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Abstract: Risks exist in many different domains; medicalgioses, financial markets, fraud
detection and insurance policies are some examyemus risk measures and risk estimation
systems have hitherto been proposed and this paggests a new risk estimation method. Risk
estimation by maximizing the area under a recedperating characteristics (ROC) curve
(REMARC) defines risk estimation as a ranking peatl Since the area under an ROC curve
(AUC) is related to measuring the quality of rakiREMARC aims to maximize the AUC value
on a single feature basis to obtain the best rgniassible on each feature. For a given categorical
feature, we prove a sufficient condition that amydtion must satisfy to achieve the maximum
AUC. Continuous features are also discretized method that uses AUC as a metric. Then, a
heuristic is used to extend this maximization tdedtures of a dataset. REMARC can handle
missing data, binary classes and continuous andnabfeature values. The REMARC method
does not only estimate a single risk value, bui atelyzes each feature and provides valuable
information to domain experts for decision makiREMARC's performance is evaluated with
many datasets in the UCI repository by using différstate-of-the-art algorithms such as Support
Vector Machines, naive Bayes, decision trees andting methods. Evaluations of the AUC
metric show REMARC achieves predictive performasigeificantly better compared with other
machine learning classification methods and is faster than most of them.
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1 Introduction

Accurate prediction of risk is essential for lifevoiding or being aware of risks
in domains such as finance or medicine can saveynand lives, respectively.
The main motivation behind the research on risldigt®n systems is to improve

system performance to avoid unwanted events ortivegaonsequences.

This paper proposes a new risk measure and a ssg@&machine learning
algorithm to estimate the values of this measuhe. dlgorithm, learning from
training instances, develops a model of the dorbased on receiver operating
characteristics (ROC) analysis, so that the ard@muROC curves (AUC) of
ordering the instances (Hanley and McNeil 1982) el maximized; hence, the
algorithm is called Risk Estimation by MaximizingetArea under ROC Curve
(REMARC).

Specific risk estimation methods have been develdpefinance (Bradley and
Taqqu 2003), medicine (Conrey al. 2003; D'Agostincet al. 2008) and
insurance (Dowd and Blake 2006), to name some elesmmBome of these
methods are dependent on statistical models wbiteesare based on machine
learning algorithms. The machine learning algorghare usually classification
algorithms that can associate a certainty factdn their classification. The

certainty factor for a predicted unwanted casekemn as the value of risk.

The word “risk” is generally taken to mean “an umed situation” (Giddens
1999).Although these unwanted cases may be severe |ikedinood of

occurrence is usually rare. Therefore, datasetsuoin domains usually are
unbalanced and the costs of misclassification atsymmetric. Classification
algorithms that aim to maximize accuracy are naable for such unbalanced
datasets (Sebag al 2004; Taxet al 2006; Fawcett 2006). Instead, an alternative
metric called AUC, proposed by Bradley (1997) his evaluation metric to
maximize. AUC has important features such as ingeihgto class distribution

and cost distributions (Bradley 1997; Huang andyl2005; Fawcett 2006),which
make it suitable for risk domains.



In risk domains, representing the risk score asaavalue between 0 and 1 may
not be sufficient, and even misleading; relativ@igtering instances in terms of
risk values may be much more informative. For eXampstances can be located
on a single dimension, where the safest casemava@side and the riskiest cases
are on the other side. Since it has been showndoel and McNeil (1982) that
AUC is able to qualify ranking instances, maximgiUC also leads to the best
ranking. Recent research on maximizing AUC by €bhl. (2008) and
Rakotomamonjy (2004) also shows the importancauiing instances.

The main contributions of the REMARC algorithm d@shown in three

different ways. First, we show the conditions & gsoring function must possess
in order to achieve maximum AUC for a single featdataset case. Second, the
maximization of AUC is extended over the whole datdy using a simple
heuristic, which also depends on AUC’s metric. hashe human readable model
formed by REMARC helps domain experts by indicatiittat features and how
their particular values affect the risks.

In the next section detailed information aboutsiskd risk domains are given.
Section 3 covers ROC, AUC and research on AUC mizaimon. In Section 4,
the theoretical background of the REMARC method iamalementation details
are given. Section 5 presents the empirical evialnatf real-life datasets. Finally,

Section 6 concludes with conclusions and futurekwor

2 Risks

Risk has always been a normal occurrence. Risksasia complication from
surgery, a fraudulent financial transaction, a fgaing into financial distress and
an e-mail being spam are all part of today’s woBdldens (1999) claims that the
ideas of risk and responsibility are closely linkea risk society, and suggests
that legal theorists and practitioners should atsacern themselves with the idea
and reality of risk. The word “risk” is commonlyedsin daily life, because of its

popularity in the media, however, a formal defmitiis needed.



2.1 Definitions of Risk

Hansson (2007) gives five definitions of risk commtyoused in different
disciplines. Hansson’s third definition is the megitable for defining the risk
used in this work: “The probability that an unwah&ent may or may not
occur”. For example, the risk of a credit card saotion being fraudulent is 17%.

2.2 Risk Domains

Risk implies an unwanted situation. In medicineytaldy and morbidity are two
unwanted situations. In finance, money loss andiogoicy are examples. Since
the consequences of these situations are crutiafdier to avoid them extensive
research continues on this subject. As an exantipdepossible to find books
written on specific domains such as process managesystems risk estimation
(Cameron and Raman 2005).

According to Shishkin and Savkov (2009) some ofrttoesst popular commercial
risk analysis tools for financial domains are “RWwfatch” (www.riskwatch.com,
USA) and “Commercial Risk Analysis and Managemestiddology-

CRAMM” (www.cramm.com). Other than the commerc@dls, concepts such as
Value-At-Risk (VAR) and other models can be foundBradley and Taqqu
(2003) and Huang 2010. Stoyanal. (2008) provide a survey on stochastic
models for risk estimations. Recently, Ferrari &aderlini (2007) proposed a new
risk estimation method that claims a better pertoroe than VAR.

In medicine, a risk scoring system based on lagrstyression for cardiovascular
surgery is proposed by Roquetsal. (2003). Other scoring systems for the same
domain also exist (Conragt al. 2003; Hannaet al. 2006). A recent study by
D'Agostinoet al. (2008) shows that some of these scoring systemm€as

regression methods, which is proposed by Cox (1972)

2.3 Risk Estimation in Machine Learning

Risk estimation is not yet a major subarea of nrexzlearning literature.
Classification algorithms, which are able to outing confidence or probability
of classification results, can be used to approtemiak estimation.



In a risk estimation system, a risk function thegigns higher values to risky
instances than safer instances is crucial. In augystem, risk will be computed as
a real value between 0 and 1, where 1 indicateddfigite risk while O represents
the safest situation. However, the absolute vafuhis risk score is also very
important for the user. Assumigk() is a function that returns a real number

between 0 and 1 as the estimation of the risk. Aeratisk functionyisk’(),
defined asy/risk() , also returns a value between 0 and 1. Both sktlignctions

will rank the instances in the same order, althothgiir absolute risk values are

different.

On any dataset gathered from a risk domain, twssela should be determined in
order to distinguish a risky situation from a safe. In this work, we will define
these class labels pgpositive, unwanted class) andnegative, safe class).

For example, in a loan dataset, the class lpledicates a default, while label

indicates that the loan amount has been paid back.

Machine learning techniques have been appliedfterdnt domains in order to
predict risk. In medicine, Colombet al. (2000) evaluated three different machine
learning algorithms in order to predict cardiovdacgurgery risk. In Biagiolket

al. (2006) Bayesian models were used to predict riskeronary artery surgery
operations and in Gambergsaral. (2000) machine learning results on a heart
database were evaluated. Financial domains hawvdaken advantage of machine
learning algorithms. Galindo and Tamayo (2000) eated machine learning and
statistical methods in order predict credit rigkisn (2003) proposed a financial
time series prediction system by using a suppatovanachine (SVM) and Min
and Lee (2005) tried to predict bankruptcy riskuising optimal kernel functions
for SVM. However, to the best of our knowledgeisk estimation system that
aims to maximize the AUC metric has never beengseg. The ROC curves and
AUC metric will be examined in detail before expiag the REMARC method.
The next section elaborates on the features of RRICAUC and their

appropriateness for this work.



3 ROC, AUC and AUC maximization

Since their application to machine learning, RO&péis and the AUC metric
have become popular; AUC is used in evaluating maclearning algorithms and
as a learning criterion. We explain the propeitied make AUC a better metric

than accuracy and discuss the existing researé&uU@ maximization.

3.1 Receiver Operating Characteristics (ROC)

The first application of ROC graphs dates back trl/War II, where they were
used to analyze radar signals (Krzanowski & Hai®92. Since then, they have
been used in areas such as signal detection andine(Green and Swets 1966;
Zweig and Campbell 1993; Pepe 2003). The firstiappbn to machine learning
is done by Spackman (1989). According to Fawcetfnition, the ROC graph is
a tool that can be used to visualize, organizesahett classifiers based on their
performance (Fawcett 2006). It has become a popeldormance measure in the
machine learning community after it has been redlthat accuracy is often a
poor metric to evaluate classifier performance yBsb and Fawcett 1997; Provost
et al. 1998; Huang and Ling 2005).

The ROC literature is more established to deal bimfary classification (two
classes) problems than multi-class ones. At theoétioe classification phase,
some classifiers simply map each instance to & ¢! (discrete output). Some
classifiers are able to estimate the probabilitginstance belonging to a
specific class such as naive Bayes or neural nksjoontinuous valued output,
also called score). Classifiers produce a disaatput represented by only one
point in the ROC space, since only one confusiotrime produced from their
classification output. Continuous-output-producitassifiers can have more than
one confusion matrix by applying different threstsoto predict class
membership. All instances with a score greater tharthreshold are predicted as
to bep class and all others are predicted as to blass. Therefore, for each
threshold value, a separate confusion matrix iaiobt. The number of confusion
matrices is equal to the number of ROC points oR@C graph. With the

method proposed by Domingos (1999), it is posdiblebtain ROC curves even

for algorithms that are unable to produce scores.



3.1.1 ROC Space

ROC space is a two dimensional space with a rah@@@ 1.1) on both axes. In
ROC space the y-axis represents the true posaiee(fPR of a classification

output and the x-axis represents the false pogitite FPR).

To calculateTPRandFPR values, the definitions of the elements in thefesion
matrix must be given. The structure of a confusiatrix is shown in Fig. 1. True
positives TP) and false positived=P) are the most important elements of the
confusion matrix for ROC graphs. For each threskalde, TP is equal to the
number of positive instances (those that have biessified correctly) anBP is
equal to the number of negative instances (thcgehtdive been misclassified).

TPRandFPRvalues are calculated by using Eq. 1. In this 8go#& is the
number of total negative instances &hi$ the number of total positive instances.

TPR=TP/P (1)

FPR=FP/F

3.1.2 Formation of ROC Curve

As mentioned above, the classifiers producing cotus output can form a curve
since they are represented by more than one potheiROC graph. To draw the
ROC graph, different threshold values are seleatetidifferent confusion

matrices are formed.

By varying the threshold betweem and +oo, an infinite number of ROC points
can be produced for a given classification outplaiwever, this operation is
computationally costly and it is possible to fotme tROC curve more efficiently
with other approaches.

As proposed by Fawcett (2006), in order to caleutae ROC curve efficiently,
classification scores are sorted in an increasmdgrdirst. Starting fromeo, each
distinct score element is taken as a threshold; aRRFPR values are calculated
using Eq. 1.



As an example, assume that the score values toingtances and actual class
labels for a toy dataset are given in Table 1. RB¥C curve for this toy dataset is
shown in Fig. 2. In this figure, each ROC poingigen with the threshold value
used to calculate it. In a dataset wiHistinct classifier scores, there are
St1thresholds includinges and the same number of ROC points. Since there are
eight distinct score values in this toy datasedralare nine ROC points. With this
simple method it is possible to calculate the RQfve in linear time.

It is possible to divide the ROC space into thiesggans: the region aboyex

line, the area below=x line and the points on tlyex line. The points og=x line
represent random performance. As an example, sifid@ghat has a point on
(0.6,0.6) guesses the positive class 60% corrdubhyever it also has a 60% false
positive rate. The points above ¥ line are those belonging to the classifiers
that have an acceptable trade-off between theipy®sihd negative classes;
similarly, the points below thg=x line correspond to an unacceptable
classification performance. A classifier's ROC pgdielow the diagonal line can
be negated by simply inverting the decision créexi the classifier, replacing all
p class labels witin class labels and vice versa. According to Flach\&n
(2003), classifiers below the diagonal have valaatlormation, but they are not
able to use it.

3.2 Area under the ROC Curve (AUC)

ROC graphs are useful to visualize the performari@eclassifier but a scalar
value to compare classifiers is needed. In thealitee, Bradley proposes the area
under the ROC curve as a performance measure (186@9rding to the AUC
measure, the classifier with a higher AUC valudqrens better in general. A
classifier can be outperformed by another clagsifisome regions of ROC
space, for some specific threshold values, eveungimohe classifier, which has

larger AUC, is better than the other.

The ROC graph space is a one-unit square. The stiglssible AUC value is
1.0, which represents the perfect classificatiarROC graphs a 0.5 AUC value



means random guessing has occurred and values Dedoave not realistic as

they can be negated by changing the decision eritéithe classifier.

The AUC value of a classifier is equal to the ploliy that the classifier will

rank a randomly chosen positive instance highar theandomly chosen negative
instance. Hanley and McNeil (1982) show that thiequal to the Wilcoxon test
of ranks.

3.3 Why AUC is More Proper than Accuracy

There are several reasons why we chose AUC asrarigacriterion in this work.
The first reason is the independence of the detibiceshold of the AUC metric.
Since the risk estimation methods are not actaaskdiers, unless a threshold is
fixed it is not possible to calculate an accuraalpe. As mentioned in Section
2.3, the first task of a risk estimation methodasking instances correctly. Since
AUC has the ability to measure the quality of raugkiit is better than an accuracy
metric on this basis.

Another reason regards the discrimination poweghefaccuracy and AUC
metrics. Bradley (1997) was the first author tostios the applicability of
accuracy metrics in classifier algorithms and twremend the use of AUC
instead. Provostt al. (1998) also questioned the applicability of accynaetrics
in classification algorithms and suggested ROCyaishs a powerful alternate
tool. Rosset (2004) claimed that even if the geébimaximize accuracy, AUC
may be better than empirical error for discrimingtbetween models. The formal
proof of the superiority that AUC has over accurachater given by Huang and
Ling (2005). In their work, the authors showed tABIC is a statistically
consistent and more discriminating metric than emcyr These works clearly
show the discriminatory power of the AUC metric.

Skewed (unbalanced) datasets is another reasaoafey AUC as a metric. This

situation occurs when the difference between gaisss is high. Risk areas such
as medicine (Mac Namest al. 2002; Taxet al. 2006) or fraud detection (Fawcett
and Provost 1997) are examples of skewed dat&smatexample, a classifier that

predicts all instances as negative even thouglwafehe instances achieve very
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high accuracies is misleading (Rakotomamonjy 204addition, class
distribution can change over time. For exampl@ d financial crisis a large
number of banks claim bankruptcy this can changssaflistribution drastically.
In order to solve such problems, AUC, which is msBve to class distributions,
is preferred.

Lastly, misclassification costs cannot be deterhifog most risk domains. As
noted above, skewed datasets are common in realdifa domain with
unbalanced class distribution, when the true mesdi@ation cost is higher than
implied by the distribution of training set examgléhis situation becomes
problematic (Maloof 2003). Since AUC is also ingawms to misclassification
cost (Provost and Fawcett 2001) it is preferrethis work.

3.4 AUC Maximization

Most classification algorithms are designed to mmaz@ accuracy (or error rate).
Since accuracy is a classification performancegai algorithms that maximize it
give better predictive performance. However, beeanfthe abovementioned
drawbacks to the accuracy metric for some doma&b€; has become more
popular. It has been shown that maximizing accutm®s not lead to maximizing
AUC (Cortes and Mohri 2003; Yaat al.2003). As a result, new algorithms

maximizing AUC have been proposed.

Some approximation methods to maximize the globaCAsalue have been
proposed by researchers (Moeemrl. 2002; Yaret al. 2003; Herschtal and
Raskutti 2004). Feret al. (2002) proposed a method to locally optimize AWC |
decision tree learning, and Cortes and Mohri (2@@8posed boosted decision
stumps. To maximize AUC in rule learning, seveekralgorithms have been
proposed (Bostrom 2005; Prati and Flach 2004; Fev2€®1). A nonparametric
linear classifier based on the local maximizati6WOC was proposed by
Marroccoet al. (2008). A ROC-based genetic learning algorithm leeen
proposed by Sebagt al. (2004). Marroccet al. (2006) used linear combinations
of dichotomizers for the same purpose. Freeindl. (2003) gave a boosting
algorithm combining multiple rankings. Cortes andivi (2003) showed that this
approach also aims to maximize AUC. A method by &aal. (2006) that weighs

11



features linearly by optimizing AUC has been pragzband applied to the
detection of interstitial lung disease. Atan&ral. (2006) advocate an AUC-
maximizing algorithm with linear programming. Ra&otamonjy (2004)
suggested rank optimizing kernels for SVMs to maze"AUC. Ling and Zhang
(2002) compare AUC-based Tree-Augmented Naive B@yghl) and error-
based TAN algorithms; the AUC-based algorithmsstu@wvn to produce more
accurate rankings. More recently, Calders and 2awasz (2007) proposed a
polynomial approximation of AUC to optimize it effently. Linear combinations
of classifiers are used to maximize AUC in bioneesgores fusion in Toét al.
(2008). Han and Zhao (2010) propose a linear ¢lasdiased on active learning,
which maximizes AUC.

4 REMARC

REMARC is a risk estimation method designed to maze the AUC metric. The
REMARC algorithm reduces the problem of findingsk function for the whole
set of features into finding a risk function fosiagle categorical feature, and then
combines these functions to form one risk functiouering all features. We will
show here that it is possible to determine riskcfioms that achieves the
maximum AUC for a single categorical feature. REMARiscretizes the
numerical features by an algorithm called MAD, mregd by Kurtcephe and
Guvenir (2010). The MAD method discretizes a cantirs feature in a way that

results in a categorical feature by maximizing Alu#C.

For a given query, REMARC outputs a real value the range of [0,1] as the
estimated risk of being the unwanted state. Thislue is roughly the probability
that the query instance will be in tpeclass. It is only a rough estimate of
probability, since it is very likely that no othesstance with exactly the same
feature values has been observed in the training ke REMARC algorithm
determines this estimated probability by computheweighted average of
probabilities computed on single features. The hedd a feature is a linear
function of its AUC value. calculated by the risitimates for each instance in the
training set. A higher value of AUC for a featusean indication of its higher

relevance in determining the class label.
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In the following sections we will show how a rigkniction can be defined for a
single categorical feature. Since, the REMARC atbor requires the features to
be categorical, we will propose a method to disoeet continuous feature so that
the AUC of the new categorical feature will be thaximum.

4.1 Single Categorical Feature Case

A categorical feature has a finite set of choitesV = {v1, », ...v, } be a
categorical feature angla categorical value that featWwecan take. The datadet
is a set of instances represented by a vectowvafue and class label ag,e>,
wherevJV andcl] {p,n}.

Given a datasdd with a single categorical feature whose valuass€ét= {v,
Vi,..., Vn}, @ risk functionr: V - [0,1] can be defined to rank the value¥in
According to this risk function, a valwecomes after a valug if and only if

r(vi) >r(vj); hence r defines a partial ordering on the\sek pair of consecutive
valuesv; andvi;1 defines a ROC point;®n the ROC space. The coordinates of
the point Rare FPR, TPR).

Theorem 1. Let D be a dataset with a single categorical featurese/value set is
V ={vo, V1, ...,Vn}. Letr: V - [0,1] be the risk function that orders the valoés
V, asvi;1 comes aftev; if r(vi.1) >r(v), for all values of 8i<n. If the values of the
risk function for two consecutive valugsandvi.; are swapped, then the only
change in the ROC curve is that the ROC point spwading to the; andvi.1
values moves to a new location so that the sloptsedine segments adjacent to
that ROC point are swapped.

Proof: The slope of the line segment between two consecROC points Rand

Ri+1 iS
_TPR-TPR,
FPR -FPR., |

SinceTPR :T—IE and FPR :% ,

13
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Further replacingdR =R +TR,,and FR =N, + NP

i+17

PN

_NFR

Similarly, the slope of the line segment connectimg ROC points between:R
and Riz is
N P
S :Fﬁ :
When the ranking of values andvi.; are changed, only the following changes
take place:
Pu=R, PR,
N =N;, N'=N,,,
[Jj P;=PandN'/=N;,.
j#i i+
With this change, only the ROC point® FPR, TPR) is replaced with a new
ROC point R/ at FPR’i, TPR’). The slopes of the new line segments adjoining

R’;are
s‘i—NP ands',, Np”l.
PN PN,

Replacing the new count values with the old ones,

S, =s, ands|, =s are obtained. ]

For example, consider the dataset given below:

D={(a,n), (b,p), (b,n), (b,n), (b,n), (c,p), (c.i.Nn), (c.n), (d.p), (d,p), (d,n)},
whereV = {a, b, c, d}. If a risk functiom orders the values &fas r(a) < r(b) <
r(c) <r(d), the ROC curve shown in Fig. 3a) wil bbtained. On the other hand,
if the rankings of values b and c are swappedRB€E curve shown in Fig. 3b
will be obtained. A similar technique was usedieably earlier by Flach and Wu
(2003) to create better prediction models for dleess

Theorem 1 shows how concavities in a ROC curvebearemoved, resulting in a

larger AUC. The next question is how to form thexex ROC curve. The

14



following theorem sets the necessary and suffiaendition for risk functions to

satisfy so that their ROC curves are convex.

Theorem 2: Let D be a dataset with a single categorical featuretthas values
from the seV = {vo, w1, ..., n}. Let r: V - [0,1] be the risk function that orders
the values oV, asvi+1 comes aftey; if r(vic1) >r(v;), for all values of 8i<n. In
order for the ROC curve of the orderingbtp be convex, the following
condition must be satisfied:

. P, _P
— > i
Ll N

O<i<n Ni+1

)

whereP; is the number gb-labeled instances with valwg andN; is the number
of n-labeled instances with valwe

Proof: In order for the ROC curve to be convex, the sdogieall line segments
connecting consecutive ROC points starting fromREC point (1,1) must be

non-decreasing.

Therefore, the condition for a convex ROC curve is

O<i<n

mi TPR.-TPR,, | TPR-TPR,

By definition, TPR= :

|3

Further, due to the ordering of valud®=P +TR,, .

TPR TPR 1 P
Hence, TPR-TPR,, =——— —* =—(P+TR,-TR,;)= =
R R 1 P P P( i i+1 l) P
o _ N _P. _N.,
Similarly, FPR-FPR,, _WI’ TPR,,-TPR,, —'? andFPR,,-FPR,, = N :

Therefore, the inequality in EQ.3 can be rewritisn

15



fj PalP, RIP
oz N /N~ NJ/N

. . P P
Finally, — > m
0|;|<In Ni+1 N

Therefore, according to Theorem 2, any risk functithat assigns a higher value
P P . :
to vi.1 than tov, when—* > WI , for all values oW, will result in a convex ROC
i+1 i

will result in a convex

e |_'U

curve. For example, a risk function definedr§g) =

ROC curve.

Theorem 3. LetD be a dataset with a single categorical featuresevalue set is
V ={vo, W, ..., Vn}. Ignoring the ineffective ROC points that lie arine, there

exists exactly one convex ROC curve.

Proof: Since there exists only one possible orderingaddes ofV that satisfies
the condition given in Theorem 1, there exists amg convex ROC curve. =

The general assumptions for risk estimation problane given in Eq. 4:

[1i P=0 , [Jj N =0 4)

i
0<i<n 0<i<n

n-1 n-1
P=>PR>0 , N=> N >0
0

i
0

Although the dataset is guaranteed to have at dewsinstance with class lalgel
and one instance with labe] it is possible that for some values of; may be 0.
In such cases the risk function defined above hailte undefined values. In order

to avoid such problems, the risk can be defined as

)= ©

N

16



Lemmal. [ Ra > R iff R 2ﬂ
O<i<n I:?+1 + Ni+l R + Ni Ni+1 Ni
T P., P :
PrOOf ) If |:|I I 2 : ! then |:|I I:?+l(|:? + NI) 2 R(Rﬂ + Ni+1)’

Osi<n I:?+1 + Ni+1 R + NI O<i<n

and [ ] L") 23
0<i<n Ni+1 N,

The same arithmetic operations can be appliedeiméatierse direction to show
that

it [ Pesf then—Fu > _F
Os<i<n Ni+1 Ni I:?+1 + Ni+1 R + Ni

Since, if bothP; andN; are 0 for somg the corresponding valugcan be

completely removed from the datage}j P + N, >0, and this risk function is

0<i<n

defined for all values af

The risk functionr(vi):Pi/(Pi + Ni) has another added benefit in that it is simply

the probability of thep label among all instances of valgewhich is easily

interpretable.

Corollary: For a datasdd with a single categorical feature whose valudssét=

{Vo, V1, ..., Vu}, the risk function defined as(v,)=P/(P + N,) gives the maximum

possible AUC.

Therefore, the REMARC algorithm useg;)=P/(P + N,) as the risk function for

categorical features.

4.1.1 The Effect of the Class Label Choice on a Feature’s AUC

In order to calculate the andN values one of the classes should be labelgd as
and the other class asbut one can question the effect this choice mathe

AUC value. It is possible to show that the AUC \eabf a categorical feature is
independent from the choice of class labels bygigie value from the Wilcoxon-
Mann-Whitney statistics.
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In EQ. 6, the AUC formula based on the Wilcoxon-MaiNhitney statistics is
given.P is the number of instances that haveplwass label antll represents the
number ofn-class-labeled instances. The Bgtrepresents the-labeled instances
andD, represents the-labeled instances. An element belongin@gset, which

iS Dpi, is the ranking of thé" instance, which is labelgd Inversely, an element

belonging toD, set, such aBy,; is the ranking of thé" instance, which is labeled

n.
P N 6
AUC = Zizlzjzlf(Dpi’Dni) ( )
PN
Dpi > Dni :1
f:1D, <D, =0
D, =D, =05

The dividend part of the AUC formula in Eq. 6 coutlits number op-labeled
instances for each element of gset whose ranking is higher than any element
of theD, set. Then, AUC is calculated by dividing this suation by the
multiplication of thep-labeled ana-labeled elements.

The effect of the class label choice on the AUCuat@on should be investigated.
First of all, it is straightforward that the divispart of the AUC formula is

independent of class choice. Then, assume thaisthecorer, = 5 PiN is used

on theD dataset an®, andD, sets are formed. Let be the number of-labeled
instances whose ranking is lower thanithelement of thd, set and let; be the
score assigned to this element. When the classesapped, the new risk value
riis equal to 1r. With this property all instance scores are nafjatowever,
negating scores does not change the relative rgiduninverses it. So, the AUC
formula in Eq. 6, which calculates AUC depending lmaianking of the
instances, is independent of the class-label adetishen the proper risk scoring
IS used.
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4.1.2 An Example Toy Dataset

Assume that a toy training dataset with a singlegmateal feature is given in
Table 2. In order to calculate the AUC value of fhasticular feature, risk values
are needed. The risk values are calculated byrthgoged risk function. The
sorted version of the dataset according to theassknates is given in Table 3.
The AUC value of this feature is calculated by gdtiy. 2. TheP value is 7 and

theN value is 6. The AUC valuegsj"—z = 082. In order to calculate this AUC

value, for eaclp-labeled instance atl-labeled instances whose risk (ranking) is
smaller or equal should be counted. When the tddxeds are swapped the risks

are also swapped. The sorted version of the swappeathtaset is given in Table
4. Since the relative ranking of the instances dm¢shange the new AUC value

is also% =082.
6*7

4.2 Handling Continuous Features

Having found the necessary and sufficient conditionghe risk function for a
categorical feature to result in the maximum pdesJC, the next problem is to
determine a mechanism for handling the continueatufes. An obvious and
trivial risk function maps any real value seenha training set with the class
valuep to 1 and any real value with the class value 0. This risk function will
result in the maximum possible value for AUC, whishii0. However, such a risk
function will over fit the training data, and wile undefined for unseen values of
the feature, which are very likely to be seen inghery instance. So, our first
requirement for a risk function for a continuouattee is that it must be defined
for all possible values of that continuous featéyetraightforward solution to

this requirement is to discretize the continuoaguee by grouping all consecutive
values with the same class value to a single categoalue; the cut off points
can be set to the middle point between feature sadfidiffering class labels. The
risk function, then, can be defined using the fiskction given in Eq. 5 for
categorical features. Although this would result nis& function that is defined
for all values of a continuous function, it woutdlsuffer from the over fitting
problem. In order to overcome this problem, the F¥R algorithm makes the

following assumption:
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Assumption 1: The risk values are either non-increasing or decreasing for the

increasing values of a continuous feature.

Although there exist some features in real-world domthat do not satisfy this
assumption, in the datasets we examined this asgmgtsatisfied in general.

This assumption is also consistent with the inteégpiens of the values of
continuous features in many real-world applicatidfta. example, in a medical
domain, a high value of fasting blood glucose isnalication for a high risk of
diabetes. On the other hand, low fasting blood glee®san indication of a risk
for another heath problem, called hypoglycemia.

4.2.1 The MAD Method

The REMARC algorithm requires all features to beegarical. Therefore, the
continuous features in a dataset need to be catedoi he aim of a discretization
method is to find the proper cut-points in ordecabegorize a given continuous
feature. After the discretization process a comtirsufeature is treated as a

discrete feature whose number of intervals is knowthe continuous.

The MAD method is designed to maximize the AUC valyetecking the
ranking quality of values of a continuous featdree MAD algorithm given in
Kurtcephe and Guvenir (2010) is defined for mulisd datasets. A special
version of the MAD method, called MAD2C and defined tivo-class problems,
is used in REMARC.

In order to measure the ranking quality of a cardurs feature, the instances are
sorted in ascending order. Sorting is essentiadliatiscretization methods in
order to produce unambiguous intervals. After thérsp operation, feature
values are used as hypothetical score values @@ graph of the feature is
drawn. The AUC of the ROC curve shows the overalliraniuality of the
continuous feature. In order to obtain the maxinAMdC value, only the points

on the convex hull must be selected. The minimumber of points that form the
convex hull is found by eliminating the points tlsatise concavities on the graph.

In each pass, the MAD method compares the slopée iarter of the creation of
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the hypothetical lines, finds the junction pointatfpoints) that cause concavities
and eliminates them. This process is repeated thetie is no concavity on the
graph. The points left on the graph are the cutsopivhich will be used to
discretize the feature.

It has been proven that the MAD method finds thepmunts and the AUC value
of the feature independently from the class chdtds.shown that the cut-points
found by MAD never separate two consecutive instantése same class. This is
an important property, as it shows that a discatitn method works properly.
The implementation details, formal proofs and emairevaluation of MAD can
be found in Kurtcephe and Guvenir (2010).

4.2.2 A Toy Dataset Discretization Example

It is possible to visualize the discretization s by using the MAD method. A
toy dataset for the discretization is given in Eabl After the sorting operation,
the ROC points are formed. This ROC graph is giveffig. 5. Since the risk
values are either non-increasing or non-decredsinthe increasing values of a
continuous feature, two ROC graphs are formed. Adeaseen in Fig. 5 one of
these graphs is below the diagonal line since #heisiincreasing with increasing

values of the continuous feature.

The first pass of the MAD method is shown in FigAB.points below or on the
diagonal are ignored since they have no positifecebn the maximization of
AUC. Then the points causing concavities are elat@d. MAD converged to the
convex hull in one pass for this example. The oleft on the graphs are the

discretization cut-points.

4.3 REMARC Algorithm

The training phase of the REMARC algorithm is giwerfig. 7. In the training
phase all continuous features are discretizedrdardo discretize continuous
features, MAD2C, which is shown on the fifth line adF7, is used. Risk values
are calculated for each value of a given categbfieedure (discretized continuous
features are included). In this step, the risk fiomcdefined in Eq. 5 is used in
order to obtain the optimal ranking for categorieatures. Then, training
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instances are sorted according to the risk vala&silated in the previous step.
Since the risk function used by REMARC always resinta convex ROC curve,
the AUC is always equal to or greater than 0.5. Theeethe REMARC
algorithm learns a weight\vior a featurd; as

AUC,-05 (7)
e

The ROC curve of an irrelevant feature is simptliagonal line from (0,0) to

(1,1), with AUC = 05. The weight function in Eq. 7 assigns 0 to suohlevant
features in order to eliminate them. The risk valaed weights of the features are
stored for the testing phase.

The testing phase of the REMARC method is stragghtérd, as for each feature;
the risk value corresponding to the value of tlaguee in the test instance is used.
Then the risk of this feature is weighted by it9ghé which is calculated in the
training phase. The computation of the risk fouarg instance q is given in Eq.
8. The maximization of AUC for whole dataset ishaltenging problem. Cohen

et al. (1998) showed that the problem of finding tindering that agrees best with
a learned preference function is NP-Complete. Weaighting mechanism is used
as a simple heuristic in order to extend this maation over the whole feature

set.

sz OP(play) (8)
risk (q) = — Sw

f

{Z(AUCf -05) gs is known
Wf =

0 g; ismissing
where P(p|qg;)is the probability ofj beingp-labeled, given that
the value of featurein q is gr, and w; is the weight of the feature

f, calculated by using Eq. 7

Finally, in order to obtain the weighted averadkrisk and weight values are
summed and final risk is calculated by dividing thenulative.
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The time complexity of the MAD algorithm is gives ®(?), wheren is the
number of training instances. After discretizing titumerical features the time
complexity of the REMARC algorithm is @ vigv+n), wherem is the number of
features and is the average number of values per feature. resalt, REMARC

is bounded by the MAD algorithm’s time complexity.

4.4 Interpretation of the REMARC Predictive Model

As mentioned above, the REMARC method does not prdyide risk estimation
as a single real value, but the predictive modetius order to estimate risk can
provide useful information to domain experts. Athigeight value indicates that
the corresponding feature is a highly effectivé factor in the given domain.
Domain experts may choose to ignore features withweights, potentially
reducing the cost of record keeping.

Some of the categorical features are formed byeliging continuous features.
For example, age can be discretized into childflycadult and elderly. Assume
that the impression of the feature age is invest@jan a risky domain, such as
medicine. The intervals should be chosen caresilige they can affect a
system’s predictive performance. The domain expzmsprovide this
information. However, there can be experimental @iosywhere this knowledge
is not applicable. The MAD method used in REMARG@ries the proper intervals
in order to maximize AUC during the training phagkese intervals also report
the risks associated with each interval. For examginsider a dataset that
contains an age feature and a class label thatateti the presence of a new
disease. The MAD method will find the distinct ageups in terms of this
disease and the REMARC method will determine tble for each age group.

The choice of class label during risk estimatioa ha effect on the feature
weights. However, the risk function used by REMAB&pbends on this choice
directly, as shown in Section 4.1, so in ordemnterpret risk scores correctly one
must pay attention to the class label that reptegbe unwanted situation.
Otherwise, risk scores can be misleading.
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5 Empirical Evaluations

In order to maximize AUC the theoretical backgrowfdhe REMARC method is
given. In order to support the theoretical backgbwith empirical results two
different experiments are conducted. First, REMARCompared with 26
different machine learning algorithms on an AUCi&aghen, since there can be
domains where the predictive models have to tragfeh, running times of the

algorithms are also measured.

The real-life datasets are provided by the UCI nmeclearning repository (Frank
and Asuncion 2010) and are two-class problems.dbgssets are selected from
risk domains such as medicine and finance. Thegstieg of the datasets are
given in Table 6.

In order to perform the comparisons, 26 differdassification algorithms are
selected from the WEKA software package (Hall eR@0D9). Only the algorithms
that able to produce continuous output (confidesrtéhe class decision) are
selected. As mentioned above, the ROC graphs ofitigns producing
continuous output are meaningful. Since REMARC n®a-parametric method,
none of the classifiers is optimized for each dettasll classifiers are used with
default settings of WEKA for the sake of fairneBse SVM is taken from the
LIBSVM package provided in WEKA (Chang., C-C. & L.ig8-C. 2001).

5.1 Predictive performance

Researchers (Cortes and Mohri 2003; Han and Zh&0)2@ported that some of
the algorithms that aim to maximize AUC do not abtagnificantly better AUC

values than the ones designed to maximize accurdeyefore, it is important to
show that REMARC can outperform accuracy-maximiafgprithms statistically

significantly.

A stratified ten-fold cross validation is employtedcalculate AUC values for
each datasets. As shown in Table 7, the REMARC odetlutperformed all
algorithms on the average AUC. A paired t-testssduto decide whether the
differences on averages are significant. Accordintpe paired t-test on a 95%

confidence level (the same level will be used fitveo t-tests) REMARC
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statistically significantly outperforms 15 of thé thachine learning algorithms on
the average AUC. These algorithms include naiveeBaglecision trees (part,
C4.5) and SVM with a RBF kernel. REMARC outperfothtae other 11
algorithms, as well, but the differences betweenaverages for these algorithms
are not statistically significant.

One important point should be mentioned about WIS As seen in Table 7,
SVM has the worst predictive performance amongheliclassification algorithms
because of the absence of parameter tuning. Honasenentioned before none

of the algorithms is tuned for best predictive tesu

The classification algorithms such as logistic {imoimial logistic regression
model) and classification via regression achiegh lAUC values. As mentioned
above, these models are highly used in the donfaimedicine, and in this work
their predictive performance is validated.

The second classifier with the highest AUC wasAHaboost method. Since it is
an ensembling algorithm, it uses a base clasgdiefault DecisionStump in
WEKA). We believe that the performance of REMARQ® &e further improved
by using an ensembling algorithm, as then, a statlly significant difference
can be obtained.

5.2 Running Time

The REMARC method is designed to be simple, effecaind fast. It handles
categorical features close to the linear time. M#&Quires more time since it uses
sorting. Theoretically, REMARC seems fast, but empl experiments must be
conducted to support this claim.

The overall running times of the training phas@%ifferent algorithms are
calculated. The running times of all algorithms @xeasured using java virtual
machines’ CPU time and hundreds of results areageel (to be objective). The
SVM algorithm is not included in the running time=sction since WEKA uses an
outside library for this algorithm. However, it gkseconds for SVM to complete
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the training phase, so it is much slower than RENIARhe results of the overall

running time for the other algorithms are showil able 8.

REMARC outperforms 13 different algorithms signafitly according to a paired
t-test on a running-time basis. These outperformethods are shown by the
symbol on Table 8. Five algorithms outperformed RERC statistically
significantly. These algorithms are shown with symbol. The differences
between the other six methods on the table and RE®Are not significant.

6 Conclusions and Future Work

In this paper, we gave a discussion of risk in-fidaldomains. Different risk
domains are analyzed and some of the methods psedby in these domains
are given. Then we showed how the risk estimatroblpm can be modeled as a

two-class classification problem in machine leagnin

We argued the effectiveness of a method that maesmccuracy, for a risk
estimation method. We proposed an AUC-based matisbelad of accuracy and
presented important features of AUC, such as ins@nsto class distribution
and error cost, as being statistically more coestsand discriminating. Then, we
summarized the different methods proposed so fsigded to maximize AUC.

Aiming to maximize AUC, we proposed a risk estirmatmethod called
REMARC. We have shown that for a categorical feathere is only one

ordering that gives the maximum AUC. Then we shothedsufficient and
necessary condition for a risk function to achids ordering. As a result, we
proposed a risk function that finds the maximumsgade AUC on one categorical
feature. Aiming to maximize AUC, we handled the ttmmous features using the
MAD method, as it can discretize a continuous \@eiaThen we used these AUC
values as weights in computing the risk scoreseighted averages of feature
value risks. With this simple heuristic we averagéideature risk values in order

to achieve maximum AUC over the whole dataset.
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We present the characteristics of the REMARC rigdjgtion model and how it
should be interpreted. REMARC's prediction modedasy to understand and
interpret by domain experts.

After supporting the theoretical background, we pared REMARC with 26
different algorithms. According to empirical evaloa, REMARC significantly
outperformed 15 algorithms on an AUC basis andId@rséhms on a time basis.
It also outperformed all algorithms on the averAgkC and 17 of them on an

average time basis.

As a future work, REMARC can be compared with otk methods and
methods designed to maximize AUC. In order to imprthe performance of
REMARC, ensembling methods can be employed.

To conclude, a fast and highly predictive riskmstion method is proposed in

this paper. A simple yet effective predictive mqdeis understandable by domain
experts and will be useful for the machine learr@ogimunity.
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Fig. 6. Final cut-points after the first pass afieex hull algorithm.

1 :REMARCTrain (trainSet[M[N) // Includes Mfeatures and N train
i nst ances
2

Begi n
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for i=0 to M1
i f(isContinuous(trainSet[i]));

end
end

cut Poi nt s=MAD2C(trainSet[i][0..N-1]);

nuner i cal Val uesToCat Val (cut Points, trainSet[i]);
ri sks[i] <-conputeCategorical R sk(trainSet[i][0..N1]);
sortlnstancesByRi sk(trainSet[i][0..N1]);
aucVal ues[i] <-conmputeAUC(trainSet[i][0..N1]);

feat ureWei ghts([i]=aucVal ues[i]-0.5)*2;

Fig. 7. Algorithm of the REMARC method’s traininggse

CO~NOUAWNBE

for i=0 to M1

end

oneFeatureR sk= risks[i][testlnstace[i][0]];

: REMARCTest (testlnstance[M][1])
Begi n

total Ri sk+= oneFeatureR sk * featureWights[i];
t ot al Wi ght += feat ureWei ghts[i];

return total Ri sk/total Wi ght;

end

Fig. 8. Testing phase algorithm of the REMARC mdtho

Table 1. A Toy dataset given with hypothetical ssor

ClassLabel| n| n| n p p n p p
Score -7 3] O O 4 7 ? 10 n
Table 2. Toy training dataset with one categorfieature.
Class n n p n n p n o o M P D
Label
Feature a a a a b o ¢ q C C d d
Value
Table 3. Training datasets risk values are caledlanhd instances are sorted in ascending order.
Risk 0.25| 0.25 0.2% 0.26 0.33 0.33 0/33 066 0.666601.00] 1.00 1.0(
Class n n p n n p n p o 1 p )
Label
Feature a a a a b b k q C d d
Value

Table 4. Negated version of the training dataskeé fisk values are calculated again and instarreesoated
in ascending order.

Risk | 0.0 | 0.0| 0.0/ 0.33 0.33 0.33 0.66 0J66 Q.66 0.0%5| 0.75 0.74
Class n n n n n p p n o ¢ p n
Label
Feature d d d c c c b b o g A
Value T
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Table 5. A toy dataset for visualizing MAD in twiass problems. The name of the attribute to beetized

is F1.

Class nin ni n n I
Value p P m A Pl P P
FLO[1)2)3 4588678 p 1 4t

Table 6. Properties of the datasets used in thérieaipevalutations of the REMARC algorithm.

# Continuous| #Categorical | # Dataset
Dataset Name # InstancgsAttributes Attributes Abbreviations
Australian 690 6 8 A
Bupa 345 6 0 B
Crx 653 9 6 C
Heart (Statlog) 270 7 6 H1
Hypothyroid 3164 7 18 H2
Mammaographic Masse 961 1 5 M
Pima-Diabetes 768 8 0 P
Sick-Euthyroid 3163 7 18 S1
SPECTF 267 44 0 S2
Wisconsin-Breast 569 30 0 W

37



Table 7. The comparison of the predictive perforceaof REMARC algorithm with other algorithms on AUfietric. 10 datasets are used during evaluatiogorAhms marked with ++ are
outperformed by REMARC method with a statisticalignificant difference Algorithms marked with + ayetperformed by REMARC on average with no sigaificdifference. (Higher results
better)

Algorithms/Datasets A B C H1 H2 M P S1 S2 W Average
REMARC 0,923 0,659| 0,931| 0,904/ 0,98 0,901 0,827 0,942 0,857 0,p86,892

BayesNet+ 0,92p00,540| 0,928 | 0,901 0,989 0,89p 0,818 0,959 0,825 0,086 760,8
NaiveBayes++ 0,8950,641| 0,900| 0,897 0,977 0,896 0,816 0,920 0,850 0,p80 770,8
AODE+ 0,92§ 0,540| 0,930| 0,904 0,989 0,90p 0,823 0,963 0,820 0,088 790,8
Logistic+ 0,917 0,714| 0,915| 0,900, 0,970 0,89B 0,831 0,956 0,801 0,p72 80,8
RBFNetwork++ 0,7320,509| 0,787| 0,835 0,581 0,786 0,642 0,66 0,641 0,55 940,6
IBk++ 0,801 0,634| 0,798 | 0,743] 0,766 0,799 0,648 0,762 0,592 0,047 480,
LWL++ 0,911| 0,643| 0,909| 0,839 0,955 0,88 0,775 0,942 0,674 0,048 480,8
AdaBoostM1+ 0,9220,737| 0,926| 0,888 0,990 0,895 0,804 0,966 0,801 0,885 910,8
Att.Sel.Classifier++ | 0,86P0,584| 0,875| 0,801 0,952 0,867 0,786 0,914 0,624 0,038 210,8
Bagging+ 0,918 0,755| 0,910| 0,872 0,980 0,888 0,822 0,972 0,795 0,77 890,8
Class.ViaRegr.+ 0,91180,727| 0,918| 0,882 0,990 0,896 0,827 0,986 0,163 0,089 900,8
END++ 0,865 0,648| 0,877| 0,777] 0,940 0,868 0,78 0,989 0,593 0,039 210,8
FilteredClassifier++ | 0,8990,540| 0,893| 0,836 0,958 0,868 0,794 0,949 0,683 0,939 350,8
MultiBoostAB+ 0,90§ 0,673| 0,908| 0,865 0,984 0,886 0,790 0,955 0,709 0,081 660,8
MultiC.Classifier+ 0,9120,714| 0,915| 0,900 0,970 0,898 0,831 0,956 0,801 0,972 860,8
OrdinalC.Classifier++0,865| 0,648| 0,877| 0,777 0,940 0,868 0,78 0,989 0,593 0,039 210,8
ThresholdSelector+ | 0,904,699| 0,916| 0,898 0,969 0,892 0,826 0,956 0,686 0,069 710,8
VFI++ 0,913 0,562| 0,910| 0,871 0,782 0,836 0,550 0,765 0,853 0,046 980,7
DecisionTable+ 0,910,574| 0,910| 0,883 0,989 0,876 0,801 0,9r1 0,678 0,p72 570,8
PART++ 0,864 0,645| 0,853| 0,785 0,966 0,882 0,778 0,954 0,652 0,037 320,8
ADTree+ 0,917 0,705| 0,925| 0,880] 0,988 0,887 0,802 0,979 0,803 0,084 870,8
DecisionStump++ 0,8330,572| 0,848 | 0,688 0,951 0,788 0,696 0,986 0,623 0,886 820,
FT++ 0,898 0,721)| 0,853 | 0,824 0,943 0,87¢ 0,7%1 0,907 0,752 0,084 510,8
J48 (C4.5) ++ 0,86p0,648| 0,877| 0,777] 0,940 0,868 0,7%8 0,989 0,593 0,039 210,8
SVM-RBF++ 0.62§ 0.609| 0.602| 0.509] 0.952 0.87p 0.518 0.7B5 0.466 0./60 550.6
REPTree++ 0,87p0,666| 0,871| 0,824 0,963 0,846 0,768 0,957 0,631 0,024 330,8
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Table 8. The comparison of the average running pieréormance of REMARC algorithm with other algbrits (in ms) . 10 datasets are used during evatuasigorithms marked with ++ symbol
are outperformed by REMARC method on running tirasi® with a statistically significant differencelgérithms marked with -- symbol outperformed REMAR@thod on running time basis
with a statistically significant difference. + matkalgorithms are outperformed by REMARC on aveagk— marked algorithms outperform REMARC on agenaith no significant difference.
(Lower results better)

Algorithms/Datasets A B C H1 H2 M P S1 S2 W| Average
REMARC 106 37 94 49 1131 128 164 1117 191 470 349
BayesNet-- 49 17 52 28 425 54 60 393 81 244 140
NaiveBayes-- 30 11 29 18 164 30 37 154 61 102 64
AODE-- 53 16 52 27 352 40 56 350 113 280 134
Logistic++ 1014 74 1215 124 3720 261 257 3647 472 359 1174
RBFNetwork++ 404 136 348 148 1057 367 28D 1149 712 620 522
Ibk+ 172 33 169 35 7365 233 153 746% 124 222 1597
LWL+ 2094 376 1940 412 52652 2360 2652 52887 1414 9196| 12370
AdaBoostM1++ 302 132 296 156 1584 302 394 1579 4751135 635
Att.Sel.Classifier+ 173 31 159 99 761 201 16p 86y 194| 496 337
Bagging++ 740 295 727 295 4484 636 961 6904 1970 181y 1783
Class.ViaRegr. ++ 5340 1355 5578 1143 9943 3912  33%9 15598 2218 2662 5134
END+ 236 119 218 126 880 219 254 1568 333 460 441
FilteredClassifier- 119 16 107 48 462 86 116 858 51% 265 223
MultiBoostAB++ 318 133 297 164 1614 317 384 162p 747 1140 647
MultiC.Classifier++ 991 79 1175 125 3698 239 226 5@6 473 963 1163
OrdinalC.Classifier 162 79 150 83 681 177 197 1380 255 378 354
ThresholdSelector+ 1695 137 2032 227 6442 429 387 634p 1118 2028 2084
VFI-- 16 5 17 9 104 12 14 111 23 31 34
DecisionTable++ 1582 156 169¢ 434 10824 411 635 9814 1183 2526 3095
PART++ 416 102 511 193 865 230 248 2028 684 473 574
ADTree++ 689 276 645 469 3149 579 973 3536 1562 7271 1459
DecisionStump-- 24 9 23 11 113 17 30 114 43 105 49
FT++ 4705 847 4879 927 14834 2856 2230 309p9 1796 324 2| 6636
J48 (C4.5)- 160 75 153 81 635 147 181 1283 256 378 335
REPTree++ 77 33 80 33 395 105 136 569 124 185 174
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