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ABSTRACT

THRESHOLD CRYPTOGRAPHY WITH CHINESE
REMAINDER THEOREM

Kamer Kaya

Ph.D. in Computer Engineering

Supervisor: Asst. Prof. Dr. Ali Aydın Selçuk

August, 2009

Information security has become much more important since electronic communi-

cation is started to be used in our daily life. The content of the term information

security varies according to the type and the requirements of the area. However,

no matter which algorithms are used, security depends on the secrecy of a key

which is supposed to be only known by the agents in the first place.

The requirement of the key being secret brings several problems. Storing

a secret key on only one person, server or database reduces the security of the

system to the security and credibility of that agent. Besides, not having a backup

of the key introduces the problem of losing the key if a software/hardware failure

occurs. On the other hand, if the key is held by more than one agent an adversary

with a desire for the key has more flexibility of choosing the target. Hence the

security is reduced to the security of the least secure or least credible of these

agents.

Secret sharing schemes are introduced to solve the problems above. The main

idea of these schemes is to share the secret among the agents such that only

predefined coalitions can come together and reveal the secret, while no other

coalition can obtain any information about the secret. Thus, the keys used in the

areas requiring vital secrecy like large-scale finance applications and command-

control mechanisms of nuclear systems, can be stored by using secret sharing

schemes.

Threshold cryptography deals with a particular type of secret sharing schemes.

In threshold cryptography related secret sharing schemes, if the size of a coalition

exceeds a bound t, it can reveal the key. And, smaller coalitions can reveal no in-

formation about the key. Actually, the first secret sharing scheme in the literature

is the threshold scheme of Shamir where he considered the secret as the constant
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of a polynomial of degree t− 1, and distributed the points on the polynomial to

the group of users. Thus, a coalition of size t can recover the polynomial and

reveal the key but a smaller coalition can not. This scheme is widely accepted by

the researchers and used in several applications. Shamir’s secret sharing scheme

is not the only one in the literature. For example, almost concurrently, Blak-

ley proposed another secret sharing scheme depending on planar geometry and

Asmuth and Bloom proposed a scheme depending on the Chinese Remainder

Theorem. Although these schemes satisfy the necessary and sufficient conditions

for the security, they have not been considered for the applications requiring a

secret sharing scheme.

Secret sharing schemes constituted a building block in several other applica-

tions other than the ones mentioned above. These applications simply contain a

standard problem in the literature, the function sharing problem. In a function

sharing scheme, each user has its own secret as an input to a function and the

scheme computes the outcome of the function without revealing the secrets. In

the literature, encryption or signature functions of the public key algorithms like

RSA, ElGamal and Paillier can be given as an example to the functions shared by

using a secret sharing scheme. Even new generation applications like electronic

voting require a function sharing scheme.

As mentioned before, Shamir’s secret sharing scheme has attracted much of the

attention in the literature and other schemes are not considered much. However,

as this thesis shows, secret sharing schemes depending on the Chinese Remainder

Theorem can be practically used in these applications. Since each application has

different needs, Shamir’s secret sharing scheme is used in applications with several

extensions. Basically, this thesis investigates how to adapt Chinese Remainder

Theorem based secret sharing schemes to the applications in the literature. We

first propose some modifications on the Asmuth-Bloom secret sharing scheme and

then by using this modified scheme we designed provably secure function sharing

schemes and security extensions.

Keywords: Threshold cryptography, secret sharing, function sharing, Asmuth-

Bloom, Chinese Remainder Theorem, provable security.
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Bilgi güvenliği, elektronik iletişimin hayatımızın her alanına girmesi ile birlikte

giderek daha çok önemli hale gelmektedir. Bilgi güvenliği kavramının içeriği kul-

lanıldığı uygulamanın çeşidine ve gereksinimlerine göre değişebilmektedir. Fakat

kullanılan alan ya da uygulama ne olursa olsun, güvenlik için hangi algorit-

malar kullanılırsa kullanılsın, güvenlik ilk önce gerekli kişilerin bilmesi gereken

bir anahtarın gizli kalmasına dayanmaktadır.

Güvenliğin en önemli unsuru olan anahtarların gizli kalması ve kaybolma-

ması gereksinimleri değişik problemleri de beraberinde getirmektedir. Anahtarın

sadece bir kişide, sunucuda ya da veritabanında saklanması, sistemin güvenliğini

o kişinin güvenliğine ve güvenilirliğine indirgemektedir. Bunun yanında şifrenin

başka bir kopyasının olmaması da yazılım/donanım arızaları gibi durumlarda

anahtarın tamamen kaybedilmesi gibi sakıncalar içermektedir. Anahtarın bir-

den fazla kişide bulunması durumunda ise anahtarı ele geçirmeye çalışan biri için

artık bir değil birden fazla hedef vardır ve dolayısıyla, anahtarın güvenliği bu

kişilerinin en az güvenliğe sahip olanının güvenliğine indirgenmektedir.

Anahtar paylaştırma yöntemleri ilk olarak yukarıda bahsedilen problemleri

çözmek için önerilmiştir. Bu yöntemlerdeki ana fikir anahtarın belli bir grup

içinde öyle paylaştırılmasıdır ki, sadece önceden belirlenen koalisyonlar bir araya

geldiğinde anahtarı elde edebilmeli daha küçük koalisyonlar ise anahtar hakkında

hiçbir bilgi elde edememelidir. Bu sayede, şirketlerin karar mekanizması uygu-

lamaları, büyük ölçekli finans uygulamaları, nükleer sistemlerin komuta-kontrol

uygulamaları gibi alanlarda gizli kalması gereken anahtarlar anahtar paylaştırma

yöntemleri kullanılarak saklanabilir.

Eşik kriptografisi anahtar paylaştırma yöntemlerinin özel bir hali ile ilgilenir.
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Eşik kriptografisine dayanan anahtar paylaştırma yöntemlerinde bir koalisyonun

içindeki kişi sayısı, büyüklüğü, belli bir eşiği, kısaca t, geçiyorsa, o koalisyon

anahtarı elde edebilir. Daha küçük koalisyonlar ise anahtar hakkında hiç bir bilgi

elde edemezler. Literatürde ilk önerilen anahtar paylaştıma yöntemlerinden biri

Shamir’in eşik kriptografisine dayanan yöntemidir. Shamir bu yöntemde anahtarı

t-1 dereceli bir polinomun sabit terimi olarak düşünmüş ve polinomun geçtiği nok-

taları grup içinde dağıtmıştır. Bu sayede, gerekli olduğunda t büyüklüğündeki

bir koalisyon, polinomu yaratarak anahtarı elde edebilir. Bu yöntem sonraları

güvenlik üzerine araştırma yapan bilim insanları tarafından kabul görmüş ve

değişik uygulamalarda kullanılmıştır. Bu yöntem ile yaklaşık aynı zamanlarda

önerilen Blakley’in düzlem geometrisine dayalı anahtar paylaştırma yöntemi ve

Asmuth ve Bloom’un önerdiği Çin Kalan Teoremi@ne dayalı yöntem güvenlik

açısından gerekli ve yeterli şartları sağladıkları halde araştırmacılar tarafından

rağbet görmemişlerdir.

Anahtar paylaştırma yöntemleri yukarıda bahsedilen uygulamalar dışında da

değişik güvenlik uygulamaları için temel yapı parçacığı görevini görmüşlerdir.

Bu uygulamalar, genelde fonksiyon paylaştırma yöntemi olarak bilinen, her-

hangi bir fonksiyonun çıktısının, herbiri gizli bir fonksiyon girdisine sahip bir

grup tarafından, fonksiyon girdileri gizli kalmak şartı ile hesaplanması problemini

içerir. Literatürde, anahtar paylaştırma yöntemleri temel alınarak paylaştırılan

bu fonksiyonlara RSA, ElGamal ve Paillier gibi açık anahtar algoritmalarının

imza yada şifreleme fonksiyonları örnek gösterilebilir. Elektronik seçim gibi yeni

nesil uygulamalar fonksiyon paylaştırma yöntemlerini yoğun bir şekilde kullan-

maktadır.

Daha önce de bahsedildiği gibi, Shamir’in anahtar paylaştırma yöntemi lit-

eratürde sıklıkla kullanılan bir yöntem olup diğer anahtar paylaştırma sistemleri

pek rağbet görmemektedir. Fakat, bu tezin gösterdiği gibi Çin Kalan Teoremine

dayalı anahtar paylaştırma yöntemleri de pratik olarak bu tür uygulamalarda

kullanılabilir. Her uygulama değişik güvenlik gereksinimlerine sahip olduğu

için, Shamir’in yöntemi değişik eklentiler tasarlanarak çeşitli uygulamalarda kul-

lanılmıştır. Bu tez temel olarak farklı anahtar paylaştırma yöntemlerinin çeşitli

uygulamalarda nasıl kullanabileceği üzerine yoğunlaşacaktır. Tezde Çin Kalan

Teoremi’ne dayalı bir anahtar paylaştırma yöntemi olan Asmuth-Bloom yöntemi

için bazı değişiklikler önerilecektir. Sonra da bu yeni yöntemler kullanılarak

kanıtlanabilir güvenliğe sahip fonksiyon paylaştırma yöntemleri ve halihazırda



viii

varolan uygulamalarda gereken değişik güvenlik eklentileri tasarlanacaktır.

Anahtar sözcükler : Eşik kriptografisi, anahtar paylaştırma, fonksiyon

paylaştırma, Asmuth-Bloom, Çin Kalan Teoremi, kanıtlanabilir güvenlik.
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Chapter 1

Introduction

In his seminal paper [67], Shamir quoted the following combinatorial problem:

Eleven scientists are working on a secret project. They wish to lock up the

documents in a cabinet so that the cabinet can be opened if and only if six or

more of the scientists are present. What is the smallest number of locks needed?

What is the smallest number of keys to the locks each scientist must carry?

A simple combinatorial approach needs (11, 6) = 462 locks and (10, 5) = 252

for each scientist. Even if we could manufacture such a cabinet, what would we

do if we had 111 or 1111 scientists? In cryptography, we have a similar prob-

lem called secret sharing. When a confidential information is cryptographically

secured, a secret called the key is needed to access this information. Giving this

key to only one person is not a good idea since he can lose the key and the infor-

mation can be inaccessible. To solve this problem, the key can be shared among

several people. Since the above combinatorial approach is not efficient and not

practical, we need a secret sharing scheme to distribute the key among n people.

Fortunately, threshold cryptography deals with the problem of sharing a highly

sensitive secret among a group of n users so that only when a sufficient num-

ber t of them come together can the secret be reconstructed. Well-known secret

sharing schemes (SSS) in the literature include Shamir [67] based on polynomial

interpolation, Blakley [9] based on hyperplane geometry, and Asmuth-Bloom [2]

1



CHAPTER 1. INTRODUCTION 2

based on the Chinese Remainder Theorem.

A further requirement of a threshold cryptosystem can be that the subject

function (e.g., a digital signature) should be computable without the involved par-

ties disclosing their secret shares. This is known as the function sharing problem.

A function sharing scheme (FSS) requires distributing the function’s computa-

tion according to the underlying SSS such that each part of the computation can

be carried out by a different user and then the partial results can be combined

to yield the function’s value without disclosing the individual secrets. Several

protocols for function sharing [21, 22, 23, 24, 66, 68] have been proposed in the

literature.

1.1 Secret Sharing Schemes

The problem of secret sharing and the first solutions were introduced indepen-

dently by Shamir [67] and Blakley [9] in 1979. A (t, n)-secret sharing scheme is

used to distribute a secret d among n people such that any coalition of size t or

more can construct d but smaller coalitions cannot.

The first scheme for sharing a secret was proposed by Shamir [67] based on

polynomial interpolation. To obtain a (t, n) secret sharing, a random polynomial

f(x) = at−1x
t−1 + at−2x

t−2 + . . . + a0 is generated over Zp[x] where p is a prime

number and a0 = d is the secret. The share of the ith party is yi = f(i), 1 ≤ i ≤ n.

If t or more parties come together, they can construct the polynomial by Lagrange

interpolation and obtain the secret, but any smaller coalitions cannot.

Another interesting SSS is the scheme proposed by Blakley [9]. In a t dimen-

sional space, a system of t non-parallel, non-degenerate hyperplanes intersect at a

single point. In Blakley’s scheme, a point in the t dimensional space (or, its first

coordinate) is taken as the secret and each party is given a hyperplane passing

through that point. When t users come together, they can uniquely identify the

secret point, but smaller coalitions cannot.



CHAPTER 1. INTRODUCTION 3

A fundamentally different SSS is the scheme of Asmuth and Bloom [2], which

shares a secret among the parties using modular arithmetic and reconstructs it

by the Chinese Remainder Theorem (CRT).

1.1.1 Extensions on Threshold Secret Sharing Schemes

In the original secret sharing problem, we were trying to find a way that makes

the secret available to sufficiently large coalitions. Hence, for security analysis,

we allow an adversary to corrupt less than t users but no more. In this model,

we assume that the adversary is honest but curious and he/she is not allowed

to deviate from the protocol by impersonating a corrupted user. The secret

sharing schemes above, described in their simplest forms, are secure under this

adversary model. However, they do not have a false share detection mechanism

if the adversary sends wrong shares in the reconstruction phase on behalf of a

corrupted user. Furthermore, the adversary can also corrupt the dealer and in

that case the users must check if their shares are consistent with the secret. This

problem was proposed by Chor et al. in 1985 and with a verifiable secret sharing

scheme (VSS) as the solution [17]. Formally, a VSS scheme provides mechanisms

to users to verify their shares are consistent. Furthermore, in a VSS scheme,

even if the dealer is corrupted, there is a well-defined secret that a valid coalition

can reconstruct. After Chor et al., more efficient non-interactive verifiable secret

sharing schemes were proposed by Feldman [27] and [59]. The security of the

Feldman’s scheme depends on the hardness of the discrete-logarithm problem

whereas the Pedersen’s scheme is information theoretically secure.

A further extension to verifiability is public verifiability. In a publicly verifiable

secret sharing (PVSS) scheme, anyone, not only the users, can verify that the

shares are consistent with each other. This property is included in Chor et al.’s

scheme, which is the first VSS in the literature. However, both Feldman’s and

Pedersen’s schemes do not satisfy public verifiability. In [69], Stadler introduced

the PVSS enhancement and proposed two PVSS schemes where the security of

the first one depends on the Decisional Diffie-Hellman (DDH) assumption, which

we describe in Section 4.3. Other researchers also investigated the verifiability
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extension such as [7, 28, 32, 64]

As described above, the secrecy of the key is guaranteed if the adversary is

restricted to compromise less than t users throughout the entire life-time of the

secret. If the secret key is valid for a long period of time, which is sufficient

for t corruptions, a secret sharing scheme cannot protect the secret key. In [39],

Herzberg et al. proposed a proactive secret sharing scheme, where the shares of

the users are periodically renewed without changing the long-term secret. After

this renewal operation, the previous shares become obsolete. Hence, in a proactive

secret sharing scheme, an adversary needs to compromise at least t users in a

time period, e.g., a day, a week or a month. Herzberg et al. also described the

mechanisms to guarantee the integrity and the availability of the long-term secret.

These mechanisms provide protocols to detect corrupted shares and recover them

if necessary.

Another extension on SSS schemes is threshold changeability ; with this ex-

tension, the threshold parameter t can be changed after the dealing phase. This

problem was investigated by Martin et al. with the restriction that no secure

channel exists between the dealer and the users [52]. Martin et al. solved two

variations of this problem: when the dealer is available and when he is not. They

proposed two constructions where the first one depends on the Shamir’s SSS and

the second one is geometrical. Later, Steinfeld et al. proposed lattice based

approaches for the same problem: the first approach [70] was designed for CRT-

based SSS schemes and the second approach [71] was designed for Shamir based

SSS schemes.

1.1.2 Properties of Secret Sharing Schemes

A SSS is said to be perfect if coalitions with cardinality smaller than t cannot

obtain any information on d; i.e., the cardinality of the set of secret candidates for

d cannot be reduced by using t− 1 or fewer shares. According to this definition,

the secret sharing schemes described above, Shamir, Blakley and Asmuth-Bloom

SSSs, are perfect SSSs. A stronger definition of perfectness is as follows: in a
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perfect SSS, for an adversary with t − 1 compromised shares, each secret can-

didate has the same probability for being the secret. Shamir’s and Blakley’s

SSSs satisfy this kind of perfectness, however, as described in Section 2.1 and as

Quisquater et al. shows [63], the original Asmuth-Bloom SSS does not satisfy it.

Asmuth and Bloom only showed that when an adversary has t − 1 shares, the

entropy of the secret does not decrease too much [2].

A SSS is said to be ideal if all secrets have the same length as the secret.

Shamir’s and Blakley’s SSSs are ideal secret sharing schemes but Asmuth-Bloom

scheme can only be said almost ideal. Quisquater et al. showed that when the

moduli in Asmuth-Bloom SSS are consecutive primes, the scheme is asymptoti-

cally ideal [63].

1.2 Function Sharing Schemes

In a (t, n) function sharing scheme, a key-dependent function is distributed among

n people such that any coalition of size t or more can evaluate the function but

smaller coalitions cannot. When a coalition S is gathered to evaluate the function,

the ith user in S computes his own partial result by using his share yi and sends

it to the combiner to evaluate the overall result. The combiner must be honest

while combining the partial results but can be curious and try to find the secret

shares. Hence a function sharing scheme cannot reveal the users’ secret shares to

the combiner.

FSSs are typically used to distribute the private key operations in a public

key cryptosystem (i.e., the decryption and signature operations) among several

parties. Sharing a private key operation in a threshold fashion requires first

choosing a suitable SSS to share the private key. Then the subject function

must be arranged according to this SSS such that combining the partial results

from any t parties will yield the operation’s result correctly. This is usually a

challenging task and requires some ingenious techniques.

In its simplest form, function sharing problem was investigated by several
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researchers such as Desmedt [20] and Goldreich et al. [37]. However the proposed

solutions in these works are impractical and interactive. After these works, the

function sharing problem was formally introduced by Desmedt and Frankel in

1989 [22]. They also proposed non-interactive and practical threshold function

sharing schemes for ElGamal encryption scheme. The solutions they proposed

were based on Shamir’s and Blakley’s SSSs.

After Desmedt and Frankel’s work, the function sharing problem for RSA

public-key cryptosystem was investigated by several researchers where Shamir’s

SSS was the main tool. The additive nature of the Lagrange interpolation used

in the combiner phase of Shamir’s scheme makes it a suitable choice for function

sharing, but it also provides several challenges, especially for RSA scheme. One

of the most significant challenges is the computation of inverses in Zφ(N) for

sharing the RSA function where φ(N) should not be known by the users. The

first solution to this problem was proposed by Desmedt and Frankel [21], which

solved the problem by making the dealer compute all potentially needed inverses

at the setup time and distribute them to users mixed with the shares. A more

elegant solution was found a few years later by De Santis et al. [66]. They carried

the arithmetic into a cyclotomic extension of Z, which enabled computing the

inverses without knowing φ(N). Finally, a very practical and ingenious solution

was given by Shoup [68] where he removed the need of taking inverses in Lagrange

interpolation altogether.

Shoup’s practical RSA scheme inspired similar works on different cryptosys-

tems. Fouque et al. [29] proposed a similar threshold solution for the Pail-

lier cryptosystem and used it in e-voting and lottery schemes. Later, Lysyan-

skaya et al. [50] improved this work and obtained a threshold Paillier encryption

scheme secure under the adaptive security model.

Although using Shamir’s SSS for sharing the ElGamal signature and decryp-

tion functions has its own unique problems, the computation of inverses in the

exponent is relatively easier than that in RSA since all of the operations are

done in mod p where p is a public prime hence φ(p) = p − 1 is also public. As

mentioned above, Desmedt and Frankel solved the function sharing problem in
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1989 for ElGamal decryption function. However, an ElGamal based threshold

signature was not proposed until 1996. In [34], Gennaro et al. proposed the first

efficient threshold scheme for the Digital Signature Standard.

As a summary, several solutions for sharing the RSA, ElGamal and Paillier

private key operations have been proposed in the literature [21, 22, 23, 24, 29, 34,

50, 66, 68]. The proposed solutions in these works are usually based on Shamir’s

SSS. To the best of our knowledge, before our work, no secure FSS has been

proposed for any of the cryptosystems mentioned above.

1.2.1 Extensions on Function Sharing Schemes

Since FSSs are based on SSSs, the extensions on secret sharing schemes can also

be described for function sharing schemes. For example, the robustness extension

is similar to the verifiability extension described in Section 1.1.1. We say that a

FSS is robust if it can withstand participation of corrupt users in the function

evaluation phase. The general approach to achieve robustness in function sharing

schemes is sending more information along with the partial result. In that ap-

proach, each user in the coalition sends a proof of correctness of his partial result.

In robust FSS schemes, a valid proof cannot be generated by a user unless he has

the correct share and the partial result is correct. In 1996, Gennaro et al. pro-

posed robust threshold RSA schemes [33] and a robust DSS signature scheme [34]

(improved and extended versions of these works by Gennaro et al. can be found

in [35, 36]).

Similar to verifiability, the proactivity extension described above also has a

counterpart in FSSs. A proactive approach can be used for FSSs by designing

protocols for periodic refreshment and integrity protection of local shares. With

this approach, the adversary will have only a short period of time to corrupt t

users and obtain their shares. In 1997, Herzberg et al. introduced the proactivity

problem and proposed proactive public key and signature schemes [38]. Their

approach can be used for several discrete log cryptosystems such as DSS and

Schnorr signatures, ElGamal-like signatures and encryption.
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1.3 Contributions and Outline

Nearly all existing solutions for function sharing are based on the Shamir SSS [67].

On the other hand, using CRT-based solutions for secret and function sharing

schemes has not been well-investigated. This thesis investigates how various

primitives and schemes in threshold cryptography can be securely realized by

using a CRT-based secret sharing scheme, i.e., Asmuth-Bloom SSS.

In Chapter 2, the original Asmuth-Bloom SSS is presented and its modified

versions which are more suitable for function sharing schemes are proposed. We

also propose a scheme for the non-threshold case that uses Asmuth-Bloom SSS

to share a secret among n people such that only predefined coalitions, which are

members of an access structure can reconstruct the secret.

Chapter 3 (based on [44], [49] and [43]) presents the threshold RSA scheme

based on the CRT. We also adapt our ideas used in the threshold RSA scheme

to propose threshold ElGamal and Paillier schemes. All of these schemes are

provably secure against an adversary with t−1 shares where t is the threshold. At

last we give a description of CRT-based threshold Naccache-Stern cryptosystem.

The Digital Signature Standard (DSS) is the current U.S. standard for dig-

ital signatures. In Chapter 4 (based on [48]) we investigate that how the DSS

signature function can be shared by using the Asmuth-Bloom SSS. We propose a

threshold DSS scheme and prove that the scheme is secure against an adversary

with t− 1 shares.

Secret and function sharing schemes can be enhanced by using various exten-

sions: As described in Section 1.1.1, we call a SSS verifiable if each user can verify

the correctness of his share in the dealing phase and no user can lie about his

share in the reconstruction phase. Another extension, proactivity, makes a SSS

capable of renewing the shares of the users without changing the long term secret

such that any shares obtained by a corrupted party before the renewal phase

become obsolete. For function sharing schemes, we say that a FSS is robust if it

can withstand participation of corrupt users in the function evaluation phase. In
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Chapter 5 (based on [45], [46], and [47]), we propose CRT-based verifiable and

proactive secret sharing schemes, and robust function sharing schemes.

We conclude the thesis with Chapter 6.



Chapter 2

Asmuth-Bloom Secret Sharing

Scheme

The Asmuth-Bloom secret sharing scheme is proposed by Asmuth and Bloom in

1983. Let n be the number of total users and t be the threshold, i.e., the size

of the smallest coalition that can reconstruct the secret. The original Asmuth-

Bloom SSS is close to perfect, i.e., for an adversary with t− 1 shares, the secret

can be any candidate from the secret domain. However, the probabilities of the

secret being equal to two different candidates are different where the difference

is non-negligible. To make the function sharing schemes in this thesis provably

secure, this difference must be negligible to make these two different candidates

indistinguishable from adversary’s point of view. Hence, the original scheme

needs to be modified to make it suitable for function sharing. In this chapter,

first the original scheme and then the required modifications are presented.

The CRT based schemes such as Asmuth-Bloom can also be used for generic

secret sharing. In such schemes, the valid coalitions which can reconstruct the

secret are defined by an access structure. Unlike the threshold case, any subset of

n users can be an element of the access structure and its cardinality need not to

be bigger than a threshold. We will conclude this chapter by describing a recent

scheme proposed by Bozkurt [13] which is based on the Asmuth-Bloom SSS and

10
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can be used for any access structure.

2.1 The Original Scheme

Dealing and reconstructing the secret in the Asmuth-Bloom SSS are described in

Fig. 2.1.

• Dealer Phase: To share a secret d among a group of n users, the dealer does
the following:

– A set of pairwise relatively prime integers m0 < m1 < m2 < . . . < mn,
where m0 > d is a prime, are chosen such that

t∏
i=1

mi > m0

t−1∏
i=1

mn−i+1. (2.1)

– Let M denote
∏t

i=1mi. The dealer computes

y = d+ Am0

where A is a positive integer generated randomly subject to the con-
dition that 0 ≤ y < M .

– The share of the ith user, 1 ≤ i ≤ n, is

yi = y mod mi.

• Combiner Phase: Assume S is a coalition of t users gathered to construct
the secret. Let MS denote

∏
i∈Smi.

– Given the system
y ≡ yi (mod mi)

for i ∈ S, find y in ZMS
using the Chinese Remainder Theorem.

– Compute the secret as
d = y mod m0.

Figure 2.1: The Asmuth-Bloom secret sharing scheme.

According to the Chinese Remainder Theorem, y can be determined uniquely
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in ZMS
. Since y < M ≤MS, the solution is also unique in ZM .

The Asmuth-Bloom SSS is close to perfect in the sense that t−1 or fewer shares

do not narrow down the key space: Assume a coalition S ′ of size t−1 has gathered

and let y′ be the unique solution for y in ZMS′
. According to (2.1), M/MS′ > m0,

hence y′ + jMS′ is smaller than M for j < m0. Since gcd(m0,MS′) = 1, all

(y′ + jMS′) mod m0 are distinct for 0 ≤ j < m0, and there are m0 of them. That

is, d can be any integer from Zm0 . However, this scheme is not exactly perfect

since when t− 1 shares are known, the key candidates are not equally likely. We

refer the reader to a recent work by Quisquater et al. [63] for a detailed security

analysis of Asmuth-Bloom and some other Chinese Remainder Based SSSs.

2.2 The Modified Asmuth-Bloom Scheme

Several changes were needed on the basic Asmuth-Bloom scheme to make it more

suitable for function sharing. In this section we describe these modifications:

In the original Asmuth-Bloom SSS, the authors proposed an iterative process

to solve the system y ≡ yi (mod mi). Instead, we use a non-iterative and direct

solution as described in [25], which turns out to be more suitable for function

sharing in the sense that it does not require interaction between parties and has

an additive structure which is convenient for exponentiations. Suppose S is a

coalition of t users gathered to construct the secret d.

1. Let MS\{i} denote
∏

j∈S,j 6=imj and M ′
S,i be the multiplicative inverse of

MS\{i} in Zmi , i.e.,

MS\{i}M
′
S,i ≡ 1 (mod mi).

First, the ith user computes

ui = yiM
′
S,iMS\{i} mod MS.

2. y is computed as

y =
∑
i∈S

ui mod MS.
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3. The secret d is computed as

d = y mod m0.

We note that, in the Asmuth-Bloom SSS, m0 need not be a prime, and the

scheme works correctly for a composite m0 as long as m0 is relatively prime

to mi, 1 ≤ i ≤ n. Also note that m0 need not be known during the secret

construction process until the 3rd step above.

We also modified (2.1) as

t∏
i=1

mi > m0
2

t−1∏
i=1

mn−i+1. (2.2)

in order to use it securely in the proposed FSSs. Note that equation (2.2) guar-

antees that d can be any integer from Zm0 when t−1 or fewer shares are revealed.

Theorem 2.2.1. For a passive adversary with t − 1 shares in the modified

Asmuth-Bloom scheme, every candidate for the secret is equally likely, i.e.,

the probabilities Pr(d = d′) and Pr(d = d′′) are approximately equal for all

d′, d′′ ∈ Zm0.

Proof. Suppose the adversary corrupts t − 1 users and just observes the inputs

and outputs of the corrupted users without controlling their actions, i.e., the

adversary is honest in user actions but curious about the secret. Let S ′ be the

adversarial coalition of size t− 1, and let y′ be the unique solution for y in ZMS′
.

According to (2.1), M/MS′ > m0, hence y′+ jMS′ is smaller than M for j < m0.

Since gcd(m0,MS′) = 1, all (y′ + jMS′) mod m0 are distinct for 0 ≤ j < m0, and

there are m0 of them. That is, d can be any integer from Zm0 . For each value

of d, there are either bM/(MS′m0)c or bM/(MS′m0)c + 1 possible values of y

consistent with d, depending on the value of d. Hence, for two different integers

in Zm0 , the probabilities of d equals these integers are almost equal. Note that

M/(MS′m0) > m0 and given that m0 � 1, all d values are approximately equally

likely.
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Note that the new equation (2.2) makes the scheme asymptotically perfect

but it also increases the share sizes. Hence the modified scheme is not ideal.

But the size of a share in the new scheme is two times larger than the one in

the original scheme hence the modified scheme is practical and it can be used in

various applications. For all of the schemes, mi, 1 ≤ i ≤ n, are known by all

users, but m0 is kept secret by the dealer for some function sharing schemes such

as threshold RSA and Paillier schemes described in Chapter 3.

2.3 Asmuth-Bloom SSS for General Access

Structures

The secret sharing problem also arises for the general case: the secret is shared

among n participants such that only a specified set of authorized coalitions can

reconstruct the secret [8, 42]. Unlike the threshold case, the size of an authorized

coalition is not important and can be equal to any integer from 1 to n. Let

P = {1, . . . , n} be the set of participants. The set of authorized coalitions Γ ⊂ 2P

is called the access structure. Note that Γ is monotonically increasing, i.e.,

A ∈ Γ =⇒ B ∈ Γ, ∀B ⊃ A.

We denote the basis of Γ, i.e., the set of minimal elements in Γ, with Γ0. Hence

A ∈ Γ0 =⇒ @B ∈ Γ0, such that B ⊃ A.

The set of unauthorized coalitions ∆ ⊂ 2P is called the adversary structure. Note

that ∆ is monotonically decreasing, i.e.,

A ∈ ∆ =⇒ B ∈ ∆, ∀B ⊂ A.

We denote the set of maximal elements in ∆, with ∆1. Hence

A ∈ ∆1 =⇒ @B ∈ ∆1, such that B ⊂ A.



CHAPTER 2. ASMUTH-BLOOM SECRET SHARING SCHEME 15

It is obvious that ∆ ∩ Γ = ∅. Note that the threshold case with threshold t can

be represented as

Γ0 = {A ∈ 2P : |A| = t},

∆1 = {A ∈ 2P : |A| = t− 1}.

2.3.1 Multipartite Access Structures

Let P , the set of users, be partitioned into r disjoint sets X1,X2, . . . ,Xr. Each

set Xi has ni users and
∑r

i=1 ni = n. An access structure is multipartite when

all users in a given class play the same role. Let σ be a random permutation of

numbers 1 to n. Formally, we call an access structure Γ is r-partite if σ(Γ) = Γ

for any permutation σ such that σ(Xi) = Xi for i = {1, 2, . . . , r}.

Note that every access structure is multipartite since we can take r = n and

Xi = {i} for i = {1, 2, . . . , n}. But we are usually interested with the smallest

possible r value to characterize the access structure. A simple algorithm that

checks

Γ
?
= swap(Γ, i, j)

for each user pair i, j is sufficient to find the smallest r where swap(Γ, i, j) swaps

the user i and j in Γ and returns the resulting access structure. If the equality

holds, it is obvious that users i and j should be in the same partition.

Let ω : 2P → (Zn1+1 × Zn2+1 × . . .× Znr+1) be a function such that

ω(A) = (|A ∩ X1|, |A ∩ X2|, . . . , |A ∩ Xr|).

Since the users in the same class play the same role, an access structure Γ can be

uniquely represented as a set of r-ary vectors

Ω(Γ) = {ω(A) : A ∈ Γ}.
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2.3.2 Asmuth-Bloom SSS for Multipartite Access Struc-

tures

The Asmuth-Bloom secret sharing scheme can be also used for general access

structures. Here we will describe a scheme by [13] which uses Asmuth-Bloom

SSS for secret sharing in multipartite access structures. Let us first recall that

the modified Asmuth-Bloom SSS is perfect. For every part Xi, we choose the

moduli m0 < m1,i < m2,i < . . . , < mni,i as consecutive primes such that they

satisfy
bni/2c∏
j=1

mj,i > m0

bni/2c−1∏
j=1

mni−j+1,i. (2.3)

Note that (2.3) is the inequality used for a (bni/2c, ni) threshold secret sharing.

Also 2.3 implies
t∏

j=1

mj,i > m0

t∏
j=1

mni−j+1,i

for every value of t. Hence, the moduli can be used for a (t, ni)-secret sharing

scheme for 1 ≤ t ≤ ni.

In the SSS described below, we will use Ω(Γ0) instead of Ω(Γ) and show

that any coalition in Γ can reconstruct the secret. We say that a r-ary vector

(K1, K2, . . . , Kr) dominates the vector (k1, k2, . . . , kr) if Ki ≥ ki for 1 ≤ i ≤ r.

The SSS is given in Fig. 2.2.

In Fig. 2.2, each user in Xi has a share for each vector in Ω(Γ0) if the ith

element of the vector is nonzero. S ∈ Γ if and only if there exists a vector in

Ω(Γ0) dominated by (K1, K2, . . . , Kr) where Ki = |S∩Xi|. The users in S∩Xi can

construct di since di is shared with a (ki, ni)-secret sharing scheme and Ki ≥ ki.

Let S ′ be an adversarial coalition. Let K ′i = |S ′ ∩ Xi|. Since S ′ /∈ Γ,

(K ′1, K
′
2, . . . , K

′
r) cannot dominate a vector in Ω(Γ0). Hence for each vector in

Ω(Γ0), there exists at least one i such that ki > K ′i. Since Asmuth-Bloom SSS

is perfect, S ′ cannot obtain any information on at least one di, for each vector.

Hence the scheme given in Fig. 2.2 is also perfect.
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Dealer Phase: Let Γ be an r-partite access structure. To share a secret d according to
Γ, the dealer does the following:

• For each r-ary vector (k1, k2, . . . , kr) ∈ Ω(Γ0) the dealer

– chooses random di ∈ Zm0s for 1 ≤ i ≤ r where
∑r

i=1 di ≡ d mod m0.

– shares di among the users in Xi by using a (ki, ni) Asmuth-Bloom secret
sharing scheme.

Combiner Phase: Assume S is the coalition gathered to construct the secret. Let
Ki = |S ∩ Xi| and (k1, k2, . . . , kr) ∈ Ω(Γ0) be a vector dominated by (K1,K2, . . . ,Kr).

• For each 1 ≤ i ≤ r, the users from Xi in S can construct the corresponding di
for the vector (k1, k2, . . . , kr) since Ki ≥ ki.

• The secret d is the constructed by

d =
r∑
i=1

di mod m0.

Figure 2.2: Using Asmuth-Bloom SSS for general access structures.



Chapter 3

Sharing RSA and Similar

Functions with CRT

In this chapter, we show how sharing of cryptographic functions can be securely

achieved using the Asmuth-Bloom secret sharing scheme. We give four novel

FSSs, one for the RSA [65], one for the ElGamal decryption [26], one for the

Paillier decryption [57], and the other for the Nacceche-Stern decryption [54]

functions. These public key cryptosystems have several interesting properties

useful in various applications [1, 4, 29, 51, 56]. The proposed schemes are provably

secure and to the best of our knowledge they are the first realizations of secure

function sharing based on the Asmuth-Bloom SSS.

3.1 CRT-based Threshold RSA Scheme

RSA [65] is the first and the most commonly used public key cryptosystem today.

Here we show how the RSA signature and decryption functions can be shared

by using the Asmuth-Bloom SSS. Below, we limit our discussion to the RSA

signature function since these two functions are identical and the same technique

can be applied for sharing the decryption function as well. The description of the

RSA signature scheme is given in Fig. 3.1.

18
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• Setup: Let N = pq be the product of two large prime numbers. Choose
a random e ∈ Z∗φ(N) and find its inverse d, i.e., ed ≡ 1 (mod φ(N)). The

public and private keys are (N, e) and d, respectively.

• Signing : Given a hashed message w ∈ ZN , the signature s is computed as

s = wd mod N.

• Verification: Given a signature s ∈ ZN , the verification is done by checking

w
?
= se mod N.

Figure 3.1: The RSA signature scheme.

Threshold RSA Signature Scheme: The following is a procedure that

shares the RSA signature function among n users with the Asmuth-Bloom SSS

such that when t users come together they can compute the signature:

• Setup: In the RSA setup phase, choose the RSA primes p = 2p′ + 1 and

q = 2q′ + 1 where p′ and q′ are also large random primes. N = pq is

computed and the public key e and private key d are chosen from Z∗φ(N)

where ed ≡ 1 (mod φ(N)). Use Asmuth-Bloom SSS for sharing d with

m0 = φ(N) = 4p′q′.

• Signing : Let w be the hashed message to be signed and suppose the range

of the hash function is Z∗N . Assume a coalition S of size t wants to obtain

the signature s = wd mod N .

– Generating partial results : Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS,

si = wui mod N.

– Combining partial results : The incomplete signature s is obtained by

combining the si values

s =
∏
i∈S

si mod N. (3.1)
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– Correction: Let κ = w−MS mod N be the corrector. The incomplete

signature can be corrected by trying

(sκj)e = se(κe)j
?≡ w (mod N) (3.2)

for 0 ≤ j < t. Then the signature s is computed by

s = sκδ mod N

where δ denotes the value of j that satisfies (3.2).

• Verification is the same as the standard RSA verification.

We call the signature s generated in (3.1) incomplete since we need to obtain

y =
∑

i∈S ui mod MS as the exponent of w. Once this is achieved, we have

wy ≡ wd (mod N) as y = d+ Am0 for some A where m0 = φ(N).

Note that the equality in (3.2) must hold for some j ≤ t − 1 since the ui

values were already reduced modulo MS. So, combining t of them in (3.1) will

give d+am0 +δMS in the exponent for some δ ≤ t−1. Thus in (3.1), we obtained

s = wd+δMS mod N = swδMS mod N = sκ−δ mod N

and for j = δ, equation (3.2) will hold. Also since φ(N)� t, with overwhelming

probability, there will be a unique value of s = sκj which satisfies (3.2).

3.1.1 Security Analysis

Here we will prove that the proposed threshold RSA signature scheme is se-

cure (i.e. existentially non-forgeable against an adaptive chosen message attack),

provided that the RSA problem is intractable (i.e. RSA function is a one-way

trapdoor function [18]). Throughout the thesis, we assume a static adversary

model where the adversary controls exactly t− 1 users and chooses them at the

beginning of the attack. In this model, the adversary obtains all secret informa-

tion of the corrupted users and the public parameters of the cryptosystem. She
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can control the actions of the corrupted users, ask for partial signatures of the

messages of her choice, but she cannot corrupt another user in the course of an

attack, i.e., the adversary is static in that sense.

Theorem 3.1.1. Given that the standard RSA signature scheme is secure, the

threshold RSA signature scheme is secure under the static adversary model.

Proof. To reduce the problem of breaking the standard RSA signature scheme to

breaking the proposed threshold scheme, we will simulate the threshold protocol

with no information on the secret where the output of the simulator is indis-

tinguishable from the adversary’s point of view. Afterwards, we will show that

the secrecy of the private key d is not disrupted by the values obtained by the

adversary. Thus, if the threshold RSA scheme is not secure, i.e., an adversary

who controls t−1 users can forge signatures in the threshold scheme, one can use

this simulator to forge a signature in the standard RSA scheme.

Let S ′ denote the set of users controlled by the adversary. To simulate the

adversary’s view, the simulator first selects a random interval I = [a, b) from ZM ,

M =
∏t

i=1 mi. The start point a is randomly chosen from ZM and the end point is

computed as b = a+m0MS′ . Then, the shares of the corrupted users are computed

as yj = a mod mj for j ∈ S ′. Note that, these t− 1 shares are indistinguishable

from random ones due to (2.2) and the improved perfectness condition. Although

the simulator does not know the real value of d, it is guaranteed that there exists

a y ∈ I which is congruent to yj (mod mj) and d (mod m0) for all possible d

values.

Since we have a (t, n)-threshold scheme, given a valid RSA signature (s, w),

the partial signature si for a user i /∈ S ′ can be obtained by

si = sκ−δS
∏
j∈S′

(wuj)−1 mod N

where S = S ′ ∪ {i}, κ = w−MS mod N and δS is equal to either⌊∑
j∈S′ uj

MS

⌋
+ 1 or

⌊∑
j∈S′ uj

MS

⌋
.
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The value of δS is important because it carries information on y. Let U =
∑

j∈S′ uj

and US = U mod MS. One can find whether y is greater than US or not by

looking at δS:

y < US if δS = bU/MSc+ 1,

y ≥ US if δS = bU/MSc,

Since the simulator does not know the real value of y, to determine the value of

δS, the simulator acts according to the interval randomly chosen at the beginning

of the simulation.

δS =

{
bU/MSc+ 1, if a < US

bU/MSc, if a ≥ US
(3.3)

It is obvious that, the value of δS is indistinguishable from the real case if

US /∈ I. Now, we will prove that the δS values computed by the simulator does

not disrupt the indistinguishability from the adversary’s point of view. First of

all, there are (n− t+ 1) possible δS computed by using US since all the operations

in the exponent depend on the coalition S alone. If none of the US values lies

in I, the δS values observed by the adversary will be indistinguishable from a

real execution of the protocol. Using this observation, we can prove that no

information about the private key is obtained by the adversary.

Observing the t − 1 randomly generated shares, there are m0 = φ(N) candi-

dates in I for y which satisfy yj = y mod mj for all j ∈ S ′. These m0 candidates

have all different remainders modulo m0 since gcd(MS′ ,m0) = 1. So, exactly

one of the remainders is equal to the private key d. If US /∈ I for all S, given

an si, the shared value y can be equal to any of these m0 candidates hence any

two different values of the secret key d will be indistinguishable from adversary’s

point of view. In our case, this happens with all but negligible probability. First,

observe that US ≡ 0 mod mi and there are m0MS′/mi multiples of mi in I. Thus,

the probability of US /∈ I for a coalition S is equal to(
1− m0MS′/mi

MS′

)
=

(
1− m0MS′

MS

)
.
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According to (2.2), mi > m0
2 for all i hence the probability of US /∈ I for all

possible S is less than
(

1− 1
m0

)n−t+1

, which is almost surely 1 for m0 � n.

Consequently, the output of the simulator is indistinguishable from a real

instance from the adversary’s point of view, and hence the simulator can be used

to forge a signature in the standard RSA scheme if the threshold RSA scheme

can be broken.

3.2 Using Chinese Remainder Theorem for

Sharing Other Functions

3.2.1 Sharing of the ElGamal Decryption Function

The ElGamal cryptosystem [26] is another popular public key scheme proposed

by T. ElGamal in 1989. It is an inherently probabilistic and semantically secure

encryption scheme. For a cryptosystem to be semantically secure, it must be in-

feasible for a computationally-bounded adversary to derive significant information

about a message (plaintext) when given only its ciphertext and the corresponding

public encryption key. The description of the cryptosystem is given in Fig. 3.2.

ElGamal encryption scheme, like RSA, has the following multiplicative homo-

morphic property:

E(w)× E(w′) = E(ww′)

for messages w and w′ where E stands for the encryption function and × is the

component-wise multiplication. Since the standard RSA encryption is determin-

istic, it is not semantically secure. One can use random padding to add semantic

security as in [6]. However, this removes the homomorphic property. ElGamal

does not suffer from such a problem since it is inherently semantically secure.

This property makes ElGamal encryption suitable for use in threshold password

authenticated key exchange protocols [1].
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• Setup: Let p be a large prime and g be a generator of Zp. Choose a random
α ∈ {1, . . . , p−1} and compute β = gα mod p. (β, g, p) and α are the public
and private keys, respectively.

• Encryption: Given a message w ∈ Zp, the ciphertext c = (c1, c2) is com-
puted as

c1 = gr mod p

c2 = βrw mod p

where r is a random integer from Zp.

• Decryption: Given a ciphertext c, the message w is computed as

w = (c1
α)−1c2 mod p.

Figure 3.2: ElGamal’s encryption scheme.

Threshold ElGamal Encryption Scheme: The following is a procedure

that shares the ElGamal decryption function among n users with the Asmuth-

Bloom SSS such that when t users come together they can decrypt the ciphertext:

• Setup: In the ElGamal setup phase, choose p = 2q + 1 where q is a large

random prime and let g ∈ Z∗p with order q. Choose a random α ∈ {1, . . . , p−
1} and compute β = gα mod p. Let α and (β, g, p) be the private and the

public keys, respectively. Use Asmuth-Bloom SSS for sharing the private

key α with m0 = 2q.

• Encryption is the same as the standard ElGamal encryption.

• Decryption: Let (c1, c2) be the ciphertext to be decrypted where c1 =

gk mod p for some k ∈ {1, . . . , p−1} and c2 = βkw where w is the message.

The coalition S of t users wants to obtain the message w = sc2 mod p for

the decryptor s = (cα1 )−1 mod p.
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– Generating partial results : Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS, (3.4)

si = c1
−ui mod p,

βi = gui mod p. (3.5)

– Combining partial results : The incomplete decryptor s is obtained by

combining the si values

s =
∏
i∈S

si mod p.

– Correction: The βi values will be used to find the exponent which will

be used to correct the incomplete decryptor. Compute the incomplete

public key β as

β =
∏
i∈S

βi mod p. (3.6)

Let κs = c1
MS mod p and κβ = g−MS mod p be the correctors for s and

β, respectively. The corrector exponent δ can be obtained by trying

βκjβ
?≡ β (mod p) (3.7)

for 0 ≤ j < t.

– Extracting the message: Compute the message w as

s = sκs
δ mod p,

w = sc2 mod p.

where δ denotes the value of j that satisfies (3.7).

As in the case of RSA, the decryptor s is incomplete since we need to obtain

y =
∑

i∈S ui mod MS as the exponent of c−1
1 . Once this is achieved, (c−1

1 )y ≡
(c−1

1 )α (mod p) since y = α + Aφ(p) for some A.

When the equality in (3.7) holds we know that β = gα mod p is the correct

public key. This equality must hold for one j value, denoted by δ, in the given

interval because since the ui values in (3.4) and (3.5) are first reduced modulo
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MS. So, combining t of them will give α + am0 + δMS in the exponent in (3.6)

for some δ ≤ t− 1. Thus in (3.6), we obtained

β = gα+am0+δMS mod p ≡ gα+δMS = βgδMS = βκ−δβ (mod p)

and for j = δ equality must hold. Actually, in (3.6) and (3.7), our purpose is not

computing the public key since it is already known. We want to find the corrector

exponent δ to obtain s, which is also equal to the one we use to obtain β. The

equality can be verified as seen below:

s ≡ c1
−α = β−r

=
(
g−(α+(δ−δ)MS)

)r
= c1

−(α+am0+δMS)
(
c1
MS
)δ

= sκs
δ (mod p)

3.2.1.1 Security Analysis

Here, we will prove that the threshold ElGamal encryption scheme is semantically

secure provided that the standard ElGamal encryption scheme is semantically

secure. We refer the reader to [29] for a formal definition of the threshold semantic

security.

Theorem 3.2.1. Given that the standard ElGamal encryption scheme is seman-

tically secure, the threshold ElGamal encryption scheme is semantically secure

under the static adversary model.

Proof. The structure of the proof is similar to that we did for the threshold RSA

signature scheme. Let S ′ denote the set of users controlled by the adversary.

To simulate the adversary’s view, the simulator first selects a random interval

I = [a, b) from ZM , M =
∏t

i=1 mi. The start point a is randomly chosen from

ZM and the end point is computed as b = a + m0MS′ . Then, the shares of the

corrupted users are computed as yj = a mod mj for j ∈ S ′.

Since we have a (t, n)-threshold scheme, when we determine the yj values for

j ∈ S ′, the shares of other users are also determined. Although they cannot
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be computed easily, given a valid message-ciphertext pair (w, (c1, c2)) the partial

decryptor si and βi for a user i /∈ S ′ can be obtained by

si =
(
wc2

−1
)
κs
−δS

∏
j∈S′

c1
uj mod p,

βi = βκβ
−δS

∏
j∈S′

(βuj)−1 mod p.

where S = S ′ ∪{i}, κs = c1
MS mod p, κβ = g−MS mod p and δS is equal to either⌊∑
j∈S′ uj

MS

⌋
+ 1 or

⌊∑
j∈S′ uj

MS

⌋
.

We use the same ideas to choose the value of δS as in the previous simulator so

we skip the details and the analysis for the secrecy of the private key in the proof.

Consequently, the output of the simulator is indistinguishable from the ad-

versary’s point of view, and hence we proved that the threshold ElGamal scheme

must be semantically secure if the standard one is.

3.2.2 Sharing of the Paillier Decryption Function

Paillier’s probabilistic cryptosystem [57] is a member of a different class of cryp-

tosystems where the message is used in the exponent of the encryption operation.

The description of the cryptosystem is given in Fig. 3.3.

Paillier’s encryption scheme is probabilistic and has interesting homomorphic

properties:

E(w1)E(w2) = E(w1 + w2)

E(w)a = E(aw)

for messages, w,w1, w2 and a random integer a where E stands for the encryption

function. These homomorphic properties make this encryption scheme suitable

for different applications such as secure voting and lottery protocols [4, 29], DSA

sharing protocols [51], and private information retrieval [56].
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• Setup: Let N = pq be the product of two large primes and λ = lcm(p −
1, q − 1). Choose a random g ∈ ZN2 such that the order of g is a multiple
of N . The public and private keys are (N, g) and λ, respectively.

• Encryption: Given a message w ∈ ZN , the ciphertext c is computed as

c = gwrN mod N2

where r is a random number from ZN .

• Decryption: Given a ciphertext c ∈ ZN2 , the message w is computed as

w =
L
(
cλ mod N2

)
L (gλ mod N2)

mod N

where L(x) = x−1
N

, for x ≡ 1 (mod N).

Figure 3.3: Paillier’s encryption scheme.

Threshold Paillier Encryption Scheme: The following is a procedure that

shares the Paillier decryption function among n users with the Asmuth-Bloom

SSS such that when t users come together they can decrypt the ciphertext. The

setup part below is inspired by [29]:

• Setup: In the Paillier setup phase, choose large primes p = 2p′ + 1 and q =

2q′+ 1 where p′ and q′ are also large random primes and gcd(N, φ(N)) = 1

for N = pq. Let g = (1 + N)abN mod N2 for random a and b from Z∗N .

Compute θ = aβλ mod N for a random β ∈ Z∗N where λ = lcm(p−1, q−1)

is the Carmichael number for N . Let (N, g, θ) and λ be the public and

private keys, respectively . Use the Asmuth-Bloom SSS to share βλ with

m0 = Nλ.

• Encryption is the same as the standard Paillier encryption.

• Decryption: Let c = gwrN mod N2 be the ciphertext to be decrypted for

some random r ∈ Z∗N where w is the message from ZN . Assume a coalition

S of size t wants to obtain the message w = L(cβλ mod N2)
θ

mod N . We call

s = cβλ mod N2 as the decryptor.
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– Generating partial results : Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS,

si = cui mod N2,

θi = gui mod N2.

– Combining partial results : The incomplete decryptor s is obtained by

combining the si values

s =
∏
i∈S

si mod N2.

– Correction: The θi values will be used to find the exponent which

corrects the incomplete decryptor. Compute the incomplete θ as

θ =
∏
i∈S

θi mod N2. (3.8)

Let κs = c−MS mod N2 and κθ = g−MS mod N2 be the correctors for

s and θ, respectively. The corrector exponent δ can be obtained by

trying

θ
?
= L(θκjθ mod N2) (3.9)

for 0 ≤ j < t. Note that, for wrong corrector exponents L is undefined.

– Extracting the message: Compute the message w as

s = sκs
δ mod N2,

w =
L(s)

θ
mod N.

where δ denotes the value for j that satisfies (3.9).

The decryptor s is incomplete and to find the corrector exponent we used a

similar approach. When the equality in (3.9) holds we know that θ = aβλ mod N2

is the correct value. Also, this equality must hold for one j value, denoted by δ,

in the given interval. Actually, in (3.8) and (3.9), our purpose is not computing

θ since it is already known. We want to find the corrector exponent δ to obtain

s, which is also equal to the one we used to obtain θ.
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3.2.2.1 Security Analysis

Here, we will prove that the threshold Paillier encryption scheme is semantically

secure provided that the standard Paillier encryption scheme is semantically se-

cure.

Theorem 3.2.2. Given that the standard Paillier encryption scheme is semanti-

cally secure, the threshold Paillier encryption scheme is semantically secure under

the static adversary model.

Proof. The structure of the proof is similar to those we did for the previous

threshold schemes. Let S ′ denote the set of users controlled by the adversary.

To simulate the adversary’s view, the simulator first selects a random interval

I = [a, b) from ZM , M =
∏t

i=1 mi. The start point a is randomly chosen from

ZM and the end point is computed as b = a + m0MS′ . Then, the shares of the

corrupted users are computed as yj = a mod mj for j ∈ S ′.

Since we have a (t, n)-threshold scheme, when we determine the yj values for

j ∈ S ′, the shares of other users are also determined. Although they cannot be

computed easily, given a valid message-ciphertext pair (w, c) the decryptor share

si and θi for a user i /∈ S ′ can be obtained by

si = (1 + wθN)κs
−δS

∏
j∈S′

(c1
uj)−1 mod N2,

θi = (1 + θN)κθ
−δS

∏
j∈S′

(θuj)−1 mod N2.

where S = S ′ ∪ {i}, κs = c−MS mod N2, κθ = g−MS mod N2 and δS is equal to

either ⌊∑
j∈S′ uj

MS

⌋
+ 1 or

⌊∑
j∈S′ uj

MS

⌋
.

We use the same ideas to choose the value of δS as in the previous simulator so

we skip the details and the analysis for the secrecy of the private key in the proof.

Consequently, the output of the simulator is indistinguishable from the ad-

versary’s point of view, and hence we proved that the threshold Paillier scheme

must be semantically secure if the standard one is.
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3.2.3 Sharing of the Naccache-Stern Decryption Function

A different cryptosystem which uses bitwise encryption was proposed by Naccache

and Stern [54]. This cryptosystem is based on a type of knapsack problem: Given

arbitrary integers c, l, p, and a vector of integers x = (x1, ..., xn), find a vector

w ∈ {0, 1}l such that

c ≡
l∏

i=1

xi
wi mod p (3.10)

When the xi are relatively prime and much smaller than the modulus p, this

knapsack problem can be solved easily. When xi are arbitrary numbers in Zp,

the problem is hard. The cryptosystem is given in Figure 3.4.

• Setup: Let p be a large prime, l be a positive integer and for i from 1 to
l, set pi to be the ith prime, starting with p1 = 2. Choose a secret integer
d < p− 1, such that gcd(p− 1, d) = 1. Set vi = d

√
pi mod p. The public key

is then p, l, v = (v1, . . . , vl). The private key is d.

• Encryption: To encrypt an l-bit long message w, calculate

c =
l∏

i=1

vi
wi mod p. (3.11)

where wi is the ith bit of message w.

• Decryption: One can obtain the plaintext by computing

w =
l∑

i=1

gcd(pi, c
d mod p)− 1

pi − 1
× 2i. (3.12)

Figure 3.4: Naccache-Stern’s encryption scheme.

Threshold Naccache-Stern Encryption Scheme: To the best of our

knowledge, no FSSs have been proposed for the Naccache-Stern knapsack cryp-

tosystem. Here we give the first realization of an FSS for this cryptosystem with

Asmuth-Bloom SSS:
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1. In the Naccache-Stern Knapsack setup, choose p be a safe prime, l be a

positive integer and for i from 1 to l, set pi to be the ith prime, starting

with p1 = 2. Choose a secret integer d < p− 1, such that gcd(p− 1, d) = 1.

Set xi = d
√
pi mod p. Set the public key be p, l, x. The private key d is

shared with m0 = p− 1.

2. Let c be the ciphertext to be decrypted where c =
∏l

i=1 xi
wi mod p and

assume a coalition S of size t wants to obtain the plaintext w. The ith

person in the coalition knows mj for all j ∈ S and yi = y mod mi as its

secret share.

3. Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS ,

si = cui mod p.

4. The incomplete decryptor s is obtained by combining the si values

s =
∏
i∈S

si mod p. (3.13)

5. Let κ = c−MS mod p be the corrector. The corrector exponent δ can be

obtained by trying

x1
sκj ?≡ 2 mod p (3.14)

for 0 ≤ j < t.

6. Compute the plaintext message w as

s = sκδ mod p,

w =
l∑

i=1

(gcd(pi, s mod p)− 1)

pi − 1
× 2i.

Where δ denotes the j value that satisfies (3.14).
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The decryptor s is incomplete since we need to obtain y =
∑

i∈S ui mod MS as

the exponent of c. Once this is achieved, cy ≡ cd mod p, since y = d + a(p− 1)

for some a.

Note that the equality in (3.14) must hold for one j ≤ t−1 since the ui values

were already reduced modulo MS. So, combining t of them in (3.13) will give

d+ am0 + δMS in the exponent for some δ ≤ t− 1. Thus we obtained

s = cd+am0+δMS ≡ cd+δMS ≡ scδMS ≡ sκ−δ mod p (3.15)

and for j = δ, equation (3.14) will hold.

3.3 Efficiency Analysis of the Proposed Schemes

Although the proposed schemes are not more efficient than Shoup’s work [68],

which is the fastest threshold RSA signature scheme, they are comparable in per-

formance. In this section, we give an efficiency analysis of the proposed schemes.

First, we compare the proposed threshold RSA scheme with the basic RSA scheme

in [68] in terms of share size and computation cost. For the computation cost,

the dominating factor is the exponentiation operations hence we are mainly inter-

ested in the number of exponentiations. Note that, the cost of an exponentiation

is proportional to the size of the exponent.

• Share size: In [68], the size of a share is approximately k bits for a k-bit

modulus N . In our case, because of (2.2) the size of a share is about 2k

bits for the same N .

• Computing partial signatures: In [68], it takes an exponentiation with a

(k + log(n!))-bit exponent to compute a partial signature. In the proposed

scheme,

ui = yiM
′
S,iMS\{i} mod MS
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is a 2kt-bit integer. To compute it efficiently we first compute M ′
S,i and

r = byiM ′
S,i/mic which are 2k-bit integers. Now ui is equal to

ui = MS\{i}(yiM
′
S,i − rmi)

and computing the partial signature si = wui mod N needs a modular ex-

ponentiation with 2kt-bit exponent. Note that no extra storage is needed

to store ui.

• Combining partial signatures: In [68], combining the partial results requires

t exponentiations with approximately log(n!)-bit exponents, hence the cost

is t log(n!). After that, these t results are multiplied to obtain the signa-

ture. In the proposed scheme, after obtaining the incomplete signature, an

exponentiation with a 2kt-bit exponent is needed to compute the corrector.

Note that while computing the partial signature the ith player computes

wMS\{i} mod N as an intermediate value. The combiner can compute its

inverse and raise it to the mith power to compute the corrector which re-

quires an exponentiation with 2k-bit exponent rather than 2kt. After that,

at most 2t more multiplications are required for computing the incomplete

signature and checking equation (3.2).

Criteria Shoup’s scheme Proposed scheme
Share sizes k 2k
Cost of computing partial signatures k + log(n!) 2kt
Cost of combining partial signatures t log(n!) 2k

Table 3.1: Comparison of the proposed threshold RSA signature scheme with
Shoup’s scheme [68] in terms of the share sizes, and the cost of computing and
combining the partial signatures measured in terms of the total size of exponents.

Table 3.1 compares the performance of the proposed scheme with that of [68].

Although not more efficient, the proposed RSA signature scheme is comparable

in performance to Shoup’s scheme given that t is a small integer, which is the case

in a typical application. Regarding the proposed threshold ElGamal and Pallier

schemes, their complexities are similar to that of the threshold RSA scheme and

hence the comparisons are similar to that in Table 3.1.



Chapter 4

Sharing DSS with CRT

The Digital Signature Standard (DSS) is the current U.S. standard for digital

signatures. Sharing DSS is an interesting problem and a neat solution was given

by Gennaro et al. [34] based on Shamir’s SSS. In this chapter, we propose a new

threshold scheme for the Digital Signature Standard by using the Asmuth-Bloom

SSS. To the best of our knowledge, this is the first provably secure threshold DSS

scheme based on the Chinese Remainder Theorem. The DSS scheme is given in

Fig. 4.1.

4.1 Modifications on Asmuth-Bloom SSS for

DSS

To adapt the original scheme for threshold DSS, if n > 3t−1, we first modify the

equation (2.1) used in the Asmuth-Bloom secret sharing scheme in Chapter 2 as

2t∏
i=1

mi > nm0
2

2t−1∏
i=1

mn−i+1. (4.1)

Note that if n > 3t− 1, (4.1) also implies that

t∏
i=1

mi > nm0
2

t−1∏
i=1

mn−i+1. (4.2)

35
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• Key Generation Phase: Let p and q be large prime numbers where q|p− 1
and g ∈ Z∗p be an element of order q. The private key α ∈R Z∗q is chosen
randomly and the public key β = gα mod p is computed.

• Signing Phase: The signer first chooses a random ephemeral key k ∈R Z∗q
and then computes the signature (r, s) where

r = (gk
−1

mod p) mod q

s = k(w + αr) mod q

for a hashed message w ∈ Zq.

• Verification Phase: The signature (r, s) is verified by checking

r
?
= (gws

−1

βrs
−1

mod p) mod q

where s−1 is computed in Z∗q.

Figure 4.1: The DSS scheme.

If n ≤ 3t − 1, (4.2) implies (4.1) and we generate the mis with respect to (4.2).

In general, we will use (4.2) for t-out-of-n secret sharing schemes in the primi-

tives which will be described later. For one primitive, Joint-ZS, which will be

described in next section, we will use a 2t-out-of-n sharing by using (4.1). We

also change the definition of M as

M =

⌊∏t
i=1 mi

n

⌋
.

4.1.1 Arithmetic Properties of the Modified Asmuth-

Bloom SSS

Suppose multiple secrets are shared with common parameters t, n, and moduli

mis. The shareholders can use the following properties to obtain new shares for

the sum and product of the shared secrets.

Proposition 4.1.1. Let d1, d2, · · · , dn be secrets shared by Asmuth-Bloom SSS

with common parameters t, n, and moduli mis. Let yij be the share of the ith
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user for secret dj. Then, for

D = (
n∑
i=1

di) mod m0

Yi = (
n∑
j=1

yij) mod mi,

we have

D
t↔ (Y1, Y2, · · · , Yn),

i.e., the secret D is t-out-of-n shared with shares Y1, Y2, · · · , Yn.

Proof. For

Y =
n∑
i=1

(di + Aim0),

we have Yi ≡ Y mod mi. Note that due to (4.2), Y < nM < MS for any coalition

S where |S| ≥ t. Hence, a coalition S of t users can construct Y ∈MS and obtain

D = Y mod m0.

Proposition 4.1.2. Let d1, d2 be secrets shared by Asmuth-Bloom SSS with com-

mon parameters t, n and moduli mis. Let yij be the share of the ith user for secret

dj. Then, for

D = d1d2 mod m0,

Yi = y1y2 mod mi,

we have

D
2t↔ (Y1, Y2, · · · , Yn).

Proof. For

Y =
2∏
i=1

(di + Aim0),

we have Yi ≡ Y mod mi. Note that Y < M2 < MS for any coalition S where

|S| ≥ 2t. Hence, a coalition S of 2t users can construct Y ∈ MS and obtain

D = Y mod m0.
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4.2 The Threshold DSS Scheme

To obtain a threshold DSS scheme, first the dealer generates the private key α

and shares it among the users by a (t, n) Asmuth-Bloom secret sharing scheme

with m0 = q. Then a signing coalition S can sign a message in a threshold

fashion without requiring a trusted party. Note that anyone can obtain the secret

key α and forge signatures if he knows k for a valid signature (r, s). Hence,

r = (gk
−1

mod p) mod q must be computed in a way that no one obtains k. Here,

we first explain the necessary primitives that will be used to solve this problem

and then describe the overall threshold signature scheme together. Below, S

denotes the signing coalition of size 2t+ 1. Without loss of generality, we assume

S = {1, 2, . . . , 2t + 1}. We will first describe the primitive tools we used in the

proposed CRT-based threshold DSS scheme. In these primitives, we set m0 = q.

4.2.1 Joint Random Secret Sharing

In a joint random secret sharing scheme (Joint-RSS), each user in the signing

coalition S contributes something to the secret generation process and obtains a

share for the resulting random secret as described in Fig. 4.2. A verifiable version

of this scheme can be found in Chapter 5.

• Each user j ∈ S chooses a random secret dj ∈ Zm0 and shares it as dj
t↔

(y1j , y2j , · · · , y(2t+1)j) where yij is the share of the ith user.

• The ith user computes

Yi =

2t+1∑
j=1

yij

 mod mi.

By Proposition 4.1.1, D t↔ (Y1, Y2, . . . , Y2t+1) is a valid and secure t-out-of-(2t+1)
SSS for

D =

(
2t+1∑
i=1

di

)
mod m0.

Figure 4.2: CRT-based Joint-RSS procedure.
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4.2.2 Joint Zero Sharing

In a joint zero sharing scheme (Joint-ZS), each user in the signing coalition S

contributes something to the random zero generation process and obtains a share

for the resulting zero, as described in Fig. 4.3.

• Each user j ∈ S shares 0 2t↔ (y1j , y2j , · · · , y(2t+1)j) where yij = Ajm0 mod mi is
the share of the ith user for some Ajm0 < M . Here the value M is modified as
follows:

M =

⌊∏2t
i=1mi

n

⌋
.

Note that the moduli mis satisfy the equation (4.1).

• The ith user computes

Yi =

2t+1∑
j=1

yij

 mod mi.

By Proposition 4.1.1, D 2t↔ (Y1, Y2, . . . , Y2t+1) is a valid 2t-out-of-(2t+1) scheme.

Figure 4.3: CRT-based Joint-ZS procedure.

4.2.3 Computing gd mod p

For threshold DSS, we will need to share and compute gd mod p for a joint random

secret d ∈ Zq. Fig. 4.4 describes a scheme, Joint-Exp-RSS, to construct an

approximate value for Fd = gd mod p. This approximate value will later be

corrected through a separate correction process.

Observe that d = ((
∑

i∈S ui) mod MS) mod q whereas this construction pro-

cess computes Fd′ = gd
′
mod p for d′ =

∑
i∈S ui mod q. Since there are 2t+1 users

in S and ui < MS for all i, d = d′ − δdMS mod q for some integer 0 ≤ δd ≤ 2t.
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• To compute Fd = gd mod p for a random secret value d, S uses Joint-RSS to
generate and share d as d t↔ (y1, y2, . . . , y2t+1) with m0 = q.

• Each user i ∈ S computes

ui,d = (yiMS\{i}M
′
S,i) mod MS

where M ′S,i is the inverse of MS\{i} mod mi, and broadcasts

fi,d = gui,d mod p.

• The approximate value for gd mod p is computed as

Fd′ =
∏
i∈S

fi,d mod p.

Figure 4.4: CRT-based Joint-Exp-RSS procedure.

4.2.4 Computing gk
−1

mod p

In DSS, we need to compute r = gk
−1

mod p in such a way that neither k nor k−1

is known by any user. The Joint-Exp-Inverse procedure described in Fig. 4.5

computes r without revealing k.

Note that the (ja, jk) pair, 0 ≤ ja, jk ≤ 2t, found for (4.3) is unique with

overwhelming probability given that (2t+ 1)2 � q.

4.2.5 The Overall Scheme

The phases of the proposed threshold DSS scheme are described below:

• Key Generation Phase: Let α ∈R Z∗q be the private signature key. The

dealer sets m0 = q and shares α
t↔ (α1, α2, . . . , αn).

• Signing Phase: To sign a hashed message w ∈ Zq, the signing coalition S

of size 2t+ 1 first computes

r = (gk
−1

mod p) mod q
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• S uses Joint-RSS to jointly share random secrets k t↔ (k1, k2, . . . , k2t+1), a t↔
(a1, a2, . . . , a2t+1), and uses Joint-ZS to distribute shares for zero, i.e., 0 2t↔
(z1, z2, . . . , z2t+1).

• S constructs v = ak from shares vi = (aiki + zi) mod mi, i ∈ S. Note that
v

2t+1↔ (v1, v2, . . . , v2t+1) by Propositions 4.1.1 and 4.1.2.

• S uses Joint-Exp-RSS to obtain

Fa′ =
∏
i∈S

fi,a =
∏
i∈S

gui,a ≡ ga′ ≡ ga+δaMS mod p,

Fk′ =
∏
i∈S

fi,k =
∏
i∈S

gui,k ≡ gk′ ≡ gk+δkMS mod p.

S also computes

Fa′k′ =
∏
i∈S

fi,ak =
∏
i∈S

Fa′
ui,k ≡ ga′k′ ≡ g(a+δaMS)(k+δkMS) mod p

≡ gvFa′δkMSFk′
δaMSg−δaδkM

2
S mod p.

• S checks the following equality for all 0 ≤ ja, jk ≤ 2t

Fa′k′
?= gvFa′

jkMSFk′
jaMSg−jajkM

2
S mod p (4.3)

and finds the (ja = δa, jk = δk) pair that satisfies this equality. Once δa is found

Fa = ga mod p = Fa′g
−δaMS mod p

can be computed.

• The signing coalition S computes

gk
−1

mod p = Fa
(v−1) mod p.

Figure 4.5: CRT-based Joint-Exp-Inverse procedure.
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by Joint-Exp-Inverse described in Fig. 4.5. To compute

s = k(w + rα) mod q,

each user i ∈ S computes

si = ki(w + rαi) mod mi

and broadcasts it. Then the signature s is computed by using the recon-

struction process for the Asmuth-Bloom SSS with 2t+ 1 shares.

• Verification Phase is the same as the standard DSS verification.

Since α is shared (t, n), the value α+Aαm0 is less than M and, r, w < q = m0.

Hence,

w + ry < m0 +m0 (α + Aαm0) < (m0 + 1)M

and a coalition of size t+1 is sufficient to compute w+ry and obtain w+rα mod q.

Since the threshold for the secret k is t, by Proposition 4.1.2, s
2t+1↔ (s1, s2, . . . , sn)

and s can be computed by 2t+ 1 partial signatures.

4.3 Security Analysis

Here we will prove that the proposed threshold DSS signature scheme is secure

(i.e. existentially non-forgeable against an adaptive chosen message attack), pro-

vided that the DSS signatures are unforgeable. Throughout the paper, we as-

sume a static adversary model where the adversary controls exactly t − 1 users

and chooses them at the beginning of the attack. In this model, the adversary

obtains all secret information of the corrupted users and the public parameters

of the cryptosystem. She can control the actions of the corrupted users, ask for

partial signatures of the messages of her choice, but she cannot corrupt another

user in the course of an attack, i.e., the adversary is static in that sense.

First we recall that the modified Asmuth-Bloom scheme is perfect:
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Theorem 4.3.1. The modified secret sharing scheme with the new M and equa-

tion (4.2) is perfect in the sense that the probabilities Pr(d = d′) and Pr(d = d′′)

are approximately equal for all d′, d′′ ∈ Zm0.

Proof. Let S ′ be a corrupted coalition of t− 1 users. For perfectness, we need to

check the value of M/MS′ which is

M

MS′
>

∏t
i=1 mi

n
∏t−1

i=1 mn−i+1

> m0
2

due to equation (4.2). Similar to the proof of Theorem 2.2.1, we can see that the

perfectness condition is preserved.

To reduce the problem of breaking the DSS signature scheme to breaking the

proposed threshold scheme, we will simulate the protocol with no information

on the secret where the output of the simulator is indistinguishable from the

adversary’s point of view. The input to the simulator is the hashed message w,

its signature (r, s), the public key β, the secret shares of the corrupted users, i.e.,

αi ∈ SB, where SB denotes the corrupted (bad) user set. Let SG be the set of

good users in S and let

r∗ = gms
−1

βrs
−1

mod p.

The actions of the simulator is described below:

1. By simulating the good users in SG, with Joint-RSS procedure, the sim-

ulator shares random values for each user in SG. It also obtains the good

users’ shares from the corrupted users in SB. Note that all of these values

are known by the simulator since |SG| ≥ t, which is the threshold. Let

a, k ∈ Zq be the shared values in this step, i.e., k
t↔ (k1, k2, . . . , k2t+1)

and a
t↔ (a1, a2, . . . , a2t+1). After that, 0 is shared by using the procedure

Joint-ZS, i.e., 0
2t↔ (z1, z2, . . . , z2t+1). For the rest of the simulation, let

δa =
⌊∑

i∈S ui,a
MS

⌋
and δk =

⌊∑
i∈S ui,k
MS

⌋
.

2. By using the 2nd step in Fig. 4.5, v = ak is computed. Let Fa′ = r∗
v
gδaMS .

The simulator uses ai values to compute fi,a = gaiMS\iM
′
S,i mod MS mod p for
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all i ∈ SG but one. For the last user, fi,a is selected such that

∏
i∈SG

fi,a ≡ Fa′

(∏
i∈SB

fi,a

)−1

mod p. (4.4)

These fi,a values are then broadcast.

3. By using the construction phase of Joint-Exp-RSS, Fk′ =
∏

i∈S fi,k mod p

is computed. Let

Fa′k′ = F ′a
δkMS

Fk′
δaMSg−δaδkM

2
Sgv mod p.

The simulator uses ki values to compute fi,ak = Fa′
kiMS\iM

′
S,i mod MS

mod p

for all i ∈ SG but one. For the last user, fi,ak is selected such that

∏
i∈SG

fi,ak ≡ Fa′k′

(∏
i∈SB

fi,ak

)−1

mod p.

These fi,ak values are then broadcasted. After that the correction phase is

completed.

4. Let si = ki (w + αir) mod q for i ∈ SB. The simulator chooses a random

integer Us smaller than M (m0 +m0M) such that Us ≡ si mod mi for i ∈
SB and Us ≡ s mod m0. Then it computes si = Us mod mi for i ∈ SG and

broadcasts them. After these steps, the signature (r, s) is computed.

To prove that the outcome of the simulator is indistinguishable, we first need

to state the following conjecture:

Conjecture 4.3.1 (Gennaro et al. [34]). Let G be the subgroup generated by

g. Choose u, v at random, uniformly distributed and independently in Zq. The

following probability distributions on G×G,

(gu mod p, gv mod p) and
(
gu mod p, gu

−1

mod p
)

are computationally indistinguishable.
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A similar assumption is also used in [60] to prove the security of the proposed

anonymous fingerprinting scheme. Also in [3], Bao et al. proved that if the

Computational Diffie-Hellman (CDH) assumption holds there is no probabilistic

polynomial time Turing machine which outputs gx
−1

on inputs g and gx with

non-negligible probability. Note that the CDH assumption states that there is no

probabilistic polynomial time Turing machine which outputs gxy on inputs g, gx

and gy with non-negligible probability. The decisional version of CDH is called as

the Decisional Diffie-Hellman (DDH) assumption. DDH states that the following

probability distributions on G×G×G,

(gu, gv, guv) and (gu, gv, gz)

are computationally indistinguishable where u, v, z are random, uniformly dis-

tributed and independent in Zq.

Lemma 4.3.2. The outcome of the simulator is indistinguishable from the CRT-

based threshold DSS signature from adversary’s point view.

Proof. The steps of the simulator are indistinguishable from the real execution

of the protocol as proved below:

1. As shown in Theorem 4.3.1 the modified SSS is perfect, i.e., the probabilities

Pr(d = k) and Pr(d = k) are approximately equal for k, k ∈ Zm0 where d is

the shared secret, k is the shared value in real protocol and k is the shared

value in the simulation. The same argument is also true for a.

2. In the real protocol, the set of shares (v1, v2, . . . , v2t+1) is a valid sharing

for a uniformly distributed value v. In the simulation, (v1, v2, . . . , v2t+1)

also yields a uniformly distributed value v. Hence, the distribution of the

shares vi, i ∈ S, is identical to the distribution of vi, i ∈ S. Note that, if

the joint zero-sharing procedure is not used, i.e., if the shares of v are not

randomized, the secrecy of a and k is not preserved.

In the real protocol, Fa′ = ga+δaMS mod p where a is uniformly random and

δa is another random value independent from a. The simulation computes

Fa′ = gk
−1v+δaMS mod p. Since v is uniformly random, k−1v is also uniformly
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random. The simulator uses the exact δa value determined in Step 2 so its

distribution is identical to that of δa. Hence, the distribution of Fa′ and Fa′

values are identical.

In the simulation, ais are used to compute fi,a = gaiMS\iM
′
S,i mod MS mod p,

and in the computation of fi,a = gui,a , thanks to perfectness, the share ai

can be any integer from Zq. Hence, the distributions of fi,as and fi,as are

indistinguishable for the users in S \ {j}. However for the last user j of SG,

the simulator chooses a specific fj,a to satisfy equation (4.4). We will show

that without fj,a, the rest of the fi,as for i ∈ S \ {j} yield a random value

in the group generated by g. Let S ′ = S \ {j}. Consider∑
i∈S′

ui,a =
∑
i∈S′

aiMS\{i}M
′
S,i mod MS.

Since the threshold for a is t and |S ′| > t, the following equation is satisfied:

a =

((∑
i∈S′

ui,a

)
mod MS′

)
mod q.

However, when we try to do the same construction in the exponent,∏
i∈S′

fi,a ≡ ga+∆aMS′ mod p

for some ∆a < |S ′| MS

MS′
= |S ′|mj. Since, ∆a is an unknown, mj > m0

2 = q2,

and gcd (q,MS′) = 1, we have ga+∆aMS′ uniformly random in the group

generated by g. Note that this is true for every S ′ ⊂ S, i.e., there is no

correlation between fi,as for i ∈ S ′ when ui,as are computed for a larger

coalition S ⊃ S ′. Therefore, in the simulation, the adversary cannot distin-

guish the inconsistency of the last user’s fj,a. Hence, the distributions of

fi,a and fi,a for i ∈ S are indistinguishable.

The same argument is also true for the distributions of fi,ak and fi,ak for

i ∈ S which are used in the following step.

3. For the correction phase in the real protocol, the values fi,ak and fi,k use

the same value ui,k in the exponent, likewise, the ones in the simulator. The

correction equation used in the real protocol is

Fa′k′ = Fa′
δkMSFk′

δaMSg−δaδkM
2
Sgv mod p.
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And, the simulator uses the value

Fa′k′ = Fa′
δkMS

Fk′
δaMSg−δaδkM

2
Sgv mod p

where the distribution of each value on the right side is identical to that

of the corresponding value in the real protocol. Hence the distribution of

Fa′k′ and Fa′k′ values are identical. The distributions of the outputs of the

correction processes, i.e., δa and δk, are also identical since the simulator

uses actual the δa and δk values.

Here we need to use the DDH assumption and Conjecture 4.3.1. After

the correction, Fa′ , Fk′ and Fa′k′ are revealed where in the real protocol

they are equal to ga
′
, gk

′
and ga

′k′ . The DDH assumption states that the

distributions of these triplets are indistinguishable. Besides, Fk′ = gk
′

and,

once δk is found, gk can be computed. The users will also know r = gk
−1

and

in the real protocol the pair (gk, gk
−1

) will be (gk, gk
−1

). Conjecture 4.3.1

says that the distributions of these two pairs are also indistinguishable.

4. In the real protocol, the set of shares (s1, s2, . . . , s2t+1) is a valid sharing for

a uniformly distributed value s. In the simulation, (s1, s2, . . . , s2t+1) also

yields the same value. The computing process of si for i ∈ SG is the same

as the one in the real protocol. Hence, the distribution of the shares si,

i ∈ S, is identical to the distribution of si, i ∈ S.

We conclude this chapter with the following theorem, which is a corollary to

Theorem 4.3.1 and Lemma 4.3.2.

Corollary. Given that the standard DSS signature scheme is secure, the threshold

DSS signature scheme is also secure under the static adversary model.



Chapter 5

CRT-based Threshold Extensions

Secret and function sharing schemes can be enhanced by using various extensions.

In this chapter, we will propose a CRT-based verifiable secret sharing (VSS)

scheme and a proactive secret sharing (PSS) scheme. Also we will propose a

CRT-based robust function sharing scheme. To the best of our knowledge the

VSS and PSS schemes we propose are the first secure CRT-based SSSs. Besides,

the robustness extension designed for the threshold RSA scheme described in

Chapter 3 is the first one of its kind.

5.1 Verifiability

As described in Chapter 1, we call a SSS verifiable if each user can verify the

correctness of his share in the dealer phase and no user can lie about his share

in the combiner phase. Hence, neither the dealer nor the users can cheat in a

VSS scheme. Verifiable secret sharing schemes based on Shamir’s SSS have been

proposed in the literature [27, 59]. These schemes have been extensively studied

and used in threshold cryptography and secure multi-party computation [34, 58,

59].

There have been just two CRT-based VSS schemes by Iftene [40] and

48
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Qiong et al. [62]. In this section, we show that these schemes are vulnerable

to attacks where a corrupted dealer can distribute inconsistent shares without

detection such that different coalitions will obtain different values for the secret.

A typical application of a VSS scheme is the joint random secret shar-

ing (JRSS) primitive frequently used in threshold cryptography [34, 41, 58, 59].

In a JRSS scheme, all players act as a dealer and jointly generate and share a

random secret. A simple CRT based JRSS scheme was described in Fig. 4.2 which

does not use the verifiability feature.

In this section, we first show why existing attempts for a CRT-based verifiable

secret sharing scheme fail by attacks on the existing schemes. We then propose

a VSS scheme based on the Asmuth-Bloom secret sharing [2] and using this VSS

scheme, we propose a JRSS scheme.

5.1.1 Analysis of Existing CRT-based VSS Schemes

There have been two different approaches to achieve VSS by a CRT-based secret

sharing scheme. The first one, proposed by Iftene [40], obtains a VSS scheme

from Mignotte’s SSS [53] which is another CRT-based SSS similar to Asmuth-

Bloom. Here, we adapt Iftene’s approach to the Asmuth-Bloom SSS. The scheme

is given in Figure 5.1.

If the dealer is honest and the discrete logarithm problem is hard, the scheme

in Figure 5.1 is secure against a dishonest user because the verification data,

gi
y mod pi, can be used to detect an invalid share from a corrupted user in the

first step of the combiner phase.

However, if the dealer is dishonest, he can mount an attack despite the ad-

ditional verification data above: Let y be an integer and yi = y mod mi for

1 ≤ i ≤ n. In the combiner phase of Asmuth-Bloom SSS, the minimum number

of users required to obtain the secret is t; hence, y = d + Am0 must be smaller

than M =
∏t

i=1 mi. Note that, to reconstruct the secret d, each coalition S must

first compute y mod MS where MS ≥ M . If the dealer distributes the shares
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• Dealer Phase: To share a secret d ∈ Zm0 among a group of n users with verifiable
shares, the dealer does the following:

1. Use the dealing procedure of the Asmuth-Bloom SSS to obtain the shares
yi = y mod mi for each 1 ≤ i ≤ n where y = d + Am0 < M . Choose mis
such that each pi = 2mi + 1 is also a prime.

2. Let gi ∈ Z∗pi be an element of order mi. The dealer sends yi to the ith
user privately and makes the values pi, gi and zi = gyi mod pi public for
1 ≤ i ≤ n. The ith user can find whether his share is valid or not by
checking

zi
?= gi

yi mod pi. (5.1)

• Combiner Phase: Let S be a coalition gathered to construct the secret.

1. The share yi of user i ∈ S can be verified by the other users in S by the
verification equation zi

?= gi
yi mod pi.

2. If all shares are valid then the coalition S can obtain the secret d: First,
the ith user computes

ui = yiM
′
S,iMS\{i} mod MS .

3. Then the users compute

y =

(∑
i∈S

ui

)
mod MS

and obtain the secret d by computing d = y mod m0.

Figure 5.1: Iftene’s CRT-based VSS extension.

for some y > M , then y will be greater than MS for some coalition S of size

t. Hence, S may not compute the correct y value and the correct secret d even

though yi = y mod mi for all i. Therefore, the given VSS scheme cannot detect

this kind of inconsistent shares from the dealer where different coalitions end up

with different d values. The same problem also arises in Iftene’s original VSS

scheme [40].

Another VSS scheme based on Asmuth-Bloom secret sharing was proposed

by Qiong et al. [62]. Their approach is similar to the VSS of Pedersen [59] based

on Shamir’s SSS. Their scheme is given in Figure 5.2.
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• Dealer Phase: To share a secret d ∈ Zm0 among a group of n users with verifiable
shares, the dealer does the following:

1. Use the dealing procedure of the Asmuth-Bloom SSS to obtain the shares
yi = y mod mi for all 1 ≤ i ≤ n where y = d+Am0 < M .

2. Let p, q be primes such that q|(p − 1). Construct the unique polynomial
f(x) ∈ Zq[x] where deg(f(x)) = n−1 and f(mi) = yi. Construct a random
polynomial f ′(x) ∈ Zq[x] where deg(f ′(x)) = n− 1. Let zi = f ′(mi) for all
1 ≤ i ≤ n.

3. Let g ∈ Zp with order q, h be a random integer in the group generated by
g and E(a, b) = gahb mod p for inputs a, b ∈ Z∗q . Compute

Ei = E(fi, f ′i) = gfihf
′
i mod p,

where fi and f ′i are the (i−1)th coefficients of f(x) and f ′(x), respectively,
for all 1 ≤ i ≤ n. Broadcast Eis to all users.

4. Send (yi, zi) secretly to the ith user for all 1 ≤ i ≤ n.

5. Each user checks

E(yi, zi)
?≡

n∏
j=1

Ej
mi

j−1 ≡
n∏
j=1

gfjmi
j−1

n∏
j=1

hf
′
jmi

j−1

≡ gyihzi (mod p) (5.2)

to verify the validity of his share.

• Combiner Phase: Let S be a coalition gathered to construct the secret.

1. The share (yi, zi) of user i ∈ S can be verified by the other users in S with

the verification equality E(yi, zi)
?≡
∏n
j=1Ej

mi
j−1

(mod p).

2. If all shares are valid; the coalition S can obtain the secret d by using the
reconstruction procedure described in Section 2.1.

Figure 5.2: Qiong et al.’s CRT-based VSS extension.
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As the scheme shows, Qiong et al. treated the shares of Asmuth-Bloom SSS

as points on a degree-(n− 1) polynomial and adopted the approach of Pedersen

by evaluating the polynomial in the exponent to verify the shares. If the dealer

is honest, the scheme in Figure 5.2 is secure because the verification data can

be used to detect an invalid share from a corrupted user in the first step of the

combiner phase.

However, similar to the attack on Iftene’s VSS scheme, if the dealer uses some

y > M and computes the verification data by using the shares yi = y mod mi,

1 ≤ i ≤ n, the verification equation (5.2) holds for each user. But, for a coalition

S where y > MS, the coalition S cannot compute the correct y value and the

secret d.

Note that Iftene’s VSS scheme uses a separate verification data for each user;

hence even if all the verification equations hold, the secret can still be inconsistent

for different coalitions. Quiong et al.’s VSS scheme generates a polynomial f(x)

from the shares as in Feldman’s and Pedersen’s VSS schemes. This polynomial is

used to check all verification equations. But Asmuth-Bloom SSS scheme depends

on the CRT and unlike Shamir’s SSS, here f is not inherently related to the

shares. Hence, even if all the equations hold, the shares can still be inconsistent

as we have shown.

5.1.2 Verifiable Secret Sharing with Asmuth-Bloom SSS

As discussed in Section 5.1.1, existing CRT-based VSS schemes in the literature

cannot prevent a dealer from cheating. To solve this problem, we will use a range

proof technique originally proposed by Boudot [11] and modified by Cao et al. [14].

5.1.2.1 Range Proof Techniques

Boudot [11] proposed an efficient and non-interactive technique to prove that a

committed number lies within an interval. He used the Fujisaki-Okamoto com-

mitment scheme [31], where the commitment of a number y with bases (g, h) is
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computed as

E = E(y, r) = gyhr mod N

where g is an element in Z∗N , h is an element of the group generated by g, and r is

a random integer. As proved in [11, 31], this commitment scheme is statistically

secure assuming the factorization of N is not known.

After Boudot, Cao et al. [14] applied the same proof technique with a different

commitment scheme

E = E(y) = gy mod N

to obtain shorter range proofs. Here, we will use Cao et al.’s non-interactive range-

proof scheme as a black box. For further details, we refer the user to [11, 14].

For our needs, we modified the commitment scheme as

E = E(y) = gy mod PN

where P =
∏n

i=1 pi and N is an RSA composite whose factorization is secret.

Note that even if φ(P ) is known, φ(PN) cannot be computed since φ(N) is

secret. Throughout the section, we will use RngPrf(E(y),M) to denote the range

proof that a secret integer y committed with E(y) is in the interval [0,M).

5.1.2.2 A CRT-based VSS Scheme

In our VSS scheme, the RSA composite N is an integer generated jointly by the

users and the dealer where its prime factorization is not known. Such an integer

satisfying these constraints can be generated by using the protocols proposed for

shared RSA key generation [10, 30] at the beginning of the protocol. Note that

we do not need the private and the public RSA exponents in our VSS scheme

as in the original protocols [10, 30]; hence those parts of the protocols can be

omitted.

Quisquater et al. [63] showed that when mis are chosen as consecutive primes,

the scheme has better security properties. For CRT-based VSS, we will also

assume that all mis are prime and we will choose them such that pi = 2mi + 1 is

also a prime for 1 ≤ i ≤ n.
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Let gi ∈ Z∗pi be an element of order mi. Let P =
∏n

i=1 pi and

g =

(
n∑
i=1

giP
′
i

P

pi

)
mod P (5.3)

where P ′i =
(
P
pi

)−1

mod pi for all 1 ≤ i ≤ n, i.e., g is the unique integer in ZP

satisfying gi = g mod pi for all i. Our VSS scheme is described in Figure 5.3.

• Dealer Phase: To share a secret d ∈ Zm0 among a group of n users with verifiable
shares, the dealer does the following:

1. Use the dealing procedure of the Asmuth-Bloom secret sharing scheme de-
scribed in Section 2.1 to obtain the shares

yi = y mod mi

for each 1 ≤ i ≤ n where y = d+Am0 < M =
∏t
i=1mi. Note that the mis

are large primes where pi = 2mi + 1 is also a prime for 1 ≤ i ≤ n.

2. Let N be an integer whose prime factorization is not known by the users
and the dealer. Compute E(y) = gy mod PN . Send yi to the ith user
secretly for all 1 ≤ i ≤ n and broadcast (E(y),RngPrf(E(y),M)).

3. The ith user checks
gi
yi ?≡ E(y) (mod pi) (5.4)

to verify yi = y mod mi. Then he checks the validity of the range proof to
verify y < M .

• Combiner Phase: Let S be a coalition gathered to construct the secret.

1. The share yi of user i ∈ S can be verified by the other users in S with the

verification equality giyi
?≡ E(y) (mod pi).

2. If all shares are valid, the participants can obtain the secret d by using the
reconstruction procedure described in Section 2.1. Otherwise, the corrupted
users are disqualified.

Figure 5.3: CRT-based verifiable secret sharing scheme.

5.1.2.3 Analysis of the Proposed VSS Scheme

We analyze the correctness of the scheme and its security against passive and

active attackers below:
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5.1.2.4 Correctness

Aside from the verification equation, the scheme uses the original Asmuth-Bloom

scheme. Hence, for correctness, we only need to show that when the dealer and

the users are honest, the verification equations in the dealer and combiner phases

hold. Note that, the condition y < M is checked in Step 3 of the dealer phase by

using RngPrf(E(y),M)). Furthermore, for a valid share yi,

E(y) mod pi = gy mod PN mod pi

= gy mod pi

= gi
y mod pi

= gi
yi mod pi.

Hence if the dealer and the users behave honestly, the verification equation holds

and the ith user verifies that his share is a residue modulo mi of the integer

y < M committed with E(y).

5.1.2.5 Security Analysis

For the security analysis, we will first show that the VSS is perfect, i.e., no

coalition of size smaller than t can obtain any information about the secret.

Theorem 5.1.1. For a passive adversary with t − 1 shares in the VSS scheme,

every candidate for the secret is equally likely, i.e., the probabilities Pr(d = d′)

and Pr(d = d′′) are approximately equal for all d′, d′′ ∈ Zm0.

Proof. First we recall that the underlying SSS is perfect due to Theorem 2.2.1.

Hence, given t − 1 shares, all secret candidates are equally likely. Besides the

shares, the only additional information a corrupted user can obtain is E(y)

and RngPrf(E(y),M). Given that the discrete logarithm problem is hard and
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Cao et al.’s range proof technique is computationally secure, the proposed VSS

scheme is also computationally secure.

The shares distributed by a dealer are said to be inconsistent if different

coalitions of size at least t obtain different values for the secret. The following

theorem proves that the dealer cannot distribute shares inconsistent with the

secret.

Theorem 5.1.2. A corrupted dealer cannot cheat in the VSS scheme without

being detected. I.e., if the shares are inconsistent with the secret d then at least

one verification equation does not hold.

Proof. Let U = {1, . . . , n} be the set of all users. If the shares are inconsistent,

for two coalitions S and S ′ with |S|, |S ′| ≥ t,(∑
i∈S

yiM
′
S,iMS\{i}

)
mod MS 6=

(∑
i∈S′

yiM
′
S′,iMS′\{i}

)
mod MS′ .

hence,

y =

(
n∑
i=1

yiM
′
U,iMU\{i}

)
mod MU > M.

If this is true then the dealer cannot provide a valid range proof RngPrf(E(y),M).

So, when a user tries to verify that y < M , the range proof will not be verified.

If the dealer tries to use a different y′ 6= y value in the commitment E(y′) and

generates a valid proof RngPrf(E(y′),M), the verification equation (5.4) will not

hold for some user i.

Hence, the VSS scheme guarantees that the n distributed shares are consistent

and they are residues of some number y < M .

Theorem 5.1.3. A user cannot cheat in the VSS scheme without being detected;

i.e., if a share given in the combiner phase is inconsistent with the secret, then

the verification equation does not hold.
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Proof. When a user i sends an incorrect share y′i 6= yi = y mod mi in the combiner

phase, the verification equation

E(y)
?≡ gi

yi (mod pi)

will not hold because E(y) = gy mod PN , pi|P and since the order of gi ∈ Zpi is

mi, the only value that satisfies the verification equation is yi.

Therefore, we can say that the scheme is secure for up to t−1 corrupted users

and no participant can cheat in any phase of the scheme.

5.1.3 Verifiable Joint Random Secret Sharing

As described above, JRSS protocols enable a group of users to jointly generate

and share a secret where a trusted dealer is not available. Here we describe a

JRSS scheme based on the VSS scheme described above. We first modify (2.2)

used in the Asmuth-Bloom secret sharing scheme in Section 2.1 as

t∏
i=1

mi > nm0
2

t−1∏
i=1

mn−i+1. (5.5)

We also change the definition of M as M =
⌊
(
∏t

i=1 mi)/n
⌋
. The proposed JRSS

scheme is given in Figure 5.4.

5.1.3.1 Analysis of the Proposed JRSS Scheme

5.1.3.2 Correctness

Observe that when all users behave honestly, the JRSS scheme works correctly.

Let y =
∑

i∈B y
(i). It is easy to see that y <

∏t
i=1mi since y(i) < M for all i ∈ B,

where |B| ≤ n and M =
⌊
(
∏t

i=1mi)/n
⌋
. One can see that yj = y mod mj for all
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• Dealing Phase: To jointly share a secret d ∈ Zm0 the users do the following:

1. Each user chooses a secret di ∈ Zm0 and shares it by using the VSS scheme
as follows: He first computes

y(i) = di +Aim0

where y(i) < M =
⌊
(
∏t
i=1mi)/n

⌋
. Then the secret for the jth user is

computed as
y

(i)
j = y(i) mod mj .

He sends y
(i)
j to user j secretly for all 1 ≤ i ≤ n and broadcasts

(E(y(i)),RngPrf(E(y(i)),M)).

2. After receiving shares the jth user verifies them by using the verification
procedure in (5.4). Let B be the set of users whose shares are verified
correctly. The jth user computes his overall share

yj =

(∑
i∈B

y
(i)
j

)
mod mj

by using the verified shares.

• Combiner Phase: Let S be a coalition of t users gathered to construct the secret.

1. The share yi of user i ∈ S can be verified by the other users in S with the
verification equation,

gyi
?≡

∏
j∈B

E(y(j))

 (mod pi). (5.6)

2. If all shares are valid, the participants obtain the secret

d =

(∑
i∈B

di

)
mod m0

by using the reconstruction procedure described in Section 2.1.

Figure 5.4: CRT-based verifiable joint random secret sharing scheme.
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j ∈ B by checking

y mod mj =

(∑
i∈B

y(i)

)
mod mj

=

(∑
i∈B

y
(i)
j

)
mod mj

= yj mod mj = yj.

Hence, each yi satisfies yi = y mod mi and y <
∏t

i=1mi; so, y can be constructed

with t shares.

For correctness of the verification procedure in (5.6), one can observe that(∏
i∈B

E(y(i))

)
mod pi = g

∑
i∈B y

(i)

mod pi

= gy mod pi = gi
y mod pi

= gi
yi mod pi.

Hence, when every user behaves honestly, the proposed JRSS scheme works cor-

rectly.

5.1.3.3 Security

We will show that no coalition of size smaller than t can obtain any information

about the secret.

Theorem 5.1.4. For a passive adversary with t− 1 shares in the JRSS scheme,

every candidate for the secret is equally likely. I.e., the probabilities Pr(d = d′)

and Pr(d = d′′) are approximately equal for all d′, d′′ ∈ Zm0.

Proof. Suppose the adversary corrupts t − 1 users and just observes the inputs

and outputs of the corrupted users without controlling their actions, i.e., the

adversary is honest in user actions but curious about the secret. Let S ′ be the

coalition of the users corrupted by the adversary. The shares are obtained when

each user shares his partial secret di, i.e., the adversary will obtain t−1 share for



CHAPTER 5. CRT-BASED THRESHOLD EXTENSIONS 60

each di. We will prove that the probabilities that di = d′i and d = d′′i are almost

equal for two secret candidates d′i, d
′′
i ∈ Zm0 .

We already proved that the Asmuth-Bloom SSS described in Section 2.1 is

perfect with equation (2.2). By using the shares of S ′, the adversary can compute

y′(i) = y(i) mod MS′ . But even with these shares, there are M
MS′

consistent y(i)s

which are smaller than M and congruent to y′(i) modulo MS′ . By replacing (2.2)

with (5.5) and changing the definition of M to
⌊
(
∏t

i=1 mi)/n
⌋
, the value of the

ratio
M

MS′
>

M∏t−1
i=1 mn−i+1

≈
∏t

i=1 mi

n
∏t−1

i=1 mn−i+1

is greater than m0
2. Hence, even with t− 1 shares, there are still m0

2 candidates

for each y(i) which is used to share the secret di. Since gcd(m0,MS′) = 1, there

are approximately m0 y
(i)s, consistent with a secret candidate d′i. Hence, for a

secret candidate d′i the probability that di = d′i is approximately equal to 1
m0

and

the perfectness of the scheme is preserved.

Besides the shares, the only other information the adversary can observe is

the commitments and range proofs. Given that the discrete logarithm problem

is hard and Cao et al.’s range proof scheme is secure, the proposed JRSS scheme

is also computationally secure.

A corrupted user cannot cheat in the JRSS scheme without being detected.

Since we are using a VSS scheme, while user i is sharing his partial secret di,

the conditions of the Asmuth-Bloom SSS must be satisfied as proved in Theo-

rem 5.1.2. Furthermore, if user i sends an incorrect share in the combiner phase,

the verification equation (5.6) will not hold. As a result, we can say that the

JRSS scheme is secure for up to t − 1 corrupted users and no user can cheat in

any phase of the scheme.
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5.2 Proactivity

Another important extension in threshold cryptography is the proactivity feature

of the secret sharing schemes. With this feature, a SSS has the capability of

renewing the shares of the users without changing the long term secret such that

any shares obtained by a corrupted party becomes obsolete. So far, no CRT-based

proactive secret sharing (PSS) schemes have been proposed in the literature. By

combining and extending the ideas used in the VSS and JRSS schemes described

in Section 5.1, we propose a PSS scheme in this section.

Proactive SSS protocols enable the shareholders to jointly renew their shares

without changing and revealing the long-term secret. By this feature, the shares

compromised by an adversary can be made obsolete with the update process.

Proactive secret sharing schemes are investigated by several researchers and var-

ious schemes have been proposed in the literature [19, 39, 55].

In a proactive SSS, at the end of a certain time period τ , first the corrupted

users are identified in the detection procedure and then all such users are rebooted,

i.e., the adversary is removed from the computers of the users and all of the past

information is erased. Subsequently, the new shares of the rebooted users are

recovered in the recovery procedure. Then, the shares of the remaining users

are refreshed by a renewal procedure. At the end of this protocol, the long-term

secret remains the same although the shares of the users for the next period are

renewed. This update phase is repeated periodically at the end of each time

period.

Adversary model: We assume the mobile adversary model of Herzberg et al.

[39]. In this model, the adversary is allowed to move among players and can

corrupt users at any time. The only restriction on the adversary is that he

cannot corrupt more than t− 1 distinct users in a time period where t < n/2 is

the threshold of the secret sharing scheme and n is the number of users. If a user

is corrupted during the course of the update phase executed at the end of time

period τ , he is considered corrupted for both time periods τ and τ + 1. With this

model, Herzberg at al. proposed an efficient and secure Shamir based proactive
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SSS.

We use Aτ to denote the set of users where an adversarial behavior is detected

in their actions in time period τ and Bτ to denote the set of remaining users. A

user is disqualified and becomes a member of Aτ if his share is inconsistent with

the secret or if he tries to cheat in the share update phase. Each disqualified

user is rebooted at the beginning of the update phase, i.e., all the information

including the secret share is erased, hence the new share of a corrupted user must

be recovered by the users in Bτ .

5.2.1 CRT-based Proactive Secret Sharing Scheme

To obtain a proactive SSS, we first modify the equation (2.1) used in the Asmuth-

Bloom secret sharing scheme in Section 2.1 as

t∏
i=1

mi > nm0
3

t−1∏
i=1

mn−i+1. (5.7)

We also change the definition of M as

M =

⌊∏t
i=1 mi

nm0

⌋
.

In the proposed proactive sharing scheme, first a secret is shared by a dealer

as described in Figure 5.5 by using the VSS scheme proposed in Section 5.1.2.

Dealer Phase: The dealer shares a secret d ∈ Zm0 by equation (5.7) and M , using
the VSS scheme proposed in Section 5.1.2. Similar to the VSS, let pi = 2mi+1 be
a prime for 0 ≤ i ≤ n. As in the VSS, y = d+Am0 is an integer smaller than M ,
yi = y mod mi is the share of user i, and the commitment E(y) = gy mod PN is
broadcast with the range proof for y.

Figure 5.5: CRT-based proactive SSS: The dealer phase.

The share update phase executed at the end of a time period τ has three

phases:
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1. Detection: If a user j is detected as corrupted he is rebooted and becomes

a member of Aτ .

2. Share Recovery : The share of each rebooted user j ∈ Aτ is reconstructed

by the remaining users in Bτ .

3. Share Renewal : The users jointly share 0 by setting di = 0 for 1 ≤ i ≤ n

in the JRSS protocol of Figure 5.4. Then they add these renewal shares to

their previous ones and obtain their new shares.

5.2.1.1 Detection

If a user does not participate in a protocol where he is an active member, or

if the information he sends does not verify correctly we say that an adversarial

action is detected. However, when an adversary silently corrupts some users by

only modifying their local data, we cannot detect such inconsistencies after the

adversary detaches himself from the user. Hence, to protect proactiveness, we

need to periodically test the correctness of users’ local data. To do this, we will

use the E(y) values each player holds as in Figure 5.6.

Note that t < n/2 hence there are at least t honest users who had not been

silently or actively corrupted by an adversary. Since the views of all honest users

are the same, an inconsistent value will be detected by at least t users.

5.2.1.2 Share Recovery

At the beginning of the update phase, the shares of the rebooted users will still

be missing. To recover the share of a rebooted user j ∈ Aτ−1, each user Bτ−1

shares a random multiple of mj ∈ [0,M); hence the sum of these shared values,

which will be denoted by z, will be a multiple of mj. This ensures that when

the users in Bτ−1 add their old shares for y by the new ones, they obtain a share

for an integer y′ = y + z where yj ≡ y ≡ y′ (mod mj). After obtaining a share

for y′, each user in Bτ−1 sends it to the jth user via a private channel so the jth
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1. Let E(i)(y) denotes the local copy of the commitment E(y) for user i.
For detection, the ith user first checks the validity of his share by using
the equation

yi
?= E(i)(y) mod pi.

If the equation is not satisfied he broadcasts an inconsistency warning,
reboots himself and becomes a member of Aτ .

2. If the equation is satisfied, after receiving each E(i)(y) for i ∈ Bτ , the
jth user tries to find an inconsistency

E(i1)(y) 6= E(i2)(y)

for i1, i2 ∈ Bτ and he broadcast an accusation either for user i1, i2 or
both, depending which is inconsistent with at least t E(i)(y)s.

3. If at least t accusations are broadcasted for a user i, he is rebooted with
the users who did not accuse him.

Figure 5.6: CRT-based proactive SSS: The detection procedure.

user can compute y′ and hence yj. This share recovery procedure is described in

detail in Figure 5.7.

5.2.1.3 Share Renewal

After the recovery procedure, each user i ∈ Bτ has a share yi = y mod mi where

y = d+Am0 < M . The idea used in this phase is similar to the one in the JRSS

scheme described in Section 5.1.3. Instead of a random secret, each user shares 0

by some y(i) ≡ 0 (mod m0), y(i) ∈ [0,M), hence the overall shared value will be

a multiple of m0. So, when a user adds his renewal shares with his old share yi,

he obtains a new share y′′i , which is a residue of an integer y′′ ∈
[
0,
∏t

i=1mi

)
such

that d = y′′ mod m0. In the next time period, y′′ will be the new y. The share

renewal procedure is described in Figure 5.8.

Note that y will remain less than
∏t

i=1mi provided that m0, which is a very

large integer, is greater than the number of times the update procedure is applied,
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1. To recover the share of a compromised user j ∈ Aτ each user i ∈ Bτ
chooses an integer

y(i,j) = Aimj

where Ai is a random integer such that y(i,j) < M and then shares it
among Bτ by computing the secrets

y
(i,j)
k = y(i,j) mod mk

for each user k ∈ Bτ . He sends y(i,j)
k to user k secretly and broadcasts

(E(y(i,j)),RngPrf(E(y(i,j)),M)).

2. After receiving the shares y(i,j)
k from each i ∈ Bτ , the kth player ver-

ifies them by using the verification procedure in equation (5.4). Also
each commitment is checked by E(y(i,j)) mod pj

?= 1. If a verification
equation does not hold for a user, he is disqualified.

3. The kth user computes his ephemeral secret

y′k =

(
yk +

∑
i∈Bτ

y
(i,j)
k

)
mod mk

and sends it to user j secretly.

4. After receiving the shares, y′ks, from each user k ∈ Bτ , the jth player
verifies them by using the verification procedure in equation (5.4) for y′.
The verification data for y′ = y +

∑
i∈Bτ y

(i,j) can be computed as

E(y′) = E(y)
∏
i∈Bτ

E(y(i,j)).

If a verification equation does not hold for a user, he is disqualified for
time period τ and τ + 1.

5. The compromised user jth computes

y′ =
∑
k∈Bτ

y′kM
′
Bτ ,kMBτ\{k} mod MBτ

where MBτ\{k}M
′
Bτ ,k ≡ 1 (mod mk). He computes his share as yj =

y′ mod mj .

Figure 5.7: CRT-based proactive SSS: The share recovery procedure.
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1. Each user i in Bτ shares 0 by first computing

y(i) = Aim0

where Ai is a random integer such that y(i) < M . Then he computes
the share for user j ∈ Bτ as

y
(i)
j = y(i) mod mj .

He sends y
(i)
j to each user j secretly and broadcasts(

E(y(i)),RngPrf(E(y(i)),M)
)
.

2. After receiving the shares y(i)
j for i ∈ Bτ , the jth user verifies them

by using the verification procedure in equation (5.4). Besides, each

commitment is checked for E(y(i))
?≡ 1 (mod p0). If the verification

equation of user i does not hold, he is disqualified, i.e., he is moved from
Bτ to Aτ and Aτ+1. The jth user updates his overall share as

y′′j =

(
yj +

∑
i∈Bτ

y
(i)
j

)
mod mj .

3. The new verification data for y′′ = y +
∑

i∈Bτ y
(i) is computed as

E(y′′) = E(y)
∏
i∈Bτ

E(y(i)).

Figure 5.8: CRT-based proactive SSS: The share renewal procedure.
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since y(i) < M , |Bτ | < n, and

m0

∑
i∈Bτ

y(i) < nm0M = nm0

⌊∏t
i=1mi

nm0

⌋
≤

t∏
i=1

mi.

5.2.2 Security Analysis

Assume that the update phase is started at the end of the τth time period. In the

share recovery procedure, the participants share z which is equivalent to 0 modulo

mj for a rebooted user j. Also, in the share renewal procedure, the participants

jointly share y′′ − y, where y′′ is the new shared integer and y is the previous

one. With the following theorems, we will prove that the perfectness condition

is preserved in the dealing phase and the shared integers in the next two phases

are not computable by a passive adversary.

Theorem 5.2.1. The modified secret sharing scheme with the new

M =

⌊∏t
i=1 mi

nm0

⌋
and equation (5.7) is perfect in the sense that the probabilities Pr(d = d′) and

Pr(d = d′′) are approximately equal for all d′, d′′ ∈ Zm0.

Proof. Let S ′ be a corrupted coalition of t− 1 users. For perfectness, we need to

check the value of M/MS′ which is

M

MS′
>

∏t
i=1 mi

nm0

∏n
i=n−t+1mi

> m0
2

due to equation (5.7). Similar to the proof of Theorem 2.2.1, we can say that the

perfectness condition is preserved.

Lemma 5.2.2. For a passive adversary that has corrupted t − 2 users in the

recovery procedure, there are at least m0
2 possible candidates for each y(i,j) used.

Proof. Let S ′ be the set of t− 2 corrupted users. In the recovery procedure, first

each user i shares a y(i,j) where adversary has t− 2 shares for each of them, i.e.,
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y
(i,j)
k for k ∈ S ′ \ {j}. So, for a shared value y(i,j), the adversary can only have

the shares of S ′ and an additional information that y(i,j) ≡ 0 (mod mj). Hence,

although the adversary can obtain y(i,j) mod MS′ , there are still

M

MS′
=

∏t
i=1 mi

nm0MS′
> m0

2

candidates for y(i,j) since y(i,j) < M .

Lemma 5.2.3. Let j be the rebooted user whose share is being recovered in the

recovery procedure. For a passive adversary that has corrupted t−1 users including

j, there are at least m0
2 possible values for each uncompromised yi, the secret

share of user i.

Proof. In Step 3 of the recovery procedure described in Figure 5.7, an honest user

i computes his ephemeral secret

y′i =

(
yi +

∑
k∈Bτ

y
(k,j)
i

)
mod mi

and sends it to user j who has been corrupted by the adversary. Note that yi is

masked with y
(k,j)
i s where

y
(k,j)
i = y(k,j) mod mi,

and due to Lemma 5.2.2, from the adversary’s point of view there are at least

m0
2 candidates, with the same remainder in modulo MS′ , for each y(k,j). Hence

there are at least m0
2 candidates for each y

(k,j)
i since (mi,MS′) = 1. This also

proves that there are at least m0
2 candidates for yi = d+ Am0 mod mi.

Theorem 5.2.4. For a passive adversary in the recovery procedure, two secrets

d′, d′′ ∈ Zm0 are equally likely.

Proof. Let j be the rebooted user whose share is being recovered. Since user j

was corrupted in time period τ , the adversary can have at most t− 2 additional

users corrupted in the recovery procedure. Beside these t−2 users, the adversary

is allowed to corrupt only the jth user again. Due to the mobile adversary model
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this is the best the adversary can do. Let S ′ be the set of t − 1 corrupted users

including user j.

From Lemma 5.2.3, we know that there are at least m0
2 candidates for yi =

d+Am0 mod mi. Since gcd(m0,mi) = 1 these m0
2 candidates covers all m0 secret

candidates at least m0 times. Hence, all secret candidates are equally likely.

Lemma 5.2.5. For a passive adversary that has corrupted t−1 users in the share

renewal procedure, there are at least m0 possible candidates for each y(i).

Proof. Assume that the adversary corrupted t− 1 users in time period τ without

being detected. Let S ′ denote this set of corrupted users. Considering M ≈
(
∏t

i=1mi)/(nm0) we know that

M =

∏t
i=1mi

nm0

> m0
2

t−1∏
i=1

mn−i+1 > m0
2MS′

due to equation (5.7).

For a shared value y(i) = Aim0, the adversary will know that y(i) ≡
0 (mod m0). Since y(i) < M , there are M

m0
> m0MS′ candidates for y(i) ≡

0 (mod m0). Besides, the adversary can compute y(i) mod MS′ by using the t−1

shares he obtained for y(i). But, there are still M
m0MS′

> m0 candidates for y(i).

Theorem 5.2.6. An adversary with t− 1 corrupted shares in the share renewal

procedure cannot compute a new share in time period τ + 1 from an old share he

has from time period τ .

Proof. In Step 2 of the renewal procedure describe in Figure 5.8, the jth user

updates his overall share as

y′′j =

(
yj +

∑
i∈Bτ

y
(i)
j

)
mod mj.

From Lemma 5.2.5, there is at least m0 possible candidates for y(i) and

gcd(mj,m0MS′) = 1. Hence, there are at least m0 possible candidates for each

y
(i)
j = y(i) mod mj.

Hence, the adversary cannot compute y′′j even if he knows the old share yj.
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By Theorems 5.2.4 and 5.2.6, the proposed PSS scheme is secure against

passive adversaries in Herzberg et al.’s mobile adversary model.

5.2.2.1 Security Analysis for an Active Adversary

As proved in Sections 5.1.2.5 and 5.1.3.3, in the proposed VSS and JRSS schemes,

if a user tries to cheat by sending inconsistent information he will be detected

easily since some verification equations will not hold.

In the share renewal and share recovery phases, we use modified versions of the

JRSS scheme where the shared values are congruent to 0 with respect to moduli

m0 and mj, respectively, where user j has been rebooted before the execution of

the update phase. To verify these restrictions, in the 2nd step of Figure 5.8, a user

j verifies his share for y(i) by using the verification procedure in equation (5.4)

and checks

E(y(i))
?≡ 1 (mod p0).

Also in the 2nd step of Figure 5.7, a user k verifies his share for y(i,j) by using

the verification procedure in equation 5.4 and checks

E(y(i,j))
?≡ 1 (mod pj).

Note that the other restrictions are also verified since they are automatically

checked by the proposed VSS scheme. Therefore, an active adversary cannot

send an inconsistent data without being detected.

5.3 Robustness

We say that a function sharing scheme is robust if it can withstand participation

of corrupt users in the function evaluation phase. In a robust FSS, a detection

mechanism is used to identify the corrupted partial results so that, the corrupted

users can be eliminated. The FSSs proposed in Chapters 3 and 4 do not have
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the robustness property and, to the best of our knowledge, no CRT-based robust

and secure function sharing scheme exists in the literature.

In this section, we investigate how CRT-based threshold schemes can be en-

hanced with the robustness property. We first give a robust threshold function

sharing scheme for the RSA cryptosystem. Then we apply the ideas to the ElGa-

mal and Paillier decryption functions. For RSA and Paillier, we use the threshold

schemes proposed in Chapter 3. For ElGamal, we work with a modified version

of the ElGamal decryption scheme by Wei et al. [72]. All of the proposed schemes

are provably secure against a static adversary under the random oracle model [5].

In achieving robustness, we make use of a non-interactive protocol designed to

prove equality of discrete logarithms [11, 15, 68]. The original interactive protocol

was proposed by Chaum et al [15] and improved by Chaum and Pedersen [16].

Later, Shoup [68] and, Boudot and Traoré [12] developed a non-interactive version

of the protocol.

In the original Asmuth-Bloom scheme, m0 is not needed until the last step of

the combiner phase but still it is a public value. To avoid confusion, we emphasize

that it will be secret for the robust FSSs proposed in this section.

5.3.1 Robust Sharing of the RSA Function

To enhance the threshold cryptosystems with the robustness property, we use

a non-interactive protocol proposed to prove equality of two discrete logarithms

with respect to different moduli. The interactive protocol, which was originally

proposed by Chaum et al [15] for the same moduli, was modified by Shoup and

used to make a threshold RSA signature scheme robust [68]. He used Shamir’s

SSS as the underlying SSS to propose a practical and robust threshold RSA sig-

nature scheme. In Shamir’s SSS, the secret is reconstructed by using Lagrange’s

polynomial evaluation formula and all participants use the same modulus which

does not depend on the coalition. On the other hand, in the direct solution

used in the the CRT-based threshold RSA scheme described in Section 3.1, the
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definition of

ui =
(
yiM

′
S,i mod mi

)
MS\{i}

shows that we need different moduli for each user. For robustness, we need

to check the correctness of ui for each user i in the function evaluation

phase. We modified the protocol in [68] for the case of different moduli as

Boudot and Traoré [11] did to obtain efficient publicly verifiable secret sharing

schemes.

To obtain robustness, we first modify the dealer phase of the Asmuth-Bloom

SSS and add the constraint that

pi = 2mi + 1

be a prime for each 1 ≤ i ≤ n. These values will be the moduli used to con-

struct/verify the proof of correctness for each user. The robustness extension

described below can be used to make the CRT-based threshold RSA signature

scheme in Section 3.1 robust. We only give the additions for the robustness

extension here since the other phases are the same.

• Setup: Use Asmuth-Bloom SSS for sharing d with m0 = φ(N). Let gi be

an element of order mi in Z∗pi . Broadcast gi and the public verification data

vi = gi
yi mod pi

for each user i, 1 ≤ i ≤ n.

• Generating the proof of correctness : Let w be the hashed message to be

signed and suppose the range of the hash function is Z∗N . Assume a coalition

S of size t participated in the signing phase. Let h : {0, 1}∗ → {0, . . . , 2L1−
1} be a hash function where L1 is another security parameter. Let

w′ = wMS\{i} mod N,

v′i = vi
M ′S,i mod pi,

zi = yiM
′
S,i mod mi.
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Each user i ∈ S first computes

W = w′
r

mod N,

G = gi
r mod pi

where r ∈R {0, . . . , 2L(mi)+2L1}. Then he computes the proof as

σi = h(w′, gi, si, v
′
i,W,G),

Di = r + σizi ∈ Z

and sends the proof (σi, Di) along with the partial signature si.

• Verifying the proof of correctness: The proof (σi, Di) for the ith user can

be verified by checking

σi
?
= h(w′, gi, si, v

′
i, w

′Disi
−σi mod N, gi

Div′i
−σi mod pi). (5.8)

Note that the above scheme can also be used to obtain a robust threshold RSA

decryption scheme. Since RSA signature and decryption functions are mostly

identical, we omit the details.

5.3.1.1 Security Analysis

Here we will prove that the proposed threshold RSA signature scheme is se-

cure (i.e. existentially non-forgeable against an adaptive chosen message attack),

provided that the RSA problem is intractable (i.e. RSA function is a one-way

trapdoor function [18]). We assume the same static adversary model of Chapter 3

where the adversary controls exactly t−1 users and chooses them at the beginning

of the attack. In this model, the adversary obtains all secret information of the

corrupted users and the public parameters of the cryptosystem. She can control

the actions of the corrupted users, ask for partial signatures of the messages of

her choice, but she cannot corrupt another user in the course of an attack, i.e.,

the adversary is static in that sense.

First we will analyze the proof of correctness. For generating and verifying

the proof of correctness, the following properties holds:
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• Completeness: If the ith user is honest then the proof succeeds since

w′
Disi

−σi = w′
r

mod N,

gi
Div′i

−σi = gi
r mod pi.

• Soundness: To prove the soundness, we will use a lemma by

Poupard and Stern [61] which states that if the prover knows

(a, b, σ, σ′, D,D′) such that aDbσ ≡ aD
′
bσ
′

(mod K) for an integer K, then

he knows the discrete logarithm of b in base a unless he knows the factor-

ization of K.

Let us define Ψ : Z∗Npi → Z∗N × Z∗pi be the CRT isomorphism, i.e., x →
(x mod N, x mod pi) for x ∈ Z∗Npi . Note that gcd(N, pi) = 1. Let g =

Ψ−1(w′, gi), v = Ψ−1(si, v
′
i) and τ = Ψ−1(W,G). Given W and G, if the ith

user can compute valid proofs (σ,D) and (σ′, D′) then we have

τ = gDvσ mod Npi = gD
′
vσ
′
mod Npi

and according to the lemma above, the ith user knows ui unless he can com-

pletely factor Npi. Since the factorization of N is secret we can say that if

the proof is a valid proof then the discrete logarithms are equal in modmi

and the prover knows this discrete logarithm. Hence, an adversary cannot

impersonate a user without knowing his share. Similar to Boudot and Tre-

ore [11], a range check on Di might be necessary while verifying the proof

of correctness to detect incorrect partial signatures from users with valid

shares.

• Zero-Knowledge Simulatability: To prove the zero-knowledge simulatability,

we will use the random oracle model for the hash function h and construct

a simple simulator. When an uncorrupted user wants to create a proof

(σi, Di) for a message w and partial signature si, the simulator returns

σi ∈R {0, . . . , 2L1 − 1}

and

Di ∈R {0, . . . , 2L(mi)+2L1 − 1}
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and sets the value of the oracle at

(w′, gi, si, v
′
i, w

′Disi
−σi mod N, gi

Div′i
−σi mod pi)

as σi. Note that, the value of the random oracle is not defined at this point

but with negligible probability. When a corrupted user queries the oracle,

if the value of the oracle was already set the simulator returns that value

otherwise it returns a random one. It is obvious that the distribution of

the output of the simulator is statistically indistinguishable from the real

output.

To reduce the security of the proposed threshold RSA signature scheme to the

security of the standard RSA signature scheme, the following proof constructs

another simulator.

Theorem 5.3.1. Given that the standard RSA signature scheme is secure, the

threshold RSA signature scheme is robust and secure under the static adversary

model.

Proof. To reduce the problem of breaking the standard RSA signature scheme to

breaking the proposed threshold scheme, we will simulate the threshold protocol

with no information on the secret where the output of the simulator is indis-

tinguishable from the adversary’s point of view. Afterwards, we will show that

the secrecy of the private key d is not disrupted by the values obtained by the

adversary. Thus, if the threshold RSA scheme is not secure, i.e., an adversary

who controls t−1 users can forge signatures in the threshold scheme, one can use

this simulator to forge a signature in the standard RSA scheme.

The simulator’s actions are as same as the the one described in the proof

of Theorem 3.1.1 which is used to prove the security of the underlying CRT-

based threshold RSA scheme. In addition to that, the simulator computes the

public verification data of the users in S ′ as vj = gyj mod pj for j ∈ S ′. For

other users i /∈ S ′, the simulator chooses a random integer yi ∈R Zmi and sets

vi = gyi mod pi. Note that gcd(N, pi) = 1. So the public verification data
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generated by the simulator are computationally indistinguishable from the real

ones.

Consequently, the output of the simulator is indistinguishable from a real

instance from the adversary’s point of view, and hence the simulator can be used

to forge a signature in the standard RSA scheme if the threshold RSA scheme

can be broken.

5.3.2 Robustness in Other CRT-based Threshold Schemes

The robustness extension given in Section 5.3.1 can be applied to other CRT-

based threshold schemes as well. Here we describe how to adapt the extension to

the CRT-based threshold Paillier and ElGamal function sharing schemes.

5.3.2.1 Robust Sharing of the Paillier Decryption Function

As described in Section 3.2.2, Paillier’s probabilistic cryptosystem [57] is a mem-

ber of a different class of cryptosystems where the message is used in the exponent

of the encryption operation. The robustness extension can be applied to the Pail-

lier cryptosystem as follows:

• Setup: Let N = pq be the product of two large primes and λ = lcm(p −
1, q−1). Use Asmuth-Bloom SSS for sharing λ with m0 = φ(N2) = Nφ(N).

Let gi ∈ Z∗pi be an element with order mi in Z∗pi . Broadcast the public

verification data gi and

vi = gyii mod pi

for each user i, 1 ≤ i ≤ n.

• Generating the proof of correctness : Let h : {0, 1}∗ → {0, . . . , 2L1 − 1} be a

hash function where L1 is another security parameter. Let

c′ = cMS\{i} mod N2,
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v′i = vi
M ′S,i mod pi,

zi = yiM
′
S,i mod mi.

Each user i ∈ S first computes

W = c′
r

mod N2,

G = gi
r mod pi

where r ∈R {0, . . . , 2L(mi)+2L1}. Then he computes the proof as

σi = h(c′, gi, si, v
′
i,W,G),

Di = r + σizi ∈ Z

and sends the proof (σi, Di) along with the partial decryption si.

• Verifying the proof of correctness: The proof (σi, Di) for the ith user can

be verified by checking

σi
?
= h(c′, gi, si, v

′
i, c
′Disi

−σi mod N, gi
Div′i

−σi mod pi). (5.9)

If the ith user is honest then the proof succeeds since c′Disi
−σi = c′r mod N2

and gi
Div′i

−σi = gi
r mod pi. The soundness property can be proved with a proof

similar to the proof of Theorem 1. Note that gcd(N2, pi) = 1 for all users and

φ(N2) = Nφ(N) is secret. A similar proof can be given for the zero knowledge

simulatability as the one in Section 5.3.1.1.

5.3.2.2 Robust Sharing of the ElGamal Decryption Function

Adapting our robustness extension to the threshold ElGamal scheme given in

Chapter 3.1 is slightly more complicated than it is for the Paillier’s cryptosystem,

because φ(p) = p − 1 is public. A simple solution for this problem is to extend

the modulus to N = pq where p = 2p′+ 1 and q = 2q′+ 1 are safe primes. There

exist versions of the ElGamal encryption scheme in the literature with a composite

modulus instead of p. For example, Wei et al. [72] modified the standard ElGamal

scheme to obtain a hidden-order ElGamal scheme. They proved that their scheme
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is as secure as each of the standard RSA and ElGamal cryptosystems. Here, we

give the description of a robust, CRT-based threshold scheme for Wei et al.’s

version of the ElGamal encryption.

• Setup: In the ElGamal setup phase, choose p = 2p′ + 1 and q = 2q′ + 1 be

large primes such that p′ and q′ are also prime numbers. Let N = pq and

let gp and gq be generators of Z∗p and Z∗q, respectively. Choose αp ∈R Z∗p and

αq ∈R Z∗q such that gcd(p− 1, q − 1) | (αp − αq). The secret key α ∈ Zλ(N)

is the unique solution of the congruence system

α ≡ αp (mod p− 1),

α ≡ αq (mod q − 1)

where λ(N) = 2p′q′ is the Carmichael number of N . Similarly, the public

key β ∈ ZN is the unique solution of congruence system

β ≡ gp
αp (mod p),

β ≡ gq
αq (mod q).

Let g be the unique solution of the congruence system

g ≡ gp (mod p),

g ≡ gq (mod q)

and α and (β, g,N) be the private and the public keys, respectively. Note

that β = gα mod N . Use Asmuth-Bloom SSS for sharing the private key α

with m0 = 2p′q′. Let gi ∈ Z∗pi be an element with order mi in Z∗pi . Broadcast

the public verification data gi and vi = gyii mod pi for each user i, 1 ≤ i ≤ n.

• Encryption: Given a message w ∈ ZN , the ciphertext c = (c1, c2) is com-

puted as

c1 = gk mod N,

c2 = βkw mod N

where k is a random integer from {1, . . . , N − 1}.
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• Decryption: Let (c1, c2) be the ciphertext to be decrypted where c1 =

gk mod N for some k ∈ {1, . . . , N − 1} and c2 = βkw mod N where w

is the message. The coalition S of t users wants to obtain the message

w = sc2 mod N for the decryptor s = (cα1 )−1 mod N .

– Generating the partial results : Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS, (5.10)

si = c1
−ui mod N,

βi = gui mod N. (5.11)

– Generating the proof of correctness : Let h : {0, 1}∗ → {0, . . . , 2L1 − 1}
be a hash function where L1 is another security parameter. Let

c′1 = c1
MS\{i} mod N,

v′i = vi
M ′S,i mod pi,

zi = yiM
′
S,i mod mi.

Each user i ∈ S first computes

W = c′1
r

mod N,

G = gi
r mod pi

where r ∈R {0, . . . , 2L(mi)+2L1}. Then he computes the proof as

σi = h(c′1, gi, si, v
′
i,W,G),

Di = r + σizi ∈ Z

and sends the proof (σi, Di) along with si.

– Verifying the proof of correctness: The proof (σi, Di) for the ith user

can be verified by checking

σi
?
= h(c′1, gi, si, v

′
i, c
′
1
Disi

−σi mod N, gi
Div′i

−σi mod pi).
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– Combining the partial results : The incomplete decryptor s is obtained

by combining the si values

s =
∏
i∈S

si mod N.

– Correction: The βi values will be used to find the exponent which will

be used to correct the incomplete decryptor. Compute the incomplete

public key β as

β =
∏
i∈S

βi mod N. (5.12)

Let κs = c1
MS mod N and κβ = g−MS mod N be the correctors for s

and β, respectively. The corrector exponent δ is obtained by trying

βκjβ
?≡ β (mod N) (5.13)

for 0 ≤ j < t.

– Extracting the message: Compute the message w as

s = sκs
δ mod N,

w = sc2 mod N.

where δ denotes the value of j that satisfies (5.13).

As in the case of RSA, the decryptor s is incomplete since we need to obtain

y =
∑

i∈S ui mod MS as the exponent of c−1
1 . Once this is achieved, (c−1

1 )y ≡
(c−1

1 )α (mod N) since y = α + 2Ap′q′ for some A.

When the equality in (5.13) holds we know that β = gα mod N is the correct

public key. This equality must hold for one j value, denoted by δ, in the given

interval since the ui values in (5.10) and (5.11) are first reduced modulo MS. So,

combining t of them will give α+ am0 + δMS in the exponent in (5.12) for some

δ ≤ t− 1. Thus in (5.12), we obtained

β = gα+am0+δMS mod N ≡ gα+δMS = βgδMS = βκ−δβ (mod N)

and for j = δ equality must hold. Actually, in (5.12) and (5.13), our purpose is

not to compute the public key since it is already known. We want to find the
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corrector exponent δ in order to obtain s, which is equal to the one used to obtain

β. This equality can be seen as follows:

s ≡ c1
−α = β−r

=
(
g−(α+(δ−δ)MS)

)r
= c1

−(α+am0+δMS)
(
c1
MS
)δ

= sκs
δ (mod N)

If the ith user is honest then the proof succeeds since c′1
Disi

−σi = c′1
r mod N

and gi
Div′i

−σi = gi
r mod pi. The soundness property can be proved with a proof

similar to the one in Section 5.3.1.1. Note that gcd(N, pi) = 1 for all users and

λ(N) = 2p′q′ is secret. A similar proof can be given for the zero knowledge

simulatability as the one in Section 5.3.1.1. We omit the security proof here

since the structure of the simulator is very similar to the one in Theorem 1 of

Section 5.3.1.1.



Chapter 6

Conclusion

In this thesis, we proposed CRT-based secret and function sharing schemes.

Regarding the secret sharing problem, we proposed verifiable and proactive

secret sharing schemes based on the CRT. We also showed how to modify the

Asmuth-Bloom SSS to use it for various problems. We proved that these modifi-

cations do not disrupt the perfectness of the scheme.

Regarding the function sharing problem, robust sharing of the RSA signa-

ture/encryption, the ElGamal and Paillier decryption and the DSS signature

functions with the Asmuth-Bloom SSS are investigated. Previous solutions for

sharing these functions were traditionally based on the Shamir’s and Blakley’s

SSSs [21, 22, 23, 29, 34, 50, 66, 68]. To the best of our knowledge, the schemes

described in this thesis are the first secure FSSs that use the Asmuth-Bloom SSS.

For some cases, the users have some private data y1, y2, · · · , yn and they want

to compute the value of a public function without revealing their private data.

Secure multiparty computation (MPC) deals with this problem. This problem

was first proposed by Yao [73]. In his paper, he proposed the millionaire problem

in which Alice and Bob are two millionaires who want to find out which one

is richer without revealing their wealth. The solutions proposed for the MPC

problem are usually based on the secret sharing schemes, mostly on Shamir’s SSS.

82
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Using CRT-based SSSs for MPC schemes can be investigated as future research.
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