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Abstract. We present a new discretization method based on Area under ROC 
Curve (AUC) measure. Maximum Area under ROC Curve Based Discretization 
(MAD) is a global, static and supervised discretization method. It discretizes a 
continuous feature in a way that the AUC based only on that feature is to be 
maximized. The proposed method is compared with alternative discretization 
methods such as Entropy-MDLP (Minimum Description Length Principle) 
which is known as one of the best discretization methods, Fixed Frequency 
Discretization (FFD), and Proportional Discretization (PD). FFD and PD are 
proposed recently and designed for naïve Bayes learning. Evaluations are 
performed in terms of M-Measure, an AUC based metric for multi-class 
classification, and accuracy values obtained from naïve Bayes and Aggregating 
One-Dependence Estimators (AODE) algorithms by using real world datasets. 
Empirical results show that our method is a candidate to be a good alternative to 
other discretization methods. 
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1   Introduction 

As data comes in different forms, it is always possible to encounter continuous 
attributes in any datasets. Briefly, discretization methods aim to find the proper cut-
points which form the intervals in the progress of discretization. A continuous 
attribute is then treated as a discrete attribute whose number of intervals is known on 
the continuous space. 

Discretization methods have received great attention from researchers and different 
kind of discretization methods based on different metrics are proposed. Recently, 
Yang and Webb (2009) proposed two new discretization methods for the Naïve Bayes 
classifier. There are important reasons of this attention such as the inability of many 
machine learning algorithms which are not able to work with continuous values. 
Aggregating one-dependence estimators (AODE) is one of these algorithms which 
have been used in this research (Webb et al. 2005). It has been shown by Dougherty 
et al. (1995) that the discretization methods improve the predictive performance and 
make the algorithms work faster. These are other reasons for using discretization 
methods. 

Liu et al. (2002) categorized discretization algorithms in four axes. These 
categories include supervised vs. unsupervised, splitting vs. merging, global vs. local 
and dynamic vs. static. 



Simple methods such as equal width or equal frequency binning algorithms do not 
use the class labels of instances during the discretization process (Holte 1993). These 
methods are called unsupervised discretization methods. To improve the quality of the 
discretization, methods that use the class labels are proposed. Since these methods 
utilize class labels during discretization, they are referred as supervised discretization 
methods. 

Splitting methods take the given continuous space and try to divide it into small 
intervals by finding proper cut-points, whereas merging methods handle each distinct 
point on the continuous space as an individual candidate of cut-point and merges them 
to larger intervals.  

Some of the discretization methods process localized parts of the instance space 
during discretization. As an example, C4.5 algorithm handles numerical values by 
using a discretization (binarization) method which is applied to localized parts of the 
instance space (Quinlan 1993, 1996). Therefore, these methods are called local 
methods. The methods which use whole instance space of the attribute that is going to 
be discretized are called global methods. 

Dynamic discretization methods use whole attribute space during discretization. 
Dynamic discretization methods perform better on data with interrelations between 
attributes. On the other hand, static discretization methods discretize attributes one by 
one. These methods assume that there are no interrelations between attributes. 

In this paper, we propose a discretization method called Maximum Area under 
ROC Curve Based Discretization (MAD). According to the categories defined above, 
MAD is categorized as a supervised, merging, global and static discretization method. 

Splitting discretization methods usually aim to optimize measures such as entropy 
(Quinlan 1986; Catlett 1991; Fayyad and Irani 1992; Van de Merckt 1990; Cerquides 
and Mantaras 1997), dependency (Ho and Scott 1997) or accuracy (Chan et al. 1991) 
of values placed into the bins. On the other hand, merging algorithms proposed so far 
uses X2 statistic (Kerber 1992; Liu and Setiono 1995; Wang and Liu 1998). As far as 
we know, Receiver Operating Characteristics (ROC) Curve has never been employed 
in discretization domain before. 

1.1   Receiver Operating Characteristics (ROC)  

The first application of ROC was the analysis of radar signals in World War II 
(Krzanowski & Hand, 2009). Later, it is used in different areas such as signal 
detection theory and medicine (Green and Swets 1966; Zweig and Campbell 1993; 
Pepe 2003). It was applied to machine learning by Spackman (1989) for the first time. 
According to Fawcett’s definition, ROC graph is a tool that can be used to visualize, 
organize and select classifiers based on their performance (Fawcett 2006). They have 
become a popular performance measure in machine learning community after it is 
realized that accuracy is often a poor metric to evaluate classifier performance 
(Provost and Fawcett 1997; Provost et al. 1998; Ling et al. 2003). 

ROC literature mostly depends on the classification problems with two classes 
(binary classification). In binary classification, each instance I has two different class 
labels, as p (positive) and n (negative). At the end of the classification phase, some 
classifiers simply map each instance to a class label (discrete output). Also there are 
classifiers which are able to estimate the probability of an instance belonging to a 
specific class (continuous valued output, also called as score). Classifiers produce 
discrete output represented by only one point in the ROC space since only one 
confusion matrix is produced from their classification output. Continuous output 



producing classifiers can have more than one confusion matrix by applying some 
thresholds to predict class membership. All instances, with a score which is greater 
than the threshold, are predicted as p class and all others are predicted as n class. 
Therefore, for each threshold value one confusion matrix is obtained. The number of 
confusion matrices is equal to number of ROC points in an ROC graph. 

1.1.1   ROC Space 
ROC space is a two dimensional space whose range is [0.0, 1.1] on both axes. In 

ROC space y-axis represents the true positive rate (TPR) of a classification output and 
x-axis represents false positive rate (FPR) of output. 

To calculate TPR and FPR values, the definitions of the elements in the confusion 
matrix should be given. The structure of a confusion matrix is shown in Fig. 1. True 
positives (TP) and false positives (FP) are most important elements of the confusion 
matrix for ROC graphs. TP is equal to the number of positive instances which are 
classified correctly. And false positive is equal to the number of negative instances 
which are not classified correctly. TPR and FPR values are calculated by using Eq. 1. 
In this equation N is the number of total negative instances and P is the number of 
total positive instances. 

 
TPR = TP / P . 

FPR = FP / N .  
(1) 

 
In this equation N is the number of total negative instances and P is the number of 

total positive instances. 
 

  Actual Class 

  p n 

p TP  FP  

Predicted  
Class 

n FN  TN  

Column Totals: P N 
 

Fig. 1. Structure of a confusion matrix. 

1.1.2   Calculation of ROC Curve 
As mentioned above, the classifiers which are producing continuous output can 

form a curve in ROC graph as they are represented by more than one point in the 
graph. To calculate the ROC graph, different threshold values are selected and 
different confusion matrices are formed. 

By varying the threshold between -∞ and +∞ an infinite number of ROC points 
can be produced for a given classification output. However, this operation is 



computationally costly and it is possible to form ROC curve more efficiently with 
other approaches. 

As proposed by Fawcett (2006), in order to calculate ROC curve efficiently, 
classification scores are sorted in an increasing order first. Starting from -∞ , each 
distinct score element is taken as a threshold, TPR and FPR values are calculated 
using Eq. 1. 

As an example, assume that the score values for test instances and actual class 
labels for a toy dataset are given in Table 1. The ROC curve for this toy dataset is 
shown in Fig. 2. In this figure, each ROC point is given with the threshold value used 
to calculate it. Starting from -∞ , nine different thresholds are used since total 
threshold value is equal to the S+1 where S is the number of distinct classifier scores 
in the dataset. With this simple method it is possible to calculate the ROC curve in 
linear time.  
 

Table 1.Toy dataset given with hypothetical scores 

Class Label n n n p p n p p p 
Score -7 -3 0 0 4 7 8 10 11 

 

Fig. 2. ROC graph of the given toy dataset in table 1. 

1.2 Area under ROC Curve (AUC) 

ROC graphs are useful to visualize the performance of a classifier but a scalar 
value to compare classifiers is needed. In the literature, the area under the ROC curve 
(AUC) is proposed as a performance measure by Bradley (1997). According to the 



measure AUC, the classifier with a higher AUC value performs a better classification 
in general. 

The ROC graph space is a one unit square. The highest possible AUC value is 1.0 
which represents the perfect classification. In ROC graphs 0.5 AUC value means 
random guessing and the values below 0.5 are not realistic as these values can be 
negated by changing the decision criteria of the classifier. 

AUC value of a classifier is equal to the probability that the classifier will rank a 
randomly chosen positive instance higher than a randomly chosen negative instance. 
Hanley and McNeil (1982) show that this is equal to the Wilcoxon test of ranks. This 
property of AUC of an ROC curve can be used to design a discretization algorithm. 
The details of such an algorithm will be given in the next section. Third section will 
present the empirical evaluations by using real world datasets. The last section will 
conclude with some future directions for improvement. 

2   MAD Method 

In this section, the details of MAD method will be given. Firstly, the definition of 
concepts such as cut-points, ROC space and stopping criteria will be given. After that, 
different behavior of MAD in two-class datasets and multi-class datasets will be 
examined on separate sections.  

2.1 Definition of cut-points 

Given an attribute A which has N instances with known values and let C be the 
number of distinct continuous values in A’s instance space. There can be C-1 
candidate cut-points to be used in discretization process.  

First, the instances are sorted (in this work in increasing order) according their 
values for the attribute A. Then, each of these candidate cut-points are calculated by 
using Eq. 2.  

 
Cn = (Nn + Nn+1) / 2, 

where Nn and Nn+1 are distinct and consecutive values in the sorted instance space 
(2) 

2.2 Definition of ROC space for discretization 

The numerical attribute values are taken as hypothetical classifier scores that are 
needed to draw ROC curve; the cut-points are used as the threshold values. 

According to Eq. 1 for the threshold value -∞ , the TPR and FPR values will be 1, 
corresponding to coordinate (1,1) in the ROC space. The method will continue 
incrementally drawing ROC curve by using each candidate cut-point as the threshold 
values. Finally, the ROC point corresponding coordinate (0,0) with the threshold +∞  
will be reached. Total number of ROC points for discretization is C-1 plus two for the 
trivial end points. 



2.3 Discretization measure 

As mentioned above different measures such as entropy, accuracy, dependency and 
X2 statistic have been used in discretization methods. In this work, the AUC of the 
ROC curve, obtained from these TPR and FPR values, is used as the measure to be 
optimized.  

The motivation behind this approach is the property that an ROC curve results in a 
high AUC value when the p labeled instances have higher score values then the n 
labeled instances. By using this heuristic, the minimum number of ROC points which 
maximize AUC value will be selected. This means minimum number of cut-points 
which rank positive labeled instances higher than the negative labeled instances will 
be selected. When the given attribute space has an ordering between negative and 
positive instances, a higher AUC value is obtained and according to discretization 
measure of this method, a better discretization is achieved. 

2.4   Stopping criteria 

MAD is a merging discretization method that continues to merge candidate cut-points 
to larger intervals until the maximum AUC is obtained. The maximum AUC is 
defined by the convex hull formed by the ROC points in the given ROC space. 

Convex hull is a polygon with a minimum number of cut-points that encloses all 
other points in the ROC space. Theorem 1 shows that the maximum AUC can be 
obtained by finding the convex hull. ROC convex hull is defined by Provost and 
Fawcett (2001) to form classifiers which maximize the AUC value. A similar 
approach will be used to select cut-points which maximize AUC value. 

Theorem 1 If all the points forming the ROC curve are on a convex hull, the AUC is 
the maximum. 

Proof: (by contradiction) Assume an ROC curve for a given space which has a larger 
AUC. This curve should contain a point outside the convex hull to make area even 
larger. Since convex hull enclose all points in the space, this is a contradiction. 

2.5 Algorithm 

MAD method finds the proper cut-points for the given instance space to maximize the 
AUC value. In turn, in order to maximize AUC, the convex hull is calculated in the 
given space.  

As MAD algorithm finds this convex hull by using different methods for two-class 
and multi-class datasets, both of these situations will be given in detail in Section 
2.5.1 and Section 2.5.2. Outline of the algorithm is given in Fig. 3. 



MABD(trainInstances) 
   begin 
      sort(trainInstances); 
      rocPoints= calculateROCPoints(trainInstance); 
      cutPoints= findConvexHull(rocPoints); 
      return cutPoints; 
   end 

Fig.3. Outline of the MAD algorithm  

As it will be revisited in section 2.5.1, there exist a symmetry in every ROC curves 
for two-class datasets. If the labels of all instances are interchanged, that is label n’s 
are replaced by p’s, and p’s are replaced by n’s, the ROC curve obtained is symmetric 
of the original about the y=x line. This means that it is possible to find the 
discretization result by calculating one ROC curve. Conversely, this symmetry does 
not exist for multi-class datasets. In this case, more than one ROC curves will be 
obtained. Therefore, two-class datasets and multi-class datasets require different 
treatment. 

2.5.1 Discretization in two-class datasets 
For two-class datasets, the calculation of candidate cut-points represented by ROC 
points and the method that finds the convex hull are different than the multi-class 
datasets in MAD algorithm. MAD algorithm for two-class datasets is given in Fig. 4. 

1 :MAD2C (trainInstances) 
2 :   Begin 
3 :      sort(trainInstances); 
4 :      rocPoints= calculateROCPoints(trainInstance); 
5 :      cutPoints= findConvexHull(rocPoints); 
6 :      return cutPoints; 
7 :   end 
8 :function calculateROCPoints(trainInstance) 
9 :   begin 
10:      rocPoints<- (+∞ ,0,0),(-∞ ,1,1); 
11:      for i=0 to N 
12:         if(trainInstances[i]=positiveClass) 
13:            totalPositive++; 
14:         else totalNegative++; 
15:      curPos=totalPositive; 
16:      curNeg=totalNegative; 
17:      for i=0 to N-1 
18:         if(trainInstances[i]=positiveClass) 
19:            curPos--; 
20:         else curNeg--; 
21:         if(trainInstances[i]==trainInstance[i+1]) 
22:            continue; 
23:         cutValue=(trainInstances[i] 
24:                 +trainInstances[i+1]/2); 
25:         TPR= curPos/totalPositive; 
26:         FPR= curNeg/totalNegative; 
27:         If(upperTriangle(TPR,FPR)=true) 
28:            rocPoints<- (cutValue,TPR,FPR); 
29:         else rocPoints<- (cutValue,FPR,TPR); 
30:      return rocPoints; 
31:   end 
32:function findConvexHull(rocPoints) 
33:   begin 



34:      pointsKept<-(+∞ ,0,0); 
35:      currentSlope=slopeBetween(rocPoints[1], 
36:                                rocPoints[0]); 
37:      for i=2 to N 
38:         nextSlope=slopeBetween(rocPoints[i], 
39:                                rocPoints[i-1]); 
40:         if(nextSlope<=currentSlope) 
41:            concavityFound=true; 
42:         else pointsKept<- rocPoints[i-1]; 
43:         currentSlope=nextSlope; 
44:      pointsKept<-(-∞ ,1,1); 
45:      if(concavitiyFound)  
46:         findConvexHull(pointsKept); 
47:      else return pointsKept; 
48:   end 

Fig. 4. MAD algorithm in two-class datasets 

There are some important points that deserve elaboration. One of them is about the 
calculation of ROC points. In order to calculate ROC points for the given sorted 
attribute, total number of p and n classes should be counted. There are two possible 
ways to predict the labels of the instances: a) label high scored instances as p and low 
scored instances as n, b) label low scored instances as p and low scored instances as 
n. The choice of the class labeled as p does not effect the discretization process 
according to the symmetry proved in Theorem 2. Then, for each candidate point TPR 
and FPR values are calculated by using Eq. 1. 

Theorem 2 In two-class problems, there exists two ROC points for the given 
candidate cut-point C and these points are symmetric about  y=x line.  

Proof:  In order to calculate ROC curve, one of the classes should be labeled as p and 
other as n.  Assume that an arbitrary class is labeled as p and the confusion matrix in 
Fig. 5a is obtained. The point created from this confusion matrix is v and its 
coordinate is (x,y). The calculation of this coordinate is given in Eq. 3.  
 

x = FPR = FP / N 

y = TPR = TP / P 
(3) 

 
When the actual class labels interchanged, the confusion matrix in Fig. 5b is formed. 
This new confusion matrix equals to the original confusion matrix where columns 
values are interchanged. The new point created from this matrix is v' represented by 
(x',y') point. This point is calculated by using Eq. 4 and  the coordinate of v' equals to 
(y,x). Therefore, the points v and v' points are symmetric about x=y line. 
 

x' = FPR' = TP / P 

y' = TPR' = FP / N 

x' = y and y' = x 

(4) 

 



  Actual Class 
  p n 

p TP  FP  
Predicted  

Class 
n FN  TN  

Column Totals: P N 

(a)  

  Actual Class 
  n p 

p FP  TP  
Predicted  

Class 
n TN  FN  

Column Totals: N P 

(b)  

Fig. 5. (a) Confusion matrix for the case where one of the classes is labeled as p and other class 
as n. (b) Confusion matrix for the case when class labels interchanged. 

Corollary 1 Since there exist a symmetry between the ROC points, the one which is 
above y=x line is taken into consideration. The points below y=x line are not 
candidate points to maximize AUC since default AUC value is 0.5.  The 17th line of 
the algorithm given in Fig. 4 assures this property. 
 

Next step of the discretization is selecting the ROC points which form the convex 
hull. There are different methods to calculate convex hull in the given n dimensional 
space. One of these methods is called QuickHull by Preperata and Shamos (1985). 
This method has O(n lgn) time complexity in practical and O(n2). In this work, a new 
method to calculate convex hull for two-class problems is proposed. 

FindConvexHull function is given on the 32th line of the algorithm given in Fig. 4. 
The main motivation for the function findConvexHull is the ordering of the ROC 
points. The first point created on the graph always corresponds to (1,1) and the last 
(0,0). The points lying between these two trivial points have a monotonically non-
decreasing property. For example, assume that v1 is the point which is created just 
before v2. Point v1 always stands on the north, east or north-east side of the v2. These 
points create a shape (possibly include concavities) when the points are connected to 
each other with hypothetical lines during the ROC curve creation stage. 
FindConvexHull method compares the slopes in the order of creation of these 
hypothetical lines with each other and finds the junction points (cut-points), which 
cause concavities, and eliminates them. 

FindConvexHull method guarantees to find the convex hull in best case O(n) time 
and in worst case O(n2). In the worst case, the method should at least one point out to 
call itself again. This leads to O(n2) complexity. In best case, the method finds the 
convex hull in a linear time if the points are already forming a convex hull. Average 
case of the algorithm will be given by empirical results.  

With MAD method it is possible to visualize the discretization process. A toy 
dataset given in the Table 2 will be used as an example to explain how the MAD 
method discretizes a feature visually. The toy dataset contains 20 instances. 



 

Table 2.  Toy dataset for visualization of MAD in two-class problems. F1 is the name of the 
attribute to be discretized. 

Class 
Value 

n p n p n n n p n p n p n n p p p n p p 

F1 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 

 
Each step of calculation of the convex hull in the given ROC space is visualized in 

figures Fig. 6 thru Fig 8. In Fig. 6, generated ROC points for both classes are shown. 
The y=x line is drawn to show the symmetry between curves which is proven in 
theorem 2. According to Corollary 1, only the points above y=x line will be processed 
in the next step. 

 

 

Fig. 6. Visualization of ROC point in two-class discretization 

 



 

Fig. 7. First pass of the convex hull algorithm 

 
In the next step of MAD, points which cause concavity will be eliminated. Fig. 7 

shows the points left after the first pass of the method which finds the convex hull. 
Since the algorithm checks the concavity on a local base, it is possible to have a 
concave shape even after the first pass. The algorithm will continue recursively with 
the points left in each step until it converges to the convex hull. 

In this example, the algorithm converges to the final convex hull after the second 
pass. The points left on the graph are the cut points which are going to be used in 
discretization. Fig. 8 shows the final cut points left on the graph. 



 

Fig. 8. Final cut points left after the second pass of convex hull algorithm. 

MAD method guarantees that any cut point left at the final graph does not divide a 
sequence of instances that belong to the same class. This can be proven for two class 
problems and it can be extended to multi class problems as well. 

 
Theorem 3 Cut points found by MAD method in two class problem does not lie 
between two consecutive instances of the same class.  
 
Proof: (by contradiction) Assume that there exists such a cut-point Cn at the final 
ROC curve that divides sequence of instances of the same class. Let Cn-1 and Cn+1 are 
the cut points before and after Cn respectively. Total number of instances labeled as p 
is P and total number of instances labeled as n is N. The number of instances which 
are labeled as p and higher than Cn-1 is p'. The number of instances that labeled as n 
and higher than Cn-1 is n'. Number of instances between Cn-1 and Cn will be 
represented by k and number of instances between Cn and Cn+1 will be represented by 
l. If Cn divides an interval where all instances are labeled as p, the TPR and FPR 
values of Cn-1, Cn and Cn+1 are given in Eq. 5. Since all of these cut-points have same 
TPR value, these points lie on the same slope and Cn point will be eliminated at the 
40th line of the algorithm given in Fig. 4 which requires the slope between Cn and Cn+1 

is strictly greater than the slope between Cn-1 and Cn. 
 
 

TPR n-1 = p' / P, TPR n = p' / P, TPR n+1 = p' / P 

FPR n-1 = n' / N, FPR n = n'-k / N, FPR n+1 = n'-l / N 
(5) 



The other case is that Cn divides an interval where all instances are labeled as n. The 
TPR and FPR values of Cn-1, Cn and Cn+1 are given in Eq. 6. In this case all points 
have same FPR value and these points line on the same slope as well. Algorithm 
shown in Fig. 4 will eliminate Cn. As a result in both cases cut-point Cn is eliminated 
and it is contradiction to having such a point in the final ROC curve. 
 

TPR n-1 = p' / P, TPR n = p'-k / P, TPR n+1 = p'-l / P 

FPR n-1 = n' / N, FPR n = n' / N, FPR n+1 = n' / N 
(6) 

2.5.2 Multi class behavior 
 

In multi-class problems, the main problem is deciding how to choose the positive 
and the negative class. Also there exists no symmetry between ROC curves of each 
class as in the two-class problems. Therefore, in multi-class MAD algorithm for C 
number of classes, C different ROC curves are calculated. 

The method used for the two-class datasets can be extended to the multi-class 
problems by relabeling one class as p and all others as n and obtaining the ROC 
curves. This technique is used by Provost and Domingos (2001) in order to calculate 
ROC curves for multi-class datasets. The convex hull of the ROC curve is computed. 
This process is repeated for all class labels. C many different convex hulls are 
summed together and final convex hull is found by using Quickhull method. Outline 
of the multi-class MAD method is given in Fig. 9.  

 
1 :MADMC (trainInstances) 
2 :   Begin 
3 :      sort(trainInstances); 
4 :      for each class 
5 :         mark current class as p others as n 
4 :         rocPoints=calculateROCPoints(trainInstance); 
5 :         totalrocPoints+=findConvexHull(rocPoints); 
6 :      cutPoints= QuickHull(totalrocPoints); 
7 :      return cutPoints; 
8 :   end 

Fig. 9. Multi-class MAD algorithm 

Multi-class MAD uses the same function to calculate ROC points 
(calculateROCPoints given in algorithm in Fig. 4) and convex hull (findConvexHull 
given in algorithm in Fig. 4) as it use in two-class datasets. Therefore, the Theorem 3 
applies to the multi-class MAD algorithm; that is, it is guaranteed that a cut-point 
does not lie between two consecutive instances of the same class. 

In Fig. 10 an example visualization of discretization process for multi-class 
datasets is given. In this figure, an attribute belonging to a three-class dataset is being 
discretized. Each class label is represented by a convex hull and the points lying on 
the border of shaded area are the final cut-points that are going to be used in 
discretization process. 

 



 

Fig. 10. Visualization of discretization process for multi-class datasets. An attribute of a three-
class dataset is used. Gray shaded area represents ROC convex hull. 

By relabeling a class as p and marking others as n, discretization method becomes 
to be sensitive to the class distributions. If one of the classes in the dataset has a 
perfect ordering, only the points formed by that particular class will be selected by 
QuickHull method and some valuable information can be lost. This drawback can be 
solved by creating pairwise class ROC curves which is a similar method used in M-
Measure (Hand and Till 2001). Then, C(C-1) different ROC curves have to be 
created. On the other hand, this will increase the computation time since the number 
of convex hull has to be calculated increases. Even with this drawback MAD 
algorithm works well in multi class datasets in the UCI repository (Asuncion and 
Newman 2007). 

3 Empirical Evaluations 

In this section, MAD discretization method is compared with the well known 
Entropy-MDLP method proposed by Fayyad and Irani (1992) and two other methods 
(FFD and PD) proposed recently by Yang and Webb (2009).  

As a splitting method, Entropy-MDLP method uses entropy measure to select 
proper cut-point to split an interval. An application of minimum description length 
principal called information gain is used as stopping criteria. In the nutshell, it selects 
the proper cut-points which minimize the entropy for the given interval and continues 
to discretize recursively until information gain is not sufficient. 

The unsupervised FFD and PD methods are designed in order to obtain high 
classification accuracy (lower classification error) by managing discretization bias 
and variance. FFD discretizes attributes into equal sized intervals where each bin 



contains approximetely 30 instances. PD also discretizes attributes into equal sized 
intervals but the number of instances in each interval is not fixed for each dataset. In 
PD interval frequency is calculated by using Eq. 7. 

 
s x t = n, 

s = t, 

where s is interval frequency, t is number of intervals and n is the number of known instances. 

(7) 

 
The discretization results obtained by MAD, Entropy-MDLP, FFD, and PD 

methods in real life datasets will be shown. All datasets used in the experiments are 
taken from the UCI Machine Learning Repository. Table 3 shows the properties of 
these datasets. 

The performance of the algorithms is evaluated in four different aspects: predictive 
performance, running time, inconsistency of intervals, and number of intervals found.  

 
Table 3.  Dataset used in the experiments 

Name # Instances # Continuous 
Attributes 

# Nominal 
Attributes 

# Class Labels 

Abalone 4177 7 1 29 
Bupa 345 6 0 2 
Crx 653 9 6 2 
Dermatology 366 33 1 7 
German 1000 7 13 2 
Glass 214 10 0 10 
Heart (Statlog) 270 6 7 2 
Ozone-onehr 2536 73 0 2 
Page-Blocks 5473 10 0 5 
Sick-euthyroid 3163 7 18 2 
SPECTF 267 44 0 2 
Spambase 4601 58 0 2 
Transfusion 748 5 0 2 
Wisconsin 569 30 0 2 
Yeast 1484 8 0 10 

3.1 Predictive performance 

Classifiers that associate the predicted class with a confidence value are preferred 
in this work since their ROC curve representation is more meaningful. Two different 
classifiers, which are supporting this property, are selected. One of them is Naïve 
Bayes classifier. Naïve Bayes is one of the simplest and most effective classifiers and 
it is shown that using discretization with naïve Bayes algorithm increases predictive 
accuracy (Dougherty et al. 1995). The other algorithm selected, AODE, requires that 
all features are categorical. 

The naïve Bayes, AODE, and Entropy-MDLP discretization implementations are 
taken from source codes of WEKA package (Hall et al. 2009). Naïve Bayes algorithm 
is used in default form which uses single normal distribution rather than kernel 
estimation. FFD method is implemented by using WEKA’s unsupervised 
discretization method by passing the number of intervals as a parameter. In 
implementing the PD, the number of known values for each attribute is calculated in 



order to find number of intervals as shown in Eq. 7, and the number of intervals is 
passed as a parameter. 

Five different cases are being considered for naïve Bayes algorithm in this section: 
The naïve Bayes algorithm with MAD discretization method, naïve Bayes with 
Entropy-MDLP method, naïve Bayes with FFD method, naïve Bayes with PD 
method, and naïve Bayes with continuous values (without discretization). Also four 
different cases will be considered for AODE algorithm with MAD discretization 
method, AODE algorithm with Entropy-MDLP discretization method AODE 
algorithm with FFD discretization method, and AODE with PD method.  

Two different measures have been used to evaluate predictive performance. First 
measure is called M-Measure. This measure is suitable to calculate both two-class 
AUC and multi-class AUC values. M-Measure is insensitive to the class distribution 
and error costs. Since MAD is based on AUC, one might question the impartiality of 
using a performance metric that depends on AUC. To clear that question mark, 
predictive performance of MAD against other discretization methods is measured by 
using accuracy metric as well. Stratified 10-fold cross validation is employed in order 
to calculate M-Measure and accuracy values for each dataset. 

The predictive performance evaluation result of naïve Bayes obtained by using M-
Measure is given in Table 4. It is seen in this table that the MAD algorithm 
outperforms all other discretization methods in terms of the M-Measure on average. 
Paired-sample t-test method shows that in 95% confidence interval, MAD improves 
naïve Bayes algorithm performance significantly compared to the performance 
obtained with using FFD method, PD method or without using discretization. On the 
other hand, Entropy-MDLP method does not improve naïve Bayes algorithm 
performance statistically significantly according to M-Measure. 

 
Table 4.  Predictive performance of Naïve Bayes in terms of M-Measure under 

different discretization methods (Higher values are better). 
Name MAD Entropy 

MDLP 
FFD PD Without 

discretization 
Abalone 0,650 0,598 0,643 0,637 0,642 
Bupa 0,750 0,540 0,684 0,685 0,626 
Crx 0,924 0,928 0,928 0,929 0,900 
Dermatology 0,999 0,999 0,999 0,999 0,997 
German 0,794 0,775 0,787 0,787 0,785 
Glass 0,915 0,918 0,914 0,900 0,861 
Heart (Statlog) 0,906 0,901 0,905 0,899 0,897 
Ozone-onehr 0,859 0,853 0,831 0,841 0,843 
Page-Blocks 0,969 0,978 0,966 0,977 0,951 
Sick-euthyroid 0,952 0,959 0,950 0,953 0,920 
SPECTF 0,965 0,964 0,950 0,957 0,940 
Spambase 0,864 0,824 0,850 0,845 0,850 
Transfusion 0,715 0,686 0,689 0,682 0,711 
Wisconsin 0,987 0,986 0,987 0,986 0,980 
Yeast 0,831 0,837 0,812 0,821 0,865 
Average 0,872 0,850 0,860 0,860 0,851 

 
The predictive performance of naïve Bayes in terms of accuracy metric is given in 

Table 5. The MAD method again outperforms all other methods on the average. 
According to the paired-sample t-test on 95% confidence, it is possible to say that all 
of the discretization methods used in this paper improve the performance of naïve 
Bayes algorithm significantly. 



Table 5.  Predictive performance of Naïve Bayes in terms of accuracy under 
different discretization methods (Higher values are better). 
Name MAD Entropy 

MDLP 
FFD PD Without 

discretization 
Abalone 25,79 25,26 25,91 26,89 23,95 
Bupa 70,13 57,70 63,18 63,22 53,96 
Crx 85,91 86,53 85,61 86,22 77,97 
Dermatology 97,55 98,09 98,09 97,82 97,81 
German 75,90 73,50 75,20 75,20 75,00 
Glass 70,82 70,89 68,55 68,05 48,35 
Heart (Statlog) 82,59 82,59 82,59 82,96 83,70 
Ozone-onehr 78,34 79,88 87,81 83,31 70,77 
Page-Blocks 94,54 93,42 93,40 92,40 90,15 
Sick-euthyroid 95,89 96,02 95,07 95,32 84,22 
SPECTF 89,96 89,81 87,83 89,13 79,72 
Spambase 76,81 72,66 74,16 76,79 68,58 
Transfusion 77,94 75,27 76,47 75,27 75,67 
Wisconsin 94,37 94,19 94,19 93,67 93,49 
Yeast 58,32 56,71 52,79 53,74 57,99 
Average 78,32 76,83 77,39 77,33 72,09 

 
The predictive performance of AODE algorithm in terms of M-Measure is given in 

Table 6. The AODE method is an extension to naïve Bayes method in order to 
improve predictive performance, so it is natural to expect high performance from FFD 
and PD methods since they are naïve Bayes optimal. But according to the paired-
sample t-test on 95% confidence interval MAD method outperforms both FFD and 
PD methods. Also the MAD method performs better than Entropy-MDLP method on 
the average. 

 
Table 6.  Predictive performance of AODE in terms of M-Measure under different 

discretization methods (Higher values are better). 
Name MAD Entropy 

MDLP 
FFD PD 

Abalone 0,649 0,628 0,646 0,651 
Bupa 0,752 0,540 0,656 0,665 
Crx 0,929 0,930 0,932 0,928 
Dermatology 0,999 0,999 0,999 0,999 
German 0,793 0,783 0,788 0,788 
Glass 0,920 0,925 0,940 0,915 
Heart (Statlog) 0,907 0,904 0,904 0,895 
Ozone-onehr 0,891 0,878 0,762 0,723 
Page-Blocks 0,974 0,984 0,932 0,955 
Sick-euthyroid 0,964 0,963 0,957 0,959 
SPECTF 0,977 0,980 0,945 0,959 
Spambase 0,865 0,820 0,829 0,794 
Transfusion 0,697 0,707 0,661 0,654 
Wisconsin 0,992 0,988 0,989 0,988 
Yeast 0,822 0,833 0,802 0,813 
Average 0,875 0,858 0,849 0,846 

 
The predictive performance of AODE algorithms in terms of accuracy metric is 

given in Table 7. According to this table MAD method outperforms all other 
discretization methods on the average again. 



Table 7.  Predictive performance of AODE in terms of accuracy under different discretization 
methods (Higher values are better). 

Name MAD Entropy 
MDLP 

FFD PD 

Abalone 27,13 25,67 26,17 27,25 
Bupa 71,85 57,70 63,19 62,39 
Crx 86,68 86,68 87,45 86,68 
Dermatology 97,55 98,08 98,09 97,55 
German 75,40 74,90 75,60 75,60 
Glass 75,50 73,20 77,88 76,47 
Heart (Statlog) 82,22 82,96 82,96 82,22 
Ozone-onehr 96,21 88,76 96,65 96,88 
Page-Blocks 96,62 96,97 95,74 96,18 
Sick-euthyroid 96,65 96,52 95,26 95,92 
SPECTF 93,35 93,31 88,02 90,15 
Spambase 79,42 73,77 79,37 76,81 
Transfusion 76,34 75,27 77,41 77,55 
Wisconsin 95,78 96,12 95,60 94,91 
Yeast 57,38 56,77 53,67 54,41 
Average 77,00 75,96 76,28 76,19 

 

3.2 Running Time 

In machine learning it is also essential to deal with large datasets. Therefore, the 
running time of the proposed method is critical. The worst and the best case running 
time complexity of the MAD algorithm are given in the Section 2.5.1. In this section, 
the running times on real life datasets are given empirically.  

As mentioned in Section 2.5, the main time consuming step of MAD (after sorting) 
is finding the convex hull as fast as possible. In two class problems only one convex 
hull is calculated. On the other hand, in multi-class situation the number of convex 
hulls calculated is equal to the number of class labels. Each of these convex hulls is 
calculated by the method proposed in Section 2.5. Hence, the average running time of 
finding the convex hull method is the most prominent part in the running time of 
whole method. 

The proposed convex hull calculation method is invoked recursively until it 
converges to the convex hull. In order to give an insight of running time of algorithm 
in practice, Table 8 shows the average number of recursive call for an attribute to 
calculate convex hull. According to Table 8 it is possible to say that, regardless of the 
number of instances, the convex hull can be found by calling the function recursively 
minimum one, maximum six and on average four times for the given datasets. 



Table 8.  Average number of calling time to calculate convex hull for an attribute of each 
datasets. 

Name # Recursive 
Call 

Abalone 4 
Bupa 5 
Crx 5 
Dermatology 1 
German 3 
Glass 4 
Heart (Statlog) 2 
Ozone-onehr 5 
Page-Blocks 6 
Sick-euthyroid 5 
SPECTF 4 
Spambase 6 
Transfusion 4 
Wisconsin 6 
Yeast 3 
Average 4 

 
      The overall running time of all methods are measured. To be objective, the 
running times are measured by using java virtual machine’s CPU time and hundred of 
different runs are averaged. Table 9 shows the average running times of all algorithms 
in all datasets, in microseconds (µs). According to this table, on the average, all other 
methods outperform MAD method. As mentioned above for multi-class datasets, the 
MAD method calculates n different ROC curves where n is the number of attributes. 
Also it combines these curves with QuickHull algorithm whose complexity (no worse 
than O(n log n) in practical) is higher than unsupervised discretization methods.  

 
Table 9.  Average running time results for all datasets (in µs) (lower results are 

better). 

Name    MAD Entropy- 
MDLP 

FFD PD # Class label 

Abalone 599955 87075 33437 62924 29 
Bupa 1406 2250 1625 4593 2 

Crx 3593 4661 4609 11484 2 
Dermatology 7752 1732 1576 7274 7 

German 5200 7165 7410 24352 2 
Glass 6909 2465 1059 3541 10 

Heart (Statlog) 1177 1430 1370 3894 2 
Ozone-onehr 10928 14124 16511 167442 2 
Page-Blocks 150625 69796 52562 120843 5 

Sick-euthyroid 24753 26288 24429 250764 2 
SPECTF 17834 25334 30000 148526 2 

Spambase 1129 1207 1104 6946 2 
Transfusion 2929 4570 5468 9179 2 
Wisconsin 3588 5708 3072 14640 2 

Yeast 53476 8886 7890 20332 10 
Average 59417 17513 12808 57116  

 



      On the other hand, we are expecting MAD algorithm to work faster on two-class 
datasets. As it can be seen in Table 10, MAD outperforms all other discretization 
methods in terms of running time on average for two-class datasets used in this paper. 

 

Table 10.  Average running time results for two-class datasets (in µs) (lower results are better). 

Name    MAD Entropy- 
MDLP 

FFD PD 

Bupa 1406 2250 1625 4593 
Crx 3593 4661 4609 11484 

German 5200 7165 7410 24352 
Heart (Statlog) 1177 1430 1370 3894 

Ozone-onehr 10928 14124 16511 167442 
Sick-euthyroid 24753 26288 24429 250764 

SPECTF 17834 25334 30000 148526 
Spambase 1129 1207 1104 6946 

Transfusion 2929 4570 5468 9179 
Wisconsin 3588 5708 3072 14640 

Average 7254 9274 9560 64182 
 

3.3 Inconsistency of intervals 

Firstly, inconsistency of an interval should be defined. Given an interval which 
consists of n instances, inconsistency of that interval is equal to value n-c where c is 
the number of instances which belong to majority class on the given interval. For 
example, given an interval with 10 instances, if 7 of these instances belong to the 
class a and others to the class b, the inconsistency of the given interval is 10-7=3.  

A smaller amount of inconsistency indicates a better discretization. As entropy is a 
measure that aims to obtain pure intervals, it is expected to achieve lower 
inconsistency values with Entropy-MDLP discretization method. On the other hand, 
Table 11 shows that on the average the MAD method forms intervals which are more 
consistent than the Entropy-MDLP method. On the other hand, FFD and PD methods 
have lower inconsistency on the cost of producing a very high number of intervals.  

Table 11.  Total inconsistencies for continuous attributes in given datasets. (Lower results are 
better). 

Name MAD Entropy- 
MDLP 

FFD PD 

Abalone 3067 3120 2957 3001 
Bupa 138 143 135 129 

Crx 216 221 218 215 
Dermatology 214 216 214 213 

German 296 299 296 296 
Glass 107 113 113 106 

Heart (Statlog) 89 93 89 88 
Ozone-onehr 72 73 72 73 
Page-Blocks 494 486 481 492 

Sick-euthyroid 275 273 271 273 
SPECTF 1581 1578 1544 1560 

Spambase 54 55 54 54 



Transfusion 175 178 173 172 
Wisconsin 122 127 125 123 

Yeast 946 961 923 927 
Average 523 529 511 515 

 

3.4 Number of intervals 

The MAD method is not designed to minimize the number of intervals. Its main 
aim is to maximize the AUC. In contrast, entropy-MDLP method is known as 
producing less number of intervals. It is even shown by An et al. (1999) that Entropy-
MDLP method stops too early on small datasets.  

The average number of intervals per attribute is given in Table 12. According to 
these results, Entropy-MDLP outperforms MAD on this aspect. On the other hand, an 
important point should be mentioned about the results in table. In eight datasets, the 
Entropy-MDLP method discretizes all attributes into one interval on the average. 
When an attribute is discretized into one interval this means that the discretization 
method maps all elements to the same value such as (-∞  … +∞ ). This situation 
occurs if the distribution of the attribute values is not suitable according to the 
discretization methods measure. It is possible to say that Entropy-MDLP is acting like 
a feature selection algorithm. In turn, as shown in Section 3.1, there exists predictive 
accuracy gain in some of these datasets. Therefore, in some cases the Entropy-MDLP 
method misses important information by mapping all instances to the same interval. 

Table 12.  Average number of intervals per attribute. (Lower results are better). 

Name MAD Entropy- 
MDLP 

FFD PD 

Abalone 27 6 125 58 
Bupa 7 1 10 16 
Crx 10 2 19 23 
Dermatology 2 1 10 4 
German 5 1 30 14 
Glass 7 1 6 13 
Heart (Statlog) 4 1 8 7 
Ozone-onehr 9 1 76 45 
Page-Blocks 10 5 164 69 
Sick-euthyroid 9 2 94 44 
SPECTF 8 2 138 62 
Spambase 7 1 8 15 
Transfusion 9 1 22 24 
Wisconsin 13 3 17 22 
Yeast 11 2 44 26 
Average 9 2 51 29 

 
The MAD method outperforms the FFD and PD methods in terms of number of 

intervals on the average. This was expected since FFD and PD methods are 
unsupervised and always have large number of intervals due to their design. 



4 Conclusions 

A novel approach, called MAD, for discretization of continuous attributes is proposed 
in this work. A new discretization measure and stopping criteria are defined for this 
method. The theoretical evidence to use ROC curves and AUC values in 
discretization is given.  

According to the empirical evaluations MAD method outperforms Entropy-MDLP 
method which is one of the most well known discretization method in terms of 
predictive performance. MAD also outperforms FFD and PD methods in terms of 
predictive performance. Since these two discretization methods are naïve Bayes 
optimal, the significant gain in naïve Bayes algorithm in terms of M-Measure is 
important. It is also shown by experiments that MAD method runs faster than other 
discretization methods for two-class datasets. In terms of inconsistencies of intervals 
MAD method outperforms Entropy-MDLP method on average but it is outperformed 
by FFD and PD methods. This was expected, due to the inherent design of FFD and 
PD methods, they will intend to produce large number of intervals which brings pure 
intervals naturally. Especially the gain in the predictive performance and faster 
running time results show that MAD method is a good alternative to other key 
discretization methods.  

As a future work, the main bottleneck of the MAD algorithm is the time 
complexity of the convex hull computation for multi-class datasets. A new method 
that will find the convex hull faster than the QuickHull algorithm will improve the 
time complexity of the MAD algorithm. 
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