
1 

Technical Report 

 

No: BU-CE-1003 

 

Risk Estimation by Maximizing the Area under ROC 

Curve 

 

Murat Kurtcephe, H. Altay Güvenir 

July 2010 

 

Bilkent University 

Department of Computer Engineering 

06800 Ankara, Turkey 

http://www.cs.bilkent.edu.tr 

 

 
 

 

 

 

 

 

 

 

 



2 

Risk Estimation by Maximizing the Area under 

ROC Curve 

Murat Kurtcephe 

Bilkent University, Computer Engineering Department 06800 Ankara, Turkey 

+90 (312) 290 1945 

+90 (312) 266 4047 

kurtcephe@cs.bilkent.edu.tr 
 

H. Altay Güvenir 

Bilkent University, Computer Engineering Department 06800 Ankara, Turkey 

+90 (312) 290 1252 

+90 (312) 266 4047 

guvenir@cs.bilkent.edu.tr 
 

Abstract: Risks exist in many different domains; medical diagnoses, financial markets, fraud 

detection and insurance policies are some examples. Various risk measures and risk estimation 

systems have hitherto been proposed and this paper suggests a new risk estimation method. Risk 

estimation by maximizing the area under a receiver operating characteristics (ROC) curve 

(REMARC) defines risk estimation as a ranking problem. Since the area under an ROC curve 

(AUC) is related to measuring the quality of ranking, REMARC aims to maximize the AUC value 

on a single feature basis to obtain the best ranking possible on each feature. For a given categorical 

feature, we prove a sufficient condition that any function must satisfy to achieve the maximum 

AUC. Continuous features are also discretized by a method that uses AUC as a metric. Then, a 

heuristic is used to extend this maximization to all features of a dataset. REMARC can handle 

missing data, binary classes and continuous and nominal feature values. The REMARC method 

does not only estimate a single risk value, but also analyzes each feature and provides valuable 

information to domain experts for decision making. REMARC’s performance is evaluated with 

many datasets in the UCI repository by using different state-of-the-art algorithms such as Support 

Vector Machines, naïve Bayes, decision trees and boosting methods. Evaluations of the AUC 

metric show REMARC achieves predictive performance significantly better compared with other 

machine learning classification methods and is also faster than most of them. 

Keywords: Risk Estimation, AUC Maximization, AUC, Ranking 
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1   Introduction 

Accurate prediction of risk is essential for life. Avoiding or being aware of risks 

in domains such as finance or medicine can save money and lives, respectively. 

The main motivation behind the research on risk-prediction systems is to improve 

system performance to avoid unwanted events or negative consequences. 

 

This paper proposes a new risk measure and a supervised machine learning 

algorithm to estimate the values of this measure. The algorithm, learning from 

training instances, develops a model of the domain based on receiver operating 

characteristics (ROC) analysis, so that the area under ROC curves (AUC) of 

ordering the instances (Hanley and McNeil 1982) will be maximized; hence, the 

algorithm is called Risk Estimation by Maximizing the Area under ROC Curve 

(REMARC). 

 

Specific risk estimation methods have been developed for finance (Bradley and 

Taqqu 2003), medicine (Conroy et al. 2003; D'Agostino et al. 2008) and 

insurance (Dowd and Blake 2006), to name some examples. Some of these 

methods are dependent on statistical models while some are based on machine 

learning algorithms. The machine learning algorithms are usually classification 

algorithms that can associate a certainty factor with their classification. The 

certainty factor for a predicted unwanted case is taken as the value of risk. 

 

The word “risk” is generally taken to mean “an unwanted situation” (Giddens 

1999). Although these unwanted cases may be severe, their likelihood of 

occurrence is usually rare. Therefore, datasets for such domains usually are 

unbalanced and the costs of misclassification are not symmetric. Classification 

algorithms that aim to maximize accuracy are not suitable for such unbalanced 

datasets (Sebag et al. 2004; Tax et al. 2006; Fawcett 2006). Instead, an alternative 

metric called AUC, proposed by Bradley (1997), is the evaluation metric to 

maximize. AUC has important features such as insensitivity to class distribution 

and cost distributions (Bradley 1997; Huang and Ling 2005; Fawcett 2006),which 

make it suitable for risk domains.  
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In risk domains, representing the risk score as a real value between 0 and 1 may 

not be sufficient, and even misleading; relatively ordering instances in terms of 

risk values may be much more informative. For example, instances can be located 

on a single dimension, where the safest cases are on one side and the riskiest cases 

are on the other side. Since it has been shown by Hanley and McNeil (1982) that 

AUC is able to qualify ranking instances, maximizing AUC also leads to the best 

ranking. Recent research on maximizing AUC by Toh et al. (2008) and 

Rakotomamonjy (2004) also shows the importance of ranking instances. 

 

The main contributions of the REMARC algorithm can be shown in three 

different ways. First, we show the conditions a risk scoring function must possess 

in order to achieve maximum AUC for a single feature dataset case. Second, the 

maximization of AUC is extended over the whole dataset by using a simple 

heuristic, which also depends on AUC’s metric. Lastly, the human readable model 

formed by REMARC helps domain experts by indicating what features and how 

their particular values affect the risks. 

 

In the next section detailed information about risks and risk domains are given. 

Section 3 covers ROC, AUC and research on AUC maximization. In Section 4, 

the theoretical background of the REMARC method and implementation details 

are given. Section 5 presents the empirical evaluation of real-life datasets. Finally, 

Section 6 concludes with conclusions and future work.  

2 Risks 

Risk has always been a normal occurrence. Risks such as a complication from 

surgery, a fraudulent financial transaction, a firm going into financial distress and 

an e-mail being spam are all part of today’s world. Giddens (1999) claims that the 

ideas of risk and responsibility are closely linked in a risk society, and suggests 

that legal theorists and practitioners should also concern themselves with the idea 

and reality of risk. The word “risk” is commonly used in daily life, because of its 

popularity in the media, however, a formal definition is needed.  
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2.1 Definitions of Risk 

Hansson (2007) gives five definitions of risk commonly used in different 

disciplines. Hansson’s third definition is the most suitable for defining the risk 

used in this work: “The probability that an unwanted event may or may not 

occur”. For example, the risk of a credit card transaction being fraudulent is 17%.  

2.2 Risk Domains 

Risk implies an unwanted situation. In medicine, mortality and morbidity are two 

unwanted situations. In finance, money loss and bankruptcy are examples. Since 

the consequences of these situations are crucial, in order to avoid them extensive 

research continues on this subject. As an example, it is possible to find books 

written on specific domains such as process management systems risk estimation 

(Cameron and Raman 2005). 

 

According to Shishkin and Savkov (2009) some of the most popular commercial 

risk analysis tools for financial domains are “Risk Watch” (www.riskwatch.com, 

USA) and “Commercial Risk Analysis and Management Methodology- 

CRAMM” (www.cramm.com). Other than the commercial tools, concepts such as 

Value-At-Risk (VAR) and other models can be found in Bradley and Taqqu 

(2003) and Huang 2010. Stoyan et al. (2008) provide a survey on stochastic 

models for risk estimations. Recently, Ferrari and Paterlini (2007) proposed a new 

risk estimation method that claims a better performance than VAR. 

 

In medicine, a risk scoring system based on logistic regression for cardiovascular 

surgery is proposed by Roques et al. (2003). Other scoring systems for the same 

domain also exist (Conroy et al. 2003; Hannan et al. 2006). A recent study by 

D'Agostino et al. (2008) shows that some of these scoring systems use Cox 

regression methods, which is proposed by Cox (1972). 

2.3 Risk Estimation in Machine Learning 

Risk estimation is not yet a major subarea of machine learning literature. 

Classification algorithms, which are able to output the confidence or probability 

of classification results, can be used to approximate risk estimation. 
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In a risk estimation system, a risk function that assigns higher values to risky 

instances than safer instances is crucial. In such a system, risk will be computed as 

a real value between 0 and 1, where 1 indicates the definite risk while 0 represents 

the safest situation.  However, the absolute value of this risk score is also very 

important for the user. Assume risk() is a function that returns a real number 

between 0 and 1 as the estimation of the risk. Another risk function, risk’(), 

defined as ()risk , also returns a value between 0 and 1. Both of these functions 

will rank the instances in the same order, although their absolute risk values are 

different. 

 

On any dataset gathered from a risk domain, two classes should be determined in 

order to distinguish a risky situation from a safe one. In this work, we will define 

these class labels as p (positive, unwanted class) and n (negative, safe class).  

For example, in a loan dataset, the class label p indicates a default, while label n 

indicates that the loan amount has been paid back. 

 

Machine learning techniques have been applied to different domains in order to 

predict risk. In medicine, Colombet et al. (2000) evaluated three different machine 

learning algorithms in order to predict cardiovascular surgery risk. In Biagioli et 

al. (2006) Bayesian models were used to predict risks in coronary artery surgery 

operations and in Gamberger et al. (2000) machine learning results on a heart 

database were evaluated. Financial domains have also taken advantage of machine 

learning algorithms. Galindo and Tamayo (2000) evaluated machine learning and 

statistical methods in order predict credit risks. Kim (2003) proposed a financial 

time series prediction system by using a support vector machine (SVM) and Min 

and Lee (2005) tried to predict bankruptcy risk by using optimal kernel functions 

for SVM. However, to the best of our knowledge, a risk estimation system that 

aims to maximize the AUC metric has never been proposed. The ROC curves and 

AUC metric will be examined in detail before explaining the REMARC method. 

The next section elaborates on the features of ROC and AUC and their 

appropriateness for this work. 
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3   ROC, AUC and AUC maximization 

Since their application to machine learning, ROC graphs and the AUC metric 

have become popular; AUC is used in evaluating machine learning algorithms and 

as a learning criterion. We explain the properties that make AUC a better metric 

than accuracy  and discuss the existing research on AUC maximization. 

3.1 Receiver Operating Characteristics (ROC) 

The first application of ROC graphs dates back to World War II, where they were 

used to analyze radar signals (Krzanowski & Hand, 2009). Since then, they have 

been used in areas such as signal detection and medicine (Green and Swets 1966; 

Zweig and Campbell 1993; Pepe 2003). The first application to machine learning 

is done by Spackman (1989). According to Fawcett’s definition, the ROC graph is 

a tool that can be used to visualize, organize and select classifiers based on their 

performance (Fawcett 2006). It has become a popular performance measure in the 

machine learning community after it has been realized that accuracy is often a 

poor metric to evaluate classifier performance (Provost and Fawcett 1997; Provost 

et al. 1998; Huang and Ling 2005). 

 

The ROC literature is more established to deal with binary classification (two 

classes) problems than multi-class ones. At the end of the classification phase, 

some classifiers simply map each instance to a class label (discrete output). Some 

classifiers are able to estimate the probability of an instance belonging to a 

specific class such as naïve Bayes or neural networks (continuous valued output, 

also called score). Classifiers produce a discrete output represented by only one 

point in the ROC space, since only one confusion matrix is produced from their 

classification output. Continuous-output-producing classifiers can have more than 

one confusion matrix by applying different thresholds to predict class 

membership. All instances with a score greater than the threshold are predicted as 

to be p class and all others are predicted as to be n class. Therefore, for each 

threshold value, a separate confusion matrix is obtained. The number of confusion 

matrices is equal to the number of ROC points on an ROC graph. With the 

method proposed by Domingos (1999), it is possible to obtain ROC curves even 

for algorithms that are unable to produce scores. 
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3.1.1   ROC Space 

ROC space is a two dimensional space with a range of (0.0, 1.1) on both axes. In 

ROC space the y-axis represents the true positive rate (TPR) of a classification 

output and the x-axis represents the false positive rate (FPR). 

 

To calculate TPR and FPR values, the definitions of the elements in the confusion 

matrix must be given. The structure of a confusion matrix is shown in Fig. 1. True 

positives (TP) and false positives (FP) are the most important elements of the 

confusion matrix for ROC graphs. For each threshold value, TP is equal to the 

number of positive instances (those that have been classified correctly) and FP is 

equal to the number of negative instances (those that have been misclassified). 

 

TPR and FPR values are calculated by using Eq. 1. In this equation N is the 

number of total negative instances and P is the number of total positive instances. 

PTPTPR /=  

FFPFPR /=  

(1) 

 

3.1.2 Formation of ROC Curve 

As mentioned above, the classifiers producing continuous output can form a curve 

since they are represented by more than one point in the ROC graph. To draw the 

ROC graph, different threshold values are selected and different confusion 

matrices are formed. 

 

By varying the threshold between -∞ and +∞ , an infinite number of ROC points 

can be produced for a given classification output. However, this operation is 

computationally costly and it is possible to form the ROC curve more efficiently 

with other approaches. 

 

As proposed by Fawcett (2006), in order to calculate the ROC curve efficiently, 

classification scores are sorted in an increasing order first. Starting from -∞ , each 

distinct score element is taken as a threshold; TPR and FPR values are calculated 

using Eq. 1. 
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As an example, assume that the score values for test instances and actual class 

labels for a toy dataset are given in Table 1. The ROC curve for this toy dataset is 

shown in Fig. 2. In this figure, each ROC point is given with the threshold value 

used to calculate it. In a dataset with S distinct classifier scores, there are 

S+1thresholds including -∞  and the same number of ROC points. Since there are 

eight distinct score values in this toy dataset, there are nine ROC points. With this 

simple method it is possible to calculate the ROC curve in linear time.  

 

It is possible to divide the ROC space into three regions: the region above y=x 

line, the area below y=x line and the points on the y=x line. The points on y=x line 

represent random performance. As an example, a classifier that has a point on 

(0.6,0.6) guesses the positive class 60% correctly, however it also has a 60% false 

positive rate. The points above the y=x line are those belonging to the classifiers 

that have an acceptable trade-off between the positive and negative classes; 

similarly, the points below the y=x line correspond to an unacceptable 

classification performance. A classifier’s ROC point below the diagonal line can 

be negated by simply inverting the decision criteria of the classifier, replacing all 

p class labels with n class labels and vice versa. According to Flach and Wu 

(2003), classifiers below the diagonal have valuable information, but they are not 

able to use it. 

3.2 Area under the ROC Curve (AUC) 

ROC graphs are useful to visualize the performance of a classifier but a scalar 

value to compare classifiers is needed. In the literature, Bradley proposes the area 

under the ROC curve as a performance measure (1997). According to the AUC 

measure, the classifier with a higher AUC value performs better in general. A 

classifier can be outperformed by another classifier in some regions of ROC 

space, for some specific threshold values, even though the classifier, which has 

larger AUC, is better than the other. 

 

The ROC graph space is a one-unit square. The highest possible AUC value is 

1.0, which represents the perfect classification. In ROC graphs a 0.5 AUC value 
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means random guessing has occurred and values below 0.5 are not realistic as 

they can be negated by changing the decision criteria of the classifier. 

 

The AUC value of a classifier is equal to the probability that the classifier will 

rank a randomly chosen positive instance higher than a randomly chosen negative 

instance. Hanley and McNeil (1982) show that this is equal to the Wilcoxon test 

of ranks.  

3.3 Why AUC is More Proper than Accuracy 

There are several reasons why we chose AUC as a learning criterion in this work. 

The first reason is the independence of the decision threshold of the AUC metric. 

Since the risk estimation methods are not actual classifiers, unless a threshold is 

fixed it is not possible to calculate an accuracy value. As mentioned in Section 

2.3, the first task of a risk estimation method is ranking instances correctly. Since 

AUC has the ability to measure the quality of ranking, it is better than an accuracy 

metric on this basis. 

 

Another reason regards the discrimination power of the accuracy and AUC 

metrics. Bradley (1997) was the first author to question the applicability of 

accuracy metrics in classifier algorithms and to recommend the use of AUC 

instead. Provost et al. (1998) also questioned the applicability of accuracy metrics 

in classification algorithms and suggested ROC analysis as a powerful alternate 

tool. Rosset (2004) claimed that even if the goal is to maximize accuracy, AUC 

may be better than empirical error for discriminating between models. The formal 

proof of the superiority that AUC has over accuracy is later given by Huang and 

Ling (2005). In their work, the authors showed that AUC is a statistically 

consistent and more discriminating metric than accuracy. These works clearly 

show the discriminatory power of the AUC metric. 

 

Skewed (unbalanced) datasets is another reason to prefer AUC as a metric. This 

situation occurs when the difference between class priors is high. Risk areas such 

as medicine (Mac Namee et al. 2002; Tax et al. 2006) or fraud detection (Fawcett 

and Provost 1997) are examples of skewed datasets. For example, a classifier that 

predicts all instances as negative even though a few of the instances achieve very 
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high accuracies is misleading (Rakotomamonjy 2004). In addition, class 

distribution can change over time. For example, if in a financial crisis a large 

number of banks claim bankruptcy this can change class distribution drastically. 

In order to solve such problems, AUC, which is insensitive to class distributions, 

is preferred. 

 

Lastly, misclassification costs cannot be determined for most risk domains. As 

noted above, skewed datasets are common in real life. In a domain with 

unbalanced class distribution, when the true misclassification cost is higher than 

implied by the distribution of training set examples, this situation becomes 

problematic (Maloof 2003). Since AUC is also insensitive to misclassification 

cost (Provost and Fawcett 2001) it is preferred in this work. 

3.4 AUC Maximization 

Most classification algorithms are designed to maximize accuracy (or error rate). 

Since accuracy is a classification performance criteria, algorithms that maximize it 

give better predictive performance. However, because of the abovementioned 

drawbacks to the accuracy metric for some domains, AUC has become more 

popular. It has been shown that maximizing accuracy does not lead to maximizing 

AUC (Cortes and Mohri 2003; Yan et al. 2003). As a result, new algorithms 

maximizing AUC have been proposed. 

 

Some approximation methods to maximize the global AUC value have been 

proposed by researchers (Mozer et al. 2002; Yan et al. 2003; Herschtal and 

Raskutti 2004). Ferri et al. (2002) proposed a method to locally optimize AUC in 

decision tree learning, and Cortes and Mohri (2003) proposed boosted decision 

stumps. To maximize AUC in rule learning, several new algorithms have been 

proposed (Boström 2005; Prati and Flach 2004; Fawcett 2001). A nonparametric 

linear classifier based on the local maximization of AUC was proposed by 

Marrocco et al. (2008). A ROC-based genetic learning algorithm has been 

proposed by Sebag et al. (2004). Marrocco et al. (2006) used linear combinations 

of dichotomizers for the same purpose. Freund et al. (2003) gave a boosting 

algorithm combining multiple rankings. Cortes and Mohri (2003) showed that this 

approach also aims to maximize AUC. A method by Tax et al. (2006) that weighs 
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features linearly by optimizing AUC has been proposed and applied to the 

detection of interstitial lung disease. Ataman et al. (2006) advocate an AUC-

maximizing algorithm with linear programming. Rakotomamonjy (2004) 

suggested rank optimizing kernels for SVMs to maximize AUC. Ling and Zhang 

(2002) compare AUC-based Tree-Augmented Naïve Bayes (TAN) and error-

based TAN algorithms; the AUC-based algorithms are shown to produce more 

accurate rankings. More recently, Calders and Jaroszewicz (2007) proposed a 

polynomial approximation of AUC to optimize it efficiently. Linear combinations 

of classifiers are used to maximize AUC in biometric scores fusion in Toh et al. 

(2008). Han and Zhao (2010) propose a linear classifier based on active learning, 

which maximizes AUC. 

4   REMARC 

REMARC is a risk estimation method designed to maximize the AUC metric. The 

REMARC algorithm reduces the problem of finding a risk function for the whole 

set of features into finding a risk function for a single categorical feature, and then 

combines these functions to form one risk function covering all features. We will 

show here that it is possible to determine risk functions that achieves the 

maximum AUC for a single categorical feature. REMARC discretizes the 

numerical features by an algorithm called MAD, proposed by Kurtcephe and 

Guvenir (2010). The MAD method discretizes a continuous feature in a way that 

results in a categorical feature by maximizing the AUC. 

 

For a given query, REMARC outputs a real value r in the range of [0,1] as the 

estimated risk of being the unwanted state. This r value is roughly the probability 

that the query instance will be in the p class. It is only a rough estimate of 

probability, since it is very likely that no other instance with exactly the same 

feature values has been observed in the training set. The REMARC algorithm 

determines this estimated probability by computing the weighted average of 

probabilities computed on single features. The weight of a feature is a linear 

function of its AUC value. calculated by the risk estimates for each instance in the 

training set. A higher value of AUC for a feature is an indication of its higher 

relevance in determining the class label. 
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In the following sections we will show how a risk function can be defined for a 

single categorical feature. Since, the REMARC algorithm requires the features to 

be categorical, we will propose a method to discretize a continuous feature so that 

the AUC of the new categorical feature will be the maximum. 

 

4.1 Single Categorical Feature Case 

A categorical feature has a finite set of choices. Let V = {v1, v2, … vn } be a 

categorical feature and vi a categorical value that feature V can take. The dataset D 

is a set of instances represented by a vector of n value and class label as <v,c>, 

where v∈V and c∈ {p,n}. 

 

Given a dataset D with a single categorical feature whose value set is V = {v0, 

v1,…, vn}, a risk function r: V → [0,1] can be defined to rank the values in V. 

According to this risk function, a value vi comes after a value vj if and only if  

r(vi) > r(vj); hence r defines a partial ordering on the set V. A pair of consecutive 

values vi and vi+1 defines a ROC point Ri on the ROC space. The coordinates of 

the point Ri are (FPRi, TPRi). 

 

Theorem 1: Let D be a dataset with a single categorical feature whose value set is 

V = {v0, v1, …, vn}. Let r: V → [0,1] be the risk function that orders the values of 

V, as vi+1 comes after vi if r(vi+1) > r(vi), for all values of 0≤i<n. If the values of the 

risk function for two consecutive values vi and vi+1 are swapped, then the only 

change in the ROC curve is that the ROC point corresponding to the vi and vi+1 

values moves to a new location so that the slopes of the line segments adjacent to 

that ROC point are swapped. 

 

Proof: The slope of the line segment between two consecutive ROC points Ri and 

Ri+1 is  

1

1

+

+

−
−=

ii

ii
i FPRFPR

TPRTPR
s . 
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P
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TPR i

i = and 
N
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FPR i

i = , 
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ROC point R’i at (FPR’i, TPR’i). The slopes of the new line segments adjoining 

R’ i are  

i
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Replacing the new count values with the old ones, 

1' += ii ss and ii ss =+1' are obtained.                                                                          ■ 

 

For example, consider the dataset given below: 

D={(a,n), (b,p), (b,n), (b,n), (b,n), (c,p), (c,p), (c,n), (c,n), (d,p), (d,p), (d,n)}, 

where V = {a, b, c, d}. If a risk function r orders the values of V as r(a) < r(b) < 

r(c) < r(d), the ROC curve shown in Fig. 3a) will be obtained. On the other hand, 

if the rankings of values b and c are swapped, the ROC curve shown in Fig. 3b 

will be obtained. A similar technique was used earlier by earlier by Flach and Wu 

(2003) to create better prediction models for classifies.  

 

Theorem 1 shows how concavities in a ROC curve can be removed, resulting in a 

larger AUC. The next question is how to form the convex ROC curve. The 
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following theorem sets the necessary and sufficient condition for risk functions to 

satisfy so that their ROC curves are convex. 

 

Theorem 2: Let D be a dataset with a single categorical feature that takes values 

from the set V = {v0, v1, …, vn}. Let r: V  → [0,1] be the risk function that orders 

the values of V, as v1+1 comes after vi if r(vi+1) > r(vi), for all values of 0≤i<n. In 

order for the ROC curve of the ordering by r to be convex, the following 

condition must be satisfied: 

 

i

i

i

i

ni N

P

N

P
i ≥

+

+

<≤
∀

1

1

0

, 
(2) 

 

where Pi is the number of p-labeled instances with value vi, and Ni is the number 

of n-labeled instances with value vi. 

 

Proof: In order for the ROC curve to be convex, the slopes of all line segments 

connecting consecutive ROC points starting from the ROC point (1,1) must be 

non-decreasing. 

 

Therefore, the condition for a convex ROC curve is  

1
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P
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Therefore, the inequality in Eq.3 can be rewritten as  
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Therefore, according to Theorem 2, any risk function r that assigns a higher value 

to vi+1 than to vi when 
i

i

i

i

N

P

N

P ≥
+

+

1

1 , for all values of V, will result in a convex ROC 

curve. For example, a risk function defined as 
i

i
i N

P
vr =)( will result in a convex 

ROC curve. 

 

Theorem 3. Let D be a dataset with a single categorical feature whose value set is 

V = {v0, v1, …, vn}. Ignoring the ineffective ROC points that lie on a line, there 

exists exactly one convex ROC curve. 

 

Proof: Since there exists only one possible ordering of values of V that satisfies 

the condition given in Theorem 1, there exists only one convex ROC curve.        ■ 

 

The general assumptions for risk estimation problems are given in Eq. 4: 
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(4) 

 

Although the dataset is guaranteed to have at least one instance with class label p 

and one instance with label n, it is possible that for some values of i, Ni may be 0. 

In such cases the risk function defined above will have undefined values. In order 

to avoid such problems, the risk can be defined as  
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The same arithmetic operations can be applied in the reverse direction to show 

that  

if 
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Since, if both Pi and Ni are 0 for some i, the corresponding value vi can be 

completely removed from the dataset 0
0

>+∀
<≤

ii
ni

NPi , and this risk function is 

defined for all values of i.  

 

The risk function ( )iiii NPPvr += /)(  has another added benefit in that it is simply 

the probability of the p label among all instances of value vi, which is easily 

interpretable.  

 

Corollary: For a dataset D with a single categorical feature whose value set is V = 

{ v0, v1, …, vn}, the risk function defined as ( )iiii NPPvr += /)(  gives the maximum 

possible AUC. 

 

Therefore, the REMARC algorithm uses ( )iiii NPPvr += /)(  as the risk function for 

categorical features. 

 

4.1.1 The Effect of the Class Label Choice on a Feature’s AUC  

In order to calculate the P and N values one of the classes should be labeled as p 

and the other class as n, but one can question the effect this choice has on the 

AUC value. It is possible to show that the AUC value of a categorical feature is 

independent from the choice of class labels by using the value from the Wilcoxon-

Mann-Whitney statistics. 
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In Eq. 6, the AUC formula based on the Wilcoxon-Mann-Whitney statistics is 

given. P is the number of instances that have the p class label and N represents the 

number of n-class-labeled instances. The set Dp represents the p-labeled instances 

and Dn represents the n-labeled instances. An element belonging to Dp set, which 

is Dpi, is the ranking of the i th instance, which is labeled p. Inversely, an element 

belonging to Dn set, such as Dni, is the ranking of the i th instance, which is labeled 

n. 

PN
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The dividend part of the AUC formula in Eq. 6 counts the number of p-labeled 

instances for each element of the Dp set whose ranking is higher than any element 

of the Dn set. Then, AUC is calculated by dividing this summation by the 

multiplication of the p-labeled and n-labeled elements. 

 

The effect of the class label choice on the AUC calculation should be investigated. 

First of all, it is straightforward that the divisor part of the AUC formula is 

independent of class choice. Then, assume that the risk score 
ii

i
i NP

P
r

+
=  is used 

on the D dataset and Dp and Dn sets are formed. Let ni be the number of n-labeled 

instances whose ranking is lower than the i th element of the Dp set and let r i be the 

score assigned to this element. When the classes are swapped, the new risk value 

r ’
i is equal to 1- r i. With this property all instance scores are negated. However, 

negating scores does not change the relative ranking but inverses it. So, the AUC 

formula in Eq. 6, which calculates AUC depending on the ranking of the 

instances, is independent of the class-label decision when the proper risk scoring 

is used.  
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4.1.2 An Example Toy Dataset 

Assume that a toy training dataset with a single categorical feature is given in 

Table 2. In order to calculate the AUC value of this particular feature, risk values 

are needed. The risk values are calculated by the proposed risk function. The 

sorted version of the dataset according to the risk estimates is given in Table 3. 

The AUC value of this feature is calculated by using Eq. 2. The P value is 7 and 

the N value is 6. The AUC value is 82.0
6*7

5.34 = . In order to calculate this AUC 

value, for each p-labeled instance all n-labeled instances whose risk (ranking) is 

smaller or equal should be counted. When the class labels are swapped the risks 

are also swapped. The sorted version of the swapped toy dataset is given in Table 

4. Since the relative ranking of the instances does not change the new AUC value 

is also 82.0
7*6

5.34 = . 

 

4.2 Handling Continuous Features 

Having found the necessary and sufficient conditions for the risk function for a 

categorical feature to result in the maximum possible AUC, the next problem is to 

determine a mechanism for handling the continuous features. An obvious and 

trivial risk function maps any real value seen in the training set with the class 

value p to 1 and any real value with the class value n to 0. This risk function will 

result in the maximum possible value for AUC, which is 1.0. However, such a risk 

function will over fit the training data, and will be undefined for unseen values of 

the feature, which are very likely to be seen in the query instance. So, our first 

requirement for a risk function for a continuous feature is that it must be defined 

for all possible values of that continuous feature. A straightforward solution to 

this requirement is to discretize the continuous feature by grouping all consecutive 

values with the same class value to a single categorical value; the cut off points 

can be set to the middle point between feature values of differing class labels. The 

risk function, then, can be defined using the risk function given in Eq. 5 for 

categorical features. Although this would result in a risk function that is defined 

for all values of a continuous function, it would still suffer from the over fitting 

problem. In order to overcome this problem, the REMARC algorithm makes the 

following assumption: 
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Assumption 1: The risk values are either non-increasing or non-decreasing for the 

increasing values of a continuous feature. 

 

Although there exist some features in real-world domains that do not satisfy this 

assumption, in the datasets we examined this assumption is satisfied in general. 

 

This assumption is also consistent with the interpretations of the values of 

continuous features in many real-world applications. For example, in a medical 

domain, a high value of fasting blood glucose is an indication for a high risk of 

diabetes. On the other hand, low fasting blood glucose is an indication of a risk 

for another heath problem, called hypoglycemia. 

4.2.1 The MAD Method 

The REMARC algorithm requires all features to be categorical. Therefore, the 

continuous features in a dataset need to be categorized. The aim of a discretization 

method is to find the proper cut-points in order to categorize a given continuous 

feature. After the discretization process a continuous feature is treated as a 

discrete feature whose number of intervals is known on the continuous.  

 

The MAD method is designed to maximize the AUC value by checking the 

ranking quality of values of a continuous feature. The MAD algorithm given in 

Kurtcephe and Guvenir (2010) is defined for multi-class datasets. A special 

version of the MAD method, called MAD2C and defined for two-class problems, 

is used in REMARC. 

 

In order to measure the ranking quality of a continuous feature, the instances are 

sorted in ascending order. Sorting is essential for all discretization methods in 

order to produce unambiguous intervals. After the sorting operation, feature 

values are used as hypothetical score values and the ROC graph of the feature is 

drawn. The AUC of the ROC curve shows the overall ranking quality of the 

continuous feature. In order to obtain the maximum AUC value, only the points 

on the convex hull must be selected. The minimum number of points that form the 

convex hull is found by eliminating the points that cause concavities on the graph. 

In each pass, the MAD method compares the slopes in the order of the creation of 
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the hypothetical lines, finds the junction points (cut-points) that cause concavities 

and eliminates them. This process is repeated until there is no concavity on the 

graph. The points left on the graph are the cut-points, which will be used to 

discretize the feature.  

 

It has been proven that the MAD method finds the cut-points and the AUC value 

of the feature independently from the class choice. It is shown that the cut-points 

found by MAD never separate two consecutive instances of the same class. This is 

an important property, as it shows that a discretization method works properly. 

The implementation details, formal proofs and empirical evaluation of MAD can 

be found in Kurtcephe and Guvenir (2010). 

4.2.2 A Toy Dataset Discretization Example 

It is possible to visualize the discretization process by using the MAD method. A 

toy dataset for the discretization is given in Table 5. After the sorting operation, 

the ROC points are formed. This ROC graph is given in Fig. 5. Since the risk 

values are either non-increasing or non-decreasing for the increasing values of a 

continuous feature, two ROC graphs are formed. As can be seen in Fig. 5 one of 

these graphs is below the diagonal line since the risk is increasing with increasing 

values of the continuous feature.  

 

The first pass of the MAD method is shown in Fig. 6. All points below or on the 

diagonal are ignored since they have no positive effect on the maximization of 

AUC. Then the points causing concavities are eliminated. MAD converged to the 

convex hull in one pass for this example. The points left on the graphs are the 

discretization cut-points. 

4.3 REMARC Algorithm 

The training phase of the REMARC algorithm is given in Fig. 7. In the training 

phase all continuous features are discretized. In order to discretize continuous 

features, MAD2C, which is shown on the fifth line of Fig. 7, is used. Risk values 

are calculated for each value of a given categorical feature (discretized continuous 

features are included). In this step, the risk function defined in Eq. 5 is used in 

order to obtain the optimal ranking for categorical features. Then, training 
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instances are sorted according to the risk values calculated in the previous step. 

Since the risk function used by REMARC always results in a convex ROC curve, 

the AUC is always equal to or greater than 0.5. Therefore, the REMARC 

algorithm learns a weight wi for a feature fi as 

 

w = 
2

5.0−fAUC
 

(7) 

 

The ROC curve of an irrelevant feature is simply a diagonal line from (0,0) to 

(1,1), with 5.0=AUC . The weight function in Eq. 7 assigns 0 to such irrelevant 

features in order to eliminate them. The risk values and weights of the features are 

stored for the testing phase. 

 

The testing phase of the REMARC method is straightforward, as for each feature; 

the risk value corresponding to the value of the feature in the test instance is used. 

Then the risk of this feature is weighted by its weight, which is calculated in the 

training phase. The computation of the risk for a query instance q is given in Eq. 

8. The maximization of AUC for whole dataset is a challenging problem. Cohen 

et al. (1998) showed that the problem of finding the ordering that agrees best with 

a learned preference function is NP-Complete. This weighting mechanism is used 

as a simple heuristic in order to extend this maximization over the whole feature 

set. 

risk (q) = 
∑

∑ ∗

f
f

f
ff
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qpPw )|(

 





 −

=
missingis0

knownis)5.0(2

f

ff
f q

qAUC
w  

where )|( fqpP is the probability of q being p-labeled, given that 

the value of feature f in q is qf, and fw is the weight of the feature 

f, calculated by using Eq. 7 

(8) 

 

Finally, in order to obtain the weighted average, all risk and weight values are 

summed and final risk is calculated by dividing the cumulative.  
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The time complexity of the MAD algorithm is given as O(n2), where n is the 

number of training instances. After discretizing the numerical features the time 

complexity of the REMARC algorithm is O(m*vlgv+n), where m is the number of 

features and v is the average number of values per feature. As a result, REMARC 

is bounded by the MAD algorithm’s time complexity. 

4.4 Interpretation of the REMARC Predictive Model 

As mentioned above, the REMARC method does not only provide risk estimation 

as a single real value, but the predictive model used in order to estimate risk can 

provide useful information to domain experts. A high weight value indicates that 

the corresponding feature is a highly effective risk factor in the given domain. 

Domain experts may choose to ignore features with low weights, potentially 

reducing the cost of record keeping.  

 

Some of the categorical features are formed by discretizing continuous features. 

For example, age can be discretized into child, youth, adult and elderly. Assume 

that the impression of the feature age is investigated on a risky domain, such as 

medicine. The intervals should be chosen carefully since they can affect a 

system’s predictive performance. The domain experts can provide this 

information. However, there can be experimental domains where this knowledge 

is not applicable. The MAD method used in REMARC learns the proper intervals 

in order to maximize AUC during the training phase. These intervals also report 

the risks associated with each interval. For example, consider a dataset that 

contains an age feature and a class label that indicates the presence of a new 

disease. The MAD method will find the distinct age groups in terms of this 

disease and the REMARC method will determine the risk for each age group. 

 

The choice of class label during risk estimation has no effect on the feature 

weights. However, the risk function used by REMARC depends on this choice 

directly, as shown in Section 4.1, so in order to interpret risk scores correctly one 

must pay attention to the class label that represents the unwanted situation. 

Otherwise, risk scores can be misleading. 
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5 Empirical Evaluations 

In order to maximize AUC the theoretical background of the REMARC method is 

given. In order to support the theoretical background with empirical results two 

different experiments are conducted. First, REMARC is compared with 26 

different machine learning algorithms on an AUC basis. Then, since there can be 

domains where the predictive models have to trained often, running times of the 

algorithms are also measured. 

 

The real-life datasets are provided by the UCI machine learning repository (Frank 

and Asuncion 2010) and are two-class problems. Ten datasets are selected from 

risk domains such as medicine and finance. The properties of the datasets are 

given in Table 6. 

 

In order to perform the comparisons, 26 different classification algorithms are 

selected from the WEKA software package (Hall et al. 2009). Only the algorithms 

that able to produce continuous output (confidence on the class decision) are 

selected. As mentioned above, the ROC graphs of algorithms producing 

continuous output are meaningful. Since REMARC is a non-parametric method, 

none of the classifiers is optimized for each dataset. All classifiers are used with 

default settings of WEKA for the sake of fairness. The SVM is taken from the 

LIBSVM package provided in WEKA (Chang., C-C. & Lin, C-C. 2001). 

5.1 Predictive performance 

Researchers (Cortes and Mohri 2003; Han and Zhao 2010) reported that some of 

the algorithms that aim to maximize AUC do not obtain significantly better AUC 

values than the ones designed to maximize accuracy. Therefore, it is important to 

show that REMARC can outperform accuracy-maximizing algorithms statistically 

significantly. 

 

A stratified ten-fold cross validation is employed to calculate AUC values for 

each datasets. As shown in Table 7, the REMARC method outperformed all 

algorithms on the average AUC. A paired t-test is used to decide whether the 

differences on averages are significant. According to the paired t-test on a 95% 

confidence level (the same level will be used for other t-tests) REMARC 
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statistically significantly outperforms 15 of the 26 machine learning algorithms on 

the average AUC. These algorithms include naïve Bayes, decision trees (part, 

C4.5) and SVM with a RBF kernel. REMARC outperformed the other 11 

algorithms, as well, but the differences between the averages for these algorithms 

are not statistically significant. 

 

One important point should be mentioned about the SVMs. As seen in Table 7, 

SVM has the worst predictive performance among all the classification algorithms 

because of the absence of parameter tuning. However, as mentioned before none 

of the algorithms is tuned for best predictive results. 

 

The classification algorithms such as logistic (multinomial logistic regression 

model) and classification via regression achieve high AUC values. As mentioned 

above, these models are highly used in the domain of medicine, and in this work 

their predictive performance is validated. 

 

The second classifier with the highest AUC was the Adaboost method. Since it is 

an ensembling algorithm, it uses a base classifier (default DecisionStump in 

WEKA). We believe that the performance of REMARC can be further improved 

by using an ensembling algorithm, as then, a statistically significant difference 

can be obtained. 

5.2 Running Time  

The REMARC method is designed to be simple, effective and fast. It handles 

categorical features close to the linear time. MAD requires more time since it uses 

sorting. Theoretically, REMARC seems fast, but empirical experiments must be 

conducted to support this claim. 

 

The overall running times of the training phase of 25 different algorithms are 

calculated. The running times of all algorithms are measured using java virtual 

machines’ CPU time and hundreds of results are averaged (to be objective). The 

SVM algorithm is not included in the running times section since WEKA uses an 

outside library for this algorithm. However, it takes seconds for SVM to complete 
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the training phase, so it is much slower than REMARC. The results of the overall 

running time for the other algorithms are shown in Table 8.  

 

REMARC outperforms 13 different algorithms significantly according to a paired 

t-test on a running-time basis. These outperformed methods are shown by the ↑ 

symbol on Table 8. Five algorithms outperformed REMARC statistically 

significantly. These algorithms are shown with a ↓ symbol.  The differences 

between the other six methods on the table and REMARC are not significant. 

6 Conclusions and Future Work 

In this paper, we gave a discussion of risk in real-life domains. Different risk 

domains are analyzed and some of the methods used specially in these domains 

are given. Then we showed how the risk estimation problem can be modeled as a 

two-class classification problem in machine learning. 

 

We argued the effectiveness of a method that maximizes accuracy, for a risk 

estimation method. We proposed an AUC-based method instead of accuracy and 

presented important features of AUC, such as insensitivity to class distribution 

and error cost, as being statistically more consistent and discriminating. Then, we 

summarized the different methods proposed so far designed to maximize AUC. 

 

Aiming to maximize AUC, we proposed a risk estimation method called 

REMARC. We have shown that for a categorical feature there is only one 

ordering that gives the maximum AUC. Then we showed the sufficient and 

necessary condition for a risk function to achieve this ordering. As a result, we 

proposed a risk function that finds the maximum possible AUC on one categorical 

feature. Aiming to maximize AUC, we handled the continuous features using the 

MAD method, as it can discretize a continuous variable. Then we used these AUC 

values as weights in computing the risk scores as weighted averages of feature 

value risks. With this simple heuristic we averaged all feature risk values in order 

to achieve maximum AUC over the whole dataset. 
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We present the characteristics of the REMARC risk prediction model and how it 

should be interpreted. REMARC’s prediction model is easy to understand and 

interpret by domain experts. 

 

After supporting the theoretical background, we compared REMARC with 26 

different algorithms. According to empirical evaluation, REMARC significantly 

outperformed 15 algorithms on an AUC basis and 13 algorithms on a time basis. 

It also outperformed all algorithms on the average AUC and 17 of them on an 

average time basis. 

 

As a future work, REMARC can be compared with other risk methods and 

methods designed to maximize AUC. In order to improve the performance of 

REMARC, ensembling methods can be employed. 

 

To conclude, a fast and highly predictive risk estimation method is proposed in 

this paper. A simple yet effective predictive model, it is understandable by domain 

experts and will be useful for the machine learning community. 
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Fig. 1. Structure of a confusion matrix. 

 

Fig. 2. ROC graph of the given toy dataset in Table 1 including the y=x line in order to show 

random performance. 
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Fig. 3. Effect of swapping the risk values of two feature values 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Relation between the slopes of two consecutive line segments in a convex ROC curve 
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Fig. 5. Visualization of the ROC points in a two-class discretization 

 

Fig. 6. Final cut-points after the first pass of convex hull algorithm. 

 

1 :REMARCTrain (trainSet[M][N]) // Includes M features and N train 
instances 
2 :   Begin  
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3 :      for i=0 to M-1 
4 :         if(isContinuous(trainSet[i])); 
5 :            cutPoints=MAD2C(trainSet[i][0..N-1]); 
6 :            numericalValuesToCatVal(cutPoints,trainSet[i]); 
7 :         risks[i]<-computeCategoricalRisk(trainSet[i][0..N-1]); 
8 :         sortInstancesByRisk(trainSet[i][0..N-1]); 
9 :         aucValues[i]<-computeAUC(trainSet[i][0..N-1]); 
10:         featureWeights([i]=aucValues[i]-0.5)*2; 
11:      end 
12:   end 

Fig. 7. Algorithm of the REMARC method’s training phase 

 

1 :REMARCTest (testInstance[M][1]) 
2 :   Begin 
3 :      for i=0 to M-1 
4 :         oneFeatureRisk= risks[i][testInstace[i][0]]; 
5 :         totalRisk+= oneFeatureRisk * featureWeights[i]; 
6 :         totalWeight+= featureWeights[i]; 
7 :      end    
8 :      return totalRisk/totalWeight; 
9:   end 

Fig. 8. Testing phase algorithm of the REMARC method. 

 

Table 1. A Toy dataset given with hypothetical scores. 

Class Label n n n p p n p p p 

Score -7 -3 0 0 4 7 8 10 11 

 

Table 2. Toy training dataset with one categorical feature. 

Class 
Label 

n n p n n p n p p n p p p 

Feature 
Value 

a a a a b b b c c c d d d 

 

Table 3. Training datasets risk values are calculated and instances are sorted in ascending order. 

Risk 0.25 0.25 0.25 0.25 0.33 0.33 0.33 0.66 0.66 0.66 1.00 1.00 1.00 
Class 

Label 
n n p n n p n p p n p p p 

Feature 
Value 

a a a a b b b c c c d d d 

 

Table 4. Negated version of the training dataset. The risk values are calculated again and instances are sorted 
in ascending order. 

Risk 0.0 0.0 0.0 0.33 0.33 0.33 0.66 0.66 0.66 0.75 0.75 0.75 0.75 
Class 

Label 
n n n n n p p n p p p n p 

Feature 
Value 

d d d c c c b b b a a a a 
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Table 5. A toy dataset for visualizing MAD in two-class problems. The name of the attribute to be discretized 
is F1. 

Class 
Value 

n n p n n p n p p n p p p 

F1 1 2 3 4 5 6 6 7 8 9 10 11 12 

 

Table 6. Properties of the datasets used in the empirical evalutations of the REMARC algorithm. 

Dataset Name # Instances 
# Continuous 
 Attributes 

#Categorical 
Attributes 

# Dataset 
 Abbreviations 

Australian 690 6 8 A 
Bupa 345 6 0 B 
Crx 653 9 6 C 
Heart (Statlog) 270 7 6 H1 
Hypothyroid 3164 7 18 H2 
Mammographic Masses 961 1 5 M 
Pima-Diabetes 768 8 0 P 
Sick-Euthyroid 3163 7 18 S1 
SPECTF 267 44 0 S2 
Wisconsin-Breast 569 30 0 W 
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Table 7. The comparison of the predictive performance of REMARC algorithm with other algorithms on AUC metric. 10 datasets are used during evaluation. Algorithms marked with ++ are 
outperformed by REMARC method with a statistically significant difference Algorithms marked with + are outperformed by REMARC on average with no significant difference. (Higher results 
better) 

Algorithms/Datasets A B C H1 H2 M P S1 S2 W Average 
REMARC 0,923 0,659 0,931 0,904 0,986 0,901 0,827 0,942 0,857 0,986 0,892 
BayesNet+ 0,920 0,540 0,928 0,901 0,989 0,899 0,818 0,959 0,825 0,986 0,876 
NaiveBayes++ 0,895 0,641 0,900 0,897 0,977 0,895 0,816 0,920 0,850 0,980 0,877 
AODE+ 0,928 0,540 0,930 0,904 0,989 0,900 0,823 0,963 0,820 0,988 0,879 
Logistic+ 0,912 0,714 0,915 0,900 0,970 0,893 0,831 0,956 0,801 0,972 0,886 
RBFNetwork++ 0,732 0,509 0,787 0,835 0,581 0,786 0,642 0,676 0,641 0,755 0,694 
IBk++ 0,801 0,634 0,798 0,743 0,766 0,799 0,648 0,752 0,592 0,947 0,748 
LWL++ 0,911 0,643 0,909 0,839 0,955 0,886 0,775 0,942 0,674 0,948 0,848 
AdaBoostM1+ 0,922 0,737 0,926 0,888 0,990 0,895 0,804 0,966 0,801 0,985 0,891 
Att.Sel.Classifier++ 0,869 0,584 0,875 0,801 0,952 0,867 0,786 0,914 0,624 0,938 0,821 
Bagging+ 0,918 0,755 0,910 0,872 0,980 0,888 0,822 0,972 0,795 0,977 0,889 
Class.ViaRegr.+ 0,918 0,727 0,918 0,882 0,990 0,896 0,827 0,986 0,763 0,989 0,890 
END++ 0,865 0,648 0,877 0,777 0,940 0,868 0,758 0,939 0,593 0,939 0,821 
FilteredClassifier++ 0,899 0,540 0,893 0,836 0,958 0,863 0,794 0,949 0,683 0,939 0,835 
MultiBoostAB+ 0,908 0,673 0,908 0,865 0,988 0,886 0,790 0,955 0,709 0,981 0,866 
MultiC.Classifier+ 0,912 0,714 0,915 0,900 0,970 0,893 0,831 0,956 0,801 0,972 0,886 
OrdinalC.Classifier++ 0,865 0,648 0,877 0,777 0,940 0,868 0,758 0,939 0,593 0,939 0,821 
ThresholdSelector+ 0,904 0,699 0,916 0,898 0,969 0,892 0,826 0,956 0,686 0,969 0,871 
VFI++ 0,913 0,562 0,910 0,871 0,782 0,836 0,550 0,755 0,853 0,946 0,798 
DecisionTable+ 0,917 0,574 0,910 0,883 0,989 0,876 0,801 0,971 0,678 0,972 0,857 
PART++ 0,867 0,645 0,853 0,785 0,966 0,882 0,778 0,954 0,652 0,937 0,832 
ADTree+ 0,917 0,705 0,925 0,880 0,988 0,887 0,802 0,979 0,803 0,984 0,887 
DecisionStump++ 0,833 0,572 0,848 0,688 0,951 0,788 0,696 0,936 0,623 0,886 0,782 
FT++ 0,898 0,721 0,853 0,824 0,943 0,874 0,751 0,907 0,752 0,984 0,851 
J48 (C4.5) ++ 0,865 0,648 0,877 0,777 0,940 0,868 0,758 0,939 0,593 0,939 0,821 
SVM-RBF++ 0.628 0.609 0.602 0.509 0.952 0.872 0.518 0.735 0.466 0.760 0.655 
REPTree++ 0,879 0,666 0,871 0,824 0,963 0,846 0,768 0,957 0,631 0,924 0,833 
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Table 8. The comparison of the average running time performance of REMARC algorithm with other algorithms (in ms) . 10 datasets are used during evaluation. Algorithms marked with ++ symbol 
are outperformed by REMARC method on running time basis with a statistically significant difference. Algorithms marked with -- symbol outperformed REMARC method on running time basis 
with a statistically significant difference. + marked algorithms are outperformed by REMARC on average and – marked algorithms outperform REMARC on average with no significant difference. 
(Lower results better) 

Algorithms/Datasets A B C H1 H2 M P S1 S2 W Average 
REMARC 106 37 94 49 1131 128 164 1117 191 470 349 
BayesNet-- 49 17 52 28 425 54 60 393 81 244 140 
NaiveBayes-- 30 11 29 18 164 30 37 154 61 102 64 
AODE-- 53 16 52 27 352 40 56 350 113 280 134 
Logistic++ 1014 74 1215 124 3720 261 257 3667 472 935 1174 
RBFNetwork++ 404 136 348 148 1057 367 280 1149 712 620 522 
Ibk+ 172 33 169 35 7365 233 153 7465 124 222 1597 
LWL+ 2094 376 1940 412 52652 2360 2652 52887 1414 6919 12370 
AdaBoostM1++ 302 132 296 156 1584 302 394 1579 475 1135 635 
Att.Sel.Classifier+ 173 31 159 99 761 201 162 867 419 496 337 
Bagging++ 740 295 727 295 4484 636 961 6904 1070 1718 1783 
Class.ViaRegr. ++ 5340 1355 5573 1143 9943 3912 3593 15598 2218 2662 5134 
END+ 236 119 218 126 880 219 254 1563 333 460 441 
FilteredClassifier- 119 16 107 48 462 86 116 858 155 265 223 
MultiBoostAB++ 318 133 297 164 1614 317 388 1622 477 1140 647 
MultiC.Classifier++ 991 79 1175 125 3698 239 226 3656 473 963 1163 
OrdinalC.Classifier 162 79 150 83 681 177 197 1380 255 378 354 
ThresholdSelector++ 1695 137 2032 227 6442 429 387 6346 1118 2028 2084 
VFI-- 16 5 17 9 104 12 14 111 23 31 34 
DecisionTable++ 1582 156 1699 434 10824 411 635 11498 1183 2526 3095 
PART++ 416 102 511 193 865 230 248 2023 684 473 574 
ADTree++ 689 276 645 469 3149 579 973 3536 1562 2717 1459 
DecisionStump-- 24 9 23 11 113 17 30 116 43 105 49 
FT++ 4705 847 4879 927 14834 2856 2230 30959 1796 2324 6636 
J48 (C4.5)- 160 75 153 81 635 147 181 1283 256 378 335 
REPTree++ 77 33 80 33 395 105 136 569 124 185 174 

 


