, it is possible to embed skip-

ping FS approach. Similarly, the skipping strategy in this section can also be

embedded into the sub-posting lists of CS-IIS (i.e., to provide another level of

skipping in our approach). That is, many pruning techniques (as discussed in the

next section) that can improve FS can also improve the CBR strategies. Integrat-

ing additional pruning techniques to typical- and incremental-CBR are beyond

the scope of this thesis and left as future work.

4.5.2.4 Summary of the Results

In the experiments, we use various collections and multiple TREC query sets.

These datasets constitute the largest collections used for document clustering

and CBR. The experiments show that the incremental-CBR strategy with CS-

IIS provides significant efficiency improvements while yielding comparable (or

sometimes better) effectiveness figures. Our CPU query processing time efficiency
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gains with respect to FS are impressive and up to 45% for Web style queries. The

increment in the size of compressed posting lists is marginal. This overhead can be

well-compensated by the speed of a typical disk, if the index files have to be kept

on the secondary storage. In this case, our approach leads to another significant

advantage: for the first time in the literature, CBR achieves the same number

of direct disk accesses as FS; i.e., only one access per query term (assuming that

the lists are fully read at once). Furthermore, if we assume that posting lists are

kept in the main memory, which is the case for some Web search engines, the

reported in-memory gains reflect overall improvements. The experimental results

demonstrate the scalability and robustness of our approach.

4.6 Site-Based Dynamic Pruning for Query
Processing

In the previous sections, we used incremental-CBR as a retrieval model for auto-

matically clustered data collections. Given the efficiency improvements discussed

above, we also propose to use this strategy as a dynamic pruning method for

FS for the scenarios where content based clustering or categorization is not pre-

ferred or attainable due to the costs or some other limitations. That is, it is

still possible to utilize incremental-CBR strategy with CS-IIS in the cases where

the collection may be somehow grouped according to some basic features of the

documents. One such direction can be grouping documents indexed in a search

engine by their websites. This approach would be clearly much cheaper than any

automatic clustering or classification approach, as well as a manual classification;

yet provide efficiency gains as demonstrated above. In what follows, we first de-

scribe how our CBR strategy with CS-IIS is adapted for a site-based dynamic

pruning and then present experimental results.
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4.6.1 Site-Based Dynamic Pruning

In most of the commercial search engines, a typical unit of the indexing and

retrieval is a single Web page2. That is, each page is considered as a separate

entity (sometimes associated with the anchor text of the referring pages), which

is indexed off-line and compared to a query on-line. On the other hand, Web

pages are usually hosted by a particular organization, person, etc. and pages at

the same site may form a more coherent set in terms of the content, with respect

to the pages that reside in other sites. In this section, we propose to employ CBR

so that first the websites that are most similar to a query are determined, and

then pages within these sites and most similar to the query are returned as the

final result. Our goal is to reduce the query processing time while maintaining

the quality of the top-k results (where k is a small number, typically less than

30, since very few Web users look at more than the first 30 results [100]).

For a given query, we should first determine the top-S sites, namely best-

sites, that are most similar to the query, and then obtain the top-k Web pages,

best-pages, within these sites. Notice that, this is nothing but CBR as discussed

in this thesis. That is, it can be considered as if each Web page belongs to the

“cluster” identified by its website (i.e., the hostname part of its URL). Then,

it is straightforward to create a CS-IIS for Web pages in the collection and use

incremental-CBR strategy in this scenario. We are aware that websites may not

always include semantically coherent pages, and thus, may not constitute perfect

clusters. Still, we envision that for most of the sites, the overlap in terms of

the content is higher for pages in a particular site than those pages that are not

within this site. For instance, the findings in [101] imply that as the degree of

overlap among the URLs increase, the coherency in the content (i.e., terms) in the

corresponding pages also increase. This intuition is justified by the experimental

results provided below.

2There are a few studies in the literature that discuss retrieval in coarser levels. For instance,
the “logical Web document” proposed in [72] includes several actual Web pages.
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4.6.2 Experiments

Dataset. In this study, we use WEBBASE collection of 4.3 million Web pages

as described in Section 4.4.1. The pages in the dataset are from 1,103 websites,

which constitutes the clusters in this case.

Indexing. We eliminated HTML tags, scripts, etc. and English-stop-words. No

stemming is applied. Next, the typical inverted index and CS-IIS are constructed.

Both files are compressed using the best performing procedures as discussed in

Section 4.5.2.1. The resulting typical and cluster-skipping inverted files take 6.3

GB and 6.6 GB (uncompressed) and 767 MB and 785 MB (compressed), respec-

tively. Note that, the increase in the CS-IIS file size is only 2%, an affordable

overhead. During the experiments, only the compressed files are used.

Query processing. We use the efficiency task topics of TREC 2005 terabyte

track, including 50K queries and 2.3 terms per query, on the average. The similar-

ity computations between queries and sites/documents use tf-idf and the cosine

metric as described before.

Effectiveness Experiments. We first compare the typical and incremental

CBR strategies for site-based pruning to the baseline strategy; i.e., FS. Since

there are no relevance judgments for our collection and query set, the top-k

results obtained from each pruning strategy is compared to those results from

the baseline. A measure based on the symmetric difference is used for comparing

two lists [43]. In Figure 4.7, we plot the similarity between the top-k (k ∈

{10, 20, 30}) results of the baseline approach and site-based pruning approaches,

namely typical and incremental strategies, versus the pruning level. The pruning

level is simply controlled by the parameter S, which denotes that the top-S% of

the sites is selected as the best-sites.

Our findings reveal that (i) the pruned results reveal a high similarity to the

non-pruned results (e.g., incremental strategy achieves 74% similarity for top-10

results using 10% of the sites only), (ii) the incremental strategy for site-based

pruning does not degrade result quality with respect to the typical strategy (as
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Figure 4.7: Similarity of pruned results to the baseline results.

Figure 4.8: Average in-memory execution times for query processing strategies.

also observed in Section 4.5.1) and may even improve the latter, and (iii) as the

number of the selected sites increase, the results converge.

Efficiency Experiments. The performance of the baseline strategy and site-

based pruning strategy are compared with respect to pruning level. Note that,

since the files sizes for IIS and CS-IIS are quite close for this case (in comparison

to the file sizes in Section 4.5.2.1, for instance), it would be adequate to provide

only in-memory execution times for baseline, namely FS, and site-based pruning

approach, which is incremental-CBR with CS-IIS. Figure 4.8 reveals that the

site-based pruning strategy provides significant efficiency improvements over the

baseline, reaching up to 46% when the top-10% of the sites is selected.
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4.6.3 Discussions

We present a dynamic query pruning technique based on incremental-CBR that

eliminates relatively less promising sites (and Web pages) during retrieval. The

results are encouraging in that the top-k results returned by the site-based prun-

ing strategy exhibit strong similarity to those of the no-pruning case, while the

proposed strategy achieves significant reductions in processing times.

As it is mentioned before, there are other efficient dynamic pruning techniques

such as those based on the quit-continue approach [79] and impact-sorted lists [14]

for FS. In Section 4.5.2.3, we have shown that incremental-CBR outperforms one

of these approaches, as well. Nevertheless, it is possible for both FS and our

approach to benefit from such earlier techniques. For instance, the impact-based

pruning may be coupled with our site-based pruning, for further improvements in

efficiency (e.g., postings for each site in CS-IIS can be sorted with respect to im-

pacts). Exploring such possibilities is left as a future work. Another future work

direction involves exploiting URL hierarchy to obtain (possibly) more coherent

groups of Web pages.

4.7 Conclusions and Future Work

We introduce an incremental-CBR strategy and enhanced CS-IIS for ranking-

queries. The new file organization incorporates both cluster membership and

centroid information along with the usual document information into a single

inverted index. In the incremental-CBR strategy, for each query term, the com-

putations required for selecting the best-clusters and selecting the best-documents

of such clusters are performed in an interleaved manner. The proposed strategy

is essentially introduced for providing efficient CBR in compressed environments.

We adapt multiple posting list compression parameters and a cluster-based doc-

ument id reassignment technique that best fits the features of CS-IIS. We ex-

perimentally show that the proposed strategy is superior to FS for a retrieval

scenario using automatically clustered datasets. Furthermore, we also show that

incremental-CBR strategy can also serve as a dynamic pruning technique for FS
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in a site-based pruning scenario.

The future research possibilities among others include the following. In this

thesis, we concentrated on term-at-a-time query processing mode. It is also pos-

sible to use another efficient alternative, document-at-a-time processing mode,

along with the proposed strategy. The proposed skip structure provides inter-

esting data fusion [84] opportunities (i.e., merging FS and CBR results) since

both of these processes can be carried out at the same time. Another interesting

direction can be making the proposed system adaptive to query characteristics;

during query evaluation, the number of best-clusters to be selected and the cen-

troid term weighting schemes can be determined according to the query length or

the weight distributions of the query terms. Clearly, updating our data structure

is an interesting challenge. We can apply a “distributed free space” technique for

future additions to posting lists. Then, given an incremental clustering algorithm

(e.g., the incremental version of C3M [35]), the complexity of updating CS-IIS

is not much higher than the complexity of a typical IIS update. Yet another

possible direction for improving storage and efficiency can be using skips in only

“longer lists” but not in the lists of only a few words. Finally, the caching of

posting lists is another topic that currently takes serious attention [18] and can

be investigated in our framework, as well.



Chapter 5

Static Index Pruning with Query
Views

Static index pruning techniques permanently remove a presumably redundant

part of an inverted file, to reduce the file size and query processing time. In

this chapter, we propose using query views in the static pruning strategies for

Web search engines to improve the quality of the top-ranked results compared

against the original results. The query view based strategies avoid pruning those

postings that associate a term with a document, if this document has appeared

among the top results of a previous query including that particular term. We

incorporate query views in a number of static pruning strategies, namely term-

centric, document-centric and access-based approaches, and show that the new

strategies considerably outperform their counterparts especially for the higher

levels of pruning and for both disjunctive and conjunctive query processing.

The rest of this chapter is organized as follows. In the next section, we provide

the motivation for our research. In Section 5.2 we review the related work in the

literature. In Section 5.3, we first describe the baseline pruning algorithms for

this work, as discussed in [29, 43]. Next, we present an adaptive variant of the

access-based pruning algorithm [58], and also propose a document-centric version.

Section 5.4 introduces the new pruning strategies that exploit the query views.

Section 5.5 provides an experimental evaluation of all strategies in terms of top-

ranked result quality. Finally, we conclude and point to future research directions

in Section 5.6.

123
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5.1 Introduction

An inverted index is the state-of-the-art data structure for query processing in

large scale information retrieval systems and Web search engines (WSEs) [122].

In the last decades, several optimizations have been proposed to store and access

inverted index files efficiently, while keeping the quality of the search relatively

stable (see Chapter 3.2.1). One particular method is static index pruning, which

aims to reduce the storage space and query execution time.

The sole purpose of a static pruning strategy is staying loyal to the original

ranking of the underlying search system for most queries, while reducing the

index size, to the greatest extent possible. This is a non-trivial task, as it would

be impossible to generate exactly the same results as produced by an unpruned

index for all possible queries. Most pruning strategies attempt to provide quality

guarantees for only top-ranked results, and try to keep in the pruned index those

terms or documents that are the most important according to some measure,

hoping that they would contribute to the future query outputs uttermost. The

heuristics and measures used for deciding which items should be kept in the index

and which of them should be pruned distinguish the static pruning strategies.

Many proposals in the literature are solely based on the features of the collection

and search system. For instance, in one of the pioneering works, Carmel et al. sort

the postings in each term’s list with respect to the search system’s scoring function

and remove those postings with the scores under a threshold [43]. This is said to

be a term-centric approach. In an alternative document-centric strategy, instead

of considering posting lists, pruning is carried out for each document [29]. These

two strategies, as well as some others reviewed in the next section essentially take

into account the collection-wide features (such as term frequency) and search

system features (such as scoring functions).

However, in the case of Web search, additional sources of information are also

available that may enhance the pruning process and final result quality, which is

the most crucial issue for search engines. In this sense, query logs serve as an

invaluable source of information: in the world of (theoretically) infinitely many

combinations of possible query terms, the query logs highlight those terms and
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combinations that are important enough to be searched in the past. Thus, these

logs can provide further insight and evidence on which terms or documents should

be kept in a pruned index to answer the future queries.

In a recent pruning strategy that explicitly makes use of the previous query

logs [58, 59, 60] the notion of access frequency is employed. That is, the pruning

strategy is guided by the number of appearances of a document in the query

outputs. In this work, we propose a new pruning heuristic that exploits query

views. That is, the pruning process is also guided by considering the actual query

terms that access to the documents.

In the literature, the idea of using query terms to represent a document is

known as query view [44]. In the scope of our work, all queries that rank a

particular document among their top-ranked results constitute the query view of

that document. For static pruning purposes, we exploit the query views in the

following sense. We envision that, for a given document d and a term t in d, the

appearance of t in d’s query view is the major evidence of its importance for d;

i.e., it implies that t is a preferred way of accessing document d in the search

system. Thus, any pruning strategy should avoid pruning the index entry d from

the posting list of term t to the greatest extent possible.

In this work, our goal is improving the quality of the results obtained from a

pruned index, which has vital importance for the WSEs in a competitive market.

To this end, we introduce new pruning approaches that incorporate the query

view idea into the term-centric [43], document-centric [29] and access-based [58]

strategies in the literature. We show that, the pruning strategies with the query

view significantly improve the quality of the top-ranked results, especially at the

higher levels of pruning. More concretely, our contributions in this chapter are

as follows:

• First, we fully explore the potential of a previous strategy, namely access-

based pruning, that also makes use of the query logs in the static index prun-

ing context. To this end, we provide an adaptive version of the term-centric
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pruning algorithm provided in [58]. We also introduce a new document-

centric version of the access-based algorithm, and show that the latter out-

performs its term-centric counterpart.

• Second, we provide an effectiveness comparison of these access-based

approaches to the term-centric approach [43] and document-centric ap-

proach [29], for their best performing setups reported in the literature. Our

experimental findings reveal that, although the access based methods are

inferior to the latter strategies for disjunctive query processing (as shown in

the literature [58]), they turn out to be the most effective strategies when

the queries are processed in the conjunctive mode. This is a new result

that has not been reported before. Furthermore, the document-centric ver-

sion of the access-based strategy as described here is found to be superior

to all other strategies for conjunctive query processing, which has utmost

importance for WSEs.

• Finally, the main contribution of this chapter is exploiting query views to

tailor more effective static index pruning strategies for both disjunctive

and conjunctive query processing; i.e., the most common query processing

modes in WSEs [55]. More specifically, the terms of a document that appear

in the query view of this particular document are considered to be privi-

leged and preserved in the index to the greatest possible extent during the

static pruning. The query view heuristic is coupled with all three pruning

approaches in the literature (term- and document-centric approaches as pro-

posed in [29, 43], and the access-based term-centric method adapted from

[58]) as well as the document-centric version of the access-based method

that is introduced here.

Our findings reveal that for both disjunctive and conjunctive query process-

ing, the query view based pruning strategies reveal an excellent performance in

terms of the similarity of the top-ranked results to the original results (i.e., those

obtained by using the original index) and significantly outperform their coun-

terparts without query views. The gains are especially emphasized at the higher

levels of pruning. We also verify our findings using training logs of varying number



CHAPTER 5. STATIC INDEX PRUNING WITH QUERY VIEWS 127

of queries and a very large test set including 100,000 queries.

Furthermore, the improvements provided by the query view based strategies

also apply to the cases where the pruned index is not used to replace the original

index, but rather used as a list cache (as in the ResIn framework [104]) for

efficiency purposes. In the latter setup, the essential requirement for a pruning

strategy is being able to provide correctness guarantee (i.e., producing exactly

the same results as the main index) for the highest number of queries. We show

that our query view based pruning strategies can output the correct result for

a considerably more number of queries than the baseline algorithms; i.e., those

without query views. This means that pruned index files that are created using

the query view based strategies can either replace the original index, say, at the

back-end servers, or serve as a front-end cache in WSEs.

5.2 Related Work

5.2.1 Static Inverted Index Pruning

In the last decade, a number of different approaches have been proposed for the

static index pruning. In this study, as in [29], we use the expressions term-centric

and document-centric to indicate whether the pruning process iterates over the

terms (or, equivalently, the posting lists) or the documents at the first place,

respectively. Note that, this terminology is slightly different than that of [43].

Additionally, we call a strategy adaptive if its pruning criteria (e.g., a threshold)

dynamically changes for different terms or documents. In contrast, a uniform

strategy applies pruning with a fixed threshold for all documents or terms.

In one of the earliest works in this field, Carmel et al. proposed term-centric

approaches with uniform and adaptive versions [43]. In this work, an idealized

top-k pruning algorithm is introduced, which is guaranteed to generate the same

answers (within an error of ε) as the original index for queries including less than

1/ε terms. It is observed that this idealized algorithm provides only negligible

pruning effects, and thus it is relaxed by a score-shifting operation. After this
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latter modification, which also relaxes the theoretical guarantees, the adaptive

version of the algorithm is reported to provide substantial pruning of the index

and exhibit excellent performance at keeping the top-ranked results intact in

comparison to the original index. Roughly, adaptive top-k algorithm sorts the

posting list of each term according to some scoring function (e.g., Smart’s tf-idf

in [43]) and removes those postings that have scores under a threshold determined

for that particular term. In our study, this algorithm (which is referred to as TCP

strategy hereafter) is employed as a baseline pruning strategy and its further

details are discussed in Section 5.3.1.

In [55], the authors propose an index pruning approach that is tailored to

support conjunctive and phrase queries, which requires a positional index. In

this strategy, the term co-occurrence information is used to guide the pruning. In

a nutshell, this strategy has three stages. First, the most significant sentences of

the documents are selected. Next, these sentences are ranked and a fixed number

of them are selected. Finally, the frequency and positional index files are con-

structed so that they only consider those terms and their positional information

that appear in the selected sentences. In a follow-up work, a more sophisticated

algorithm with the same goals is proposed [54].

In [22], another term-centric pruning strategy is suggested. In this work,

the collection dependent stop-words are identified and totally removed from the

index. To determine those terms to be pruned, several measures like inverse

document frequency (idf ), residual idf and term discriminative value are used.

Their findings indicate that, although this approach can outperform the TCP

strategy for some cases, the latter is better for short queries and obtaining high

P@10 scores. This justifies our choice of TCP to be used in this work, as we

essentially focus on improving the result quality for Web queries over a pruned

index.

Another recently proposed term-centric pruning approach is based on the

probability ranking principle [20]. Briefly, for each document in a term’s posting

list, this strategy computes a score that represents the significance of that term to

the document, and prunes those that are below a global threshold. This approach
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is shown to be superior to TCP in terms of MAP results; however its performance

for P@10 is less stable, but still comparable with TCP.

Finally, the access-based static pruning strategy discussed in [58] employs a

query log and computes the number of appearances of each document in top-1000

results of the queries. These access-counts are then used to guide the pruning

of posting lists for each term in the lexicon; i.e., in a term-centric fashion. This

strategy is uniform, in the sense that for each term, a fixed number of postings

that belong to the documents with highest access-count scores are stored in the

pruned index, and the rest is pruned. In [58], the performance of this algorithm

is shown to be somewhat discouraging, and as a remedy, the authors devise a

mechanism to predict the query difficulty. Then, “simple” queries are processed

by the pruned index, whereas “difficult” ones are forwarded to the original index,

which should also be stored. In this study, we provide an adaptive version of

the term-centric approach outlined above. We also propose a document-centric

version, which outperforms the former one. Further details of this approach are

discussed in Section 5.3.2.

Note that, the access-based pruning approach is also adapted for dynamic

pruning [59, 60]. In that case, the query processing dynamically stops when a

threshold is reached while processing a query term’s posting list, which is sorted

in access-count order. This approach is out of the scope of our thesis and not

elaborated further.

As an alternative to term-centric pruning, Büttcher et al. proposed a

document-centric pruning (referred to as DCP hereafter) approach with uniform

and adaptive versions [29]. In the DCP approach, only the most important terms

are left in a document, and the rest are discarded. The importance of a term

for a document is determined by its contribution to the document’s Kullback-

Leibler divergence (KLD) from the entire collection. However, the experimental

setup in this latter work is significantly different than that of [43]. That is, only

the most frequent terms of the collection are pruned and the resulting (relatively

small) index is kept in the memory, whereas the remaining unpruned body of

index resides on the disk. During retrieval, if the query term is not found in
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the pruned index in memory, the unpruned index is consulted. In a more recent

study [9], a comparison of TCP and DCP for pruning the entire index is provided

in a uniform framework. It is reported that for disjunctive query processing TCP

essentially outperforms DCP for various parameter selections. In this work, we

also use the DCP strategy to prune the entire index, and employ it as one of the

baseline strategies (see Section 5.3.1).

In most of the above works, it is either explicitly or implicitly assumed that the

pruned index will replace the original one (e.g., at the back-end servers in a WSE),

and the pruning strategies are optimized for providing the most similar results to

the original result. In this sense, these pruning approaches can be considered as

lossy. In another line of research, it is proposed to use a pruned index only for

efficiency purposes while also keeping the original index in the system, so that the

correctness of the queries can be always guaranteed. To this end, Ntoulas and Cho

describe pruning strategies with correctness guarantees [83]. A similar approach

is also taken in the ResIn framework [104]. In ResIn, it is assumed that a pruned

index is placed between the WSE front-end and the broker, which is responsible

for sending the queries to the back-end servers with the main index. In this case,

the pruned index serves as a posting list cache, and the queries are passed to

the broker and the back-end only when it is deduced that the query cannot be

answered correctly. The originality of ResIn lies in its realistic architecture that

also takes into account a dynamic result cache placed in front of the pruned index

and the back-end. That is, all queries are filtered through the result cache, and

only the misses are sent to the pruned index and/or back-end servers. Thus,

the pruning algorithms employed in such an architecture should perform well

essentially for the miss-queries. Their experiments show that keeping the full

posting lists for the most popular query terms in the pruned index serves well for

the miss queries, whereas pruning lists (as in TCP and DCP) performs worse. A

combination of both techniques is shown to provide substantial increase in the

hit rates, or equivalently, in the number of queries that can be answered correctly

with the pruned index.

In this work, we consider both possible usages of a pruned index: either at

the back-end servers in a lossy manner, or at the front-end as a list-cache. In
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Section 5.5, we report results for both usages; i.e., in terms of similarity to the

original results and the number of queries that are answered correctly by each

pruning strategy. These experiments reveal that our query view based strategies

provide significant improvements in the result quality and yield pruned index files

that can be utilized in both scenarios.

5.2.2 Query Views for Representing Documents

Query logs are exploited in several ways in the information retrieval literature.

In the scope of this work, we only focus on the related work for their usage as a

representation model for documents. The concept of “query view” is first defined

in [44]. In this work, queries are used as features for modeling documents in a

web site. [92] also uses queries for document representation (called “query vector

model”) in the context of document selection algorithms for parallel information

retrieval systems. In this work, each query is associated with its top-k resulting

documents and no click information is used. This is similar to our case, as we also

restrict the notion of the query view only to the output of the underlying search

engine and disregard the click-through information. This choice makes sense for

the purposes of pruning, as the aim of a static pruning algorithm is generating

the same or most similar output with the underlying search system.

In a recent work [91], query log is mined to find “frequent query patterns”,

which form the “query-set model”. Then each document is represented by the

query-set model for clustering documents in a web site. This work suggests

that query based representation dramatically improves the quality of the results.

Another recent work [16] uses query terms as tags to label the documents that

appear in the top-k results and are clicked by the users.

5.3 Static Pruning Approaches

We start with describing how exactly TCP and DCP algorithms are implemented

in our framework. Next, we describe access-based TCP, as a slightly modi-

fied version of Garcia’s uniform pruning algorithm [58]. Finally, we introduce
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Algorithm 6 Term-Centric Pruning (TCP)

Input: I, k, ε, N
1: for each term t ∈ I do

2: fetch It from I
3: if |It| > N/2 then

4: remove It entirely from I
5: if |It| > k then

6: for each posting (d, fd,t) ∈ It do

7: compute Score(t, d) with BM25
8: zt ← kth highest score among the scores
9: τt ← zt × ε

10: for each posting (d, fd,t) ∈ It do

11: if Score(t, d) ≤ τ then

12: remove entry (d, fd,t) from It

a document-centric version of the latter strategy.

5.3.1 Baseline Static Pruning Algorithms

Term-Centric Pruning (TCP) strategy. As it is mentioned in the previous

section, TCP, the adaptive version of the top-k algorithm proposed in [43], is

reported to be very successful in static pruning. In this strategy, for each term t

in the index I, first the postings in t’s posting list are sorted by a scoring function

(e.g, tf-idf ). Next, the kth highest score, zt, is determined and all postings that

have scores less than zt × ε are removed, where ε is a user defined parameter

to govern the pruning level. Following the practice in [21], we disregard any

theoretical guarantees and determine ε values according to the desired pruning

level.

In a recent study, it is shown that the performance of the TCP strategy

can be further boosted by carefully selecting and tuning the scoring function

used in the pruning stage [21]. Following the recommendations of that work, we

employ BM25 as the scoring function for TCP and entirely discard the terms

with document frequency ft > N/2 (where N is the total number of documents)

as their BM25 score turns out to be negative. In Algorithm 6, we demonstrate

TCP strategy as adapted in our framework.
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Algorithm 7 Document-Centric Pruning (DCP)

Input: D, λ
1: for each document d ∈ D do

2: sort t ∈ d in descending order w.r.t. Score(d, t)
3: remove the last |d| × λ terms from d

Document-Centric Pruning (DCP) strategy. In this work, we apply the

DCP strategy for the entire index, which is slightly different than pruning only

the most frequent terms as originally proposed by [29]. Additionally, instead

of scoring each term of a document with KLD, we prefer to use BM25, to be

compatible with TCP. In a recent work, BM25 is reported to perform better than

KLD for DCP, as well [9]. Finally, in [29] it is again shown that the uniform

strategy; i.e., pruning a fixed number of terms from each document, is inferior to

the adaptive strategy, where a fraction (λ) of the total number of unique terms

in a document is pruned. Algorithm 7 conveys the DCP strategy.

5.3.2 Adaptive Access-based Static Pruning Strategies

Access-based Term-Centric Pruning (aTCP) strategy. For the first time

in the literature, Garcia et al. used the search engine query logs to guide the

static index pruning process [58]. However, their work does not use the actual

content of the queries, but just makes use of the access count of a document; i.e.,

the number of times a document appears in top-k results of queries, where k is

typically set to 1000. Furthermore, they essentially focus on the dynamic index

pruning [58, 59, 60], and propose a rather simple algorithm for the static case.

In particular, their algorithm applies the, so-called, MAXPOST heuristic, which

simply keeps a fixed number of postings with the highest number of access count

in each term’s posting list.

The result of the MAXPOST approach is not very encouraging. Despite

considerable gains (up to 75%) in the query processing time, the reductions in

accuracy is significant; i.e., up to 22% drop in MAP is observed when only 35%

of the index is pruned (see [58, p. 114, Figure 5.2]). We attribute this result

to the uniform pruning heuristic, which is shown to be a relatively unsuccessful
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Algorithm 8 Access-based Term-Centric Pruning(aTCP)

Input: I, µ, AccessScore[]
1: for each term t ∈ I do

2: fetch It from I
3: sort (d, fd,t) ∈ It in descending order w.r.t. AccessScore[d]
4: remove the last |It| × µ postings from It

Algorithm 9 Access-based Document-Centric Pruning (aDCP)

Input: D, µ, AccessScore[]
1: sort d ∈ D in descending order w.r.t. AccessScore[d]
2: numPrunedPostings← 0
3: while numPrunedPostings < |D| × µ do

4: remove the document d with the smallest access score
5: numPrunedPostings← numPrunedPostings + |d|

approach for other strategies (e.g., TCP and DCP) as discussed above.

For this study, we decide to implement an adaptive version of the MAXPOST

approach. Since it iterates over each term and removes some postings, we classify

this approach as term-centric, and call the adaptive version access-based TCP

(aTCP). In this case, instead of keeping a fixed number of postings in each list,

we keep a fraction (µ) of the number of postings in each list. Algorithm 8 shows

aTCP strategy.

Access-based Document-Centric Pruning (aDCP) strategy. In this the-

sis, we propose a new access-based strategy. Instead of pruning the postings from

each list, we propose to prune documents entirely from the collection, starting

from the documents with the smallest access counts. The algorithm is adaptive

in that, for an input pruning fraction (µ), the pruning iterates while the total

length of pruned documents is less than |D|×µ, where |D| is the collection length;

i.e., total number of unique terms in the collection. Algorithm 9 presents this

strategy, which we call access-based DCP (aDCP).

Note that, for both of the access-based approaches (aTCP and aDCP) many

documents may have the same access count. To break the ties, we need a sec-

ondary key to sort these documents. In this study, we simply use the URL of the
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Web pages and sort those documents with the same access count in lexicographi-

cal order. It is also possible to consider the length of the document, or the length

of its URL, which are left as a future work.

5.4 Static Index Pruning Using Query Views

In this section, we first define the notion of query view (QV ) for a document, and

then introduce the pruning strategies that incorporate the query view heuristic.

Let us assume a document collection D = {d1, · · · , dN} and a query log Q =

{Q1, · · · , QM}, where Qi = {t1, · · · , tq}. After this query log Q is executed

over D, the top-k documents (at most) are retrieved for each query Qi, which is

denoted as RQi,k. Now, we define the query view of a document d as follows:

QVd = ∪Qi, where d ∈ RQi,k

That is, each document is associated with a set of terms that appear in the

queries which have retrieved this document within the top- k results. Without loss

of generality, we assume that during the construction of the query views, queries

in the log are executed in the conjunctive mode; i.e., all terms that appear in the

query view of a document also appear in the document.

The set of query views for all documents, QVD, can be efficiently computed

either offline or online. In an offline computation mode, the search engine can

execute a relatively small number of queries on the collection and retrieve, say,

top-1000 results per query. Note that, as discussed in [59], it may not be necessary

to use all of the previous log files; the most recent log and/or sampling from the

earlier logs can be sufficiently representative. In Section 5.5, we show that even

small query logs (e.g., of 10K queries with top-1000 results) provide gains in

terms of effectiveness. On the other hand, in the online mode, each time a query

response is computed, say, top-10 results (i.e., only document ids) for this query

can also be stored in the broker (or, sent to a dedicated query view server).

Note that, such a query view server can store results for millions of queries in its

secondary storage to be used during the index pruning, which is actually an offline



CHAPTER 5. STATIC INDEX PRUNING WITH QUERY VIEWS 136

Algorithm 10 Term-Centric Pruning with Query Views (TCP-QV)

Input: I, k, ε, N, QVD

1: for each term t ∈ I do

2: fetch It from I
3: if |It| > N/2 then

4: remove It entirely from I
5: if |It| > k then

6: for each posting (d, fd,t) ∈ It do

7: compute Score(t, d) with BM25
8: zt ← kth highest score among the scores
9: τt ← zt × ε

10: for each posting (d, fd,t) ∈ It do

11: if (Score(t, d) ≤ τ and t /∈ QVd then

12: remove entry (d, fd,t) from It

process. In the experiments, we also provide the effectiveness figures obtained for

the query views that are created by using only top-10 results.

We exploit the notion of query views for static index pruning, as follows. We

envision that for a given document, the terms that appear as query terms to

rank this document within top results of these queries should be privileged, and

should not be pruned to the greatest extent possible. That is, as long as the target

pruned index size is larger than the total query view size, all query view entries

are kept in the index. In what follows, we introduce four pruning strategies that

exploit the query views, based on the TCP, DCP, aTCP and aDCP strategies,

respectively.

Term-Centric Pruning with Query Views (TCP-QV). This strategy is

based on Algorithm 6, but employs query views during pruning. In particular,

once the pruning threshold (τt) is determined for a term t’s posting list, the

postings that have scores below the threshold are not directly pruned. That is,

given a posting d in the list of term t, if t ∈ QVd, this posting is preserved in

the index, regardless of its score. This modification is presented in Algorithm 10.

Note that, by only modifying line 11, the query view heuristic is taken into

account to guide the pruning.

Document-Centric Pruning with Query Views (DCP-QV). In this case,
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Algorithm 11 Document-Centric Pruning with Query Views (DCP-QV)

Input: D, λ, QVD

1: for each document d ∈ D do

2: for each term t ∈ d do

3: if t ∈ QVd then

4: Prt ← 1
5: else

6: Prt ← 0
7: sort t ∈ d in descending order w.r.t. first Prt then Score(d, t)
8: remove the last |d| × λ terms from d

Algorithm 12 Access-based Term-Centric Pruning with Query Views (aTCP-
QV)

Input: I, µ, AccessScore[], QVD

1: for each term t ∈ I do

2: fetch It from I
3: for each posting (d, fd,t) ∈ It do

4: if t ∈ QVd then

5: Prd ← 1
6: else

7: Prd ← 0
8: sort (d, fd,t) ∈ It in descending order w.r.t. first Prd then AccessScore[d]
9: remove the last |It| × µ postings from It

for the purpose of discussion, let us assume that each term t in a document d is

associated with a priority score Prt, which is set to 1 if t ∈ QVd and 0 otherwise.

The terms of a document d are now sorted (in descending order) according to

these two keys, first the priority score and then score function output. During the

pruning, last |d|×λ terms are removed, as before. This strategy is demonstrated

in Algorithm 11.

Access-based Term-Centric Pruning with Query Views (aTCP-QV). In

aTCP strategy, again for the purposes of discussion, we assume that each posting

d in the list of a term t is associated with a priority score Prd, which is set to

1 if t ∈ QVd and 0 otherwise. Then, the postings in the list are sorted in the

descending order of the two keys, first the priority score and then the access

count. During the pruning, last |It| × µ postings are removed (Algorithm 12).
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Algorithm 13 Access-based Document-Centric Pruning with Query Views
(aDCP-QV)

Input: D, µ, AccessScore[], QVD

1: sort d ∈ D in descending order w.r.t. AccessScore[d]
2: numPrunedPostings← 0
3: while numPrunedPostings < |D| × µ do

4: fetch d with the smallest score
5: for each term t ∈ d do

6: if t /∈ QVd then

7: remove t from d
8: numPrunedPostings← numPrunedPostings + 1

Access-based Document-Centric Pruning with Query Views (aDCP-

QV). In this case, we again prune the documents starting from those with the

smallest access counts until the pruning threshold µ is reached. But, while prun-

ing documents, those terms that appear in the query view of these documents

are kept in the index. This is shown in Algorithm 13. Note that, for a given

pruning threshold, this algorithm would possibly prune documents with higher

access counts than its counterpart without query views (aDCP).

Note that, in Algorithms 10, 11, 12 and 13, we show the use of query views

in a simplistic manner for the purposes of discussion, without considering the ac-

tual implementation. For instance, for TCP-QV case, it would be more efficient

to first create an inverted index of the QVD and then process the original index

and query view index together; i.e., in a merge-join fashion, for each term in

the vocabulary. We presume that for all four approaches employing query views,

the additional cost of accessing an auxiliary data structure for QVD (either the

actual or inverted data) would be reasonable, given that the query terms highly

overlap and only a fraction of documents in the collection have high access fre-

quency [60]. Furthermore, it is not necessary to use all previous query logs, as

discussed above [59]. Therefore, we expect that the size of the data structures

for query views would be much smaller when compared to the actual collection,

i.e., Web.
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5.5 Experimental Evaluation

5.5.1 Experimental Setup

Document collection and indexing. For this study, we obtained the list of

URLs that are categorized at the Open Directory Project (ODP) Web direc-

tory [85]. Among these links, we successfully crawled around 2.2 million pages,

which take 37 GBs of disk space in uncompressed HTML format. This constitutes

our document collection for this study.

We first indexed the dataset using the publicly available Zettair IR sys-

tem [121]. During the indexing, Zettair is executed with the “no stemming”

option. All stop-words and numbers are included in the index, yielding a vocab-

ulary of around 20 million unique terms. Once the initial index is generated, we

used our homemade IR system to create the pruned index files and execute the

training and test queries over them.

Query log normalization. We use a subset of the AOL Query Log1 that

contains 20 million queries of about 650K people for a period of 12 weeks. The

query terms are normalized by case-folding, sorting in the alphabetical order and

removing the punctuation and stop-words. We consider only those queries of

which all terms appear in the vocabulary of the collection. This restriction is

forced to guarantee that the selected queries are more sensible for the dataset.

Training and test query sets. From the normalized query log subset, we

construct training and test sets. The training query sets that are used to compute

the access counts and query views for the documents are from the first half (i.e.,

6 weeks) of the log. The test sets that are used to evaluate the performance for

different pruning strategies are constructed from the second half (last 6 weeks) of

the log. During the query processing with both training and test sets, a version

of BM25 scoring function, as described in [29], is used.

In the training stage, queries are executed in the conjunctive mode and top-k

1http://imdc.datcat.org/collection/1-003M-5
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Table 5.1: Characteristics of the training query sets

10K-top1000 50K-top1000 518K-top1000 1.8M-top1000 518K-top10 1.8M-top10

Access % 30% 54% 79% 85% 33% 50%
QV Size (%) 35MB(1%) 143MB(4%) 647MB(20%) 1,093MB(34%) 53MB(2%) 148MB(5%)

results per query are retrieved to compute the access counts and query views.

To observe the impact of the training set size, we created training sets of 10K,

50K, 518K and 1.8M distinct queries that are selected randomly from the first

half of the log and obtained top-1000 results per query. To further investigate the

impact of the result set size, namely, k, we obtained only top-10 results for the

latter two training sets (i.e., including 518K and 1.8M queries). Thus, we have

six different training query logs with varying number of queries and results per

query. Characteristics of the training sets are provided in Table 5.1.

In the first row of Table 5.1, we provide the access percentage achieved by

each training set; i.e., the percentage of documents that appear at least once in

a query result. In the second row of the table, we report the percentage of the

total query view size to the collection size, where the former is the sum of the

number of unique query terms that access to a document and the latter is the sum

of the number of unique terms per document, as usual. Both values increase as

the number of queries increase, however the increments follow a sub-linear trend.

This is due to the heavy-tailed distribution of accesses to documents as shown

before [58].

Remarkably, access percentages for 10K-top1000 and 518K-top10 training sets

are very close, which imply that access counts and query views with similar

characteristics can be either obtained by using a relatively small query log and

larger number of results, or using a larger query log but retrieving smaller number

of, say only top-10, results. The former option can be preferred during an offline

computation, whereas the latter can be achieved for an online computation. For

instance, a search engine can store the top-10 document identifiers per query

(maybe at a dedicated server) on the fly to easily compute the query views when

required. Note that, these observations are also valid for the 50k-top1000 vs.

1.8M-top10 sets. In the experiments, we show that these sets also yield relatively

similar effectiveness figures.



CHAPTER 5. STATIC INDEX PRUNING WITH QUERY VIEWS 141

For the majority of the experiments reported in the next section, we use a

test set of 1000 randomly selected queries from the second half of the AOL log.

These queries are normalized as discussed above. We keep only those queries

that can retrieve at least one document from our collection when processed in

the conjunctive mode. By definition, the test set is temporally disjoint from the

training sets. Furthermore, we guarantee that train and test sets are query-wise

disjoint by removing all queries from the test set that also appear in the training

sets (after the normalization stage). But, some of the terms in the queries in both

sets, of course, may overlap. This set is referred to as test-1000 in the following

sections.

Note that, this latter elimination of overlapping queries with the training sets

yields a test set of queries that are in the heavy tail of the query log. That is,

we are left with the queries that appear (almost) only once in the test set (as

more frequent queries also occur in the training sets and thus eliminated). In

this sense, our test set is similar to the “miss-queries” as described by the ResIn

architecture [104]; i.e., those queries that cannot be found in the result-cache and

forwarded to the pruned index. In our case, removal of queries that also occur in

the training set results in a test set of singleton queries, which cannot be cached

neither dynamically nor statically. Thus, our performance improvements/findings

obtained on this test set would be valid for both possible usages of a pruned index,

either as a front-end cache (as in [83, 104]) or at the back-end servers, in a Web

search engine.

In what follows, we conducted experiments for both disjunctive and conjunc-

tive processing of the queries using the test-1000 set. For each case, top-1000

results are retrieved for evaluation purposes.

Compatibility of the dataset and query sets. As discussed in [115], the

compatibility of the query log and underlying document collection is a crucial

issue for the reliability of an experimental framework. Intuitively, we consider

that our dataset and query log are compatible, since the ODP site is a general

Web directory consisting of pages from several different categories, and AOL log

is a general search engine log. To experimentally justify this claim, we further
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(a) (b)

Figure 5.1: The correlation of “query result size/collection size” on ODP and
Yahoo for: (a) conjunctive, and (b) disjunctive query processing modes.

conducted a preliminary experiment as follows. We processed the test-1000 set

both in conjunctive and disjunctive modes on our collection, and recorded the

total number of results per query. Next, we also submitted the same queries to a

major search engine, Yahoo! (using its Web API) again in conjunctive (default)

and disjunctive processing modes. For each case, we also stored the number of

results per query as returned by the search engine API. We assume that the

underlying collection of Yahoo! includes around 31.5 billion pages, which is the

reported number of results when searching for the term “a” at Yahoo! Web site.

For conjunctive query processing, ODP and Yahoo! collections yield 398 and

29,907,586 results on the average, which corresponds to 1.78×10−4 and 9.5×10−4

of the underlying collection size, respectively. For disjunctive processing, ODP

and Yahoo! produces 25K and 857 million results on the average, again corre-

sponding to 0.01 and 0.03 of the searched collections, respectively. In Figure 5.1,

we represent the test-1000 queries on a log-log scale plot where the y-axis is the

ratio of the number of results retrieved in our ODP collection to the collection

size, and the x-axis is the same ratio for Yahoo! collection, for conjunctive and



CHAPTER 5. STATIC INDEX PRUNING WITH QUERY VIEWS 143

disjunctive2 query processing. The figure also reveals that the ratio of the results

per query in each collection are positively correlated, i.e.; yielding correlation

coefficients of 0.59 and 0.67 for conjunctive and disjunctive modes. Thus, we

conclude that our collection and query sets are compatible and the experimental

evaluations would provide meaningful results.

Evaluation measure. In this work, we compare the top-k results obtained

from the original index against the pruned index, where k is 10 (the results

for k =2, 100 and 1000 reveal similar trends and are not reported here to save

space). To this end, we employ the symmetric difference measure as discussed

in [43]. That is, for two top-k lists, if the size of their union is y and the size

of their symmetric difference is x, symmetric difference score s = 1 − x/y. The

score of 1 means exact overlap, whereas the score of 0 implies that two lists are

disjoint. The average symmetric difference score is computed over the individual

scores of 1,000 test queries and reported in the following experiments. Note that,

symmetric difference measure does not take into account the order of the results.

To this end, it is possible to use a measure based on Kendall’s tau [43], which is

left as a future work.

Parameters for the pruning strategies. The pruned index files are obtained

at the pruning levels ranging from 10% to 70% (with a step value of 10%) by

tuning the ε, λ and µ parameters in the pruning algorithms. All index sizes are

considered in terms of their raw (uncompressed) sizes. For TCP, top-k parameter

is set to 10 during pruning. Our preliminary experiments revealed that for all

strategies, updating the document lengths after the index pruning stage does not

provide any gains, and thus original document lengths are used by BM25 during

the query processing.

2Yahoo! Web API reports a fixed number of results, 231, for queries that produce more
results than that number, which especially occurs in the disjunctive mode. For this case, we
exclude these queries and report the correlation values for the remaining 373 queries on both
collections.
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Table 5.2: Average symmetric difference scores for top-10 results and disjunctive
query processing (relative improvements with respect to the baseline algorithm
are shown in the column ∆%; all improvements are statistically significant)

% TCP DCP aTCP aDCP TCP- ∆% DCP- ∆% aTCP- ∆% aDCP- ∆%
QV QV QV QV

10% 0.97 0.94 0.84 0.94 0.98 1% 0.98 4% 0.93 11% 0.96 2%
20% 0.91 0.86 0.68 0.87 0.95 4% 0.95 10% 0.88 29% 0.91 5%
30% 0.83 0.77 0.54 0.77 0.91 10% 0.93 21% 0.84 56% 0.86 12%
40% 0.74 0.68 0.42 0.66 0.86 16% 0.89 31% 0.80 90% 0.81 23%
50% 0.64 0.58 0.31 0.54 0.82 28% 0.84 45% 0.76 145% 0.77 43%
60% 0.55 0.49 0.22 0.41 0.79 44% 0.79 61% 0.74 236% 0.74 80%
70% 0.47 0.40 0.14 0.30 0.71 51% 0.66 65% 0.62 343% 0.66 120%

5.5.2 Results

Statistical significance of the results. All results reported in the below

sections, unless stated otherwise, are found to be statistically significant at 0.05

level. In particular, for the results in Tables 5.2 and 5.3, and Figures 5.2 and 5.3,

at each pruning level, the output of 1000 test queries for a baseline algorithm

and its query view based counterpart are compared using the paired t-test and

Wilcoxon signed rank test. For Tables 5.2 and 5.3, there are only two cases

where the query views do not improve the performance and, subsequently, there

is no statistical difference in means. For the cases in Figures 5.2 and 5.3, there

are only a few cases where a query view based strategy yields no significant

improvements (especially for smaller training sets) and these cases are discussed

later. Additionally, for the results shown in Tables 5.2 and 5.3, we made a one-

way ANOVA analysis (followed by Tukey’s post hoc test) among the four baseline

strategies as we also compare their performance in the following sections. It is

found that only in Table 5.2, the mean scores are not significantly different at

0.05 level between DCP and aDCP up to 40% pruning level. All other means are

pairwise different according to Tukey test results.

Performance of the query views: disjunctive mode. In Table 5.2, we

provide average symmetric difference results of all eight pruning strategies for

the top-10 results and disjunctive query processing mode. For access-based and

query view based strategies, we employed our largest training set, namely, 1.8M-

top1000. In terms of the four baseline algorithms, the findings in this case con-

firm the earlier observations in [9, 43, 58]. Our adaptation of the access-based
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approach, aTCP, is the worst among all and only after 30% pruning, the symmet-

ric difference score drops down to 0.54. On the other hand, the document-centric

version of the access-based pruning strategy, aDCP, achieves much better perfor-

mance; it is clearly superior to its term-centric counterpart and provides com-

parable results to DCP, at the early stages of the pruning (up to 50%). Among

these four strategies, TCP is the clear winner whereas DCP is the runner-up and

the access-based strategies are inferior to those, especially at the higher levels of

pruning. This implies that solely using access counts is not adequate to guide the

static index pruning.

Next, we evaluate the performance of the strategies with query views, namely

TCP-QV, DCP-QV, aDCP-QV and aTCP-QV. A brief glance over Table 5.2

reveals that these approaches are far superior to their counterparts that are not

augmented with query views. Remarkably, the order of algorithms is similar in

that TCP-QV is still the best performer (though sometimes replaced by DCP-

QV) and aTCP-QV is the worst. However, the gaps are now considerably closer.

Indeed, the percentage improvement columns reveal that, query views enormously

enhance the performance of the poor strategies (e.g., aTCP) at all pruning levels

(ranging from 11% to 343%). Even for those strategies that were relatively more

successful before, query views provide significant gains, especially at the higher

levels of the pruning. For instance, at 50% pruning, the symmetric difference

score jumps from 0.64 to 0.82 for TCP (a relative increase of 28%), and from 0.58

to 0.84 for DCP (45%). The relative improvements for all strategies exceed 10%

after 20% pruning level. In short, query views significantly improve the baseline

strategies, and carry them around 75-80% effectiveness at 40-50% pruning level,

which is a solid success.

Performance of the query views: conjunctive mode. In Table 5.3, we

provide symmetric difference results in the same setup but for conjunctive query

processing mode. Interestingly, conjunctive processing is mostly overlooked and

has been taken into account in only few works [54, 55, 104], whereas it is the

default and probably the most crucial processing mode for WSEs. Thus, we first

analyse the results for the baseline strategies, which has not been discussed in

the literature to this extent, before moving to query view based strategies.
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Table 5.3: Average symmetric difference scores for top-10 results and conjunctive
query processing (relative improvements with respect to the baseline algorithm
are shown in the column ∆%; all improvements except (*)ed values are statisti-
cally significant)

% TCP DCP aTCP aDCP TCP- ∆% DCP- ∆% aTCP- ∆% aDCP- ∆%
QV QV QV QV

10% 0.66 0.80 0.93 0.98 0.94 42% 0.98 23% 0.97 4% 0.98 0%*
20% 0.52 0.66 0.86 0.96 0.90 73% 0.95 44% 0.94 9% 0.96 0%*
30% 0.41 0.54 0.78 0.91 0.86 110% 0.92 70% 0.91 17% 0.93 2%
40% 0.32 0.43 0.70 0.85 0.84 163% 0.88 105% 0.87 24% 0.90 6%
50% 0.25 0.33 0.60 0.79 0.81 224% 0.84 155% 0.84 40% 0.86 9%
60% 0.19 0.25 0.52 0.71 0.79 316% 0.79 216% 0.79 52% 0.81 14%
70% 0.15 0.17 0.43 0.61 0.51 240% 0.58 241% 0.71 65% 0.73 20%

Our experiments reveal that for the conjunctive processing mode, TCP is the

worst strategy. This is a rather expectable result as in an earlier study it is

argued that for, say, two terms in a conjunctive query, TCP may have pruned

a posting that is at the tail of one term’s list and thus reduce the final rank

of this posting which is at the top of the other term’s list (see [55, Figure 1]).

Furthermore, a TCP-like pruning strategy is also found less successful in ResIn

framework [104]. This is attributed to the observation that the miss-queries are

rather discriminative; i.e., return very few results. Recall that our test set also

has similar properties to miss-queries, and the average result size is only 398.

Indeed, we created another test set that includes the queries with the highest

number of results in our collection and witnessed that TCP’s performance can

considerably improve. Nevertheless, in a typical setup with random queries, TCP

is the worst performing algorithm for this case.

What is more surprising for conjunctive query processing case is the perfor-

mance of the access-based strategies: aDCP and aTCP outperform TCP and

DCP with a wide margin at all pruning levels. This is a new result that has not

been reported before in the literature. We think that one reason of this great

boost in performance may be the conjunctive processing of the training queries

while computing the access counts. In the previous work, both training and test-

ing have been conducted in disjunctive mode. We anticipate that the training

in conjunctive mode more successfully distinguishes the documents that can also

appear in the intersection of terms in other queries. Another remarkable issue

is, our document-centric version of the access based strategy, aDCP, significantly
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outperforms its term-centric adaptation. Indeed, aDCP achieves a similarity of

80% to the original results even when the index is halved, a striking success that

has not been observed for any of the baseline algorithms even in the disjunctive

case.

Turning our attention to the query view based strategies, we again report

important improvements. This time, the worst performing strategies, TCP and

DCP, have most benefited from the query views, even more than doubling or

tripling their similarity scores at certain pruning levels. The gains on access-

based strategies are less emphasized, though reaching to 40% and 9% at 50%

pruning for aTCP-QV and aDCP-QV, respectively. Note that, aDCP reaches

to very high similarity scores of 0.98 and 0.96 at 10% and 20% pruning levels,

respectively; and these happen to be the only cases in Table 5.3 where the query

view could not achieve any further improvements. For all other cases, query view

based strategies again surpass their counterparts with a large margin, and reach

to around 80% similarity level at a pruning level of 60%.

Effects of the training set size. For both query processing modes, we analyze

how the performances of query view based strategies vary for training query sets

with different characteristics. In Figure 5.2, we first consider the disjunctive

case. In Figure 5.2(a) and (b), it is clearly seen that TCP-QV and DCP-QV

improve proportionally to the training set size, respectively. Notably, even a

training set of 10K queries improves performance in a statistically significant

manner. As it can be anticipated from Table 5.1, the performance of 518K (1.8M)

queries with top-10 results is slightly better than 10K (50K) queries with top-

1000 results, respectively. For access-based strategies, to simplify the plots, we

only provide sets with 1.8M queries with top-10 and 1000 results. For both

cases (and other sets that are not shown here), the query view based strategies

outperform their counterparts. Only for the smallest sets, namely 10K-top1000

and 50K-top1000, the improvements of aDCP-QV over aDCP are found not to

be statistically significant.

In Figure 5.3 we demonstrate the behavior of the algorithms for the conjunc-

tive processing mode. Again, TCP-QV and DCP-QV achieve higher scores with
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(a) (b)

(c) (d)

Figure 5.2: Effects of the training set size for disjunctive querying: (a) TCP vs.
TCP-QV, (b) DCP vs. DCP-QV, (c) aTCP vs. aTCP-QV, and (d) aDCP vs.
aDCP-QV.
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(a) (b)

(c) (d)

Figure 5.3: Effects of the training set size for conjunctive querying: (a) TCP vs.
TCP-QV, (b) DCP vs. DCP-QV, (c) aTCP vs. aTCP-QV, and (d) aDCP vs.
aDCP-QV.

the larger number of training queries. For aDCP-QV and aTCP-QV, trends are

also similar, but for aDCP-QV the training set of 1.8M-top10 does not yield sig-

nificantly different results from aDCP (as also seen from the overlapping lines

in Figure 5.3(d). This implies that to further improve access-based strategies,

training sets with larger number of queries or results should better be preferred

for this query processing mode. We conclude that query view based strategies

improve with larger train sets, but significant improvements are attainable by

even using relatively smaller sets or larger sets with less number of results per

query.

Effect of the test set size. We also conducted an experiment involving a set
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of 100K random queries that is constructed as described in Section 5.5.1. To our

knowledge, this is the largest set used for the evaluation of pruning performance.

Due to time and resource limitations, this experiment is conducted for only 50%

pruning level using 518K-top1000 training log in conjunctive processing mode.

We compare our findings with those obtained for the same setup using test-1000

set. It turns our that (i) for each strategy, there is a slight increase in absolute

symmetric difference scores but there is no statistically significant difference be-

tween their results on 1000 and 100K queries (except TCP-QV, of which absolute

scores improve slightly more than the others on this experiment). The signifi-

cance is computed using two-sample t-test (as sample sizes are different). Thus,

the trends for each strategy can be concluded to be the same for both small and

large test sets. (ii) According to one-way ANOVA (followed by Tukey test) and

paired t-test analysis, query view based strategies again significantly outperform

their baselines also for the 100K test set at 0.05 level. This means that trends

and findings for the test-1000 set are also confirmed by the results obtained for

the large test set.

Experiments for a ResIn-like framework. Up to here, we provide the effec-

tiveness results assuming that the pruned index will replace the original index,

say, at the back-end servers. As discussed before, an alternative use of a pruned

index is locating it closer to the front-end, and directing only those queries that

are not answered “correctly” (i.e., the same as the original index) to the backend

server [104]. In this case, what is important is the number of queries which can

be correctly answered by a pruned index. Conducting such an experiment would

also make sense in our setup, since test-1000 set has similar characteristics to the

miss-queries used in ResIn. As test-1000 queries do not appear in the training sets

and appear only once in the log that is used to create test sets, they cannot be

cached statically or dynamically, and would exactly constitute the miss-queries

set for our setup. In Figure 5.4 , we show the number of correctly answered

queries (i.e., for which, the symmetric difference score is 13) for each case of Ta-

ble 5.3 (i.e., for conjunctive mode). Clearly, for all cases, the query view based

strategies considerably increase the number of queries with correct results. This

3Note that, we only consider whether top-10 results include the same documents for original
and pruned cases, but disregard the order of documents.
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(a) (b)

(c) (d)

Figure 5.4: Number of queries with correct answers for pruning strategies and
conjunctive mode: (a) TCP vs. TCP-QV, (b) DCP vs. DCP-QV, (c) aTCP vs.
aTCP-QV, and (d) aDCP vs. aDCP-QV.

implies that, query view based strategies have a great potential to be employed

in a ResIn-like framework to obtain higher performance. This is left as a future

work.

5.5.3 Summary of the Findings

Our major results and contributions are summarized as follows:

• Using query views significantly improves all four pruning strategies for both

disjunctive and conjunctive processing. The gains are proportional to the
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number of queries and number of results retrieved per query in the training

sets that are used to construct the query views. Though, it is still possible

to obtain gains by using a smaller number of queries and larger number of

results, or vice versa.

• Query view based strategies also increase the number of queries that are

answered correctly by a pruned index. Thus, they allow a pruned index to

be either used at the back-end providing higher effectiveness, or employed

at the front end providing higher performance (i.e., as more queries will be

satisfied at the front-end, less queries will be sent to the back-end).

• Access-based baseline strategies are inferior to TCP and DCP as shown

before, but only for disjunctive querying. For the conjunctive case, which is

the most crucial one for WSEs, we show that aTCP as proposed in [58] out-

performs the methods that are not access-based. Furthermore, we present

a new document-centric version of the algorithm, aDCP, which is superior

to other three approaches; namely, TCP, DCP and aTCP.

• We describe a carefully tailored experimental framework that is reliable

for extensive testing. Our query set has realistic characteristics that can

be observed in a WSE setup [104]. Our gains are obtained for such a set

and verified using the statistical tests. Furthermore, a large set of 100K

queries is used for a subset of the experiments and also found to exhibit

exactly the same trends. To our knowledge, this is the largest set used in

an index pruning experiment (i.e., an order of magnitude larger than the

set employed in [104]).

• At last, we compare and evaluate static pruning algorithms in a unified

framework for both modes of querying. This has not been done for all of

these approaches before (except [9], which compares TCP and DCP only

for disjunctive mode).
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5.6 Conclusions and Future Work

In this chapter, we propose query view based strategies for static pruning to im-

prove the top-ranked result quality. We incorporate query views into a number

of strategies that exist in the literature, and show that the new strategies consid-

erably outperform their counterparts especially for the higher levels of pruning.

As a future work, we first aim to use the frequencies of terms in the query

views to further improve our strategies. Another promising direction is using the

query view heuristic in dynamic pruning, in a similar manner to [59, 60].



Chapter 6

Conclusions and Future Work

Devising efficient methods for each fundamental component, namely; crawler,

indexer and query processor, in a Web search engine is an important research

topic. In this thesis, for each one of these components, we proposed some efficient

strategies that may be applicable especially when a grouping of documents in

its broadest sense (i.e., in terms of automatically obtained classes/clusters, or

manually edited categories) is available. We also exploited query views that

are based on the search engine query logs to tailor more effective static pruning

techniques.

More specifically, for the purposes of focused crawling —a paradigm that is

essentially employed in vertical search engines, we proposed a rule-based strategy.

In this case, the rules represented the linkage relationships among the document

classes in a taxonomy. This approach remedied an important weakness of a

pioneering focused crawling strategy in the literature; i.e., by combining rules,

the rule-based strategy becomes capable of reaching relevant pages through a

path of irrelevant pages (an effect known as tunneling). In the experiments, our

crawler was observed to be more successful in finding relevant (on-topic) pages

in comparison to a baseline focused crawler; a result justifying our intuition.

In this thesis, document clusters and categories are also employed for improv-

ing search performance. In particular, we discussed possible query processing

methods for typical cluster-based retrieval (CBR). We introduced a new index

organization, so-called cluster-skipping inverted index structure (CS-IIS) which

154
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blends cluster and document information and allows faster query processing. We

evaluated our approach in an extensive experimental setup involving automati-

cally clustered and manually categorized datasets and with several parameters.

We showed that typical-CBR with CS-IIS outperforms other query evaluation

strategies using ordinary index files.

We further enhanced CS-IIS so that all information to compute query-cluster

similarities during query evaluation is stored in a single index file. We introduced

an incremental-CBR strategy that operates on top of this new index structure,

and demonstrated its search efficiency in an environment where all index files are

compressed, a typical situation for real life search engines.

Our results for searching document groups are remarkable in the following

sense. We show that search using document clusters or categories can provide

significant efficiency improvements (especially in terms of in-memory execution

time) while yielding query result with a quality as good as that obtained over the

entire collection; i.e., without any sort of grouping. Our approaches are applicable

in the scenarios where the data is inherently categorized (such as a Web directory)

or an automatic clustering of collection is possible by some means. In the latter

case, the clustering structure can be created with respect to actual document

contents, which is more feasible with medium-scale collections; or some other

basic feature, such as the website of a document, as we exemplified in this thesis.

Finally, we made use of search engine logs to develop better strategies for

static index pruning. In particular, query view approach was incorporated into a

set of existing pruning strategies, as well as some new variants proposed by us.

Query view based strategies significantly outperformed the baseline approaches

from literature in terms of the query output quality, for both disjunctive and

conjunctive evaluation of queries. This is an important result, as the latter two

types of queries constitute the majority of queries submitted to search engines.

Our results also implied that the index files pruned by query view based strategies

can either replace the original index at the back-end, or serve as a list cache at

the front-end of a search engine.

There are many future work directions regarding the contributions of this
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thesis. The rule-based focused crawler can be further enhanced using rules that

are obtained by more-sophisticated techniques from machine learning and data

mining literature. We believe that search using document clusters/categories is an

issue that deserves more attention. The performance of CS-IIS can be investigated

in an environment with list caching for more realistic applications. In this sense,

an interesting direction is considering the performance of CS-IIS based retrieval

approaches when only certain blocks of the posting lists (corresponding to, say,

most popular clusters) are fetched from the disk and cached. It is also possible to

apply proposed CBR strategies in a framework of patent retrieval. Our research

for the latter topic is already underway. Finally, query views can be used for index

pruning in more sophisticated ways (e.g., by considering the access frequencies

in query views) and for dynamic pruning purposes. These latter issues are also

included in our current research agenda.
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[9] I. S. Altingovde, R. Ozcan, and Ö. Ulusoy. A practitioner’s guide for static

index pruning. In M. Boughanem, C. Berrut, J. Mothe, and C. Soulé-
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