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Abstract. We present a new discretization method based ea Ander ROC
Curve (AUC) measure. Maximum Area under ROC Curasdsl Discretization
(MAD) is a global, static and supervised discre¢taramethod. It discretizes a
continuous feature in a way that the AUC based onlyhat feature is to be
maximized. The proposed method is compared witrradtive discretization
methods such as Entropy-MDLP (Minimum Descriptioangth Principle)
which is known as one of the best discretizatiorthods, Fixed Frequency
Discretization (FFD), and Proportional Discretipati(PD). FFD and PD are
proposed recently and designed for naive Bayeshitepr Evaluations are
performed in terms of M-Measure, an AUC based mefor multi-class
classification, and accuracy values obtained fraiivenBayes and Aggregating
One-Dependence Estimators (AODE) algorithms bygis@al world datasets.
Empirical results show that our method is a cartditabe a good alternative to
other discretization methods.

K eywor ds: Data Mining, Discretization, Area under ROC Curve

1 Introduction

As data comes in different forms, it is always jldesto encounter continuous
attributes in any datasets. Briefly, discretizatioathods aim to find the proper cut-
points which form the intervals in the progress di$cretization. A continuous
attribute is then treated as a discrete attribitese number of intervals is known on
the continuous space.

Discretization methods have received great atteritmm researchers and different
kind of discretization methods based on differerdtrios are proposed. Recently,
Yang and Webb (2009) proposed two new discretimatiethods for the Naive Bayes
classifier There are important reasons of this attention siscthe inability of many
machine learning algorithms which are not able trkwwith continuous values.
Aggregating one-dependence estimators (AODE) is aninese algorithms which
have been used in this research (Webb et al. 2G0%s been shown by Dougherty
et al. (1995) that the discretization methods inaprthe predictive performance and
make the algorithms work faster. These are othasames for using discretization
methods.

Liu et al. (2002) categorized discretization alfforis in four axes. These
categories includeupervised vs. unsupervised, splitting vs. merging, global vs. local
and dynamic vs. static.



Simple methods such as equal width or equal fre;ubmning algorithms do not
use the class labels of instances during the dization process (Holte 1993). These
methods are calleghsupervised discretization methods. To improve the quality of the
discretization, methods that use the class labelspeoposed. Since these methods
utilize class labels during discretization, theg eferred asupervised discretization
methods.

Splitting methods take the given continuous spank tey to divide it into small
intervals by finding proper cut-points, whereas girgg methods handle each distinct
point on the continuous space as an individual idael of cut-point and merges them
to larger intervals.

Some of the discretization methods process lodhlpats of the instance space
during discretization. As an example, C4.5 algonithandles numerical values by
using a discretization (binarization) method whigtapplied to localized parts of the
instance space (Quinlan 1993, 1996). Thereforesethmethods are called local
methods. The methods which use whole instance sgahe attribute that is going to
be discretized are called global methods.

Dynamic discretization methods use whole attribggace during discretization.
Dynamic discretization methods perform better otadaith interrelations between
attributes. On the other hand, static discretipatiethods discretize attributes one by
one. These methods assume that there are no latieme between attributes.

In this paper, we propose a discretization methalted Maximum Area under
ROC Curve Based Discretization (MAD). Accordingtiie categories defined above,
MAD is categorized as a supervised, merging, glabal static discretization method.

Splitting discretization methods usually aim toiopze measures such as entropy
(Quinlan 1986; Catlett 1991; Fayyad and Irani 192&) de Merckt 1990; Cerquides
and Mantaras 1997), dependency (Ho and Scott 1@9¢curacy (Chan et al. 1991)
of values placed into the bins. On the other hametging algorithms proposed so far
uses X statistic (Kerber 1992; Liu and Setiono 1995; Wang Liu 1998). As far as
we know, Receiver Operating Characteristics (RO@VE has never been employed
in discretization domain before.

1.1 Receiver Operating Characteristics (ROC)

The first application of ROC was the analysis adamasignals in World War I
(Krzanowski & Hand, 2009). Later, it is used infelient areas such as signal
detection theory and medicine (Green and Swets ;126®ig and Campbell 1993;
Pepe 2003). It was applied to machine learninggackman (1989) for the first time.
According to Fawcett’'s definition, ROC graph isoaltthat can be used to visualize,
organize and select classifiers based on theipprence (Fawcett 2006). They have
become a popular performance measure in machimeidrgacommunity after it is
realized that accuracy is often a poor metric taluate classifier performance
(Provost and Fawcett 1997; Provost et al. 1998j kinal. 2003).

ROC literature mostly depends on the classificafooblems with two classes
(binary classification). In binary classificatiopach instancéhas two different class
labels, agp (positive) andh (negative). At the end of the classification phasene
classifiers simply map each instance to a clasd l@liscrete output). Also there are
classifiers which are able to estimate the prolighilf an instance belonging to a
specific class (continuous valued output, alsoedaksscore). Classifiers produce
discrete output represented by only one point im ROC space since only one
confusion matrix is produced from their classifioat output. Continuous output



producing classifiers can have more than one cmrfusatrix by applying some
thresholds to predict class membership. All insgtanevith a score which is greater
than the threshold, are predicted as p class dnathedrs are predicted as n class.
Therefore, for each threshold value one confusiatrimis obtained. The number of
confusion matrices is equal to number of ROC pamen ROC graph.

111 ROC Space

ROC space is a two dimensional space whose ran@edisl.1] on both axes. In
ROC space y-axis represents the true positive(T&R) of a classification output and
x-axis represents false positive rate (FPR) of @utp

To calculate TPR and FPR values, the definitionthefelements in the confusion
matrix should be given. The structure of a confusimatrix is shown in Fig. 1. True
positives (TP) and false positives (FP) are mogtoitant elements of the confusion
matrix for ROC graphs. TP is equal to the numbepasitive instances which are
classified correctly. And false positive is equalthe number of negative instances
which are not classified correctly. TPR and FPRigalare calculated by using Eqg. 1.
In this equationN is the number of total negative instances Brid the number of
total positive instances.

TPR=TP/P.
FPR=FP/N.

D

In this equatiorN is the number of total negative instances Brisl the number of
total positive instances.

Actual Class
p n
p TP FP
Predicted
Class
n FN TN
Column Totals: P N

Fig. 1. Structure of a confusion matrix.

1.1.2 Calculation of ROC Curve

As mentioned above, the classifiers which are pripducontinuous output can
form a curve in ROC graph as they are represenyechdre than one point in the
graph. To calculate the ROC graph, different tholbkhvalues are selected and
different confusion matrices are formed.

By varying the threshold betweeo-and +00 an infinite number of ROC points
can be produced for a given classification outgdbwever, this operation is



computationally costly and it is possible to forrO® curve more efficiently with
other approaches.

As proposed by Fawcett (2006), in order to caleulROC curve efficiently,
classification scores are sorted in an increasmggrofirst. Starting from e, each
distinct score element is taken as a threshold, &R&R FPR values are calculated
using Eq. 1.

As an example, assume that the score values foinssnces and actual class
labels for a toy dataset are given in Table 1. R@C curve for this toy dataset is
shown in Fig. 2. In this figure, each ROC poingiigen with the threshold value used
to calculate it. Starting fromoe, nine different thresholds are used since total
threshold value is equal to %1 whereSis the number of distinct classifier scores
in the dataset. With this simple method it is palgsto calculate the ROC curve in
linear time.

Table 1.Toy dataset given with hypothetical scores
Classlabel n| nf m p p h p p p

Score -7 -3 0 0 4 7T 8 10 11
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Fig. 2. ROC graph of the given toy dataset in tdble

1.2 Area under ROC Curve (AUC)

ROC graphs are useful to visualize the performasfca classifier but a scalar
value to compare classifiers is needed. In thealitee, the area under the ROC curve
(AUC) is proposed as a performance measure by 8yadl997). According to the



measure AUC, the classifier with a higher AUC vgbeeforms a better classification
in general.

The ROC graph space is a one unit square. Thedtiglossible AUC value is 1.0
which represents the perfect classification. In R@@phs 0.5 AUC value means
random guessing and the values below 0.5 are adistie as these values can be
negated by changing the decision criteria of thesifier.

AUC value of a classifier is equal to the probapithat the classifier will rank a
randomly chosen positive instance higher than daomaty chosen negative instance.
Hanley and McNeil (1982) show that this is equatt® Wilcoxon test of ranks. This
property of AUC of an ROC curve can be used toglesi discretization algorithm.
The details of such an algorithm will be given lie hext section. Third section will
present the empirical evaluations by using realldvdatasets. The last section will
conclude with some future directions for improveimnen

2 MAD Method

In this section, the details of MAD method will beven. Firstly, the definition of
concepts such as cut-points, ROC space and stoppiaga will be given. After that,
different behavior of MAD in two-class datasets amdlti-class datasets will be
examined on separate sections.

2.1 Definition of cut-points

Given an attributeA which hasN instances with known values and @tbe the
number of distinct continuous values in A’'s insengpace. There can he1
candidate cut-points to be used in discretizatiatgss.

First, the instances are sorted (in this work ioréasing order) according their
values for the attribute A. Then, each of thesalichte cut-points are calculated by
using Eq. 2.

Ci= (Nn+ Nni1) 1 2,

whereN,andN,., are distinct and consecutive values in the sansi@nce space

@

2.2 Definition of ROC space for discretization

The numerical attribute values are taken as hypiotiieclassifier scores that are
needed to draw ROC curve; the cut-points are uséldeathreshold values.

According to Eq. 1 for the threshold valu® ; the TPR and FPR values will be 1,
corresponding to coordinate (1,1) in the ROC spdt¢e method will continue
incrementally drawing ROC curve by using each adauei cut-point as the threshold
values. Finally, the ROC point corresponding camatk (0,0) with the thresholdoa
will be reached. Total number of ROC points forcdisization isC-1 plus two for the
trivial end points.



2.3 Discr etization measure

As mentioned above different measures such aspniaaecuracy, dependency and
X? statistic have been used in discretization methtydshis work, the AUC of the
ROC curve, obtained from these TPR and FPR valsassed as the measure to be
optimized.

The motivation behind this approach is the proptrég an ROC curve results in a
high AUC value when the labeled instances have higher score values then th
labeled instances. By using this heuristic, theimmimim number of ROC points which
maximize AUC value will be selected. This meansimum number of cut-points
which rank positive labeled instances higher thenrtegative labeled instances will
be selected. When the given attribute space hawdering between negative and
positive instances, a higher AUC value is obtaiaad according to discretization
measure of this method, a better discretizati@chseved.

2.4 Stoppingcriteria

MAD is a merging discretization method that conéistio merge candidate cut-points
to larger intervals until the maximum AUC is obtih The maximum AUC is
defined by the convex hull formed by the ROC pointthe given ROC space.

Convex hull is a polygon with a minimum number af-points that encloses all
other points in the ROC space. Theorem 1 showsthieatmaximum AUC can be
obtained by finding the convex hull. ROC convexlhsldefined by Provost and
Fawcett (2001) to form classifiers which maximizee tAUC value. A similar
approach will be used to select cut-points whiclkimae AUC value.

Theorem 1 If all the points forming the ROC curve are on awex hull, the AUC is
the maximum.

Proof: (by contradiction) Assume an ROC curve for a gispace which has a larger
AUC. This curve should contain a point outside teavex hull to make area even
larger. Since convex hull enclose all points ingpace, this is a contradiction.

2.5 Algorithm

MAD method finds the proper cut-points for the givastance space to maximize the
AUC value. In turn, in order to maximize AUC, thenwex hull is calculated in the
given space.

As MAD algorithm finds this convex hull by usingffiérent methods for two-class
and multi-class datasets, both of these situatwitisbe given in detail in Section
2.5.1 and Section 2.5.2. Outline of the algoritisrgiven in Fig. 3.



MABD( t r ai nl nst ances)
begin
sort (trainlnstances);
rocPoi nt s= cal cul at eROCPoi nt s(trai nl nstance);
cut Poi nt s= findConvexHul | (rocPoi nts);
return cut Points;
end

Fig.3. Outline of the MAD algorithm

As it will be revisited in section 2.5.1, there €@ symmetry in every ROC curves
for two-class datasets. If the labels of all instmare interchanged, that is lab&l
are replaced by’s, andp’s are replaced by's, the ROC curve obtained is symmetric
of the original about the=x line. This means that it is possible to find the
discretization result by calculating one ROC cur@enversely, this symmetry does
not exist for multi-class datasets. In this casererthan one ROC curves will be
obtained. Therefore, two-class datasets and mabkscdatasets require different
treatment.

2.5.1 Discretization in two-class datasets

For two-class datasets, the calculation of candidat-points represented by ROC
points and the method that finds the convex hudl different than the multi-class
datasets in MAD algorithm. MAD algorithm for twoads datasets is given in Fig. 4.

1 : MAD2C (trai nl nstances)

2 Begi n

3 sort(trainlnstances);

4 rocPoi nt s= cal cul at eROCPoi nt s(trai nlnstance);
5 : cut Poi nt s= fi ndConvexHul | (rocPoi nts);
6 : return cutPoints;

7 end

8 :function cal cul at eROCPoi nt s(trainl nstance)

9 begi n

10: rocPoints<- (+0,0,0),(-%,1,1);

11: for i=0 to N

12: if(trainlnstances[i]=positiveC ass)
13: t ot al Posi tive++;

14: el se total Negati ve++;

15: cur Pos=t ot al Positive;

16: cur Neg=t ot al Negat i ve;

17: for i=0 to N1

18: if(trainlnstances[i]=positiveC ass)
19: cur Pos--;

20: el se cur Neg- -;

21: if(trainlnstances[i]==trainlnstance[i+1])
22: conti nue;

23: cut Val ue=(trainl nstances][i ]

24: +t rai nlnstances[i +1]/2);

25: TPR= cur Pos/total Positive;

26: FPR= cur Neg/ t ot al Negati ve;

27: I f (upper Tri angl e( TPR, FPR) =t r ue)

28: rocPoi nts<- (cutVal ue, TPR, FPR);
29: el se rocPoi nts<- (cutVal ue, FPR, TPR) ;
30: return rocPoints;

31: end

32:function findConvexHul | (rocPoints)
33: begi n



34: poi nt sKept <- (+0, 0, 0);

35: current Sl ope=sl| opeBet ween(r ocPoi nts[ 1],
36: rocPoints[0]);
37: for i=2 to N

38: next Sl ope=sl opeBet ween(rocPoints[i],
39: rocPoints[i-1]);
40: i f (next Sl ope<=current Sl ope)

41: concavi t yFound=t r ue;

42: el se poi nt skept<- rocPoints[i-1];

43: current Sl ope=next Sl ope;

44 poi nt sKept<-(- 0,1, 1);

45: i f (concavi tiyFound)

46: fi ndConvexHul | (poi nt sKept) ;

47: el se return poi nt sKept;

48: end

Fig. 4. MAD algorithm in two-class datasets

There are some important points that deserve etibor One of them is about the
calculation of ROC points. In order to calculate ®Qoints for the given sorted
attribute, total number gf andn classes should be counted. There are two possible
ways to predict the labels of the instances: &llalgh scored instances pgnd low
scored instances as b) label low scored instances@and low scored instances as
n. The choice of the class labeled mgloes not effect the discretization process
according to the symmetry proved in Theorem 2. Tli@neach candidate point TPR
and FPR values are calculated by using Eq. 1.

Theorem 2 In two-class problems, there exists two ROC poifots the given
candidate cut-point and these points are symmetric abgux line.

Proof: In order to calculate ROC curve, one of the clasbesild be labeled gsand
other am. Assume that an arbitrary class is labeled aad the confusion matrix in
Fig. 5a is obtained. The point created from thisfasion matrix isv and its
coordinate isX,y). The calculation of this coordinate is giver&q. 3.

x=FPR=FP/N
y=TPR=TP/P

3

When the actual class labels interchanged, theusif matrix in Fig. 5b is formed.
This new confusion matrix equals to the originahfogion matrix where columns
values are interchanged. The new point created thisnmatrix is V' represented by
(x',y") point. This point is calculated by using.Egand the coordinate @fequals to
(y,x). Therefore, the pointsandv' points are symmetric aboxtty line.

x'=FPR'=TP/P
y =TPR' = FP/N

x'=zyandy =X

(4)



Actual Class Actual Class

p n n p
p TP FP p FP TP
Predicted Predicted
Class Class
n FN TN n TN FN
Column Totals: P N Column Totals: N P

@ (b)

Fig. 5. (a) Confusion matrix for the case where ofthe classes is labeled mand other class
asn. (b) Confusion matrix for the case when classltaimterchanged.

Corallary 1 Since there exist a symmetry between the ROC pdimtsone which is
above y=x line is taken into consideration. The points belgwx line are not
candidate points to maximize AUC since default Atue is 0.5. The 17line of

the algorithm given in Fig. 4 assures this property

Next step of the discretization is selecting theQR@ints which form the convex
hull. There are different methods to calculate esniull in the givem dimensional
space. One of these methods is called QuickHulPtBperata and Shamos (1985).
This method has @(ign) time complexity in practical and 6. In this work, a new
method to calculate convex hull for two-class peat is proposed.

FindConvexHull function is given on the $2ine of the algorithm given in Fig. 4.
The main motivation for the function findConvexHudl the ordering of the ROC
points. The first point created on the graph alweggesponds to (1,1) and the last
(0,0). The points lying between these two triviairps have a monotonically non-
decreasing property. For example, assumewhas the point which is created just
beforev2. Pointvl always stands on the north, east or north-eastddithev2. These
points create a shape (possibly include concayitieen the points are connected to
each other with hypothetical lines during the ROAQrve creation stage.
FindConvexHull method compares the slopes in thaerorof creation of these
hypothetical lines with each other and finds thecfion points (cut-points), which
cause concavities, and eliminates them.

FindConvexHull method guarantees to find the cortvalkin best case @] time
and in worst case &)). In the worst case, the method should at leastpaint out to
call itself again. This leads to @] complexity. In best case, the method finds the
convex hull in a linear time if the points are alilg forming a convex hull. Average
case of the algorithm will be given by empiricaduks.

With MAD method it is possible to visualize the distization process. A toy
dataset given in the Table 2 will be used as amel@to explain how the MAD
method discretizes a feature visually. The toy skttaontains 20 instances.



Table 2. Toy dataset for visualization of MAD wd-class problems. F1 is the name of the
attribute to be discretized.

Class n n ni nf n N n n n D n
Value | M| P p H f p Roq p
FL | 1|23 4 5 6 78 9 9 10 11 12 13 14 [15 |16 |17

Each step of calculation of the convex hull in ¢fineen ROC space is visualized in
figures Fig. 6 thru Fig 8. In Fig. 6, generated R@iints for both classes are shown.
The y=x line is drawn to show the symmetry between cumwbgh is proven in
theorem 2. According to Corollary 1, only the psiabovey=x line will be processed
in the next step.
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Fig. 6. Visualization of ROC point in two-class aistization
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Fig. 7. First pass of the convex hull algorithm

In the next step of MAD, points which cause congawill be eliminated. Fig. 7
shows the points left after the first pass of thethnd which finds the convex hull.
Since the algorithm checks the concavity on a ldeede, it is possible to have a
concave shape even after the first pass. The #igomill continue recursively with
the points left in each step until it convergethimconvex hull.

In this example, the algorithm converges to thalftonvex hull after the second
pass. The points left on the graph are the cuttpaimich are going to be used in
discretization. Fig. 8 shows the final cut poirgf bn the graph.
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Fig. 8. Final cut points left after the second pafssonvex hull algorithm.

MAD method guarantees that any cut point left atfthal graph does not divide a
sequence of instances that belong to the same @laisscan be proven for two class
problems and it can be extended to multi classlenab as well.

Theorem 3 Cut points found by MAD method in two class problelmes not lie
between two consecutive instances of the same class

Proof: (by contradiction) Assume that there exists suautapointC, at the final
ROC curve thatlivides sequence of instances of the same clas€, L@andC,. are
the cut points before and aft€y respectively. Total number of instances labeled as
is P and total number of instances labeled as N.i$he number of instances which
are labeled as p and higher thap, is p'. The number of instances that labeled as n
and higher thanC,; is n. Number of instances betwedd,; and C, will be
represented bl and number of instances betwegandC,.; will be represented by
[. If C,divides an interval where all instances are labelec, the TPR and FPR
values ofC, 4, C,andC,.; are given in Eq. 5. Since all of these cut-polese same
TPR value, these points lie on the same slopeGyrubint will be eliminated at the
40" line of the algorithm given in Fig. 4 which recesrthe slope betwedd), andC.,

is strictly greater than the slope betwé&gn andC,.

TPRy,.=p /P, TPR =p' /P, TPRu=p /P
FPR,1=n"/ N, FPR, =n-k/ N, FPR,;; =n"-l / N

©)



The other case is th&, divides an interval where all instances are labaksd The
TPR and FPR values &1, C,andC,,; are given in Eq. 6. In this case all points
have same FPR value and these points line on tne séope as well. Algorithm
shown in Fig. 4 will eliminat€,,. As a result in both cases cut-poGitis eliminated
and it is contradiction to having such a pointhia final ROC curve.

TPRy1=p /P, TPR =p-k/ P, TPRy=p-l /P
FPR,1=n/N, FPR,=n"/ N, FPR,;; =n'/ N

(6)

2.5.2 Multi class behavior

In multi-class problems, the main problem is dewdhow to choose the positive
and the negative class. Also there exists no symnbettween ROC curves of each
class as in the two-class problems. Therefore, utisolass MAD algorithm forC
number of classe§ different ROC curves are calculated.

The method used for the two-class datasets carxteaded to the multi-class
problems by relabeling one class mand all others as and obtaining the ROC
curves. This technique is used by Provost and Dgasir{2001) in order to calculate
ROC curves for multi-class datasets. The convekdiuhe ROC curve is computed.
This process is repeated for all class lab€smany different convex hulls are
summed together and final convex hull is found bing Quickhull method. Outline
of the multi-class MAD method is given in Fig. 9.

:MADMC (trainlnstances)
Begi n
sort(trainlnstances);
for each class
mark current class as p others as n
rocPoi nt s=cal cul at eROCPoi nt s(trai nl nstance) ;
t ot al r ocPoi nt s+=f i ndConvexHul | (r ocPoi nt s) ;
cut Poi nt s= Qui ckHul | (total rocPoi nts);
return cutPoints;
end

co~NOOUR~AOIAWNPE

Fig. 9. Multi-class MAD algorithm

Multi-class MAD uses the same function to calculaROC points
(calculateROCPoints given in algorithm in Fig. 4) and convex hufinConvexHull
given in algorithm in Fig. 4) as it use in two-datatasets. Therefore, the Theorem 3
applies to the multi-class MAD algorithm; that is,jis guaranteed that a cut-point
does not lie between two consecutive instanceseofame class.

In Fig. 10 an example visualization of discretigatiprocess for multi-class
datasets is given. In this figure, an attributeobging to a three-class dataset is being
discretized. Each class label is represented lynaex hull and the points lying on
the border of shaded area are the final cut-pdinés are going to be used in
discretization process.
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Fig. 10. Visualization of discretization process fiaulti-class datasets. An attribute of a three-
class dataset is used. Gray shaded area repré&s@@tsonvex hull.

By relabeling a class gsand marking others as discretization method becomes
to be sensitive to the class distributions. If @ighe classes in the dataset has a
perfect ordering, only the points formed by thattipalar class will be selected by
QuickHull method and some valuable information barlost. This drawback can be
solved by creating pairwise class ROC curves wisch similar method used in M-
Measure (Hand and Till 2001). The@(C-1) different ROC curves have to be
created. On the other hand, this will increasecthraputation time since the number
of convex hull has to be calculated increases. BEwéh this drawback MAD
algorithm works well in multi class datasets in tH€l repository (Asuncion and
Newman 2007).

3 Empirical Evaluations

In this section, MAD discretization method is comgzh with the well known
Entropy-MDLP method proposed by Fayyad and IraBbD2) and two other methods
(FFD and PD) proposed recently by Yang and WebbqR0

As a splitting method, Entropy-MDLP method usesrapy measure to select
proper cut-point to split an interval. An applicati of minimum description length
principal callednformation gain is used as stopping criteria. In the nutsheBglects
the proper cut-points which minimize the entropytfte given interval and continues
to discretize recursively until information gainnist sufficient.

The unsupervised FFD and PD methods are designenidier to obtain high
classification accuracy (lower classification ejrby managing discretization bias
and variance. FFD discretizes attributes into ecpiedd intervals where each bin



contains approximetely 30 instanc&D also discretizes attributes into equal sized
intervals but the number of instances in each vaias not fixed for each dataset. In
PD interval frequency is calculated by using Eq. 7.

sxt=n,
S=t,

wheresis interval frequencyt, is number of intervals andis the number of known instances.

The discretization results obtained by MAD, EntrdppLP, FFD, and PD
methods in real life datasets will be shown. Altad®ts used in the experiments are
taken from the UCI Machine Learning Repository. [€a® shows the properties of
these datasets.

The performance of the algorithms is evaluateaur flifferent aspects: predictive
performance, running time, inconsistency of intésyvand number of intervals found.

Table 3. Dataset used in the experiments

Name # Instances # Continuous # Nominal |# Class Labels
Attributes Attributes

Abalone 4177 7 1 29
Bupa 345 6 0 2
Crx 653 9 6 2
Dermatology 366 33 1 7
German 1000 7 13 2
Glass 214 10 0 10
Heart (Statlog) 270 6 7 2
Ozone-onehr 2536 73 0 2
Page-Blocks 5478 10 0 5
Sick-euthyroid 3163 7 18 2
SPECTF 267 44 0 2
Spambase 4601 58 0 2
Transfusion 748 5 0 2
Wisconsin 564 30 0 2
Yeast 1484 8 0 10

3.1 Predictive performance

Classifiers that associate the predicted class avitbnfidence value are preferred
in this work since their ROC curve representat®more meaningful. Two different
classifiers, which are supporting this propertye aelected. One of them is Naive
Bayes classifier. Naive Bayes is one of the sinijgled most effective classifiers and
it is shown that using discretization with naiveyBs algorithm increases predictive
accuracy (Dougherty et al. 1995). The other algoriselected, AODE, requires that
all features are categorical.

The naive Bayes, AODE, and Entropy-MDLP discretimaimplementations are
taken from source codes of WEKA package (Hall e2@09). Naive Bayes algorithm
is used in default form which uses single normaitritiution rather than kernel
estimation. FFD method is implemented by using WEKAunsupervised
discretization method by passing the number ofrials as a parameter. In
implementing the PD, the number of known valuesefach attribute is calculated in

(7)



order to find number of intervals as shown in Egad the number of intervals is
passed as a parameter.

Five different cases are being considered for nBayes algorithm in this section:
The naive Bayes algorithm with MAD discretizatiorethod, naive Bayes with
Entropy-MDLP method, naive Bayes with FFD methodjva Bayes with PD
method, and naive Bayes with continuous valueshwit discretization). Also four
different cases will be considered for AODE aldurit with MAD discretization
method, AODE algorithm with Entropy-MDLP discretimen  method AODE
algorithm with FFD discretization method, and AO@Eh PD method.

Two different measures have been used to evaluatiicfive performance. First
measure is called M-Measure. This measure is deitabcalculate both two-class
AUC and multi-class AUC values. M-Measure is insiresto the class distribution
and error costs. Since MAD is based on AUC, onentrggiestion the impartiality of
using a performance metric that depends on AUC.clBar that question mark,
predictive performance of MAD against other diseadtion methods is measured by
using accuracy metric as well. Stratified 10-fotdss validation is employed in order
to calculate M-Measure and accuracy values for datiset.

The predictive performance evaluation result oe@ayes obtained by using M-
Measure is given in Table 4. It is seen in thislgathat the MAD algorithm
outperforms all other discretization methods imigrof the M-Measure on average.
Paired-sample t-test method shows that in 95% denéie interval, MAD improves
naive Bayes algorithm performance significantly paned to the performance
obtained with using FFD method, PD method or withaing discretization. On the
other hand, Entropy-MDLP method does not improvévenaBayes algorithm
performance statistically significantly accordirngM-Measure.

Table 4. Predictive performance of Naive Bayeseinms of M-Measure under
different discretization methods (Higher valueslzetter).

Name MAD Entropy FFD PD Without
MDLP discretization
Abalone 0,650 0,598 0,643 0,637 0,642
Bupa 0,750 0,540 0,684 0,685 0,626
Crx 0,924 0,928 0,928 0,929 0,900
Dermatology 0,999 0,999 0,999 0,999 0,997
German 0,794 0,775 0,787 0,787 0,785
Glass 0,915 0,918 0,914 0,900 0,861
Heart (Statlog) 0,906 0,901 0,905 0,899 0,897
Ozone-onehr 0,859 0,853 0,831 0,841 0,843
Page-Blocks 0,969 0,978 0,966 0,971 0,951
Sick-euthyroid 0,952 0,959 0,950 0,953 0,920
SPECTF 0,965 0,964 0,950 0,957 0,940
Spambase 0,864 0,824 0,850 0,84% 0,850
Transfusion 0,715 0,686 0,689 0,682 0,711
Wisconsin 0,987 0,986 0,987 0,986 0,980
Yeast 0,831 0,837 0,812 0,821 0,865
Average 0,872 0,850 0,860 0,860 0,851

The predictive performance of naive Bayes in tenfreccuracy metric is given in
Table 5. The MAD method again outperforms all otheethods on the average.
According to the paired-sample t-test on 95% canfa, it is possible to say that all
of the discretization methods used in this papgrave the performance of naive
Bayes algorithm significantly.



Table 5.

Predictive performance of Naive Bayesemms of accuracy under
different discretization methods (Higher valueslzetter).

Name MAD Entropy FFD PD Without
MDLP discretization
Abalone 25,79 25,26 25,91 26,89 23,95
Bupa 70,13 57,70 63,18 63,22 53,96
Crx 85,91 86,53 85,61 86,22 77,97
Dermatology 97,55 98,09 98,09 97,82 97,81
German 75,90 73,50 75,20 75,20 75,00
Glass 70,82 70,89 68,55 68,05 48,35
Heart (Statlog) 82,59 82,59 82,59 82,96 83,70
Ozone-onehr 78,34 79,88 87,81 83,31 70,77
Page-Blocks 94,54 93,42 93,40 92,4 90,15
Sick-euthyroid 95,89 96,02 95,07 95,32 84,22
SPECTF 89,96 89,81 87,83 89,13 79,72
Spambase 76,81 72,66 74,16 76,79 68,58
Transfusion 77,94 75,27 76,47 75,27 75,67
Wisconsin 94,37 94,19 94,19 93,67 93,49
Yeast 58,32 56,71 52,79 53,74 57,99
Average 78,32 76,83 77,39 77,33 72,09

The predictive performance of AODE algorithm imterof M-Measure is given in
Table 6. The AODE method is an extension to naiegeB method in order to
improve predictive performance, so it is naturagxpect high performance from FFD
and PD methods since they are naive Bayes optBudlaccording to the paired-
sample t-test on 95% confidence interval MAD metlootberforms both FFD and
PD methods. Also the MAD method performs bettentBatropy-MDLP method on

the average.

Table 6. Predictive performance of AODE in terrh#eMeasure under different
discretization methods (Higher values are better).

Name MAD Entropy FFD PD
MDLP

Abalone 0,649 0,628 0,646 0,651
Bupa 0,752 0,540 0,656 0,665
Crx 0,929 0,930 0,932 0,928
Dermatology 0,999 0,999 0,999 0,999
German 0,793 0,783 0,788 0,788
Glass 0,920 0,925 0,940 0,915
Heart (Statlog) 0,907 0,904 0,904 0,895
Ozone-onehr 0,891 0,878 0,762 0,723
Page-Blocks 0,974 0,984 0,932 0,955
Sick-euthyroid 0,964 0,963 0,957 0,959
SPECTF 0,977 0,980 0,945 0,959
Spambase 0,865 0,820 0,829 0,794
Transfusion 0,697 0,707 0,661 0,654
Wisconsin 0,992 0,988 0,989 0,988
Yeast 0,822 0,833 0,802 0,813
Average 0,875 0,858 0,849 0,846

The predictive performance of AODE algorithms inme of accuracy metric is
given in Table 7. According to this table MAD methoutperforms all other

discretization methods on the average again.



Table 7. Predictive performance of AODE in termsacuracy under different discretization
methods (Higher values are better).

Name MAD Entropy FFD PD
MDLP
Abalone 27,13 25,67 26,17 27,25
Bupa 71,85 57,70 63,19 62,39
Crx 86,68 86,68 87,45 86,68
Dermatology 97,55 98,08 98,09 97,55
German 75,40 74,90 75,60 75,60
Glass 75,50 73,20 77,88 76,47
Heart (Statlog) 82,22 82,96 82,96 82,27
Ozone-onehr 96,21 88,76 96,65 96,88
Page-Blocks 96,62 96,97 95,74 96,18
Sick-euthyroid 96,65 96,52 95,26 95,92
SPECTF 93,35 93,31 88,02 90,15
Spambase 79,42 73,77 79,37 76,81
Transfusion 76,34 75,27 77,41 77,55
Wisconsin 95,78 96,12 95,60 94,91
Yeast 57,38 56,77 53,67 54,41
Average 77,00 75,96 76,28 76,19

3.2Running Time

In machine learning it is also essential to deghwvarge datasets. Therefore, the
running time of the proposed method is criticale Morst and the best case running
time complexity of the MAD algorithm are given imet Section 2.5.1. In this section,
the running times on real life datasets are givapigcally.

As mentioned in Section 2.5, the main time consgrstep of MAD (after sorting)
is finding the convex hull as fast as possibletwn class problems only one convex
hull is calculated. On the other hand, in multisslaituation the number of convex
hulls calculated is equal to the number of clabglla Each of these convex hulls is
calculated by the method proposed in Section 2ebickl, the average running time of
finding the convex hull method is the most prominpart in the running time of
whole method.

The proposed convex hull calculation method is keeb recursively until it
converges to the convex hull. In order to giveraight of running time of algorithm
in practice, Table 8 shows the average number afrseve call for an attribute to
calculate convex hull. According to Table 8 it mspible to say that, regardless of the
number of instances, the convex hull can be foundalling the function recursively
minimum one, maximum six and on average four tifoeshe given datasets.



Table 8. Average number of calling time to caltaileonvex hull for an attribute of each
datasets.

# Recursive

Name Call

Abalone

Bupa

Crx
Dermatology
German
Glass

Heart (Statlog)
Ozone-onehr
Page-Blocks
Sick-euthyroid
SPECTF
Spambase
Transfusion
Wisconsin
Yeast
Average
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The overall running time of all methods areasured. To be objective, the
running times are measured by using java virtuahimee’s CPU time and hundred of
different runs are averaged. Table 9 shows theagearunning times of all algorithms
in all datasets, in microseconds (us). Accordinthis table, on the average, all other
methods outperform MAD method. As mentioned abareniulti-class datasets, the
MAD method calculatea different ROC curves whereis the number of attributes.
Also it combines these curves with QuickHull algfam whose complexity (no worse
than O log n) in practical) is higher than unsupervised diszagion methods.

Table 9. Average running time results for all data (in ps) (lower results are
better).

Entropy- FFD PD # Class label
Name MAD MDLP
Abalone| 599955 87075 33437 62924 29
Bupa 1406 2250 1625 4593 2
Crx 3593 4661 4609 11484 2
Dermatology 7752 1732 1576 7274 7
German 5200 7165 7410 24352 2
Glass| 6909 2465 1059 3541 10
Heart (Statlog 1177 1430 1370 3894 2
Ozone-oneh 10928 14124 16511 167442 2
Page-Blocks 150625 69796 52562 120843 5
Sick-euthyroid 24753 26288 24429 250764 2
SPECTH 17834 25334 30000 148526 2
Spambase 1129 1207 1104 6946 2
Transfusiory 2929 4570 5468 9179 2
Wisconsin 3588 5708 3072 14640 2
Yeast 53476 8886 7890 20332 10
Averagel 59417 17513 12808 57116




On the other hand, we are expecting MAD allgor to work faster on two-class
datasets. As it can be seen in Table 10, MAD ofapais all other discretization
methods in terms of running time on average fortless datasets used in this paper.

Table 10. Average running time results for twcssldatasets (in ps) (lower results are better).

Entropy- FFD PD
Name MAD MDLP
Bupa 1406 2250 1625 4593
Crx 3593 4661 4609 11484
Germarn 5200 7165 7410 24352
Heart (Statlog 1177 1430 1370 3894
Ozone-oneh 10928 14124 16511 167442
Sick-euthyroid 24753 26288 24429 250764
SPECTH 17834 25334 30000 148526
Spambase 1129 1207 1104 6946
Transfusion 2929 4570 5468 9179
Wisconsin 3588 5708 3072 14640
Average 7254 9274 9560 64182

3.3 Inconsistency of intervals

Firstly, inconsistency of an interval should beided. Given an interval which
consists oh instances, inconsistency of that interval is eqoalaluen-c wherec is
the number of instances which belong to majorigsslon the given interval. For
example, given an interval with 10 instances, bfthese instances belong to the
classa and others to the clabsthe inconsistency of the given interval is 10-7=3

A smaller amount of inconsistency indicates a befigcretization. As entropy is a
measure that aims to obtain pure intervals, it xpeeted to achieve lower
inconsistency values with Entropy-MDLP discretizatimethod. On the other hand,
Table 11 shows that on the average the MAD metbodd intervals which are more
consistent than the Entropy-MDLP method. On thewttand, FFD and PD methods
have lower inconsistency on the cost of producingrg high number of intervals.

Table 11. Total inconsistencies for continuoustaites in given datasets. (Lower results are
better).

Entropy- FFD PD

Name MAD MDLP
Abalone 3067 3120 2957 3001
Bupal 138 143 135 129
Crx 216 221 218 215
Dermatology 214 216 214 213
German 296 299 296 296
Glass| 107 113 113 106
Heart (Statlog 89 93 89 88
Ozone-oneh 72 73 72 73
Page-Blocks 494 486 481 492
Sick-euthyroid 275 273 271 273
SPECTH 1581 1578 1544 1560
Spambase 54 55 54 54




Transfusion 175 178 173 172
Wisconsin 122 127 125 123
Yeast| 946 961 923 927
Average 523 529 511 515

3.4 Number of intervals

The MAD method is not designed to minimize the nemaf intervals. Its main
aim is to maximize the AUC. In contrast, entropy-M® method is known as
producing less number of intervals. It is even ahdwy An et al. (1999) that Entropy-
MDLP method stops too early on small datasets.

The average number of intervals per attribute vemgiin Table 12. According to
these results, Entropy-MDLP outperforms MAD on thipect. On the other hand, an
important point should be mentioned about the tesoltable. In eight datasets, the
Entropy-MDLP method discretizes all attributes irtioe interval on the average.
When an attribute is discretized into one intettds means that the discretization
method maps all elements to the same value sugho@s... +00). This situation
occurs if the distribution of the attribute valuissnot suitable according to the
discretization methods measure. It is possibl@yotisat Entropy-MDLP is acting like
a feature selection algorithm. In turn, as show®éttion 3.1, there exists predictive
accuracy gain in some of these datasets. Therafoseme cases the Entropy-MDLP
method misses important information by mappingreitances to the same interval.

Table 12. Average number of intervals per atteb(itower results are better).

Entropy- FFD PD
Name MAD MDLP

Abalone 27 6 125 58
Bupa 7 1 10 16
Crx 10 2 19 23
Dermatology 2 1 10 4
German 5 1 30 14
Glass 7 1 6 13
Heart (Statlog) 4 1 8 7
Ozone-onehr 9 1 76 45
Page-Blocks 10 5 164 69
Sick-euthyroid 9 2 94 44
SPECTF 8 2 138 62
Spambase 7 1 8 15
Transfusion 9 1 22 24
Wisconsin 13 3 17 22
Yeast 11 2 44 26
Average 9 2 51 29

The MAD method outperforms the FFD and PD methodgeims of number of
intervals on the average. This was expected sinfe® Bnd PD methods are
unsupervised and always have large number of ialedue to their design.



4 Conclusions

A novel approach, called MAD, for discretizationaaintinuous attributes is proposed
in this work. A new discretization measure and giog criteria are defined for this
method. The theoretical evidence to use ROC curaed AUC values in
discretization is given.

According to the empirical evaluations MAD methadperforms Entropy-MDLP
method which is one of the most well known diszaton method in terms of
predictive performance. MAD also outperforms FFQI &D methods in terms of
predictive performance. Since these two discrétmamethods are naive Bayes
optimal, the significant gain in naive Bayes altjori in terms of M-Measure is
important. It is also shown by experiments that MARthod runs faster than other
discretization methods for two-class datasetsetms$ of inconsistencies of intervals
MAD method outperforms Entropy-MDLP method on agerdut it is outperformed
by FFD and PD methods. This was expected, dueetintierent design of FFD and
PD methods, they will intend to produce large nundfentervals which brings pure
intervals naturally. Especially the gain in the dicive performance and faster
running time results show that MAD method is a gadtérnative to other key
discretization methods.

As a future work, the main bottleneck of the MADgaithm is the time
complexity of the convex hull computation for medtass datasets. A new method
that will find the convex hull faster than the Qditull algorithm will improve the
time complexity of the MAD algorithm.
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